Dozena erdi ariketa 2019ko udarako (4): Posizioaren bila
Gogoan izan ahalegina bera –bidea bilatzea– badela ariketa. Horrez gain, tontorra (emaitza) lortzen baduzu, poz handiagoa. Ahalegina egin eta emaitza gurekin partekatzera gonbidatzen zaitugu. Ariketaren emaitza –eta jarraitu duzun ebazpidea, nahi baduzu– idatzi iruzkinen atalean (artikuluaren behealdean daukazu) eta irailean emaitza zuzenaren berri emango dizugu.
Hona hemen gure laugarren ariketa: Posizioaren bila.———————————————————————————-
Ariketak “Calendrier Mathématique 2019. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
———————————————————————————-
The post Dozena erdi ariketa 2019ko udarako (4): Posizioaren bila appeared first on Zientzia Kaiera.
La tabla periódica en el arte: Titanio
El titanio es el noveno elemento químico más abundante en la corteza terrestre y está presente en decenas y decenas de minerales. Sin embargo, no se tuvo constancia de su existencia hasta finales del s. XVIII. En 1795 Martin Heinrich Klaproth lo bautizó inspirándose en los titanes, antiguos dioses de la mitología griega e hijos de Gea (Tierra). Pese a no ser un metal de uso histórico, el titanio cobró gran importancia en las diferentes artes plásticas a lo largo del s. XX hasta convertirse en un elemento de gran transcendencia.

Una nueva arquitectura
Cualquier persona que viva en Bilbao o alrededores asociará automáticamente el titanio con el museo Guggenheim. Para que luego se diga que los materiales artísticos no tienen importancia. Cuando Frank Gehry diseñó un gigantesco barco metálico junto a la ría del Nervión inició una pequeña revolución arquitectónica. Es cierto que desde los años 70 ya se venía empleando el titanio con ese fin, pero su uso en un edificio tan singular y de dimensiones colosales supuso un antes y un después.
La decisión de emplear titanio para forrar el museo no fue sencilla. Uno de los grandes inconvenientes era su precio: más del doble que el del acero de uso tradicional. Si tenemos en cuenta que se emplearon 42 875 paneles (o 33 000 según otras fuentes), estamos hablando de un auténtico dineral. Eso sí, con el titanio se pueden hacer planchas de la mitad de grosor, así que tampoco fue un drama. A partir de ahí todo fueron ventajas: es un material ligero, pero con una elevadísima resistencia mecánica, aguanta bien frente a la corrosión gracias a la capa de óxido que lo cubre y ofrece una estética insuperable en la que el color varía en función de las condiciones ambientales.
Así el Guggenheim se convirtió en el primer gran icono arquitectónico de titanio, lo que no quiere decir que sea el único. Por citar algunos casos repartidos por todo el orbe, tenemos: el Museo de la Ciencia de Glasgow, el Gran Teatro Nacional de Pekín, la Biblioteca Cerritos Millenium de California o la sede de Fuji en Japón. En la mayoría de los casos el titanio se combina con el vidrio, en lo que resulta una de las parejas de materiales más exitosas de este siglo.

Arcoíris metálico
Pese a los edificios que acabamos de mencionar y el nombre del elemento que nos ocupa, no siempre se ha usado el titanio para obras de grandes dimensiones. El titanio en forma metálica también se puede emplear en esculturas y en joyería. En estos casos resulta de gran interés una propiedad bastante peculiar del metal: puede ofrecer diferente color en función del grosor de la capa de óxido que lo cubre.

Sobre la superficie del titanio se crea una delgadísima capa de óxido (de menos de una micra) que interactuará con la luz y provocará que veamos un color u otro. Seguro que en alguna ocasión has visto una especie de arcoíris en un charco con restos de aceite o en una pompa de jabón. Pues este mecanismo es similar: la luz blanca se dispersa al entrar en contacto con la superficie del óxido y se generan interferencias que varían con el grosor, permitiendo que sólo se observen ciertas longitudes de onda, es decir, ciertos colores. Para lograr diferentes colores se puede alterar el grosor del óxido mediante un proceso que se conoce como anodización en el que el titanio se conecta a una fuente de alimentación. Jugando con el voltaje que se aplica se provocan reacciones de oxidación-reducción y se logra una capa más o menos delgada en función del color que deseemos lograr (Imagen 4).

El blanco de nuestros tiempos
La pintura blanca no puede faltar en la paleta del artista. No sólo para pintar con ese color, sino para variar las tonalidades del resto de los colores. Históricamente el pigmento blanco más importante ha sido el albayalde o blanco de plomo, pero tiene algunos inconvenientes, entre ellos que te puede matar debido a la toxicidad del plomo. Ante esa perspectiva era necesaria la aparición de otros blancos. Así, en el s. XIX se comercializó el blanco de zinc, pero en el siglo siguiente fue desbancado por el blanco más empleado hoy en día: el blanco de titanio (TiO2).

Para que os hagáis una idea de la importancia del blanco de titanio, tened en cuenta que la industria de los pigmentos y los colorantes mueve alrededor de 30 billones (americanos) de dólares al año y unos 13,2 corresponden a este blanco. Claro que no sólo se usa en pintura de caballete, sino en pintura industrial, esmaltes, plásticos, opacificador de papel, etc. Todo ello gracias a que es un blanco con un excelente poder cubriente, relativamente barato y no tóxico (aunque recientemente la Unión Europea ha alertado sobre su posible efecto cancerígeno).
El óxido de titanio (IV) se puede encontrar en la naturaleza formando tres minerales: rutilo, anatasa y brookita. Se sabe que durante el s. XIX se empleó rutilo natural en pintura, pero su calidad es mucho menor que el sintético, por lo que no llegó a ser un pigmento trascendental como este último. Pese a que en 1821 ya se había sintetizado blanco de titanio, no fue hasta 1916 cuando se empezó a comercializar, casi simultáneamente en Noruega y Estados Unidos.

La síntesis del blanco de titanio ha ido evolucionando desde aquel momento. Al principio se partía del mineral ilmenita (FeTiO3) para lograr anatasa sobre un substrato de sulfato de bario o de calcio, pero ya en los años 30 se descubrió cómo lograr rutilo sintético, forma que hoy en día sigue siendo la más popular. El siguiente gran hito fue el desarrollo de un método de síntesis, empleando cloro, que resultó ser mucho más eficiente que el empleado hasta la fecha y que se basaba en el uso de sulfatos.
Como os podéis imaginar, el blanco de titanio sólo aparece en obras de arte a partir del s. XX, algo que resulta muy útil para detectar falsificaciones. Ya contamos en su momento que en un estudio realizado en la Universidad Politécnica de Catalunya se detectó rutilo y azul de ftalocianina en una obra inicialmente atribuida al pintor valenciano Cecilio Pla y Gallardo, fallecido antes de que esos productos se comercializasen. Mucho más espectacular es sin duda el caso de Wolfgang y Helene Beltracchi, una pareja de falsificadores que la lio parda, como podéis aprender en este hilo de Luis Pastor. Tras vender obras por varios millones de euros se descubrió su estafa porque en un supuesto Campendonk de 1914 había blanco de titanio (Imagen 7). Como ya os habréis dado cuenta, dicho pigmento no estaba disponible en el mercado. No penséis que Wolfgang no era consciente de ello (o por lo menos, eso declaró en el Spiegel). Él empleó un tubo de blanco de zinc, pero no se dio cuenta de que también contenía blanco de titanio. Maldita química.

Para saber más:
Nippon Steel Corporation. Features of Titanium Building Materials (2019).
A. Mendelsohn How Analog and Digital Came Together in the 1990s Creation of the Guggenheim Museum Bilbao en Guggenheim.org (2017).
E. West FitzHugh. Artist’s Pigments: A Handbook of Their History and Characteristics. (Volume 3). National Gallery of Art (1998).
B.A. van Driel et al. The white of the 20th century: an explorative survey into Dutch modern art collections. Heritage Science 6(16) (2018).
Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.
El artículo La tabla periódica en el arte: Titanio se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La tabla periódica en el arte: Cobre
- La tabla periódica en el arte: Arsénico
- La tabla periódica en el arte: Cobalto
Francisco R. Villatoro – Naukas Bilbao 2018: El ángulo mágico del grafeno
La gran noticia científica de 2018 fue que el grafeno bicapa rotado con ángulo mágico es un superconductor no convencional (y un aislante Mott cuando deja de serlo). Este material “mágico” promete revolucionar nuestro conocimiento sobre la superconductividad de alta temperatura. Francisco R. Villatoro presentó el descubrimiento durante Naukas Bilbao 2018 en una charla impecable, con una densidad de conocimientos difícilmente superable. No es una charla fácil de seguir sin fundamentos de física del estado sólido, pero merece muy mucho la pena el esfuerzo. Francis publicó una transcripción de la misma para que se pueda estudiar con mayor profundidad aquí.
Francis Villatoro: ''El ángulo mágico del grafeno''Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Francisco R. Villatoro – Naukas Bilbao 2018: El ángulo mágico del grafeno se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Naukas Bilbao 2017 – Francisco R. Villatoro: El espín para irreductibles
- Carlos Briones – Naukas Bilbao 2018: Os voy a contar una historia (en imágenes)
- Lo que la tensión puede hacer en dos capas de grafeno
La química analítica como base para el estudio de las prácticas pastoriles prehistóricas
Servicio Central de Análisis de Araba (SGIker – UPV/EHU)
La arqueología actual pretende reconstruir eventos del pasado desde sus restos y determinar la experiencia humana del pasado, es decir, cómo se organizaban socialmente y por qué cambiaban sus sociedades, cómo explotaban sus recursos, qué comían, qué creían, cómo se comunicaban… [1]. El desarrollo de nuevas técnicas analíticas permite al arqueólogo pasar de preguntarse de qué material están hechos los utensilios encontrados en las excavaciones a preguntarse sobre la procedencia, origen de lo encontrado y costumbres/actividades humanas [2].
Hace unos 10.500-10.000 años, en el oeste de Euroasia, fueron domesticadas las cabras Capra aegagrus, ovejas Ovis orietalis y vacas Bos primisgenius. Con la domesticación, el ser humano logró ampliar los recursos obtenidos de de los animales y pasar de ser una fuente exclusiva de aporte proteico a través de su carne, a ser también fuente de leche y lana [3].

El desarrollo y proliferación de la domesticación obligó a los pastores a buscar refugio para sus reses y mantenerlas a salvo. El uso de cuevas o abrigos refugio como establos fue una práctica habitual a lo largo y ancho del mediterráneo desde el Neolítico a la Edad de Hierro [4]. El principal rasgo común de los yacimientos encontrados en dichos refugios son sus sedimentos, que se presentan como espacios con depósitos de apariencia arcillosa originados por grandes cantidades de estiércol generado por presencia continuada de ganado, principalmente ovicaprino [5]. Los animales estabulados provocan el incremento de los residuos del establo, constituidos por la acumulación del estiércol junto con productos aportados por ellos mismos, hierbas, tierra y piedras.
Con el objeto de mantener limpio y libre de parásitos el establo, frecuentemente se reducía el volumen de estiércol mediante su quema, siendo una práctica que se estima que duró hasta la Edad de Bronce, ya que a partir de entonces se generaliza el uso del estiércol generado en las estabulaciones como abono para los campos [6].
La quema continuada de este estiércol a lo largo de los años genera unos depósitos que están constituidos por diferentes capas de sedimentos, generadas por la sucesión de unidades de combustión, que son denominadas de forma genérica como fumier (estiércol en francés) [7], que en general están formadas por una capa blanca o gris (combustión total), otra negra (combustión parcial) y finalmente una marrón (sin combustión). Estas capas, sobre todo las negras y las marrones, poseen una buena conservación, lo que permite la caracterización de compuestos orgánicos que nos pueden ayudar a identificar especies de animales estabulados y costumbres pastoriles.
Uno de los yacimientos más destacados donde se utilizó esta estrategia de eliminación de excremento animal es el de San Cristóbal, situado en la Sierra de Cantabria (Araba/Álava)

Los estudios comenzaron por el interés del Prof. Fernández Eraso del Dpto. de Geografía, Prehistoria y Arqueología de la UPV/EHU y su grupo High Yield Research Group of Prehistory (IT 622-13), que abrió la posibilidad de establecer una línea de investigación que permitiera relacionar la naturaleza de los animales estabulados con la presencia de ciertas sustancias orgánicas en los estratos excavados de los abrigos de la Sierra Cantabria.
En este yacimiento no se encuentran restos óseos de los animales allí estabulados y es necesario realizar análisis de biomarcadores de especie para determinar que tipo de animal ha sido estabulado. Este estudio, llevado a cabo en el Servicio Central de Análisis de Álava, se focalizó en el análisis cuantitativo de ácidos biliares, esteroles y fitoesteroles en los residuos/sedimentos orgánicos (capas blancas, negras y marrones) del yacimento de San Crístobal usando como técnica de medida la cromatografía de gases acoplada a espectrometría de masas (GC-MS) .

Los compuestos orgánicos de los sedimentos seleccionados como biomarcadores para este estudio, fueron sometidos a una etapa de extracción asistida por microondas, a una etapa de limpieza y finalmente el extracto fue derivatizado y analizado por GC-MS. Los resultados del análisis de los biomarcados fueron procesados utilizando herramientas quimométricas (ver figura 2), que facilitan la clasificación de los residuos/sedimentos orgánicos prehistóricos, permitiendo diferenciar el origen de los restos y la actividad pastoril.

La capas marrones y negras clasifican los restos como restos de animales rumiantes mientras que el resto no se pueden usar para la clasificar el tipo de animal estabulado debido a que no se conservan los compuestos de interés. Además, se observan actividad pastoril en desde 6010±30 BP (Neolítico temprano) hasta 4030±30 BP (Calcolítico) lo que corrobora estudios anteriores y además no hay indicios de estabulación de otros animales no rumiantes.
Este estudio forma parte del trabajo de la tesis doctoral de Jaime Gea del Río del grupo METABOLOMIPs de la Facultad de Farmacia de la UPV/EHU.
Referencias bibliográficas:
[1] .M. Pollard, C. Batt, B. Stern, S. Young, Analytical Chemistry in Archaeology, 2006.
[2] .B.T. Nigra, K.F. Faull, H. Barnard, Analytical Chemistry in Archaeological Research, Anal. Chem. 87 (2014) 3–18
[3].Larson, G. & Fuller, D. Q. The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics 45, 115–136 (2014).
[4]. Fernández-Eraso, J. et al. Beginnings, settlement and consolidation of the production economy in the Basque region. Quaternary International 364, 162–171 (2015).
[5]. Angelucci. Shepherds and karst: the use of caves and rock- shelters in the Mediterranean region during the Neolithic Diego. 191–214 (1999).
[6]. Boschian, G. and Miracle, P. T. 2008. Shepherds and caves in the Karst of Istria (Croatia). In Proceedings of the 2nd International Conference on Soils and Archaeology (ed. G. Boschian). Atti Società toscana Scienze naturali, Mem., Serie A, 112(2007), pp. 173–80. (2008)
[7]. Fernández Eraso, J. U. D. P. V. (España) & Polo Díaz, A. U. D. P. V. (España). Establos en abrigos bajo roca de la Prehistoria Reciente: su formación, caracterización y proceso de estudio. Los casos de Los Husos y de San Cristóbal. 2008.pp39-51. Krei 10, 39–51 (2008).
El artículo La química analítica como base para el estudio de las prácticas pastoriles prehistóricas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El metanol es clave para entender cómo se forman las estrellas
- Técnicas «low cost» para el estudio de obras de arte
- Por qué España es un modelo para el estudio de la economía
Polipropileno/poliamida nahasteen konpatibilizazioa: azterketa morfologiko eta erreologikoa

Irudia:
Teknika honen bitartez material berriak modu ekonomikoan eta denbora laburrean lor daitezke. Horretaz gain, nahastearen konposizioa aplikazioen beharren arabera egokitu daiteke. Polimero nahasteak garrantzi handikoak dira polimeroen merkatuan; horren adibide da 2010ean ekoiztutako polimeroen ia erdia polimero nahasteak izan zirela.
Kontuan izan behar da sarritan polimeroak ez direla nahaskorrak, gehienetan ez dagoelako afinitate kimikorik monomeroen artean. Beraz, polimero nahaste nahastezinak bi fasez osaturik daude eta fase hauen antolamenduaren arabera morfologia desberdinak azaltzen dituzte. Polimero nahasteak solidoak dira giro tenperaturan, baina prozesaketa, hots, pieza desberdinak lortzeko materialari forma emateko prozesua, egoera fundituan burutzen da. Eta hain zuzen ere, egoera fundituan ematen da morfologiaren garapena, materiala fluxu baten menpean dagoenean, alegia. Morfologia eta fluxuaren arteko erlazioa ulertuz, posible da nahastearen morfologia aplikazioen arabera egokitzea, izan ere morfologiak amaierako propietateetan eragiten baitu.
Gogoan hartu behar da polimero nahaste baten ezaugarriak nahastea osatzen duten polimeroen, hauen konposizioaren eta morfologiaren araberakoak direla. Morfologia mota desberdinak daude: tanta-matrize morfologia, ko-jarraia, zuntzak edo laminarra. Morfologiaren arabera ezaugarriak eta propietateak desberdinak izango dira; ondorioz ezinbestekoa da morfologia ondo ezaugarritzea eta morfologia hori egonkorra den edo ez aztertzea.
Morfologia egonkorra duten nahasteak lortzeko aukera desberdinak daude eta horien artean ohikoena konpatibilizazioa da. Kopolimero konpatibilizatzaileak bi faseen arteko adhesioa hobetzen du eta morfologia egonkortzen du, prozesaketan zehar tenperaturaren eta ebakiduraren ondorioz eman daitezkeen morfologia aldaketak saiheztuz.
Azken urteetan, ordea, bide berri bat ireki da kargak erabiliz morfologia egonkortzeko eta, bide batez, zenbait propietate hobetzeko, esaterako propietate mekanikoak, termikoak eta elektrikoak. Ikerketek erakutsi dutenez, kargen presentziak nahastea konpatibilizatu eta morfologia egonkortu dezakete.
Lan honetan merkatuan oso hedatuak dauden bi polimero aztertu dira, polipropilenoa eta poliamida 6. Polipropilenoak propietate mekaniko eta erresistentzia kimiko handia azaltzen du, gainera erraz prozesatu daiteke. Hala ere, beste zenbait propietate ez dira oso onak, esaterako talkarekiko erresistentzia. Poliamidak berriz, propietate mekaniko onak azaltzen ditu. Hori dela eta, polipropilenoari poliamida gehitu zaio propietate mekanikoak, gasekiko iragazkortasuna eta egonkortasun termikoa hobetzeko.
Polipropileno/poliamida nahasteari kopolimero konpatibilizatzailea zein kargak gehitzeak morfologian daukan eragina aztertu da teknika mikroskopikoak erabiliz. Azterketak erakusten duenez, bai konpatibilizatzaileak zein kargek poliamida tanten tamaina murrizten dute. Kopolimeroaren kasuan, konpatibilizazioa tentsio interfaziala murrizten delako gertatzen da. Kargen kasuan berriz, hesi fisiko bat eratzen da poliamida tanten inguruan. Fluxuak morfologian duen eragina ere aztertu da, bai kopolimeroak zein kargek morfologia egonkortzen dutela ikusiz.
Horretaz gain, teknika erreologikoen bitartez morfologian ematen diren aldaketak, adibidez poliamida tanten hazkuntza, aztertu da. Ikusi denez, oinarrizko parametro erreologikoak ez dira gai desberdintasunak antzemateko, baina parametro horietatik eratorritako erlaxazio espektro mekanikoa bai da gai morfologian gertatu diren aldaketak antzemateko.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: Ekaia 33
- Artikuluaren izena: Polipropileno/poliamida nahasteen konpatibilizazioa: azterketa morfologiko eta erreologikoa.
- Laburpena: Polipropileno/Poliamida (PP/PA) nahasteak prestatu dira eta kopolimero- konpatibilizatzailea eta nanosilika gehitzeak nahaste horietan duen eragina aztertu da. Azterketa mikroskopikoak erakusten duenez, nahasteek emultsio antzeko morfologia dute, polipropilenoak fase jarraitua osatzen duelarik. Konpatibilizatzailea zein nanosilika gehitzeak PA tanten tamaina nabarmen murrizten duela antzematen da. Nahaste bitarrak fluxu jarraitu baten eraginpean daudenean, PA tanten koaleszentzia gerta daiteke eta, ondorioz, tanten tamaina handitu egiten da. Kopolimeroa zein nanosilika daukaten nahasteen kasuan, ordea, morfologia ez da eraldatzen fluxuaren eraginez. Fluxu oszilakorrak burutu dira nahaste desberdinen ezaugarri biskoelastikoak lortzeko. Neurketa biskoelastikoen bidez lortzen diren erlaxazio-espektroen azterketak morfologian gertatutako aldaketak detektatzeko gai direla frogatzen da.
- Egileak: Leire Sangroniz, Jordana K. Palacios, Mercedes Fernández, Alejandro J. Müller, Antxon Santamaria
- Argitaletxea: UPV/EHUko argitalpen zerbitzua.
- ISSN: 0214-9001
- Orrialdeak: 115-128
- DOI: 10.1387/ekaia.17834
————————————————–
Egileez:
Leire Sangroniz, Jordana K. Palacios, Mercedes Fernández, Alejandro J. Müller, Antxon Santamaria POLYMAT eta UPV/EHUko Kimika Fakultateko eta Polimeroen Zienzia eta Teknologia sailean ean dabiltza eta Alejandro Müller, gainera, Ikerbasque ikertzailea da.
————————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Polipropileno/poliamida nahasteen konpatibilizazioa: azterketa morfologiko eta erreologikoa appeared first on Zientzia Kaiera.
Por qué la langosta es el emoji del lujo

La langosta ha sido objeto de representación artística por sus cualidades simbólicas como alimento de lujo y signo de opulencia. También por sus cualidades plásticas, sobre todo en los estudios de color y formas de los bodegones. La langosta está presente en obras de Albrecht Dürer, Antonio Viladomat, Zacarias González Velázquez, Adriaen van Utrecht, José María Corchón, José Serra y Porson, Eugene Delacroix, Utagawa Kuniyoshi, Pablo Picasso, Salvador Dalí y Jeff Koons, entre muchos otros.
No obstante, la langosta no siempre ha sido un alimento de ricos. El lujo está sujeto a la abundancia relativa y a los vaivenes de la moda, a veces caprichosos. Hasta mediados del siglo XIX la langosta era considerada una especie de cucaracha marina. En las costas atlánticas de Canadá y Nueva Inglaterra eran tan abundantes que los colonos las consideraban un estorbo para la pesca. En las playas de Massachusetts Bay las langostas se acumulaban a montones. Tanto es así que las utilizaban para fertilizar suelos, para dar de comer a cerdos y vacas, y también para alimentar a los sirvientes.
A finales del siglo XIX el ferrocarril y la incipiente industria conservera cambiaron el estatus de la langosta. Una de las primeras conserveras estadounidense fue la de Maine, fundada en 1841. Uno de sus productos estrella era la langosta enlatada. Este producto se servía a los turistas que viajaban en tren como si se tratase de un alimento exótico y exquisito. La ceremonia tenía la suficiente pompa como para que les pareciese un alimento de lujo. De hecho, la llegada de los ferrocarriles refrigerados permitió la exportación de la langosta a Inglaterra, donde se vendía por diez veces su precio original. Una estrategia de marketing muy efectiva. En los años 20 la langosta alcanzó su precio máximo, convirtiéndose en el alimento más caro del momento.
La cantidad de langosta ha ido variando a lo largo del tiempo, sobre todo en función de la temperatura de las aguas. En los mares de Maine se recogieron 56 millones de kilos de carne de langosta en 2013, seis veces más que en 1986. El calentamiento de las aguas hace que las langostas sean más grandes y produzcan más descendencia. Además, el calentamiento también ha afectado a su depredador natural, el bacalao.
En Estados Unidos se está viviendo tal bonanza de langosta que su precio ha caído lo suficiente como para que el consumo se esté volviendo masivo. Tanto es así que McDonald’s ofrece menús con langosta en algunas regiones durante la temporada de verano. Eso sí, el McDonald’s lobster roll es el menú más caro de la cadena. El lujo se paga, incluso el que se sirve en plato de cartón.
Para Dalí la langosta era uno de sus animales preferidos «porque además de ser inteligente por llevar el esqueleto por fuera y no por dentro como los cretinos». En su Autorretrato anecdótico Dalí escribió: «Me gusta sólo comer cosas de forma bien definida, detesto la espinaca por su carácter absolutamente amorfo. Lo directamente opuesto a la espinaca es la armadura, he aquí porqué me gusta tanto comer armadura y especialmente las pequeñas variedades, esto es los mariscos, estos son una organización material de la originalísima e inteligente idea de llevar los propios huesos fuera más bien que dentro. El crustáceo puede con las armas de su anatomía proteger el blando y nutritivo delirio de su interior cobijado contra toda profanación y encerrado como un hermético y virginal vaso que lo deja vulnerable sólo a la más alta forma de conquista imperial en la noble guerra del descortezamiento: la del paladar».
En varias de sus obras, Dalí asocia las langostas con el deseo carnal, con lo sexual. Frecuentemente muestra a la langosta adherida a la mujer, como si ambos compartiesen la cualidad de ser eróticamente apetecibles, «pues tienen ambos el interior exquisito y se enrojecen cuando se las quiere hacer comestibles».
La langosta se enrojece al cocinarse a causa de la astaxantina, que es un pigmento soluble que en su forma libre es de color bermellón. Cuando este crustáceo está vivo, el carotenoide permanece oculto porque está ligado a una proteína, la crustacianina, causante del color pardo azulado. Esta coloración resulta muy útil para pasar desapercibidos ante los depredadores. Cuando la langosta se cocina, la proteína se desnaturaliza perdiendo su estructura y liberando la astaxantina de color bermellón. En la astaxantina ocurre un cambio químico durante este proceso en el que el compuesto pasa de ser un enolato a una hidroxicetona neutra.
Tanto la langosta como el teléfono tenían para Dalí una fuerte connotación sexual. En su autobiografía, La vida secreta de Salvador Dalí, aparece un dibujo de un teléfono langosta con la siguiente anotación: «No entiendo por qué, cuando pido una langosta asada en un restaurante, nunca se me sirve un teléfono asado; no entiendo por qué el champán siempre se sirve frío mientras que, sin embargo, los teléfonos, que son a menudo excepcionalmente cálidos y desagradablemente pegajosos al tacto, no son servidos en cubos plateados con hielo triturado».
El teléfono langosta de Dalí es completamente funcional y cuatro de ellos fueron utilizados por su mecenas Edward James en su vivienda vacacional. Dalí realizó un total de once Teléfonos langosta, cuatro de color rojo y siete en blanco. Como parte del discurso artístico daliniano, resulta interesante que estos teléfonos fuesen funcionales, ya que el propio sistema del arte se encargaría de convertirlos en objetos inútiles. Los teléfonos langosta fueron concebidos como futuros readymades, objetos cotidianos reconvertidos en objetos artísticos y por tanto inútiles, o bien a través del contexto en el que se exponen (un museo, una vitrina, una peana…) o bien a través de una manipulación que los inutiliza o los transforma en otra cosa. Hacer una llamada con el teléfono langosta, además de ser una extravagancia, sería una performance. La seducción comienza en la llamada con la que conciertas la cita.
Los materiales del teléfono langosta son materiales innobles. La langosta es de yeso y el teléfono es un teléfono de rueda de baquelita. El yeso es un sulfato de calcio, uno de los materiales más empleados en construcción. Y la baquelita es un polímero sintético del tipo plástico termoestable: al solidificarse y darle forma no puede volver a ablandarse con calor. Por su resistencia térmica se empleaba para fabricar las carcasas de aparatos ordinarios como teléfonos y radios.
En los años 30 tanto la langosta como el teléfono representaban el lujo. Esa idea de lujo cambiante, reconocible y suficientemente accesible. Solo las clases acomodadas tenían teléfono en sus viviendas, y la langosta era un alimento reservado para las celebraciones. Para Dalí, el placer del lujo, por lo exclusivo, era un placer semejante al de la conquista y el sexo.

En 1937, Salvador Dalí y la legendaria diseñadora de moda italiana, Elsa Schiaparelli, se unieron para crear un vestido de noche de verano de seda. El vestido tenía impresa una langosta creada por Dalí localizada sobre la zona genital. Este vestido fue el que lució Wallis Simpson en un reportaje para Vogue cuando había anunciado su compromiso con el príncipe Eduardo. Wallis Simpson fue una socialite estadounidense que, después de haberse divorciado dos veces, se casó con el príncipe Eduardo, duque de Windsor, quien antes de su matrimonio había sido Eduardo VIII, rey del Reino Unido de Gran Bretaña e Irlanda del Norte y emperador de la India. Al comprometerse con Wallis Simpson, Eduardo fue obligado a renunciar a su título. En aquellos años, casarse con una mujer divorciada era algo moralmente inadmisible, así que no tuvo más remedio que abdicar. Por este motivo, que Wallis Simpson decidiese posar para la prensa con el vestido langosta fue toda una provocación.
En 1989, la firma de moda Moschino, sacó varias prendas en las que empleaba la langosta como símbolo de opulencia. Entre ellas destacó una icónica chaqueta cuya botonadura estaba decorada con langostas bordadas con hilo de oro.
Por aquel entonces, el diseñador y director de arte de Moschino era Franco Moschino, quien definió las bases de lo que siempre sería Moschino. Hoy en día, la dirección de arte corre a cargo del extraordinario diseñador Jeremy Scott, que con maestría continúa reavivando la fricción entre lo lujoso y lo hortera.

Esto lo logra poniendo en cuestión el propio sistema de la moda, la elección a veces arbitraria del valor de las cosas y elevando lo ordinario a categoría de moda. Así, hay colecciones de Moschino inspiradas en el graffiti, en los útiles de limpieza, en la construcción o en la comida basura. Como colecciones que rinden tributo a iconos pop contemporáneos como Barbie o McDonald’s. Prendas y accesorios de lujo ejecutados con exquisitez que representan lo que comúnmente llamamos baja cultura. Por este motivo Moschino es a la moda lo que Jeff Koons es al arte.

La langosta es una de las esculturas más icónicas del artista Jeff Koons. Se trata de una langosta colchoneta de aluminio policromado colgada del techo con una cadena de acero. La langosta además de ser una obra de arte mayúscula es una virguería técnica. Si uno no se fija en la ficha técnica, estaría convencido de que se trata de una colchoneta auténtica.
La escultura Langosta pertenece a la serie Popeye. Este personaje es un icono popular y símbolo proletario del triunfo sobre la adversidad. Con la escultura Langosta, Koons reflexiona acerca del concepto del triunfo proletario y acerca de la noción de readymade. La colchoneta langosta es un objeto ordinario al que cualquiera puede acceder. Además, en sí mismo es una representación de un símbolo de lujo, la langosta, reconvertido en un objeto de plástico hortera y divertido. Puede entenderse como una suerte de readymade porque se trata de un objeto transformado en arte a través de un cambio de contexto (de la piscina a estar colgado en un museo) y de una manipulación. En lugar de ser de plástico, la colchoneta langosta de Koons es de aluminio policromado. Tanto el material como el objeto que representa, la colchoneta, son innobles. Además, existen tres copias y la prueba de artista, con lo cual la exclusividad se comparte, aunque de forma limitada, se comparte. Con todo esto Koons logra interpelar acerca de la noción de lujo y por supuesto, de mercado. La langosta simboliza ambas cosas.
La obra de Koons es en apariencia frívola, pero esconde un profundo recorrido intelectual. Igual que el provocador título de este trabajo, «Por qué la langosta es el emoji del lujo», es un disfraz frívolo e insultantemente contemporáneo. Como una escultura de bronce que parece de plástico.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo Por qué la langosta es el emoji del lujo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Un lujo asiático cultivado en aguas del Mediterráneo
- Si hacer fármacos fuese como jugar a Lego, la pieza más guay se llamaría carbino
- En The Big Bang Theory no hay químicos, sin embargo…
Las simetrías ocultas de la tabla de multiplicar
Hace unos meses, buscando material para mi libro Los secretos de la multiplicación (Catarata, 2019), que estará en las librerías el 2 de septiembre, encontré un interesante artículo del profesor de francés argelino Zoheir Barka, que es un apasionado de las matemáticas, titulado The Hidden Symmetries of the Multiplication Table (Las simetrías ocultas de la tabla de multiplicar). En esta entrada veraniega de la sección Matemoción del Cuaderno de Cultura Científica vamos a iniciar un pequeño paseo por algunas de esas simetrías ocultas en las tablas de multplicar.

La idea de Zoheir Barka es crear diferentes patrones geométricos planos de color sobre la tabla de multiplicar, de tamaños variables, asociando colores a los múltiplos de algunos números. Por lo tanto, el punto de partida es una tabla de multiplicar cuadrada o rectangular, con un cierto número de filas y columnas, en función de las necesidades estéticas del patrón que se quiere realizar.
La siguiente imagen es una tabla de multiplicar normal, con los productos de los diez primeros números, del 1 al 10, a la que se ha añadido además los productos por cero, es decir, todo ceros, por lo que resulta una retícula cuadrada con 11 filas y 11 columnas.
Una vez que disponemos de la tabla de multiplicar, del tamaño que se considere oportuno, se trata de colorear cada celda de la misma en función de si el número de la celda es, o no, múltiplo de un número o de alguno de los números seleccionados. El caso más sencillo sería dar color a los múltiplos de un número, por ejemplo, el 2 y dejar sin color, o utilizar otro distinto, para los que no son múltiplos de 2, obteniendo así el siguiente patrón, que es muy sencillo.
Es evidente que, si tomamos los múltiplos de un número primo, como el 2, pero también el 3, el 5 o el 7, por ejemplo, los patrones serán sencillos enrejados, como el anterior, pero con zonas cuadradas blancas, o sin colorear, más grandes aún. Para el 2 las zonas blancas eran sencillas celdas, para el 3 serían cuadrados de 2 x 2 celdas, para el 5 cuadrados de 4 x 4 celdas, y así para el resto de los números primos. Es decir, se crea un patrón simétrico en el que se están repitiendo, en horizontal y vertical, bloques básicos de tamaño igual al número cuyos múltiplos se están considerando. A continuación, vemos los bloques básicos para 2, 3 y 5.
Pero si consideramos los múltiplos de números no primos, como el número 4, cuyo divisor no trivial es 2 (4 = 2 x 2), o el número 6, cuyos divisores no triviales son el 2 y el 3 (6 = 2 x 3), la estructura se complica un poco más, como vemos a continuación.
Por motivos estéticos, podríamos llamar la “zona básica” de cada ejemplo a la cuadrícula de tamaño (n + 1) x (n + 1), si estamos considerando los múltiplos del número n, que consiste en añadir al bloque básico la siguientes fila y columna, cuyas celdas tienen color (ya que son los primeros múltiplos del número n) y que cierran los bloques básicos.
Así las zonas básicas de los casos en los que se consideran los múltiplos de los números 4, 6 y 10, que son producto de dos primos (iguales o distintos), son las siguientes.
Y si el número considerado es múltiplo de más números primos (iguales o distintos), como el 12, que es igual al producto 2 x 2 x 3, se complica un poco más el entramado. Veámoslo.
Otro ejemplo es el siguiente, en el que se muestra la zona básica del número 30, que es igual al producto 2 x 3 x 5.
Como vemos la estructura se enriquece en función de la cantidad de números primos que generan el número cuyos múltiplos se están coloreando.
El siguiente paso natural, que es el que considera también Zoheir Barka en su artículo, es considerar los múltiplos de dos o más números, utilizando tantos colores como números. Empecemos con los múltiplos de 2 y de 3, los números más pequeños posibles para los que esto tiene sentido, y coloreemos los múltiplos de 2 en verde y los múltiplos de 3 en azul. Aquí se nos plantea una duda, qué hacer con los números que son múltiplos de los dos, luego múltiplos de 6. Tendríamos tres opciones, que se mantenga el color del múltiplo mayor, que en este caso es el 3 (azul),
que se mantenga el color del múltiplo menor, que en este ejemplo es el 2 (verde),
o incluso, utilizar otro color para los múltiplos de 6 = 2 x 3, que en la siguiente imagen utilizamos el amarillo.
Y veamos ahora un ejemplo en el que uno de los dos números no es primo, por ejemplo, 4 = 2 x 2, pero los números primos que lo componen, 2 (dos veces), no son el otro número primo, 3. En este caso, las zonas básicas que se repiten en las tres opciones son las de las siguientes imágenes. En cada uno de los casos hemos añadido a la versión con números, una sin números, que nos permite apreciar mejor el patrón geométrico que se genera.
El siguiente es un ejemplo de dos números que comparten un número primo, como los números 6 y 9, para los que el 3 es divisor de ambos. Mostramos las zonas básicas en los casos en los que prima, en el primero, el color del número 9 y, en el segundo, el color del número 6.
Y, para terminar, tomamos un ejemplo en el que uno de los números es múltiplo del otro, por ejemplo, los números 6 y 12.
En la segunda parte de esta entrada del Cuaderno de Cultura Científica continuaremos con más patrones geométricos planos sobre la tabla de multiplicar.

Bibliografía
1.- Raúl Ibáñez, Los secretos de la multiplicación, de los babilonios a los ordenadores, colección Miradas Matemáticas, Catarata, 2019.
2.- Zoheir Barka, The Hidden Symmetries of the Multiplication Table, Journal of Humanistic Mathematics, vol. 6, n. 1, pp. 189-203, 2016.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Las simetrías ocultas de la tabla de multiplicar se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Multiplicar con las manos
- Multiplicar no es difícil: de los egipcios a los campesinos rusos
- Uno, dos, muchos
Golaren legeak
Porteriatik 35 metrora egin zuen jaurtiketa jokalariak eta 110 km/h-ko abiadura hartu zuen baloiak. Ikus daitekeen bezala, baloiak ez du ibilbide zuzena egiten, kurba egiten du defentsa guztiak saihestu eta porteriara sartzeko. Baloiak egiten duen ibilbide bitxiaren atzean Knuckleball efektua dago. Efektua gerta dadin oso baldintza zehatzak behar dira: baloiak ezin du errotaziorik izan (beraz, erdian jo behar da) eta ez du oso abiadura handian joan behar.
Hainbat faktore hartu behar dira kontuan gola analizatzerakoan, horietako bat, noski, pilota bera dela. Pilota ezberdinak erabili izan dira torneoetan, bakoitzak diseinu eta propietate bereziekin. Hala ere, Fifak hala ezarrita zenbait ezaugarri bete behar ditu baloiak, diseinua diseinu:
- Presioa: 0.6-1.1 atm.
- Masa: 0.396-0.453 kg.
- Zirkunferentzia: 0.685-0.711 m.
- Bihurtze koefizientea: %70.
Golaren nondik-norakoak aztertzean, jaurtiketa ere kontuan hartu beharrekoa da. Momentu linealaren kontserbazioa baliatuta baloiak zer abiadurarekin ateratzen den kalkulatu daiteke. Bi datu sorta dira aintzat hartu behar direnak: baloia jaurti baino lehen dauden balioak eta baloia jaurti ondoren daudenak.
Hasierako datuak zeintzuk diren ezagututa, abiadura kalkulatu daiteke. Hala, jakinik baloiak 110km/h-ko abiadura ateratzen dela, Roberto Carlosen oinak duen abiadura kalkulatu daiteke: 80km/h.
Fisika baliatuta, golean baliatutako indarra ere kalkulatu daiteke. Masa eta abiaduraren biderkadura da indarra, kasu honetan 1200 newton. Hau da 120 kg. Horregatik da garrantzitsua pilota deformatzeko gaitasuna izatea, kontaktu azaleran banatzen baita 120 kg.-ko indar hori. Baloia deformatuko ez balitz azalera txikiagoa litzateke, presioa handitu eta oinean eragina biderkatuko lukeena.
Hauek guztiak pausuz pausu eta datu bitxi gehiago azaltzen ditu Aitor Bergarak:
The post Golaren legeak appeared first on Zientzia Kaiera.
Las líneas de Balmer
De todos los espectros, el espectro de emisión del hidrógeno es especialmente interesante por razones históricas y teóricas. En las regiones visible y casi ultravioleta, el espectro de emisión consiste en una serie de líneas en las que aparentemente hay cierto orden.
En 1885, Johann Jakob Balmer (1825-1898), un profesor de una escuela femenina Suiza, interesado en los acertijos numéricos y la numerología, encontró una fórmula simple [1] que daba las longitudes de onda de las líneas conocidas en el hora. La formula es λ = b [n2/(n2-22)].
En esta fórmula b es una constante que Balmer determinó empíricamente y encontró que era igual a 364,56·10-9 m; n es un número entero, diferente para cada línea. Específicamente, para que la ecuación produzca el valor observado para las longitudes de onda respectivas, n debe ser 3 para la primera línea visible (roja) del espectro de emisión de hidrógeno (denominada Hα); n = 4 para la segunda línea (verde) (Hβ); n = 5 para la tercera línea (azul) (Hγ); y n = 6 para la cuarta (violeta) (Hδ). [2]
Fueron necesarios 30 años más para comprender cómo era posible que la fórmula de Balmer funcionase tan bien, el por qué el hidrógeno emitía en longitudes de onda con esa regularidad tan simple.
Balmer fue un paso más allá. Se planteó si no sería posible que existiesen otras series de líneas hasta ese momento desconocidas en el espectro del hidrógeno. Sus longitudes de onda, en la mejor lógica numerológica, podrían obtenerse simplemente cambiando el 22 de su fórmula por 12, 32, 42… Esta idea llevó a muchos científicos a buscar estas líneas. Con éxito, como veremos.
Notas:
[1] Se trata de una relación puramente empírica sin ninguna base teórica física. En otras palabras, la ecuación se ajusta a los datos, sin ninguna explicación de por qué.
[2] En esta tabla podemos apreciar el nivel de precisión de la fórmula al compararla con las mediciones efectuadas por Ångström:
Más detalles, aquí.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Las líneas de Balmer se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La mágica fórmula de Balmer
- Los espectros de absorción de los gases
- Los espectros de emisión de los gases
Una historia de mosquitos, escoceses, esclavos y nazis

Para la mayoría de nosotros, pensar en mosquitos es pensar en picores y picaduras, pero no más. Son una anécdota molesta asociada al verano. Pero en la mayoría del mundo y durante la mayor parte de la historia, los mosquitos han sido más que eso, forman una de las grandes amenazas para la población humana a causa de su efecto transmisor de enfermedades contagiosas como la malaria, el dengue o el zika. Se considera, de hecho, el animal más peligroso para el ser humano, por encima de grandes depredadores terrestres o marinos.
Eso significa que su impacto va más allá de una incomodidad veraniega semejante al sudor o la música de chiringuito. Los mosquitos han influido en los movimientos de población y en los resultados bélicos durante siglos. Así lo explica el libro The Mosquito: A Human History of Our Deadliest Predator del historiador Timothy Winegard, que retrata a estos insectos como una fuerza de la naturaleza modeladora de la historia humana.
Los mosquitos panameños y la independencia escocesa

Cuenta Winegard, por ejemplo, la siguiente historia que recoge este artículo en The New Yorker. En 1968, cinco barcos partieron de Escocia hacia el Nuevo Mundo con un cargamento comercial de lo más suculento: pelucas, calcetines y mantas de lana, peines hecho de madre perla, biblias y zapatos de piel. Llevaban también a bordo una imprenta con la que los colonos planeaban imprimir todo tipo de contratos, tratados y acuerdos al llegar a su destino. Para hacer sitio al cargamento las raciones de comida se redujeron a la mitad.
El destino era la región panameña de Darien, donde la Compañía Escocesa esperaba crear un centro de comercio que hiciese de vía de contacto a través del istmo y así conectar Pacífico y Atlántico. Con esto esperaban también lograr un impulso económico para su país, que llevaba ya años en guerra contra Inglaterra para defender su independencia, que peligraba a causa de una larga hambruna. No era una iniciativa aislada: se calcula que por entonces entre un cuarto y la mitad del dinero en circulación en Escocia estuvo relacionado con el comercio en Panamá.
La expedición fue un desastre. Los colonos enfermaron de fiebre amarilla y malaria, enfermedades para las que no tenían defensas, y llegaron a morir hasta una decena al día. Las referencias a los mosquitos en sus diarios son constantes. Tras seis meses, los supervivientes partieron y se fueron hacia el norte, aunque siguieron muriendo durante la travesía y sus cuerpos lanzados al mar.
Los resultados comerciales de aquel empeño fueron decepcionantes como poco. De todos aquellos peines y zapatos y demás solo terminó llegando a su destino la imprenta. Pero el fracaso de la misión tuvo un resultado inesperado, cuenta Winegard en su libro: la enorme deuda que generó el viaje fue uno de los motivos que terminó obligando a los escoceses a aceptar la oferta de unificación de Inglaterra. Así fue como los mosquitos panameños favorecieron el nacimiento de Gran Bretaña.
Claro que mosquitos (con sus infecciones) y humanos llevan tanto tiempo viviendo en una relación tan estrecha que lo que para unos fue un desastre, para otros, mucho antes, fue una ayuda. Quince siglos antes de que los escoceses tratasen de conquistar Panamá sin éxito, fueron los ejércitos de Roma los que trataron de conquistarles a ellos. Se calcula que entonces aproximadamente la mitad de los ochenta mil soldados romanos enviados con este objetivo perecieron a causa de una cepa endémica de la malaria. Otras cepas locales diezmaron a las tropas de Aníbal a su paso por Italia, detuvieron a las fuerzas de Gengis Khan antes de que avanzasen por el sur de Europea o impidieron a los cruzados europeos conquistar Tierra Santa entre otros momentos clave de la historia.
Enfermedades viejas, continentes nuevos

Los mosquitos jugaron papeles especialmente importantes en aquellos escenarios históricos en los que viejas enfermedades llegaban a nuevos continentes. Cuando Colón desembarcó en América, los mosquitos que los colonos trajeron consigo trajeron a su vez nuevas enfermedades. Junto con la viruela y la gripe, las enfermedades causadas por este insecto provocaron la muerte de 95 millones de indígenas, más de un 90% de la población que vivía allí antes de que llegasen los europeos, lo cual tuvo un impacto directo en la conquista del territorio y en las relaciones que los distintos grupos de población tendrían desde entonces y durante siglos. Principalmente sirvió para modelar la idea de una tierra vasta y fértil prácticamente despoblada que esperaba pacientemente la llegada de los colonos para aprovecharla, casi como una cuestión de designación divina.
Como al ser humano parecen sobrarle excusas para ser inhumano con sus semejantes, la influencia de los mosquitos, sus picaduras y sus enfermedades influyeron también en el desarrollo y evolución del comercio de esclavos a través del Atlántico. Con la llegada a América de los primeros esclavos de origen africano, llegó también una versión especialmente virulenta de la malaria causada por un parásito llamado Plasmodium falciparum, transmitido por mosquitos.
En aquel momento, siglos XVII y XVIII, la vulnerabilidad de un esclavo a las enfermedades importadas se reflejaba en sus precios: un indígena, con alto riesgo de morir por esta causa costaba menos que un europeo que ya había demostrado ser resistente a ella, y éste menos que un africano traído directamente de su continente original. Los más caros eran los africanos que habían pasado suficiente tiempo en el Nuevo Mundo como para haber probado ser capaces de aguantar las enfermedades de una y otra tierra.
Los mosquitos como arma biológica nazi

En otros momentos, el ser humano ha intentado dominar y aprovechar este letal insecto a su favor. Fue el caso de la Alemania nazi de Hitler. En 1942, Heinrich Himmler, comandante de las SS, creó un Instituto Entomológico en el campo de concentración de Dachau con el objetivo de experimentar con el uso de mosquitos como elementos de una guerra química y bacteriológica contra los enemigos de guerra del II Reich. La idea no fue espontánea: meses antes, en la navidad de 1941, Himmler había visitado a las tropas alemanas en el frente oriental y se había encontrado a los soldados comidos por los piojos. Conocía de primera mano cómo en la I Guerra Mundial el tifus transmitido por los piojos había diezmado a las tropa germanas y el mismo jerarca nazi tenía fobia a las moscas. La idea de utilizar insectos a su favor ya estaba plantada.
Durante mucho tiempo, los historiadores pensaron que las actividades del Instituto Entomológico de Himmler estaban orientadas aprender más sobre los insectos, sus ciclos de vida, las enfermedades que transmitían y cómo inmunizarse para proteger a las tropas alemanas de sus efectos. Pero en 2014, el entomólogo Klaus Reindhart revisó la documentación disponible y llegó a otra conclusión: parecía haber otro motivo, o al menos otro motivo más, detrás del interés de Himmler por los bichos, y éste sería el utilizarlos a su favor como arma de guerra contra el enemigo.
El hecho de que la experimentación se llevase a cabo en Dachau, que estaba bajo completo control de las SS y donde ya se estaban realizando los experimentos más inhumanos sobre sus prisioneros, algunos de ellos precisamente sobre la malaria, o que eligiese para dirigirla a Eduard May, un entomólogo mediocre pero abiertamente antisemita, en vez de a otros expertos alemanes en entomología hicieron a Reindhart sospechar que la ciencia básica tras el ciclo de vida de los mosquitos no era lo único que interesaba a Himmler. En un informe de May de 1944 que comenta Reindhart se puede leer: “para aclarar la cuestión de si era posible una infección masiva artificial del parásito de la malaria”.
La historia de la humanidad ha estado siempre condicionada por muchos factores distintos, algunos de ellos fuera de control de nuestra especie. Uno de ellos, esta otra especie a la que solo recientemente estamos aprendiendo a combatir y solo un poco. Después de todo, siguen sacándonos de nuestras casillas cuando les oímos zumbar junto a nuestra oreja en las noches de verano. Piense que una picadura sin mayores consecuencias es de lo menos que nos puede ocurrir al entrar en contacto con los mosquitos. Que se lo pregunten a los colonos escoceses…
Referencias
The Mosquito: A Human History of Our Deadliest Predator – Timothy Winegard
How Mosquitoes Helped Shape the Course of Human History – The Smithsonian Magazine
How mosquitos changed everything – The New Yorker
Los nazis investigaron con mosquitos infectados de malaria como armas biológicas – Materia
The Entomological Institute of the Waffen-SS: evidence for offensive biological warfare research in the third Reich – Endeavour
Sobre la autora: Rocío Pérez Benavente (@galatea128) es periodista
El artículo Una historia de mosquitos, escoceses, esclavos y nazis se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Mosquitos transgénicos
- Si no puedes con tu enemigo, modifícalo para que te ayude en la lucha contra enfermedades infecciosas
- Historia y peligros del cultivo de arroz
Dozena erdi ariketa 2019ko udarako (3): Erradioaren bila
Gogoan izan ahalegina bera –bidea bilatzea– badela ariketa. Horrez gain, tontorra (emaitza) lortzen baduzu, poz handiagoa. Ahalegina egin eta emaitza gurekin partekatzera gonbidatzen zaitugu. Ariketaren emaitza –eta jarraitu duzun ebazpidea, nahi baduzu– idatzi iruzkinen atalean (artikuluaren behealdean daukazu) eta irailean emaitza zuzenaren berri emango dizugu.
Hona hemen gure hirugarren ariketa: Erradioaren bila.———————————————————————————-
Ariketak “Calendrier Mathématique 2019. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
———————————————————————————-
The post Dozena erdi ariketa 2019ko udarako (3): Erradioaren bila appeared first on Zientzia Kaiera.
En verano evita ganar calor e intenta perderlo

Los seres humanos somos animales homeotermos, mantenemos la temperatura corporal constante a unos 37 ºC. Para conseguirlo nuestro organismo se vale de termosensores que informan de nuestro estado térmico al hipotálamo, un pequeño dispositivo neuronal en el encéfalo. Si detecta algún cambio con respecto a la temperatura idónea, pone en marcha los mecanismos necesarios para corregir el cambio y retornar a la temperatura normal. Dado que nos encontramos en verano, examinaremos cómo responde el organismo al calor.
Resumiendo mucho las cosas, en verano se trata de evitar ganar calor y de intentar perderlo. Dado que nuestra principal fuente de calor es el propio metabolismo (somos animales endotermos), cuanta menor actividad despleguemos, menos calor produciremos y, por lo tanto, menos nos acaloraremos. Por eso conviene no hacer ninguna labor de carácter físico. Y ojo: pensar, leer y estudiar no son actividades físicas. Y aunque el entorno no es nuestra principal fuente de calor, tampoco nos conviene permanecer en ambientes cálidos, bañarnos en agua caliente o tomar el sol. Se entiende fácilmente que correr a pleno sol no es lo más recomendable.
El organismo pierde calor a través de tres vías. Una es la transferencia directa hacia un material con el que se encuentre en contacto. La llamamos conducción cuando se transfiere a un objeto y convección si lo recibe un fluido. La intensidad de la transferencia de calor por esa vía depende de la diferencia de temperatura entre el cuerpo y el material con el que está en contacto. Cuanto mayor es la diferencia, más se transfiere. Y más a una masa de agua que a una de aire. Un baño a 17 ºC refresca mucho más que permanecer desnudo y seco fuera del agua a esa temperatura.
Otra vía de transferencia es la emisión de radiación infrarroja, ondas electromagnéticas de mayor longitud que la luz vivible. Se produce entre objetos que están a diferentes temperaturas, del más caliente al más frío, y su intensidad es proporcional a la diferencia térmica. En verano la radiación es una forma de transferencia insidiosa porque cuando hace calor, lo normal es que los objetos y materiales que se encuentran en nuestro entorno próximo estén tan calientes como nuestro organismo o, si acaso, no mucho más fríos. Por esa razón no es fácil perder calor así en verano y es probable que lo ganemos.
Y por último está la evaporación. Es el mecanismo más eficaz para perder calor. El líquido que evapora nuestro organismo es la humedad de las vías respiratorias (perspiración) y el sudor (transpiración). La perspiración no está controlada fisiológicamente en los seres humanos (sí en los perros, a través del jadeo) pero la transpiración sí. La evaporación es muy útil porque nos refrigera aunque el entorno esté más cálido que nuestro cuerpo. Eso es debido a que la evaporación necesita un aporte de calor, de manera que la piel lo pierde, incluso aunque esté más fría que el aire que nos rodea. Es una forma muy eficaz de enfriamiento porque para evaporar un mililitro de agua se necesitan 560 calorías, o lo que es lo mismo, 5,6 veces más que el calor que hace falta para calentar ese mismo volumen desde 0 ºC hasta 100 ºC.
La evaporación tiene dos limitaciones. Una es que hay que beber agua para reponer la que perdemos sudando y, dependiendo de las circunstancias, también sales. Por eso es importante beber cuando hace calor. Y la otra es que la intensidad de la evaporación disminuye cuando aumenta la humedad del entorno; por esa razón los ambientes húmedos resultan sofocantes.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo En verano evita ganar calor e intenta perderlo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El calor no es un fluido
- Fuego y calor, esas materias inexistentes
- El primer transistor activado por calor
Contenido de entrenamiento y condición física en mujeres futbolistas de élite
El fútbol es el deporte alrededor del cual orbitan, además de los miles de fieles seguidores, sectores como la hostelería, el periodismo, la publicidad o la moda. Pero, ¿hay lugar para la ciencia?
Aunque resulte difícil imaginar la relación que pueda existir entre disciplinas científicas como la física, las matemáticas o la antropología y el fútbol, cada vez son más las ocasiones en las que, sorprendentemente, la ciencia puede explicar muchos de los acontecimientos que suceden en un campo de fútbol e incidir en aspectos como la mejora del rendimiento de los jugadores y, en consecuencia, de los resultados.
La relación entre estas dos disciplinas fue el hilo conductor de un ciclo de conferencias organizado por la Cátedra de Cultura Científica con el apoyo de la Diputación Foral de Bizkaia y la colaboración de Fundación Española para la Ciencia y la Tecnología (FECYT) – Ministerio de Ciencia, Innovación y Universidades”, que tuvo lugar en el Bizkaia Aretoa de la UPV/EHU de Bilbao los meses de octubre y noviembre de 2018. Enmarcado en el ciclo de conferencias “Zientziateka”, que contó con cinco conferencias impartidas por especialistas de diversos campos en las que se ilustró la conexión que existe entre diferentes disciplinas científicas y el fútbol.
Aduna Badiola, doctora en Ciencias de la Actividad Física y Deporte y profesora del departamento de Educación Física y Deportiva de la UPV/EHU, aborda en esta charla la incidencia del programa de entrenamientos y el calendario de partidos en la composición corporal y el rendimiento físico de las jugadoras de fútbol de equipos de primera división.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Contenido de entrenamiento y condición física en mujeres futbolistas de élite se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La condición física de los árbitros de fútbol
- Fútbol, periódicos y estadísticas
- Ciencia de datos y fútbol: predicción del riesgo de lesiones en el deporte profesional
50 años modificando genes (en seres humanos)
La Facultad de Ciencias de Bilbao comenzó su andadura en el curso 1968/69. 50 años después la Facultad de Ciencia y Tecnología de la UPV/EHU celebra dicho acontecimiento dando a conocer el impacto que la Facultad ha tenido en nuestra sociedad. Publicamos en el Cuaderno de Cultura Científica y en Zientzia Kaiera una serie de artículos que narran algunas de las contribuciones más significativas realizadas a lo largo de estas cinco décadas.
En las anteriores entradas de esta serie, hemos realizado un breve resumen de la historia y de las aplicaciones del DNA recombinante en bacterias (01) y en animales (02). Prácticamente en paralelo al trabajo para insertar genes en el genoma de animales, se planteó la posibilidad de aplicar esta tecnología también a los seres humanos, especialmente en casos en los que la alteración de un gen provoca una deficiencia en la proteína correspondiente y la aparición de alguna patología severa. Talasemia, fibrosis quística, distrofia muscular de Duchenne o hemofilia son solo algunos ejemplos de las más de 6.000 patologías, que están causadas por errores en un gen determinado. Desde los años 90 se han desarrollado metodologías basadas en el DNA recombinante para tratar algunas de estas dolencias. Este tipo de intervención, denominada terapia génica, consiste en modificar el genoma de un virus de manera que porte una versión correcta de un gen humano (gen terapéutico) y lo inyecte en las células de los pacientes que tienen una versión defectuosa de ese gen (Figura 1). Si el tratamiento es exitoso, el gen terapéutico administrado producirá una proteína funcional que mejorará, al menos en parte, los síntomas de la enfermedad.

El virus recombinante que porta el gen terapéutico se puede inyectar en el paciente vía intravenosa, o en un tejido específico (terapia génica in vivo, Figura 2A). También es posible extraer células del paciente, exponerlas al virus recombinante en el laboratorio y posteriormente re-inyectar las células modificadas en el paciente (terapia génica ex vivo, Figura 2B).

A pesar de sus posibilidades, hasta hace muy poco tiempo la terapia génica ha producido más decepciones que éxitos. El primer ensayo clínico de terapia génica se realizó en 1990: una niña de cuatro años con una forma severa de inmunodeficiencia genética fue tratada en los Institutos Nacionales de la Salud de EEUU. Los investigadores extrajeron sus glóbulos blancos, insertaron en ellos copias normales del gen defectuoso y re-inyectaron las células corregidas en su cuerpo. Este ensayo se consideró exitoso porque mejoró en gran medida la salud y el bienestar de la niña tratada. Sin embargo, junto con la terapia génica, la paciente continuó recibiendo su terapia farmacológica tradicional, lo cual hizo difícil determinar la verdadera efectividad de la terapia génica por sí sola.
Esos prometedores primeros resultados se vieron truncados en 1999 por la trágica muerte de un paciente de 18 años, Jesse Gelsinger, en un ensayo clínico de terapia génica. Jesse, que presentaba una enfermedad hepática no severa, murió porque el virus utilizado para transportar el gen funcional activó su sistema inmunológico y provocó un fallo multi-orgánico. Poco después, la aplicación de un procedimiento de terapia génica volvió a generar alarma por un nuevo problema: el desarrollo de leucemia en varios niños que habían participado años antes en un ensayo de terapia génica para corregir una inmunodeficiencia genética que padecían. Se comprobó que, en estos niños, la inserción del gen terapéutico había causado la activación permanente de otro gen cercano, el cual indujo la leucemia. Este ensayo y otros que estaban en marcha en aquél momento tuvieron que interrumpirse y muchos de ellos quedaron definitivamente abandonados.
Actualmente, los procedimientos de terapia génica han superado muchos de estos problemas iniciales, gracias al desarrollo de virus más eficaces que generalmente no integran el gen terapéutico en el genoma de las células humanas, y que, además, no activan el sistema inmunológico del paciente. Tanto es así, que ahora mismo hay en marcha ensayos clínicos de terapia génica para unas 50 enfermedades diferentes, con algunos resultados muy esperanzadores.
En los últimos 30 años, en todo el mundo, se han llevado a cabo unos 3.000 ensayos clínicos de terapia génica, de los que casi 500 se han realizado entre los años 2017 y 2018. A pesar de este elevado número, solo tres tratamientos de terapia génica han sido aprobados por las agencias del medicamento estadounidenses o europeas y se pueden encontrar actualmente en el mercado: Strimbelis, para la inmunodeficiencia congénita a la que nos hemos referido anteriormente, Luxturna, para la amaurosis congénita de Leber (un tipo de distrofia genética de la retina) y, más recientemente, Zolgensma, para niños de menos de 2 años con atrofia muscular espinal
La situación actual de uno de estos tratamientos ilustra uno de los problemas adicionales de este tipo de terapia: su elevado coste económico. Cuando en 2016 las autoridades europeas aprobaron Strimbelis, el tratamiento tenía un precio de unos 600.000€ anuales y entre 2017 y 2018 solo 7 pacientes habían utilizado esta terapia en todo el mundo. El elevado coste y la escasa demanda pueden llevar, de hecho, a la inviabilidad comercial de estos tratamientos. Es el caso de Glybera, un tratamiento de terapia génica para tratar una rara deficiencia genética de lipasa que puede causar pancreatitis grave. Glybera, denominado coloquialmente «el fármaco del millón de dólares» debido a su coste, fue aprobado en 2012. En 2017 la empresa dejó de vender Glybera debido a su escasa demanda (solo 31 personas han recibido Glybera en todo el mundo).
Paralelamente al uso de la terapia génica para el tratamiento de enfermedades monogénicas, se han desarrollado aplicaciones de esta tecnología al tratamiento de algunos tipos de cáncer. Este es el caso de las denominadas terapias CAR-T, diseñadas para que sea el sistema inmune del paciente el que combata el cáncer: se trata de extraer de los pacientes un tipo de linfocitos (las células T), para modificarlos genéticamente en el laboratorio de forma que, tras re-introducirlos, detecten y destruyan las células cancerosas que hay en el paciente. Aunque este tipo de terapia produce resultados clínicos bastante variables, algunas personas con cánceres de origen sanguíneo han tenido recuperaciones llamativas y permanecen en remisión meses o años después del ensayo. Actualmente, las autoridades norteamericanas han aprobado dos tratamientos basados en esta estrategia: Yescarta (para un tipo de linfoma de las células B) y Kymriah (para la leucemia linfoblástica aguda). Se espera que en un futuro relativamente próximo esta tecnología sea también aplicable a tumores sólidos.
Sin duda, son aún numerosos los desafíos técnicos que deben abordarse para conseguir que la terapia génica sea una alternativa práctica, rutinaria, económica, segura y efectiva para tratar enfermedades. Afortunadamente, el desarrollo de las técnicas de edición genética, como CRISPR, va a permitir avanzar en todas estas cuestiones.
Tecnología CRISPR aplicada a la terapia génica
En 2012, cuando parecía que la tecnología del DNA recombinante había tocado techo, se anunció el desarrollo de una nueva metodología que permite editar genes, denominada CRISPR. Mediante esta metodología, un gen alterado puede ser eliminado o corregido de forma directa y sin necesidad de utilizar virus intermediarios. Para detalles sobre la técnica CRISPR, puede consultarse el artículo 2 de esta serie, en el que explicamos los elementos que son necesarios para su aplicación, así como sus ventajas e inconvenientes.
La tecnología CRISPR, permite realizar de una manera mucho más eficaz, rápida y económica muchas de las aplicaciones que hasta hace poco se llevaban a cabo mediante la tecnología del DNA recombinante, incluida la terapia génica. .
Actualmente se están llevando a cabo múltiples ensayos clínicos basados en CRISPR para tratar diversos tipos de cáncer. En China hay ensayos que incluyen pacientes de cáncer de esófago, pulmón, vejiga, cérvix o próstata. mientras que en EEUU y Europa se están desarrollando ensayos para tratar pacientes con melanoma, sarcoma o mieloma múltiple. También se han iniciado, o están a punto de hacerlo, ensayos clínicos basados en CRISPR para enfermedades monogénicas como beta talasemia, anemia falciforme, hemofília A, amaurosis congénita de Leber, fibrosis quística, distrofia muscular de Duchenne o Huntington.
La tecnología CRISPR está dando lugar a un sinfín de aplicaciones en el ámbito Biosanitario, no solo para el tratamiento de enfermedades, sino también para el desarrollo de estrategias indirectas de salud, como la creación de mosquitos resistentes al parásito responsable de la malaria, de moléculas que producen el “suicidio” de patógenos, de plantas resistentes a virus, hongos o insectos, o para la elaboración de alimentos menos alergénicos, entre otras.
No cabe duda que estamos asistiendo a los inicios de la aplicación de esta potente metodología, en la que hay depositadas grandes expectativas en el ámbito científico, médico e industrial, y que muy probablemente veremos crecer de manera insospechada en los próximos años.
Cuestiones éticas en terapia génica
El auge de la metodología CRISPR obliga a la sociedad a plantearse cuestiones éticas y a tomar decisiones sobre qué aplicaciones deberían ser desarrolladas y cuáles no. Algunas de estas cuestiones ya se plantearon y discutieron en relación con la tecnología del DNA recombinante. Otras, sin duda, irán apareciendo conforme la tecnología se desarrolle y la imaginación humana proponga nuevas aplicaciones.
Una de las cuestiones que más debate suscitó inicialmente en terapia génica, y que ahora vuelve a estar de actualidad con el desarrollo de la tecnología CRISPR, es la posibilidad de intervenir sobre el genoma de embriones humanos. El aspecto más controvertido de esta intervención es que las modificaciones introducidas podrían afectar a las células de la línea germinal (óvulos y células espermáticas) y, por tanto, transmitirse a generaciones futuras.
A priori, la terapia génica sobre embriones humanos podría tener un objetivo de carácter terapéutico (el tratamiento de alguna patología), o bien el de “mejora” del individuo. Aunque por razones diferentes, ambas cuestiones son controvertidas. Ciertamente, si la intervención se ha realizado porque existe un trastorno genético importante, cabría pensar que esta modificación sería también beneficiosa para los descendientes; sin embargo, podría afectar al desarrollo del feto o tener efectos secundarios a largo plazo que aún se desconocen. Además, dado que las personas que se verían afectadas por la modificación (el embrión y sus descendientes) aún no han nacido, no tendrían derecho a elegir si desean, o no, recibir el tratamiento. Todo ello ha llevado a que numerosos países hayan desarrollado directrices para evitar cambios en el genoma que puedan afectar a la descendencia y tanto EEUU como la Unión Europea han acordado no utilizar fondos públicos para estos procedimientos. Por otra parte, existe un amplio consenso internacional en considerar éticamente inadecuada la aplicación de estas metodologías para la mejora de rasgos físicos o psicológicos. Además de los motivos citados en el contexto de los tratamientos terapéuticos, existen poderosas razones que desaconsejan el uso de la terapia génica para la “mejora” de los individuos, entre otras, el hecho de que se podría producir un impacto negativo en lo que la sociedad considera «normal», lo cual podría derivar en una mayor discriminación hacia las personas con rasgos «indeseables».
A pesar de que estas cuestiones ya fueron debatidas hace años, la posibilidad técnica de editar genomas mediante CRISPR ha activado nuevamente el debate. Tanto es así, que en diciembre de 2015 se organizó una primera cumbre internacional para deliberar sobre los aspectos científicos, éticos, legales y sociales de la edición génica en humanos. En esa cumbre se pusieron de manifiesto potenciales problemas derivados de la aplicación de la tecnología CRISPR a la línea germinal. Entre ellos, el riesgo de resultados indeseados por una edición incorrecta o incompleta del genoma, la dificultad para eliminar las modificaciones una vez introducidas, así como para predecir las implicaciones futuras de tales modificaciones en sus portadores y en la población humana en general. En la cumbre de 2015 se concluyó que sería “irresponsable” proceder a cualquier uso clínico de CRISPR para la edición génica en embriones y se acordó abordar un debate internacional continuo para valorar los potenciales beneficios y riesgos de esta tecnología y realizar una supervisión continuada de su desarrollo.
A pesar de estas recomendaciones, unos días antes de iniciarse la segunda cumbre internacional sobre edición genómica en humanos a finales de 2018, el investigador chino Jiankui He dio a conocer el nacimiento de dos gemelas a partir de embriones sometidos a un proceso de edición génica para eliminar el gen CCR5. Este gen codifica una proteína que utiliza el virus VIH para introducirse en las células humanas y, debido a esta modificación, estas niñas serán posiblemente resistentes a la infección por este virus. Como no podía ser de otra manera, el procedimiento llevado a cabo por el Dr. He fue el centro de interés de la cumbre, en la que se señaló que «incluso si se verifican las modificaciones genéticas realizadas, el procedimiento fue irresponsable y no cumplió con las normas internacionales».
La actuación del Dr. He ha sido duramente criticada por la inmensa mayoría de los científicos y de los gobiernos, incluido el chino, y recientemente declarada ilegal. El rechazo generado ha inducido algunos cambios a nivel internacional. Así, el gobierno chino aplica ahora regulaciones más estrictas para experimentos que utilizan la edición de genes y cerca de 30 naciones disponen ya de medidas legislativas que prohíben la edición de la línea germinal humana. Este 2019, la UNESCO, junto con 18 científicos de primera línea procedentes de 7 países, han llamado a una moratoria global que prohíba cualquier ensayo clínico de la edición en línea germinal humana (ya sea en embriones, en óvulos o en esperma). En cualquier caso, el progreso vertiginoso de la tecnología de la edición génica en los últimos tres años y las discusiones generadas sugieren que es hora de definir un camino riguroso y responsable hacia tales ensayos.

Sobre los autores: Ana I. Aguirre, José Antonio Rodríguez y Ana M. Zubiaga son profesores del departamento de Genética, Antropología Física y Fisiología Animal de la Facultad de Ciencia y Tecnología, e investigadores del grupo de investigación consolidado del Gobierno Vasco Biología Molecular del Cáncer.
El artículo 50 años modificando genes (en seres humanos) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- 50 años modificando genes (en animales)
- 50 años modificando genes (en bacterias)
- Investigación con medicamentos en seres humanos: del laboratorio a la farmacia
Ikusgai-eremu elektromagnetiko osoan zehar igorpen sintonizagarria duten BODIPY laser-koloratzaileak

Irudia: BODIPY (BOron DIPYrromethene) izeneko kromoforoaren ezaugarri fotofisikoak berde-hori gune espektralean azpimarratzekoak dira.
Alde batetik, gaur egun bide sintetiko ugari daude eskuragarri molekula organikoen oinarrizko egitura sakonki eta selektiboki eraldatzeko. Beraz, posible da molekula-egitura nahi den moduan diseinatzea aplikazio berezi baten eskakizunak betetzeko. Beste alde batetik, duela gutxi mikroskopia fluoreszentean zegoen detekzio muga (difrakzio muga) gainditu da eta orain bioirudiaren bidez zuntza fluoreszente molekula bakar bat detektatzea posiblea da (nanoskopia edo superbereizmen mikroskopia, Nobel Saria 2014n). Teknika hau biofotonikan gero eta arrakastatsu eta ospetsuagoa da, ahalbidetzen duelako prozesu biokimikoak jarraitzea eta biomolekulek gorputzean duten kokapena ezagutzea argiaren emisioaren bidez.
Hori dela eta, propietate fotofisiko hobeak eta iraunkorrak dituzten koloratzaile fluoreszente berrien garapena sustatu da, bioirudirako zuntza fluoreszenteak garatzeko zein laser sintonizagarrietan ingurune aktibo gisa erabiltzeko. Izan ere bi aplikazio hauetan fluoroforoek bete behar dituzten ezaugarri nagusiak berdinak dira. Hau da, argiaren absortzioa eraginkorra izatea, argiaren igorpena distiratsua izatea, eta luzaroan erradiazio ahaltsua jasatea hondatu gabe. Gaur egun, hainbat molekula organiko komertzialki eskuragarri daude ikusgai eremu osoan zehar aukeratzeko, baina askotan aurreko eskakizun guztiak ez dira betetzen.
Behar honen aurrean, gure ikerkuntza taldean (Espektroskopia Molekularreko Laborategian, UPV/EHU), eta kimika organiko taldearekin batera (Eduardo Peña Cabrera irakaslea, Guanajuato unibertsitatetik Mexikon), ikusgai-eremu osoan zehar eraginkortasun fluoreszente eta fotoegonkortasun ezin hobeak aurkezten dituzten koloratzaile berriak diseinatzea erabaki genuen.
Horretarako abiapuntu bezala BODIPY (BOron DIPYrromethene) izeneko kromoforoa hartu genuen. Koloratzaile honen ezaugarri fotofisikoak berde-hori gune espektralean azpimarratzekoak dira. Hala ere, bere abantailarik nagusiena kromoforoaren moldagarritasun sintetikoan datza. Izan ere, hainbat bide sintetikori jarraituz selektiboki posizio zehatzetan eta talde funtzional ugari erabiliz molekula-egitura erabat alda daiteke. Hala nola, bibliografian BODIPYei “El Dorado” edo “kameleoiak” esaten diete, sintetikoki duten erreaktibotasuna goraipatzeko, eta nabarmentzeko nola ordezkatzaile aproposak erantsiz kromoforoan honen ezaugarri fotofisikoak gogotik modula daitezke, hurrenez hurren.
Izaera honetaz baliatuz, gure helburua BODIPYen absortzio/igorpen banda espektralak ikusgaiko eremuaren bi ertzetara bultzatzea izan da, hots, alde gorrira edo urdinera, nukleo kromoforikoan talde funtzional aproposak erabiliz, eta ezaugarri fotofisiko optimoak mantenduz. Eremu berde-horitik (BODIPYen ohiko igorpen eremua) abiatuz lerrokatzea alde gorrira lortzeko, hain zuzen ere, talde aromatikoak txertatu dira sistema konjokatua hedatuz. Kontrako lerrokatzea lortzeko, hau da, urdinera, kromoforoan heteroatomoak zuzenean erantsi dira, sistema konjokatu berri bat sorraraziz.
Diseinu molekular honen ondorioz, BODIPYan oinarritutako koloratzaile fluoreszenteak lortu dira ikusgai-eremu osoan zehar argia absorbatu eta igortzen dutelarik. Kasu guztietan, eraginkortasun fluoreszentea ia ehuneko ehuna da, nahiz eta ingurunea aldatu, eta seinale fluoreszentea mantentzen da lagina laser ahaltsuekin luzaro bonbardatu arren. Are gehiago, guk garatutako fluoroforoen portaera fotonikoak eskuragarri dauden pareko koloratzaileenak baino hobeak dira. Beraz, BODIPY berri hauek aproposak dira bai zuntza fluoreszente bezala prozesu biokimikoak behatzeko mikroskopia fluoreszentea bitartez (bioirudia), bai ingurune aktibo moduan erabiltzeko igorpen sintonizagarria duten laserrak lortuz.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: Ekaia 33
- Artikuluaren izena: Ikusgai-eremu elektromagnetiko osoan zehar igorpen sintonizagarria duten BODIPY laser-koloratzaileak.
- Laburpena: Lan honetan, molekula-egiturak BODIPY deritzen koloratzaileen propietate fotofisikoetan duen eragina aztertzen da, gehienbat alde ikusgai gorritik urdinera laser sintonizagarrien ingurune aktiboa garatzeko. BODIPYaren ordezkapen-patroiaren arabera propietate espektroskopikoak modula eta optimiza daitezke. Horrela, BODIPYaren oinarrizko kromoforoa abiapuntutzat hartuta (absortzio/igorpen eremu ikusgai berde/horian) aldaketak egin dira egitura molekularrean banda espektralak lerrokatzeko, bai eremu urdinera (heteroatomoak meso posizioan sartuz), bai eremu gorrira (π sistema deslokalizatua hedatuz). Ondorioz, koloratzaile komertzialekin konparatuz gero, eremu espektral ikusgai osoa betetzen duten BODIPY koloratzaile berriak garatu dira, propietate fotofisiko eta laser hobetuekin.
- Egileak: Edurne Avellanal-Zaballa, Ixone Esnal, Jorge Bañuelos
- Argitaletxea: UPV/EHUko argitalpen zerbitzua.
- ISSN: 0214-9001
- Orrialdeak: 97-114
- DOI: DOI: 10.1387/ekaia.17771
————————————————–
Egileez:
Edurne Avellanal-Zaballa, Ixone Esnal, Jorge Bañuelos UPV/EHUko Zientzia eta Teknologia Fakultateko Kimika Fisikoa sailean dabiltza.
————————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Ikusgai-eremu elektromagnetiko osoan zehar igorpen sintonizagarria duten BODIPY laser-koloratzaileak appeared first on Zientzia Kaiera.
La isla Pitcairn y el motín de la ‘Bounty’
Bounty = Generosidad

El 26 de octubre de 1788, el barco Bounty de Su Majestad llegó a Tahití. El capitán era el Teniente de la Armada Real William Bligh, experimentado y capaz de terminar con éxito las misiones que le encomendaban. Era de los mandos que había acompañado a James Cook en su tercera expedición. La Bounty había partido del puerto de Spithead, en Inglaterra, frente a Southampton, el 23 de diciembre de 1787. Tenía 215 toneladas, construido en 1784, con 28 metros de largo y 7.6 metros de ancho. La tripulación la componían 46 hombres. Era un barco de carga que compró la Armada Real para el viaje a Tahití en una expedición, promovida por la Royal Society, con el objetivo de recoger plantones del árbol del pan en Tahití y llevarlos al Caribe para replantarlos, iniciar su cultivo y cosechar un alimento barato para los miles de esclavos que se traían de África a las plantaciones de las Antillas. Contaré esta historia con la ayuda del extraordinario relato periodístico, titulado “Los amotinados de la Bounty”, que Julio Verne publicó en 1879.
El árbol del pan, de nombre científico Artocarpus altilis, procede de antepasados del mismo género de Filipinas y las islas Molucas, al sur de Filipinas y que, ahora, pertenecen a Indonesia. Su origen está en el oeste del Pacífico. Las migraciones humanas, de oeste a este, por las islas del Pacífico, llevaron el árbol del pan a Oceanía y evolucionaron, por cultivo y selección, en la especie, Artocarpus altilis, que conocemos ahora. A partir del siglo XVII, los navegantes europeos lo llevaron a todas las zonas tropicales del planeta y, especialmente, a las Antillas.

Seis meses permaneció la Bounty en la isla de Matavai, en el grupo de Tahití, mientras recolectaban los plantones del árbol del pan. Allí, la tripulación encontró amigos y parejas entre los tahitianos. Cargaron 1015 ejemplares del árbol del pan hasta llenar la bodega.
Cuando Bligh ordenó partir para llevar la carga al Caribe, la tripulación no quería hacerlo, estaban a gusto en Tahití. Pero partieron, y el 28 de abril de 1789, con la Bounty en el mar, camino al Caribe, estalló el motín a bordo. Fletcher Christian, segundo de a bordo, junto a 18 miembros de la tripulación, se amotinó contra el capitán Bligh. Abandonaron al capitán y a los que no se amotinaron en una barca y, después de 47 días de viaje y 6500 kilómetros, llegaron a Timor, fueron rescatados y regresaron a Inglaterra.

Los amotinados eran 29 que, bajo el mando de Fletcher Christian, partieron en la Bounty y regresaron a Tahiti. Pronto empezaron los problemas entre los amotinados. Unos querían quedarse en Tahití y otros huir y esconderse en alguna isla del Pacífico. Christian, con nueve amotinados, seis tahitianos y 13 tahitianas más una niña, cargaron el barco con plantas y animales necesarios para instalarse en otra isla y marcharon de noche de Tahití. Los tahitianos fueron invitados a una fiesta en el barco que zarpó durante la noche, y los amotinados los raptaron. Su intención era llegar a la isla Pitcairn y refugiarse en ella.
Al llegar a la isla, el 15 de enero de 1790, quemaron el barco para borrar su rastro y que no les encontrase la vengativa y justiciera Armada Real. Todavía se ven los restos de la Bounty en la costa de la isla y los isleños celebran cada 23 de enero el aniversario quemando una maqueta de pequeño tamaño del barco.

Para 1794 quedaban cuatro de los amotinados. Habían continuado las peleas entre ellos, sobre todo por las mujeres de Tahití que les acompañaban. Incluso Christian fue acuchillado por un tahitiano en una pelea. Fueron años de alcohol, violaciones y asesinatos, y para 1800 solo quedaban dos amotinados, Young y Adams, y el primero murió de una ataque de asma. En la isla sobrevivió Adams como único hombre, con seis mujeres tahitianas y unos veinte niños que llevaban los apellidos de los amotinados. Todavía los utilizan los habitantes actuales de la Isla Pitcairn que descienden de aquellos marineros amotinados .
John Adams recuperó una Biblia de los libros que iban en la Bounty, volvió a la religión y a las buenas costumbres, llegó la paz, la isla prosperó y la población creció. Unos años más tarde, la Armada Real los encontró.
Era 1814, décadas después del motín, cuando dos barcos de guerra ingleses, el Briton y el Tagus, a las órdenes del capitán Thomas Staines, navegando por el centro del Pacífico Sur, encontraron una pequeña isla volcánica, con 9.6 kilómetros de circunferencia, unos 4 kilómetros de longitud, 4.35 kilómetros cuadrados de superficie y un cono volcánico que, en su punto más alto, alcanzaba los 300 metros. La había descrito años atrás el explorador Philip Cateret, que había descubierto la isla el 3 de julio de 1767. Fue bautizada como Pitcairn en recuerdo de uno de los marineros que primero habían desembarcado en ella. Era una isla montañosa, pequeña, volcánica y con unas costas escarpadas, casi sin playas ni puertos accesibles. Ahora es el último Territorio Británico de Ultramar en el Pacífico. Por cierto, había una copia de los diarios de viaje de Cateret en la Bounty y sirvió de guía a Fletcher Christian para encontrar la isla y refugiarse en ella.
El Briton y el Tagus fueron recibidos por una pequeña embarcación con dos hombres que se presentaron como descendientes de los amotinados de la Bounty. Para 1856 los descendientes de los amotinados eran 196 y el gobierno británico consideró que la isla no tenía suficientes recursos para mantenerlos y los trasladó a la isla Norfolk, más cercana a Nueva Zelanda y Australia y a unos 6000 kilómetros al oeste de la isla Pitcairn. Quedó deshabitada pero, un par de años más tarde, 16 de los trasladados regresaron y, en otros cinco años, lo hicieron 27 más. En la actualidad, en la isla Norfolk hay 1600 residentes permanentes y, según el censo de 2006, la mitad descienden de los amotinados que no volvieron a Pitcairn.
Los que quedaron en Norfolk, años después, en 2015, sirvieron a Miles Benton y su grupo, de la Universidad Tecnológica de Queensland, en Australia, para estudiar su ADN. Lo analizaron en las mitocondrias, heredado por vía materna, y en el cromosoma Y del núcleo, que solo se encuentra en los hombres.

Los resultados confirman lo que había supuesto Miles Benton, según la historia que conocía de los habitantes de la isla Pitcairn: el ADN mitocondrial es de linaje polinésico, de las únicas mujeres que llegaron a la isla, las tahitianas que secuestraron Fletcher Christian y sus hombres; y el cromosoma Y tiene su origen en Europa ya que viene de los marineros europeos amotinados en la Bounty. Dos siglos después y once generaciones más tarde, el ADN confirma el origen genético de los descendientes de la Bounty. Más de siglo y medio después, en los primeros años del siglo XXI, en la isla Pitcairn, en 2014, quedan 56 habitantes.
El motín de la Bounty y los hechos y aventuras que le siguieron son populares y han aparecido, según Maria Amoamo, de la Universidad de Otago, en Nueva Zelanda, en unos 1200 libros, más de 3200 artículos en periódicos y revistas, en documentales e, incluso y lo que más difusión le ha dado, en tres superproducciones de Hollywood con mucho presupuesto y grande estrellas como protagonistas. Es Maria Amoamo la mayor especialista sobre la población actual de la isla Pitcairn. Vivió en la isla entre 2008 y 2013, más o menos dos años y medio, acompañando a su marido, médico de profesión y contratado por el gobierno británico para cubrir el servicio sanitario en la isla. Durante su estancia, Maria Amoamo contactó con la población, aprendió de su modo de vida y tomó numerosas notas y fotografías de las actividades cotidianas en la isla. Con ello completó su proyecto postdoctoral en la Universidad de Otago.
El futuro de la isla y de sus habitantes se basa, en la actualidad, en el turismo y en los cruceros que llegan para visitarla. Para atraer visitantes tiene su historia, tan conocida y propagada, sobre todo por Hollywood, una historia que crea morbo y lleva a los turistas a Pitcairn a conocer a sus habitantes, descendientes de los amotinados de la Bounty, y, también, tiene la naturaleza, aun poco conocida y todavía menos publicitada. Como ejemplo sirve el estudio de Alan Friedlander y su grupo, de la Sociedad Geográfica Nacional de Estados Unidos, en las cuatro islas del grupo Pitcairn: Ducie, Henderson, Oeno y Pitcairn. Han recogido animales y algas en 97 lugares de las costas de estas islas entre 5 y 30 metros de profundidad, y han explorado con cámaras de video 21 puntos entre 78 y 1585 metros.
Los resultados son espectaculares, con nuevas citas de especies conocidas de otras zonas del Pacífico y algunas especies nuevas todavía sin describir. Los autores proponen que, por su gran biodiversidad y la rareza de las especies encontradas, deben protegerse las costas de la todas las islas del grupo.
Pero ya en 1995, T.G. Benton, de la Universidad de Cambridge, comparó la basura de las playas de las islas Ducie y Oeno, del grupo Pitcairn y deshabitadas, con la basura de la playa Inch Straud, en el sudoeste de Irlanda. Y, sorprendentemente, no encontró mucha diferencia. En el Pacífico hay botellas de cristal y de plástico, y boyas de pesca, y en Irlanda abundan los envoltorios de chucherías y las bolsas de plástico. Como ejemplo, de las 130 botellas de vidrio encontradas en las playas de la isla Ducie, 41 venían de Japón, 11 de Escocia y 9 de Gran Bretaña, y la mayoría eran de whisky.

Y 20 años más tarde, como veíamos hace unas semanas, es evidente que la contaminación en nuestro planeta ya es un problema global, sin límites geográficos, y llega a lugares tan apartados como estas solitarias islas del centro del Pacífico. Fueron Jennifer Lavers y Alexander Bond, quienes visitaron la isla Henderson del grupo Pitcairn, deshabitada y conocida como un paraíso para las aves. Pero, cuantificaron los plásticos de sus playas y se encontraron que era uno de los lugares con más plásticos de todos los mares del planeta. En las playas, había de 20 a 670 fragmentos de plástico por metro cuadrado, y en los fondos frente a la costa, el número era de 53 a 4500 fragmentos por metro cuadrado.
Cada día llegan a la isla, arrastrados por las corrientes oceánicas, entre 17 y 268 nuevos fragmentos. Y, no hay que olvidar, que es una isla deshabitada, es decir, todo el plástico viene del exterior y, además, de lugares muy lejanos, algunos a miles de kilómetros. Los autores detectan que los restos de plástico relacionados con la pesca llegan desde China. Japón y Chile.
Para terminar, años más tarde del famoso motín, el entonces Vicealmirante William Bligh, al mando del Assisstance, partió de nuevo hacia el Pacífico para llevar el árbol del pan a las Antillas, y lo consiguió. En la actualidad, el árbol del pan es un alimento barato y popular en el Caribe.
Referencias:
Amoamo, M. 2016. Pitcairn Island: Heritage of Bounty descendants. Australian Folklore 31: 155-171.
Amoamo, M. 2016. Pitcairn and the Bounty story. En “Tourist Pacific Cultures”, p. 73-87. Ed. por K. Alexeyeff & J. Taylor. ANU Press. Canberra, Australia.
Amoamo, M. 2017. Re-imaging Pitcairn Island. Shima 11: 80-101.
Benton, M.C. et al. 2015. “Mutiny on the Bounty”: the genetic history of Norfolk Island reveals extreme gender biased admixture. Investigative Genetics DOI: 10.1186/s13323-015-0028-9
Benton, T.G. 1995. From castaways to throwaways: marine litter in the Pitcairn Islands. Biological Journal of the Linnean Society 56: 415-422.
Bligh, W. 2015 (1838). El motín de la Bounty (Diarios del capitán Bligh). ePub r1.3. Titivillus. 13.04.15.
Diamond, J. 2006. Colapso. Random House Mondadori. Barcelona. 457 pp.
Friedlander, A.M. et al. 2014. The real Bounty: Marine diversity in the Pitcairn Islands. PLOS ONE 9: e100142
Gibbs, M. & D. Roe. 2016. Do you bring your gods with you or Do you find them there waiting? Reconsidering the 1790 Polynesian colonization of Pitcairn Island. Australian Folklore 31: 173-191.
González, D. 2011. Pitcairn, la isla de la endogamia. Blog Fronteras. 17 octubre.
Lavers, J.L. & A.L. Bond. 2017. Exceptional and rapid accumulation of anthropogenic debris in the one of the world’s most remote and pristine islands. Proceedings of the National Academy of Sciences USA DOI: 10.1073/pnas1619818114
Verne, J. 2006 (1879). Los amotinados de la Bounty. Biblioteca Virtual Universal. Ed. del Cardo. 14 pp.
Wikipedia. 2017. Pitcairn Island. 5 December.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo La isla Pitcairn y el motín de la ‘Bounty’ se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Particiones: Hardy y Ramanujan
Una partición de un número entero positivo n es una forma de descomponerlo como suma de enteros positivos. El orden de los sumandos no es relevante, por lo que normalmente se escriben de mayor al menor. Por ejemplo, las particiones del número 4 son:
4 = 2+1+1 = 3+1 = 2+2 = 1+1+1+1.
Estas particiones se suelen visualizar a través de diagramas, como los diagramas de Ferrers, que deben su nombre al matemático Norman Macleod Ferrers.

La teoría de particiones de números se utiliza en el estudio de polinomios simétricos, del grupo simétrico y en teoría de representación de grupos, entre otros.
La función de partición >p>(n) indica el número de posibles particiones del entero n; por ejemplo, p(4)=5. El valor de p(n) crece muy rápidamente al aumentar n. Por ejemplo, p(100)=190.569.292 y p(1000)=24.061.467.864.032.622.473.692.149.727.991.

Matemáticos de la talla de Godfrey Harold Hardy (1877-1947) y Srinivasa Ramanujan (1887-1920) trabajaron en el tema de las particiones de números, obteniendo algunas expresiones asintóticas para la función partición. Y Partition es precisamente el título de una obra de teatro del dramaturgo Ira Hauptman con los dos geniales matemáticos antes citados como protagonistas.
El título Partition se refiere tanto a la teoría matemática de las particiones de números como a las particiones –en el sentido de antagonismo– de temperamento, de cultura y de método matemático que distanciaron a los dos personajes.
La obra comienza en 1918, con una escena en Scotland Yard, donde un oficial de policía interroga a Ramanujan. El joven matemático ha intentado suicidarse tirándose a las vías del tren; ha bebido sin darse cuenta Ovaltine que contiene rastros de productos animales y, por lo tanto, piensa que ‘está contaminado’. Hardy consigue que no le encarcelen declarando ante la policía que Ramanujan es miembro de la Royal Society.
La siguiente escena tiene lugar cinco años antes. Hardy y Alfred Billington –un colega ¿ficticio? de Hardy de la Universidad de Cambridge– discuten sobre una carta que el matemático británico acaba de recibir. Es de Ramanujan, un joven autodidacta indio que, junto a la misiva, le ha enviado algunos cuadernos que contienen extraordinarias fórmulas matemáticas. Intrigado por los brillantes resultados de Ramanujan, Hardy decide invitarle a Cambridge para conocer los detalles de su método de trabajo.
Ramanujan, un simple empleado de correos perteneciente a una de las castas más bajas de la India y sin formación universitaria, acepta la invitación y viaja a Inglaterra desde Madrás.

Nada más conocerse, Hardy y Ramanujan perciben el abismo que los separa. El británico es ateo, seguro de sí mismo, independiente, fiel a la lógica racional y tenaz defensor del método deductivo. Por el contrario, el joven indio es religioso, tímido, leal a su intuición y mantiene que sus resultados matemáticos le son concedidos por la diosa Namagiri durante el sueño.
Hardy intenta inculcar a Ramanujan el rigor científico basado en las demostraciones; quiere hacer del él un ‘matemático completo’. Pero el genio indio no consigue entender lo que el profesor quiere explicarle; Ramanujan sabe que sus fórmulas son ciertas porque Namagiri se las dicta en sueños. Hardy intenta convencer al joven matemático de la necesidad de demostrar sus resultados para ratificarlos. Pero Ramanujan está convencido de que las matemáticas se descubren, en contra de la opinión del profesor que asegura que se deducen.
En Partition, Hardy propone a Ramanujan abordar la solución del Último Teorema de Fermat –es pura ficción, nunca trabajaron en este tema–. El joven se obsesiona con este problema y pide ayuda a Namagiri, quien conversa con el espectro de Pierre Fermat para complacer a su protegido. Fermat confiesa a la diosa que no recuerda la demostración de su teorema; de hecho reconoce que ni siquiera es consciente de haber escrito alguna vez una prueba…
La guerra estalla en Europa. Hardy deja en un segundo plano las matemáticas para dedicarse a la política. Ramanujan, desvalido, se obsesiona con el problema de Fermat y acaba enfermando. Al poco tiempo, ya en su país, muere afectado de una tuberculosis.
La obra finaliza con un emotivo discurso de Hardy ante los miembros de la London Mathematical Society sobre la figura de su admirado, y ya desaparecido, Ramanujan.
Por cierto, casi al final de la obra, Hardy visita a Ramanujan en el hospital y se alude al famoso número de Hardy-Ramanujan: el profesor comenta al joven que ha llegado al sanatorio en el taxi número 1729; inmediatamente Ramanujan advierte que 1729 es el menor entero positivo que puede expresarse como una suma de dos cubos de dos maneras diferentes (1729=103+93=123+13).
Referencias
-
Ira Hauptman, Partition, Libreto de la obra (puede adquirirse en Playscripts Inc.)
-
Kenneth A. Ribet,Theater Review: a Play by Ira Hauptman, Notices AMS Vol 50, núm. 11, 1407-1408, diciembre 2003.
-
Marta Macho Stadler, Partición, de Ira Hauptman, DivulgaMAT, 2007
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Particiones: Hardy y Ramanujan se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El teorema del pollo picante (o sobre particiones convexas equitativas)
- Pál Turán: teoría de grafos y fábricas de ladrillos
- Uno, dos, muchos
Polinizatzaileekin bueltaka: erleak eta gehiago

Irudia: Erleak salbatzeko kanpainak jarri izan dira abian, polinizazioan dute garrantzia dela eta. Erleak ez dira, baina polinizatzaile bakarrak, ezta nagusiak ere.
Polena garraiatzen landareen ugalketa ahalbidetzen dituzten animaliak dira polinizatzaileak. Zonalde epeletan landareen %78k eta zonalde tropikaletan landareen %94k behar dute animalien polinizazioa. Giza elikadurarako erabiltzen diren laboreen %75ean baino gehiagotan dute eragina polinizatzaileek maila batean edo bestean. Kontuan izan behar da, hala ere, bolumenari dagokionez, giza kontsumoaren gehiengoa (%60) animali polinizaziorik behar ez duten laboreak direla eta animalien polinizaioa behar dutenak %35 direla.
Polinizatzailerik ezagunena, zalantzarik gabe, erlea da. Eta erlea esatean ezti-erlea (Apis mellifera) da gogora datorrena kasu gehienetan. Honi lotuta, ikerketa honen arabera, jendearen %99ak erleak ezinbestekoak edo oso garrantzitsuak direla uste badu ere, %14ak baino ez da gai erle espezie kopurua asmatzeko (1.000 espezie gora behera). Eta zenbat erle espezie daude? 100? 2.000? Ezta hurrik eman ere. 20.000 erle espezie inguru daude munduan.
90eko hamarkadan izan ziren erleen egoeraren inguruko lehenengo alarma hotsak. Orduan argirtaratutako ikerketaren arabera, polinizazioaren inguruko kezka areagotze bidean zen erleen populazioek behera egiten zuten heinean.
1985 eta 2005 urteen artean ezti-erle kolonien %25 galdu ziren Erdialdeko Europan. Estatu Batuetan %59 1947 eta 2005 artean. Collony Collapse Disorder (CCD) izena eman zaio erle kolonien galera jarraituari. Honen atzean ez da kausa bakarra identifikatu, hainbat faktorek dute eragina: habitatetan aldaketak, fragmentazioa, patogenoak, aldaketa klimatikoa, intsektiziden erabilera, nekazaritzaren intentsifikazioa…
Ezti-erleak salbatzeko zenbait kanpaina egin dira nazioartean: TED Talkak egin dira, Greenpeacek ere mundu mailako kanpaina abiatu du eta zereal marka batek ere nazioarteko kanpaina jarri du martxan.
Polinizatzaileen aniztasunazEzagunenak badira ere, ezti-erleak ez dira polinizatzaile bakarrak. Bestelako intsektuak (tximeletak, liztorrak, inurriak, kakalardoak, euliak…) ere polinizatzaileak dira. Baita zenbait ornodun, hala nola, saguzarrak, kolibriak, zenbait karraskari eta baita sugandilak ere. Polinizazioen %14aren arduradunak baino ez dira ezti-erleak.
Portaera moldaketak eta egokitzapen morfologikoak jasan ditu ezti-erleak nektarra eta polena jaso, garraiatu eta biltzerako orduan oso eraginkor bilakatu dutenak, Juan Carlos Pérez Hierro biologoak azaltzen duenez. Horrek, baina, ez du polinizatzaile on bilakatzen, bidean galdutako polena baita polinizatzen duena eta Apis mellifera asko hartu eta gutxi galtzeko dago diseinaturik.
Ezti-erleak, beraz, ez dira polinizatzaile nagusiak. Are gehiago, ezti-erleak polinizatzaile basatien lanaren osagarri dira, ordezkatzaile baino. Megachilidae familiako erleak planetako polinizatzailerik eranginkorrenetarikoak kontsideratzen dira, Juan Carlos Pérez Hierroren esanetan.
Zer bestelako polinizatzaileak daude, baina? Ezti-erle eta gainerako erleez gain hainbat polinizatzaile mota aurki daitezke:
- Intsektuak: Liztorrak, lore-euliak, tximeletak eta baita kakalardoak ere, besteren artean.
- Hegaztiak: Kolibriak dira hauen artean ezagunenak, baina melifagoak eta eguzki txoriak ere polinizazio lanetan ibiltzen dira.
- Ugaztunak: Saguzarrak, zenbait karraskari edota lemurrak, besteak beste.
Erreferentzia bibliografikoak:
- Ollerton, J. , Winfree, R. and Tarrant, S. (2011). How many flowering plants are pollinated by animals?. Oikos, 120 (3), 321-326, DOI: 10.1111/j.1600-0706.2010.18644.x
- Klein, Alexandra-Maria, et al., (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274 (1608), DOI: http://doi.org/10.1098/rspb.2006.3721
- Wilson, Joseph S., Forister, Matthew L., Carril, Olivia (2017). Interest exceeds understanding in public support of bee conservation. Frontiers in Ecology and the Environment, 15(8), 460–466, DOI:10.1002/fee.1531
- Michener, Charles D. The Bees of The World. The Johns Hopkins University Press. Baltimore. 2007
- Watanabe, Myrna E. (1994). Pollination Worries Rise As Honey Bees Decline. Science, 265 (5176), 1170, DOI: 10.1126/science.265.5176.1170
- Potts, Simon G., et al. (2010). Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 49 (1), 15-22, DOI: 10.3896/IBRA.1.49.1.02
- Potts, Simon G., et al. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecoloby and Evolution, 25 (6), 345-353, DOI: https://doi.org/10.1016/j.tree.2010.01.007
- Garibaldi, Lucas A., et al. (2013). Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 339 (6127), 1608-1611, DOI: 10.1126/science.1230200.
- Regan, E. C. et al. (2015), Global Trends in the Status of Bird and Mammal Pollinators. Conservation letters, 8, 397-403, DOI: 10.1111/conl.12162
- IPBES. The assessment report on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services. Bonn. 2016. - IUCN. European Red List of Bees. Publication Office of the European Union. Luxembourg. 2014
- Aizen, Marcelo A., et al. (2008). Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Current Biology, 18 (20), 1572-1575, DOI: https://doi.org/10.1016/j.cub.2008.08.066
- Potts, Simon G., et al. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540, 220–229, DOI: 10.1038/nature20588
- Winfree, Rachael. (2008). Pollinator-Dependent Crops: An Increasingly Risky Business. Current Biology, 18 (20), R968-R969, DOI: https://doi.org/10.1016/j.cub.2008.09.010
———————————————————————–
Egileaz: Ziortza Guezuraga (@zguer) kazetaria da eta Euskampus Fundazioko Kultura Zientifikoko eta Berrikuntza Unitateko zabalkunde digitaleko teknikaria.
——————————————————————
The post Polinizatzaileekin bueltaka: erleak eta gehiago appeared first on Zientzia Kaiera.
Los espectros de absorción de los gases

En 1802, William Wollaston vio en el espectro de la luz solar algo que antes se había pasado por alto. Wollaston notó un conjunto de siete líneas [1] oscuras, muy definidas, espaciadas irregularmente, a lo largo del espectro solar continuo. No entendía por qué estaban allí y no investigó más.
Una docena de años después, Joseph von Fraunhofer, utilizando mejores instrumentos, detectó muchos cientos de esas líneas oscuras. A las líneas oscuras más prominentes, von Fraunhofer asignó las letras A, B, C, etc. Estas líneas oscuras se pueden ver fácilmente en el espectro del Sol incluso con espectroscopios modernos bastante simples. Las letras A, B, C,. . . todavía se usan para identificarlas. En los espectros de varias estrellas brillantes von Fraunhofer también encontró líneas oscuras similares. Muchas, pero no todas, de estas líneas estaban en las mismas posiciones que las del espectro solar. Todos estos espectros se conocen como espectros de líneas oscuras o espectros de absorción. [2]

En 1859, Kirchhoff hizo algunas observaciones clave que condujeron a una mejor comprensión tanto de los espectros de los gases, tanto de los de absorción como los de emisión. Ya se sabía que las dos líneas amarillas prominentes en el espectro de emisión del vapor de sodio calentado tenían las mismas longitudes de onda que dos líneas oscuras prominentes vecinas en el espectro solar [3]. También se sabía que la luz emitida por un sólido forma un espectro perfectamente continuo que no muestra líneas oscuras. Esta luz, que contiene todos los colores, es una luz blanca. Kirchhoff hizo algunos experimentos con ella. La luz blanca primero pasó a través de un vapor de sodio a temperatura baja y el resultado por un prisma. El espectro producido mostró el patrón de arco iris esperado, pero tenía dos líneas oscuras prominentes en el mismo lugar en el espectro que las líneas D del espectro del Sol. Por lo tanto, era razonable concluir que la luz del Sol también estaba pasando a través de una masa de gas de sodio. Esta fue la primera prueba de la composición química de la envoltura de gas alrededor del Sol.
El experimento de Kirchhoff se repitió con varios otros gases relativamente fríos, colocados entre un sólido brillante y el prisma. Cada gas produce su propio conjunto característico de líneas oscuras. Evidentemente, cada gas absorbe de alguna manera la luz de ciertas longitudes de onda de la luz que pasa. Además, Kirchhoff mostró que la longitud de onda de cada línea de absorción coincide con la longitud de onda de una línea brillante en el espectro de emisión del mismo gas [4]. La conclusión es que un gas puede absorber solo la luz de esas longitudes de onda que, cuando se excita, puede emitir.
Cada una de las diversas líneas de von Fraunhofer en los espectros del Sol y otras estrellas se ha identificado en el laboratorio como correspondiente a la acción de algún gas. De esta manera, se ha determinado toda la composición química de la región exterior del Sol y otras estrellas. Esto es realmente impresionante desde varios puntos de vista. Primero, es sorprendente que la comunidad científica pueda conocer la composición química de objetos a distancias inimaginables, algo que hasta ese momento, casi por definición, se creía imposible. Es aún más sorprendente que los sustancias químicas fuera de la Tierra resulten ser las mismas que las de la Tierra [5][6]. Finalmente, este resultado lleva a una conclusión sorprendente: los procesos físicos que causan la absorción de luz en el átomo deben ser los mismos en las estrellas y en la Tierra. [7]
Notas:
[1] Ya explicamos aquí (nota 3) por qué son líneas.
[2] Un momento. ¿Espectros de absorción en algo que emite luz? ¿Eso como va a ser? Ello se debe a que las estrellas tienen capas y parte de la luz emitida por las interiores es absorbida por la más externa. Brutamente, las líneas de los espectros de absorción de las estrellas nos dicen qué composición tiene esta capa externa, como explicamos a continuación.
[3] A estas líneas oscuras del espectro solar von Fraunhofer les había asignado la letra D.
[4] Ojo. La recíproca no es cierta, esto es, no todas las líneas de emisión están representadas en el espectro de absorción. Pronto veremos por qué.
[5] Newton asume que esto es así pero sin pruebas, con todo lo que ello supone.
[6] Esto es así porque el espectro más complejo de una estrella puede reproducirse empleando los elementos químicos disponibles en un laboratorio terrícola.
[7] Galileo y Newton asumieron que la física terrestre y la celeste obedecen las mismas leyes. Se había comprobado a nivel macroscópico; he aquí la prueba a nivel microscópico.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Los espectros de absorción de los gases se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Los espectros de emisión de los gases
- Computación cognitiva de espectros infrarrojos
- Absorción del alimento
No era tan fácil: wifi y cáncer

Nos habréis oído miles de veces decir que las radiaciones electromagnéticas de baja frecuencia, como las ondas de radio, las que se usan para telefonía o la WIFI no son cancerígenas porque no son ionizantes. Lo decimos y lo repetimos mil veces, luchando contra los que propagan el miedo (algunos interesadamente) a las antenas, los cables de alta tensión, etc. En ocasiones se nos escapa un tono áspero, impaciente, como si se tratara de un asunto evidente o sencillo de entender. Pero no lo es, ni mucho menos.
Ser una radiación ionizante quiere decir que al interaccionar con la materia será capaz de “arrancar” electrones a esos átomos, produciendo cambios. Por ejemplo, en la molécula de ADN podrían inducir mutaciones que llevasen a transformar células en cancerosas, o si se tratase de embriones podrían crear malformaciones o hacerlos inviables.
Vayamos por partes.
Los saltos electrónicos
Ya sabéis que los electrones se sitúan en los átomos en niveles de energía discretos, separados, que pueden tener sólo ciertos valores y no otros. Ejemplo inventado: en el átomo de nosécuantitos los niveles de energía serán 1, 3, 7, 12 (todos los números a partir de aquí son inventados para que se pueda seguir mejor la explicación). De esta forma un electrón que esté en el nivel de energía 3 necesita cuatro unidades de energía para pasar al nivel siguiente. Si no recibe esa energía, no podrá subir de nivel.
Los cuantos
Con la llegada de la física cuántica descubrimos que la energía se transmitía en “paquetes”, en cuantos, y que esos paquetes dependían de la frecuencia de la radiación (en la luz visible sería el color, menos frecuencia para el rojo y más para el azul, con valores intermedios en todo el arcoiris). De esta forma los paquetes de luz roja, por ejemplo, podrían tener una energía de una unidad, en cambio los de luz azul de dos unidades. La luz se compone de esos cuantos, de esos paquetitos, cuando tenemos más intensidad de luz es porque mandamos más paquetes, no que esos paquetes tengan más energía cada uno, os recuerdo que la energía de cada paquete solo depende de la frecuencia de la luz.
La luz y la materia
¿Qué pasa cuando la luz llega a la materia? Pues que los electrones pueden absorber esos cuantos de luz, esos fotones, y ascender de nivel. Si volvemos al ejemplo que pusimos, tenemos un electrón en el nivel de energía correspondiente a 3 unidades y, para saltar al nivel de 7 unidades, necesita de 4 unidades de energía. Si iluminamos con luz roja (dijimos que cada fotón tenía una unidad) no será suficiente la absorción de un fotón para saltar de nivel, así que el salto no se produce. Esa luz no se absorberá, el electrón no puede ir “guardándose” fotones). Si iluminamos con luz azul tampoco (dijimos que cada fotón azul tenía dos unidades). Así que será necesario iluminar con una luz de una frecuencia suficientemente alta para que esos fotones tengan la energía suficiente para hacer que el electrón cambie de estado. Quizá ocurra con luz ultravioleta, rayos X, etc.
Sería como si le diéramos pequeñas escaleras a alguien que tiene que escalar un muro, pero de insuficiente altura. Por más escaleras pequeñas que le demos (y que no puede empalmar) será imposible que suba el muro. De la misma manera, por más intensa que sea la luz roja con que iluminemos (por más numerosos que sean los paquetes) será imposible que el electrón cambie de nivel energético.
El efecto fotoeléctrico
Este fenómeno se observó en el llamado efecto fotoeléctrico: al iluminar una sustancia se producía una corriente eléctrica (se “arrancaban” electrones), pero si la frecuencia bajaba de cierto valor (frecuencia de corte) dejaba de producirse la corriente. Esto llamaba mucho la atención, porque se entendía que si la energía de a luz que iluminaba era suficientemente alta el efecto debía producirse. Tuvo que ser con la llegada de la teoría de los cuantos que se diera la explicación correcta al fenómeno, y tuvo que ser Einstein el que resolviera el entuerto, quien posteriormente recibiría el premio Nobel por esta contribución (y no por la Teoría de la Relatividad, como a veces se cree).
No era tan fácil
Como veis, no era tan fácil eso de que las radiaciones de baja frecuencia no son ionizantes. Hemos tenido que tirar de la teoría cuántica y del amigo Einstein para tener una explicación científicamente satisfactoria del asunto. Esto es algo que no habría que perder de vista cuando contamos con aspereza a profanos que las radiaciones de baja frecuencia no son ionizantes.
Demostraciones que quizá no demuestran lo suficiente
Un amigo me contaba un día que para ilustrar esto le gusta un experimento que es bastante curioso. Si iluminas un cartel de esos de “Extintor”, “Salida”, con una luz de baja frecuencia, por ejemplo un puntero láser rojo, no dejan casi “huella brillante”, pero si lo iluminas con luz azul, una vez que apagas la luz, queda como una “pintura de luz” por donde pasaste. Señal de que, a pesar de la intensidad total de la luz, hay paquetitos de más energía y paquetitos de menos energía. Si queréis hacerlo, probadlo primero, porque no funciona con todos los tipos de carteles.
El problema es que mi amigo decía que con la luz de baja frecuencia “casi” no quedaba rastro… y este “casi” es un problema. La frecuencia de corte es un corte abrupto, no hay efecto a partir de ahí. Si hubiera un efecto pequeño, este podría ser apreciable si aumentásemos la intensidad de la luz, si algunos paquetitos consiguen funcionar, podríamos mandar muchos y montar un buen lío… Pero se supone que lo que queríamos ilustrar es que en frecuencias bajas NO hay efecto.
Medidas epidemiológicas
Aunque no sería necesario buscar el efecto de algo que no tiene sentido con los conocimientos asentados, no cuesta mucho (más que personal, tiempo y dinero) llevarlo a cabo, y como hay gente interesada y preocupada por esto, pues se ha hecho. Las conclusiones mirando todos los estudios y teniendo en cuenta que se hayan hecho de forma adecuada (sin problemas metodológicos, p.ej.) es que no hay tal efecto de un aumento de cáncer en personas sometidas a intensidades comunes de radiaciones de baja frecuencia. Si lo hubiera, nos habría tocado buscar si era una correlación espúrea, si necesitábamos modificar nuestras fórmulas… pero no es así.
Así que ni el conocimiento sobre radiación, ni los estudios en población muestran que estar en un edificio donde hay wifi, o usar teléfonos móviles, vaya a aumentar tus probabilidades de tener cáncer.
No, no era tan fácil
¿Era evidente? ¿Era fácil? ¿Tenéis conocimientos de cierta profundidad sobre electromagnetismo y cuántica, interacción radiación-materia? Bueno, incluso si así fuera, ¿hemos de tratar con altivez a quien no los tiene? Yo diría que no.
Sigamos informando, expliquemos (aquí tenéis una manera de cómo hacerlo), luchemos contra los que se aprovechan del miedo de los poco informados… pero, repito, no es un asunto tan fácil.
Si te preocupa el cáncer…
Dejadme que aproveche para recordar que, en cambio, el consumo de alcohol y tabaco, o la excesiva exposición a la radiación UV (y otras radiaciones ionizantes, de mayor frecuencia, como los rayos X) sí son cancerígenos comprobados y bastante “eficientes”. Esto es algo que sabemos tanto por los estudios en laboratorios, como por los epidemiológicos. De manera que si queréis reducir vuestras probabilidades de tener cáncer, ya tenéis algunas cosas que podéis hacer.
Sobre el autor: Javier Fernández Panadero es físico y profesor de secundaria además de escritor de libros de divulgación.
El artículo No era tan fácil: wifi y cáncer se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Sin atajos frente al cáncer
- Hacia la decisión compartida en los programas de cribado de cáncer de mama
- Microbiota y cáncer