CartoCell o cómo detectar patrones ocultos en tejidos celulares

Cuaderno de Cultura Científica - Or, 2023-09-29 11:59

Una reciente colaboración entre el Instituto de Biomedicina de Sevilla con la Universidad del País Vasco, el Instituto Biofisika, el Donostia International Physics Center y otros prestigiosos centros nacionales e internacionales, han dado como resultado CartoCell, una herramienta de análisis de imágenes en 3D de alto contenido que revela patrones de morfología celular escondidos. Este software, de código abierto, tiene un gran potencial de aplicación tanto en ciencia básica, con la que ya ha sido probado, como para el desarrollo clínico y médico.

CartoCellCartoCell es una red neuronal artificial que procesa de forma automática epitelios en 3D, esto es, permite la reconstrucción automática en 3D de imágenes obtenidas por microscopía.En busca de patrones ocultos

Los animales y plantas, además de otras estructuras de la naturaleza, presentan patrones que podemos detectar fácilmente: las rayas de las cebras, los polígonos de la jirafa o en las conchas de las tortugas, por ejemplo. Todos estos patrones tienen en común que son macroscópicos. Sin embargo, este mismo fenómeno se da a nivel microscópico, en los tejidos. “Estos patrones también aparecen durante el desarrollo embrionario”, explica Luis M. Escudero, uno de los autores e investigador del Instituto de Biomedicina de Sevilla (IBiS) y profesor de la Universidad de Sevilla. “Por ejemplo, hay genes que se expresan en patrones alternos de rayas y que son fundamentales para establecer los segmentos de los insectos”. Muchos de dichos patrones son ya conocidos y muy estudiados, sin embargo, queda mucho por descubrir.

“En nuestro trabajo hemos encontrado patrones que aún estaban escondidos…. Y que solo han podido ser desvelados al usar herramientas de inteligencia artificial para el análisis de imágenes microscópicas de tejidos. Vemos que, incluso en estructuras muy simples, ya hay asimetrías en la morfología de las células. Esta es la forma en que comienza la morfogénesis”. La morfogénesis se refiere al proceso biológico que causa que un organismo desarrolle su forma y estructura. Es una de las etapas fundamentales durante el desarrollo embrionario y se refiere a la organización y distribución espacial de las células diferenciadas para formar estructuras específicas y eventualmente órganos completos.

CartoCell, una herramienta para cartografiar los tejidos epiteliales

“CartoCell es una herramienta software que permite procesar de manera rápida y automática una gran cantidad de imágenes 3D obtenidas en el microscopio para la reconstrucción y el análisis de tejidos epiteliales a nivel celular”, prosigue el Dr. Escudero. En otras palabras, esta herramienta digital es capaz de trabajar de forma automática muchísima información, especializándose en buscar patrones, formas, distribuciones y estructuras en los tejidos a partir de imágenes.

Según aclara, CartoCell utiliza la potencia de las redes neuronales, específicamente una red neuronal artificial diseñada para optimizar la identificación de células tridimensionales en imágenes de microscopía. La principal ventaja de CartoCell es que puede identificar y estudiar la forma y distribución espacial de cada célula en el tejido epitelial, permitiendo descubrir patrones asociados a diferentes tipos de tejidos.

“Cada célula del tejido es reconstruida con una gran fidelidad, gracias a lo cual podemos estudiar tanto su forma como su distribución espacial. De este modo, CartoCell nos permite descubrir patrones asociados a los diferentes tipos de tejidos y células, así como estudiar sus reglas de empaquetamiento”. De momento, el software ha sido usado para estudios de ciencia básica, permitiendo cartografiar la morfología de las células con imágenes de diferentes tipos de tejidos. “De este modo, hemos podido encontrar patrones ocultos de una manera sencilla y muy visual”, continúa el investigador, “lo que es fundamental para estudiar la organización de tejidos epiteliales donde las células presentan un contacto estrecho”.

Pero, además de los patrones ocultos, y de la investigación biológica de tejidos, CartoCell también muestra un gran potencial de aplicación clínica. “En el ámbito biomédico, la posibilidad de analizar una gran cantidad de muestras de manera rápida y fiable, como hace CartoCell, es ideal para evaluar la reproducibilidad de cultivos de organoides [pequeños tejidos creados para simular un pequeño órgano] epiteliales y realizar comparativas detalladas entre condiciones normales y patológicas. Por poner un ejemplo sencillo”, continúa el investigador, “el testeo del efecto de fármacos en tejidos animales o humanos podría beneficiarse de nuestro método. Nuestro avanzado análisis de imágenes podría detectar cambios sutiles a nivel celular, que a la larga pueden ser importantes, del efecto de cada fármaco contra una determinada enfermedad”.

Redes neuronales y código abierto en su núcleo

El corazón de CartoCell es una red neuronal artificial. La arquitectura de la red fue diseñada partiendo de otros modelos desarrollados anteriormente por el grupo de investigación en visión artificial para bioimagen del Instituto Biofisika y el Donostia International Physics Center (DIPC), en el País Vasco, que participa en el proyecto. “Estos modelos ya habían demostrado gran versatilidad y robustez para problemas similares en imagen de microscopía de diferentes modalidades (microscopía electrónica y microscopía confocal, entre otras)”, explica el doctor Ignacio Arganda, líder de dicho grupo e investigador Ikerbasque afiliado también a la Facultad de Informática de la Universidad del País Vasco (UPV/EHU). “En concreto, la arquitectura y las imágenes de salida que genera fueron adaptadas para optimizar la identificación de células tridimensionales adquiridas mediante técnicas de microscopía”.

“Como toda red neuronal artificial”, continúa, “la nuestra necesita del conocido como conjunto de entrenamiento para aprender a realizar la tarea que le propongamos. En nuestro caso, dicha tarea se trata de la identificación (o “segmentación”) de células epiteliales en imágenes tridimensionales”. Normalmente, para que una red neuronal sea capaz de generalizar y realizar esta tarea con precisión, necesita un conjunto de datos muy grande y heterogéneo. Construir dicho conjunto requiere muchísimo trabajo manual, ya que habría que “pintar” una a una todas las células de las imágenes 3D de entrenamiento.

“Sin embargo”, aclara el experto, “CartoCell utiliza un conjunto de entrenamiento inicial de epitelios pintados muy pequeño. Con ese conjunto, entrenamos nuestra red neuronal una primera vez, e intentamos que prediga las identidades celulares en muchas otras imágenes de epitelios. Como es esperado, el resultado no es el ideal, pues muchas identidades no están completas, y quedan huecos entre las células. Para solucionarlo, empleamos un algoritmo de Voronoi que rellena los espacios vacíos entre las células identificadas, consiguiendo así que contacten entre ellas».

“Estas etiquetas celulares transformadas son las que llamamos weak labels [etiquetas débiles], y las utilizamos como nuestro nuevo conjunto de entrenamiento. Aunque estas etiquetas no son totalmente perfectas, capturan de una forma bastante realista la morfología celular (dado que las células epiteliales comparten algunas características de organización con los patrones de Voronoi). Además, al ser muchas y muy heterogéneas, ayudan a mejorar el proceso de re-entrenamiento de la red. Este paso es clave en CartoCell, ya que nos permite conseguir muy buenos resultados en segmentación sin tener que emplear un tiempo excesivo en etiquetar manualmente un conjunto de entrenamiento grande”, completa el investigador.

Una de las características de CartoCell es su versatilidad, según defiende el Dr. Pedro Gómez-Gálvez, autor también del trabajo y actualmente en el Departamento de Fisiología, Desarrollo y Neurociencia de la Universidad de Cambridge (Reino Unido). En concreto, su red neuronal se podría sustituir por cualquier modelo de segmentación del estado del arte (redes neuronales convolucionales 3D o cualquiera de sus variantes), siempre y cuando se utilice el concepto de etiquetado ligero o “weak labels” anteriormente descrito para mejorar el conjunto de entrenamiento. “De hecho, en nuestro artículo probamos con varias arquitecturas de red modernas y, con todas, los resultados fueron muy buenos tras el etiquetado ligero siguiendo el algoritmo de Voronoi”, confirma Gómez-Galvez.

Además, CartoCell es una herramienta de código abierto, lo que brinda la oportunidad a otros expertos de utilizar, mejorar o adaptar libremente su uso. “Todas las personas que hemos participado en la creación de CartoCell creemos firmemente en la idea de ciencia abierta. Consecuentemente, CartoCell ha sido implementado desde el primer día como código abierto, y siempre ha estado disponible para la comunidad. En ese sentido, nuestra intención ha sido crear una herramienta accesible, fácil de instalar y utilizar por personas no expertas, pero también adaptable y ampliable para quien quiera desarrollar nuevas soluciones sobre ella”, concluye.

Referencia:

Jesus A. Andres-San Roman, Carmen Gordillo-Vazquez, Daniel Franco-Barranco, Laura Morato, Cecilia H. Fernández-Espartero, Gabriel Baonza, Antonio Tagua, Pablo Vicente-Munuera, Ana M. Palacios, María P. Gavilán, Fernando Martín-Belmonte, Valentina Annese, Pedro Gómez-Gálvez, Ignacio Arganda-Carreras, Luis M. Escudero (2023) CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia Cell Reports Methods doi: 10.1016/j.crmeth.2023.100597

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo CartoCell o cómo detectar patrones ocultos en tejidos celulares se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Kiñuren begirada: landareak

Zientzia Kaiera - Or, 2023-09-29 09:00

Naturan, hirietan, gure etxeetan eta gure plateretan daude. Landareak gure eguneroko bizimoduaren parte dira, eta, askotan, ez gara konturatzen. Oraingo honetan, Kiñuk, gure mundua partekatzen duten kide isil horietan erreparatu du.

Aniztasun harrigarritik gure planetan bizi diren landare kopurura, horietako batzuen bitxikeriak ere ikusiko ditugu, fotosintesia prozesua birpasatuz. Baina nonahi ageri diren arren eta bizitzeko beharrezkoan badira ere, gizarteak ez die askotan kasurik egiten landareei. ‘Landareekiko itsutasuna‘ deitzen zaio fenomeno horri. Landareak aztertu ditu gure kirikiñoak hamaika datu hauek ekarriz.

landareak

Hilero, azkenengo ostiralean, Kiñuk bisitatuko du Zientzia Kaiera bloga. Kiñuren begirada gure triku txikiaren tartea izango da eta haren eskutik gure egileek argitaratu duten gai zientifikoren bati buruzko daturik bitxienak ekarriko dizkigu fin.

Egileaz:

Maddi Astigarraga Bergara (IG: @xomorro_) Biomedikuntzan graduatua, UPV/EHUko Ilustrazio Zientifikoko masterra egin du eta ilustratzailea da.

The post Kiñuren begirada: landareak appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Minerales con brillo

Cuaderno de Cultura Científica - Og, 2023-09-28 11:59

brillo
Los minerales, esas sustancias sólidas naturales formadas por elementos químicos ordenados en estructuras cristalinas, presentan una serie de propiedades físicas y químicas que les son únicas y características, lo que nos permite utilizarlas como criterios identificativos y clasificatorios.

Dicho de otro modo y un poco más sencillo. Debido a la composición química de los minerales y la estructura interna que presentan esos elementos químicos, cada mineral tiene unas características concretas que se pueden observar a simple vista y que son propias de cada uno de ellos, lo que nos permite identificarlos rápidamente diferenciándolos de los demás. Si lo asimilamos a los seres humanos, serían esos caracteres heredados que sirven para describir a una persona sin confundirla con otra, como el color del pelo y de los ojos, el tono de la piel, la altura, la presencia de pecas y lunares o el rango de nuestra voz.

Esto nos da mucho juego cuando organizamos actividades de divulgación geológicas, ya que podemos plantear talleres de identificación de minerales de manera muy sencilla y utilizando artilugios de andar por casa, como un trozo de loza, una navaja o un vidrio, que suelen llamar mucho la atención del público asistente. Y, aunque la mayoría de las propiedades físicas y químicas a las que hacemos alusión son muy fáciles tanto de explicar cómo de entender, hay una que se le suele atragantar a la gente. Me estoy refiriendo al brillo.

brilloA) Ejemplar de galena, mineral con brillo metálico. B) Cristales de cuarzo, mineral con brillo no metálico.

En una definición rápida, el brillo es el aspecto que adquiere la superficie de un mineral cuando refleja la luz. Y de aquí viene la confusión. Cuando hablamos de reflejar la luz, nos imaginamos a las ondas luminosas rebotando con fuerza contra la cara del mineral y volviendo a la fuente de emisión como un nuevo haz de luz, casi como si ese mineral se convirtiese por sí mismo en emisor y produjese un destello luminoso. Esto es lo que vemos, por ejemplo, cuando el Sol incide en un objeto de metal en la calle, cuyo reflejo se convierte en un resplandor que nos marca exactamente su posición y nos molesta si lo miramos fijamente. Esto nos lleva a pensar que existen minerales que brillan, que serían aquellos que generan este efecto luminoso, y minerales que no brillan, entre los que incluiríamos todos aquellos que no provocan ese destello.

Pues este es el error que comentemos todas las personas la primera vez que nos enfrentamos a tener que describir esta propiedad óptica de los minerales, porque, en realidad, todos y cada uno de los minerales del planeta tienen brillo. Precisamente, esa apreciación visual que os he comentado en el párrafo anterior y que es totalmente intuitiva es la que nos permite clasificar el tipo de brillo de los minerales, diferenciando dos grandes grupos. Por un lado, aquellos minerales que tienen el aspecto brillante de un metal cuando les incide la luz decimos que tienen brillo metálico. Se trata de minerales de colores oscuros y opacos, es decir, que no dejan que les atraviese la luz, como la pirita (sulfuro de hierro, FeS2) o la galena (sulfuro de plomo, PbS). Y, por otro lado, tenemos los minerales de brillo no metálico, que son todos aquellos de colores claros y que se comportan como transparentes o translúcidos, por lo que transmiten la luz bien en parte o bien en su totalidad.

brilloTabla con la clasificación de los tipos (metálico y no metálico) y subtipos (adamantino, graso, mate, nacarado, perlado, resinoso, sedoso y vítreo) de brillo más comunes en los minerales, con algunos ejemplos característicos. Imagen modificada del original de Minerales de Visu / Universidad de Alicante

Podemos encontrar diferentes subdivisiones o agrupaciones dentro de los minerales con brillo no metálico, como los de brillo vítreo porque nos recuerdan al brillo que presenta el vidrio de una ventana, que es lo que le ocurre al cuarzo (dióxido de silicio, SiO2), o los de brillo nacarado, que en este caso se asemeja a las irisaciones que se producen en las perlas y es característico del talco (silicato de magnesio hidratado, Mg3Si4O10(OH)2). Pero, por lo general, no entramos en tanto detalle a la hora de clasificar los minerales de acuerdo a su brillo, decimos simplemente que tienen brillo metálico o brillo no metálico.

Sé que he repetido la palabra clave brillo en demasiadas ocasiones a lo largo del texto, pero ha sido totalmente a posta para dejar las ideas bien claras de que todos los minerales tienen esta propiedad y que es una de las características físicas básicas para clasificarlos. Así, cuando os enfrentéis a un apasionante taller divulgativo de identificación de minerales, sabréis la diferencia entre brillo metálico y brillo no metálico y podréis seguir jugando con sus propiedades hasta que acertéis el nombre correcto del ejemplar que tengáis en la mano.

Agradecimiento:

Quiero dar las gracias a Ana Rodrigo, Directora del Museo Geominero del Instituto Geológico y Minero de España (IGME-CSIC), por darme la idea de escribir este artículo tras una interesante conversación sobre cómo mejorar nuestras actividades de divulgación geológicas, resaltando la problemática del público en general a la hora de entender algunas de las propiedades características de los minerales.

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo Minerales con brillo se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Zientziaren argi-itzalak

Zientzia Kaiera - Og, 2023-09-28 09:00

Zientziaren argi-itzalak (2017) liburuan, Agustin Arrieta Urtizberea zientzia-jardueraren argazki edo irudi egoki baten bila abiatzen da. Saiakera honetan zenbait oreka-ariketa egin beharko ditu. Izan ere, Arrieta ez dator bat zientziaren gainean egiten diren muturreko deskripzio hedatuenekin.

argi-itzalakIrudia: Zientziaren argi-itzalak liburuaren azala. (Iturria: UEU argitaletxea)

Batzuetan, zientzia irudikatzen da balio sozial, politiko, ekonomiko edo etikoen eraginetatik kanpo garatzen den esparru garbi gisa. Besteetan, aldiz, zientzia negoziazio politiko-ekonomikoaren emaitza huts gisa irudikatzen da. Ez bata ez bestea. Zientziagintzak egungo gizartean izugarrizko garrantzia dauka, eta komeni da fenomeno hori ahalik eta ongien ulertzea. Hala, gure gizartea bera ere hobeto ulertuko dugu. Liburua, bada, bide horretan egindako ahalegina eta, halaber, eztabaidarako proposamena da.

Agustin Arrieta Urtizberea (Errenteria, 1962) euskal filosofo eta idazlea da. Filosofian eta informatikan lizentziatua eta filosofian doktorea da.

Argitalpenaren fitxa:
  • Izenburua: Zientziaren argi-itzalak
  • Egilea: Agustin Arrieta Urtizberea
  • ISBN: 978-84-8438-621-6
  • Hizkuntza: Euskara
  • Urtea: 2017
  • Orrialdeak: 138 or.
Iturria:

Udako Euskal Unibertsitatea argitaletxea: Zientziaren argi-itzalak

The post Zientziaren argi-itzalak appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Svetlana Jitomirskaya, la matemática que ganó la mitad de diez martinis

Cuaderno de Cultura Científica - Az, 2023-09-27 11:59

Ella era tan brillante que yo sabía que yo no lo era tanto.

Svetlana Jitomirskaya en [4].

En la anterior cita, la matemática Svetlana Jitomirskaya se refiere a Valentina Borok, su madre, que fue una destacada matemática ucraniana. De ella ya hablamos en este Cuaderno de Cultura Científica.

A pesar de lo brillante que era su madre, Svetlana Jitomirskaya no se queda atrás. Especialista en sistemas dinámicos y física matemática, en 2005 obtuvo el Premio Ruth Lyttle Satter en matemáticas por su trabajo pionero en su especialidad. Y, junto a Artur Ávila, resolvió en 2009 el conocido como problema de los diez martinis en el área de los sistemas dinámicos.

JitomirskayaSvetlana Jitomirskaya. Fuente: Springer.

 

Una familia matemática

Svetlana Yakovlevna Jitomirskaya es la hija pequeña de los matemáticos Valentina Mikhailovna Borok y Yakov Yitomirski, que realizaron conjuntamente una parte importante de su investigación.

Su hermano mayor, Michail Zhitomirski (1958) también ha dedicado su vida profesional a las matemáticas. En este momento trabaja en teoría de variedades diferenciables en el Instituto Tecnológico de Israel en Haifa.

Svetlana Yakovlevna Jitomirskaya nació el 4 de junio de 1966 en Járkov (Ucrania). Comentaba sobre sus primeros años (ver [3]):

Cuando yo nací, mis padres ya eran catedráticos (en una sociedad en la que este título inspiraba mucho respeto). Mi madre era sin duda la matemática más destacada del país. Después de haber criado a mi hermano mayor, que estaba claramente dotado para las matemáticas, mis padres pensaron que un matemático más en nuestra familia sería demasiado. Me animaron a interesarme por cosas variadas, y empecé a inclinarme seriamente por las humanidades. Escribí poesía (premiada) y gané algunos concursos nacionales de bachillerato en literatura rusa. Planeé un futuro estudiando (si no escribiendo) poesía rusa.

A pesar de que ni ella ni su familia pensaban que se iba a dedicar a las matemáticas, Svetlana, a sus 14 años, se enamoró durante unas vacaciones de un chico que vivía en Moscú. Sabía que era difícil mantener una relación a distancia y, ya con 16 años, vio que la única manera que tenía de estar cerca de su amado era ingresando en la Universidad Estatal de Moscú. En aquella época esta institución limitaba el número de estudiantes judíos que podían acceder a sus enseñanzas. Para mantener esas cuotas limitantes los aspirantes judíos eran sometidos a preguntas exageradamente difíciles durante los exámenes orales de ingreso. De esta manera intentaban asegurar que el alumnado judío no constituyera más del 0,5 % del estudiantado total. Svetlana sabía que tenía muy pocas posibilidades de aprobar en cualquier disciplina, pero las matemáticas aparecieron como una opción mejor que las humanidades al haber una competencia mucho menor y una mayor objetividad.

Las matemáticas llegan de manera inesperada

Con esta idea en la cabeza dedicó su último año de instituto a preparar el examen oral de matemáticas. En sus propias palabras (ver [3]):

Creo que durante ese año resolví todos los problemas elementales complicados que había, y algunos más. Me tomaba cada problema como algo personal y lo atacaba como si mi felicidad futura dependiera de si lo resolvía o no. Me aceptaron en la Universidad Estatal de Moscú; sin embargo, no puedo considerarlo una victoria personal como me hubiera gustado. No llegué a mostrar ni una fracción de mis habilidades en aquel examen oral, ya que no me sometieron a ese trato «judío» (quizá, debido a las conexiones de mis padres). Sin embargo, algo me ocurrió durante esa extensa preparación, ya que empecé a amar el proceso.

Y de este modo consiguió acercarse a Moscú para no separarse de Vladimir A. Mandelshtam, quien posteriormente se dedicó a la química, con quien se casó en cuanto alcanzó su mayoría de edad.

Jitomirskaya terminó sus estudios universitarios en 1987, graduándose con matrícula de honor. Continuó con su formación doctoral en la Universidad Estatal de Moscú, bajo la supervisión de Yákov Grigórevich Sinái (1935), que también la había asesorado durante sus estudios universitarios. Sinái es un reconocido especialista en teoría de sistemas dinámicos, física matemática y teoría de la probabilidad. Reconocido con el Premio Abel en 2014, fue el principal artífice de la mayoría de los puentes que conectan el mundo de sistemas deterministas (dinámicos) con el mundo de los sistemas probabilísticos (estocásticos).

Svetlana presentó su tesis doctoral en 1991: Spectral and Statistical Properties of Lattice Hamiltonians. Ese mismo año, Vladimir finalizó también su trabajo doctoral.

Antes de finalizar su tesis, en 1990, comenzó a trabajar como investigadora en el Instituto Internacional de Teoría de la Predicción de Terremotos y Geofísica Matemática de Moscú, centro en el que ya trabajaba su marido.

Un año más tarde ofrecieron a Svetlana un puesto postdoctoral en la Universidad de California en Irvine y a Vladimir otro en la Universidad del Sur de California. Aceptaron ambas ofertas de trabajo porque estarían cerca, aunque no fuera en el mismo centro. Lo que pensaron que iba a ser una estancia de un año se convirtió en su lugar de trabajo y residencia definitivos.

Una matemática reconocida

Jitomirskaya recibió el Premio Ruth Lyttle Satter 2005 de la American Mathematical Society. Este premio se concede cada dos años en reconocimiento a una contribución destacada a la investigación matemática realizada por una mujer en los cinco años anteriores. El comité de selección destacó (ver [1]):

El Premio Ruth Lyttle Satter de Matemáticas se concede a Svetlana Jitomirskaya por su trabajo pionero sobre la localización cuasiperiódica no perturbativa, en particular por los resultados de sus artículos (1) «Metal-insulator transition for the almost Mathieu operator«, Ann. of Math. (2) 150 (1999), no. 3, 1159-1175, y (2) con J. Bourgain, «Absolutely continuous spectrum for 1D quasiperiodic operators«, Invent. Math. 148 (2002), no. 3, 453-463. En su artículo de los Annals, desarrolló un enfoque no perturbativo de la localización cuasiperiódica y resolvió la vieja conjetura de Aubry-Andre sobre el operador casi Mathieu. Su artículo con Bourgain contiene el primer resultado general no perturbativo sobre el espectro absolutamente continuo.

Además, entre otros reconocimientos, Jitomirskaya ganó en 2020 del Premio Dannie Heineman de Física Matemática que se otorga cada año desde 1959 conjuntamente por la American Physical Society y el American Institute of Physics. Svetlana recibió este galardón:

Por su trabajo en la teoría espectral de operadores de Schrödinger casi periódicos y cuestiones relacionadas en sistemas dinámicos. En particular, por su papel en la solución del problema de los diez martinis, relativo a la naturaleza de conjunto de Cantor del espectro de todos los operadores casi Mathieu y en el desarrollo de los aspectos matemáticos fundamentales de los fenómenos de localización y transición metal-aislante.

El problema de los diez martinis lleva este nombre porque el especialista en teoría de la probabilidad Mark Kac (1914-1984) ofreció diez martinis a quien lo solucionara. Jitomirskaya lo resolvió junto al matemático Artur Avila (1979) en el artículo The Ten Martini Problem publicado en 2009.

A Svetlana Jitomirskaya aún le quedan muchos éxitos matemáticos por conseguir. Su madre fue un modelo extraordinario para ella. Al recibir el premio Ruth Lyttle Satter, comentó lo siguiente en su discurso de agradecimiento (ver [1]):

Debo decir que nunca me he sentido en desventaja por ser una mujer matemática; de hecho, hasta cierto punto ocurre lo contrario. Sin embargo, en comparación con la mayoría de las demás, tuve una ventaja única: un modelo fantástico desde muy pronto: mi madre, Valentina Borok, que habría sido mucho más merecedora de un premio así que yo ahora, si hubiera existido en su época. Para mí, recibir este premio es un homenaje especial a su memoria. Es un placer aprovechar esta oportunidad para darle las gracias.

Referencias

[1] AMS; 2005 Satter Prize, Notices of the AMS 52 (4) 447-448, 2005.

[2] Svetlana Jitomirskaya, Valentina Mikhailovna Borok, MacTutor History of Mathematics archive, University of St Andrews.

[3] John O’Connor and Edmund Robertson, Svetlana Yakovlevna Jitomirskaya, MacTutor History of Mathematics archive, University of St Andrews.

[4] Margarita Rodríguez, Svetlana Jitomirskaya, la matemática detrás de la solución a “el problema de los diez martinis” de la mecánica cuántica, BBC News, 10 de diciembre de 2022.

[5] Valentina Borok, Wikipedia.

[6] Svetlana Jitomirskaya, Wikipedia.

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Svetlana Jitomirskaya, la matemática que ganó la mitad de diez martinis se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Marteren nukleoa

Zientzia Kaiera - Az, 2023-09-27 09:00

Geologiaren ikuspegitik, funtsezkoa da eguzki sistemako gorputzen barnealdea osatzen duten geruzak nolakoak diren eta zein egoeratan dauden jakitea, haien eraketari, osaerari eta jarduera mailari buruzko informazioa eman baitezake. Oro har, eta orbitatik hartutako zeharkako neurriei eta zenbakizko eredu gero eta hobeei esker, planetak –eta beste gorputz batzuk– nolakoak diren jakiten hasten ari garen arren, xehetasun handiagoz ikusteko aukera emango diguten misioak behar ditugu. Martera 2018ko azaroan iritsi eta 2022ko abenduan misioa amaitu zuen InSight misioari eta beste batzuei esker, planeta gorriaren barnealdea askoz hobeto ezagutzen hasi gara. Ziurrenik, datozen urteetan, barnealdeari buruzko datu eta ereduen interpretazioak jasotzen dituzten artikulu berriak ikusiko ditugu; horiei esker ulertu ahal izango dugu zergatik izan zen Lurrarenaren hain bestelakoa planeta horren bilakaera.

Marteren1. irudia: Irudikapen artistiko horretan, InSight misioaren lurreratze modulua ikus dezakegu, Marteren lurzoruan sartutako “satorrarekin” batera (eskuinean), baita SEIS tresna ere (ezkerrean). Tresna horren sismometroa zuzenean ikusten ez dugun arren, tenperatura aldaketetatik eta haizearen eraginetik isolatuta egoteko balio dion kupula hauteman dezakegu. (Irudia: NASA/JPL.)

Haren instrumentuetako bi, SEIS (sismometroak eta misioaren tresna nagusia) eta RISE (planetaren errotazioa eta “kulunka” delakoa hobeto ezagutzeko zundaren komunikazio sistema baliatzen duen esperimentua), oso sentikorrak eta erabilgarriak dira planetaren “erradiografia” bat lortzen laguntzeko eta planetaren prozesu geologikoak aztertzeko, hala nola lurrikarak eta jarduera bolkaniko posiblea, baita planetaren gainazalaren eta atmosferaren arteko masa birbanatzea ere, urtaroen ondorioz gertatzen den karbono dioxidoaren transferentziaren ondorioz.

Bi tresna horiek planetaren gainean aldi berean izatea oso garrantzitsua da, izan ere, oso metodologia desberdinak erabili arren, egiazta dezakegu ea bi instrumentuen bidez sortutako barne ereduak antzekoak eta konparagarriak diren… Hain zuzen ere, hori da gertatu dena, eta saiatuko gara azaltzen zehazki zer ikusi den eta horrek zer ondorio dituen.

Has gaitezen SEIS tresnaren datuekin. Arestian esaten genuen bezala, SEIS oso sismometro sentikorra da. Lurrikarek edo meteoritoen talkak eragindako uhin sismikoak detektatzeko gai da, beste gertaera batzuen artean. Uhin sismikoek lurrikara gertatu den puntutik (hipozentroa deitzen diogu puntu horri) abiatu eta planetaren barrualdetik bidaiatzen dutenean, zeharkatzen dituzten materialen propietate aldaketak eta osaerak aldatu egiten dituzte abiadura eta ibilbidea, planeten barrualdea ez baita homogeneoa izaten.

Tresna horren bidez Marteren geruzarik barnekoena, kasu honetan planetaren nukleoa, detektatzeko, SEIS sistemak detektatu behar zituen lurrikarak iristen zitzaizkion uhin sismikoek nukleoa zeharkatu edo mantuaren eta nukleoaren arteko interfazean errebotatu behar izateko bezain urrun gertatu ziren.

Hori, a priori eta Marteren jarduera geologikoaren maila kontuan hartuta, zaila izan liteke misioak irauten duen denboran; izan ere, distantzia handi batean magnitude nahikoa duten lurrikarak gertatu beharko lirateke, eta InSight-ek hauteman egin beharko lituzke (ez dugu ahaztu behar Marten lurrikarak egon daitezkeen eremu potentzial handietako bat, InSight-ekiko, itzal sismikoko eremu deritzogunean dagoela). Baina, 976. eta 1.000. eguzkien artean guztia aldatu zen (2021ean izandako gertaera sismikoei buruz ari gara), izan ere, lurrikara batek eta gorputz batek planetaren gainazalaren kontra eragindako talkak sismometroari planeta gorriaren nukleoa zeharkatzen zuten uhinak detektatzeko aukera eman zioten.

Marteren2. irudia: Marteko mapa topografiko batean InSight misioaren kokapena eta detektatutako lurrikaren bi epizentroen kokapena erakusten duen irudia. Eskuinean, halaber, sismometrora iritsi ziren fase sismikoak ikus ditzakegu. Horiei esker, barne nukleoa ezagutu ahal izan zen, kasu honetan, SKS fasea. (Irudia: Irving et al. (2023)).

Distantziaren ideia bat izan dezagun, lurrikararen epizentroa 7.424 eta 8.468 kilometro arteko distantzia batera egongo litzateke, eta talka, berriz, 7.300 kilometro ingurura. Lurrikararen eta talkaren arteko kokapenen zehaztasunaren diferentzia faktore batek eragiten du: Mars Reconaissance Orbiter-ek zuzenean behatu du talkaren tokia eta, beraz, oso koordenatu zehatzak ezar daitezke. Baina lurrikara baten epizentroa kalkulatzeko, planetaren barrualdearen a priori eredu bat izan behar dugu, uhin sismikoen portaera ezartzeko aukera emango diguna, eta hori guztia oso ziurgabea da Marteren kasuan.

2021ean, Stähler-ek eta beste batzuek Marteren nukleoaren tamainaren lehen zenbatespenak argitaratu zituzten mantu-nukleo interfazean islatutako uhinetan oinarrituta, eta 1830±40 kilometro inguruko balioa lortu zuten. Baina datu horiek, garrantzitsuak izan arren, ez dira nahikoa… Izan ere, zerez dago osatuta eta zer egoeratan dago Marteren nukleoa? Artikulu honetan funtsezko gaietako batzuk lantzen diren arren, beharrezkoa zen uhinak nukleoa zeharkatuz behatzea, zientzialariek zituzten susmo batzuk, hala nola Irvingen eta beste batzuen (2023) artikuluak aditzera ematen dituenak, baieztatu ahal izateko.

Lehen xehetasun deigarria da burdina izateaz gain Marteren nukleoaren % 20 inguru elementu arinak direla (hala nola sufrea, oxigenoa, hidrogenoa eta karbonoa). Desberdintasun hori garrantzitsua da Lurrarekin alderatzen badugu, esaterako Lurraren kanpoko nukleoaren % 10 inguru baitira elementu arinak.

Bigarren xehetasun deigarria da oraingoz ez dela ikusi gure planetak duenaren antzeko barne nukleo solidorik, eta, halakorik bada, 750 kilometroko baino gutxiagoko erradioa izan beharko lukeela. Ziurrenik, gai hori behin betiko ixteko, gainazaleko misio berriak behar izango dira.

Hasieran esan dugun bezala, bada planetaren barrualdeari buruzko informazioa zeharka emateko gai den beste tresna bat: RISE. Izan ere, tresna hori gai da Marteren errotazioan zein ardatzaren orientazioan gertatzen diren aldaketa txikiek eragiten duten Doppler efektua neurtzeko (Marte planeta biratzen ari den zibatzat hartu behar dugu horretarako).

Marteren3. irudia: Marteren barrualdearen irudikapen artistikoa. Horretan, InSight-ek hautemandako lurrikaren epizentroak eta uhinen ibilbidea ikus ditzakegu, baita Marteren azalaren, mantuaren eta nukleoaren tamaina ere. (Irudia: NASA/JPL-Caltech/Marylandeko Unibertsitatea.)

Bada, esperimentu horrek ondorioztatu du Marteren nukleoak 1835±55 kilometro inguruko erradioa duela. Balio hori aurreko azterlanetako tartearen barruan dago eta horrek agerian uzten du azterlanen arteko kalkuluak koherenteak direla, baina diferentzia batekin: eredu honetan, adibidez, ez legoke lekurik nukleo solido baterako eta dena egoera likidoan legoke. Azken datu horren arabera, baliteke nukleo solidorik ez izatea Marteko eremu magnetiko globalaren amaieraren kausetako bat.

Eredu hori bat dator, halaber, Irvingen eta beste batzuen (2023) lanean ere aipatzen den nukleoko elementu arinak % 20 inguru izatearekin. Elementu arinen artean, ugariena sufrea da (% 15±2 gehiago pisutan); ondoren, oxigenoa (% 2,5 ± 0,5) eta karbonoa (% 1,5 ± 0,5); eta, azkenik, hidrogenoa (% 1 inguru).

Azkenik, RISEren datuei esker, egunak laburtzeko joera txiki bat aurkitu da, baina ez da horren jatorria ezagutzen. Joera hori klimaren dinamikaren eta kasko polarren eta atmosferaren arteko materia transferentziaren (eta alderantziz) edo barne faktoreen ondorio izan liteke.

Zalantzarik gabe, Insight eta antzeko misioek, nahiz eta lehen begiratuan ez diren konplexuagoak eta ikusgarriagoak diren beste misio batzuk bezain erakargarriak (hala nola Marte gaineko roverrek egiten dituztenak), agerian uzten dute oraindik askoz gehiago ikas dezakegula Marteren barrualdeari buruz, sismologiaren aurrerapenei esker, XX. mendearen hasieran geure planetan bertan egiten hasi ginen moduan.

Erreferentzia bibliografikoak:
  • Irving, Jessica C. E.; Vedran Lekić, Cecilia Durán; Mélanie Drilleau, Doyeon Kim; Attilio Rivoldini, Amir Khan; et al. (2023). First Observations of Core-Transiting Seismic Phases on Mars. Proceedings of the National Academy of Sciences 120, 18. Doi: 10.1073/pnas.2217090120.
  • Le Maistre, Sébastien; Rivoldini, Attilio; Caldiero, Alfonso; Yseboodt, Marie; Baland, Rose-Marie; Beuthe, Mikael; Van Hoolst, Tim; et al. (2023). Spin State and Deep Interior Structure of Mars from InSight Radio Tracking. Nature, 619. Doi: 10.1038/s41586-023-06150-0.
  • Stähler, Simon C.; Khan, Amir; Banerdt, W. Bruce; Lognonné, Philippe; Giardini, Domenico; Ceylan, Savas; Drilleau, Mélanie; et al. (2021). Seismic Detection of the Martian Core. Science 373, 6553, 443-48. Doi: 10.1126/science.abi7730.
Egileaz:

Nahúm Méndez Chazarra geologo planetarioa eta zientzia-dibulgatzailea da.

Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2023ko uztailaren 10ean: El núcleo de Marte.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Marteren nukleoa appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

La ‘repulsión de la especie’ permite una alta biodiversidad en los árboles tropicales

Cuaderno de Cultura Científica - Ar, 2023-09-26 11:59

repulsión

Debido a que las plántulas de los árboles no crecen tan bien cuando están cerca de sus progenitores, se pueden concentrar más especies de árboles en los bosques tropicales.

Un artículo de Veronique Greenwood. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons

Vista aérea del bosque tropical en la Isla de Barro Colorado. Fuente: Christian Ziegler / Wikimedia Commons / Gewin V, PLoS Biology Vol. 4/8/2006, e278 doi: 10.1371/journal.pbio.0040278

Para los ecólogos, las selvas tropicales encierran muchos enigmas. Una sola hectárea puede contener cientos de especies de árboles, muchas más que en los bosques más cercanos a los polos. De alguna manera estas especies coexisten en una abundancia tan vertiginosa que, como han señalado a veces los naturalistas y ecólogos, los bosques tropicales pueden parecer jardines botánicos, donde cada planta es algo nuevo.

Para que tal multitud de especies esté tan densamente agrupada deben coexistir en un equilibrio muy particular. La evolución parece no favorecer situaciones en las que una sola especie prospera de manera demasiado agresiva, sino que favorece aquellas en las que los organismos están rodeados de especies distintas a la suya. Conciliar estos hechos con lo que se sabe sobre cómo las especies se distribuyen, compiten e influyen entre sí es un desafío.

Para estudiar esta extraordinaria diversidad hace años los científicos comenzaron a establecer parcelas de bosque donde podían registrar y rastrear la ubicación y el estado de cada árbol durante décadas. Una de las primeras parcelas de este tipo, en la isla de Barro Colorado (IBC) en Panamá, tiene 500 metros de ancho por 1.000 metros de largo (el área de unos 70 campos de fútbol) y contiene más de 300 especies. Desde 1980, investigadores de todo el mundo han estudiado minuciosamente los registros detallados de sus habitantes.

En un artículo publicado recientemente en Science, investigadores de la Universidad de Texas en Austin modelaron varios escenarios de distribución y los compararon con datos de IBC. Descubrieron que los patrones en la dispersión de semillas por el viento o por las aves y otros animales salvajes, así como procesos más aleatorios, no eran suficientes para explicar la distribución de los árboles adultos en el bosque. Sugieren que esto es evidencia de una “repulsión específica de la especie”, una teoría de larga data de que los árboles de la misma especie se espacian naturalmente porque el ambiente que rodea inmediatamente a un árbol padre es específicamente hostil a la propia descendencia del árbol.

Distanciamiento social en árboles

Esta idea de repulsión, formalmente conocida como dependencia negativa de la densidad conespecífica, o CNDD (por sus siglas en inglés), se remonta a la década de 1970, cuando los ecólogos Daniel Janzen y Joseph Connell sugirieron de forma independiente que los insectos, herbívoros y patógenos que se alimentan selectivamente de una especie podrían hacer que el área alrededor de un árbol adulto fuese peligrosa para sus semillas. No se impediría con la misma eficacia que otras especies creciesen en la zona, aunque seguirían estando limitadas por problemas no específicos, como la falta de luz solar bajo la copa de un árbol adulto. El resultado sería que los árboles adultos de una especie tenderían a mantener una especie de “distancia social” mínima entre sí.

Los ensayos realizados en las últimas décadas, principalmente con plántulas, apoyan la CNDD, afirma Michael Kalyuzhny, autor principal del nuevo artículo, cuyo trabajo como investigador postdoctoral en la Universidad de Texas en Austin le ha llevado a abrir un laboratorio en la Universidad Hebrea de Jerusalén. Las semillas a menudo no crecen tan bien en el suelo tomado de lugares cercanos a sus árboles progenitores como en el suelo de lugares cercanos a árboles no relacionados.

Sin embargo, incluso una mirada superficial a los datos del IBC muestra que los árboles adultos en ese bosque no parecen repelerse entre sí. En cambio, los árboles se agrupan, formando grupos sueltos de la misma especie en toda la parcela.

Kalyuzhny y Annette Ostling, la ecóloga comunitaria que dirige el laboratorio donde trabaja Kalyuzhny, se propusieron modelar diferentes escenarios que podrían explicar las distribuciones de árboles observadas, para saber si algo podría estar dificultando el papel de la CNDD en el bosque.

El azar por sí solo no es la respuesta: cuando ejecutaron un modelo nulo, en el que los árboles estaban espaciados aleatoriamente, los árboles adultos de una especie se dispersaban demasiado.

Entonces los investigadores introdujeron el efecto de la dispersión de semillas en sus modelos, que podría ser por el viento, las aves y otros animales. Helene Muller-Landau y sus colaboradores de IBC han hecho estimaciones de lo lejos que puede viajar una semilla desde su fuente dentro de una parcela de 50 hectáreas, utilizando redes que capturan las semillas a medida que van a la deriva hacia el suelo del bosque. Las semillas se recolectan periódicamente y se calcula la distancia a sus progenitores. Kalyuzhny y sus colegas se han basado en estos datos para modelar disposiciones de los árboles determinadas únicamente por la limitación de la dispersión.

Adult trees in tropical forests produce seeds and seed pods that have wildly diverse shapes, which allows them to be spread by wind or by animals in different ways. Foto: Christian Ziegler

Pero este modelo produjo árboles demasiado agrupados. Algo parecía estar actuando sobre la distribución producida por la limitación de la dispersión, dispersando los árboles. “Algo está creando esta repulsión. Y no podemos pensar en otra cosa que en la CNDD”, explica Kalyuzhny.

Cuando los investigadores calcularon lo específica que era la repulsión (cuánto peor era para un árbol estar cerca de su propia especie que de otra), descubrieron que habría tenido que ser bastante fuerte para producir el patrón observado. Esto confirmó un punto esencial de las ideas de Janzen y Connell: «Lo que sea que cree la CNDD tiene que ser específico de cada especie», añade Kalyuzhny.

La importancia de los eventos raros

Ryan Chisholm, ecólogo teórico y profesor de la Universidad Nacional de Singapur que estudia la distribución de los árboles tropicales, está de acuerdo en que los hallazgos de Kalyuzhny encajan con trabajos anteriores sobre la CNDD. Sugiere, sin embargo, que los modelos podrían estar subestimando hasta qué punto los mecanismos de dispersión pueden propagar las semillas. Si los eventos de gran dispersión son raros, por ejemplo, podrían ser difíciles de ver en los datos de las trampas de semillas. Y si las semillas son transportadas más lejos de lo que los investigadores creen, eso podría explicar los grupos de árboles más dispersos en los bosques sin necesidad de repulsión.

«Lo que están diciendo aquí es que según su modelo de limitación de dispersión, los patrones que observan son imposibles», dijo Chisholm. «Yo diría que todavía no sabemos lo suficiente para decir eso».

Los eventos raros han sido importantes en la dispersión de especies de todo tipo: se cree que los monos, por ejemplo, llegaron a América desde África en balsas de vegetación, un evento tremendamente improbable que, sin embargo, tuvo consecuencias significativas. «Ocasionalmente, encontrarás ese pájaro que lleva la semilla muy lejos, o que queda atrapado por el viento y se lanza a la aventura», comenta Chisholm.

Señala que todavía no conocemos suficientemente bien la forma de la curva de distribución de semillas; no es una simple curva de campana, como podrían pensar los no expertos, porque parece tener una “cola muy gruesa” al final.

Si los ecólogos tuvieran datos a una escala mucho mayor que 50 hectáreas, algo que prometen las nuevas técnicas de estudio mediante las cuales los científicos pueden contar árboles desde el aire, podría surgir una nueva visión. Podría ser posible ver patrones que no se ven actualmente, lo que podría cambiar la comprensión del papel que desempeñan la CNDD y la limitación de la dispersión de semillas en la disposición de los bosques. «Esta era de simplemente contemplar una parcela de 50 hectáreas parecerá extremadamente pintoresca, como un telescopio portátil en comparación con el Hubble», predice Chisholm.

Por ahora, Kalyuzhny y sus colegas planean realizar análisis similares en otras parcelas de estudio en todo el mundo para ver qué patrones emergen: ahora hay más de 70 sitios en todo el mundo con parcelas de hasta 50 hectáreas de tamaño, todas monitoreadas como la parcela en IBC. También han realizado simulaciones en las que ajustan el alcance de la CNDD y han descubierto que incluso la repulsión en distancias relativamente cortas puede provocar grandes efectos a escala del bosque.

“Yo repelo a mis vecinos, y ellos repelen a sus vecinos, y ellos repelen a sus vecinos”, explica Kalyuzhny, describiendo cómo pueden surgir patrones a gran escala a partir de acciones a pequeña escala. «El bosque es un cristal desordenado».

 

El artículo original,  ‘Species Repulsion’ Enables High Biodiversity in Tropical Trees, se publicó el 13 de septiembre de 2023 en Quanta Magazine.

Traducido por César Tomé López

El artículo La ‘repulsión de la especie’ permite una alta biodiversidad en los árboles tropicales se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Landareen geometria

Zientzia Kaiera - Ar, 2023-09-26 09:00

Landareen albo-organoak, hau da, hostoak eta ugalketa-aparatuak (loreak), antolaketa erregular bat jarraituz kokatzen dira zurtoinean. Antolaketa horri filotaxia deritzo. Teorikoki, eredu filotaktiko asko egon beharko lirakete naturan, aukerak amaigabeak baitira matematikoki. Alabaina, aniztasun hori ez da betetzen errealitatean. Landare erreinuan albo-organoen antolaketa-eredu gutxi daude, eta ohikoena Fibonacci espirala da. Ikerketa berri batek eredu filotaktiko horren jatorria aztertu nahi izan du, Fibonacci espirala antzina-antzinatik datorren eredu bat ote den ikusteko.

Naturan, ohikoa da bizidunek patroi edo eredu geometrikoak jarraitzea. Esan genezake animalia eta landare ia denak direla simetrikoak modu batean edo bestean. Animalia gehienek simetria bilaterala dute, baina badira simetria erradiala dutenak ere. Landareen kasuan, bestalde, simetria erradiala da ohikoena, eta landarearen atal bat baino gehiagotan ikus daiteke: hostoen edo adarren kokapenean, hostoen inerbazioetan, eta bereziki loreetan, non patroi horiek are ederragoak diren, loreen forma- eta kolore-aniztasuna dela eta.

landareenIrudia: Landareen albo-organoak, hau da, hostoak eta ugalketa-aparatuak (loreak), antolaketa erregular bat jarraituz kokatzen dira zurtoinean. Antolaketa horri filotaxia deritzo. (Argazkia: ALTEREDSNAPS – erabilera libreko irudia. Pexels.com)

Landareen “arkitektura” askotarikoa bada ere, eredu batzuk landare espezie askotan agertzen dira, eta, esan bezala, Fibonacci espirala da eredu filotaktiko arrakastatsuena landare erreinuan. Fibonacci espirala jarraitzen duen landare batean albo-organoak goitik begiratzen badira, organo horiek erlojuaren noranzkoan edota kontrako noranzkoan ateratzen dira zentrotik, bata bestearen alboan. Aldamenetik begiratuta, bestalde, organoek helize bat osatzen dute. Fibonacci espiraletan, bata bestearen ondoan dauden eta erlojuaren noranzkoan edota kontrako noranzkoan biratzen den organo kopurua Fibonacci sekuentziaren zenbaki bati dagokio. Eta zer da sekuentzia hori? Bada, bat zenbakitik hasita, segidaren aurreko bi zenbakien gehiketarekin eraikitzen den zenbaki-segida da (1, 1, 2, 3, 5, 8, 13, 21…). Hortik dator, hain zuzen ere, espiral horren izena.

Zientzialariak mendez mende saiatu dira ulertzen Fibonacci espiralaren arrakasta landareetan. Zergatik izan ote da ebolutiboki hain abantailatsua egitura hori? Ikerketa asko egin da gai horren inguruan, eta hainbat ondoriotara iritsi dira orain arte. Alde batetik, badirudi Fibonacci espiralak landare bateko hosto guztien argi-xurgapen optimoa ahalbidetzen duela. Landareentzat, organismo fotosintetizatzaileak izanik, argiaren xurgapen eraginkorra izatea oso garrantzitsua da garapen egoki baterako. Hala, hostoak Fibonacci espirala jarraituz hazten diren landareetan, hostoen arteko angelua “perfektua” da hosto bakoitzaren gaitasun fotosintetiko maximoa ahalbidetzeko. Gainera, baliabideak ongi kudeatzeko estrategia bat ere izan liteke Fibonacci espirala. Izan ere, eredu hori jarraituz, landareak organo (hosto, lore edo hazi) kopuru maximoa sor dezake ehun kantitate jakin baterako.

Patroi horren arrakasta ikusirik, azterketa batek enpirikoki kuantifikatu nahi izan zuen filotaxia-eredu horren nagusitasuna, eta horretarako, 650 hazidun landare espezieren 12.000 behaketa egin zituzten. Emaitzek erakutsi zuten aztertutako landareen %91k Fibonacci espiralaren eredua jarraitzen zuela. Eredu geometriko horren hedapena ikusita, pentsatu izan da Fibonacci eredu filotaktikoa hazidun landare guztien antzinako ezaugarri bat dela, eta eboluzioan zehar espezie gehienetan iraun duela. Susmo horren egiazkotasuna aztertzeko, ikerketa berri batek Asteroxylon mackiei landare fosilaren filotaxia aztertu du. Espezie hori landare hostodunetan lehenetako bat da, Drepanophycales iraungitako taldeko kidea. Ikertzaileek pentsatu zuten lagungarria izan zitekeela antzinako espezie horren eredu filotaktikoa aztertzea Fibonacci espiralaren jatorria hobeto ulertzeko.

Fosilen prestakuntzarako teknika klasikoak eta 3D berreraikitze digitaleko metodoak konbinatuz, hainbat A. mackiei kimu fosilen filotaxia kuantifikatu zuten. Analisiaren emaitzek adierazi zuten A. mackiei espezieak eredu-filotaktiko askotarikoak zituela, baina Fibonacci espirala ez zen horietako bat. Hain zuzen ere, A. mackiei espezieko hostoen kokapenak espiral mota ugariren eredua jarraitzen zuen, eta horietako bat n:(n+1) ekuazioa jarraitzen duen filotaxia-espirala zen. Ekuazio horrek ratio bat adierazi nahi du; hain zuzen, bata bestearen ondoan dauden eta erlojuaren noranzkoan eta kontrako noranzkoan biratzen den organo kopuruen arteko ratioa. Eredu filotaktiko hori zaila da aurkitzen iraungi gabeko landare espezieetan.

Aurrez argitaratutako azterketek iradokitzen zuten Fibonacci espirala landare baskularren eboluzioan zehar iraun duen antzinako ezaugarri bat zela. Haatik, aipatutako azterketa berriak ez du hipotesi hori babesten. Kontrara, erakusten du n:(n+1) filotaxia-espirala existitzen zela landareen eboluzio goiztiarrean. Gainera, aintzat izanda Asteroxylon mackiei espeziea lehen hostodun landareen taldeko kidea dela, aurkikuntza horrek iradokitzen du n:(n+1) motako espiralak Fibonacci espiral arrakastatsuen aurrekariak izan zirela landareen eboluzioan. Gauzak honela, antzinako landareek espiral primitiboagoak jarraitzen bazituzten ere, argi dago eboluzioak garaiz hartu zuela geometria bidelagun.

Erreferentzia bibliografikoak:
  • Jean, Roger V. (1994). The centric representation. Phyllotaxis: A Systemic Study in Plant Morphogenesis (pp. 11-30). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511666933.003
  • Reinhardt, Didier; Gola, Edyta M. (2022). Law and order in plants – the origin and functional relevance of Phyllotaxis. Trends in Plant Science, 27, 10, 1017–1032. DOI: 10.1016/j.tplants.2022.04.005
  • Turner, Holly-Anne; Humpage, Matthew; Kerp, Hans; Hetherington, Alexander J. (2023). Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants. Science, 380, 6650, 1188–1192. DOI: 10.1126/science.adg4014
Egileaz:

Irati Diez Virto Biologian graduatu zen UPV/EHUn eta unibertsitate berean Biodibertsitate, Funtzionamendu eta Ekosistemen Gestioa Masterra egin zuen.

The post Landareen geometria appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

¿Qué salió mal en el primer trasplante de un corazón de cerdo a un humano?

Cuaderno de Cultura Científica - Al, 2023-09-25 11:59
corazónFoto: Ben Mater / Unsplash

Cada año se realizan en el mundo más de 120.000 trasplantes que dan otra oportunidad a decenas de miles de personas para seguir viviendo. Sin embargo, muchas otras mueren en las listas de espera porque la demanda de órganos es muy superior al número de donaciones. Este problema se está acentuando con los años, debido al envejecimiento progresivo de las poblaciones de multitud de países, que incrementa aún más la necesidad de órganos.

Con el objetivo de solucionar este grave problema sanitario, los científicos están investigando otras opciones alternativas a la donación de órganos humanos. En la última década, el campo de los xenotrasplantes (trasplante de células, tejidos u órganos entre diferentes especies) ha experimentado grandes avances gracias a la ingeniería genética y a los avances en el conocimiento y uso de las células madre. En enero de 2022 se dio un hito histórico en ese sentido: por primera vez, se trasplantó con éxito el corazón de un cerdo a una persona y esta siguió viviendo. El animal había sido modificado genéticamente para que no produjera ciertas moléculas en sus células que se consideran extrañas por el sistema inmunitario humano, lo que minimizó el rechazo.

El paciente, David Bennet, recibió el preciado órgano procedente de un cerdo en el Centro Médico de la Universidad de Maryland. Era su única opción, pues no cumplía los requisitos para acceder a la lista de espera de un corazón humano. Parecía que todo iba bien: la función cardíaca era normal y no había signos de rechazo inmunitario agudo. No obstante, a los 47 días del trasplante, Bennet falleció de forma fulminante debido a un fallo cardíaco (el corazón dejó de bombear la sangre necesaria para mantenerle con vida). Antes de ese fatídico día, los estudios de ecocardiografía y otras pruebas mostraban que el corazón funcionaba sin problemas.

En un primer momento, los investigadores no fueron capaces identificar la causa que llevó al trágico desenlace, pero pusieron en marcha diferentes estudios para analizar cada paso tras el trasplante y conocer qué factores estaban involucrados, ya que estos podrían ser obstáculos también en futuros xenotrasplantes. Se espera que en los próximos años aparezcan ensayos clínicos en los que se trasplanten órganos de animales a personas y toda la información que se pueda obtener de casos como el de Bennet resulta esencial.

En ese sentido, un artículo publicado hace unos meses en la revista médica The Lancet aclara con detalle qué pasó para que el paciente falleciera por un fallo cardíaco. Lejos de ser una única causa la responsable del evento, los datos indican que múltiples factores contribuyeron a un deterioro funcional del corazón porcino trasplantado.

Una de las razones que se barajaban inicialmente como causa del fallo cardíaco era el rechazo hiperagudo. Este suele suceder dentro de los primeros días tras el trasplante por la acción de los anticuerpos contra el órgano donado, lo que lleva a la formación de coágulos que llegan a bloquear a vasos sanguíneos pequeños y, como consecuencia, provocan el infarto del tejido por la falta de oxígeno y nutrientes. No obstante, este tipo de rechazo inmunitario no llegó a aparecer. Los investigadores creen que el delicado estado de salud de Bennet, ya antes del trasplante, fue el desencadenante inicial de una serie de eventos que terminó por provocar su fallecimiento.

El paciente tenía una inmunodepresión muy grave, por lo que el uso estándar de inmunosupresores tuvo que restringirse bastante para que no sufriera infecciones fatales. Sin embargo, esto tenía un precio: también aumentaba el riesgo de rechazo inmunitario hacia el órgano recibido, que fue lo que terminó ocurriendo. Otro factor que pudo haber contribuido a la muerte de Bennet fueron las dos veces que se le administró por vía intravenosa inmunoglobulinas (anticuerpos) durante el segundo mes para prevenir infecciones y el intercambio de plasma sanguíneo. Se cree que esto terminó por desencadenar la respuesta inmunitaria de rechazo frente al corazón recibido, porque se detectó un aumento de anticuerpos (sobre todo de IgG) contra moléculas porcinas tras la administración de las inmunoglobulinas y, además, se observó también la unión de estas moléculas a la superficie interna (endotelio) de los vasos sanguíneos del corazón de cerdo.

Los científicos encontraron pruebas indirectas del ataque de anticuerpos hacia células y tejidos del corazón porcino mediante su análisis a través de diferentes técnicas de laboratorio. Por ejemplo, detectaron lesiones generalizadas en el endotelio de los vasos de dicho órgano. Por otro lado, también se identificó la reactivación y la replicación de virus porcinos (en concreto, de citomegalovirus y roseolovirus porcinos) que habían estado sin mostrar señales de actividad hasta ese momento y que probablemente desencadenaron una respuesta inflamatoria que también contribuyó a dañar al órgano donado. Es posible que la atenuación del tratamiento antiviral del paciente como consecuencia de su estado de salud terminase por activar estos virus.

Como resultado de todo lo anterior, el músculo cardíaco fue desarrollando cicatrices (fibrosis) que terminaron por incapacitar al corazón para contraerse con normalidad y bombear la sangre necesaria para mantener a Bennet con vida. Una trágica cadena de desafortunados eventos biológicos que los científicos tratarán de evitar en los próximos pacientes que reciban corazones de cerdo. Ahora están más preparados: cuentan con técnicas novedosas para monitorizar con más detalle a aquellos que reciban un xenotrasplante y así detectar de forma temprana las primeras señales de rechazo inmunitario. Los próximos ensayos clínicos determinarán si los problemas que sufrió Bennet se debieron principalmente a su delicado estado de salud o si, por el contrario, estos aparecerán también en otros pacientes y si será posible evitarlos.

Sobre la autora: Esther Samper (Shora) es médica, doctora en Ingeniería Tisular Cardiovascular y divulgadora científica

El artículo ¿Qué salió mal en el primer trasplante de un corazón de cerdo a un humano? se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Bakterio magnetikoak: diagnostiko zehatzagoetarako giltzarria

Zientzia Kaiera - Al, 2023-09-25 09:00

UPV/EHUko talde batek bakterio baten zenbait ezaugarri aldatzea lortu du, diagnostiko klinikoko etorkizun handiko agente bihurtzeko. Bakterioaren hazkuntza-ingurunean elementu metalikoak gehitzean, bakterioak integratu egiten ditu eta fluoreszente edo kontraste bikoitzeko agente bihurtzen da. Hori oso erabilgarria da erresonantzia magnetikoetarako.

UPV/EHUko Magnetismoa eta Material Magnetikoak Taldeak hamar urte baino gehiago daramatza bakterio magnetotaktikoekin lanean. Bakterio urtar horiek magnetita-kristalak (burdin mineral bat) sintetizatzen dituzte beren ingurune naturalean. Kristal horiek iparrorratz gisa jarduten dute, eta bakterio horiei Lurreko eremu magnetikoaren lerroetan orientatzea eta nabigatzea ahalbidetzen die. “Bakterio horien berezko funtzionalitateak direla eta, esparru klinikorako oso interesgarriak dira, nanorrobot gisa erabiltzeko behar diren ezaugarri guztiak baitituzte. Tratatu beharreko lekura eremu magnetikoen bidez eraman daitezke. Horrez gain, lan ugarik erakutsi dute bakterio magnetotaktikoek potentziala dutela hainbat praktikatan erabiltzeko, hala nola hipertermia magnetikoan (minbiziaren aurkako terapia), farmako-eramaile gisa eta erresonantzia magnetiko bidezko irudietarako kontraste-agente gisa”, zehaztu du Lucía Gandarias Albainak, ikerketa-taldeko ikertzaileak eta azterlan honen lehen egileak.

BakterioIrudia: MSR-1 gisa ezagutzen den Magnetospirillum gryphiswaldense bakterioaren irudiak. Ezkerrean: transmisioko mikroskopia elektronikoaren bidez lortutako irudiak. Bakterioaren barruko magnetosoma-katearen xehetasun guztiak ikus daitezke. Gainerako irudiak: X izpien fluoreszentzia-mikroskopiako irudiak. Horietan, burdinaren (magnetosoma-katearekin bat dator) eta terbioaren/gadolinioaren (bakterio osoan zehar banatzen da) kokapenak ikus daitezke. Irudi horiek Diamond Light Source (Didcot, Erresuma Batua) sinkrotroiaren I14 lerroan lortu ziren. (Iturria: EHUko prentsa bulegoa)

Dena den, bakterio horiek badute zailtasun bat ere.Ez dira eraldatzen errazak. Ezaugarri interesgarri horiek berez dituzte, baina ez da erraza funtzionalitate berriak ematea”, adierazten du ikertzaileak. Ildo horretan erabili den estrategietako bat hazkuntza-ingurunea zenbait substantziarekin aberastea izan da, eta ikustea horrek zer ondorio dituen bakterioetan.

Magnetospirillum gryphiswaldense bakterioaren hazkuntza-inguruneari terbioa (Tb) eta gadolinioa (Gd) gehitzeak izango lukeen eragina aztertzea proposatu zen. Hau da, aztertzea “elementu horiek txertatzeak nola aldatuko lukeen bakterio horrek agente biomediko gisa duen potentziala”, zehaztu du Gandariasek. Lur arraroetan aditua den (elementu horiei lantanido ere deitzen zaie) Kantabriako Unibertsitateko ikerketa-talde batekin, CIC biomaGUNE, Helmholtz-Zentrum Berlin (Alemania) eta BIAM-CEA (Frantzia) zentroen ikertzaileek parte-hartu dute ikerketa honetan.

Gaitasun diagnostiko hobetuak dituzten agente biomedikoak

Bakterioek terbioa eta gadolinioa barneratu zituztenean, funtzionalitate berriak agertu ziren. Honela azaltzen du ikertzaileak: “Gure analisietan ikusi genuen, batetik, terbioak fluoreszente bihurtzen dituela bakterioak eta, beraz, biomarkatzaile gisa erabil daitezkeela, posible baita haien arrastoari jarraitzea, non dauden jakiteko. Bestalde, egiaztatu genuenez, gadolinioa gehitzean, bakterioak kontraste bikoitzeko agente bihurtzen dira erresonantzia magnetikoetarako, eta horretarantz bideratzen dira ikerketa-esparru honetako ikerketak”.

Erresonantzia magnetikoa egin aurretik, egingo zaion pertsonak kontraste-agenteak hartu behar ditu, hots, ehun arruntaren eta kaltetuaren arteko irudi bidezko bereizketa hobetzen duten eta diagnostikoa errazten duten produktuak. Gaur egun, bi kontraste mota erabiltzen dira: positiboak edo T1, erabilienak eta gadolinio-konposatuetan oinarrituak; eta negatiboak edo T2, burdin oxidozko nanopartikulak. “Gure bakterioek jada burdin partikulak bazituztenez beren partikula magnetikoen artean eta hazkuntza-ingurunean gadolinioa integratzeko gai direnez, kontraste bikoitzeko eragile gisa funtziona dezakete”, azaldu du Gandariasek. Izan ere, deskribatutako funtzionalitate berriak agertzeak ez ditu desagerrarazi lehendik zituztenak.

Emaitza horiek ikusita, ikertzaileak etorkizun oparoa iragartzen du praktika klinikoan bakterioak erabiltzeari dagokionez: “Oraindik hasieran gauden arren, minbiziaren aurkako tratamenduetan bakterioak erabiltzeko lan egiten ari da; ikerketa asko daude, fase desberdinetan. Gure kasuan, in vitro probetan egiaztatu dugu bakterioak ez direla toxikoak zelulentzat, eta, horri esker, ildo horretan ikertzen jarraituko dugu”.

Iturria:

UPV/EHU prentsa bulegoa: Bakterio bat fluoreszente eta erresonantzia magnetikorako kontraste bikoitzeko agente bihurtu dute.

Erreferentzia bibliografikoa:

Gandarias, Lucía ; Jefremovas, Elizabeth M.; Gandia, David; Marcano, Lourdes; Martínez-Martínez, Virginia; Ramos-Cabrer, Pedro; Chevrier, Daniel M.; Valencia, Sergio; Fernández Barquín, Luis; Fdez-Gubieda, M. Luisa; Alonso, Javier; García-Prieto, Ana eta Muela, Alicia (2023). Incorporation of Tb and Gd improves the diagnostic functionality of magnetotactic bacteria. Materials Today Bio, 20. DOI: 10.1016/j.mtbio.2023.100680

The post Bakterio magnetikoak: diagnostiko zehatzagoetarako giltzarria appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Más que la genética, es la cultura la que configura los grupos humanos

Cuaderno de Cultura Científica - Ig, 2023-09-24 11:59

cultura

culturaFoto: Eddi Aguirre / Unsplash

Los cantos populares son verdaderos registros del pasado de las poblaciones humanas. Sus diferencias reflejan las distintas trayectorias que han seguido aquellas a lo largo del tiempo. Junto con la lengua y otros elementos culturales, pueden aportar un complemento valioso a los estudios genéticos como herramienta para conocer el pasado.

Conforme los seres humanos nos dispersamos por el planeta, no sólo se diferenciaron nuestros genomas, también se diversificaron las lenguas y otros rasgos culturales. De hecho, es posible, y no demasiado difícil, establecer correspondencias entre grupos genéticos y familias o variedades lingüísticas. No obstante, en numerosas ocasiones, y por varios posibles motivos, los grupos humanos han perdido la que era su lengua para adquirir otra diferente. Por ello, la correspondencia original entre grupos genéticos y grupos lingüísticos se difumina, lo que dificulta el análisis conjunto de esos rasgos de cara, por ejemplo, a caracterizar la historia y relaciones entre unos grupos humanos y otros.

Además de la lengua, la música tradicional se ha diferenciado también entre grupos humanos conforme éstos se han desgajado unos de otros y se han diversificado genéticamente. El genetista de poblaciones Floyd Reed presentó, en la reunión anual de 2007 de la American Anthropological Association, un estudio realizado con 39 grupos humanos de África que mostraba una estrecha conexión entre su genética y las canciones que cantaban. Esos resultados venían a apoyar la idea de que la música puede ayudar a identificar las profundas relaciones entre diferentes poblaciones humanas. Al parecer, la música es mucho más resistente al cambio que otros rasgos culturales; puede serlo más incluso que la lengua.

El procedimiento utilizado para caracterizar las canciones que sirvieron de base al estudio de Floyd fue desarrollado por los musicólogos y etnógrafos Alan Lomax y Victor Grauer. Lomax, quien había dado a conocer a Woodie Guthrie y Lead Belly al gran público, creó un archivo de unas 5.500 canciones tomadas de 857 culturas. El sistema, denominado “Cantométrica”, diseñado por los dos etnomusicólogos clasifica las canciones basándose en una escala de 37 rasgos relacionados con ciertas características de la melodía.

Floyd desarrolló un método que permitía determinar la distancia entre pares de culturas musicales, y comprobó que, efectivamente, existía una correlación significativa entre las distancias musicales y las genéticas. Observó que los pueblos que se agrupaban musicalmente, tendían a compartir marcadores genéticos. El método empleado suscitó alguna reserva, ya que la cuantificación de los rasgos utilizados en la clasificación es subjetiva, y eso limita su aplicabilidad universal. No obstante, sus defensores señalan que los resultados avalan su validez.

En esa misma línea, en 2014 se publicaron los resultados de una investigación en Taiwán en la que se estudiaron nueve poblaciones indígenas, cuya genética era conocida, y de las que se contaba con abundantes registros de canciones populares de géneros diversos, principalmente de carácter ritual. Los autores de la investigación trabajaron con una muestra de 220 canciones. Las codificaron combinando Cantométrica (para reflejar estilo vocal, ornamentación y dinámica) y un método desarrollado por ellos mismos, CantoCore (para reflejar ritmo, tono, texto, textura y forma). En total trabajaron con 41 caracteres (15 de Cantométrica y 26 de CantoCore) que han servido para codificar los rasgos de cada canción.

Calcularon la distancia, dos a dos, entre las nueve poblaciones, tanto para la genética (ADN mitocondrial) como para los cantos. Estimaron también las distancias entre las lenguas, a partir de cognados lexicales del vocabulario básico de las culturas incluidas en el estudio. Dado que se analizaron nueve poblaciones, contaron con 36 pares, por lo que obtuvieron 36 distancias para cada aspecto estudiado (genética, lengua y canciones). El análisis estadístico consistió, en lo esencial, en análisis de la varianza –para valorar la variabilidad en y entre culturas– y en correlaciones entre las distancias estimadas a partir de cada uno de los tres rasgos –para establecer el grado de correspondencia entre rasgos genéticos y culturales.

La correlación entre distancias musicales y distancias genéticas fue significativa (r = 0,417; p = 0,015), y lo siguió siendo (r = 0,385; p = 0,032) incluso después de descontar el efecto de la distancia geográfica entre las poblaciones. También era significativa la correlación entre distancias genéticas y lingüísticas (r = 0,492; p = 0,006), pero en este caso la significación se esfumó (r = 0,321; p = 0,071) al introducir las distancias geográficas en el análisis. Eso indica que probablemente las distancias entre las canciones están más firmemente relacionadas con las distancias genéticas que éstas con las lingüísticas. Los autores de la investigación concluyeron que es muy probable que se haya producido una covariación de la música y del genoma mitocondrial de los taiwaneses mediante una ramificación a partir de un ancestro común, de manera que las diferencias, genéticas y musicales no serían mera consecuencia de una separación geográfica relativamente reciente de esas poblaciones.

Los valores de correlación que obtuvieron fueron similares, lo que indica, a mi entender, que tanto las distancias lingüísticas como la musicales reflejan, en una medida similar, el grado de diferenciación de los grupos humanos. Es muy interesante, sin embargo, que la correlación entre las distancias musicales y las lingüísticas sea relativamente débil (r = 0,411; p = 0,085), lo que sugiere que la diferenciación de uno y otro elemento cultural no ha seguido el mismo proceso. Así pues, música, por un lado, y lengua, por el otro, retienen aspectos diferentes de la historia de los grupos humanos analizados.

De todos los elementos contemplados en el estudio, el que más me ha llamado la atención es el de la magnitud relativa de las diferencias entre unos elementos y otros. Porque resulta que, utilizando la misma metodología para analizar distancias, las existentes entre las canciones populares y las lenguas son mayores que las genéticas. En todos los casos –lengua, canciones populares y genoma– la variación dentro de cada población es mayor que la variación entre poblaciones, pero, en términos relativos, hay más variación entre poblaciones en canciones populares y lengua que en los genomas mitocondriales.

En conclusión, los grupos humanos se diferencian en mayor medida en los rasgos culturales que en los rasgos genéticos. Y de aquí se extrae una interesante consecuencia: los grupos humanos se constituyen y diferencian unos de otros sobre la base de elementos culturales. O lo que es lo mismo, a los efectos de la configuración de los pueblos, la cultura es lo que nos hace miembros de uno u otro grupo, no los genes que codifican las proteínas que dan forma y función a nuestro organismo.

Fuente: S Brown S, P E Savage, AM-S Ko, M Stoneking, Y-C Ko, J-H Loo, J A Trejaut (2014): Correlations in the population structure of music, genes and language. Proc. R. Soc. B 281.

 

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Más que la genética, es la cultura la que configura los grupos humanos se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Asteon zientzia begi-bistan #453

Zientzia Kaiera - Ig, 2023-09-24 09:00

Asteon zientzia begi-bistan igandeetako gehigarria da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna jaso eta laburbiltzea da gure helburua.

banaketa

Ingeniaritza

Cécile Biéler-Butticaz ingeniari elektrikoa izan zen, hain zuzen ere, Suitzako lehen emakumezko ingeniari elektrikoa. Ezaguna egin zen invarra (burdinaren eta nikelaren arteko aleazioa) aztertzen egin zuen lanagatik. Biéler-Butticazek Lausanako Soroptimist kluba ere sortu zuen, eta beste batzuekin batera, hezkuntzaren eta ahalduntzearen bidez nesken eta emakumeen aukera berdintasuna bermatzea zuen helburu klubak. Haurrentzako liburuak ere idatzi zituen ingeniari elektriko honek. Informazio gehiago Zientzia Kaieran: Cécile Biéler-Butticaz, invarra aztertu zuen ingeniari elektrikoa.

Ingurumena

Lan berri batek azaldu du zergatik den natura teoriek esaten dutena baino anitzagoa. Nitxoen teoriak iradokitzen du ez dagoela nahikoa nitxorik errealitatean behatu diren espezie guztiak modu egonkorrean existitzeko. Zalantza hori erantzun da hein batean Nature aldizkarian argitaratu den ikerketa bati esker. Ikertzaileek ikusi dute itxuraz lehiakide izan beharko luketen espezieek ekosistema bat parteka dezaketela haien bizitza historiak modu egokian lerrokatzen badira. Datuak Zientzia Kaieran.

Nazioarteko ikerketa baten emaitzek erakutsi dute planeta sistema egonkor bat izan dadin gainditu behar ez liratekeen bederatzi mugetatik sei gaindituta daudela dagoeneko. Gainera, zazpigarren muga, ozeanoen azidifikazioarena, gainditzeko zorian dagoela adierazi dute. Jada gaindituta dauden mugen artean, klima-aldaketa, biosferaren osotasuna eta lurzoruen erabilera daude, besteak beste. Azalpen guztiak Elhuyar aldizkarian: Planeta muga seguruetatik kanpo.

Biologia

Ikerketa berri batek ikusi duenez, kantuak ikasten eta soinuak imitatzen trebeak diren txoriek gaitasun kognitibo handiagoak dituzte. Espero zen emaitza bat bada ere, orain arte ez da lortu bi ezaugarri horien arteko loturaren ebidentzia argirik. Azterketa berri honek 23 espezietako 214 txori kantariren ahozko konplexutasuna neurtu du, eta gainera, hainbat esperimenturen bidez, haien gaitasun kognitiboak ere neurtu dituzte. Hala, bi ezaugarri horiek estatistikoki korrelazionatuta daudela ikusi dute. Informazio gehiago Elhuyar aldizkarian.

Osasuna

Garuneko intsulinarekiko sentikortasuna hilekoaren fasearen araberakoa dela ikusi da. 25 emakumerekin egindako azterketa batek ondorioztatu du obulatu aurretik garuneko intsulinarekiko sentikortasuna handiagoa dela obulatu ondoren. Gainera, ikertzaileek uste dute obulatu ondorengo garuneko intsulinarekiko erresistentziak eragina izan dezakeela gorputz osoko intsulinarekiko erresistentzian. Prozesu honek azaltzen lagunduko luke gorputzaren pisuan, gosean, eta elikadura-joeran dauden aldaketak. Datuak Elhuyar aldizkarian.

Musikak neke fisikoa arindu dezakeela frogatu da. Ariketa fisikoa egitean musikak duen efektua neurtzeko hainbat pertsonek esperimentu batean parte hartu zuten. Esperimentuaren ostean emaitzen erakutsi zuten ariketa fisikoa egin zuten parte-hartzaileek akidura txikiagoa sentitu zuten musika modu pasiboan entzun zutenek baino. Ikertzaileen ustetan, arrazoi ezberdinak egon daitezke horren atzean. Batetik, musikak mugimenduen sinkronizazioa erraztu dezake, eta horrek, era berean, esfortzu txikiagoa egitea. Bestetik, musikaren efektu lasaigarriak giharretako oxigenazio eraginkorragoa ahalbidetu dezakeela uste dute ikertzaileek. Informazio gehiago Zientzia Kaieran.

Neurologia

Ugaztunen garuneko zelulek banaketa patroi jakin bat jarraitzen dute, zelulen zatiketa-prozesuaren ondorioz. Zehazki, ugaztunen garunetako eremu kortikaletan neuronek banaketa lognormal bat jarraitzen dutela ohartu dira zientzialariak. Hori ikusirik, adituek iradoki dute neuronen zatiketa-prozesuan sortzen den “zarata” izan daitekeela banaketa berezi horren jatorria. Gainera, garunean ez ezik, gorputzeko beste ehun batzuetan ere gerta liteke banaketa hori, ikertzaileen esanetan. Azalpen guztiak Zientzia Kaieran: Neuronek duten banaketa berezia azaleratu dute.

Alzheimerrean neuronak nola hiltzen diren azaltzeko mekanismo bat argitu du nazioarteko ikertzaile-talde batek, tartean, Achucarro zentroko Amaia Arranz Mendiguren ikertzailea dagoelarik. Saguen eta gizakien neuronak txertatu dituzte amiloide-plakak zituzten sagu-ereduetan, eta ikusi dute giza neurona horiek MEG3-aren adierazpen handia dutela. Hala, MEG3k neuronen nekroptosia aktibaten duela frogatu dute. Datuak Elhuyar aldizkarian.

Argitalpenak

Zientzia Kaierak ZIO bildumarekin elkarlanean eginiko atalean, Tutik ere ez dakigu. Unibertso ezezagunerako gida bat aurkeztu dute. Jorge Cham komikilariak eta Daniel Whiteson partikula-fisikariak argitaratu zuten liburu hori 2017an, eta bertan, unibertsoari buruz ez dakigun horren guztiaren inguruan jarduten dute. Bineta umoretsuez baliatuz, azalpen zientifikoak modu dibertigarri eta errazean aurkezten dira liburu honetan.

Egileaz:

Irati Diez Virto Biologian graduatu zen UPV/EHUn eta Plentziako Itsas Estazioan (PiE-UPV/EHU) tesia egiten dabil, euskal kostaldeko zetazeoen inguruan.

The post Asteon zientzia begi-bistan #453 appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

La ceguera a las plantas

Cuaderno de Cultura Científica - La, 2023-09-23 11:59

ceguera

A pesar de la importancia que tienen las plantas en nuestro entorno, el conocimiento sobre ellas es escaso, convirtiéndolas en elementos que muchas veces pasan inadvertidos o que, como mucho, quedan como telón de fondo. ¿Por qué generan tan poco interés las plantas? ¿Es el color de las plantas y los paisajes casi monocromáticos los elementos que provocan esa reacción?

En el año 1999 los botánicos James H. Wandersee y Elisabeth Schussler bautizaron este fenómeno como “ceguera a las plantas” o «ceguera vegetal» y, desde entonces, varias investigaciones han intentado entender las razones del mismo.

Entre los motivos que explicarían la ceguera a las plantas se mencionan los factores biológicos y socioculturales. El ser humano cuenta con un sistema visual que no se siente cómodo al no poder fijar la mirada en un punto concreto de un paisaje que, a primera vista, puede parecer monótono. Además, el sistema visual y el cerebro humano habrían evolucionado para detectar con más facilidad a los animales que a las plantas.

La ceguera a las plantas tiene consecuencias y por ejemplo, como muestra el estudio realizado por la Universidad del País Vasco y Aranzadi, mientras hoy en día los y las jóvenes son capaces de nombrar 10 animales, solo el 7% es capaz de nombrar 10 plantas.

La investigadora Ainara Achurra habló sobre este fenómeno en la charla “La ceguera a las plantas: un fenómeno que sufrimos la mayoría” dentro del ciclo Bidebarrieta Científica organizado por la Cátedra de Cultura Científica de la Universidad del País Vasco y la Biblioteca Bidebarrieta.

Ainara Achurra es doctora en Biología y profesora en la Facultad de Educación y Deporte de la Universidad del País Vasco en Vitoria-Gasteiz.

Edición realizada por César Tomé López

El artículo La ceguera a las plantas se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Ezjakintasunaren kartogragfia #461

Zientzia Kaiera - La, 2023-09-23 09:00
AIIturria: johns Hopkins University

Adimen artifizialarena botilarena bezalakoa da oraingoz. Juan F. Trillok erdi beteta ikustea aukeratzen du: AI: So far, so good

Isurketak jaitsi behar badira eta gizaki guztiok jan nahi badugu, argi dago nekazaritza-teknologia hobetu behar dela: Agricultural technology for net negative greenhouse gas emissions

Hizkuntza gutxituak babesteko nahikoa argudio badaude, baina, batzuetan, horrek talka egiten du pertsonentzat onuragarria dena egitearekin: Protecting endangered languages feels right, but does it really help people?, Dave Sayers.

Litekeena da magnonikari buruz entzun ez izana. Beno, bada, giro-tenperaturan material magnonikoak lortzen badituzte, baliteke zure hurrengo ordenagailua, garestia, magnonikoa izatea. Milestone in the quest for THz magnonic devices working at room temperature.

 

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartogragfia #461 appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Los cambios en el glaciar de Aneto

Cuaderno de Cultura Científica - Or, 2023-09-22 11:59

El glaciar de Aneto, aunque se considera un glaciar muy pequeño, es el glaciar más grande de los Pirineos y también el más grande del sur de Europa. Sin embargo, el cambio climático ha acelerado su desaparición, al igual que en el resto de los glaciares de la cordillera. La evolución de las técnicas de teledetección de corto alcance posibilita observar la superficie del glaciar con un nivel de detalle muy alto, lo que permite la comparación entre la superficie del glaciar de diferentes años y la evaluación de sus cambios.

AnetoGlaciar del Aneto y vista de la Cresta de los Portillones desde la cima en 2007. Fuente: Faras / Wikimedia Commons

Los glaciares de montaña son excelentes indicadores de la variabilidad y el cambio climático porque su evolución depende del equilibrio entre la acumulación de nieve durante el período frío y la fusión de hielo y nieve durante la estación más cálida. El glaciar del Aneto es uno de los glaciares más meridionales de Europa y, a pesar de ser un glaciar muy pequeño (<0,5 km2), es el más grande de los Pirineos.

Un reciente estudio liderado por el Instituto Pirenaico de Ecología (IPE-CSIC) ha encontrado que, para el periodo 1981-2022, la superficie del glaciar de Aneto ha disminuido un 64,7 % (de 135,7 ha (1,36 km2) a 48,1 ha (0,48 km2)), y su frente ha pasado de 2.828 a 3.026 metros.

El objetivo del estudio era analizar la evolución reciente del glaciar más grande y alto de los Pirineos utilizando el conjunto de datos temporales más largo de pérdida de espesor de los glaciares en los Pirineos. Además, el trabajo ha permitido evaluar el impacto de una única temporada extremadamente cálida y seca (2022) en la evolución de los glaciares. “Hemos realizado el estudio del glaciar de Aneto más detallado (modelos tridimensionales del glaciar de muy alta resolución) y longevo (41 años) hasta el momento. Para ello, hemos reconstruido las superficies del glaciar entre 1981 y 2022 a partir del uso de imágenes aéreas de muy alta resolución que han sido obtenidas, por un lado, por el Instituto Geográfico Nacional para el año 1981 y mediante vuelos LIDAR para el año 2011 y, por otro, por vehículos aéreos no tripulados (drones) para los años 2020, 2021 y 2022 -explica Eñaut Izagirre Estibaritz, profesor del Departamento de Geografía, Prehistoria y Arqueología de la Universidad del País Vasco y participante en la investigación-. Todo ello se complementó con una amplia campaña de georadar en el año 2020, donde a partir de la realización de diferentes transectos (más de 7 km recorridos sobre el glaciar), pudimos conocer el grosor que tenía el glaciar en ese año”.

Desaparición de los glaciares

La pérdida de superficie glaciar en los Pirineos es notable: había más de 100 glaciares en 1850, 39 en 1984, 21 en 2020 y 18 en 2022, correspondientes a una superficie de 2.060 ha (20,6 km2) en 1850, 810 ha (8,1 km2) en 1984, 232 ha (2,3 km2) en 2020 y 170 ha (1,7 km2) en 2022, lo que representa una pérdida del 92 % del área glaciar desde el final de la Pequeña Edad de Hielo.

AnetoLos investigadores midiendo el grosor del glaciar. Fuente: campusa

En el Aneto, durante los últimos 41 años, la superficie glaciar se ha reducido un 64,7 % y el espesor del hielo ha disminuido, en promedio, 30,5 m. “El espesor medio del hielo restante en el otoño de 2022 fue de 11,9 m, frente al espesor medio de 32,9, 19,2 y 15,0 m reconstruido para 1981 y 2011 y observado en 2020, respectivamente. Los resultados demuestran la crítica situación del glaciar, con una inminente segmentación en tres cuerpos de hielo más pequeños y sin evidencia de una zona de acumulación. También encontramos que la influencia de un año extremadamente caluroso y seco, como se observó en la temporada 2021-2022, conduce a una degradación drástica del glaciar, lo que representa un alto riesgo para la persistencia del glaciar de Aneto, situación que podría extenderse al resto de glaciares pirenaicos en un tiempo relativamente corto”, detallan los investigadores.

Los datos de la investigación señalan que la distribución del espesor del hielo muestra zonas alrededor de los glaciares con muy poco espesor (<2 m), por lo que esas zonas están muy cerca de desglaciarse durante los próximos veranos. Las pérdidas de superficie y espesor del glaciar de Aneto indican la situación crítica de esa masa de hielo. Se encuentra en su etapa terminal, mostrando fragmentación en cuerpos de hielo más pequeños y presencia de cubierta de derrubios en algunas áreas. “Las tasas de adelgazamiento del glaciar, que estaban en torno a 1 m por año, se han triplicado en el último año de estudio (entre 2021 y 2022), lo cual demuestra la afección de un año bastante seco y, sobre todo, extremadamente cálido como 2022 sobre la fusión de la nieve y el hielo en el glaciar de Aneto”, concluye el profesor de la UPV/EHU.

Referencia:

Vidaller, I., Izagirre, E., del Rio, L. M., Alonso-González, E., Rojas-Heredia, F., Serrano, E., Moreno, A., López-Moreno, J. I., Revuelto, J. (2023) The Aneto glacier’s (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques The Cryosphere doi: 10.5194/tc-17-3177-2023

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Los cambios en el glaciar de Aneto se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Cécile Biéler-Butticaz, invarra aztertu zuen ingeniari elektrikoa

Zientzia Kaiera - Or, 2023-09-22 09:00

Cécile Biéler-Butticaz ingeniari elektrikoa izan zen eta XX. mende hasierako Suitza frankofonoan emakumeen karrerak sustatzeko lan egin zuen.

Cécile Butticaz Genevan jaio zen 1884ko uztailaren 2an. Eugénie Mercanton Butticaz izan zuen ama eta Constant Butticaz aita, ingeniaria Genevako industria zerbitzuetako lehen zuzendaria, 1896az geroztik.

Cécile1. irudia: Cécile Butticaz ingeniaria (1907). (Argazkia: Nitzche, Lausanne – domeinu publikoko argazkia. Iturria: Wikimedia Commons)

Bigarren mailako ikasketak amaitu ondoren (diploma bat eskuratu zuen pedagogian), Cécile Lausanako Ingeniaritza Eskolan sartu zen (Eskola Politekniko Federalaren lehengo izena). 1907an, Suitzako lehen emakumezko ingeniari elektriko bihurtu zen. Europako lehen emakumezko ingeniarietako bat ere izan zen; Rita de Morais Sarmento ingeniari zibilaren gradua lortu zuen Portugalen 1894an (eta 1906an kolegiatu zen) eta haren ondoren etorri ziren Agnes Klingberg eta Betzy Meyer (Danimarka, 1897), Julie Arenholt (Danimarka, 1901) eta Alice Perry (Irlanda, 1906).

Lan ugari, aukera gutxi

Cécile Butticaz fisika laguntzailea izan zen Lausanan, eta, ondoren, bere aitarekin lan egin zuen, Constant Butticazek 1904an hiri hartan inauguratu zuen ingeniaritza aholkularitza batean.

1909an, Cécile emakumezko ingeniarien bulego bat zuzentzen hasi zen, eta proiektu hori bertan behera utzi zuen 1910ean Alfred Biéler lankidearekin ezkondu zenean. Hiru seme-alaba izan zituzten, eta haiek hezten ematen zuen denbora gehiena. Biélerrek Lötschbergeko tunelaren eraikuntzan lan egin zuen (Simplon tunelaren bigarren galerian) eta Butin zubiaren obra zuzendu zuen. Cécile Biéler-Butticazek bere senarrarekin lan egin zuen proiektu horietan, baina ez dakigu zehazki zertan aritu zen.

Familiaren egoera ekonomikoak diru sarrera berriak behar izan zituen garaian, matematikako irakasle aritu zen hezkuntza pribatuan Lausanan eta Genevan.

Invarra haren azterlanaren eta ikerketaren erdigune gisa

1929an Fisika Zientzietako doktoretza lortu zuen Genevako Unibertsitatean, Charles-Eugène Guyek fisikariak gainbegiratuta (1866-1942). Bere tesiaren izenburua honakoa zen: Recherches sur l’influence de l’écrouissage et du recuit sur quelques propriétés mécaniques et magnétiques de minces fils d’invar en fonction de la température (Mailukatzeak eta suberaketak, tenperaturaren arabera, invar-hari finen propietate mekaniko eta magnetiko batzuetan duten eraginari buruzko ikerketa). Haren memoriako objektua, invarra, Suitzako fisikari Charles Édouard Guillaume (1861-1938) 1896an asmatutako aleazio bat da, doitasunezko piezen (erlojuak, fisikako aparatuak, motorren balbulak, eta abar) eta luzera neurtzeko tresnen (topografian erabiltzen direnak) fabrikazioan oso erabilia. Guillaumek Fisikako Nobel saria jaso zuen 1920an «fisikako zehaztasunaren neurketari buruz egindako ekarpenak aitortzeko, altzairu-nikel aleazioetan anomaliak aurkitu zituelako», hau da, zehazki invarra asmatu izanagatik.

Hezkuntzarekin eta emakumeei laguntzearekin konprometitua

1949an, Biéler-Butticazek Lausanako Soroptimist kluba sortu zuen beste batzuekin batera, gaur egun ehun herrialdetan baino gehiagotan existitzen den emakume profesionalen elkartea; hezkuntzaren eta ahalduntzearen bidez nesken eta emakumeen aukera berdintasuna bermatzea du helburu. Hainbat mugimendu eta elkartetan ere aktiboa izan zen.

Cécile Biéler-Butticazek haurrentzako liburuak ere idatzi zituen Marie Rie Cramer ilustratzailearekin elkarlanean (1887-1977). Hezkuntza testuak eta kronikak idatzi zituen, askotan gai zientifikoei buruzkoak, Suitza frankofonoko hainbat egunkari eta aldizkaritan, hala nola Gazette de Lausannen.

1966ko ekainaren 1ean hil zen. 2019an, 100Elles proiektuari esker, Genevako kale bati «Rue Cécile-Biéler-Butticaz» izena jartzea proposatu zen.

Cécile2. irudia: Kalearen izena aldatzeko proposamena. (Argazkia: Suzy1919 – CC-BY-SA 4.0 lizentziapean. Iturria: Wikimedia Commons.

Haren biloba, Philippe Biéler, amonari eta ekimenari buruz aritu zen:

Ez zen lehenengo lerroan jartzen diren horietakoa, baina, zalantzarik gabe, oso pozik egongo zen, benetako feminista baitzen. […] Izaera handiko emakumea zen, eta haren garaiko emakumea aldi berean, eta bere lanbidearen zati handi bati uko egin zion seme-alabak hezteko.

Iturriak: Egileaz:

Marta Macho Stadler, (@Martamachos) UPV/EHUko Matematikako irakaslea da eta Kultura Zientifikoko Katedrak argitaratzen duen Mujeres con Ciencia blogaren editorea.

Jatorrizko artikulua Mujeres con Ciencia blogean argitaratu zen 2023ko uztailaren 28an: Cécile Biéler-Butticaz, la ingeniera eléctrica que estudió el invar.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Cécile Biéler-Butticaz, invarra aztertu zuen ingeniari elektrikoa appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Cómo editar una imagen con matemáticas

Cuaderno de Cultura Científica - Og, 2023-09-21 11:59

En Coordenadas polares os hablé de mi afición por las fotografías con simetría circular. Pero no os conté toda la historia. No solo saco “fotos redondas”. Además, las “despolarizo”, por así decirlo. O, dicho de manera más precisa: utilizo un programa para mapear los píxeles de sus coordenadas polares, sobre los ejes cartesianos de una segunda imagen. Y además de eso, aplico una transformación exponencial sobre el radio, de manera que se conservan las proporciones de cada región en toda la imagen.

Pero… dicho así, creo que suena más complicado de lo que realmente es. Se entiende mucho más fácilmente con un par de imágenes. La idea es convertir la foto de la izquierda en la imagen de la derecha:

imagen

imagen

O, lo que es lo mismo (quizás con un esquema se entienda mejor):

La transformación no se logra con un truco de Photoshop, ni con un filtro de ningún tipo. Es una aplicación de código abierto llamada depolarizer.

¿Qué es depolarizer?

Depolarizer es una aplicación de R creada por Iñaki Úcar y una servidora. El proyecto nació como un pequeño código de java que escribí para poder ejecutarlo desde FIJI. Pero Iñaki lo mejoró infinitamente y añadió una interfaz gráfica para que cualquier persona lo pueda instalar, y jugar con él fácilmente. Si queréis probarlo, solo tenéis que ir al repositorio de GitHub, descargar el código, y abrir la aplicación con RStudio. Una vez la ejecutéis, deberíais ver en vuestro navegador aparece una interfaz parecida a esta:

La interfaz está construida con ayuda de la librería shiny de R. Pero el alma de la aplicación vive en este archivito de Python, depolarizer.py. Es ahí donde se puede donde la imagen de entrada se transforma en su versión “despolarizada”. En concreto, en la función “to_polar”.

Voy a intentar a explicar cómo funciona. Pero no te preocupes: no hace falta saber programar para interpretar su código. Y si se te hace bola, siempre puedes saltar hasta la siguiente sección.

¿Cómo funciona el código?

La idea es más o menos como sigue:

1- Generamos una imagen de salida (pix0), con la resolución la elegida (res0).

Una imagen, en este contexto, no es más que una matriz, una estructura donde vamos a guardar los valores RGB de los pixeles de la nueva imagen. Las coordenadas de la imagen son los índices de cada elemento de la matriz.

En adelante utilizaremos los subíndices “i” de “input” y “o” de “output” para identificar las variables referidas a la imagen de entrada y de salida respectivamente.

2- Definimos algunas variables auxiliares de utilidad.

  • La resolución de la imagen de entrada es resi.
  • Las variables x0 e y0 son las coordenadas de la imagen de salida normalizadas (dividimos sus valores entre la resolución de la imagen, para que vayan de 0 a 1).

Y aquí viene lo más interesante:

  • Las coordenadas polares, r y Θ (angle), están definidas directamente sobre las coordenadas cartesianas de la imagen de salida, x0 e y0 . Es decir, cuando el programa “pinte” la imagen de salida (pix0), en la dirección horizontal (x0) veremos el ángulo (angle), y en la vertical (y0), veremos el radio (r).
  • En el caso de r, utilizamos una transformación exponencial. Y eso por qué, os preguntaréis, pues eso se merece su propio apartado, más abajo.

3- Definimos la función de mapeo, que es una transformación de coordenadas polares a cartesianas.

Lo que hará este mapeo es lo siguiente: el programa intentará rellenar los píxeles de la imagen de salida de uno en uno. Para saber “qué pintar” en cada pixel, buscará las coordenadas del pixel correspondiente en la imagen de entrada según diga el mapa.

¿Y qué es el mapa? ¡No es más que una función! La entrada de esa función son las coordenadas del pixel que queremos rellenar en la imagen final (x0 , y0) y la salida son las coordenadas correspondientes de la imagen inicial (xi , yi).

Si escribimos este código de manera más matemática, y obviamos la resolución (resi = 1) quedaría algo así:

 

Pongamos, por ejemplo, que queremos rellenar el pixel situado en (x0 , y0) = (1/8, 0) . El programa utilizará estas coordenadas como input de las funciones mapx y mapy y encontrará las coordenadas del pixel correspondiente en la imagen de entrada. En este caso serían:

 

¿Y para qué sirve esa función exponencial?

La idea de “desenroscar” las imágenes mediante un cambio de coordenadas resulta más o menos intuitiva después de ver unos cuantos ejemplos. Pero puede que sea más difícil ver qué es lo que hace esa función exponencial sobre el radio. Quizás se entiende mejor si usamos el esquema anterior y representamos el cambio de coordenadas sin la función exponencial. El resultado sería este:

Fíjate en que todas las circunferencias de la imagen de entrada pasan a medir lo mismo en la de salida (son las líneas negras que van de izquierda a derecha). Pero, por eso mismo, el área entre las dos circunferencias más pequeñas queda mucho más “alargada” que la de la circunferencia mayor.

Mira lo que sucede, por ejemplo, con los dos “quesitos” subrayados en color negro. En la imagen de la izquierda los dos son muy parecidos: salvo por un factor de escala, tienen la misma forma. En la imagen de la derecha, en cambio, son muy distintos entre sí. La única manera de preservar las proporciones de todos los quesitos y evitar que distintos puntos de la superficie se deformen es utilizar una función exponencial, la misma que se oculta tras los sucesivos giros de la espiral maravillosa de Bernoulli.

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo Cómo editar una imagen con matemáticas se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Tutik ere ez dakigu. Unibertso ezezagunerako gida bat

Zientzia Kaiera - Og, 2023-09-21 09:00

Jorge Cham komikilariak eta Daniel Whiteson partikula-fisikariak elkar harturik Tutik ere ez dakigu. Unibertso ezezagunerako gida bat liburuan (2017) ekin diote unibertsoari buruz ez dakigun hori guztia arakatzeari: kosmosaren ezagueran ditugun zulo itzelak, alegia. Gizadiak mundu fisikoari buruz duen ezagutza hutsunez beterik dago. Ez dira horiek, alabaina, hutsune txikitxo batzuk, hola-hola ez ikusi egitekoak, baizik eta izugarrizko leize hondogabeak munduaren funtzionamenduari buruzko gure ideia oinarri-oinarrizkoetan.

Unibertso ezezagunerakoIrudia: Tutik ere ez dakigu. Unibertso ezezagunerako gida bat liburuaren azala. (Iturria: UPV/EHU argitalpenak)

Zientziaren azalpen jostari bezain argien lagungarri harturik infografia bitxi eta bineta umoretsuak, oraingoz eskura dauden erantzunik onenak ematen dizkigute ziurrenik inoiz bururatuko ez zitzaizkizun hainbat galderaren aurrean. Unibertsoa, hara, mukuru beterik dago itxura batean ez hanka ez buru duten gauza xelebrez. Cham eta Whitesonek, haatik, argi erakusten dute erantzuteko gai ez garen galderak ez direla interes gutxiagokoak, inondik inora ere, dagoeneko erantzuna dutenak baino.

Fisikako misteriorik handienetarako gida goitik beheraino irudiz apaindu hau, halaber da baliagarri badakizkigun baina korapilatsu diren hainbat gauzaren katramilak askatu eta argitzeko: hasi quark eta neutrinoetatik, eta uhin grabitazional eta zulo beltz lehergarrietaraino. Umore eta atsegin bizian, hor garamatzate Cham eta Whitesonek bazter jakinik eta mapa zehatzik gabeko lurraldetzat ikustera unibertsoa, oraindik ere esploragai guretzat.

“Zientziak asko daki unibertsoari buruz; benetan kitzikagarri dena, hala ere, ez dakiguna da. Eta nekez irudika liteke ezezaguna esploratzeko modu atseginago bat liburu honen orrietan murgiltzea baino.” (Sean Carroll, kosmologoa)

Jorge Cham (1976) Piled Higher and Deeper online-komiki arrakastatsuaren sortzailea da. Robotikan doktore da Stanford unibertsitatetik.

Daniel Whiteson (1975) Partikulen Fisika Esperimentaleko katedradun da Kaliforniako Unibertsitatean, eta Estatu Batuetako Fisikari Elkarteko kide. CERNeko Hadroi Talkagailu Handia erabiliz dihardu ikerlanean.

Argitalpenaren fitxa:
  • Izenburua: Tutik ere ez dakigu. Unibertso ezezagunerako gida bat
  • Egilea: Jorge Cham eta Daniel Whiteson
  • Itzultzailea: Juan Garzia Garmendia
  • ISBN: 978-84-1319-347-2
  • Hizkuntza: Euskara
  • Urtea: 2021
  • Orrialdeak: 500 or.
Iturria:

Euskara, Kultura eta Nazioartekotzearen arloko Errektoretza, UPV/EHU argitalpenak, ZIO bilduma: Tutik ere ez dakigu. Unibertso ezezagunerako gida bat

 

 

The post Tutik ere ez dakigu. Unibertso ezezagunerako gida bat appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

El problema de los calissons

Cuaderno de Cultura Científica - Az, 2023-09-20 11:59

Este verano he pasado unos días visitando la región francesa de la Provenza. Mi visita empezó en la hermosa ciudad de Aix-en-Provence, donde compré una caja de los famosos calissons.

Fotografía de mi visita a la Fundación Vasarely, en Aix-en-Provence, Francia. Fotografía: Marian Espinosa

 

Calissons

El calisson es un dulce típico de la región francesa de la Provenza, asociado especialmente con la ciudad de Aix-en-Provence. Está elaborado a partir de una pasta formada por almendras molidas y melón confitado (u otras frutas confitadas), con un glaseado blanco por encima, que se cuece a fuego lento. La forma del calisson es, más o menos, la de un rombo formado por dos triángulos equiláteros (similar a la de la forma de la caja que mostramos en la siguiente imagen).

calissonsFotografía de una caja de calissons, con forma de rombo (como la forma de los propios calissons), que me compré en la ciudad francesa de Aix-en-Provence. Fotografía: Marian Espinosa

 

No está muy claro el origen de este dulce, que parece ser originario de Italia. Como se comenta en la correspondiente entrada de la Wikipedia (en francés), “una de sus primeras referencias se remonta al siglo XII, en un texto medieval italiano en latín que utiliza el término calisone para referirse a un pastel de almendra y harina similar al mazapán moderno”. Y existe otra referencia posterior, el texto Chronique des Vénitiens / Crónica de los venecianos (1275), del italiano Martino Canal, en la que se menciona un dulce, a base de pasta de almendras y nueces a la que se añadían diversas especias (canela y clavo), de nombre “calissons”.

Tampoco está claro cuando llegan estos dulces a la Provenza. Según algunas versiones podría haber sido importado por uno de los cocineros del príncipe francés René d’Anjou / Renato de Anjou (1409-1480), que entre otros títulos fue rey de Nápoles, Sicilia, Aragón y Mallorca. Se cuenta que durante el segundo matrimonio de Renato de Anjou con Jeanne de Laval / Juana de Laval, en 1454, el jefe de la confitería del rey sirvió algunos de estos dulces a la futura reina, que dijo entonces en provenzal “Di calin soun” (que no sé bien cómo traducir, pero para darle cierta gracia me aventuro a traducirlo como “estos son besos”). Por otra parte, en la Wikipedia se cita que el término calisson, con el significado actual, ya aparece en la Provenza en el año 1503. De hecho, la almendra, elemento principal de los calissons, se introdujo en la Provenza en el siglo XVI, por lo que es posible que la introducción del dulce en esta región sea paralela al desarrollo de la producción y comercialización de las almendras.

calissonsFotografía de los calissons dentro de su caja, que me compré en mi reciente visita a Aix-en-Provence. Aunque como vemos la forma de estos calissons es más bien como una vesica piscis y no como un diamante formado por dos triángulos equiláteros. Fotografía: Marian Espinosa

Pero dejemos las cuestiones históricas aparte y vayamos a la cuestión matemática relacionada con estos dulces provenzales. Aunque si os animáis a prepararlos vosotros mismos, podéis encontrar la receta en muchos blogs de postres, o de recetas de cocina, en general.

calissonsFotografía de un plato con calissons, cuya forma es la de un rombo o diamante formado por dos triángulos equiláteros, que hemos tomado de una página francesa de recetas, en la que podéis leer cómo se hacen los calissons. La página de recetas es Odelices.Demostraciones sin palabras

La primera vez que leí sobre el problema de los calissons fue en el magnífico libro Proofs without words / Demostraciones sin palabras, de Roger B. Nelsen. Este es un tema, el de las demostraciones sin palabras, al que le hemos dedicado varias entradas en el Cuaderno de Cultura Científica, entre ellas:

* Pitágoras sin palabras

* Matemáticas para ver y tocar

* Más matemáticas para ver y tocar

* Teoremas geométricos sin palabras: Viviani

* Teoremas geométricos sin palabras: Conway

* Teoremas geométricos sin palabras: Herón

* Teoremas geométricos sin palabras: Snover

Las demostraciones sin palabras, como comenta el matemático Roger B. Nelsen –autor del libro Proofs without words / Demostraciones sin Palabras (publicado por la MAA, Mathematical Association of America, en 1993) –, se fueron haciendo populares en la comunidad matemática a raíz de su publicación en las revistas de la MAA, Mathematics Magazine y The College Mathematical Journal, en las que empezaron a aparecer hacia 1975, primero como imágenes de relleno entre artículos y posteriormente como secciones fijas de las revistas. Las demostraciones sin palabras no son realmente demostraciones matemáticas en sí mismas, son más bien diagramas, esquemas o dibujos que nos ayudan a comprender por qué un teorema es cierto o que encierran la idea de la verdadera demostración matemática. Son sugerentes, atractivas y todo un ejercicio de estímulo del pensamiento.

El origen del problema de los calissons y su demostración visual, tema que nos ocupa en esta entrada del Cuaderno de Cultura Científica, es el artículo The problem of calissons, de los matemáticos Guy David y Carlos Tomei, publicado en 1989 en la revista The American Mathematical Monthly (que también es una revista de la MAA, creada en 1894).

El problema de los calissons

Tomando las mismas palabras que utilizaron David y Tomei en su artículo de la revista The American Mathematical Monthly,

“Un calisson es un dulce francés con la forma de dos triángulos rectángulos pegados por uno de sus lados. Los calissons podrían guardarse en una caja con la forma de un hexágono regular, y su empaquetado sugeriría un interesante problema de combinatoria. Supongamos una caja (hexagonal) cuyos lados tienen longitud n que se llena con calissons cuyos lados tienen longitud 1. La diagonal larga de cada calisson en la caja tiene tres posibles orientaciones, como en la imagen.

Las tres posibles orientaciones de los calissons en una caja hexagonal

 

Nuestro resultado principal es que el número de calissons de cada una de las tres orientaciones es un tercio del número de calissons que entran en la caja (hexagonal).”

El problema de los calissons consiste en cómo demostrar esa afirmación, es decir, que el número de calissons de cada orientación es el mismo, un tercio del total de los calissons que entran en la caja hexagonal. Y lo hermoso de la demostración es que consiste en un argumento intuitivo y visual relacionado con el espacio tridimensional.

Los matemáticos David y Tomei, en su artículo The problem of calissons, toman una caja hexagonal cuyo lado tiene longitud 5 (es decir, n = 5), considerando que los lados del calisson son de longitud 1, que es la imagen que mostramos a continuación, con el objetivo de mostrar que hay la misma cantidad de calissons en cada una de las tres direcciones posibles.

Distribución aleatoria de los 75 calissons que entran en una caja hexagonal cuyo lado tiene longitud 5, considerando que los lados del calisson son de longitud 1, que es la considerada por los matemáticos David y Tomei en su artículo The problem of calissons

La solución consiste en rotar un poco la caja hexagonal para que un vértice quede arriba y colorear cada calisson en función de la orientación que tiene, es decir, los pintamos de tres colores distintos (por ejemplo, en el artículo se utiliza blanco, gris y negro). De esta forma, nuestra imagen de una caja hexagonal rellena con calissons (luego, una imagen esencialmente plana) se convierte en una imagen tridimensional que representa una serie de pequeños cubos apoyados entre tres paredes cuadradas perpendiculares (de tamaño 5 x 5, en el ejemplo de David y Tomei, luego con una superficie de 25 cuadrados, pero en general serán paredes cuadradas con n2 cuadrados), una abajo, otra a la derecha y una tercera a la izquierda. En esta representación tridimensional de pequeños cubos (se verán algunos ejemplos a continuación) puede verse que cada calisson es una cara visible de un pequeño cubo, de manera que todas las caras de un mismo color (que provienen de calissons con la misma orientación) miran en la misma dirección, paralelas a una de las tres paredes sobre las que se apoyan los pequeños cubos. Resulta que todas las caras de pequeños cubos (incluyendo los cuadrados de las paredes de apoyo que no se han cubierto) que miran en una misma dirección son las mismas que todos los cuadrados de la pared de apoyo, por lo tanto, 25 en este caso y n2, en general.

Veámoslo con algunos ejemplos de distribuciones de calissons en una caja hexagonal de tamaño n = 3 (como la que vemos en la siguiente imagen), por lo tanto, que se rellena con 27 dulces con forma de diamante.

Caja hexagonal, cuyo lado mide 3, siendo la medida de los lados de los calissons 1, y los 27 calissons con los que se rellena la caja

 

A continuación, vamos a rellenar la caja hexagonal (de lado 3) con los 27 calissons, de tres formas distintas y vamos a utilizar el procedimiento anterior (girar ligeramente y pintar con tres colores distintos los calissons en función de su orientación en la caja) para comprobar que en los tres casos la cantidad de calissons en cada orientación es igual a 9.

Ejemplo 1, con los calissons agrupados

Ejemplo 2

Ejemplo 3

Este argumento visual nos sirve para cualquier tamaño n de la caja hexagonal, en la que introduciremos 3n2 calissons.

En esta misma línea, la imagen que ilustraba la demostración de David y Tomei, con la distribución mostrada arriba, para una caja de tamaño 5, es la siguiente (utilizando blanco, gris y negro).

 

En consecuencia, se ha demostrado el resultado buscado.

Teorema: En todo empaquetamiento de calissons (con forma de diamante) en una caja hexagonal, la cantidad de ellos con una orientación dada es igual a la tercera parte del total de calissons que se incluyen en la caja.

Distribución de 432 calissons en una caja hexagonal de lado igual a 12, junto con su transformación en una imagen tridimensional, mediante el coloreado –blanco, gris claro y gris oscuro- de los calissons en función de su orientación, y en la que se comprueba que hay la misma cantidad de dulces en cada orientación, en concreto, 144. Imagen del blog Possibly wrong

La demostración que aparece en el artículo de David y Tomei, y que después incluye Nelsen en su libro, es una demostración sin palabras, luego visual e intuitiva, pero no una demostración matemáticamente rigurosa. Sin embargo, sí es posible dar demostraciones más matemáticas de este resultado, y de alguna generalización del mismo, para la cual, además, no es válido el razonamiento visual anterior. Para quienes estéis interesados en la misma (solo se necesita un poco de álgebra de vectores) podéis leerla en el blog Symmetry de Gábor Damásdi.

Bibliografía

1.- Roger B. Nelsen, Demostraciones sin palabras (ejercicios de pensamiento visual), Proyecto Sur, 2001.

2.- Guy David, Carlos Tomei, The problem of the Calissons, American Mathematical Monthly, vol. 96, n. 5, pp. 429-430, 1989.

3.- Gábor Damásdi, Symmetry (blog): Problem of calissons

4.- Wikipedia: Calisson

El artículo El problema de los calissons se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Musikak neke fisikoa arintzen du

Zientzia Kaiera - Az, 2023-09-20 09:00

Pentsatzen dut gutako askok jarduera fisikoren bat egin dugula –lana edo kirola– ekintzaren erritmoari musikarekin lagunduta. Halakorik egin ez duenak ere ikusiko zituen noizbait, ziur aski, filmen batean pertsona taldeak batera lan egiten musika piezaren baten edo kanturen baten erritmoan. Eta maila handiko atletek sarri jotzen dute musika entzutera entrenamenduetan edota proba fisikoetan. Hala egiten dutenean, neke txikiagoa sentitzen dute. Musikari eta kantuari esker, eramangarriagoa da jarduera fisikoa.

nekeIrudia: musikari eta kantuari esker, eramangarriagoa da jarduera fisikoa. (Argazkia: Andrea Piacquadio – Domeinu publikoko irudia. Iturria: pexels.com)

Galdera da ea neke sentsazio txikiago hori musikak edo kantuak neke seinale propiozeptiboari (norberaren egoeraren hautemate sentsoriala) arreta txikiagoa jartzen laguntzen duelako ote den, edo, distrakzio efektu horretaz gain, beste efekturen bat ote dagoen neke seinale horren gainean. Fenomeno hori esperimentuen bidez aztertu da. Batetik, baldintza normaletan ariketa fisikoren bat egiten ari ziren bitartean musika entzuten ari ziren pertsonen sentsazioak eta, alderatu egin da. Bestetik, musikak neke sentsaziotik aldentzea oso zaila –ezinezkoa ez esatearren– zuten beste batzuen sentsazioak (une oro behartuta baitzeuden egiten zuten jardueraz jabetzera).

Ikertzaileek baldintza esperimental bat sortu zuten –musical agency deitu zioten– eta, horri jarraikiz, parte hartzaileek musika soinuak modulatzen zituzten gorputz mugimenduen bidez. Horretarako, musika soinuen sorrera modulatzeko balio zuten sentsoreak jarri zituzten entrenamendu makinetan. Horrela, baldintza esperimentalean (musika agentzia), parte hartzaileak musikalki mintzatu zitezkeen fitness makinan egiten zituzten mugimenduen bidez. Pertsona horiek une oro jabetzen ziren egiten zuten jardueraz, eta, beraz, suposatzen da lehen aipatutako distrakzio efektua ez zela gertatzen.

Musika agentziako taldean parte hartu zutenek akidura fisiko txikiagoa sentitu zuten musika modu pasiboan entzun zutenek baino. Eta neke sentsazio txikiago hori ez zen bat etorri ez indar txikiagoa egitearekin ez gastu metaboliko txikiagoarekin, nahiz eta azken kasu horretan bi baldintzen arteko aldea esangura estatistikoaren mugan egon. Lehen adierazi dudan bezala, diseinu esperimental horretan pertzepzio propiozeptiboa funtsezkoa da zer musika sortu erabakitzeko. Hau da, fitness makinarekin nola elkarreragin, zer mugimendu maiztasun egin edo zer indar erabili erabakitzeko orduan, neke sentsazioa funtsezko elementua da, eta, beraz, parte hartzaileak ezin dira sentsazio horretatik aldendu. Beraz, musika entzun edo sortzen den bitartean jarduera fisikoren bat egitean izaten den neke sentsaziorik txikiena ere ez da musika horrek ematen duen distrakzioagatik bakarrik gertatzen; aitzitik, efektu horrek berezko garrantzia du.

Ez dirudi erraza denik efektu hori berehalako kausa zehatz batzuei egoztea. Ikerketaren egileek iradoki dutenez, musika agentziak musika egituraren eta mugimenduen arteko sinkronizazio handiagoa ekar dezake, eta horrek mugimenduak egitea erraztu dezake, koordinazio hobeak ahalegin txikiagoa ekar dezakeelako. Halaber, baldintza horretan mugimendu bakoitza egiteko behar diren denborak iragartzeko gaitasuna handiagoa izateko aukera planteatzen dute, eta horrek propiozepzioaren garun azaleko irudikapenean nolabaiteko eragina izateko aukera, neke sentsazioa murrizten lagunduz.

Bestalde, baliteke musikak efektu lasaigarria izatea, eta horrek giharretako tentsioa txikiagoa izatea ekarriko luke, baita oxigenazio eraginkorragoa ahalbidetu ere; azken horrek egoera aktiboaren eta pasiboaren arteko gastu metabolikoaren aldea azalduko luke (eskatutako esangura estatistikoa lortu gabe, dena dela). Era berean, ez dirudi ikusitako efektua muskulu uzkurdura isotonikoen (lana sortzen dutenak) eta isometrikoen (lana sortzen ez dutenak, horma bati bultza egiten diogunean edo altxatu ezin dugun karga bat altxatzen saiatzen garenean esaterako) nekea modu desberdinean hautematen delako ematen denik. Bi uzkurdura modu horiek zeregin fisikoak egitean gertatzen dira eta izan liteke isometrikoek neke txikiagoa eragitea (dena dela gai hori esperimentalki egiaztatu zen ere, eta ez zen hala izan). Azken batean, ez dago argi zergatik sortzen duen musika agentziak neke sentsazio txikiagoa eta zergatik dakarren, agian, gastu metaboliko txikiagoa, indar bera egiten bada ere.

Musika ekoizpena (musika agentzia) erritu gehienen funtsezko alderdi bat da, baita gizakien gizarteetako jarduera neketsu askorena ere. Ez da harritzekoa jendeak, zerbait ospatzeko biltzen denean, musika eta dantza erabiltzea adierazpide gisa. Era berean, ez da harritzekoa talde lanetan aritzean, batez ere fisikoki gogorrak direnean, denek batera abestea eta, batzuetan, are musika tresnez laguntzea ere. Bada, jarduera musikalak nekea edo akidura modulatzeak eta hura murrizteak, gure bilakaeran eta giza zibilizazioaren garapenean, musika ekoizpena dakarten testuinguru batean egiten diren mota horretako jarduerak erraztuko zituen, batik bat gizarte tradizionaletan.

Erreferentzia bibliografikoa:

Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, Jhon-Dylan; Villringer, Arno; Leman, Marc (2013). Musical agency reduces perceived exertion during strenuous physical performance. PNAS 110, 44. DOI: 10.1073/pnas.1217252110

Egileaz:

Juan Ignacio Pérez (@JIPerezIglesias) UPV/EHUko Fisiologiako katedraduna da eta Kultura Zientifikoko Katedraren arduraduna.

The post Musikak neke fisikoa arintzen du appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Orriak