El estudiante de matemáticas en la casa del juez
Hace unas pocas semanas me compré, y ha sido una de mis lecturas estivales, el libro El invitado de Drácula y otros relatos, una colección de relatos de terror del escritor irlandés Bram Stoker (1847-1912), conocido por ser el autor de uno de los clásicos de la literatura de terror, Drácula (1897). El libro ha sido publicado recientemente por la editorial ALMA, dentro de su colección Clásicos Ilustrados. La ilustración del mismo es del ilustrador e historietista vallisoletano Enrique Corominas (1969), y la traducción del escritor y traductor asturiano Jon Bilbao (1972). Uno de los relatos de El invitado de Drácula y otros relatos, titulado La casa del juez, está protagonizado por un estudiante de matemáticas, por lo que vamos a dedicar esta entrada del Cuaderno de Cultura Científica al mismo.
Portada de la edición de la editorial ALMA, dentro de su colección Clásicos Iustrados, del libro El invitado de Drácula y otros relatos, del escritor irlandés Bram StokerBram Stoker, escritor … y matemáticoSin lugar a dudas, la novela Drácula (1897) es uno de los grandes clásicos de la literatura de terror, que ha motivado que su autor, el escritor Bram Stoker, haya sido incluido en la historia universal de la literatura. El escritor Bram Stoker, como recordábamos en la entrada Personas famosas que estudiaron matemáticas: literatura y cine , estuvo relacionado con las matemáticas.
El 8 de noviembre de 1847 nació Bram Stoker en Dublín (Irlanda). Los primeros siete años de su vida los pasó en la cama a causa de una enfermedad desconocida, hasta que se recuperó completamente. Según podemos leer en la contraportada de El invitado de Drácula y otros relatos, “su único entretenimiento eran las oscuras leyendas irlandesas que su madre le contaba”. Es muy posible que estas historias de misterio y fantasmas que le narraba su madre en su niñez fueran determinantes en el hecho de que Bram Stoker se convirtiera en un escritor de historias de terror, y seguramente algunos de sus relatos estarán basados en esas historias que le escuchaba a su madre.
Fotografía de Bram Stoker, de alrededor de 1906
Bram Stoker se graduó en matemáticas en el Trinity College de Dublín en 1870 y, aunque parece ser que no era verdad, él empezó a decir con el tiempo que se “graduó con honores en matemáticas”. Sin embargo, cediendo a los deseos paternos, Bram Stoker siguió la carrera de funcionario público en el Castillo de Dublín, entre 1870 y 1878. Aunque conseguiría su Master of Arts (posgrado) en 1875. En 1878 empezaría a trabajar como asistente del actor Sir Henry Irving, de quien escribiría además una biografía en dos volúmenes titulada Personal Reminiscences of Henry Irving / Recuerdos personales de Henry Irving (1906), y también como gerente del Lyceum Theatre, que pertenecía al mencionado actor.
Bram Stoker publicó su famosísima novela epistolar Drácula en 1897, pero también publicó otras novelas, doce en total, y relatos, entre ellos los relatos de la publicación que nos ocupa, El invitado de Drácula y otros relatos, además de poesía, críticas de teatro, así como otros artículos y libros, que pueden verse en la página web dedicada a Bram Stoker.
Cartel de la película Drácula, de Bram Stoker (1992), del director estadounidense Francis Ford Coppola e interpretada por los actores Gary Oldman, Winona Ryder, Keanu Reeves y Anthony HopkinsA pesar de su formación matemática, Bram Stoker nunca trabajaría como matemático, aunque sí podemos encontrar, al menos, un par de publicaciones relacionadas con las matemáticas. Por una parte, un cuento infantil titulado Cómo el número 7 se volvió loco (que publicó la editorial Nivola en 2010 y la editorial Gadir en 2013), que fue originalmente publicado por Bram Stoker en 1881 dentro del libro Under the Sunset / Bajo el ocaso, una recopilación de ocho cuentos infantiles.
Portada del libro Cómo el número 7 se volvió loco, de Bram Stoker, publicado por la editorial Gadir en 2013, con ilustraciones de Eugenia ÁbalosAquí os dejo un pequeño fragmento del cuento Cómo se volvió loco el número 7 extraído de la edición de la editorial Nivola.
– [Número 7] Mañana, tarde y noche soy tratado peor que un esclavo. No existe nadie en todo el ámbito del aprendizaje que tenga que aguantar lo que yo aguanto. Siempre trabajo duro. Nunca me quejo. A menudo hago de múltiplo, a veces de multiplicando. Estoy dispuesto a soportar la parte que me toca por ser un resultado, pero no soporto el trato que me dan. Se me suma mal, se me divide mal, se me resta mal y se me multiplica mal. Los demás números no reciben el trato que yo, y además no son huérfanos como yo.
– [Médico] ¿Cómo que huérfanos? –preguntó el médico–. ¿Qué quiere decir?
– Quiero decir que los demás números tienen muchos parientes. Si exceptuamos al viejo 1, que no cuenta demasiado (además, sólo soy su tataratataratataranieto), no tengo ni amigos, ni familiares.
– ¿Qué quiere decir? –preguntó el médico.
– Pues que ese tipo viejo lleva ahí toda la vida y tiene todos sus descendientes a su alrededor, pero yo estoy seis generaciones detrás.
– ¡Anda ya! –dijo el médico.
– El número 2 –continuó el 7– nunca se mete en problemas, y el 4, el 6 y el 8 son sus primos. El número 3 es íntimo del 6 y del 9. El número 5 es la mitad de una decena y nunca se complica la vida. Pero en cuanto a mí, soy un desgraciado, me maltratan y estoy solo.
Y el pobre número 7 empezó a llorar. Con la cabeza gacha, sollozaba amargamente.
Portada del libro Cómo se volvió loco el número 7, de Bram Stoker, publicado por la editorial Nivola en 2011, con ilustraciones de Carlos PintoLa otra publicación directamente relacionada con las matemáticas es el relato La casa del juez, protagonizado por un estudiante de matemáticas, que está incluido en el mencionado libro El invitado de Drácula y otros relatos, y del que hablaremos en esta entrada.
La casa del juezEl relato corto La casa del juez, de Bram Stoker, fue publicado por primera vez el 5 de diciembre de 1891 en el número especial de navidad (Holly Leaves) de la revista semanal británica The Illustrated Sporting and Dramatic News (fundada en 1874). Mientras que la primera vez que aparece publicada en un libro es en la recopilación de relatos cortos Dracula’s Guest And Other Weird Stories / El invitado de Drácula y otros relatos extraños, publicada en 1914.
Portada de la publicación Holly Leaves the Christmas Number de The Illustrated Sporting and Dramatic News (Londres, diciembre, 1891)El relato corto La casa del juez empieza con el siguiente párrafo (que hemos recogido de la traducción de Jon Bilbao para el libro El invitado de Drácula y otros relatos, de la editorial ALMA).
Cuando se acercó el momento de sus exámenes, Malcolm Malcolmson decidió irse a algún sitio donde pudiera estar a solas para estudiar. Temía las distracciones de la costa, y temía asimismo el completo aislamiento del campo, cuyos atractivos conocía desde hace mucho, así que decidió buscar algún modesto pueblecito donde nada lo distrajera. Se abstuvo de pedir sugerencias a sus amigos, pues supuso que cada uno le recomendaría un lugar familiar para él y donde tuviera conocidos. Como Malcolmson pretendía evitar a sus amigos, tampoco deseaba cargar con las atenciones de los amigos de sus amigos, por lo que se ocupó de dar él mismo con el sitio. Llenó el baúl de viaje con ropa y los libros que necesitaba y sacó un billete para el primer destino de la lista de salidas que le fuera desconocido.
Como podemos leer, el protagonista es un estudiante que busca un lugar tranquilo para estudiar. Más adelante, en el relato, podremos leer que es estudiante de matemáticas. En concreto, en esta traducción leemos que el estudiante se describe como “un hombre que estudia matemáticas en la Universidad de Cambridge”. Aunque la traducción de la anterior descripción del estudiante es, en mi opinión, muy acertada para facilitar la comprensión del cuento, no se corresponde con la expresión que aparece en el relato original, en la que podemos leer (en inglés) “un hombre que está estudiando para el tripos matemático”.
Un examen de matemáticasEl tripos matemático (Mathematical Tripos en inglés) era un examen de matemáticas de la Universidad de Cambridge, por lo que parece que tanto la expresión del relato original, como esta traducción al castellano, serían prácticamente lo mismo. Sin embargo, como hemos explicado en la anterior entrada El tripos matemático, el examen más duro que jamás existió, el tripos matemático era mucho más. Este hecho no es imprescindible para la lectura del relato, pero ofrece un cierto significado extra al mismo.
El tripos matemático era el eje central del sistema educativo de la Universidad de Cambridge, un examen para obtener el título de grado (de cualquier grado) que tenía lugar después de los 10 trimestres oficiales del mismo. Se consideraba que las matemáticas eran un conocimiento básico importante para los jóvenes estudiantes, puesto que su estudio fortalecía y desarrollaba las facultades de la mente y los preparaba para su posterior desarrollo intelectual. Por lo tanto, nuestro estudiante Malcolm Malcolmson podría ser uno más de esos estudiantes de Cambridge que se enfrentaban a esta durísima prueba, no necesariamente un estudiante de matemáticas. Aunque, como decía, la traducción “un hombre que estudia matemáticas en la Universidad de Cambridge” me parece muy acertada.
Hasta 1909 se publicaron las listas de honor del tripos matemático por orden de mérito en tres clases, wranglers, senior optimes y junior optimes, el resto obtenían un grado ordinario. Además, el primer puesto, senior wrangler, era reconocido como un gran logro intelectual en todo Gran Bretaña y abría muchas puertas para una carrera exitosa.
Hoja con problemas del tripos matemático de 1842
Era un examen muy difícil. El científico Francis Galton (1822-1911), en su libro Genio hereditario (1869), menciona que un año de la década de 1860 de los 17.000 puntos en juego en el examen, el senior wrangler obtuvo 7.634 (un 4,49 sobre 10), el segundo wrangler 4.123 (un 2,43 sobre 10). Y estas eran las dos mejores notas, luego estaban el resto de wranglers, después los senior optimes, a los que seguían los junior optimes y finalmente los estudiantes con un grado ordinario.
Para afrontar este examen era necesario un duro entrenamiento, memorizando teoremas, estudiando técnicas de resolución de problemas y trabajando los de cursos anteriores. Los estudiantes contrataban a “entrenadores” privados, no a profesores de la universidad, y dedicaban todo su tiempo a prepararse, por lo que no asistían a las clases regulares. Era un examen tan duro que muchos estudiantes sufrían crisis nerviosas.
Luego es comprensible que Malcolmson decidiera buscar un lugar aislado donde poder estudiar tan duro examen sin ninguna distracción, sobre todo si se estaba preparando la tercera parte del examen a la que solo accedían los wranglers de la lista de honor del tripos matemático, lista confeccionada a partir de los dos primeros exámenes, como puede leerse en la entrada El tripos matemático, el examen más duro que jamás existió.
Los matemáticos no creen en fantasmasTras llegar al lugar elegido, el joven estudiante busca una casa para alquilar en la que alojarse durante el tiempo que necesita para centrarse en sus estudios y le ofrecen “la casa del juez”. Desde el primer momento las personas del lugar le aconsejan que no se hospede en esa casa encantada y tétrica. En particular, la patrona de la posada en la que se ha alojado inicialmente, la señora Withman, que trata de disuadirlo de alojarse en ella, e incluso le dice que “si fuera mi hijo no dormiría allí ni una noche”.
Al joven Malcolmson le parece divertida la advertencia de la patrona de la posada y le contesta lo siguiente.
– Pero, mi querida señora Withman, no hay razón para que se preocupe usted por mí. Un hombre que estudia Matemáticas en la Universidad de Cambridge tiene demasiado en lo que pensar como para que lo moleste cualquier “algo” misterioso, y su trabajo es de una índole demasiado exacta y prosaica como para dejar espacio en su cabeza para misterios de cualquier clase. ¡La progresión armónica, las permutaciones, las combinaciones y las funciones elípticas ya entrañan misterios suficientes para mí!
En dicha respuesta, Bram Stoker ya nos deja algunos términos matemáticos, como “progresión aritmética”, “permutaciones”, “combinaciones” o “funciones elípticas”, además de que “estudia para el tripos matemático” (en la traducción “que estudia Matemáticas en la Universidad de Cambridge”), para que el lector, o lectora, relacione claramente al estudiante con las matemáticas.
Primera página del cómic basado en el relato La casa del juez, de Bram Stoker, publicado en el número 5 de la revista Creepy, una revista de cómic de terror.Es muy posible que Bram Stoker eligiera que el protagonista de esta historia fuese estudiante de matemáticas por dos motivos. El primero es que, como matemático, como científico, el protagonista piensa que su mente racional está por encima de las supersticiones de las gentes de ese lugar sobre la casa encantada del juez. De forma que, por ello, el joven estudiante de matemáticas es descrito en el relato como una persona arrogante. Lo cual enlaza con el segundo motivo, las matemáticas no tenían buena prensa, como ha ocurrido durante mucho tiempo, por lo cual, el protagonista se mostraba además antipático para quien leyese el relato, como alguien que se merece lo que le pasa por no hacer caso de las advertencias de las buenas gentes de la zona.
Terrorífica ilustración de Enrique Corominas para el relato La casa del juez, dentro del libro El invitado de Drácula y otros relatos, de Bram Stoker, publicado por la Editorial ALMA. Imagen de la página de Facebook de la editorial ALMACuando el protagonista está realizando la mudanza para instalarse en la casa alquilada, la casa encantada del juez, la señora Dempster, contratada por el estudiante para arreglar la casa, le ofrece al joven una explicación racional de los “duendes” de la casa, aunque ella no querría pasar una noche en la misma. En concreto dice lo siguiente.
Le diré lo que sucede, señor. Los duendes son toda clase de cosas, ¡menos duendes! Ratas y ratones, e insectos, y puertas que chirrían, y tejas sueltas, y ventanas rotas, y cajones arrancados, que se quedan abiertos y caen al suelo en mitad de la noche. Fíjese en el empanelado de las paredes. Es viejo. Tiene siglos. ¿Cree usted que ahí atrás no habrá ratas e insectos? ¿Cree usted, señor, que no va a verlos? Las ratas son duendes, se lo aseguro, y los duendes son ratas. ¡Que no se le meta nada más en la cabeza!
A lo que el joven contesta a la señora Dempster, “¡sabe usted más que el mejor graduado en Matemáticas de Cambridge!”. Si entendemos que el mejor graduado de Matemáticas de Cambridge, se refiere al estudiante que saca la mejor nota en el tripos matemático, entonces se estaría refiriendo al senior wrangler, como así se expresa en la versión original del cuento.
Libros de matemáticasLa intención de esta entrada del Cuaderno de Cultura Científica no es hacer un spoiler, luego no contaremos mucho más del argumento, aunque podemos decir que es un clásico del terror. Sí diremos que la señora Dempster introduce el elemento clave, las ratas, que como ella misma dice “las ratas son los duendes y los duendes son las ratas”.
La cuestión es que el joven estudiante se instala y empieza a estudiar para el examen, mientras van aconteciendo los sucesos de terror del propio relato, relacionados con las ratas, con una grande especialmente, pero centrémonos en las matemáticas que aún aparecen en el cuento.
Por ejemplo, en cierto momento, Bram Stoker escribe
Dio [Malcolmson] con un sendero tranquilo que discurría entre altos olmos, a las afueras del pueblo, y pasó allí la mayor parte del día, estudiando a Laplace.
Se refiere al matemático, físico, astrónomo y filósofo francés Pierre-Simon Laplace (1749-1827), autor de los cinco volúmenes de la obra Traité de mécanique céleste / Tratado de Mecánica Celeste (publicados entre 1799 y 1852), o Exposition du système du monde / Exposición sobre el sistema del mundo (publicado en 1824). Los temas tratados en los mismos formaban parte del temario del tripos matemático.
Más adelante, cuando descubre una rata enorme sentada en una “gran silla tallada de roble colocada a la derecha del fuego”, le lanza “un libro de logaritmos”. Y otra noche le lanza a esa misma rata enorme otra serie de libros que tenía a mano. En concreto, se citan los siguientes.
“Secciones cónicas” no dio en el blanco, tampoco “Oscilaciones cicloidales”, ni los “Principios”, ni “Cuaterniones”, ni “Termodinámica”.
Todos ellos libros que cubrían algunos de los temas que entraban en los tres exámenes del tripos matemático, como puede leerse en la entrada El tripos matemático, el examen más duro que jamás existió. En particular, uno de ellos un texto muy importante para la ciencia, como es los Principia / Principios (Philosophiæ naturalis principia mathematica / Principios matemáticos de la filosofía natural) del gran científico británico Isaac Newton (1643-1727).
Caricatura, realizada por Gerardo Basabe de Viñaspre, del matemático inglés Sir Isaac Newton (1642-1727), a quien se le atribuye la autoría del anterior juego de ingenio, perteneciente a la exposición El rostro humano de las matemáticas, de la Real Sociedad Matemática EspañolaNo hay ninguna referencia directa más a las matemáticas, salvo que se pasa muchas horas estudiando, incluso noches enteras, y mucho tiempo resolviendo problemas (de matemáticas). La siguiente cita nos muestra un ejemplo.
Resolvió de manera satisfactoria todos los problemas que hasta entonces se le habían resistido, así que cuando pasó a hacer una visita a la señora Withman en el The Good Traveller, se sentía jubiloso.
Una vuelta de tuercaEspero que disfrutéis de la lectura de este relato de terror, por lo que no voy a hacer ningún spoiler, salvo comentar que la cosa, como ya se puede imaginar desde el principio del mismo, no termina bien para nuestro estudiante de matemáticas. Sobre este final, tenemos la interpretación directa de su lectura, la típica interpretación de los relatos de terror sobre casas encantadas, fantasmas, espíritus y demás elementos de la literatura de terror. Sin embargo, podemos ofrecer una explicación racional para lo acontecido en este relato si pensamos que este estudiante está preparando el durísimo examen de la Universidad de Cambridge, el tripos matemático.
Como comentábamos más arriba, el tripos matemático era un examen tan duro que muchos estudiantes sufrían crisis nerviosas. De hecho, en la entrada El tripos matemático, el examen más duro que jamás existió, comentábamos lo siguiente:
Galton sufrió una crisis nerviosa y acabó con un grado ordinario. El erudito estadounidense Charles A. Bristed (1820-1874) sufrió un colapso físico, quedando en los últimos lugares de la lista de junior optimes. El político y economista Henry Fawcett (1833-1884), favorito para senior wrangler, acabó siendo séptimo wrangler tras sufrir trastornos nerviosos e insomnio. El senior wrangler de 1859, James Wilson (1836-1931), sufrió una crisis nerviosa tras los exámenes y al recuperarse había olvidado todas las matemáticas estudiadas. O el también senior wrangler James Savage fue encontrado muerto en una zanja tres meses después del examen, el motivo de la muerte fue un derrame cerebral, posiblemente producido por el enorme esfuerzo realizado. Estos son solo algunos casos de la historia negra de este sistema.
En consecuencia, podríamos interpretar que el protagonista de este relato, Malcolm Malcolmson, estudiante de la Universidad de Cambridge que estaba preparando el tripos matemático, sufrió un colapso nervioso y todo lo que ocurrió en la casa del juez no fue más que producto de su enferma imaginación, a partir de la historia que los habitantes del lugar le habían contado sobre la casa del juez.
Segunda página del cómic basado en el relato La casa del juez, de Bram Stoker, publicado en el número 5 de la revista Creepy, una revista de cómic de terror. En la misma se cuenta la historia del juez que vivió en dicha casa¡Que disfrutéis de la lectura de este relato de terror!
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo El estudiante de matemáticas en la casa del juez se ha escrito en Cuaderno de Cultura Científica.
Dozena erdi ariketa 2024ko udarako (3): ezabatu zifra
Ariketa fisikoa egitea osasungarria dela esaten digute behin eta berriro. Fisikoa bakarrik ez, buruari eragitea ere onuragarria da. Nagiak atera eta aurten ere, udako oporretan egiteko asteazkenero ariketa matematiko bat izango duzue, Javier Duoandikoetxea matematikariak aukeratu ditu Zientzia Kaieran argitaratzeko. Guztira sei ariketa izango dira.
Hona hemen gure hirugarren ariketa:Zenbaki arrunt bati ezkerreko lehen zifra ezabatuta lortzen den zenbakia aurrerakoaren 29rena da (aurrekoa zati 29). Zein da propietate hori duen zenbakirik txikiena?
Zein da erantzuna? Idatzi emaitza iruzkinen atalean (artikuluaren behealdean daukazu) eta, nahi izanez gero, zehaztu jarraitu duzun ebazpidea ere. Irailean emaitza zuzenaren berri emango dizugu.
(Argazkia: Anatol Rurac – Unsplash lizentziapean. Iturria: Unsplash)Ariketak “Calendrier Mathématique 2024. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
The post Dozena erdi ariketa 2024ko udarako (3): ezabatu zifra appeared first on Zientzia Kaiera.
Un brote de rayos gamma restringe las posibles violaciones a la relatividad general
Un análisis del brote de rayos gamma más brillante jamás observado no revela diferencias en la velocidad de propagación de las distintas frecuencias de la luz, lo que impone algunas de las restricciones más estrictas a ciertas violaciones de la relatividad general.
Composición de 12 días de observaciones del brote de rayos gamma GRB 221009A realizadas por el telescopio de rayos X a bordo del observatorio espacial Neil Gehrels Swift de la NASA. Fuente: NASA’s Scientific Visualization Studio / Scott Wiessinger, Francis Reddy, Brad Cenko, Eric BurnsSi mandas un pulso de luz blanca por una fibra óptica los componentes rojos de su espectro llegarán al extremo más alejado antes que los componentes azules. Si mandas el mismo pulso a través del vacío, el resultado será un empate técnico entre todas las frecuencias. La ausencia de dispersión de frecuencias es una consecuencia de una simetría fundamental de la relatividad conocida como invariancia de Lorentz.
Sin embargo, algunas teorías de la gravedad cuántica predicen que, para energías de fotones muy altas, el vacío se comporta como un medio. Los investigadores del Large High Altitude Air Shower Observatory (LHAASO) en China han comprobado ahora la invariancia de Lorentz analizando las mediciones de un brote de rayos gamma. La falta de una violación observable de la invariancia de Lorentz ha permitido al equipo elevar el umbral de energía a partir del que los efectos de la gravedad cuántica podrían hacerse evidentes.
Los brotes de rayos gamma, explosiones cósmicas que emiten radiación de alta energía, son excelentes sujetos para probar la invariancia de Lorentz, ya que su gran distancia significa que una pequeña dispersión se traduce en una variación detectable de los tiempos de llegada. El equipo de LHAASO estudió el brote de rayos gamma 221009A, el evento de este tipo más brillante jamás observado y, a una distancia de aproximadamente 2.400 millones de años luz, uno relativamente cercano. Aunque esta proximidad reduciría cualquier dispersión en el tiempo de llegada en comparación con eventos más distantes, el alto flujo de fotones ofrecía una oportunidad única para realizar mediciones estadísticamente significativas.
Al analizar cómo cambiaba el espectro de energía de los brotes de rayos gamma a lo largo del tiempo, los investigadores han podido restringir los dos términos principales que describen la dispersión de frecuencias potencial de la luz, los que varían lineal o cuadráticamente con la energía del fotón.
Para el término lineal, los investigadores han obtenido una restricción similar a la derivada previamente a partir de otras observaciones de los brotes de rayos gamma. Para el cuadrático, han establecido un umbral de energía de cinco a siete veces mayor a partir del que podría surgir la gravedad cuántica.
Futuras observaciones de las etapas iniciales de un brote de rayos gamma podrían ofrecer pruebas de una violación de Lorentz aún más sensibles.
Referencias:
Zhen Cao et al. (The LHAASO Collaboration) (2024) Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.071501
M. Stephens (2024) Gamma-Ray Burst Tightens Constraints on Quantum Gravity Physics 17, s99
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Un brote de rayos gamma restringe las posibles violaciones a la relatividad general se ha escrito en Cuaderno de Cultura Científica.
¿Cuántos terremotos ocurren cada año en Venus?
Venus es un planeta del que desde luego no nos olvidamos en este Cuaderno de Cultura Científica, pero casi siempre hacemos referencia a sus posibles procesos volcánicos activos, quizás porque a fecha de hoy todavía nos queda mucho por explorar de un planeta cuyas condiciones -una superficie perpetuamente cubierta de nubes, una temperatura superior a los 450º y una presión atmosférica 90 veces superior a la terrestre- hacen del estudio de su superficie un reto muy difícil de superar incluso para la tecnología más puntera de la que disponemos.
A pesar de las enormes diferencias que hay entre Venus y la Tierra, a este planeta se le apoda como el “gemelo” de nuestro planeta. Y es que lo cierto es que al menos en el tamaño -Venus tiene un radio tan solo un 5% inferior al de la Tierra- y una densidad media similar -aunque también, y es coincidencia, es un 5% menor- apuntando a una composición similar, nos hacen pensar que, quizás, si Venus se encontrase a una distancia similar del Sol que nuestro planeta, podríamos parecernos mucho más.
La cara que siempre nos muestra Venus -al menos en luz visible- es esta: un mundo perpetuamente cubierto de nubes, lo que ha dificultado muchísimo observar procesos geológicos activos y que, en algunos casos, estarán pendientes de confirmación hasta la próxima década. Imagen cortesía de NASA/JPL-Caltech.Durante décadas, la ausencia de pruebas sobre un Venus dinámico y con actividad geológica había dejado una fuerte impronta en la cual imperó una visión en la que el planeta era un lugar carente de actividad, al menos a una escala evidente para nuestras observaciones, a pesar de que simplemente el hecho de tener un tamaño y una composición similar a la Tierra fuesen motivos más que suficientes para argumentar que podría mantener un calor interno suficiente para alimentar procesos geológicos activos como, por ejemplo, lo son terremotos y erupciones volcánicas.
Afortunadamente, con el paso de los años, y el descubrimiento de actividad geológica en cuerpos mucho más pequeños de nuestro sistema solar, pero también por la suma de indicios que estamos recabando de Venus, como las posibles pruebas de volcanes activos hoy día -ya sea por la variación de gases en la atmósfera, por la existencia de anomalías térmicas en su superficie o por, directamente, haber podido observar el antes y el después del depósito de una colada de lava- nos hacen pensar que Venus es, efectivamente, un planeta activo. Si a esto le sumamos que algunas estimaciones sobre la edad de su superficie -basadas en el conteo de cráteres de impacto- y que podríamos situar entre los 250 y 800 millones de años, está claro que es un planeta que está activo incluso lo suficiente para renovar su superficie.
Pero, ¿y los terremotos? Hasta el momento, los únicos sismómetros que han funcionado en Venus fueron los que llevaron las misiones soviéticas Venera 13 y 14 -que llegaron a Venus en 1981-, y debido a la breve duración de las misiones por las duras condiciones que se encontraron en la superficie, junto a las dificultades de interpretar los datos, apenas arrojaron un par de señales que podrían ser de origen sísmico. Y digo podrían porque tampoco está del todo claro.
Uno de los datos a tener en cuenta para planificar las futuras misiones que si puedan llevar instrumentos con la capacidad de detectar la actividad sísmica del planeta es intentar cuantificar cuantos terremotos ocurren en el planeta y si hay zonas con mayor probabilidad de que estos ocurran.
Precisamente, un nuevo estudio publicado por van Zelst et al. (2024) intenta responder a esta pregunta planteando tres posibles escenarios de sismicidad: Uno en el que Venus es un planeta “inactivo”, pero inactivo en el sentido de las zonas intraplaca de nuestro planeta, lo que serían el equivalente en nuestro planeta a las zonas lejos de los límites de placas, como lo suelen ser el interior de los continentes. Bajo esta premisa, los científicos calculan que habría entre 95 y 296 terremotos por año con una magnitud de 4 o superior.
En esta imagen de radar tomada por la misión Magellan podemos ver las coronas de Bahet y Onatah, reconocibles por su forma ovalada a ambos lados de la imagen y compuestas por sistemas de valles y crestas montañosas. Imagen cortesía de NASA/JPL.Luego plantea otros dos escenarios más suponiendo que Venus sea un planeta activo y que algunas de las formas que vemos sobre su superficie -coronas, rifts y cinturones de pliegues- estén hoy día activos, por lo que estaríamos ante un umbral de entre 1161 y 3609 terremotos de magnitud 4 o superior cada año.
Y dentro de este escenario anterior hay otro más, y es que Venus tenga una actividad sísmica similar a la Tierra, por lo que se podrían observar entre 5715 y 17773 terremotos de magnitud 4 o superior cada año, un número muy elevado que facilitaría la detección de estos.
En cualquier caso, estos cálculos ponen de manifiesto una cosa bastante llamativa y es que, incluso en el caso de que estemos ante un primer escenario y Venus sea “inactivo” -algo que parece poco probable teniendo en cuenta que incluso podría haber volcanes activos hoy día en su superficie- su actividad sísmica sería claramente superior a la que observamos en Marte o en la Luna y, a pesar de esto, hemos podido detectar terremotos en estos últimos dos cuerpos. Eso sí, con misiones de mayor duración.
Pero bueno, ¿cómo podríamos salir de dudas? Aunque la tecnología ha mejorado mucho con respecto a existente en los años 80, lo cierto es que mantener en funcionamiento un sismómetro sobre la superficie de Venus durante un periodo lo significativamente grande como para detectar y caracterizar la actividad sísmica parece muy difícil como reto técnico.
En los últimos años hemos empezado a ver propuestas como la de Krishnamoorthy et al. (2022) en la que se propone sustituir los sismómetros del suelo por globos capaces de moverse por la atmósfera, ya que estas misiones podrían tener una duración mucho más prolongada, puesto que en las zonas altas de la atmósfera de Venus las temperaturas y presiones son mucho más benignas, e incluso parecidas a las de nuestro planeta, además de recibir una mayor energía solar para mantener los instrumentos en funcionamiento durante un tiempo más largo y sin el desgaste que suponen las condiciones superficiales.
Si nos fijamos en el centro de la imagen veremos una forma circular muy característica, pero de la que solo reconocemos una mitad… es un cráter de impacto. Las formas lineales que vemos en la imagen probablemente sean sistemas de fallas que están transformando el relieve y que, si están activas hoy día, podrían causar también eventos sísmicos. Imagen cortesía de NASA/JPL.Pero bueno, si un sismómetro mide la respuesta del suelo ante un terremoto, ¿qué medirían estos globos? Cuando ocurran los terremotos, las ondas sísmicas pueden acoplarse desde la superficie a la atmósfera y transformarse en ondas acústicas, algo que también ocurre en nuestro planeta, solo que en Venus hay una ventaja: debido a la densidad de la atmósfera, este acoplamiento podría ser unas 60 veces mayor, permitiendo detectar estas ondas de una manera más sencilla y a mayor distancia.
Si fuésemos capaces no solo de montar uno de estos globos, sino de mandar varios de manera simultánea, además podríamos localizar el punto de origen de los terremotos con mucha precisión, ayudándonos a conocer cómo se distribuye la actividad sísmica en el planeta y si hay zonas más activas que otras. Y, por cierto, también podríamos incluso detectar algunas erupciones volcánicas, puesto que las erupciones volcánicas -y sus explosiones- generan ondas perceptibles por este tipo de instrumentos.
Así que, mientras llegan las misiones que sean capaces de estudiar la actividad sísmica en el planeta Venus, nos tendremos que conformar con la llegada de las próximas misiones previstas para Venus: VERITAS, DAVINCI y EnVision, que deberían de lanzarse a principios de la década de 2030 y, al menos, empezar a despejar algunas de las dudas que tenemos de este planeta.
Referencias:
Aitta, A. «Venus’ Internal Structure, Temperature and Core Composition». Icarus 218, n.º 2 (abril de 2012): 967-74. doi: 10.1016/j.icarus.2012.01.007.
Krishnamoorthy, Siddharth, y Daniel C. Bowman. «A “Floatilla” of Airborne Seismometers for Venus». Geophysical Research Letters 50, n.º 2 (28 de enero de 2023): e2022GL100978. doi: 10.1029/2022GL100978.
Ksanfomaliti, L. V., V. M. Zubkova, N. A. Morozov, y E. V. Petrova. «Microseisms at the VENERA-13 and VENERA-14 Landing Sites». Soviet Astronomy Letters 8 (abril de 1982): 241.
Van Zelst, Iris, Julia S. Maia, Ana‐Catalina Plesa, Richard Ghail, y Moritz Spühler. «Estimates on the Possible Annual Seismicity of Venus». Journal of Geophysical Research: Planets 129, n.º 7 (julio de 2024): e2023JE008048. doi: 10.1029/2023JE008048.
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.
El artículo ¿Cuántos terremotos ocurren cada año en Venus? se ha escrito en Cuaderno de Cultura Científica.
Animaliak eta nekazalfitnessa
Udaberria heldu da eta goizean zer arropa jantzi asmatu ezinik gabiltzala, askori gorputza mugitzeko grina ere heldu zaigu. Eta hau lortzeko, landa eremuetan urtero-urtero modan jartzen den jarduera ere heldu da: agrofitness edo nekazalfitness delakoa. Bai, crossfita edota fitnessa bezalakoa, baina halterak erabili beharrean, aitzurra baliatuta.
Irudia: baratzeak lantzeko garaian gaude, eta horrek ariketa fisikoa egitea (baratzearen tamainaren arabera, nahiko gogorra, gainera) eskatzen du. (Argazkia: Zoe Schaeffer – Unsplash lizentziapean. Iturria: Unsplash).Udaberriarekin batera hasten baita baratze gehienen (neguko baratzea ere badela ezin da ahaztu) denboraldia. Ariketa fisiko sutsua aitzurrarekin: sorbaldak, bizkarra, iskiotibialak, besoak… Nekazalfitnessa, igeriketa bezala, gorputz osoa lantzeko baliagarria da.
Gizakiaz haratagoEta pentsatuko duzue (edo ez, zeuen buruan ez bainago) gizakion kontua dela nekazaritza. Eta oker egongo zinatekete. Egia da aitzurra erabiltzen dugun bakarrak garela, hori bai. Baina zenbait animalia ere nekazaritzan ibiltzen dira.
Zein animalia pentsatzen duzue dela laboraria? Bota harrikada, ea. Bat baino gehiago dago, baina bat bereziki aipatzeko modukoa da. Gizakiak baino lehenago hasi baitzen nekazaritzan. Zein eta inurria. Bai, inurria. Eta aspalditik dabil: 50 milioi urte daramatza laborari lanetan. 50 milioi urte laborantzan. Eta artean traktorea asmatu barik.
Inurri hosto-ebakitzaileak dira, zehazki, nekazaritza baliatzen dutenak. Zelan moldatzen dira izaki ñimiño hauek landa zati bat landu eta inork laboreak ez lapurtzeko? Ba, lurpean eginda. Oso modu bitxian egiten dute, gainera. Jakingo duzuenez, eta ez badakizue hemen datua, lurpeko habiak egiten dituzte inurriok. Tira, ba, habi horietan garatzen dute haien eginkizun nekazaria.
Beno, egia esan habiatik kanpo hasten da prozesua. Kanpoan dauden landare batzuen hostoak ebakitzen dituzte (bai, hortik datorkie izena) eta hosto zati horiek habiara eramaten dituzte. Eta zer egiten dute orduan? Hosto zati horietan onddoak hazi. Inurriak eta haien larbak elikatzeko onddoak.
The last of us dela eta zeharka begiratzen diegu onddoei, baina, badirudi gure inurriek kontrolpean dutela kontua. Bakterio batzuk baitituzte tegumentuan (azalaren baliokidea inurrietan) eta bakterio horiek onddo-infekzioen aurkako substantziak sortzen dituzte. Aitzurrik eta traktorerik ez, baina sistema konplexua sortu dute 50 milioi urtean inurri hauek.
Ez dira nekazaritzan ibiltzen diren animalia bakarrak, dena den. Ezta lehenak ere. Hortxe ditugu kakalardoak. Ez kakalardo guztiak, noski. Kakalardo pilotagileek badakigu nekazaritzan baino gorotz artean ibiltzen direla. Bakoitzak berea. Badago nekazaritzan dabilen kakalardo mota bat, baina. Eta izen zoragarria du, gainera: anbrosia kakalardoa.
Hauek ere onddoak laboratzen dituzte; gainazalean kasu honetan, baina. Zuhaitzetan, hain zuzen. Enborra zulatu eta zuloan, haien arrautzekin batera, anbrosia onddoaren (bai, izen bera dute) esporak zabaltzen dituzte. Kasu honetan ere, bai helduek bai larbek jango dute onddoa.
Kakalardoen kasuen alde deigarriena, dena den, zera da: nekazaritza-praktika hauekin noiz hasi ziren. Izan ere, azken kalkuluen arabera, duela 100 milioi urte hasi ziren. Eta hauek ere lana errazago egingo duen lanabesik asmatu gabe.
Nekazalfitnessaren eraginaEta artikuluaren hasierari begira pentsatuko duzue, zer zerikusi demontre dute nekazalfitness delakoak eta orain arte animalia nekazarien inguruan kontatutakoak? Bat ere ez, aitortu behar dut gaitik pixka bat desbideratu naizela, baina bazkalosterako gai polita eman dizuet. Ez horregatik!
Orain bai, nekazalfitnessean buru-belarri sartzera goaz. Hasieran esan bezala, baratzeak lantzeko garaian gaude eta horrek ariketa fisikoa egitea (baratzearen tamainaren arabera, nahiko gogorra, gainera) eskatzen du. Nahiz eta kakalardoek eta inurriek ez bezala, lana errazteko tresnak asmatu ditugun.
Denboraldi honetan egiten den ariketa fisiko kantitatea kontuan izanik, pentsa liteke baratzeetan dabiltzanak sasoi-sasoian egongo direla udarako (eta hondartzarako). Baina ez. Edo ez du zertan, behintzat. Batzuk egongo dira eta beste batzuk ez.
Eta zelan da hau posible? Ariketa gehiago egiteak kaloria gehiago erretzea dakar eta, beraz, sasoia hobetzea, ezta? Ba… Ez da hain erraza. Kenketa erraz moduan azaldu ohi dugu metabolismoa: sartzen diren kaloriei gastatutakoak kendu. Kenketak balio positiboa badu (kontsumitzen ditugun kaloriak gastatzen ditugunak baino gehiago badira) pisua irabaziko dugu eta kenketak balio negatiboa badu, pisua galdu.
Eta zein izaten da kaloriak gastatzeko bidea? Ariketa fisikoa egitea. Baliteke harremana hain zuzena ez izatea, baina. Azken ikerketen arabera, ariketa gehiago egiteak ez ditu kaloria gehiago erretzen. Egunero ariketa fisikoa egiten dutenek eta astean aldizka ariketa egiten dutenek kaloria kopuru berbera erretzen dutela ikusi da.
Hiru hipotesi daude hau azaltzeko, hirurak ere frogatu gabe. Batetik, pentsatzen da ariketa gehiago egiten dutenek gehiago jaten dutela, nahiz eta ez konturatu. Horrek pisuan izango luke eragina, baina ez erretako kaloria kopuruan.
Bestetik, proposatu da ariketa gehiago egiten duen jendeak egunean zehar gutxiago mugituz berdintzen duela gastua. Baina kirolean egiten den kaloria-gastua handiegia da gainerako mugimenduak murriztuta berdintzeko.
Azkenik, gorputzak kaloria-gastua modulatzen duela dioen hipotesia dugu. Haren arabera, kaloria-errekuntza maila batetik gora, gorputza moldatu egiten da eta harekin batera, kalorien gastua.
Arrazoiak arrazoi, bat datoz ikerketak azkenaldian: pisua galtzearen eta irabaztearen kontuan dietak garrantzi handiagoa du ariketa fisikoak baino. Adi hemen: horrek ez du esan nahi ariketarik egin behar ez denik, e!
Ariketa ez da pisua kontrolatzeko tresna. Edo ez soilik horretarako. Onura andana dakarkigu aktibo izateak: osasun orokorra suspertzen du, mugikortasuna eta garunaren funtzioa hobetzen ditu eta egoera kroniko askoren arriskua murrizten du, besteak beste.
Ikusitakoak ikusita, nekazalfitnessaren aldeko aldarria dakart. Gure osasunerako oinarrizkoak diren bi alderdi uztartzen baititu: aktibo mantentzen gaitu eta, gainera, dieta osasungarri ezinbestekoak diren sasoiko barazkiak eskuratzea ahalbidetzen digu. Badakizue, crossfitaren eta nekazalfitnessaren artean erabaki behar baduzue…
Erreferentzia bibliografikoak:Juan Ignacio Pérez eta Miren Bego Urrutia (2017). Inurri laborariak, Zientzia Kaiera, 2017ko uztailaren 6a.
Juanma Gallego (2021). Kakalardo nekazarien lan isilak milioika urte ditu, Zientzia Kaiera, 2021eko uztailaren 19a.
Teal Burrell (2019). Why doing more exercise won’t help you burn more calories, New Scientist, 2019ko urtarrilaren 16a.
Egileaz:Ziortza Guezuraga (@zguer) kazetaria da eta Euskampus Fundazioko Kultura Zientifikoko eta Berrikuntza Unitateko zabalkunde digitaleko arduraduna.
Jatorrizko artikulua Gaztezulo aldizkarian argitaratu zen 2023ko maiatzean, 250. zenbakian.
The post Animaliak eta nekazalfitnessa appeared first on Zientzia Kaiera.
La formación de la categoría conceptual en personas autistas
Los niños y las niñas neurodivergentes no percibirían los conceptos a través del lenguaje, de lo que se derivan dificultades para deducir que dos objetos que reciben el mismo nombre forman una categoría.
Foto: Jan Antonin Kolar / Unsplash“La población infantil autista no espera que dos objetos, simplemente por el mero hecho de que compartan nombre, tengan propiedades comunes o sean el mismo tipo de objeto. No son sensibles a la categorización mediante el lenguaje que se les está ofreciendo”, indica Agustín Vicente, profesor Ikerbasque e investigador del grupo Lindy Lab de la UPV/EHU. “Si la población autista muestra dificultades para deducir que dos objetos que reciben el mismo nombre forman una categoría, pueden tender a generar conceptos que no coinciden con los del resto de niños y niñas y esto puede dar lugar a dificultades en la comunicación, entre otras cosas”, añade Vicente.
Las personas neurotípicas, las que se ajustan a los estándares de comportamiento cognitivo y comunicativo socialmente típicos, durante su infancia son sensibles al llamado efecto de etiquetaje lingüístico. Pongamos como ejemplo dos tipos de aspiradoras diferentes: “Si a un niño neurotípico le decimos que una Dyson y una Roomba son las dos aspiradoras, esperará que hagan lo mismo, en este caso, aspirar. Pero si no se lo decimos, y llamamos a una simplemente Dyson y a la otra Roomba, si nos ve aspirar con la Dyson, puede que no espere que también podemos aspirar con la Roomba”, explica Vicente. “Al asignarle una etiqueta lingüística, un nombre, se establece un vínculo entre las propiedades de ese objeto y la etiqueta asignada —añade Sergio Parrillas, investigador predoctoral del grupo Lindy Lab de la UPV/EHU—.
Al mostrarle un segundo objeto con esa misma etiqueta, independientemente de lo distinto o parecido que sea al primer objeto, el niño espera que haga la misma función, en este caso aspirar. Si, en cambio, se le presenta un objeto muy parecido, pero con una etiqueta o nombre distintos, no generaliza la función de aspirar al nuevo objeto, interpretando que pertenecen a categorías distintas”.
Por tanto, “compartir nombre es un criterio de categorización más poderoso que tener un aspecto similar. Este fenómeno es importante porque actúa como una fuente de adquisición de conceptos a través del lenguaje”, subraya el investigador de la UPV/EHU.
En niños y niñas neurotípicos esto ocurre desde los 10 meses, y el objetivo de este estudio ha sido conocer si la adquisición de conceptos a través del lenguaje también se produce en niños y niñas del espectro autista de entre 3 y 9 años. Los resultados apuntan a que, a diferencia de los niños y niñas neurotípicos, no se ha podido identificar una sensibilidad al efecto de etiquetaje en la población infantil autista.
El efecto de etiquetaje lingüístico es una importante fuente de adquisición de conceptos y podría predecir aspectos tan relevantes en el desarrollo del lenguaje como lo son la adquisición y la amplitud del vocabulario. Por eso, ambos investigadores de Lindy Lab remarcan la necesidad de seguir investigando la relación que hay entre el lenguaje y los conceptos en la mente autista. “Investigar por qué algunos niños y niñas que pertenecen al espectro autista tienen un vocabulario tan escaso y referencialmente impreciso podrá ayudar a que en el futuro se desarrollen programas de intervención para que puedan comunicarse mejor, con un vocabulario más amplio y organizado”, añaden Sergio Parrilas y Agustin Vicente.
Referencia:
Sergio Parrillas-Manchón, Elena Castroviejo, José V Hernández-Conde, Ekaine Rodriguez Armendariz, Agustin Vicente (2024) Testing the Labeling Effect in Autistic Children J Autism Dev Disord doi: 10.1007/s10803-024-06388-1
Nota:
Este estudio está basado en el Trabajo Fin de Máster que ha elaborado Sergio Parrillas en el laboratorio Lindy Lab que forma parte del grupo de investigación Hizkuntzalaritza Teorikorako Taldea (HiTT) de la UPV/EHU y con el cual ganó el V Premio Izaskun Heras Prado. Sergio Parrillas es autista y actualmente tiene un contrato predoctoral del Gobierno Vasco bajo la dirección del profesor Ikerbasque Agustín Vicente (UPV/EHU) y la investigadora Irene de la Cruz Pavía (U. Deusto).
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo La formación de la categoría conceptual en personas autistas se ha escrito en Cuaderno de Cultura Científica.
Ikerketa biomedikoan animalia-ereduen erabilerari buruzko inkesta
Ikerketa biomedikoak gizakion osasunerako onurak sortzea du helburu. Hala ere, ikerketa-esperimentuetan gizakiak erabiltzea moralki onartezintzat jotzen da. Gainera, giza ikerketarako nazioarteko estandar etikoek diote gizakiek parte hartzen duten ikerketa medikoek animalien esperimentazioan lortutako aurreko emaitzetan oinarritu behar direla.
Irudia: zientzialariek nahiago lukete genomikoki eraldatutako 10 tximinoren ordez genomikoki eraldatutako 1.000 sagu erabili nahasmendu neurologiko suntsitzaile baterako tratamendu baten bilaketan. (Irudia: tiburi – Pixabay lizentziapean. Iturria: Pixabay)2013an, Espainiak 2010/63/EB europar zuzentaraua transposizionatu zuen bere lege-esparrura (RD53/2013). Ondorioz, helburu zientifikoetarako erabiltzen diren animaliak babesteko Espainiako legedia ordezkatzean, murriztean eta fintzean oinarritzen da (3R). Printzipio horiek bultzatzen dute animaliak alternatiba ez-sentigarriekin ordezkatzea, animalien erabilera murriztea, eta esperimentuak fintzea, min eta atsekabe minimoak eragiteko moduan. Hala ere, animalien erabilera zientzia biomedikoan eztabaidagarria da oraindik.
Zer iritzi dute EHUko ikertzaileek?Gizabanako baten animaliekiko kezka-maila, beraien kulturak, animaliekiko lehenagoko edo oraingo esperientziak eta animali espezie konkretuek eragiten dute. Ikerketa honetan, Euskal Herriko Unibertsitateko (UPV/EHU) laborategiko animaliekin lan egiten duten ikertzaileen iritzia jakin nahi genuen, ikerketa biomedikoetan saguen, txerrien, txakurren eta tximinoen erabileraz pentsatzen dutena ezagutzeko.
Ikerketa Helsinkiko Adierazpenak ezarritako jarraibideen arabera egin zen. Baimen informatuko prozedura eta protokolo guztiak onartu zituen Euskal Herriko Unibertsitateko (UPV/EHU) Gizakiarekin Lotutako Ikerketarako Etika Batzordeak (CEISH); M10/2020/222, M10/2021/136 eta M10/2021/365. Galdeketak parte-hartzaileen informazio pertsonala biltzen zuen, generoa, adina eta hezkuntza maila.
Parte-hartzaileei honako baieztapenari erantzuteko eskatu zitzaien:
(1) Zientzialariei (saguak/txerriak/txakurrak/tximinoak) animaliei buruzko ikerketak egiten utzi behar zaie, baldin eta horrek giza osasun-arazoei buruzko informazio berria ematen badu?
(2) Zientzialariek genomikoki eraldatutako 10 tximinoren ordez genomikoki eraldatutako 1.000 sagu erabil baditzakete nahasmendu neurologiko suntsitzaile baterako tratamendu baten bilaketan, egin beharko lukete?
Erantzun posibleak: erabat ados; ados; ez ados, ez desados; desados, erabat desados, edo ez dakit.
Oro har, adosGuztira 95 lagunek egin zuten inkesta, % 58.9 emakumetzat jotzen zuten bere burua, %28.4-k gizonezkotzat eta %12.7-k nahiago izan zuen ez definitzea. Ikasketei dagokienez partaideen %12.6 graduko ikasketak zituen, %45.3-k masterrekoak eta %42.1 doktoreak ziren (1. taula). Batezbesteko adina 31.9 ± 11.04 urtekoa izan zen.
Parte-hartzaileen %96.8 ados edo erabat ados zeuden saguen ikerketarekin, baldin eta giza osasun-arazoei buruzko informazio berria ematen bazuen, eta %1.1 desados. Txerrien ikerketari dagokionez, %87.3 ados edo erabat ados zegoen, eta %3.2 desados. Txakurren kasuan, %69.4 ados edo erabat ados zegoen, eta %18.9 desados edo erabat desados. Tximinoen kasuan partaideen %74.7 ados edo erabat ados zegoen, eta %13.7-k desados edo erabat desados. Bigarren galderari buruz, parte-hartzaileen %56-k ados edo erabat ados zeuden genomikoki eraldatutako 1.000 sagu erabiltzea genomikoki eraldatutako 10 tximinoen ordez, eta partaideen %20 desados edo erabat desados agertu zen.
Gure emaitzek agerian utzi zuten laborategiko animaliekin lan egiten duten ikertzaileak hauen erabileraren alde daudela, eta eskala filogenetikoa faktore garrantzitsua dela jendeak zenbait espezie ikerketan erabiltzeari buruz duen iritzietan. Txakurrak edo tximinoak erabiltzearen aurka zeudenen ehunekoa saguak edo txerriak erabiltzearen aurka zeudenena baino handiagoa zen. Gure aurkikuntzek iradokitzen dute moraltasun ezberdina dagoela tximuen eta saguen artean, bai eta lagun dituzten animalien (txakurrak) eta baserriko animalien (txerriak) artean ere.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: 45
- Artikuluaren izena: Ikerketa biomedikoan animalia-ereduen erabilerari buruzko inkesta Euskal Herriko Unibertsitateko (UPV/EHU) ikertzaileen artean
- Laburpena: Animalien erabilera zientzia biomedikoan eztabaidagarria da oraindik. Gizabanako baten animaliekiko kezka-maila, bere kulturak, animaliekiko lehenagoko edo oraingo esperientziak eta animali espezie konkretuek eragiten dute. Ikerketa honetan, Euskal Herriko Unibertsitateko (UPV/EHU) laborategiko animaliekin lan egiten duten ikertzaileen iritzia jakin nahi izan zen ikerketa biomedikoetan sagua, txerria, txakurra eta tximinoa erabiltzeaz pentsatzen zutena ezagutzeko. Ikerketak 95 parte-hartzaile izan zituen guztira. Gure emaitzek agerian utzi zuten laborategiko animaliekin lan egiten duten ikertzaileek haien erabileraren alde daudela eta eskala filogenetikoa faktore garrantzitsua dela jendeak ikerkuntzan zenbait espezie erabiltzeari buruz dituen iritzietan. Txakurrak edo tximinoak erabiltzearen aurka zeudenen ehunekoa saguak edo txerriak erabiltzearen aurka zeudenena baino handiagoa zen. Gure aurkikuntzek iradokitzen dute moraltasun ezberdina dagoela tximinoen eta saguen artean, bai eta konpainia-animalien (txakurrak) eta baserriko animalien (txerriak) artean ere.
- Egileak: Garikoitz Azkona Mendoza
- Argitaletxea: UPV/EHUko argitalpen zerbitzua
- ISSN: 0214-9001
- eISSN: 2444-3255
- Orrialdeak: 149-156
- DOI: 10.1387/ekaia.24841
Garikoitz Azkona Mendoza UPV/EHUko Psikologia Fakultateko Oinarrizko Psikologia Prozesuak eta Garapena Saileko ikertzailea da.
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Ikerketa biomedikoan animalia-ereduen erabilerari buruzko inkesta appeared first on Zientzia Kaiera.
No solo a martillazos se parten las rocas
Durante las vacaciones siempre me gusta visitar ruinas y monumentos antiguos de los que abundan en nuestra geografía: restos de castros celtas e íberos, edificios romanos, castillos medievales, iglesias románicas… y cada vez que veo la precisión y rectitud del corte de las rocas con las que construyeron los muros hace cientos o miles de años, me pregunto lo mismo, ¿cómo lo hicieron? Aquí ciertas personas aludirían a alienígenas con sables láser, pero nada más lejos de la realidad. Porque la respuesta es más sencilla, las civilizaciones antiguas sabían de Geología.
En ocasiones podían elegir los materiales con los que trabajar. Rocas poco compactas y fáciles de partir y de tallar con herramientas de hierro o cobre, como algunas areniscas que tienen una escasa cementación y son muy deleznables. Pero en la mayoría de las ocasiones tenían que tirar con lo que se encontraban a su alrededor. Y ahí entraba en juego el ingenio y la observación del terreno.
El granito y los vetones Restos de una cantera vetona del siglo II de nuestra era en el Castro de Ulaca, Ávila. Se observa un bloque de granito desprendido siguiendo las líneas de fractura que se cortan perpendicularmente, sobre el que se comenzó a barrenar de manera rudimentaria (hilera de agujeros superficiales) para cortar bloques de menor tamaño y que, finalmente, quedó abandonado.Un ejemplo es el del pueblo vetón. Afincado en la actual provincia de Ávila, buscaba zonas elevadas desde las que dominar su territorio y poder defenderse en caso de ataques por pueblos enemigos y que, además, tuvieran cerca fuentes de agua. Y en Ávila estas necesidades solo se cubren en las elevaciones montañosas generadas por los afloramientos de granito. El granito es una roca ígnea plutónica, muy compacta y formada por minerales muy duros, principalmente cuarzo y feldespatos, que hacen difícil incluso poder romperla con nuestros modernos martillos geológicos de acero inoxidable. Y cuando consigues partirla empleando la fuerza bruta, nunca logras un corte recto y perfecto, siempre se desprenden fragmentos irregulares.
El pueblo vetón aprovechó una de las características de la alteración de las rocas graníticas para poder cortar grandes bloques con las aristas separadas por ángulos casi rectos. Resulta que estas rocas han estado sometidas a grandes esfuerzos tectónicos durante millones de años, desde su emplazamiento a finales de la Era Paleozoica hasta hace unos 20 millones de años, lo que ha provocado la generación de una serie de fracturas en los granitos que se cortan casi perpendicularmente. Pero la historia no termina aquí. En los últimos milenios, al sufrir los efectos erosivos del viento y la lluvia por estar en superficie, estás líneas de fracturas se transforman en zonas de debilidad que separan lentamente la roca inicialmente compacta en bloques prismáticos.
Así, el cantero vetón ya tenía gran parte del trabajo hecho, pero faltaba un segundo paso, cuartear los bloques de granito en prismas de menor tamaño. Y para eso lo que hacía era barrenar la roca. Este proceso consiste en perforar pequeños agujeros o hendiduras en la superficie de la roca a base de golpearla con los instrumentos de hierro, cobre o cualquier otro metal similar del que dispusiera la población. Después, se insertan cuñas de metal en esos huecos y se siguen golpeando para introducirlas cada vez a mayor profundidad hasta que se desprende el bloque rocoso. En otras ocasiones, estás cuñas eran de madera, que se humedecían para que el cambio de volumen de la misma al absorber el agua fuera cortando el granito poco a poco.
Los romanos y la caliza Detalle de la muralla interior del castillo de Sagunto, levantada sobre el afloramiento de rocas calizas que forma la montaña en la que se asienta el mismo. Las capas de roca (estratos) están inclinadas hacia la izquierda de la foto debido a los movimientos tectónicos, que también han provocado la aparición de fracturas perpendiculares (en la imagen, tienen una disposición casi vertical), provocando la separación de los bloques de rocas.En realidad, esta técnica la inventó la antigua civilización romana y fue adaptada por los pueblos celtas e íberos que se encontraron en la Península Ibérica hace casi dos mil años. Una prueba de la enorme precisión en el corte y tallado de las rocas del pueblo romano lo encontramos en las ruinas de la ciudad valenciana de Sagunto. Tanto en las casas, la calzada, el anfiteatro o el imponente castillo que corona la ciudad, es fácil diferenciar lo que se construyó en época romana de los añadidos medievales posteriores fijándonos simplemente en el aspecto de los bloques de piedra: ángulos y aristas completamente rectos frente a bloques erráticos y de diferentes tamaños apilados de cualquier manera, respectivamente.
En esta localidad, los canteros romanos utilizaron una roca mucho más fácil de trabajar, la caliza que aflora en la montaña en la que se alza el castillo. Pero no solo por su dureza relativa, ya que está compuesta, mayoritariamente, por carbonato cálcico, con dureza tres en la escala de Mohs, sino también porque, al tratarse de una roca sedimentaria, se dispone en capas superpuestas, llamadas estratos. Y para facilitar aún más la extracción de bloques, la tectónica también ha hecho estragos en estas calizas, provocando unas fracturas perpendiculares a dichos estratos que, sin apenas esfuerzo humano, permite extraer bloques con los ángulos y las aristas casi rectos. Un poco de barrenado romano sobre esos grandes bloques y ya tenemos los “ladrillos” de caliza preparados para construir el próximo foro o teatro de turno.
Exhibición de barrenado artesanal con lanzas de acero en la cantera de extracción de las calizas rojas de Ereño (Bizkaia), realizada durante la excursión del Geolodía Bizkaia de 2023 organizada por personal docente e investigador de la Universidad del País Vasco (UPV/EHU). Imagen cedida por Laura Damas (UPV/EHU).Hoy en día se han inventado máquinas que pueden agujerear la superficie de las rocas de manera muy rápida y eficiente, gracias al uso de cabezales cubiertos de polvo de diamante, el mineral con mayor dureza de todos. Incluso, una vez realizadas estás perforaciones, se suelen emplear explosiones controladas con barrenos de dinamita para separar los grandes bloques de roca. Pero esto no quiere decir que, en la actualidad, no se siga utilizando la técnica tradicional usando la fuerza bruta. Existen muchos vídeos en las redes sociales de especialistas en cantería cortando rocas con una precisión milimétrica, generando caras, aristas y ángulos completamente rectos utilizando simplemente una maza y varias cuñas metálicas insertadas en fila en la superficie del bloque rocoso, a las que golpea de manera rítmica y continuada. Y, aunque de primeras puedan parecernos falsos por la perfección de su trabajo, a pesar de hacerlo de manera tan rudimentaria, son completamente reales. Ya lo hacían en la Roma republicana e imperial.
Cuando una cosa funciona, lo mejor es no cambiarlo. La técnica de corte de rocas empleando el barrenado lleva mostrando su utilidad más de dos mil años, así que, aunque los materiales utilizados para llevarla a cabo puedan, y deban, evolucionar con el paso del tiempo, los fundamentos teóricos seguirán siendo los mismos. La observación de la naturaleza y, en este caso, las rocas, nos permite adaptarnos a ellas para poder utilizarlas para nuestro beneficio. Así, aunque Antonio Molina nos diga que le gusta ser barrenero por el riesgo de usar los explosivos, sus compañeros seguirán golpeando la roca con las mazas para marcarle el ritmo en el cante.
Agradecimientos:
A Jone Mendicoa, por aguantarme todos los años de vacaciones, y a Laura Damas, por darme la idea para este artículo tras varias conversaciones más que interesantes sobre rocas ornamentales.
Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU
El artículo No solo a martillazos se parten las rocas se ha escrito en Cuaderno de Cultura Científica.
El monstruo del lago Ness existe (al menos en matemáticas)
En la entrada Clasificando en topología: de lo local a lo global recordábamos un hermoso teorema de clasificación:
Toda superficie compacta (cerrada y acotada) y conexa (de una pieza) es topológicamente equivalente a una esfera, a una suma conexa de toros o a una suma conexa de planos proyectivos.
Superficies no compactasLa clasificación de superficies no compactas (superficies no cerradas o no acotadas) es mucho más compleja. El enunciado del teorema de clasificación envuelve conceptos parecidos al del caso compacto y una nueva noción, la de final de un espacio topológico.
Esta clasificación la estableció Ian Richards en un celebrado artículo publicado en 1962; involucra los siguientes conceptos explicados de manera muy intuitiva:
-
la “cantidad” de toros o planos proyectivos que posee la superficie (su género). En el caso de superficies no compactas esa “cantidad” puede ser infinita;
-
la “clase de orientabilidad” de la superficie, es decir, la existencia (o la falta de ella) de planos proyectivos en su expresión; y
-
los finales de la superficie, que pueden entenderse como las maneras (topológicas) de moverse hacia el infinito dentro del espacio. El espacio de finales se dota de una topología que expresa precisamente la “dinámica topológica” que posee la superficie (y que la caracteriza).
El concepto de final se puede introducir para cualquier espacio topológico. La definición no es sencilla, por ello damos unos cuantos ejemplos para entenderla mejor.
-
Un espacio compacto no posee finales.
-
La recta real posee dos finales; son las dos maneras de acercarse al infinito, -∞ o +∞).
-
El intervalo [0, +∞) posee un único final. Aunque es más difícil de visualizar, el plano también posee un único final, así como todos los espacios euclideos de dimensión mayor o igual a 2.
-
Un árbol binario completo infinito posee una cantidad infinita (no numerable) de finales que corresponden a la cantidad infinita de caminos descendentes diferentes que comienzan en la raíz. De hecho, se puede demostrar que el conjunto de finales es homeomorfo al conjunto de Cantor.
Veamos algunos ejemplos de superficies no compactas.
El planoEs una superficie no compacta con un final y género cero. Es homeomorfa a una esfera (que es una superficie compacta) a la que se ha quitado un punto.
El cilindroEs una superficie (es el producto de la circunferencia por la recta) no compacta con dos finales y género cero. Es homeomorfa a una esfera a la que se han quitado dos puntos.
El monstruo del lago NessEs una superficie no compacta (orientable, no contiene planos proyectivos) de género infinito y con un único final. La nombraron de esta manera los matemáticos Antony Phillips y Denis Sullivan en un artículo sobre teoría de foliaciones publicado en 1981.
Esta superficie se puede construir a partir de un plano (que puede pensarse como la superficie del lago Ness) al que se le añaden una cantidad infinita de asas (que pueden pensarse como los trozos de cuerpo visibles del monstruo del Lago Ness). Cada asa se añade eliminando dos discos abiertos del plano y “pegando” un cilindro en los huecos originados como se observa en la imagen de debajo. El género de esta superficie es infinito porque hay infinitas asas; solo posee un final porque el plano posee un único final.
Arriba: Una “aproximación” a la superficie del monstruo del lago Ness. Según la descripción anterior, el monstruo debería ser infinitamente largo y poseer un número infinito de “jorobas” emergiendo del agua. Debajo: Imagen de una parte de la superficie del monstruo del lago Ness. Fuente: Wikimedia Commons.La escalera de JacobEs una superficie (orientable) de género infinito y con dos finales. La nombró de esta manera el matemático Étienne Ghys en un artículo sobre teoría de foliaciones publicado en 1995.
La superficie se puede describir como la frontera exterior de una escalera infinitamente larga en ambas direcciones. Correspondería a hacer sumas conexas de toros, a partir de uno inicial, en ambas direcciones y de manera indefinida.
Arriba: Una “aproximación” a la superficie escalera de Jacob pensada como la frontera de una escalera infinita en ambas direcciones. Debajo: Imagen de una parte de la superficie pensada como suma conexa de toros en dos direcciones. Fuente: Wikimedia Commons.El árbol de Cantor
Es una superficie homeomorfa (topológicamente equivalente) a una esfera a la que se le ha eliminado un conjunto de Cantor. Es decir, tiene género cero (no contiene ni toros ni planos proyectivos) e infinitos finales (los infinitos puntos del conjunto de Cantor).
Nota
Se puede probar que cualquier superficie no compacta es homeomorfa a una esfera a la que se le ha quitado un conjunto compacto (que define el conjunto de finales) y se “han pegado” una cantidad finita o infinita de toros y planos proyectivos (que definen el género y la clase de orientabilidad).
Pero esa es otra historia, para la que se necesitan unas cuantas matemáticas más sofisticadas.
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y editora de Mujeres con Ciencia
El artículo El monstruo del lago Ness existe (al menos en matemáticas) se ha escrito en Cuaderno de Cultura Científica.
Dozena erdi ariketa 2024ko udarako (2): zuzenkia
Ariketa fisikoa egitea osasungarria dela esaten digute behin eta berriro. Fisikoa bakarrik ez, buruari eragitea ere onuragarria da. Nagiak atera eta aurten ere, udako oporretan egiteko asteazkenero ariketa matematiko bat izango duzue, Javier Duoandikoetxea matematikariak aukeratu ditu Zientzia Kaieran argitaratzeko. Guztira sei ariketa izango dira.
Hona hemen gure bigarren ariketa:Irudiko zuzenki batzuen neurriak hauek dira: AB = 9 cm, BC = 14 cm, CD = 13 cm, DA = 12 cm eta BD = 15 cm. Zein da PQ zuzenkiaren neurria?
Zein da erantzuna? Idatzi emaitza iruzkinen atalean (artikuluaren behealdean daukazu) eta, nahi izanez gero, zehaztu jarraitu duzun ebazpidea ere. Irailean emaitza zuzenaren berri emango dizugu.
Ariketak “Calendrier Mathématique 2024. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
The post Dozena erdi ariketa 2024ko udarako (2): zuzenkia appeared first on Zientzia Kaiera.
¿Qué son los haces?
Estos jardines metafóricos se han convertido en objetos centrales de las matemáticas modernas.
Un artículo de Konstantin Kakaes. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.
En 1940, los alemanes tomaron prisionero al matemático y oficial de artillería francés Jean Leray, quien les dijo a sus captores que era topólogo, temeroso de que si descubrían su verdadera especialidad, la hidrodinámica, lo obligarían a colaborar con el esfuerzo bélico alemán. Durante los casi cinco años que estuvo en prisión, Leray mantuvo este subterfugio investigando en topología, una rama de las matemáticas que estudia las formas deformables. Terminó creando una de las ideas más revolucionarias de las matemáticas modernas: el concepto de “haz”.
Después de que Alexander Grothendieck diera a conocer la noción de Leray en las décadas de 1950 y 1960, los haces asumieron un “papel estelar” en las matemáticas, afirma David Ben-Zvi de la Universidad de Texas en Austin, convirtiéndose en “una de las herramientas más básicas en la geometría algebraica moderna”.
Como dice una explicación introductoria, los haces pueden considerarse como desarrollos construidos sobre otros objetos matemáticos. “Piénsalo como si el objeto matemático fuera una parcela de tierra y un haz fuese como un jardín encima de ella”, explica Mark Agrios.
Los haces recibieron su nombre porque implican unir “tallos” a un objeto subyacente. Leray las llamó “faisceaux” (en francés, “haces”) porque esta disposición le recordaba a las gavillas de trigo cosechado. Así como los jardines se pueden cultivar en diferentes tipos de tierra, los haces se pueden construir sobre numerosos tipos diferentes de objetos matemáticos y, por lo tanto, pueden adoptar muchas formas diferentes.
Incluso los haces más simples son entidades matemáticas bastante complicadas. Para comprenderlas mejor, podemos construir una. Aquí se explica cómo hacer un haz simple a partir de líneas rectas.
Tomemos el objeto subyacente como la línea de los números reales:
Construimos un haz no a partir de puntos individuales, sino de intervalos. Puedes dividir la recta numérica en intervalos de infinitas maneras. A continuación se muestra un ejemplo.
Entre cada pareja de paréntesis hay un intervalo que incluye todos los puntos entre ellos, pero no los extremos. Por lo tanto, el intervalo (0, 1) contiene todos los números mayores que cero y menores que 1.
El haz contiene todos los intervalos, no solo uno cualquiera. A cada intervalo se le puede asignar un conjunto de “secciones”. En este ejemplo, las secciones son todas las posibles líneas rectas que pasan por un intervalo.
Tomemos un único intervalo, como se muestra a continuación. Solo se muestran tres de las secciones, ya que es imposible visualizarlas todas a la vez.
El haz comprende todas las secciones de todos los intervalos posibles y las uniones de esos intervalos.
Se trata de una entidad desconcertantemente caótica, que resulta matemáticamente atractiva porque oculta una simplicidad subyacente. En la figura anterior, las secciones elegidas para los diferentes intervalos chocan. Las líneas pasan unas por encima y otras por debajo de otras, en lugar de coincidir.
A los matemáticos les interesa comprender qué sucede cuando se elige una sección de cada intervalo y se impone el requisito de que las distintas secciones sean compatibles entre sí, de modo que los intervalos superpuestos concuerden. Con esa restricción, sucede algo notable.
Si un intervalo está anidado dentro de otro, las líneas deben coincidir en la superposición.
De esta restricción local se obtiene una consecuencia global: en lugar de muchas líneas pequeñas, se obtienen las únicas opciones posibles que cumplen la regla de anidación: líneas rectas que continúan a lo largo de toda la línea numérica.
Estas se denominan secciones globales. Una de las características que les otorga a llos haces su poder es que estos objetos globales surgen de las restricciones locales.
Este es un recorrido por el haz de líneas rectas, o funciones lineales, sobre la línea real. Es uno de los haces más simples.
Se pueden crear muchos haces sobre la línea real. Esto es análogo a plantar diferentes flores en un jardín en la misma parcela de tierra. Hay un haz que consta de funciones cuyos gráficos no tienen saltos, un haz de funciones cuyos gráficos no tienen curvas agudas y un número infinito de otros.
Pero eso es solo el comienzo. En lugar de plantar una flor diferente, podrías cuidar una parcela de tierra diferente. Imagina que construyes un haz sobre un círculo, en lugar de sobre una línea. Esto crea una estructura que parece un cilindro con una altura infinita. La estructura de los objetos dibujados en ese cilindro depende de la construcción concreta de un haz específico.
Ilustración: Mark Belan / Quanta MagazineHasta este punto, todas las haces que hemos considerado pueden considerarse familias de funciones. Pero los haces pueden volverse (mucho) más complicados que eso.
El cilindro de la figura anterior se puede considerar como el resultado de un rectángulo infinitamente alto cuyos lados has pegado. Si, en cambio, torcieras los extremos del rectángulo antes de pegarlos, como en la figura siguiente, crearías una banda de Möbius infinitamente ancha (no es posible dibujarla, por lo que mostraremos una banda de Möbius finita). En esta banda de Möbius, aún puedes dibujar curvas que recuerdan a los gráficos.
En cualquier pequeña parte local del círculo, esta curva parece el gráfico de una función. Pero a escala global, no es una función. Esto se debe a que no hay forma de definir un sistema de coordenadas global consistente, debido a la torsión. (Si recorremos toda la franja, nuestras nociones de arriba y abajo terminan invirtiéndose, lo que hace imposible hacerlo). Los matemáticos llaman a estos objetos «funciones torsionadas».
Si bien cada haz es una vasta colección de objetos, también se puede considerar la colección de todos los haces de un objeto matemático dado: la línea real, un círculo o alguna otra entidad. Esto es como considerar todos los posibles jardines que se podrían plantar en una parcela de tierra determinada. Esto nos dice algo sobre cómo es esa tierra. Algunas parcelas son selvas tropicales, otras son desiertos. Averiguar qué haces son posibles les da a los matemáticos una manera de investigar la estructura del espacio subyacente, de la misma manera que saber qué plantas crecen en un tipo concreto de suelo nos da información sobre ese suelo.
A partir de Grothendieck, los matemáticos se dieron cuenta gradualmente de que las colecciones de haces tienen muchas similitudes con las colecciones de funciones, pero a un nivel de complejidad más alto. Se pueden sumar y multiplicar haces, e incluso hacer una versión de cálculo con ellos.
En prisión, Leray había abierto la puerta a un mundo matemático completamente nuevo.
El artículo original, What Are Sheaves?, se publicó el 19 de julio de 2024 en Quanta Magazine.
Traducido por César Tomé López
El artículo ¿Qué son los haces? se ha escrito en Cuaderno de Cultura Científica.
Los pogonóforos cultivan bacterias en las profundidades marinas
El esquema básico de la alimentación animal es bien conocido. Las plantas utilizan la energía del sol para sintetizar hidratos de carbono mediante la fotosíntesis. Estas moléculas liberan energía cuando son oxidadas, haciendo posible la síntesis de otras moléculas como proteínas o lípidos. Los animales utilizamos finalmente para nuestro metabolismo la energía almacenada en todo tipo de moléculas orgánicas, energía derivada en primera instancia del sol.
Esta regla no es universal. Existen animales que no dependen de la producción fotosintética primaria. De hecho, viven en ambientes completamente oscuros, en las profundidades marinas y cerca de manantiales hidrotermales. Pueden alcanzar gran tamaño, más de dos metros y medio, y no tienen sistema digestivo. Se les conoce como pogonóforos o vestimentíferos, aunque su nombre oficial es el de siboglínidos. Aquí utilizaré la denominación más extendida de pogonóforos.
Figura 1. Densa colonia de pogonóforos de la especie Riftia pachyptila junto a un manantial hidrotermal del Pacifico oriental. De Hilário, A., Capa, M., Dahlgren, T.G. et al. (2011). PLoS ONE, 6 (2). e16309. 1 – 14. CC BY 4.0Después de muchas dudas sobre su posición taxonómica, hoy sabemos que los pogonóforos son un grupo muy especializado de anélidos poliquetos. Estos gusanos viven en tubos quitinosos de los que sobresale una especie de plumas de intenso color rojo (Figura 1). Para obtener su alimento cultivan en su interior bacterias quimioautótrofas, en concreto bacterias capaces de oxidar el sulfuro de hidrógeno, un gas tóxico emitido por los manantiales submarinos.
Figura 2. Se muestra en verde el trofosoma del pogonóforo Parascarpia echinospica. Este animal capta oxígeno y dióxido de carbono del agua de mar, mientras que el sulfuro de hidrógeno se filtra a través del sedimento. De Wang, H., Xiao, H., Feng, B., et al. Sci. Adv. doi: 10.1126/sciadv.adn3053, CC BY 4.0Los pogonóforos cultivan estas bacterias en un voluminoso órgano de su cuerpo llamado trofosoma, formado por unas células, los bacteriocitos, cargadas de bacterias (Figura 2). El hospedador les proporciona a través de sus vasos sanguíneos oxígeno, sulfuro de hidrógeno y dióxido de carbono. De hecho, el color rojo de sus plumas se debe a un tipo especial de hemoglobina que es capaz de fijar tanto oxígeno como sulfuro de hidrógeno. Las bacterias oxidan el sulfuro generando una energía que es aprovechada para ejecutar el ciclo de Calvin-Benson, el mismo que las plantas utilizan durante la fase oscura de la fotosíntesis. De esta forma, el carbono del CO2 queda fijado en moléculas orgánicas sin necesidad de luz solar.
Las bacterias proliferan gracias a los nutrientes proporcionados por su hospedador, pero finalmente son digeridas por unas enzimas llamadas catepsinas, su materia orgánica pasa a la cavidad corporal y es distribuida por todo el cuerpo del pogonóforo. Esto hace innecesaria la presencia de boca o tubo digestivo. Puede pensarse que el cultivo de bacterias para autoconsumo no es muy eficiente, pero se han observado densidades altísimas de pogonóforos junto a fumarolas submarinas, y se han registrado crecimientos de hasta 85 centímetros al año.
Figura 3. Diferencias entre los dos micronichos del trofosoma de P. echinospica. Arriba, los bacteriocitos de la periferia contienen bacterias que oxidan el sulfuro de hidrógeno impulsando el ciclo de Calvin-Benson (CBB) que fija el carbono en moléculas orgánicas. Las catepsinas digieren las bacterias proporcionando nutrientes al hospedador. Abajo, los productos metabólicos de desecho, fundamentalmente el amonio, son detoxificados por las bacterias de los bacteriocitos centrales, sometidos a hipoxia. De Wang, H., Xiao, H., Feng, B., et al. Sci. Adv. doi: 10.1126/sciadv.adn3053, CC BY 4.0Un estudio recientemente publicado por un grupo de científicos chinos nos permite conocer mejor este proceso, más complejo de lo que se pensaba. Para ello, han utilizado una técnica de recolección in situ de muestras del trofosoma de Parascarpia echinospica, un pogonóforo del Pacífico occidental. Mediante la secuenciación de ARN de células individuales se clasificaron las células y las bacterias del trofosoma en función de qué genes se estaban expresando en un momento determinado. Los investigadores comprobaron la existencia de dos tipos bien diferenciados de bacterias, que se correspondían además con su posición dentro de los lóbulos del trofosoma. Las bacterias más periféricas, y más expuestas a la circulación y a la presencia de oxígeno, son las que oxidan el sulfuro de hidrógeno, fijan el carbono y proporcionan alimento al hospedador. Sin embargo, las bacterias más internas, en un ambiente hipóxico, expresan genes relacionados con la detoxificación del amonio, es decir, su función está más relacionada con la excreción (Figura 3). El pogonóforo no utiliza estas bacterias como alimento.
Lo fascinante de este estudio es que los pogonóforos no solo han desarrollado un sistema de cultivo bacteriano que les permite sobrevivir en un ecosistema quimiosintético aislado del flujo de energía de origen solar, un ambiente más apropiado para bacterias que para animales. Además, han sido capaces de generar en su trofosoma dos micronichos bien diferenciados, albergando dos tipos de bacterias que cumplen funciones diferentes para la fisiología del pogonóforo, en concreto la obtención de nutrientes y la eliminación de desechos.
Referencias:
Wang, H., Xiao, H., Feng, B., et al. (2024). Single-cell RNA-seq reveals distinct metabolic «microniches» and close host-symbiont interactions in deep-sea chemosynthetic tubeworm. Sci. Adv. doi: 10.1126/sciadv.adn3053.
Los interesados en el tema no deberían perderse este extraordinario vídeo del periodista científico Ed Yong y la microbióloga de Harvard Colleen Cavanaugh, descubridora de la quimiosíntesis en pogonóforos.
Sobre el autor: Ramón Muñoz-Chápuli Oriol es Catedrático de Biología Animal (jubilado) de la Universidad de Málaga
El artículo Los pogonóforos cultivan bacterias en las profundidades marinas se ha escrito en Cuaderno de Cultura Científica.
Supergaizkileak, zonbiak eta sexua
Aurrekoan Batman eta Manbat izan genituen protagonista. Ba, oraingoan, zonbiekin ibiliko gara. The walking dead seriearekin gogoratu zarete? Are okerragoak dira dakartzadan zonbiak. Askoz okerragoak.
Irudia: Euli ar bat, eme baten gorpuarekin elkartu nahian. Onddoa atzeko gorputz-segmentutik hazi da, eta esporak ateratzeko erabiltzen diren adabaki zuri handiak ikusten dira. (Argazkia: Filippo Castelucci. Iturria: Kopenhageneko Unibertsitatea).Eta kontua da, berez ezin direla mugitu. Ikusi ere, zentzu hertsian, ez dute ikusten. Entzumena ez da haien gaitasunik indartsuena. Onddoak baitira. Onddoak, bai. Jaten ditugun boletusen ahaideak. Onddoak.
Beno, egia esan, haiek ez dira zonbiak, haiek dira besteak zonbiak bilakatzen dituztenak. Zonbi esklaboak sortzeko gaitasuna dute. Hori bai superboterea eta ez Manbaten ekokokapena. Nola ez izan gaizkile horrelako gaitasunarekin. Supergaizkile izan behar.
Goazen harira, baina. Gure protagonista Entomophthora muscae onddoa da eta ez pentsa supergaizkile estereotipikoa denik. Ez ditu zonbiak sortzen mundua erretzen ikusi nahi duelako. Begirik gabe ikustea zaila bailitzateke. Gure Muski onddoak ez du zonbifikazioa bere bihotzeko gaiztotasunagatik egiten. Bizirauteko estrategia du. Mundu zail eta oldarkor honetan aurrera egiteko aurkitu duen bidea da zonbiak sortzearena.
Eta gaiztotasuna ez du indiskriminatua ere, edozein ez baitu zonbifikatzen. Lasai hartu dezakegu arnasa, gizakiok salbu baikaude. Etxe-euliak dira hemen biktimak. Uda osoan inguruan dabiltzan eta neguan desagertzen diren euli horiek. Eta baten batek pozik hartuko du berria; nolabait ordaindu dezatela udan ematen duten kaparrada. Beno, epaitzeko ez gaude hemen. Baina, euliek ere beren funtzioa badute.
Kontuz, baina. Zonbifikazioa ez baita istorio honetan guztian deigarriena. Prest zaudete prozesuaren nondik norakoak ikasteko? Gure Muski onddoak egiten duena zera da: etxeko euli emeak kutsatu eta hil egiten ditu apurka-apurka. Zehazki, euli emea bere esporekin kutsatu duenean, ugaltzen hasten da Muski euli barruan eta, sei egunen buruan, intsektuaren portaera kontrola dezake. Honaino normala. Normala edo. Hau gutxi balitz, euliak, hil baino lehen, seinale kimiko jakin batzuk askatzen ditu, onddoak eraginda.
Eta ez dira edonolako seinale kimikoak. Zertarako diren ez zenukete asmatuko. Ea, bota harrikada. Prest? Seinale kimiko horiek euli arrak erakarri eta emearen gorpuarekin kopulatzera bultzatzen dituzte.
Bai. Irakurri duzuen bezala. Seinale nekrofilikoak dira onddoak euli emeari jariarazten dizkionak. Gustu arraroak gure Muskik. Eta pentsatuko duzue, lehen ez du ba esan (idatzi) bizirauteko estrategia dela zonbifikazioa? Zelan izango da euli-nekrofilia biziraupenerako bidea?
Kontua da, badela. Euli arrak emeekin kopulatzean, gure Muski euli arrari transferitzen zaio eta, teorian, zabaltzeko aukera gehiago ditu. Eta pentsa zenezakete, orduan euli arrak taxi moduan baliatzen ditu Muskik, kalterik egin barik. Eta, noski, oker egongo zinatekete.
Sexu-arrazoiengatik ez du inongo diskriminaziorik egiten Muskik eta, zorigaiztoko euli arra nekrofilian parte hartzeko engainatzeaz gain, infektatu eta hil egiten du. Konbo hirukoitza.
Xehetasun txiki batek, gainera, are latzago egiten du kontu hau: zenbat eta denbora gehiago eman gorpuak hilda, orduan eta erakargarriagoa iruditzen zaie arrei. Bai, benetan. Horra espero ez zenuten txiribuelta gidoian.
Egindako esperimentuek erakutsi dute prozesurako funtsezkoak direla seskiterpenoak. Euli emeen gorpuan sortzen dira mezulari kimiko hauek eta, hain justu, limurtzaile zeregina dute.
Zabaldu higiezintasunetikLazgarria benetan istorio hau guztia, baina hainbat galdera uzten ditu airean. Adibidez, nola heltzen da Muski lehen euli horretara? Zelan jarraitzen du hedatzen behin euli arra hiltzen denean? Zelan demontre garatu du honelako prozesua onddo batek?
Zientzialariak ez dira, beharbada, erantzun guztien jakitun, baina badute zenbait kontu argitzeko adina informazio. Esaterako, zonbiak, nekrofilia eta seskiterpenoak nahasten dituen metodo hau ez da Muskik ugaltzeko duen metodo bakarra. Lehen esan (idatzi) bezala, euli emea infektatzean ugaltzen hasten da gure Muski, eta intsektuaren portaera kontrola dezakeenez, ahalik eta punturik gorenera bidaltzen du (horma edo landare batera) hil aurretik. Behin toki altu batean kokatuta, onddoaren esporak euli hiletik askatzen dira, beste batean lurreratzeko esperantzarekin. Eta ez da askatze leuna: segundoko hamar metroko abiadura har dezakete esporek irtetean; 36 kilometro orduko abiaduran, alegia. Hirietan autoak baino bizkorrago mugitzen dira.
Metodo hau da lehendik ezagutzen zena, hain zuzen. Duela gutxi egindako esperimentu batean ikusi da, euli arra erakarrita, Muskik ziurta dezakeela beste ostalari bat izatea eta bere esporak urrun bidaiatzea eta zabaltzea.
Esperimentu berean neurtu dute, hain zuzen, zein momentutan den erakargarriago euli emearen gorpua arrarentzat. Eta adi: 3-8 orduz hilda egondako euli-gorpu emeek eulien % 15 erakartzen zutela frogatu zuten probek. Baina 25-30 orduz hilda egondako gorpuek, % 73. Ehuneko hirurogeita hamahiru. Zazpi, hiru.
Seskiterpenoak daude honen guztiaren atzean, esan bezala. Izan ere, denbora pasata askatutako seinale kimiko hauek, ahuldu barik, indartu egiten dira. Zenbat eta denbora gehiago igaro, orduan eta seinale kimiko gehiago askatzen ditu gorpuak. Muskik aginduta, noski.
Eta ikaragarria izan daiteke istorio hau guztia, baina, egia esan behar badut, inspiratzailea iruditzen zait niri: ikusi ezin dezakeen eta mugitu ezin daitekeen onddo ñimiño bat horrelakoak egiteko gai bada, gu ez gara gutxiago izango.
Erreferentzia bibliografikoakDavid Nield (2022). This Horrifying Zombie Fungus Forces Males to Mate With The Dead. Now We Know How, Science alert, 2022ko uztailaren 24a.
Egileaz:Ziortza Guezuraga (@zguer) kazetaria da eta Euskampus Fundazioko Kultura Zientifikoko eta Berrikuntza Unitateko zabalkunde digitaleko arduraduna.
Jatorrizko artikulua Gaztezulo aldizkarian argitaratu zen 2023ko martxoan, 248. zenbakian.
The post Supergaizkileak, zonbiak eta sexua appeared first on Zientzia Kaiera.
Por qué te atraen los chicos malos
Cuando los chicos y las chicas llegan a la adolescencia acumulan una multiplicidad de mensajes en los que se asocia atracción y violencia. Estos mensajes provienen del grupo de iguales, series, películas, canciones, redes sociales… y dibujan como atractivos a los chicos que muestran actitudes violentas y despreciativas hacia las chicas y no tanto a aquellos que son igualitarios y las tratan bien.
Foto: Erik Lucatero / UnsplashEsto lo vemos, por ejemplo, en la película After, hecha a partir de una saga de novelas para adolescentes. La protagonista tiene su novio del instituto que es un buen chico y al que trata como un amigo, sin mostrar deseo. Al llegar a la universidad lo engaña con otro chico “malote” y atractivo. El novio se muestra comprensivo, lo que le hace parecer un chico inseguro. Después, la chica se entera de que su nuevo ligue solo ha estado con ella por una apuesta, pero eso no le hace perder atractivo ya que, al parecer, al final “se ha enamorado de verdad”.
La influencia del discurso dominante coercitivoAsociar la atracción a la violencia y el desprecio es algo que ocurre en diferentes entornos y de diferentes formas, y se conoce como “discurso dominante coercitivo”. Estar expuestas durante mucho tiempo a este discurso lleva a las chicas a considerar atractivos a esos chicos violentos y las empuja a tener relaciones afectivo-sexuales tóxicas.
En una investigación reciente hemos analizado los mecanismos por los que este discurso dominante coercitivo se manifiesta en el grupo de iguales, llevando a algunas chicas a entablar una relación sentimental o sexual “despreciativas” (con un chico que no las trata bien y que tienen actitudes y conductas violentas), así como sus consecuencias.
Para ello, hemos recogido las experiencias de 59 chicos y 71 chicas estudiantes de 4º de ESO (15 y 16 años) de 3 institutos, que nos han hablado de sus interacciones en el grupo de iguales.
El grupo de iguales es el conjunto de personas de similar edad con los que comparten intereses, actividades, etc. ya sea dentro o fuera del instituto, con los que socializan y construyen su identidad.
¿Por qué me gusta el que peor me trata?El grupo de iguales es uno de los contextos de socialización y aprendizaje más importante de los adolescentes. La presión e influencia que ejerce en la conducta de los jóvenes lleva a que algunas chicas se “enrollen” con chicos violentos, aunque no quieran hacerlo.
El grupo de iguales también ejerce presión sobre las chicas diciéndoles una y otra vez que quien realmente les gusta son chicos con actitudes y comportamientos violentos, lo que lleva a que a muchas de ellas acaben por gustarles –o crean que les gusta– este tipo de chicos que antes no les gustaba. Esta presión hace que se normalicen y acepten los comportamientos violentos, e incluso que las chicas los confundan con amor, empujándolas a relaciones tóxicas.
Esta presión del grupo de iguales surge también a partir de la influencia de los mensajes mediáticos a los que los jóvenes están expuestos.
“He visto series en las que la chica sale con un chico que no la trataba bien, y después la deja. Él le decía a ella que era fea… al mismo tiempo, ella no se daba cuenta de que había otro chico en su clase que siempre la miraba y que le gustaba.” (Chica participante en la investigación)
A su vez, los chicos también se ven presionados para seguir el patrón de masculinidad violento y despreciativo si quieren resultar atractivos y tener éxito entre las chicas.
El peligro de ser aburridoSi las chicas ya tienen una relación estable con un chico no violento, el discurso dominante coercitivo en el grupo tacha a estas chicas de “aburridas”, y las presiona para engañar a sus novios y “enrollarse” con chicos con actitudes y comportamientos violentos, porque “eso es lo divertido”, tal como explican las chicas participantes de la investigación cuando relatan su experiencia.
Estos comportamientos violentos van desde presumir de haberse ligado a alguien y luego despreciarla, despreciar a la chica con la que se han enrollado una vez lo han hecho, hablarle mal, tratarla mal delante de otras personas o cuando están a solas.
Hay chicas que acaban cediendo a esas presiones, enrollándose con quien no quieren y engañando a quien quieren, porque no quieren que en su grupo las consideren aburridas y tienen miedo de perder a sus amigas. En ocasiones, la actuación de las amigas no queda ahí.
El acoso continúa cuando hacen fotografías de la chica con el chico, “enrollándose” o estando cerca el uno del otro de forma que lo parece, y envían después la fotografía al novio de la chica, la cuelgan en internet o la envían a más personas, haciendo público el engaño y dañando la relación de la chica con su novio.
Las consecuencias en la saludLa investigación científica ha demostrado que la violencia de género tiene consecuencias negativas sobre la salud, incluyendo dolor crónico, mayor riesgo de enfermedades de transmisión sexual, depresión, y tendencias suicidas, entre otras.
Alrededor del 27 % de las mujeres y chicas entre 15 y 49 años ha sufrido alguna forma de violencia física o sexual, por lo que se hace necesario identificar los factores que aumentan el riesgo de violencia de género, especialmente entre las chicas más jóvenes que están teniendo sus primeras relaciones.
Nuestra investigación muestra que los ligues despreciativos son uno de estos factores que aumentan el riesgo de violencia de género en la población adolescente, socializando a las chicas en una normalización y atracción hacia la violencia. Además, cuando los ligues despreciativos se difunden entre mucha gente o se publican en internet, quedan ligados a esa chica para siempre, con posibles graves consecuencias para su salud. Como decía una de ellas: “La foto te seguirá hasta tu tumba. Hay gente que termina suicidándose, porque duele mucho”.
La amistad (buena) como elemento de prevenciónPresionar a las chicas para tener ligues despreciativos implica aumentar la probabilidad de que sean víctimas de violencia de género. Siendo el grupo de iguales un contexto muy importante de presión hacia las chicas para tener estos ligues despreciativos, es importante la intervención preventiva desde el mismo grupo de iguales.
En la investigación, las chicas hablan de la “presión de las amigas” o del “miedo a perder a sus amigas”, pero también hacen referencia a que son “falsas amigas” las que presionan a tener una relación con quien no quieres.
De acuerdo con las conclusiones de esta y otras investigaciones, trabajar las amistades de calidad desde las primeras edades puede ser un importante elemento de protección y prevención del grave problema de la violencia de género.
Sobre las autoras: Silvia Molina Roldán, Profesora Titular en Educación, Universitat Rovira i Virgili; Garazi Lopez de Aguileta, PhD and teaching assistant, University of Wisconsin-Madison, University of Wisconsin-Madison; Itxaso Tellado, Profesora Agregada, Universitat de Vic – Universitat Central de Catalunya; Leire Ugalde Lujambio, Profesora Agregada en la Facultad de Educación, Filosofía y Antropología, Universidad del País Vasco / Euskal Herriko Unibertsitatea; Lidia Puigvert Mallart, Catedrática de Sociología, Universitat de Barcelona; Miguel Ángel Pulido, Profesor en la Facultat de Psicologia Ciències de l’Educació i de l’Esport Blanquerna, Universitat Ramon Llull; Ramón Flecha García, Catedrático Emérito de sociología, Universitat de Barcelona y Sandra Racionero-Plaza, Profesora agregada. Socioneurociencia, Universitat de Barcelona
Este artículo fue publicado originalmente en The Conversation. Artículo original.
El artículo Por qué te atraen los chicos malos se ha escrito en Cuaderno de Cultura Científica.
Euskal Herriko mendiko behor esnearen kalitate nutrizionalaren azterketa
Hego Euskal Herrian ustiategi ugari daude moxal haragiaren ekoizpenera bideratutako Euskal Herriko Mendiko Zaldia arrazako animaliak hazten dituztenak. Arraza hau desagertzeko arriskuan dagoen Euskal Herriko arraza autoktonoa da. Ustiategi hauetan gehien erabiltzen den ekoizpen-sistema estentsiboa da, eta zaldiek larreetan bazkatzen duten eta bertako baliabide naturalez elikatzen dira.
Irudia: Euskal Herriko mendiko zaldia arrazako zaldi, behor eta moxalak Entziako mendikateko (Araba) larreetan bazkatzen. (Iturria: Ekaia aldizkaria)Ikuspuntu ekologiko batetik, horrek hainbat onura dakartza: bioaniztasuna eta lurraren kalitatea hobetzen ditu, paisaia heterogeneoa mantentzen du, eta baso-suteak ekiditen laguntzen du, besteak beste. Gainera, zaldiak gai dira belarretik jasotako zenbait konposatu onuragarri beren ehunetan metatzeko, eta hala, ondoren haiengandik eratorritako produktuak (haragiak edota esneak, esaterako) kalitate onekoak dira.
Hala ere, moxal gehienak Kataluniako eta Balentziako gizendegietan hazten dira, pentsuekin gizentzen dira eta bertan hiltzen dira. Animalien mugimendu horren ondorioz, hemengo abeltzainek azken produktuaren salmentan esku-hartzea galtzen dute, eta gizentze prozesu horrekin batera sistema estentsiboan jasotako balio-erantsia galtzen da. Honek guztiak ondorio kaltegarriak dauzka ekidoen euskal abeltzaintzan. Horregatik, moxal haragiarekin batera behor esnearen ekoizpena dibertsifikazio aukera ona izan daiteke bai landa eremuen bai arraza autoktono honen sustapenerako.
Behor-produktuak dibertsifikatzeko beharraBehor esnea giza esnearen antzekoenetarikoa den animalia-esnea da. Batez ere Asian kontsumitzen bada ere, azken hamarkadetan Europako iparraldera ere hedatu da. Behor esneak giza osasunarekin lotura estua izan du historikoki, izan ere, hainbat patologia tratatzeko erabili izan da, eta azken urteetan bere potentzial immunomodulatzailea, antimikrobianoa, diabetesaren aurkakoa eta minbizi zelulen proliferizazioaren aurkakoa ikertu dira. Halaber, behor esneak daukan alergenizitate baxuagatik, behi esnearen proteinei alergia dieten pazienteentzako egokia izan daitekeela ere proposatu da. Hala ere, gaur egun, bere propietate onuragarrien azterketa zientifikoa oso eskasa da oraindik.
Euskal Herriko Mendiko zaldia arrazako behor esneak gantz kopuru oso gutxi (% 0,1-0,7), proteina gutxi (% 1,4-2,9) eta laktosa ugari (% 5,6-7,4) dauzka behi esnearekin alderatuta (% 3,3-5,4 gantza, % 3,0-3,9 proteina eta % 4,4-5,6 laktosa). Ama esnearekin alderatuz gero (% 2,1-4,0 gantza, % 0,9-1,9 proteina eta % 6,3-7,0 laktosa), ordea, behor esneak gantz gutxi izaten jarraitzen du baina proteina eta laktosa edukiak antzekoak dira. Horregatik, behor esnea aukera interesgarria da, esaterako, bai ama esnea hartu ezin dezaketen jaioberrientzat bai kaloria urriko dieta jarraitzen duten pertsonentzat.
Belarretik jasotako nutrienteek esnearen kalitatean eragina daukatenez, larretan gutxi bazkatzen duten behorren esnean estraktu lehor ihar (gantza ez diren gainerako solidoak) gutxiago aurkitu da denbora luzez bazkatzen duten behorren esnean baino. Gainera, esnearen osaera edoskitzaroan zehar aldatuz doa. Izan ere, edoskitzaroak aurrera egin ahala, gantza eta proteina edukiak murriztu eta laktosa edukia handitzen dira. Ondorioz, bai esnearen jatorriak bai edoskitzaro garaiak esnearen kalitate nutrizionalean eragina daukate.
Euskal Herriko Mendiko Zaldiak kalitate nutrizional altuko esnea ekoiztu dezakeela ikusita, egungo ekoizpen sistemaren dibertsifikazioa alternatiba ona izan daiteke Euskal Herriko landa-eremuetako ekido ustiategien, zaldi arraza autoktonoaren eta, orokorrean, abeltzaintza (erdi)-estentsiboaren iraunkortasuna sustatzeko.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: 45
- Artikuluaren izena: Ekoizpen sistema erdi-estentsibopean hazitako euskal herriko mendiko zaldia arrazako behor esnearen kalitate nutrizionalaren azterketa
- Laburpena: Hego Euskal Herrian giza kontsumora bideratzen diren ekidoen ustiategi ugari daude, batez ere ekoizpen-sistema estentsiboetan oinarritzen direnak. Maneiu-sistema horrek landa-eremuetan eta ingurunearen babesean dituen onurak kontuan izanda, sekula aztertu ez den Euskal Herriko mendiko zaldia arrazako behor-esnearen ekoizpena proposatzen da dibertsifikazio modura. Hortaz, ikerketa honetan produktu horren kalitate nutrizionala aztertu da, eta konposizio orokorra (gantz, proteina, laktosa eta estraktu lehor koipegabe totalak) kuantifikatu da infragorri hurbilaren espektroskopia (NIR) teknika erabilita. Euskal Herriko mendiko zaldia arrazako behor-esnean gantz kopuru bereziki baxua aurkitu zen; proteina eta laktosa kopurua, berriz, beste zaldi-arrazen esnetan aurkitutakoaren antzekoa zen. Ustiategi desberdinetako esneen arteko ezberdintasun estatistikoki esanguratsuak aurkitu ziren, eta larreetan denbora gutxien bazkatu zuten behorren esnea izan zen estraktu lehor koipegabearen edukian aberatsena. Beste animalia-jatorriko esneekin alderatuta, behor-esneak gantz- eta proteina-eduki urria baina laktosa-eduki altua dauzka, giza esnearen antzera. Ikerketa honetan ikusi da Euskal Herriko mendiko zaldia arrazak kalitate nutrizional altuko esnea eman dezakeela. Hortaz, egungo zaldien ekoizpen-sistema esnearen ekoizpenarekin dibertsifikatuz gero, bai arraza autoktono horren eta bai Euskal Herriko abeltzaintza estentsiboaren iraunkortasuna babestuko lirateke.
- Egileak: Ana Blanco-Doval, Luis Javier R. Barron eta Noelia Aldai
- Argitaletxea: UPV/EHUko argitalpen zerbitzua
- ISSN: 0214-9001
- eISSN: 2444-3255
- Orrialdeak: 113-126
- DOI: 10.1387/ekaia.24776
Ana Blanco-Doval, Luis Javier R. Barron eta Noelia Aldai UPV/EHUko Farmazia Fakultateko Laktiker taldeko ikertzaileak dira.
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Euskal Herriko mendiko behor esnearen kalitate nutrizionalaren azterketa appeared first on Zientzia Kaiera.
Un mensaje para el futuro: las cápsulas del tiempo de la Westinghouse Electric
Hubo un tiempo, hasta alrededor de mediados del siglo XX, en el que la humanidad tuvo un brillante futuro por delante. Nuestro entusiasmo tecnooptimista duró, más o menos, hasta que la ciencia y la tecnología avanzaron lo suficiente como para empezar a suponer una amenaza para nuestra especie: un poder de creación cada vez mayor trajo asociado, inevitablemente, un poder de destrucción también cada vez mayor. El desarrollo de la energía atómica, por un lado, y los bombardeos de Hiroshima y Nagasaki, como la otra cara de la moneda, por otro, es uno de los mejores ejemplos.
La materialización de una realidad que no terminaba de convertirse en la tecnoutopía que nos habían prometido hizo el resto. En la actualidad parece que perdimos la ingenuidad o la capacidad de soñar o de simplemente pensar que hay un mañana, parece que, en una sociedad que se mueve tan rápido, no nos da siquiera tiempo a asimilar el «hoy». Pero esto no siempre fue así.
En 1938, pensar en dentro de cinco mil años podía incluso entrar dentro de lo razonable. O eso pensaron en la Westinghouse Electric & Manufacturing Company cuando, de cara a la celebración de la Feria Mundial de Nueva York de 1939, cuyo tema era «El mundo del mañana», decidieron construir una cápsula del tiempo para las generaciones de ese mañana más que lejano con un claro objetivo:
Dentro de cinco mil años, las personas del futuro nos mirarán como nosotros miramos a los sumerios y a los primeros egipcios y babilonios. El plan de los ingenieros de la Westinghouse es proporcionarles más conocimiento sobre nosotros del que que nosotros tenemos sobre cualquiera de los pueblos antiguos que vivieron antes.
Para llevar a cabo el proyecto, la empresa creó el Comité de la Cápsula de Tiempo.
Dejando a un lado la cuestión de dónde estaría la humanidad dentro de cinco mil años ―algo que, a día de hoy, no sé si querríamos saber―, el primer problema que se encontraron los ingenieros de la Westinghouse era construir algo capaz de perdurar durante todo ese tiempo, empezando por el propio recipiente que conformaría la cápsula. Como mínimo, tenía que estar hecho de un material duro y ser resistente a la corrosión. La solución vino de la mano de uno de los primeros metales que utilizó el ser humano para fabricar utensilios y herramientas: el cobre.
Para construir la cápsula se utilizó cupaloy, una aleación compuesta por un 99,4 % de cobre, un 0,5 % de cromo y un 0,1 % de plata, dura como el acero y resistente a la corrosión incluso en agua salada. Tenía forma de torpedo y un tamaño de 16, 5 cm de diámetro, 205,7 cm de longitud, con paredes de un grosor de 2,54 cm. En su interior había un recipiente sellado de Pyrex, en el que se introdujeron los objetos.
Esquema de la cápsula que aparece en The story of the Westinghouse time capsule. Fuente: Westinghouse Electric & Manufacturing CompanyPero ¿qué objetos? Elegir qué dejar para la posteridad supuso un trabajo aún más arduo que el de ingeniería. ¿Qué era lo más representativo de la sociedad de 1939 o aquello que más podría interesar a los habitantes del futuro? El Comité de la Cápsula del Tiempo consultó con arqueólogos, historiadores, autoridades científicas y expertos del mundo del arte. Y, aunque en aquel momento el sesgo en la elección del contenido fue más que evidente, finalmente se introdujeron treinta y cinco objetos de uso común ―un despertador, una pluma, una cámara de fotos en miniatura, un cepillo de dientes, una cinta métrica, un sombrero de mujer…―, setenta y cinco muestras de diversos materiales ―metales, aleaciones, plásticos, algún mineral…―, algunas semillas selladas en recipientes especiales, y de una gran cantidad de información y documentación en forma de microfilm ―libros, periódicos, revistas, fotografías…―. Se tuvo especial cuidado en no introducir compuestos volátiles u objetos que pudieran descomponerse y se evitaron los líquidos.
Existe una réplica de la cápsula del tiempo de 1939 en el Heinz Story Center de Pittsburg, ciudad en la que George Westinghouse estableció su compañíaTodo ello se introdujo en la cápsula en presencia de tres notarios, con los objetos más pesados en el fondo sobre un lecho aislante de lana de vidrio ―material fabricado con fibra de vidrio, que también se utilizó para rellenar los huecos que quedaron―, ya que la cápsula se enterró de forma vertical. Encima, en la zona central, iban los microfilms y arriba del todo los objetos ligeros. El cilindro interior de Pyrex se selló, se le extrajo el aire, se rellenó con nitrógeno y se introdujo en la carcasa de cupaloy. Se puso todo el cuidado posible en que, cualquier que desenterrara la cápsula, si algún día lo hacía, encontrara todo lo que había en su interior intacto.
Personal de la Westinghouse Electric & Manufacturing Company preparando la cápsula del tiempo.El enterramiento de la cápsula del tiempo tuvo lugar el 23 de septiembre de 1938, durante el equinoccio de otoño y unos meses antes de la inauguración de la Feria de Nueva York ―el 30 de abril de 1939―, en las inmediaciones del que sería el pabellón Westinghouse.
Dibujo del pabellón Westinghouse en la Feria de Nueva York de 1939. La cápsula del tiempo se enterró justo delante, a algo más de 150 m de profundidad.En este metraje de archivo de la época se puede observar un breve resumen de todo el proceso y el día del enterramiento.
Casi un siglo después, el pabellón Westinghouse que se construyó para quella feria no existe, pero la cápsula sigue allí, señalizada. No solo eso; como con todo lo demás, la compañía eléctrica procuró asegurarse de que algún día alguien la encontraría y para ello creó 3650 copias del Book of record of the time capsule, una guía impresa ―en dos tipos distintos de papel y con tintas especiales― que se distribuyó a bibliotecas, museos, monasterios… de todo el mundo. Un mensaje para el futuro con la localización exacta, el contenido de la cápsula e instrucciones tanto para encontrarla como para interpretar y entender su contenido. También incluyeron tres breves cartas de tres hombres relevantes de la época para las gentes del futuro: los físicos Albert Einstein y Robert Millikan, y el escritor Thomas Mann.
Mensaje de Albert Einstein para los seres humanos del futuro tal y como aparece en el Book of record of the time capsule, en alemán y traducido al inglés.La carcasa llevaba, además, la siguiente inscripción grabada en el exterior, en letras mayúsculas:1
CÁPSULA DEL TIEMPO DE CUPALOY, DEPOSITADA EN LA LOCALIZACIÓN DE LA FERIA MUNDIAL DE NUEVA YORK EL 23 DE SEPTIEMBRE DE 1938 POR LA COMPAÑÍA WESTINGHOUSE ELECTRIC & MANUFACTURING. SI ALGUIEN ENCONTRARA ESTA CÁPSULA ANTES DEL AÑO 6939 D. C., QUE NO LA ALTERE INNECESARIAMENTE, PUES HACERLO IMPLICARÍA PRIVAR A LA GENTE DE ESA ERA DEL LEGADO AQUÍ DEJADO. CONSÉRVENLA, POR LO TANTO, EN UN LUGAR SEGURO.
Una cápsula del tiempo del año 1938 es algo muy parecido al disco dorado de las Voyager enviado al espacio en 1977, poco más que un acto simbólico y un reflejo de los anhelos más optimistas de una época, que se vieron reflejados en el documental The Middelton Family al the New York World’s Fair, donde se mostraban las maravillas que podían encontrarse allí.
La feria universal volvió a Nueva York en 1964, y la Westinghouse Electric & Manufacturing Company volvió a hacerlo: creo una segunda cápsula del tiempo que enteró unos tres metros al norte de la primera. Construida de Kromarc ―una aleación de hierro, níquel, cromo, manganeso, molibdeno y trazas de otros elementos― y rellenada con argón, fue la demostración de que, a medida que pasa el tiempo, también evoluciona la tecnología… y cambia el legado que queremos dejar.
Contenido de la cápsula del tiempo de 1964. Fuente: Westinghouse Electric & Manufacturing CompanyNo puedo evitar, para terminar, dejar un par de crossovers: fue en la Feria de Nueva York de 1939 en la que Isaac Asimov tuvo su primera cita con una chica, mientras que Arthur C. Clarke y Carl Sagan estuvieron visitando juntos la de 1964. Así que tal vez estas cápsulas inspiraron, en algún momento, su imaginación.
Un hito de piedra marca el lugar donde están enterradas las dos cápsulas del tiempo Westinghouse, en el parque de Flushing Meadows, al norte de Queen, en Nueva York. Por su localización, es probable que la zona acabe inundada con la subida del nivel del mar. Fuente: CC BY 2.0/Gary DunaierBibliografía
Westinghouse Electric & Manufacturing Company (1938). The book of record of the time capsule of cupaloy, Westinghouse Electric & Manufacturing Company.
Westinghouse Electric & Manufacturing Company (1939). The story of the Westinghouse time capsule, Westinghouse Electric & Manufacturing Company.
Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.
Nota:
1 Traducción de la autora.
El artículo Un mensaje para el futuro: las cápsulas del tiempo de la Westinghouse Electric se ha escrito en Cuaderno de Cultura Científica.
El tripos matemático, el examen más duro que jamás existió
Hace unos años, escribiendo la biografía Cayley, el origen del algebra moderna (RBA, 2017) sobre el matemático británico Arthur Cayley (1821-1895), tuve la oportunidad de leer mucho sobre un curioso examen de matemáticas que se realizaba en la Universidad de Cambridge (Gran Bretaña), denominado tripos matemático (en inglés, Mathematical Tripos), un examen que, en los siglos XVIII y XIX, todos los estudiantes de esta universidad debían de aprobar si querían recibir el título de graduado. El objetivo de esta entrada del Cuaderno de Cultura Científica es mostrar algunas de las particularidades de este examen, que era capaz de causar crisis nerviosas a algunos estudiantes.
Grabado del artista Robert W. Buss de la presentación del senior Wrangler (estudiante con mejor nota del examen tripos matemático) de 1842, que fue el estudiante, futuro matemático, Arthur Cayley, ante el rector de la Universidad de Cambridge. Imagen de la University of St Andrews Libraries and MuseumsUn examen de matemáticas para todos
Los tripos son los exámenes para obtener el grado en la Universidad de Cambridge, una de las universidades más antiguas del mundo, fundada en 1209. Aunque en la actualidad cada grado tiene su propio examen, durante siglos todos los estudiantes de la Universidad de Cambridge debían de pasar una misma prueba, que durante mucho tiempo fue un examen de matemáticas.
En el siglo XV todos los candidatos tenían que realizar un debate oral en latín (de donde deriva el término wrangler, persona que toma parte en una discusión) con un representante de la universidad que se sentaba en un taburete de tres patas (en latín, trypus).
Hacia 1725 el debate oral fue sustituido por un examen escrito de matemáticas, el tripos matemático (inicialmente denominado “Examen de la Casa del Senado”, por el lugar en el que se desarrollaban los exámenes), aunque se mantuvo una parte de discusión oral en inglés. Se consideraba que las matemáticas eran un conocimiento básico importante para los jóvenes estudiantes, puesto que su estudio fortalecía y desarrollaba las facultades de la mente y los preparaba para su posterior desarrollo intelectual. El examen se realizaba en enero, tras los diez trimestres oficiales, más de tres cursos, en la universidad.
Fotografía de la casa del Senado en la Universidad de Cambridge, junto al Gonville College y al Caius College, alrededor de 1870. Fotografía de la Cornell University Library. Imagen de la colección A. D. White Architectural Photographs, Cornell University Library Accession NumberGrado ordinario y grado con honores
La mayoría de estudiantes de la Universidad de Cambridge que aprobaban tenían un grado ordinario, sin honores, mientras que algunos ni siquiera pasaban el examen. Según el físico y matemático irlandés George G. Stokes (1819-1903), hacia 1850, el 38% de los que graduados obtenían puestos de honor, mientras que el resto obtenía un grado ordinario. Y sobre un sexto de los aspirantes suspendían el examen.
Desde 1753 hasta 1909 se publicaron las listas de honor del tripos matemático por orden de mérito en tres categorías, wranglers, senior optimes y junior optimes. El primer puesto de honor, senior wrangler, figura que sigue existiendo en el tripos matemático actual, era reconocido como un gran logro intelectual en todo Gran Bretaña y abría muchas puertas para una carrera exitosa. De hecho, en ese tiempo los cursos académicos en Cambridge se recordaban por la persona que había sido senior wrangler ese curso. Cada año la noticia sobre el examen aparecía en los periódicos. El último de los estudiantes de la lista de honor recibía el apodo de “cuchara de madera” y se hacía una celebración en la que se le entregaba una enorme cuchara de madera.
El último estudiante que fue “cuchara de madera” fue Cuthbert Lempriere Holthouse, en 1909. Imagen de la Universidad de CambridgeEscasez de matemáticos
El objetivo del tripos matemático no era enseñar una herramienta fundamental para la formación de los futuros científicos, ni la preparación de los nuevos matemáticos, sino que se consideraban un mero entrenamiento para la mente de los estudiantes, necesarias para su formación intelectual como graduados.
En más de 150 años, este sistema dio lugar a pocos matemáticos puros destacados, solo Arthur Cayley (1821-1895) –senior wrangler–, James J. Sylvester (1814-1897) –segundo wrangler–, William K. Clifford (1845-1879) –segundo wrangler–, Godfrey H. Hardy (1877-1947) –cuarto wrangler– y John E. Littlewood (1885-1977) –senior wrangler–, en contraste con la considerable cantidad de físicos o físicos matemáticos, entre ellos, James C. Maxwell (1831-1879) –segundo wrangler–, William Thomson, Lord Kelvin (1824-1907) –segundo wrangler–, George G. Stokes –senior wrangler–, John W. Strutt (1842-1919) –senior wrangler–, John C. Adams (1819-1892) –senior wrangler– o J. J. Thompson (1856-1940) –segundo wrangler–.
Además, entre los altos wranglers no solo se encontraban científicos, sino también ilustres personajes en ámbitos como la política, la iglesia, el derecho o la medicina.
Retrato del naturalista Charles Darwin, realizado por el artista George Richmond (1809-1896) en 1840
Por otra parte, no a todos los estudiantes se les daban bien las matemáticas, así el escritor y político Thomas Macaulay (1800-1854) las aborrecía y el naturalista Charles Darwin (1809-1882) no estaba interesado en ellas. Por ese motivo, ambos aspiraron solo a un grado ordinario.
El tripos matemático, el examenEl tripos matemático constaba de dos partes, el workbook, que consistía en memorizar teoremas y demostraciones, y la parte de resolución de problemas. El contenido y duración iría variando a lo largo del siglo XIX. En la década de los años 1840 cubría cuestiones de matemática pura y aplicada, y tenía una duración de 6 días, con jornadas de 6 horas, pero llegó a durar 8 días.
Por ejemplo, el año que se presentó Arthur Cayley al tripos matemático, el año 1842, el examen de la Casa del Senado empezó el miércoles 5 de enero y terminó el martes siguiente, con descanso el domingo. Entre todos los estudiantes que se presentaron, ciento veinte eran candidatos a la lista de honor. Soportando el duro frío que hacía en el interior del edificio, los candidatos se enfrentaron a ciento diecisiete problemas distribuidos en dos exámenes cada una de las seis jornadas. Cada college tenía su candidato favorito, aunque los dos estudiantes con más opciones para ser senior Wrangler ese año eran Arthur Cayley (Trinity College) y Charles Simpson (St. Johns College). La expectación era máxima y el ambiente de Cambridge festivo.
Hoja con problemas del tripos matemático de 1842
Aunque el mathematical tripos cambió de estructura y contenido a lo largo de todo este tiempo, en el artículo The Mathematical Tripos in the University of Cambridge / El tripos matemático en la Universidad de Cambridge, publicado en la revista Science, en 1883, se puede leer que constaba de tres partes. La primera era la básica y solía hacerse a principios del mes de junio. Su contenido era el siguiente: varios de los libros de Los Elementos de Euclides, aritmética, álgebra básica y las tres primeras secciones de los Principia (Philosophiæ naturalis principia mathematica / Principios matemáticos de la filosofía natural) de Isaac Newton, con partes elementales de trigonometría, secciones cónicas, mecánica, dinámica, hidroestática, óptica y astronomía.
Entre los aprobados de este examen, que ya tenían el grado ordinario, la universidad realizaba un listado de los estudiantes que podían presentarse a la segunda parte, para acceder a la lista de honor del tripos matemático, que se celebraba también en el mes de junio. Para este examen las materias eran: algebra, trigonometría (plana y esférica), teoría de ecuaciones, geometría analítica (plana y sólida, incluyendo curvatura de curvas y superficies), cálculo diferencial e integral, ecuaciones diferenciales, mecánica, hidroestática, dinámica de partículas, dinámica rígida, óptica y astronomía esférica.
Como consecuencia de los exámenes I y II, la universidad de Cambridge realizaba el listado de estudiantes por orden de méritos en las tres categorías mencionadas, wranglers, senior optimes y junior optimes. Y solamente los wranglers realizaban la última parte del examen, la más dura, que se realizaba en el mes de enero del siguiente año, como hemos mencionado en el caso de Arthur Cayley.
Entrenadores para preparar el examenEl matemático y lógico Augustus de Morgan (1806-1871) describe el tripos matemático como una «gran carrera de escritura», mientras que el matemático Godfrey H. Hardy (1877-1947), de quien recomiendo su libro Apología de un matemático (1940), se sintió como «un caballo de carreras para correr una carrera de ejercicios matemáticos». Era necesario un duro entrenamiento, memorizando teoremas, estudiando técnicas de resolución de problemas y trabajando los de cursos anteriores. Los estudiantes contrataban a «entrenadores» privados, no a profesores de la universidad, y dedicaban todo su tiempo a prepararse, por lo que no asistían a las clases regulares.
Consciente de su importancia, el estudiante y futuro matemático Arthur Cayley, como hacían también los demás estudiantes que aspiraban a la lista de honor, contrató a un «entrenador», William Hopkins (1793-1866), para preparar el «gran» examen. Hopkins era considerado el mejor entrenador y era conocido como «fabricante de wranglers»: en veintidós años obtuvo diecisiete senior wranglers y veintisiete segundos o terceros wranglers.
Grabado de William Hopkins, de alrededor de 1850. Imagen del Peterhouse College de la Universidad de Cambridge
El entrenamiento de Hopkins consistía en clases teóricas donde enseñaba las matemáticas puras y aplicadas que formaban parte del contenido del examen, desde Los Elementos, de Euclides, aritmética, álgebra, trigonometría, secciones cónicas o el binomio de Newton, hasta cálculo de variaciones, instrumentos astronómicos, hidrostática y dinámica, teoría lunar y planetaria, u óptica, sonido y luz. Así mismo, suministraba montones de hojas de problemas de años anteriores a sus estudiantes, que estos debían hacer sin descanso, trimestre tras trimestre, hasta el examen final.
Sin embargo, Hopkins no se limitaba al entrenamiento clásico, sino que inculcaba a sus pupilos el espíritu de la investigación matemática y les animaba a mantenerse al día leyendo las nuevas teorías, en particular, las provenientes del continente. Por ejemplo, el joven Cayley, tras la lectura de algunas obras del matemático y físico Joseph-Louis de Lagrange (1736-1813), demostró un nuevo teorema sobre integrales múltiples que publicó en dos artículos en la revista Cambridge Mathematical Journal (CMJ) en 1841.
La dureza del tripos matemáticoComo ya se ha comentado, el tripos matemático, era un examen muy difícil. El científico Francis Galton (1822-1911), en su libro Genio hereditario (1869), menciona que un año de la década de 1860 de los 17.000 puntos en juego en el examen, el senior wrangler obtuvo 7.634, el segundo wrangler 4.123 y el estudiante junior optime con la puntuación más baja, tan solo 237 (aunque este no realizó la tercera parte del examen). Y estos eran los mejores, los de la lista de honor. Si trasladamos estas puntuaciones a un examen actual, puntuado sobre 10, la mejor nota era un 4,49, ni siquiera llega al 5, al “aprobado”, y la peor de las notas, pero del grupo de honor, la de los mejores de la universidad ese año, era un 0,14, ¡¡un 0,14!!.
Dos páginas del libro Genio hereditario (1869), del científico Francis Galton, una de ellas con un retrato del autorGalton sufrió una crisis nerviosa y acabó con un grado ordinario. El erudito estadounidense Charles A. Bristed (1820-1874) sufrió un colapso físico, quedando en los últimos lugares de la lista de junior optimes. El político y economista Henry Fawcett (1833-1884), favorito para senior wrangler, acabó siendo séptimo wrangler tras sufrir trastornos nerviosos e insomnio. El senior wrangler de 1859, James Wilson (1836-1931), sufrió una crisis nerviosa tras los exámenes y al recuperarse había olvidado todas las matemáticas estudiadas. O el también senior wrangler James Savage fue encontrado muerto en una zanja tres meses después del examen, el motivo de la muerte fue un derrame cerebral, posiblemente producido por el enorme esfuerzo realizado. Estos son solo algunos casos de la historia negra de este sistema.
Las mujeres en el tripos matemáticoHasta finales del siglo XIX las mujeres no podían asistir a la universidad en Gran Bretaña. Las universidades de Cambridge y Oxford empezaron a realizar exámenes de acceso a la universidad para mujeres en 1869, aunque estas solamente podían asistir a clase como oyentes y realizar exámenes con el permiso del profesor. Además, no se les concedía el título de graduadas.
A partir de 1880, las mujeres pudieron presentarse, con un permiso especial, al tripos matemático, aunque no recibían título o reconocimiento alguno. En 1880, la futura matemática Charlotte A. Scott (1858-1931) obtuvo una puntuación que se correspondía con el octavo wrangler. A partir de su logro, en 1882, se permitió a las mujeres participar oficialmente en el tripos y desde entonces se publicaban sus resultados en una lista complementaria a la de los hombres. Y en 1890, la futura matemática y educadora Philippa G. Fawcett (1868-1948) obtuvo la máxima distinción “por encima del senior wrangler”.
La matemática y educadora Philippa G. FawcettHacia el final de la hegemonía matemática
En 1822 se crearía el tripos clásico, pero hasta el año 1850 solo se podían presentar aquellos que habían obtenido honores en el matemático. Los siguientes tripos en crearse, en la década de 1860, fueron los de ciencias morales y ciencias naturales. En la actualidad existen 28 tripos modernos, es decir, exámenes para obtener el título de graduado por la universidad de Cambridge.
Camuflaje binario de la Casa del Senado, de la Universidad de Cambridge. Fotografía de Keith Edkins, en 2009
Bibliografía
1.- Raúl Ibáñez, Cayley, el origen del algebra moderna, RBA, 2017.
2.- Tony Crilly, Arthur Cayley, Mathematician Laureate of the Victorian Age, The Johns Hopkins University Press, 2006.
3.- R. Flood, A. Rice, R. Wilson, (editores), Mathematics in Victorian Britain, Oxford University Press, 2011.
4.- Revista Sciencia: The Mathematical Tripos in the University of Cambridge, Science, Vol. 1, No. 15, pp. 412-415, 1883.
5.- César Tomé López (2015) El Tripos y la profesionalización (serie Las matemáticas como herramienta) Cuaderno de Cultura Científica
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo El tripos matemático, el examen más duro que jamás existió se ha escrito en Cuaderno de Cultura Científica.
Dozena erdi ariketa 2024ko udarako (1): 100 euro
Ariketa fisikoa egitea osasungarria dela esaten digute behin eta berriro. Fisikoa bakarrik ez, buruari eragitea ere onuragarria da. Nagiak atera eta aurten ere, udako oporretan egiteko asteazkenero matematika-ariketa bat izango duzue, Javier Duoandikoetxea matematikariak aukeratu ditu Zientzia Kaieran argitaratzeko. Guztira sei ariketa izango dira.
Hona hemen gure lehenengo ariketa:Mahai-joko batean animaliak erosten dira. Behi batek 5 euro balio du, txerri batek 1 euro eta 20 txorik ere 1 euro. Gutxienez bakoitzetik bat erosita, 100 animalia erosi ditugu, 100 euro ordainduta. Zenbat txori erosi ditugu?
Zein da erantzuna? Idatzi emaitza iruzkinen atalean (artikuluaren behealdean daukazu) eta, nahi izanez gero, zehaztu jarraitu duzun ebazpidea ere. Irailean emaitza zuzenaren berri emango dizugu.
(Argazkia: Roberto Nickson – Unsplash lizentziapean. Iturria: Unsplash)Ariketak “Calendrier Mathématique 2024. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
The post Dozena erdi ariketa 2024ko udarako (1): 100 euro appeared first on Zientzia Kaiera.
El entrelazamiento perfecto no existe en el ruidoso mundo físico
Los físicos tienen una larga lista de problemas abiertos que consideran importantes para avanzar en el campo de la información cuántica. El problema 5 se planteó en 2001 y aborda la cuestión de si un sistema puede existir en su estado de máximo entrelazamiento en un escenario realista, en el que hay ruido.
Ahora Julio de Vicente, de la Universidad Carlos III de Madrid y el Instituto de Ciencias Matemáticas (ICMAT), ha respondido a esta pregunta cuántica fundamental con un rotundo “no”. De Vicente dice que espera que su trabajo “abra una nueva vía de investigación dentro de la teoría del entrelazamiento”.
Ilustración: Laura Moreno-Iraola / ICMATDe los sensores cuánticos a los ordenadores cuánticos muchas tecnologías requieren partículas entrelazadas mecanocuánticamente para funcionar. Las propiedades de estas partículas están correlacionadas de una manera que no sería posible en la física clásica.
Idealmente, para las aplicaciones tecnológicas estas partículas deberían estar en el llamado estado de máximo entrelazamiento, uno en el que se maximizan todas las posibles medidas de entrelazamiento. Los científicos predicen que las partículas pueden existir en este estado en ausencia de ruido experimental, ambiental y estadístico. Pero no estaba claro si las partículas también podrían existir en un estado de máximo entrelazamiento en situaciones del mundo real, donde el ruido es inevitable.
Para encontrar una respuesta de Vicente recurrió a las matemáticas. Ha demostrado que, si se introduce ruido en un sistema cuántico, es imposible maximizar simultáneamente todas las medidas de entrelazamiento del sistema, y, por tanto, el sistema no puede existir en un estado de máximo entrelazamiento.
Si bien el hallazgo de de Vicente resuelve un problema abierto, plantea muchos problemas más, incluyendo el problema tecnológico fundamental: qué condiciones se requieren para maximizar simultáneamente las múltiples medidas de entrelazamiento de un sistema.
Referencias:
Julio I. de Vicente (2024) Maximally Entangled Mixed States for a Fixed Spectrum Do Not Always Exist Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.050202
Ryan Wilkinson (2024) Long-Standing Quantum Problem Finally Solved Physics 17, s83
Ágata Timón García-Longoria (2024) Demuestran que el entrelazamiento perfecto no existe en el mundo real ICMAT
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo El entrelazamiento perfecto no existe en el ruidoso mundo físico se ha escrito en Cuaderno de Cultura Científica.
El océano de Ariel
Los satélites que orbitan los gigantes de hielo de nuestro Sistema Solar son una verdadera caja de sorpresas a nivel geológico: en ellos encontramos una gran diversidad geológica, procesos activos e incluso ciclos “hidrológicos”. Pero todavía nos queda mucho por saber, especialmente de los de Urano y Neptuno, ya que han sido sistemas que todavía no hemos podido visitar de una manera más permanente como sí que hemos hecho en Júpiter y Saturno.
Pero mientras podamos volver allí -nada indica que será antes de la década de 2040- podemos hacer estudios gracias a los numerosos avances tecnológicos y a los telescopios, pero también con modelos físicos y geoquímicos que nos ayuden a conocer como puede ser el interior y si son capaces de albergar un océano por debajo de su superficie y cuáles podrían ser las fuentes de energía que todavía los mantengan en estado líquido a pesar del tiempo que ha pasado tras su formación.
Ariel, observado por la Voyager 2 en Enero de 1986. Desde entonces no hemos vuelto a ver su superficie de cerca. Pero es que, además, solo hemos podido tomar imágenes de aproximadamente un tercio de su superficie. Cortesía de NASA/JPL.Ariel, el satélite de Urano, es un firme candidato a albergar un océano subterráneo y, poco a poco, se empiezan a acumular pruebas a favor de esta teoría. Hay zonas de su superficie que exhiben chasmatas –chasmata es el plural de chasma, que en geología planetaria hacen referencia a depresiones alargadas y no muy anchas- así como otros detalles que sugieren la actividad criovolcánica. De hecho, algunos estudios sugieren que hay zonas de Ariel cuya edad sería inferior a los mil millones de años, lo que indicaría procesos de rejuvenecimiento de su superficie posteriores a su formación.
¿Qué hay de nuevo respecto a Ariel? Un equipo de científicos ha usado el telescopio espacial JWST para estudiar la composición de su superficie gracias al uso de uno de sus instrumentos, el espectrógrafo NIRSpec, que permite con mucha precisión detectar distintos compuestos -algunos de ellos de hielo- sobre la superficie del satélite.
El primer hallazgo destacado es la presencia de depósitos de hielo de dióxido de carbono más potentes -potentes en el sentido geológico, de espesor de la capa- de lo esperado y que podrían llegar a formar una capa superficial de 10 milímetros en determinadas zonas del satélite.
En su superficie, además, podemos ver zonas más claras y oscuras… ¿Están relacionadas las zonas más claras con materiales que salen desde el interior del satélite hacia la superficie a través de impactos y de fenómenos criovolcánicos?. Imagen cortesía de NASA/JPL.Pero además también se ha encontrado una capa de monóxido de carbono, algo que ha desconcertado un poco a los científicos. Y es que a las temperaturas que encontramos en la superficie de Ariel, aproximadamente entre -180 °C y -190 °C, el hielo compuesto de monóxido de carbono tendría que sublimarse -pasar del estado sólido al gaseoso sin pasar por el líquido- de una manera muy rápida. Esto podría indicar que hay mecanismos geológicos que van reponiendo el hielo de monóxido de carbono o que de alguna manera ocurren reacciones con el dióxido de carbono que lo estabilizan y lo hacen más resistente a la sublimación.
Otro de los detalles que nos aporta este estudio es que no aparecen determinadas especies químicas, como compuestos con amoniaco o el peróxido de hidrógeno, que a veces se forman por efecto de la radiación sobre el hielo de agua. Esta marcada ausencia podría significar dos cosas: O bien que la superficie está bien aislada por capas potentes de hielo de dióxido de carbono -y limitando las interacciones del hielo de agua con la radiación- o bien, la radiación del entorno que existe en la órbita de Ariel es menos intenso de lo que se piensa.
En esta imagen podemos apreciar perfectamente los chasmatas, formando depresiones alargadas que atraviesan la superficie de Ariel. Imagen cortesía de NASA/JPL.Pero todavía queda un aspecto más a mencionar de este nuevo artículo: los científicos sugieren la presencia de carbonatos en la superficie de Ariel, una serie de minerales que se pueden formar por la interacción del agua líquida y las rocas, algo que de confirmarse, podría ocurrir en la interfaz entre el océano subterráneo y el núcleo rocoso del satélite, indicando unas condiciones de habitabilidad que podrían ser similares a las de océanos subterráneos como el que podría existir bajo Encélado o Europa.
¿Y qué nos quiere decir todo esto a nivel geológico? Pues que las capas de hielo de dióxido y de monóxido de carbono probablemente tengan un origen geológico, es decir, que estén formadas como consecuencia de procesos geológicos activos, como por ejemplo el criovulcanismo, que también sería el responsable de “subir” los carbonatos hasta la superficie. Y si es un mundo activo, ese mecanismo de “transmisión” del calor y de la materia desde el interior a la superficie podría ser un océano subterráneo algo que, de nuevo, aumenta las perspectivas astrobiológicas sobre este mundo.
Así que, aunque los satélites de los gigantes de hielo nos puedan parecer mundos algo anodinos lo cierto es que quizás lo que nos hace falta es poder visitarlos de nuevo y quizás descubrir así mundos fascinantes y con actividad geológica en el presente.
Referencias:
Cartwright, R. J., Holler, B. J., Grundy, W. M., Tegler, S. C., Neveu, M., Raut, U., Glein, C. R., Nordheim, T. A., Emery, J. P., Castillo-Rogez, J. C., Quirico, E., Protopapa, S., Beddingfield, C. B., Hedman, M. M., De Kleer, K., DeColibus, R. A., Morgan, A. N., Wochner, R., Hand, K. P., . . . Mueller, M. M. (2024). JWST Reveals CO Ice, Concentrated CO2 Deposits, and Evidence for Carbonates Potentially Sourced from Ariel’s Interior. The Astrophysical Journal Letters, 970(2), L29. doi: 10.3847/2041-8213/ad566a
El artículo El océano de Ariel se ha escrito en Cuaderno de Cultura Científica.
Orriak
- « lehenengoa
- ‹ aurrekoa
- …
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- …
- hurrengoa ›
- azkena »