Birikarik gabeko igela
———————————————————————————————————–
Titikaka aintzirako igela atalean esan dugu Telmatobius culeus igelak ez daukala egiazko birikarik, arnasa larruazaletik hartzen duela. Bada, baina, are harrigarriagoa den beste igel bat: Barbourula kalimantanensis du izen zientifikoa eta Borneoko igel buru zapala (Bornean flat-headed frog) izen arrunta. Barbourulak ez du birikarik, ez egiazko birikarik ez eta birika-aztarnarik ere. Gogora dezagun Telmatobiusek birika-aztarnak dituela. Barbourula dugu birikarik gabeko igel bakarra.
Irudia: Barbourula kalimantanensis barbourula generoko animalia da. Anfibioen barruko bombinatoridae familian sailkatuta dago, anura ordenan. (Testua: Wikipedia / Argazkia: David Bickford)
Borneon aurkitu zuten 1978an, baina 2008an espezie beraren bi populazio gehiago aurkitu diren arte, ez da igelaren disekziorik egin eta ez da behar bezala deskribatu eta sailkatu. Disekzioa egitean aurkitu dute birikarik gabea dela. Barbourularen banakoak aztertu dituen Singapurreko Unibertsitateko ikertzaile baten iritziz, ur-lasterretan bizitzeko moldaera da birikarik ez edukitzea. Birikek flotatzea errazten dute, flotagailuek bezala jokatzen baitute. Ura oso arin mugitzen den tokietan zaila izan daiteke errekaren substratu gainean egotea, eta are zailagoa igelak flotatzeko joera badu. Flotatzeko joera txikiagoa da birikarik gabe eta beraz, zentzuzkoa dirudi eboluzioan zehar birikak guztiz galdu izana.
Ur-lasterretan erraz eskura daiteke oxigenoa, ura oxigenoz saturatuta baitago. Beraz, larruazala organo egokia izan daiteke igelak behar duen oxigeno guztia lortu ahal izateko. Gainera, buru laua izatea azalera emendatzeko moldaera izan daiteke; izan ere, azalera handiagoak arnas azalera handiagoa dakar.
—————————————————–
Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.
—————————————————–
Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.
The post Birikarik gabeko igela appeared first on Zientzia Kaiera.
Terraformando la Tierra
El cambio climático de origen humano es un hecho sobre el que el consenso de los científicos es prácticamente unánime. Los datos, en cualquier caso, dejan pocas opciones. La cuestión es que a la hora de hablar de cómo combatirlo parece que todo se resume en dos grandes grupos de posibilidades: por un lado emitir menos gases de efecto invernadero a la atmósfera y, por otro, desarrollar tecnologías que permitan almacenar estos mismos gases en forma sólida o líquida eliminándolos de la atmósfera. Y eso parece todo. Salvo que se piense a lo verdaderamente grande, claro, y hablemos de geoingeniería: ¿y si usamos técnicas de terraformación?
La primera vez que se habla de alterar el clima de un planeta, Venus, con la idea de terraformarlo (hacerlo habitable por seres de la Tierra) aparece en novelas de ciencia ficción de los años treinta del siglo XX. El que la ingeniería humana tiene los conocimientos necesarios para cambiar el clima de un planeta quedó patente en un artículo que Carl Sagan publicó en Science en marzo de 1961 titulado “The planet Venus”, en el que imaginaba rociar la atmósfera venusiana con algas para eliminar el dióxido de carbono y conseguir que se alcanzasen niveles de temperatura en la superficie tolerables. Esto fue antes de que se supiese que las nubes de Venus eran básicamente de ácido sulfúrico concentrado, claro.
Fases de una posible terraformación de Marte. Fuente: Ittiz/Wikimedia Commons
En 1973 Sagan volvió al tema con la publicación en Icarus de “Planetary Engineering on Mars” en el que proponía cubrir las regiones polares de materiales que absorbieran la energía incidente o de llevar plantas oscuras que creciesen en las nieves de los polos con la idea de convertir Marte en una mini-Tierra. Un estudio llevado a cabo por la NASA en 1976 llegó a la conclusión de que en Marte era posible la aplicación de una “ecosíntesis planetaria”, esto es, terraformar el planeta.
¿Y por qué no aplicar una técnica similar para revertir el cambio climático en la Tierra? Eso es lo que ha debido pensar un equipo de investigadores de la Universidad de Harvard (EE.UU.) encabezados por David W. Keith al proponer esparcir partículas de caliza o calcita (carbonato cálcico) en las capas altas de la atmósfera terrestre, a unos 20 km de altura. La calcita reflejaría y dispersaría la radiación solar incidente, con lo que se ralentizaría el calentamiento por efecto invernadero.
Calcita en polvo con un 95 % de pureza para uso industrial. Se vende a unos 30 € la tonelada.
Si bien no es la primera vez que se propone algo así (ha habido propuestas usando desde sulfatos a polvo de diamantes) el carbonato de la calcita tiene la ventaja de que neutralizaría tres ácidos presentes en la atmósfera (HNO2, HCl y HBr) que son de origen humano y forman los radicales que destruyen el ozono. En otras palabras, el uso de calcita revertiría el calentamiento global y contribuiría a reparar el agujero de la capa de ozono.
Los autores han elaborado un modelo que les permite ser muy precisos en su recomendación. El tamaño de partícula ideal es de medio micrómetro de diámetro. Habría que dispersar 5,6 millones de toneladas al año a una altura de entre 18 y 20 km, entre los 20 y los 30 º de latitud, para conseguir una dispersión homogénea. Con todo esto se conseguiría una disminución de la energía que entra al sistema de 2 W/m2, suficiente para contrarrestar los efectos del dióxido de carbono.
Aparte de que serían necesarios experimentos en altitud para confirmar que el modelo funciona en condiciones reales, experimentos a muy pequeña escala (1 kg de calcita) suficientes para comprobar cómo se dispersa la calcita y qué reacciones químicas tienen lugar realmente y a qué velocidad, los autores afirman de que es un proyecto factible incluso desde el punto de vista económico. Según sus cálculos el transporte de una tonelada de calcita costaría del orden de 1 euro y la calcita en sí es un material barato.
Más problemático parece cómo dispersar un aerosol sólido fino de forma eficaz, desde el punto de vista técnico. Pero el principal inconveniente serán los obstáculos políticos, empezando por los negacionistas del cambio climático, y de las organizaciones ecologistas (por no mencionar a los que creen en conspiraciones) para llevar a cabo un proyecto así.
Técnicamente es posible y si se diese el visto bueno ya en 2020 se podría estar ejecutando. Algo que no ocurrirá. Esperemos que no haya que recurrir a algo así de forma desesperada.
Referencia:
D.W. Keith et al (2016) Stratospheric solar geoengineering without ozone loss PNAS doi: 10.1073/pnas.1615572113
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Terraformando la Tierra se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La traba de Pascal: geometría proyectiva y literatura
Mai quai Contii de Michèle Audin es –como la propia autora dice en su prefacio– un homenaje a la Comuna de Parísii en el que se mezcla ciencia, historia y literatura:
- ciencia porque los trece capítulos –sin contar el prefacio y el epílogo– corresponden a trece fechas de 1871, que coinciden con trece sesiones de l’Académie des sciencesiii que tenían lugar los lunes por la tarde,
- historia porque trata de un momento crucial en la historia del pueblo francés: los sesenta días de gobierno de la Comuna, detallándose lo que sucedió en el terreno revolucionario, político y cultural en París, y
- literatura porque –además de las muchas referencias literarias que pueden leerse– Michèle Audiniv escribe este texto bajo trabas oulipianas –usa pastiches, tautogramas, monovocalismos, lipogramas, etc.–, y presentando una restricción creada por ella misma, la traba de Pascal –explicada con detalle en el epílogo y en el índice– que le permite organizar los capítulos como explicaremos a continuación.
Institut de France, lugar de reunión de l’Académie des Sciences, sito en 23 quai Conti, París
Cada capítulo corresponde a un lunes, una fecha de reunión de l’Académie des Sciences. La autora narra con detalle los temas que se trataron en aquellas reuniones, tanto de tipo científico, como político o cultural. Cada fecha –cada sesión, cada capítulo– va acompañada de una figura geométrica –una elipse– con varios puntos marcados sobre ella y segmentos relacionando algunos de esos puntos. Estos nexos entre puntos van cambiando de capítulo en capítulo, al incorporar nuevos personajes o situaciones; pero aún más: cada fecha corresponde a un paso de la demostración del teorema de Pascal tal y como lo prueba la propia autora en su libro [Michèle Audin, Géométrie, Edp-Sciences, 2006, segunda edición].
El teorema de Pascalvi es un enunciado de geometría proyectiva que dice –el enunciado y la prueba son los que Michèle Audin utiliza en el texto–:
Sea C una cónica propia de imagen no vacía y sean A, B, C, D, E y F seis puntos sobre esta cónica. Sean N=(AF)∩(ED),M=(AB)∩(CD) y L=(CF)∩(EB). Entonces los puntos L, M y N están alineados.
© Michèle Audin
Demostraciónvii:
Sean S=(AB)∩(CF)yT=(CD)∩(AF). Se tiene queviii
[S,L,C,F]=[BS,BL,BC,BF]=[BA,BE,BC,BF]=[DA,DE,DC,DF]=[A,T,N,F].
Sea K=(LN)∩(AB). La perspectividad de centro K que envía CF sobre AF ,envía S sobre A, L sobre N y F sobre F. La imagen de C es entonces T. Así K ∈ CT, es decir CD. Por lo tanto K=M. CQD
Esta demostración va a ser la que estructure cada capítulo, es decir, el enunciado junto a su prueba, divididos en trece pasos, establecerán personajes y relaciones.
—oOo—
13 DE MARZO
SEA C UNA CÓNICA PROPIA DE IMAGEN NO VACÍA
(en este caso C es una elipse)
© Michèle Audin
Michèle Audin comienza su historia el 13 de marzo de 1871, describiendo el Mai quai Conti –sede de l’Académie des sciences– de manera exhaustiva, sin olvidarse de hablar de elipses, semicírculos, hélices, etc. La autora se pregunta sobre lo que podría estar sucediendo, sobre qué conversaciones se estarían manteniendo –el ejército prusiano acechando, posiciones políticas, etc.–, sobre lo que hicieron los académicos antes de llegar a la reunión, que calles atravesaron para llegar a la Academia desde sus casas… A través de los documentos archivados en la Academia, se puede saber quienes asistieron a cada reunión, los temas que trataron, las discusiones mantenidas, el tiempo que estuvieron reunidos, y todo tipo de detalles recogidos en las actas… hablaron de ciencia, de la situación política, de la visita de personajes del ámbito científico o literario, etc.
Este capítulo se presenta con la figura de una elipse –de la que habla también al describir el edificio, comentando que las cónicas eran muy valoradas por los arquitectos de la época–, que se irá completando durante el relato –como ya hemos comentado– añadiendo puntos y segmentos uniéndolos a medida que la narración progrese y los personajes se vayan relacionando.
Se habla, por ejemplo, del matemático Camille Jordan y su artículo Sur la résolution des équations les unes par les autres, más extenso que la media habitual de notas, pero que se publicaría de cualquier modo en el volumen 72 de los Comptes rendus de la Academia.
—oOo—
20 DE MARZO
Y SEAN A, B, C, D, E Y F SEIS PUNTOS SOBRE ESTA CÓNICA.
© Michèle Audin
La autora presenta a seis de los personajes –su aspecto, sus posiciones políticas y sociales, sus vidas y algunas de sus aportaciones a la ciencia– que participaron en la reuniones durante el mes de marzo y coloca seis puntos en la elipse –que permanecerán durante toda la historia–: Charles Hermite (A), Joseph Bertrand (B), Michel Chasles (C), Charles Delaunay (D), Léonce Élie de Beaumont (E) y Hervé Faye (F). Describe de manera exhaustiva lo sucedido en la reunión, comentando en particular una visita de Victor Hugo a París para enterrar a su hijo brutalmente asesinado en las revueltas.
—oOo—
27 DE MARZO
SEAN N=(AF)∩(ED),
© Michèle Audin
El astrónomo y geómetra Simon Newcomb (N) visita París para realizar observaciones y cálculos en l’Observatoire. Aunque no se sabe si encontró a Hermite (A) o Faye (F) –Hermite, el matemático principal y Faye, astrónomo– la autora comenta que probablemente ellos quisieron conocer al americano, y juega con la (A) de Hermite y la (F) de Faye a través de un divertido tautograma –este juego se repetirá en cada punto de intersección–:
Simon Newcomb, astronome américain, amateur d’algèbre, actif et aguerri, accueilli par l’Académie et accoutumé à ses alentours, affolé par l’ampleur de l’anarchie, accablé, familier de Faye, aux peu fictives facilités, fuyant frileusement la foison des fédérés faméliques, les farandoles de farouches fantassins fourbus, les fangeux et funestes faubourgs, fuyant la France.
colocando a Newcomb (N) en el punto medio del segmento que une (A) y (F).
Newcomb debía conocer a Delaunay (D) –gran especialista sobre la Luna y sus movimientos– y en vez de entregar a Léonce Élie de Beaumont (E) –el Secretario Perpetuo– el documento con sus medidas, lo llevó a la reunión del 3 de abril para terminar de redactar y completar su texto. La autora traza el segmento entre Delaunay (D) y Élie de Beaumont (E) –que como debía ser, pasa por (N)–, y dedica otro tautograma –esta vez en D y E– a Newcomb.
Hablando de la luna, se cita entre otros al astrónomo y matemático Urbain Le Verrier y al escritor Jules Verne. Y también aparecen destacados matemáticos –y alguna de sus aportaciones– como Joseph Liouville o Augustin Louis Cauchy.
—oOo—
3 DE ABRIL
M=(AB)∩(CD),
© Michèle Audin
Un nuevo punto aparece –M, de‘moi’, la narradora– en la figura que rige el teorema de Pascal: Madame Hermite, la esposa de Charles Hermite (A) era hermana de Joseph Bertrand (B), aunque los dos científicos nunca llegaron a entenderse. Chasles –autor del Traité des coniques– y Delaunay estaban unidos por la Luna. Así. la (M) se genera a partir de la (A) y la (B), o a partir de la (C) y la (D).
La narradora –el yo, moi, que aparece–, confiesa mirar a Hermite (A) y Bertrand (B) y admirar a Chasles (C) y Delaunay (D), y lo expresa a través de un tautograma en A y en B… seguido de otro en C y D.
La autora realiza además un precioso homenaje al conocido Je me souviens de Georges Perec… con recuerdos sobre literatura, sobre derechos de las mujeres reconocidos por la Comuna, etc., transmitiendo lo vivido en París durante el mandato de la Comuna. Además, como ‘matemática y preocupada de elevar el nivel científico y cultural de sus lectores’, la narradora se permite aclarar algunos de los puntos matemáticos tratados en esta sesión de la Academia.
—oOo—
10 DE ABRIL
Y L=(CF)∩(EB).
© Michèle Audin
Aparece en la historia el periodista Prosper-Olivier Lissagaray (L), testigo de los acontecimientos y autor de Histoire de la Commune de 1871, publicado en 1896. Lissagaray no habría oído –probablemente– nunca hablar de Chasles (C) ni de Faye (F) –un tautograma en C y F le describe– pero habló en sus publicaciones de Bertrand (B) y de Élie de Beaumont (E) –otro tautograma en B y E sirve para trazar mejor a este personaje–.
Gustave Flourens es miembro de la Comuna y Lissagaray habla en particular de él y de su asesinato.
En la sesión de la Academia se habla de botánica, y Chasles continúa demostrando teoremas sobre cónicas.
—oOo—
17 DE ABRIL
ENTONCES LOS PUNTOS L, MY NESTÁN ALINEADOS.
© Michèle Audin
Con esta declaraciónix:
Qui suis-je, moi ? Qui suis-je, pour pouvoir raconter cette histoire ? Parler en même temps, presque d’une même phrase, de Prosper-Olivier Lissagaray et de Simon Newcomb ?
se traza una línea discontinua –que desaparecerá en el siguiente capítulo, ya que es el enunciado que se desea probar– entre la narradora (M), Lissagaray (L) y Newcomb (N). Un ‘tautograma’ mezclando la L con la N permite seguir la descripción del periodista y el científico.
Aparece –entre otras– una fotografía de Sofía Kovalevskaya, que habla de cómo está asistiendo a un momento histórico en París, de cómo ayuda a cuidar a los heridos y de su asistencia a las sesiones de la Academia.
—oOo—
24 DE ABRIL
SEAN S=(AB)∩(CF) Y T=(CD)∩(AF).
(comienza la demostración del teorema)
© Michèle Audin
Desaparece la línea discontinua uniendo N, L y M –este es el comienzo de la demostración del teorema de Pascal, que dice precisamente que esa línea existe– y aparecen dos nuevos puntos: T y S.
(S) es el secretario secreto –que relata las sesiones de la Academia en elJournal Officiel de la Commune– no ha visto en esta sesión ni a Hermite (A) ni a Bertrand (B), pero si a Chasles (C) y no a Faye (F). Se trazan los segmentos entre A y B –que también pasa por M– y entre F y C –que también pasa por L–, que se cortan en S, y nuevos tautogramas en A y B y en F y C ayudan a describir al secretario.
Se habla en particular de cómo ‘gente loca’ envía demostraciones –por ejemplo del teorema de Fermat a la Academia–; así (T) representa tanto a este periodista que firma de manera anónima como a todos los que escriben a l’Académie des sciences con locas demostraciones y absurdos comentarios: T pasa por el segmento que une A y F –que pasa por N– y por el segmento que une D y C –que pasa por M–: los tautogramas en A, F, D y C ayudarán a describirlos.
… Y Chasles continúa con sus demostraciones sobre cónicas.
—oOo—
1 DE MAYO
SE TIENE QUE [S,L,C,F]=[BS,BL,BC,BF]
© Michèle Audin
En la cónica desaparece M, la narradora; la de hoy es una jornada de caos, de dura batalla en la calle y de fusilamientos. Se relaciona a Bertrand (B) –que no ha acudido a la sesión de la Academia, y de diversas maneras– con el secretario secreto (S), con Lissagaray (L), con Chasles (C) y con Faye (F).
—oOo—
8 DE MAYO
=[BA,BE,BC,BF]=[DA,DE,DC,DF]
© Michèle Audin
El 8 de mayo, Bertrand participa en la sesión de la Academia. No estaban ni Hermite (A) ni Faye (F), pero si Élie de Beaumont (E) y Chasles (C).
—oOo—
15 DE MAYO
=[A,T,N,F].
© Michèle Audin
Es la última reunión de la Academia durante el gobierno de la Comuna, antes de la Semana Sangrienta (21 a 28 de mayo). Desaparecen las líneas entre (B) y (C) y entre (B) y (F), y las que el 8 de mayo estaban en rojo, cambian de color.
La narradora da el listado de los pocos asistentes a la reunión, entre ellos Antoine-Joseph Yvon Villarceau, conocido por una famosa construcción relacionada con el toro.
—oOo—
22 DE MAYO
SEA K=(LN)∩(AB).
© Michèle Audin
Aparece de nuevo a Sofía Kovalevskaya (K), que ya no está en París. Está relacionada con Newcomb (N) –ambos leen a Laplace– y con Lissagaray (L) –ella fue una de las mujeres de la Comuna–. Sofia fue también colega de Hermite (H) y de Bertrand (B), ya que tras su tesis, todo su trabajo y la demostración del teorema de Cauchy-Kovalevskaya, adquirió el estatus de matemática profesional.
—oOo—
29 DE MAYO
LA PERSPECTIVA DE CENTRO K QUE ENVÍA CF SOBRE AF ENVÍA S SOBRE A, L SOBRE N Y F SOBRE F. LA IMAGEN DE C ES ENTONCES T.
© Michèle Audin
Como el lunes anterior, no hay reunión en la Academia. Todo ha terminado para la Comuna en París.
—oOo—
5 DE JUNIO
ASÍ K ∈ CT, ES DECIR CD. POR LO TANTO K=M.
© Michèle Audin
Tiene lugar una reunión en la Academia, en la que se habla poco de ciencia y más de la masacre cometida en París. Y se ve que (K)=(M), es decir, la narradora ha sido Sofía Kovalevskaya… el teorema-homenaje está demostrado, homenaje a las mujeres de la Comuna,… como Sofía. CQD
AGRADECIMIENTO: Quería agradecer a Michèle Audin –además de esta maravilla de texto– el haberme permitido utilizar las imágenes que acompañan a Mai Quai Conti.
Notas:
i El título es un lipograma: no se emplea la letra ‘e’, como en La Disparition de Georges Perec.
ii La Comuna de París –La Commune de Paris– fue un movimiento insurreccional que gobernó esta ciudad entre el 18 de marzo y el 28 de mayo de 1871, instaurando un proyecto político popular autogestionario. Regentó París durante 60 días promulgando, una serie de decretos revolucionarios –como la autogestión de las fábricas abandonadas por sus dueños, la creación de guarderías para los hijos de las obreras, la laicidad del Estado, la remisión de los alquileres impagados o la abolición de los intereses de las deudas–, que en su mayoría respondían a la necesidad de paliar la pobreza generalizada que había causado la guerra. La Comuna fue reprimida con extrema dureza: tras un mes de combates, el asalto final al casco urbano provocó una dura lucha en la calle–la denominada Semana Sangrienta, Semaine sanglante– del 21 al 28 de mayo; el balance final fue de unos 30.000 muertos y el sometimiento de París a la ley marcial durante cinco años. La Comuna pedía:
El reconocimiento y la consolidación de la República como única forma de gobierno compatible con los derechos del pueblo y con el libre y constante desarrollo de la sociedad. La autonomía absoluta de la Comuna, que ha de ser válida para todas las localidades de Francia y que garantice a cada municipio la inviolabilidad de sus derechos, así como a todos los franceses el pleno ejercicio de sus facultades y capacidades como seres humanos, ciudadanos y trabajadores. La autonomía de la Comuna no tendrá más límites que el derecho de autonomía igual para todas las demás comunas adheridas al pacto, cuya alianza garantizará la Unidad francesa.
Declaración de la Comuna de París al Pueblo Francés, 19 de abril de 1871
iii La Academia de Ciencias de Francia –l’Académie des sciences– es la institución que: Anima y protege el espíritu de la investigación, y contribuye al progreso de las ciencias y de sus aplicaciones. Creada en 1666, durante el reinado de Luis XIV, contó inicialmente con científicos como René Descartes, Blaise Pascal y Pierre de Fermat.
iv Perteneciente al grupo OuLiPo desde 2009.
v Os recomiendo que entréis a verlo en http://blogs.oulipo.net/ma/: el texto va acompañado de una extensa colección de documentos gráficos.
vi El teorema de Pascal –o Hexagrammum Mysticum Theorem– es un teorema de geometría proyectiva que generaliza el Teorema del hexágono de Pappus y es el dual proyectivo del Teorema de Brianchon. Fue descubierto por Blaise Pascal en 1639, cuando tenía tan solo dieciséis años.
vii Para las nociones de geometría proyectiva que aparecen, se puede consultar, por ejemplo, el libro Geometríade Carlos Ivorra Castillo, disponible gratuitamente en pdf.
viii Dados cuatro puntos distintos A, B, C y D sobre una recta, su razón doble o anarmónica [A,B,C,D] es el cociente de AC . DB entre AD . CB.
La razón doble o anarmónica de cuatro rectas concurrentes OA, OB, OC, OD es [OA,OB,OC,OD], el cociente de sen(AOC) . sen(DOB) entre sen(AOD) . sen(COB).
Se puede probar que: La razón doble de un haz de cuatro rectas es igual a la razón doble de cuatro puntos alineados en los cuales cualquier transversal que no pase por el vértice corta las cuatro líneas.
Además, si O y P son puntos sobre una cónica, [OA,OB,OC,OD]= [PA,PB,PC,PD].
ix ¿Quién soy yo? ¿Quién soy para poder contar esta historia? Hablar al mismo tiempo, casi con una misma frase, de Prosper-Olivier Lissagaray y de Simon Newcomb?
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo La traba de Pascal: geometría proyectiva y literatura se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Azukreari bidesaria, osasunaren mesedetan
“Industria etekinak ateratzen ari da, gure haurren osasunaren lepotik. Enpresek ez badute azukrea beren borondatez murrizten, Erresuma Batuko gobernuak aurrera pausoa egin beharko du, eta araudia indartu”. Hala zioen Simon Capewell Liverpoolgo Unibertsitateko ikertzaileak, haurrei zuzendutako edari askok duten gehiegizko azukre kantitateari buruz, Zientzia Kaiera honetara ekarri genuen artikulu batean. Bada, agintariek hartu dute enkargua, eta ondo bidean, Erresuma Batuak zerga zorrotzagoak aplikatu dizkio sektore horri, 2018ko apiriletik aurrera: bidesari gogorra ezarriko diete ehun mililitroko zortzi gramo azukre edo gehiago dituzten edariei, eta arinagoa, bost eta zortzi gramo artean dituztenei.
Horrek guztiak herritarren osasunean zer inpaktu izango duen aztertu dute orain, Oxfordeko Unibertsitatetik gidatutako ikerketa batean. Zerga igoerari erantzuteko edarion industriak zer neurri har ditzakeen aurreikusi, horien araberako zenbait agertoki planteatu, eta balizko ondorioak atera dituzte. Emaitzon arabera, baikor izateko moduan gaude, zergak obesitatea, diabetesa eta hortzetako arazoak murrizteko balioko duela baitirudi. Hala adierazi dute The Lancet Public Health aldizkarian argitaratu duten artikuluan.
Zerga igoeraren aurrean, industriak hiru neurri mota har ditzakeela irudikatu dute ikerketa honetan: azukre gehien duten edarien formula aldatzea, produktuok garestiago saltzea edo marketin estrategia aldatu eta jendea azukre gutxiago duten etxe bereko beste edari batzuen kontsumora erakartzea. Hiru neurri horiek osasunean izan dezaketen inpaktuari begira, bina agertoki errealista identifikatu dituzte: baikorrena eta ezkorrena. Guztira sei agertoki, beraz.
1. irudia: Neskato bat, azukredun edariak saltzen dituen makinari begira. Haur obesitatea nabarmen murriztuko litzateke, industriak neurriak hartuko balitu. (Argazkia: Jmettraux / CC BY 2.0)
Lehen agertokian, formulazioa aldatuko luke industriak, edari gozoenen azukre edukia %30 eta koska bat beherago daudenena %15 murriztuz. Ikerketaren arabera, horixe litzateke neurri onuragarriena. Izan ere, 58,5 mililitrotan gutxituko litzateke Erresuma Batuan norbanako bakoitzak egunero edaten duen azukredun edarien bolumena. Emaitza are nabarmenagoa litzateke 11-18 urteko adin taldean, haurren artean mota honetako produktuek duten ikaragarrizko arrakastaren erakusle: egunean 137,6 mililitro gutxiago edango lukete mutilek, eta 93,2 mililitro gutxiago neskek.
Aurreneko agertoki horrek inpaktu nabarmena izango luke herritarren osasunean. Ikerketa honetako kalkuluen arabera, 144.000 lagun gutxiagok izango lukete obesitatea. Inpaktua bereziki handia izango litzateke txikienen artean: obesitatea duten 4-10 urteko mutilen kopurua %10,4 gutxituko litzateke, eta %8,9 neskei dagokienez. Hori gutxi ez, eta 2 motako 19.000 diabetes kasu gutxiago egongo lirateke urtean (65 urtetik gorakoen artean izango luke intzidentzia handiena) eta 270.000 hortzetako txantxar gutxiago.
Aztertutako agertokien artean, edarien formulazioa aldatzea izango litzateke osasunarentzat onuragarriena, baina beste neurri batzuk ere ez lirateke txarrak. Esaterako, industriak zergaren kostuaren erdia kontsumitzailearen esku utziko balu, %20 igo beharko luke azukredun edarien prezioa (hirugarren agertokia). Garestitze horrekin, obesitatea duten pertsonak 81.600 gutxiago izango liratekeela estimatu dute, 10.800 diabetes kasu gutxiago egongo liratekeela urtean, bai eta 149.000 txantxar kasu gutxiago ere.
Agertoki guztiek eman dituzte emaitza positiboak, batek izan ezik. Azukre gehien duten produktuekin enpresek izan ditzaketen galerak orekatzeko, ikertzaileak beldur dira, marketinaren bitartez, ez ote dituzten edari osasungarriak hartzen dituzten pertsonak azukre zertxobait duten produktuak (zerga, bai, baina arinagoa) kontsumitzera bideratuko. Horixe planteatzen du seigarren agertokiak, eta obesitatea eta beste gaitzak handitzea ekarriko luke horrek.
2. irudia: Azukredun edarien kontsumoak handitu egiten du 2 motako diabetesa izateko arriskua. (Argazkia: Mr Hyde / Public domain)
Hala ere, oro har, ikerketa honetan parte hartu duten taldekideak baikor dira. Adam Briggs artikuluaren egile nagusiaren arabera, “zergaren aurrean industriak eman ditzakeen erantzun balizkoenei erreparatzen badiegu (azukrea gutxitu, prezioa handitu, azukre gutxiko edariei merkatuan tarte handiagoa eman), neurri guztiek dute osasuna hobetzeko potentziala. Onura horiek zenbaterainokoak izango diren, industriaren erabakien araberakoa izango da hori. Adi egon behar dugu, industriak azukrea murrizten duela egiaztatzeko, eta zergaren arabera prezioak igotzen badituzte, soilik azukredun edariak garestituko dituztela ziurtatzeko”.
Gainera, The Lancet aldizkarian argitaratutako artikulu honi iruzkina egin dio Lennert Veerman ikertzaileak, eta are baikorragoa da zergak izan dezakeen inpaktuari buruz. Mexikon eta Frantzian antzeko zergak ezarri dituztela azaldu du, eta bi kasuotan, kontsumitzaileak ordaindu duela osorik, industriak edariaren prezioa nabarmen garestituta. Oxfordeko ikertzaileok ez dute aukera hori sei agertoki balizkoenetan sartu, baina sentikortasun analisia egin dute. Erresuma Batuan ere, Mexikon eta Frantzian bezala gertatuko balitz, ondorioak agertokirik onenean baino onuragarriagoak lirateke: azukredun edarien kontsumoa 71 mililitro murriztuko litzateke pertsona eta eguneko, obesitatea ia 175.000 pertsonatan jaitsiko litzateke, urteko diabetes kasuak 23.000 gutxiago lirateke, eta txantxarrak, 324.000 gutxiago.
Erreferentzia bibliografikoa:
Adam D M Briggs et al. Health impact assessment of the UK soft drinks industry levy: a comparative risk assessment modelling study. The Lancet Public Health. Published: 15 December 2016. DOI: http://dx.doi.org/10.1016/S2468-2667(16)30037-8
———————————————————————————-
Egileaz: Amaia Portugal (@amaiaportugal) zientzia kazetaria da.
———————————————————————————-
The post Azukreari bidesaria, osasunaren mesedetan appeared first on Zientzia Kaiera.
#Naukas16 ¿Que te chupe la qué?
Como es evidente por el título, Alfred López nos habla de qué hacer si te muerde una serpiente (o cualquier otro animal) venenosa.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 ¿Que te chupe la qué? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Llull no fue alquimista
Ramon Llull, el siervo de Dios, el beato por culto inmemorial, el misionero, el filósofo, el poeta, el místico, el teólogo, el pionero de las letras catalanas, el doctor iluminado, no fue alquimista. De hecho condenó las prácticas asociadas a la alquimia. Pero su nombre consta como autor de varios textos alquímicos que aparecieron tras su muerte. Textos que están a la altura de su genio.
Ramon nació en 1232, año arriba, año abajo, en Palma, en la recién conquistada isla de Mallorca, de padres barceloneses pertenecientes a la pequeña nobleza catalana. Criado en la corte mallorquina fue primero poeta, después estudioso y finalmente escritor en catalán, latín y árabe. Se casó y llevó la perfecta vida del cortesano, incluida la persecución y enamoramiento de doncellas, hasta que a los 30 años, inspirado por varias visiones de la crucifixión de Jesús, Llull lo dejó todo, propiedades y familia (tuvo dos hijos), y dedicó sus energías, esfuerzos y talento a la teología, las lenguas y la mística.
Llull argumentando según Thomas le Myésier en “Electorium parvum seu breviculum” (posterior a 1321). Nótese el uso de las letras como símbolos proposicionales lógicos.
Llull desarrolló una forma de filosofía teológica en la que relacionaba todas las formas de conocimiento y, por tanto, demostraba la presencia de Dios en el universo. Su presentación era muy original: usaba tablas muy complejas donde interrelacionaba proposiciones teológicas.
Llull aprendiendo el árabe con su esclavo musulmán y lo que sucedió después, según Thomas le Myésier en “Electorium parvum seu breviculum” (posterior a 1321)
También era de la convicción de que a los musulmanes, población mayoritaria en la Mallorca en la que creció, se les podía convertir usando la lógica para refutar el islam, por lo que era de la opinión de que si había que recuperar los Santos Lugares era mejor hacerlo por la predicación que militarmente (Llull nació tras la sexta cruzada y fue contemporáneo de la séptima, la octava y la novena). Como parte de su autoformación, Llull buscó los medios para aprender el árabe (para ello compró un esclavo musulmán apropiado) e intentó organizar una escuela de lenguas orientales de tal manera que los misioneros pudiesen predicar a los musulmanes en su propia lengua.
Pero todos estos esfuerzos tuvieron un éxito muy limitado. Tan limitado que Llull murió apedreado en Argelia por el mismo grupo de musulmanes a los que intentaba convertir.
Fue probablemente el misticismo de Llull (que culmina en el Llibre d’amic e amat incluido dentro del Llibre d’Evast e d’Aloma e de Blaquerna son fill publicado en Montpellier en 1283) y su lógica compleja y críptica para la inmensa mayoría los que atrajeron a los alquimistas a su órbita, y a que terminaran adoptando su nombre como el de uno de los suyos, dando comienzo de esta manera el proceso casi milagroso de la multiplicación de las personalidades de Llull.
Los textos sobre alquimia en los que aparece Llull como autor están fechados años después de su muerte (probablemente) en 1316. Si bien es posible que fuesen obra suya que no se atrevió a publicar por lo comprometido que hubiese sido dedicarse a la alquimia, no parece probable debido precisamente al enfoque tan centrado en la lógica y la palabra de Llull.
Recetas de R. Lullius (atribuido) en el “Ymage de Vie”, finales del siglo XV. Fuente: Wellcome Library, London.
Efectivamente, sea quien sea el autor, las obras alquímicas que llevan el nombre de Llull son dignas de destacar dentro de la alquimia, paradójicamente, menos mística, y sí como continuación de las muy prácticas y empíricas de al-Razi o Bacon. Todas estas obras contienen relaciones sistemáticas de la teoría y práctica de la alquimia y en ellas están llamativamente ausentes las alegorías y la oscuridad deliberada de obras posteriores.
De hecho, el autor (posiblemente Ramon de Tàrrega) es tan anacrónicamente sistemático que emplea letras del alfabeto para simbolizar los principios, las sustancias y las operaciones alquímicos, y los presenta en tablas. No solo eso, las recetas se dan como combinaciones de esas letras, incluidas recetas para unos productos que aparecen por primera vez en la literatura: ácidos minerales y un alcohol que puede arder.
Llull no será el autor, pero si lo fuese estas obras no desmerecerían en nada a su genio.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Llull no fue alquimista se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Gabonetako apaingarri kuantikoak
Irudia: Bilboko Maria Diaz de Haro kalea Gabonetako argiekin apainduta. 2013an 500.000 LED bonbilla jarri ziren Bilboko kaleetan, 2016.ean ordea, 1,2 milioi bonbilla erabili dira kaleak apaintzeko. (Argazkia: Borja Guerrero. Deia)
Duela bederatzi urte Bilbok Gabonetako argiteria tipikoa guztiz aldatu zuen. Aldaketa estetikoaz gain, aldaketa teknologiko handia ere izan zen. Bonbilla gori tradizionalen ordez, LED (Light Emitting Diode) bonbillak erabiltzen hasi ziren. Bonbilla goriak, hau da, betiko bonbillak, ez dauka zerikusirik LED bonbilla berri hauekin, ezta bere errendimendu energetikoak ere.
Bonbilla goriaren kasuan, korronte elektrikoa wolframiozko (edo tungstenozko) harizpi oso fin eta luze batetik zehar pasatzen da –lodierak ia ez du milimetro baten hamarrena gainditzen, eta luzerari dagokionez, 2 metrotik gora neurtzen ditu bildu gabe-. Harizpiaren erresistentzia handia dela eta, 2000 ºC-tik gorako tenperatura ere har dezake. Tenperatura horretan, objektuek ikusi egin daitekeen erradiazioa igortzen dute, beraz, bonbillak argia igortzen du. Hala ere, bonbilla horiek igortzen duten erradiazioa infragorria da, batez ere, eta guk bero gisa hautematen dugu. Izan ere, hori da bonbilla goriak eraginkorrak ez izatearen arrazoi nagusia. Emandako energiaren %10a soilik bihurtzen da argi; gainerakoa bero gisa galtzen da.
LED bonbillak guztiz desberdinak dira, eta, arraroa badirudi ere, funtzionamendua fisika kuantikoaren ondorio zuzena da. Argi kuantikoak dira. Bitxia bada ere, LED baten argi-igorpena azaltzen duen mekanismoa efektu fotoelektrikoaren kontrakoa da. Efektu fotoelektrikoaren harira jaso zuen Einsteinek Nobel Saria, 1921ean. Efektu fotoelektrikoaren kasuan, material metaliko baten gainean argia aplikatzeak korronte elektrikoa induzitzen du; eta LED baten kasuan, argia sortzen da korrontea aplikatzean. LED bat diodo bat da, eta horren osagai nagusia erdieroale bat da. Korrontea erdieroaletik zehar pasatzen denean, diodoaren elektroiek energia handitzen dute, baina justu ondoren, hasierako energia-egoerara bueltatzen dira fotoi bat igorriz, hau da, argia igorriz. Bonbilla horiek ia ez dira berotzen, beraz, oso eraginkorrak dira. Izan ere, bonbilla goriek baino 10 aldiz gutxiago kontsumitzen dute, eta askoz gehiago irauten dute, 100 aldiz gehiago edo. Horrek esan nahi du 10 urtez baino gehiagoz egon daitezkeela piztuta, etengabe, funditu gabe. LED bonbillak ez dira asmakizun berria. 60ko hamarkadan erabiltzen zirela badakigu. Diodoek argi gorria igortzen zuten, orain etxean ditugun tresna elektrikoetan hain ohikoa dena. Gerora, berdeak garatu ziren, eta laurogeita hamarreko hamarkadaren amaieran, Shuji Nakamurak, 2006an Milurtekoko Teknologia saria jaso zuenak (Teknologia arloko Nobel Saria dela esaten da), diodo urdinak lortu zituen. Aurrerapen handia izan zen hori; izan ere, diodo berde eta gorriekin konbinatuta, argi zuria lortu zen, eta LED delakoen aplikazio teknologikoak izugarri zabaldu ziren.
Eraginkorrak izan ez arren, 100 urtez baino gehiagoz erabili ditugu bonbilla goriak. Orain, Europan aurrezte energetikoaren alde egindako apustuari esker, debekatuta dago saltzea. Ez da arazoa, aukera asko ditugu eta: argi halogenoak (goriak ere badirenak, eta beraz, ez oso eraginkorrak), kontsumo baxuko fluoreszenteak, eta noski, LED bonbillak. Azken horiek izango dira urte gutxi barru, seguru aski, prezioa zerbait jaisten denean, etxe guztietan izango ditugunak.
Gabonetako argien xahutze energetikoaren gaia berriro hizpide hartuz, 2013an Bilbon 125 kW-eko potentzia baino ez zen behar izan 500.000 LED bonbillak pizteko. Kontuan izanda argiok 18:00etatik 22:00etara soilik daudela piztuta, eta orduan kW-aren orduko prezioa 0.1 eurokoa zela, eguneko kostua ez zen izan 50 euro baino garestiagoa! Ez da horrenbesterako, ezta? Aurten, kontuan hartuta bonbilla kopurua eta argindarraren prezioa garestiagoa izango da, baina ez espero izango genukeena bezain beste. Azken finean, Gabonetan jendearen animoa hobetzeko balio badu, gure gain hartu dezakegun kostu bat dela esango nuke. Noski, ez da beti horrela izan. Argiteria kuantikoaren aurretik, bonbilla gori tradizionalak erabiltzen zirenean, kontsumoa hamar aldiz handiagoa zen.
———————————————————————————-
Egileaz: Aitor Bergara Fisika irakaslea da UPV/EHUn eta DIPCko (Donostia International Physics Center) ikertzaile laguna da.
———————————————————————————-
The post Gabonetako apaingarri kuantikoak appeared first on Zientzia Kaiera.
Euskararako analizatzaile sintaktiko-estatistikoak hobetzeko esperimentuak
Irudia: Zuhaitz-bankua sintaktikoki etiketatutako corpus bat da. Corpuseko esaldi guztiak analizatu dira eta esaldiko hitz bakoitza etiketatu da, esaldiaren zuhaitz sintaktikoa lortuz.
Imajinatu, adibidez, “urdina eta edo delakoa” esaten dela. Esaldi honek lau hitz ezagun ditu, baina horrela lotuta, hitzek ez dute inongo zentzurik. Esaldiak lehen baldintza hori betetzen duen jakiteko, analizatzaile sintaktikoa erabil daiteke. Baina, analizatzaile sintaktikoen erabilera arlo desberdinetara zabaltzen ari da: analisi semantikoa lortzeko, gramatika-zuzentzaile modura lan egiteko edo gaizki erabilitako egiturak detektatzeko, bai eta, besteak beste, hizkuntzaren modelizazioan, informazioaren berreskurapenean, itzulpen automatikoan, galdera-erantzunetan, itzulpen automatikorako baliabideak sortzean edota parafrasien eskuratze automatikoan ere. Analizatzaile sintaktiko bat garatzeko orduan, azken urteotan asko ugaritu dira ikasketa automatikoan oinarritutako analizatzaile sintaktiko-estatistikoak.
Analizatzaile sintaktiko-estatistikoak zuhaitz-banku bat behar dute ikasteko. Zuhaitz-bankua sintaktikoki etiketatutako corpus bat da. Corpuseko esaldi guztiak analizatu dira eta esaldiko hitz bakoitza etiketatu da, esaldiaren zuhaitz sintaktikoa lortuz. Zuhaitz-bankua CoNLL-X formatuan egon behar da; hau da, esaldiko hitz bakoitzaren informazioa lerro batean jartzen da eta tabuladore batekin banatutako zutabetan hurrengo informazioa aurki daiteke: esaldian hitzak duen ordena zenbakia, esaldian duen hitz-forma, hitzaren lema, hitzaren kategoria, hitzaren azpikategoria, hitzaren ezaugarri morfosintaktikoak, hitzaren gobernatzailea eta gobernatzailearekiko duen dependentzia-etiketa.
Dependentzia-sintaxian eta datuetan oinarritutako 2006ko eta 2007ko CoNLL Shared Task (X. Compuntational Natural Language Learning) zereginen ondoren, grafoetan eta trantsizioetan oinarritutako hurbilpenak nagusitu ziren. Lan honetan, 2006ko CoNLL zereginen ondoren nagusitutako hurbilpen bietan (hots, trantsizio eta grafoetan) oinarritutako sistema onenen egokitzapena egin da, hau da, MaltParser eta MSTParser izenekoena, hurrenez hurren. Analizatzaile sintaktiko-estatistiko bat euskarara egokitzeko honako hiru oinarrizko elementu hauek egokituko dira:
- algoritmo sintaktikoa,
- ikasketa automatikoa,
- ezaugarrien modeloa.
Analizatzaile sintaktiko-estatistikoak egokitu ostean, euskararako analizatzaile sintaktiko-estatistikoen emaitzak hobetzeko helburuarekin egindako esperimentu-multzoa aurkezten da. Lan honetan teknika ezberdinak aztertzen dira: zuhaitz-transformazioak, analizatzaileen pilaketa eta analizatzaile-modelo desberdinen irteeren konbinazioa. Nahiz eta buru-osagarri eta buru-modifikatzaile egitura gehienek analisi berdintsua izan dependentzia-gramatikan, badaude eztabaidagarriak diren egitura asko; besteak beste honako hauek: aditz-laguntzailea aditz nagusien gobernatzailea izatea edo ez; determinatzaile-sintagman determinatzailea burua izatea edo ez; postposizio-sintagman azken hitza burua izatea edo ez; koordinazioetan, juntagailua edo koordinazioaren lehenengo edo azken osagaia buru izatea edo ez.
Erabakitzeko unean teoria ezberdinak daude. Etiketatze teoria desberdinen eragina aztertzeko, euskarako zuhaitz-bankuari aplikatutako aurretiko eta ondorengo prozesaketa ezberdinak aplikatu dira: sintagmen transformazioa, mendeko perpausen transformazioa eta koordinazioaren transformazioa. Dependentzia-zuhaitzetan aplikatzen diren transformazioek kutxa beltzaren metodoa erabiltzen dute.
Analizatzaileen pilaketaAnalizatzaileen pilaketan bi analizatzaile bateratzeko, lehenengo analizatzailearen irteeran lortutako informazioa bigarren analizatzailearen sarrera aberasteko erabili da eta modelo bi elkarren osagarri izan ahal direla probatu da. Gainera, horrek aukera eman du, lehenengo analizatzailearen irteeran lortutako dependentzia-zuhaitzetatik informazioa goratzeko eta irteerako datuak gehiago aberasteko.
Bozketa bidezko konbinazioaAnalizatzaile desberdinen irteerak kontuan hartzen dira, irteera bateratu eta egokia lortzeko asmoarekin. Aztergai dauden esperimentuak egite aldera, eta dependentzietan oinarritutako analizatzaileen irteerak bateratzeko, bozketaren bidezko konbinaketa erabili da.
Sortutako oinarrizko sistemen (sistemen egokitzapena gauzatu ostean) eta sistema hedatuen (pilaketa eta zuhaitz- transformazio teknika osagarriak gauzatu ostean) irteerak konbinatu dira aniztasun faktoreak analisian izan dezakeen eragina probatzeko. Normalean esperimentuak egiteko zuhaitz-bankuan dauden ezaugarriak erabiltzen dira; hau da, hizkuntzalari-talde batek eskuz gainbegiratutako ezaugarriak. Baina euskaraz ezaugarriak era automatikoan lortzeko aukera dago, testua analizatzaile morfologikotik eta desanbiguatzaile morfologikotik pasatu ostean. Desanbiguazio-moduluen irteerak, batez beste, 1,3 aukera eskaintzen ditu hitz-forma bakoitzeko. Erabiltzen diren analizatzaile sintaktikoek aukera bakarra behar dutenez, desanbiguazio-moduluak ematen dituen aukeretatik lehenengo aukera (sarriena) hartu da.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: 2016. urteko ale berezia, “2013-2014 Euskal Tesien 10 pasarte”
- Artikuluaren izena: Euskararako analizatzaile sintaktiko-estatistikoa hobetzeko teknikak.
- Laburpena: Artikulu honetan euskararako analizatzaile sintaktiko-estatistikoen emaitzak hobetzeko helburuarekin egindako esperimentu-multzoa aurkezten da. Lan honetan teknika ez-berdinak aztertzen dira: i) zuhaitz-transformazioak, ii) analizatzaileen pilaketa, eta iii) analizatzaile-modelo desberdinen irteeren konbinazioa. Emaitza guztiak zuhaitz-bankutik zuzenean hartutako urre-patroiko ezaugarri morfosintaktikoak erabiliz eta analisi morfologiko eta desanbiguatze-moduluetatik hartutako ezaugarri morfosintaktiko automatikoak erabiliz egin dira.
- Egileak: Kepa Bengoetxea, Koldo Gojenola.
- Argitaletxea: UPV/EHUko argitalpen zerbitzua.
- ISSN: 0214-9001
- Orrialdeak: 19-45
- DOI: 10.1387/ekaia.14548
—————————————————–
Egileez: Kepa Bengoetxea eta Koldo Gojenola UPV/EHUko Hizkuntza eta Sistema Informatikoak saileko ikertzaileak dira.
—————————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Euskararako analizatzaile sintaktiko-estatistikoak hobetzeko esperimentuak appeared first on Zientzia Kaiera.
Nanopartículas para la consolidación del fuerte español de Bizerta
El patrimonio histórico-artístico, además de suponer un importante legado sociocultural es hoy en día uno de los activos más importantes en la industria relacionada con el turismo. Debido al paso del tiempo y a su exposición a diferentes procesos de deterioro, se hace necesaria su intervención para garantizar su conservación futura. “La investigación en nuevos tratamientos es hoy por hoy el ámbito más importante dentro del campo de la conservación científica, y el uso de nanopartículas, el más desarrollado”, explica Ainara Zornoza, investigadora del departamento de Física Aplicada I de la Escuela Técnica Superior de Arquitectura de la UPV/EHU, siendo esta investigación parte principal de su tesis doctoral, y autora del presente estudio dirigido por la Doctora Paula López-Arce investigadora del Museo de Ciencias Naturales (CSIC) y realizado en el Instituto de Geociencias del CSIC (CSIC-UCM).
Con el objetivo de evaluar el efecto consolidante del producto convencional más empleado en la actualidad en restauración arquitectónica y arqueológica, por un lado, y los productos más novedosos basados en nanoestructuras y nanopartículas, por otro, en una piedra muy empleada en construcciones arquitectónicas de la cuenca mediterránea, la calcarenita bioclástica, serealizó un estudio comparativo en el Fuerte Español de Bizerta (Túnez), un bastión del siglo XVI situado en la cima de una colina en Bizerta. El material pétreo muestra un alto grado de deterioro, causado por el tipo de composición mineralógica y la porosidad del material, que se ha visto afectada por la acción de la niebla salina y los inadecuados morteros usados en restauraciones anteriores”, detalla.
.
Tras el diagnóstico del estado del material, procedieron a la aplicación y comparación de los productos consolidantes. Fueron cuatro los estudiados, tanto in situ como en laboratorio. El primero fue el silicato de etilo, “que es el más utilizado hoy en día, y forma una estructura reticular semejante a la del sílice en el interior de la estructura porosa del sustrato”. Otro consistió en un producto nanoestructurado, desarrollado por la Universidad de Cádiz, que, aplicado a un tipo de producto semejante al anterior, evita que este se craquele (una de las principales desventajas de ese tipo de productos). Asimismo, realizaron pruebas con dos productos basados en nanopartículas: por un lado, una dispersión acuosa de nanopartículas de sílice, que genera gel de sílice inorgánico dentro del sistema poroso, y el otro está compuesto pornanopartículas de hidróxido cálcico, que ” al exponerse al dióxido de carbono atmosférico (CO2) bajo condiciones de humedad, reacciona y se convierte en carbonato cálcico siendo el material constitutivo de las rocas carbonáticas originales”, explica la investigadora.
.
Para el análisis del efecto de cada producto, midieron multitud de aspectos, como la morfología de la superficie con microscopio electrónico, en nivel de consolidación, el nivel de dureza conseguido, los cambios en el comportamiento hídrico y los cambios de color producidos. Teniendo en cuenta el conjunto de resultados, “podríamos dividir los productos en dos grupos”, comenta. En el caso del silicato de etilo y el nanoestructurado, sobre todo en el ambiente más húmedo, aumentan mucho las propiedades mecánicas, pero, sin embargo, producen una capa hidrófoba superficial y ocluye los poros. “Esto evita que el agua que llega del exterior penetre, pero, a su vez, no permite la salida del agua que llega por ascensión capilar, por lo que esa agua acumulada en el interface entre las zonas consolidadas y las zonas sin consolidar puede generar deterioros físicos, químicos y biodeterioro”, añade.
En los productos basados en nanopartículas, la mayor diferencia estriba en que lo que crean son microporos; eso no ocluye totalmente los poros, por lo que permite la salida de agua. En el caso de las nanopartículas de sílice, Zornoza especifica que “los resultados son mejores en condiciones secas, ya que se comporta como un gel que absorbe y expulsa humedad según la humedad ambiental”. Las nanoparticulas de hidróxido cálcico, por su parte, han sido las que han generado los resultados más moderados”.
A la vista de estos resultados, la investigadora destaca que la cuestión no es “establecer cuál es el mejor producto para la restauración, sino describir el comportamiento de cada uno de ellos dependiendo de las condiciones ambientales en las que se encuentre la obra y las que artificialmente se podrían generar, las características del sustrato, etc., para escoger el producto más adecuado según las necesidades específicas de cada caso y los cambios que producen los distintos productos dado que el efecto final depende de muchos factores”.
Esta investigación ha querido crear puentes entre el ámbito investigador y el de los restauradores, que hoy por hoy ” siguen estandobastante divididos: Por una parte, la comunidad científica sigue investigando, realizandopublicaciones sobre diferentes productos y sacando nuevos productos al mercado, pero, por otra parte, los conservadores-restauradores, en general, opinan que estas investigaciones no suelen ser extrapolables a aplicaciones reales y los nuevos productos no son ampliamente utilizados. Nosotros hemos intentado hacer que estas investigaciones sean reales y aplicables utilizando los productos disponibles en el mercado y realizando tratamientos lo más parecidos posibles a aplicaciones reales. Aunque es verdad que es algo muy complejo, porque estamos hablando de intervenir en patrimonio inmueble, y habiendo tantos factores que influyen en el resultado final de las intervenciones al mismo tiempo, resulta muy difícil aventurarse a cambiar la forma de trabajo e introducir nuevos productos”.
Referencias:
Zornoza-Indart, A., Lopez-Arce, P., Leal, N., Simão, J., & Zoghlami, K. (July 2016). Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Construction and Building Materials, 116, 188-202. doi: 10.1016/j.conbuildmat.2016.04.114
Zornoza-Indart, A., Lopez-Arce, P., López-Polin, L. (November 2016). Durability of traditional and new nanoparticle based consolidating products for the treatment of archaeological stone tools: Chert artifacts from Atapuerca sites (Burgos, Spain). Journal of Cultural Heritage. doi: 10.1016/j.culher.2016.10.019
Zoghlami, K., Lopez-Arce, P., and Zornoza-Indart, A. (December 2016). Differential Stone Decay of the Spanish Tower Façade in Bizerte, Tunisia. Journal of Materials in Civil Engineering. doi: 10.1061/(ASCE)MT.1943-5533.0001774
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Nanopartículas para la consolidación del fuerte español de Bizerta se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Pneumonia duten gaixoen eboluzio txarra iragarri nahian
Irudia: Osakidetzan burutu eta UPV/EHUn aurkeztutako ikerketa batean frogatu dute emaitza hobeak ematen dituela pneumonia duten gaixoen ohiko iragarpen-erregelei biomarkatzaileak gehitzeak.
Komunitatean hartutako pneumoniarekin (ospitale-eremuan hartzen ez den gaixotasuna) osasun-zentroetara iristen diren pazienteak artatzeko praktika klinikoko beren gida 2001ean ezarri ostean, eta, hortik abiatuta, paziente horien eboluzioa iragartzeko erregela bat sortu ondoren, Galdakao-Usansolo Ospitalean eta Barrualdeko eskualdean egindako ikerketa batean, biomarkatzaile jakin batzuk ere aztertzea proposatu dute, eboluzio txarra izateko arriskua duten pazienteak doitasun handiagoz identifikatzeko. Biomarkatzaileak laborategiko proba klinikoak dira, honen bidez organo baten disfuntzioa antzeman daiteke. Disfuntzioak aldaketa neurgarrien dira eta biokimikoak, fisiologikoak edo morfologikoak izan daitezke.
Zergatik aurreikusi txarrerako joera?Pedro Pablo Españak, Galdakao-Usansolo Ospitaleko Pneumologiako buru klinikoak azaltzen duenez, “karga handia da gaixotasun hori osasun-sistementzat, lehen mailako arretako medikuarengana eta larrialdi-zerbitzuetara egiten diren bisitak direla, ospitaleratzeak direla, tratamendu medikoak direla eta segimenduko zainketak direla, besteak beste”. Karga horiek eta konplikazio larrienak saihesteko, “diagnostikoa egiten den unean jakin behar da zenbateraino izan daitekeen larria pneumonia-kasua, oso garrantzitsua baita tratamendua goiztiarra izatea”. Premisa hori oinarri hartuta, pneumonia zuten pazienteak baloratzeko eta sailkatzeko zenbait protokolo ezartzen eta garatzen joan ziren. 2001ean, praktika klinikoko gida bat ezarri zuten, osasun-pertsonalaren jokabidea estandarizatzeko asmoz, eta aurretik artatze-lanetan zegoen aldakortasuna ezabatzeko. “Emaitzak hobetu zituen horrek, eta artatutako pazienteei buruzko informazioa biltzeko aukera eman zigun”.
Halaber, larritasuna iragartzeko eskala batzuk erabiltzen hasi ziren, hilkortasuna iragartzeko erabiltzen zirenak mundu osoan. Zenbait aldagai fisiologiko oinarri hartuz: tentsio arteriala, odoleko oxigeno-kantitatea, analisi klinikoak edo erradiografia-irudiak; eskala horiek aukera ematen dute monitorizatu behar diren eta tratamendu gogorragoak eman behar zaizkien pazienteak identifikatzeko.
Praktika klinikoko gida ezarri zutenetik biltzen joan ziren datuei esker, dena den, beren iragarpen-erregela sortu eta ezarri ahal izan zuten 2006an, SCAP score deritzona. “Zenbait ospitaletan baliozkotu ondoren, ikusi ahal izan genuen ordura arte erabilitako erregelak baino emaitza nabarmenki hobeak ematen zituela horrek”, dio pneumologiako adituak. Baina, erregela berriak ere muga batzuk zituenez, “interesgarri jo zen zenbait biomarkatzaile seriko aztertzea, arrisku gutxiko paziente gisa sailkatu baina azkenean eboluzio txarra izan zutenak identifikatzeko asmoz, bai eta arrisku handikotzat sailkatu eta azkenean eboluzio ona izan zuten pazienteak identifikatzeko asmoz ere. Pentsatzen hasi ginen paziente bakoitzaren immunitate-sistemak desberdin erantzuten duela gaixotasun beraren aurrean, eta, hortaz, pentsatu genuen ostalariek hanturaren aurrean duten erantzunaren markatzaile batzuk aztertzea. Edozein infekzioren aurrean, immunitate-sistemak hantura eraginez erantzuten du, infekzioa geldiarazten saiatzeko. Baina erantzun hori neurriz kanpokoa bada, pronostikoa larriagoa izan ohi da”, dio.
España doktoreak azaldu duenez, frogatu ahal izan dute “dagoeneko ezagutzen ziren iragarpen-erregelekin batera biomarkatzaile jakin batzuen analisia eginez iragarpen hobeak egiten direla: batez ere prokaltzitonina (PCT), eta, emaitza onenak eman dituena, proadrenomedulina (Pro-ADM). Hain zuzen, informazio gehigarria ematen du horrek kasu jakinetan. Bereziki, erregelarekin arrisku gutxiko gisa sailkatu diren pazienteetan, biomarkatzailearen maila altua neurtzeak jakinarazten digu zerbaitek okerrera egin dezakeela, eta, hala, hobeto aukera ditzakegu tratamendua eta zainketarako lekua”.
Iturria:
UPV/EHUko komunikazio bulegoa: Pneumonia duten pazienteek eboluzio txarra izateko arriskuaren identifikazioa hobetu dute.
The post Pneumonia duten gaixoen eboluzio txarra iragarri nahian appeared first on Zientzia Kaiera.
Y el óleo se hizo cine
Desde que los hermanos Lumière crearon el primer cinematógrafo, el conocido como séptimo arte ha sufrido un sinfín de revoluciones desde el punto de vista técnico. Algunas, en tiempos realmente lejanos, como aquella que dio voz a un mudo Charles Chaplin o la que permitió apreciar en technicolor que las baldosas que pisaba Dorothy eran de color amarillo chillón. Décadas más tarde George Lucas reinventó los efectos especiales para transportarnos por una galaxia muy lejana a bordo del Halcón Milenario y su amigo Steven Spilberg se sirvió de maquetas hiperrealistas para hacernos pensar que cada vez que un vaso de agua temblase aparecería un Tiranosaurio dispuesto a devorarnos. Ya en tiempos más recientes, James Cameron explotó las posibilidades del cine en 3D y nos rodeó de unos peculiares seres azules con los que reventó los récords de recaudación. Pero, hay otra pequeña revolución en marcha, una que se fragua silenciosamente en Gdansk, esa agradable ciudad a orillas del Báltico que ya parece haber olvidado que fue el lugar donde estalló el más ignominioso capítulo de la historia de la humanidad cuando en los mapas figuraba como Ciudad libre de Danzing.
Probablemente esta revolución no cambie el modo de hacer cine. Incluso habrá quien lo vea como un paso atrás en el avance de una industria cada vez más controlada por ordenadores pero, lo cierto es que, se trata de un proyecto que justifica por partida doble que al cine se le llame arte. Hablo de Loving Vincent y sólo necesitaréis ver este tráiler de un minuto para entender a lo que me refiero:
Dorota Kobiela y el ganador de un Oscar Hugh Welchman se embarcaron hace unos seis años en un ambicioso proyecto al que hace unas semanas le daban las últimas pinceladas. No, no aprovecho que se trata de una película sobre van Gogh para hacer una metáfora fácil. Literalmente, el último fotograma de los 64000 que componen la película, fue pintado hace apenas unos días. Y es que, Loving Vincent, es una película diferente, es una película hecha en su totalidad a base de pinturas al óleo.
Como ya dijo quien cede el nombre a la película: “Solo podemos hablar a través de nuestras pinturas”. Quizás por eso, cuando Kobiela y Welchman tejieron la historia sobre la vida de van Gogh, decidieron que para que la obra se impregnase del espíritu del pintor holandés debían huir de la tecnología digital. Y no solo eso, volvieron a los orígenes del mundo de la animación y les dieron una vuelta de tuerca. Desarrollaron una nueva tecnología que les permitió implementar un peculiar proceso creativo para realizar cada uno de los aproximadamente 900 planos de los que consta el filme. Primero, se rodaron las escenas con actores y actrices reales usando la técnica croma (esa en la que se emplea un telón verde de fondo). Estas escenas se proyectaron sobre lienzos para ser transformadas en óleos por más de una centena de pintores y pintoras de todas partes del mundo que imitaban el característico estilo de van Gogh. Tras fotografiar la pintura correspondiente a un fotograma pintaban el siguiente y lo volvían a fotografiar y así, sucesivamente, hasta tener un plano con decenas de fotogramas. Una titánica tarea en la que se invierten meses para conseguir unos pocos segundos de metraje. Eso sí, una vez editada la secuencia de fotogramas se consiguen maravillas como las que habéis visto en el tráiler. Podéis entender mucho mejor el proceso creativo en este vídeo de la BBC.
Imagen 1. “El café de noche” (72×92 cm) de Vincent van Gogh (1888). Fuente
Por si imitar el estilo del pelirrojo loco no era suficiente, se han empleado más de cien de sus obras para crear los escenarios de la película. Podremos visitar el célebre Dormitorio en Arlés, ver una partida de billar en El café de noche o contemplar La noche estrellada. Igualmente, muchos rostros nos resultarán familiares ya que parecen retratos que se escapan de sus marcos para cobrar vida. En la Imagen 2 tenéis el formidable resultado de juntar la a un actor de carne y hueso (Douglas Booth) con una obra de van Gogh. Ese joven de gabardina amarilla es el protagonista, Armand Roulin, que sin darse cuenta se verá envuelto en la misteriosa muerte del pintor holandés, lo que sirve de hilo conductor de la película. Y aunque puede que Douglas Booth no sea un actor de mucho renombre, eso no significa que no vayamos a encontrar caras familiares entre el reparto como la de Saoirse Ronan (dos nominaciones al Oscar con apenas 22 años), Helen McCrort (Polly en Peaky Blinders) o Jerome Flynn (Bron en Game of Thrones).
Imagen 2. De izquierda a derecha: Douglas Booth durante el rodaje de Loving Vincent, “Retrato de Armand Roulin” (65×54 cm) de Vincent van Gogh (1888) y resultado final del fotograma de la película Loving Vincent. Fuente: Twitter de @lovingvincent
A estas alturas espero que, como yo, estés contando los días para el estreno de la película. También es posible que te estés preguntando si el autor de este artículo ha decidido retirarse del mundo científico y tiene ahora pretensiones de crítico de cine. Nada más lejos de la realidad. Pero resulta que la existencia de esta original película me sirve para hablar de algo con lo que todos y todas estamos familiarizados pero que quizás no conozcamos tan bien: la pintura al óleo.
Y es que ¿quién no ha leído “óleo sobre lienzo” en los rótulos de algún museo? Habrá incluso quien haya hecho sus pinitos con esta técnica. Pero, ¿sabemos realmente lo que es un óleo? No hay que ser catedrático en etimología para intuir que tras esa palabra se esconde una técnica pictórica vinculada, de un modo u otro, al aceite. De hecho, si consultamos el diccionario de Real Academia nos encontramos con que sorprendentemente (o no) la primera acepción no tiene conexión alguna con en el arte: “Del lat. oleum Aceite de origen vegetal, especialmente el de oliva”.
Vale, entonces algo tendrá que ver la pintura al óleo con esos líquidos indispensables en nuestras cocinas. Además, teniendo en cuenta que se usa cera de abeja o leche de vaca para aglutinar pigmentos, ¿por qué no usar aceite? Es un medio líquido, fácil de obtener y muy manejable. Entonces, ¿podría dedicarse Arguiñano a publicitar aceite de oliva virgen extra para artistas? ¿Sirve cualquier aceite para pintar un cuadro? Como muchas otras veces, la respuesta está en la química. Aunque por si acaso ya adelanto a los amantes del oro líquido que nunca les faltará este aceite, o por lo menos, no por culpa de la pintura.
Empecemos por el principio. Los aceites vegetales están formando mayoritariamente por un tipo de lípidos llamados triacilgicéridos, aunque quizás os suene más si digo triglicéridos. Exactamente, eso que junto al colesterol tanto nos preocupa al recibir los resultados de una analítica. Estos temidos compuestos están formados por una molécula de glicerol y tres ácidos grasos que se unen formando lo que se denominan ésteres (ver Imagen 3). Precisamente, será la naturaleza y la abundancia de estos ácidos grasos los que condicionen las propiedades de los diferentes aceites.
Imagen 3. Un triacilglícerido que contiene un ácido graso saturado (1: ácido esteárico), un ácido graso insaturado (2: ácido oleico) y un ácido graso poliinsaturado (3: ácido linolénico). Fuente: Modificado de Wikimedia Commons
Como podéis ver en la Imagen 3, los ácidos grasos contienen una larga cadena en la que los átomos de carbonos (cada uno de los diferentes vértices) se unen entre sí (también se unen a átomos de hidrogeno aunque estos no se representan en la imagen). Pues bien, hay dos factores que tenemos que tener en cuenta a la hora de explicar las propiedades de los aceites: la longitud de estas cadenas y el número de insaturaciones. Y aquí tenemos otra palabra que relacionaréis con el mundo de la nutrición. Cuando hablamos de grasas saturadas o insaturadas lo que estamos haciendo es referirnos a como se unen los átomos de carbonos en estas cadenas. Una insaturación no es otra cosa que dos átomos de carbono que se unen mediante un doble enlace (de ahí que haya dobles líneas entre algunos puntos de las cadenas de ácidos grasos). Por ejemplo, el triglicérido de la imagen anterior tiene un ácido graso saturado en la primera posición (ácido esteárico), uno con una insaturación en la segunda (ácido oleico) y otro con tres insaturaciones en la tercera (ácido linolénico). Este detalle, que podría parecernos anecdótico, es de vital importancia para entender tanto las propiedades fisicoquímicas de los aceites como las de las grasas. De hecho, la distinción que hacemos entre estas dos substancias se debe en gran medida a los dobles enlaces. Las grasas son sólidas a temperatura ambiente porque son ricas en triacilglicéridos saturados que tienen un punto de fusión más alto. Los aceites en cambio son líquidos porque contienen un porcentaje alto de triacilglicéridos insaturados tienen un punto de fusión más bajo. Algunos aceites son ricos en grasas saturadas, pero al ser cadenas muy pequeñas siguen siendo líquidos. Aunque eso ya es harina de otro costal.
Volviendo al tema que nos ocupa, ¿cuál es la importancia de la química de los aceites en la técnica pictórica favorita del gran van Gogh? Pues evidentemente la clave está en los dobles enlaces de los ácidos grasos (si no, nos hubiésemos ahorrado esa pequeña lección de química orgánica). Resulta que estos enlaces tienen un enemigo implacable, un gas omnipresente sin la que nosotros apenas podríamos disfrutar unos segundos de Los girasoles: el oxígeno. Esta molécula ataca sin piedad a los dobles enlaces causando diferentes tipos de reacciones. Algunas pueden tener consecuencias desagradables como el enranciamiento de aceites y grasas comestibles. Otras, en cambio, son indispensables para que todavía hoy podamos observar obras como el Matrimonio Arnolfini o La Mona Lisa. Me refiero a las reacciones de polimerización a través de las cuales algunos aceites se secan y crean una capa pictórica. ¿Adivináis cuáles son esos aceites?
¡Bingo! Los que tienen ácidos grasos con muchos dobles enlaces. Se conocen como secantes y entre ellos el más importante es, sin ninguna duda, el aceite de linaza. Su gran cantidad de ácido linolénico (tres insaturaciones) y linoleico (dos insaturaciones) explica que históricamente haya sido el más empleado. En cualquier caso, existen otros aceites como el de adormidera, el de nuez o el de girasol que también pueden ser adecuados e incluso más apreciados según la aplicación que se les quiera dar. El aceite de oliva, tan estimado en la cultura mediterránea, resulta inadecuado ya que es extremadamente rico en ácido oleico (tan sólo una insaturación) y contiene muy pocas grasas poliinsaturadas.
Tabla 1. Abundancia en ácidos grasos de diferentes aceites. Fuente: Modificado de Doerner (1998)
Veamos ahora que es lo que sucede desde que se deposita una pincelada de óleo sobre un soporte hasta que la tenemos delante de los ojos. Primero, el aceite comenzará un proceso de oxidación en el que surgirán radicales libres y se formarán peróxidos (ver Imagen 4). Este proceso dura unos pocos días y hace que el aceite gane peso debido a la absorción de oxígeno. Como los peróxidos son muy inestables, reaccionarán con los triacilglicéridos cercanos, de modo que se entrelazarán en una especie de red (polímero) que se denomina linoxina. Gracias a este proceso, que dura meses, y durante el cual el aceite pierde peso por la aparición de compuestos volátiles, se forma una capa pictórica que se adhiere al soporte. Puesto que en el camino, algunos de los triacilglicéridos que no reacciones quedarán atrapados en forma líquida dentro de la retícula, no sólo se obtendrá una película resistente sino también elástica y capaz de aguantar mejor las tensiones. En resumidas cuentas una capa ideal para el arte pictórico.
Imagen 4. Proceso esquematizado de la polimerización de los aceites secantes. La cadena del ácido graso insaturado (1) reacciona con el oxígeno para formar un peróxido (2). A su vez este peróxido reaccionará con el doble enlace de otro ácido graso formando un polímero (3). Fuente: Modificado de Wikimedia Commons
Obviamente, pese a todas sus virtudes, el óleo no es inmune al paso del tiempo y puede sufrir procesos químicos de amarilleamiento o una oxidación en mayor grado que acabe deteriorando la linoxina. Sin olvidarnos de procesos físicos por culpa de las tensiones antes mencionadas que provocan los característicos craquelados de obras antiguas (ver Imagen 5).
Imagen 5. Craquelados de La Mona Lisa de Leonardo da Vinci (ca. 1503). Fuente
Ahora rebobinemos unas líneas. He dicho que el proceso de secado dura meses (de hecho las reacciones químicas siguen sucediendo en el óleo eternamente). ¿Significa eso que hay que esperar tanto tiempo para realizar un cuadro usando esta técnica? Afortunadamente no. Desde hace siglos se sabe que existen ciertos catalizadores, como pueden ser las sales u óxidos de plomo, cobalto y manganeso, que añadidas al aceite permiten acelerar el proceso de secado. Hoy en día se emplean catalizadores sintéticos o se realiza un tratamiento térmico al aceite que permite que el secado sea más rápido. Así, aunque desgraciadamente tendremos que esperar a bien entrado el 2017 para disfrutar Loving Vincent, esto no es debido al proceso de secado de las pinturas sino al proceso de edición posterior. En cualquier caso, espero que, llegado el momento, apreciéis que cada fotograma de la película es una pequeña obra de arte al óleo, y que tras cada pincelada de esa obra se esconde un complejo proceso químico.
Para saber más:
[1] Max Doerner (1998) Los materiales de pintura y su empleo en el arte. Editorial Reverte.
[2] Mauro Matteini y Arcangelo Moles (2004) La química de la restauración. Editorial Nerea.
Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.
El artículo Y el óleo se hizo cine se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Asteon zientzia begi-bistan #133
Gero eta goizago hasten dira haurrak Internet erabiltzen, Net Children Go Mobileren ‘Interneteko arriskuak eta aukerak eta gailu mugikorren erabilera Espainiako adingabeen artean (2010-2015)” txostenaren arabera. Bertan, Espainiako 9 eta 16 urte bitarteko 500 Internet erabiltzaile adingaberi eta haien gurasoei egindako inkestako datuak islatzen dira. Honen helburua, gailu mugikorrak konbergentzia mediatikoaren testuinguruan nola erabiltzen diren aztertzen da, egiaztatzeko ea gailu horiek Internetera konektatzeko erabiltzeak arrisku gehiago edo gutxiago dakarzkien 9 eta 16 urte bitarteko Interneten erabiltzaileei. Jarraian agerian utzi dituzten zenbait datu: eskola da Internetera sartzeko leku ohikoenetan bigarrena; haurrak gero eta goizago hasten dira Internet erabiltzen -9-10 urteko haurrak batez beste 7 urterekin hasi ziren Internet erabiltzen, eta 15-16 urteko nerabeak, berriz, 10 urterekin-; azterturiko aparatuen artean, gehientsuenek smartphoneak dituzte. UPV/EHUko EU Kids Online Ikerketa-taldeko Maialen Garmendia, Miguel Ángel Casado eta Estefanía Jiménez irakasleek eta Milaneko Sacro Cuore Unibertsitateko Giovanna Mascheronik eraman dute aurrera ikerketa.
Gauzen Interneta (Internet of Things) eta Big Datari (Datu Handiak) buruz mintzo da liburu hau. Mario Tascón eta Arantza Coullaut kazetari eta Interneten adituek idatzi dute liburua; bertan, argibide interesgarriak ematen dizkigu termino horien inguruan. Hasteko, horien arteko desberdintasuna azaltzen dute. Adituek diote Datu Handiak petrolioa direla eta gauzen Interneta berriz, petrolio hori prozesatzen den ekosistema.
Genetika eta MedikuntzaTumoreen metastasiak gantzen metabolismoarekin zerikusia duela argitu du Bartzelonako ikerketa talde batek. Ikertzaileen arabera, minbizi zelulen ehuneko oso txiki batek baino ez du metastasia sortzeko ahalmena: % 1-% 5ek baino ez. Bada, orain jakin dutenez, haientzat gantza ezinbestekoa da. Ikerketak argitu du metastasia eragiteko ahalmena duten zeluletan besteetan baino askoz ere gehiago espresatzen dela CD36 izeneko genea. Bestalde, proteinak metastasiarekin duen erlazioa ere garbia dela frogatu dute, saguetan egindako esperimentuetan: tumoreari CD36 genea gehituz gero, gaiztoa bihurtzen da eta metastasia eragiten du; aldiz, inhibituz gero, metastasia ia desagertu egiten da.
Klima-aldaketaZiurrenik 2016 urterik beroena izango da. Bi ikerketek berretsi dute datu hori. Alde batetik, itsasoko izotzaren mapa egiten du Rasmus Tage Tonboek Danimarkako Meteorologia Institutuan. Hark ohartarazi du mundua azken hilabeteotan Artikoan gertatzen ari denaren inguruan. Urte luzeak darama datu horiek jasotzen, eta aurten, azkenean, lortu du prest izatea jendaurrean aurkezteko. “Aurten ohi baino askoz goizago apurtu zen izotza Artikoan, Baffingo badian eta Barents itsasoaren inguruan”, dio. “Izotzik gabeko ura asko berotu da udan, eta ohi baino askoz epelagoa egon da udan”, gehitu du. Horretaz gain, munduko klimaren orain arteko oreka amildegiaren ertzean dagoela ondorioztatu du Thomas Crowther Yale unibertsitateko (AEB) biologoak eta klima aldaketaren ekologian adituak. Bere ikerketa lanean esan duenaren arabera, planetaren tenperatura bi gradu igotzen bada, zorutik beste 55.000 milioi tona CO2 isuriko dira atmosferara 2050. urterako. Irakurri osorik artikulu interesgarri hau.
OsasunaHamaika ikerketa argitaratu dira tabakoaren inguruan. Batzuek pentsatzen dute gutxi erreta, kaltea ere txikia izango dela. Baina uste hori hankaz gora jarri du berriki ikerketa batek: egunean batez beste zigarroa baino gutxiago erretzen dutenek ere, heriotza goiztiarra izateko arrisku handiagoa (%64) dute, inoiz erre ez dutenek baino. Minbiziaren institutu Nazionalak (AEB)egin du ikerketa. AEBtako 290.000 lagun baino gehiagoren datuak baliatu dituzte lan honetan. NIH-AARP Elikadura eta Osasun Ikerketan parte hartzen duten pertsonekin osatu dute lagina. Parte hartzaileek 59 eta 82 urte artean zituzten azterketa hasi zenean. Haien bizitzako bederatzi garaitan izandako erretze ohiturei buruz egin zitzaizkien galderak, 15 urte zituztenetik 70 bete arteko denboran. 290.000 laguneko lagin horretatik, erretzaileen artean, 159k adierazi zuten batez beste egunean zigarro bat baino gutxiago erre izan dutela beti, eta ia 1.500ek esan zuten egunean 1-10 zigarro erretzen dituztela. Emaitzek erakusten dutenez, egunean zigarro bat baino gutxiago erretzen dutenek %64 arrisku handiagoa dute heriotza goiztiarra izateko, inoiz erre ez dutenekin alderatuta. Zigarro bat baino gehiago eta hamar baino gutxiago erretzen dutenek, aldiz, %87 handiagoa. Heriotza goiztiar horren kausa zehatzei dagokienez, birikako minbizia da hautagai nagusia.
AstronomiaHelioskiametroa izan dute mintzagai artikulu honetan. Tresna horri esker jakin badakigu ez daudela berdinak diren bi egun. Bere egiturari dagokionez, helioskiametroak gnomon deritzon zutoina dauka eta haren goiko muturrean lente bat. Lenteak eguzkiaren irudi bat proiektatzen du lurrean eta horri esker ezagutu ditzakegu urtaroak, eguzkiaren deklinazioa eta altuera, eguneko argi orduen kopurua edota eguzkia nondik irten eta nondik ezkutatuko den. Artikuluak nola funtzionatzen duen azaltzen du eta informazio horrez gain, gertutik ezagutu nahi baduzue Helioskiometroa Euskal Herriko Unibertsitateko Leioako Arboretumean dago kokatuta. Egun eguzkitsuak dira aproposenak bisita egiteko eta zuen kabuz ikusteko tresna honen nondik norakoa.
Astronomia arloari jarraiki, ALMA teleskopioaren bidez, bi planetaren jaiotza behatu dute Atacamako desertutik. Elhuyar aldizkariak azaltzen digu gure galaxian, baina eguzki-sistematik kanpo sortzen ari direla, HD 163296 izarraren inguruko hautsezko eta gasezko diskoetan. HD 163296 izarrak bi Eguzkiren adinako masa du. Izar gaztea da –duela 5 milioi urte sortu zen–, eta hautsezko eta gasezko 3 diska handi ditu inguruan: gertukoena izarretik 60 unitate astronomikoetara dago (unitate astronomiko bat Eguzkitik Lurrerako distatziaren parekoa da), eta beste biak 100 eta 160 unitate astronomikoetara. Ikertzaileek argitu dute orain arte ez zutela uste izarretik hain distantzia handira planetak eratzea posible zenik. Gainera, sortzen ari diren exoplaneta biak handiak dira
Gaurkoan, Beulah Louise Henry asmatzailea izan dugu protagonista. 49 asmakizun patentatu zituen emakumea; hala ere, 110en egile dela uste da. Bere asmakizunen artean aurkitzen ditugu, izozkiak egiteko makina, poltsa bat tonu ezberdineko estalki trukagarriekin, oso perimetro txikian tolesten zen eguzkitakoa… Umeentzako ere asmatu zituen zenbait gauza. Hala nola, hitz egin zezaketen panpinak. Protografo bat ere asmatu zuen. Makina honetan idatzitako dokumentu beraren lau kopia aldi berean egin ahal zitezkeen, ikatz-papera edo multikopista erabili gabe. Objektuak asmatzeari dedikatu zion bizitza osoa Henryk. Ez galdu!
BiologiaTitikaka aintzirako uretan bizi den igelak ez du egiazko birikarik. Berezia da igel hori, ez baita anfibioa, urtarra baizik. Igel honek larruazaletik hartzen du arnasa; hau da, larruazala da oxigenoa hartzeko eta karbono dioxidoa kanporatzeko duen organo bakarra. Bitxia da bere larruazala, tolesdurez beteta dauka eta horiei esker, gasen trukerako azalera oso handia dauka, eta horrek konpentsatu egiten du oxigeno-urritasunaren eragina. Gainera, tolestura horiek mugituz, ur-korronteak sor ditzake inguruko ura berriztatzeko. Titikakan bizi den animalia hau gertutik ezagutzeko aukera ederra duzue artikulu honetan.
Sagu helduetan zelulak birprogramatuz zahartzea moteltzea eta bizitza luzatzea lortu dute Kaliforniako Salk Institutuko ikertzaileek. Zelulak partzialki birprogramatuta genomako marka epigenetikoetan eragin dute, eta gakoa hor dagoela uste dute. Zahartze goiztiarra eragiten duen mutazio bat duten saguak erabili dituzte ikerketan. “Ez dugu zahartze goiztiarra eragiten duen mutazioa zuzendu, epigenoma aldatuz eragin dugu zahartzean. Horrek iradokitzen du zahartzea prozesu plastikoa dela”, argitu du ikerketa zuzendu duen Juan Carlos Izpisua Belmonte ikertzaileak. Lehenengo aldia da zelulak birprogramatuz animalia baten bizitza luzatzea lortzen dena.
—–—–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxue Razkin Deiako kazetaria da.
———————————————————————–
The post Asteon zientzia begi-bistan #133 appeared first on Zientzia Kaiera.
#Naukas16 Astrofotografía
.
Daniel López es, sin ningún género de dudas, uno de los mejores astrofotógrafos del mundo y en Naukas 16 contó cómo trabaja para realizar sus famosos timelapses.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 Astrofotografía se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Ezjakintasunaren kartografia #139
Rio de Janeiroko Guanabara badia, munduko badiarik kutsatuena ez bada ere, azken olinpiadetan bela probak bertan egin ondoren, gutxienez bada ezagunena. Gerardo Cebriánek badiago egoera errealaren berri ematen digu bertatik: Guanabara Bay: waiting for the return of the whales.
Egun inork (edo ia inork) ez badu onartzen neurketaren teoria adierazpena, haren teoremak oraindik erabilgarriak dira. Jesús Zamorak azaltzen digu bere artikulu-sortaren azken alean: The rise and fall of the representational theory of measurement (and 3).
Geruza monoatomikoen ezaugarri elektronikoak eta spintronikoak kontrolatzea oinarrizkoa izango da haren aplikazio erabilgarriak bilatzeko. DIPCko ikertzaileek aurkitu dute tentsioak badirela hau lortzeko modua: Strains control electronic properties and magnetic ordering in an atomically-thin layer.
Azken urteotan immigrazioaren fenomenoak arreta asko bereganatu du, baina gaiaz idatzi denaren artean antza, datu objektiboak ez ezik, alde bateko edo besteko iritziak eta aurreiritziak ugariak dira. José Luis Ferreirak literatura akademiko nabarmenaren berrikusketa bat egiten du: The effects of immigrants in the host country.
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #139 appeared first on Zientzia Kaiera.
El despertar de la quinta fuerza
Cuando movemos un objeto podemos hacerlo de muchas formas: tirando o empujando físicamente, usando cuerdas, haciendo vibrar el suelo, jugando con imanes, gritando (para eso último hay que ser Hulk, pero en principio es posible). No importa cómo sea nuestra fuerza, en última instancia podemos clasificarla en unas pocas categorías. Hasta el momento conocemos cuatro, y cuando ese número cambia los físicos se inquietan.
La primera fuerza fundamental en ser formulada fue la gravitatoria, merced a Isaac Newton que nos la regaló en el siglo XVII. La siguiente fueron dos en realidad: la electricidad y el magnetismo. La primera mitad del siglo XIX fue testigo de los intentos de unificación entre ambas, que cristalizaron en las ecuaciones de Maxwell para el campo electromagnético.
Animados por el éxito conseguido, los físicos se dedicaron a la tarea de explicar las fuerzas gravitatorias y las electromagnéticas en virtud a un único mecanismo. Pronto se vio que la tarea no iba a ser tan fácil. El propio Einstein lo intentó durante décadas, y fracasó. Su teoría de la relatividad, que explica los fenómenos gravitatorios de forma tan brillante, se resiste a dejarse unificar, y a día de hoy la gravitación sigue un camino y el electromagnetismo sigue otro, por más que los teóricos de cuerdas nos prometan una unificación futura.
Combinar las dos grandes fuerzas de la naturaleza ha resultado una frustración para aquellos que buscan una gran teoría que lo explique todo, pero tampoco es algo tan malo. La gravitación y el electromagnetismo son bien conocidas en sus fundamentos y sencillas de comprender, modelan la estructura del Universo y se manifiestan en la formación de estrellas y galaxias.
Parecía que con ello teníamos ya todos los elementos necesarios para explicar las interacciones de todas las partículas del Universo. Todo se debe a la gravedad, a la electricidad y el magnetismo, fin de la historia. De ahí a proclamar, como Lord Kelvin hizo en 1900, que la física ya estaba completa y que todo lo que quedaba por hacer era medir con un decimal más de precisión, solamente había un paso.
Por supuesto, Kelvin metió la pata a lo grande. No tardó mucho en aparecer la necesidad de introducir una tercera fuerza para mantener unidos los elementos básicos dentro del núcleo atómico. Esta fuerza, llamada fuerza nuclear fuerte, permite explicar por qué los protones del núcleo no son repelidos por las fuerzas electrostáticas, describen los procesos de fisión y fusión nuclear, y aunque es una interacción de muy corto alcance resulta esencial para explicar el mundo en que vivimos.
Las tres fuerzas fundamentales se repartieron el mundo: la nuclear fuerte era la dueña de la interacción a muy cortas distancias, mientras el electromagnetismo y la gravedad se hacían sentir desde allí hasta el infinito. Hasta que un experimento dio al traste con todo. Como el lector sabrá, siempre hay objetos que no pueden clasificarse fácilmente. Tenemos cajones para ropa, calzado, herramientas, documentos, pero ¿qué hacemos con la figurilla del pastel de bodas, de los clips de colores, de la linterna, de las pilas que hay que recargar algún día, de los calcetines desparejados, de los bolígrafos que aún escriben? La solución es elemental: un nuevo cajón.
Eso es lo que pasó a comienzos del siglo XX, cuando los fisicos intentaron describir un proceso llamado desintegración beta. A veces, un neutrón dentro de un núcleo atómico se transforma en un protón, un neutrón y un antineutrino electrónico. Ese proceso no puede explicarse en base a ninguna de las tres fuerzas fundamentales, así que hubo que inventar una cuarta solamente para este caso. Esta fuerza, llamada nuclear débil, no parecía servir para otra cosa. Era una humillación para los fisicos, algo así como tener dos tipos de destornilladores, uno para el tornillo inferior trasero del secador de pelo y otro para todos los demás. Pero la naturaleza manda, así que las tres fuerzas fundamentales se convirtieron en cuatro.
A pesar de ello el proceso de unificación de fuerzas siguió su curso. El retroceso sufrido por la aparición de la fuerza débil fue contrarrestado en los años sesenta gracias a Sheldon Glashow, Abdus Salam y Steven Weinberg, quienes consiguieron combinar las interacciones electromagnéticas y débiles dentro de lo que hoy llamamos teoría electrodébil. De ese modo las fuerzas fundamentales vuelven a ser tres: gravitatoria, electrodébil y nuclear fuerte. Eso sí, a efectos de andar por casa se siguen considerando las fuerzas electromagnética y nuclear débil como si fuesen separadas, y es por eso que se sigue hablando de las cuatro fuerzas fundamentales. Es una cuestión de comodidad.
En cualquier caso, sean tres o cuatro, cualquier intento de ampliar el número de fuerzas fundamentales suele verse con malos ojos. Es lo que sucedió a comienzos de los ochenta, cuando una reevaluación del experimento de Eötvös hizo pensar en la posibilidad de complementar la fuerza gravitatoria de Newton con un término tipo Yukawa que actuaría a cortas distancias. Esta presunta quinta fuerza se sigue investigando en la actualidad, pero la probabilidad de que exista se ha reducido mucho (ver Más allá del mar de Yukawa).
Y ahora que las aguas volvían a su cauce, vuelve la quinta fuerza. Los responsables son un grupo de investigadores (húngaros, como su antecesor Eötvös) dirigidos por Attila Krasznahorkay, quienes observaron algo extraño en la desintegración de los núcleos de berilio-8 excitados. Dichos núcleos vuelven a su estado fundamental gracias a la emisión de un fotón, el cual forma un par de partículas electrón-positrón que se separan en direcciones diferentes. La particularidad observada fue un aumento en el número de partículas emitidas en una dirección determinada.
La probabilidad de que un suceso así tuviese lugar por azar es tan pequeña que el grupo húngaro buscó explicaciones alternativas. En el artículo que escribieron para Physical Review Letters y que salió publicado en enero de 2016, sugirieron que en lugar de un fotón aparecía una partícula distinta que podría general el par electrón-positrón. Pero hay un problema con esa nueva partícula: no coincide con ninguna de los conocidas hasta ahora. Supuestamente se trata de un bosón con una masa de unos 16,7 MeV, que a falta de nombre mejor fue bautizado con el nombre de bosón X.
Los bosones elementales conocidos son pocos: fotones, bosones W y Z, gluones y bosones de Higgs, y posiblemente el gravitón si es que existe. Salvo el Higgs, todos ellos son portadores de fuerzas fundamentales: los fotones transmiten la fuerza electromagnética, los W y Z hacen lo mismo con la fuerza nuclear débil, los gluones rigen las fuerzas nucleares fuertes y el gravitón las electromagnéticas. Si el nuevo bosón realmente lo es ¿significa eso que es portador de una nueva fuerza? ¿Tenemos de nuevo una quinta fuerza en ciernes? El grupo de Krasznahorkay dice que tal vez, y sugieren que podría estar involucrado en interacciones capaces de explicar el fenómeno de la materia oscura. Caso de existir revolucionaría la física de partículas.
Paradójicamente no pareció que el artículo original tuviese gran repercusión. Quizá se deba a que los húngaros no eran físicos de partículas sino físicos nucleares, y ambos grupos no suelen interactuar mucho. Con todo, el descubrimiento se abrió camino hasta la revista Nature; poco después un segundo grupo de investigación (dirigido por el norteamericano Jonathan Feng) se hiciera eco y publicó su propia contribución en agosto de 2016.
Feng y equipo no solamente asumieron que el bosón puede ser real sino que intentaron describir sus propiedades, así como responder algunas preguntas inquietantes. La más evidente es: ¿cómo es que no ha sido descubierto hasta ahora? Con una masa cien veces menor a la de un protón, el CERN tendría que estar creando bosones X a paletadas. La explicación es que el X solamente actúa sobre electrones y neutrones, pero no con protones, lo que lo convierte en “protófobo.” Toca ahora reexaminar todos los experimentos pasados, y por supuesto efectuar otros nuevos, para confirmar la existencia de la nueva partícula, y por tanto de una nueva fuerza de la naturaleza.
Pero no corramos demasiado porque la cosa no está clara. El grupo húngaro ya creyó haber encontrado bosones en 2008 y en 2012, que han desaparecido en los datos de 2015. Estudios parecidos con otros núcleos atómicos inestables hizo concluir en 2006 a un investigador holandés que debía haber al menos diez bosones, lo que él mismo denominó “un pandemonio,” o como dicen en mi pueblo una jartá.
Da la impresión de que esta nueva fuerza no es más real que las quintas fuerzas anteriormente descubiertas, pero ¿quién sabe? Quizá esta sea la primer manifestación de una quinta fuerza basada en el bosón X, igual que el movimiento anómalo del perihelio de Mercurio sugirió que quizá la gravitación de Newton necesitase unos retoques. En estos casos, lo mejor es esperar a obtener nuevos datos y ver adónde nos llevan. Si hay quinta fuerza, bienvenida sea; si no, cerremos ese callejón sin salida y sigamos explorando.
Este post ha sido realizado por Arturo Quirantes (@Elprofedefisica) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo El despertar de la quinta fuerza se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Beulah Louise Henry (1887-1973): Edisonen pareko asmatzailea
Orain dela gutxi hasi gara asmatzaileen zerrenda hori puzten isilarazitako ahotsekin, eta hura betetzea xede izan dugunean, orduantxe gertatu zaigu gauzarik harrigarriena… gainezka egin digula orriak: Josephine Cochrane, Hedy Lamarr, Stephanie Kwolek, Sarah Mather, Ángela Ruiz Robles, Mary Anderson, Mary Phelps Jacob, Tabitha Babbitt, Marion O´Brien Donovan, Margaret Knight, Martha Coston, Melitta Bentz, Katherine Blodgett, besteak beste. Gogoan ditugu horiek guztiak, baina gaurkoan, Beulah Louise Henry izango dugu artikulu honen protagonista, 49 asmakizun patentatu zituen emakumea, 110en egile dela uste bada ere.
1. irudia: Beulah Louise Henry asmatzailea gaztaroan. Bizitzan zehar 100 asmakizun garatu zituela uste dute. Hainbat gauza asmatu zituen, bere sasoian “Lady Edison” ezizena jarri ziotela.
Henry autodidakta izan zen. Txikitatik diseinuak egiten zituen, oro har, etxean aurkitzen zituen objektu eta erremintenak. Oso goiz hasi zen patenteak lortzen. 1912an, adibidez, izozkiak egiteko makina bat asmatu zuen. Egitura isolatzaile batek inguratzen zuen izozkailu bat sortu zuen eta horrek ahalbidetzen zuen fabrikazio-prozesuaren azkartasuna, izotz gutxi erabiliz. Estatu Batuetan, Britania Handian eta Frantzian erregistratu zuen makina gozo hura. Urtebete beranduago, eta izozkiak alde batera utzira, poltsa edo zorroak deigarri gertatu zitzaizkion. Arropa desberdinekin batera janzteko, poltsa bat asmatu zuen tonu ezberdineko estalki trukagarriekin. Konpartimentu anitz zituen zorroak barruan, apaintzeko objektuez gain, idazketakoak ere sar zitezen. Oso perimetro txikian tolesten zen eguzkitakoa ere asmatu zuen. Objektu horrek, baina, sorpresa bat gordetzen zuen: heldulekua desmuntagarria zen eta makillaje estutxe gisa balio zuen. Britania Handiak eta Kanadak ez zuten segundo bat ere galdu asmakuntza hori berauen herrialdetan saltzen hasteko.
1919. urtean, New Yorkera joan zen bizitzera. Bere garunak ez zuen erretiroa hartu, asmatzen jarraitu zuen, argiaren etengailua inoiz itzali ez balitzaio bezala. 1921ean, Henry Umbrella & Parasol Company enpresa sortu zuen, eguzkitakoekin zerikusia zuten asmakizun horiek merkaturatzeko asmoz. Salmenta arrakastatsua izan zen: 50.000 dolar lortu zituen Henryk. Gerora lokal batean inbertituko zituen, laborategi bat sortzea baitzuen helburu. Langileak kontratatu zituen ere; mekanikoek, maketistek eta artisauek osatu zuten lan-taldea. Hain izan zen handia lorturiko arrakasta, ezen Scientific American aldizkari famatuak 1924ko asmatzaile esanguratsuen artean aipatu zuela.
2. irudia: Beulah Louise Henry 1927. urtean asmatutako panpinarekin, busti zitekeen lehen panpina, benetako haur baten antza izan zuen lehena. (Argazkia: Victoriana Magazine)
Eguzkitako eta aterkiez aparte, Henryk umeentzako jostailuak egin zituen ere. Adibidez, 1925ean, material-higienikoekin estalita zegoen panpina bat patentatu zuen, ura jasaten zuena, gainera. Barne egiturari dagokionez, malgukiek osatzen zuten panpina. Horri esker, jarrera desberdinak imitatzen ahal zituen, berriz hasierakora bueltatzeko. “Irrati-panpina” bat ere sortu zuen, jostailurik sofistikatuena une hartara arte; izan ere, umeei asko gustatzen zitzaien hitz egin zezaketen panpinak. Jostailuak sortzea oso gustuko zuen Henryk. Beste batzuk aipatzearren, behin uretan erabiltzeko jostailu bat sortu zuen, txakur baten antza zeukan aparatu puzgarri bat. Aipagarria da 1935. urtean begiak mugitzen zitzaizkion panpina bat sortu zuela. Asmakizun horren ostean, ‘Miss Illusion’ merkaturatzen hasi zen. Botoi bati sakatuz, begien eta ilearen kolorea aldatzen ahal zitzaion, soinekoa biratzeaz gain.
Umeen entretenimendua eta produktuen erosotasuna bilatzen zuen emakume asmatzaileak. Moda, jostailuak eta azkenik, bulegoen mundua. 1932 eta 1937 artean, “protógrafo” izeneko aparatua sortu zuen. Horri esker, makinan idatzitako dokumentu beraren lau kopia aldi berean egin ahal zitezkeen, ikatz-papera edo multikopista erabili gabe. Suitzan ere erregistratu zen. 1936an, josteko makina mota baten patentea lortu zuen. 1939an, Nicholas Machine Works Company enpresan kontratatu zuten eta 1955.urtera arte egon zen lanean bertan. Asmakizunik bitxiena, baina, hauxe izan zen: 60ko hamarkadan injekzio bidezko labe elektrikoa. Elikagaiek beraiek isurtzen zuten zukuarekin janaria prestatzean zetzan. 83 urterekin asmatu zuen azkena: gutun azalak modu desberdinean egiteko metodoa babestu zuen.
Objektuak asmatzeari dedikatu zion bere bizitza Beulah Louise Henryk, bere zerrendako kideek egin zuten bezalaxe: Elizabeth Arden, Hélène Dutrieu, Margarita Salas Falgueras, Ángela Ruiz Robles, Elsa Schiaparelli, Celia Sánchez-Ramos Roda, Elizabeth Magie Phillips, Maria Montessori, Ada Lovelace, Ida Tacke-Noddack…
———————————————————————–
Egileaz: Uxue Razkin Deiako kazetaria da.
———————————————————————–
The post Beulah Louise Henry (1887-1973): Edisonen pareko asmatzailea appeared first on Zientzia Kaiera.
#Naukas16 Yo protesto
Mujeres afganas. Fuente: Flickr/DVIDSHUB
La divulgación científica es uno de los derechos humanos. Como suena. Con todo, Natalia Ruiz Zelmanovich, alias “la Zelman”, alias “la más grande”, protesta.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 Yo protesto se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Cinco motivos por los que sin jirafas el mundo sería un lugar peor
2016 ha sido un buen año para el oso panda. La especie en extinción por excelencia ya no se extingue. Hace varios años que China puso en marcha programas nacionales para recuperar al oso que es su emblema y su más entrañable embajador ante los pueblos del mundo y en 2016 se han visto los frutos. Decenas de estos animales han sido concebidos (no sin dificultades; las pandas tienen algunos de los requisitos de fecundación más frustrantes de la naturaleza) y ya crecen en reservas y centros de recuperación chinos, y eso le ha servido para salir oficialmente de la categoría de especie en peligro de extinción.
En cambio, 2016 ha sido un mal año para las jirafas, que han caído en ese estatus después de que su población haya disminuido en un 40% durante las últimas décadas. La caza furtiva y, sobre todo, la desaparición de sus hábitats, está haciendo desaparecer a este animal larguirucho.
A su progresiva desaparición silenciosa se une el hecho de que parece poco probable que ningún país africano, continente donde viven las jirafas, esté en condiciones de invertir los fondos necesarios para conseguir la recuperación de sus cifras, como ha hecho China con los pandas.
Y es una pena, porque las jirafas son animales extraordinarios. Por si no lo sabías aún, estos son cinco motivos por los que deberíamos empezar ya mismo a salvar a las jirafas.
1. Es el animal más alto del mundo (y un gran poder conlleva una gran responsabilidad)
Un macho adulto bien alimentado puede alcanzar los cinco metros y medio de altura. Por comparar, un elefante africano puede medir unos 3,3 metros, y Pau Gasol mide exactamente 2,13. Si usted es de los que se maravilla cuando alguien observa el panorama desde lo alto en medio de una multitud, piense por un momento en la ventaja que eso le da a las jirafas.
Su impresionante altura es sin embargo un desafío de ingeniería biológica para sus cuerpos, en los que destacan tres sistemas especialmente adaptados: primero, un sistema cardiovascular capaz de mantener una presión sanguínea constante; segundo, un conjunto de huesos y músculos especialmente adaptados para sostener su cuello, y tercero, un sistema nervioso capaz de enviar señales con rapidez a través de una red neuronal tan alargada.
2. Fijémonos por un momento en ese cuello
Quizá uno de los primeros recuerdos que todos tenemos de las jirafas es que siempre se han utilizado, oportunamente, en los juegos de alfabetos infantiles para ilustrar la letra J. En esos casos su cuello venía que ni pintado.
El cuello de las jirafas no solamente es su mayor seña de identidad, también es lo que condiciona toda su anatomía. Por eso es sorprendente descubrir que está compuesto por 7 vertebras, igual que el de los demás mamíferos, incluidos los seres humanos. La particularidad es que son mucho más largas y las uniones entre ellas son articulaciones mucho más flexibles que las nuestras. Si no se lo creen, prueben a dormir como una jirafa: echados sobre sus antebrazos y espinillas, con el cuello extendido hacia atrás y la cabeza descansando sobre su lomo y cuartos traseros. ¿Duele, verdad?
3. Miremos ese cuello un poco más
Disculpen que insista, pero es que hay mucho cuello que mirar. Como decíamos, ese largo cuello condiciona su anatomía. Por ejemplo, la jirafa tiene un sistema circulatorio especialmente adaptado a la enorme distancia a la que se encuentran su cerebro y su corazón. Por eso, este último es especialmente grande (pesa unos 11 kilos y mide unos 60 centímetros), especialmente fuerte (los músculos cardíacos tienen un grosor de 7,5 centímetros) y especialmente rápido (late unas 150 veces por minuto, inusual en un animal tan grande). Todo para asegurarse de que la sangre llegue sin problema hasta la cabeza.
Para compensar, han desarrollado también una forma de evitar que el aumento de la presión le haga explotar la cabeza cuando la agacha para beber. Es lo que se llama una ‘rete mirabile’ (término empleado por Galeano, traducido como ‘red maravillosa’), una red de vasos capilares que sirve para equilibrar la presión sanguínea. Sus venas yugulares también tienen unas válvulas que evitan que la sangre fluya sin control del corazón a la cabeza cuando el animal se agacha.
No solo la sangre debe fluir sin problema arriba y abajo por ese largo cuello. Las jirafas son rumiantes, y como tales, tragan el alimento apenas sin masticar, algo que hacen a posteriori, durante horas, regurgitándolo. El cuello de las jirafas tiene músculos esofágicos especialmente fuertes para llevar la comida desde uno de sus estómagos (como todo rumiante tiene cuatro) hasta su boca, que se encuentra varios metros por encima.
4. ¿Cómo explicaremos la selección natural?
La teoría de la evolución y de la selección natural de las especies es algo de lo que todos hemos oído hablar pero no todos entendemos con precisión. Y la jirafa lleva más de un siglo intentando ayudarnos a entenderla.
El francés Jean-Baptiste Lamarck fue el primer teórico de la evolución, y él creía que los cambios que los individuos alcanzaban durante sus vidas podían ser transmitidos a su descendencia. Según su visión, Mamá Jirafa se estiró y estiró para alcanzar las hojas más altas de los altos árboles de la sabana africana, su cuello se alargó un poco y por tanto también las Jirafas Hijas tuvieron el cuello más largo, después las Jirafas Nietas, las Bisnietas, etcétera, etcétera.
Pero el inglés Charles Darwin veía fallos en esta idea de que las generaciones posteriores heredasen las características adquiridas, así que reformuló la teoría de la siguiente forma: Darwin propuso que las Mamás (y los Papás) Jirafa que, por azar, presentaban genes que les hacían desarrollar un cuello un poco más largo eran las que se alimentaban mejor, pues podían alcanzar las hojas más altas de los altos árboles de la sabana africana. Esta ventaja adaptativa frente a sus compañeras con cuellos más cortos, aumentaba la probabilidad de sobrevivir, reproducirse y con ello transmitir esos genes a las Jirafas Hijas, que a su vez tendrían el cuello más largo y lo transmitirían a las Jirafas Nietas, a las Bisnietas, etcétera, etcétera.
Es decir, que las características transmitidas no son las desarrolladas durante la vida de un animal, sino las que viajan en sus genes y que las presiones del entorno se han encargado de potenciar al dar a sus portadores mayores oportunidades de supervivencia o éxito reproductivo. Todo eso lo explicaron Lamarck y Darwin gracias a las jirafas, y gracias a ellas lo entendemos mejor. ¿Cómo lo explicaremos a las siguientes generaciones si nunca han visto una?
5. Son cuatro en una
Las jirafas son como la Santísima Trinidad pero en el reino animal y con cuatro especies en lo que se creía que era solo una.
Durante décadas, la investigación científica sobre las jirafas ha sido muy escasa, pero ante el alarmante descenso en sus números, científicos de la Giraffe Conservation Foundation en Namibia y genetistas alemanes pusieron en marcha un proyecto para aprender más sobre las diferentes subespecies de jirafas africanas. Los resultados mostraron que algunas de esas consideradas subespecies eran en realidad especies distintas, más diferentes genéticamente entre sí que los osos pardos y los osos polares.
Sus conclusiones confirmaron que no hay una sola especie de jirafa africana, sino cuatro distintas: la jirafa del sur (Giraffa giraffa), la jirafa Masai (Giraffa tippelskirchi), la jirafa reticulada (Giraffa reticulata), y la jirafa del norte (Giraffa camelopardalis), que incluye a la subespecie llamada jirafa nubiana (G. c. camelopardalis). Además de esta última, seguirán siendo subespecies la jirafa de Kordofán (G. c. antiquorum), la jirafa de África occidental (G. c. peralta), la jirafa de Sudáfrica (G. g. giraffa) y la jirafa de Angola (G. g. angolensis).Una familia ya más que numerosa que merece ser salvada.
Sobre la autora: Rocío Pérez Benavente (@galatea128) es periodista en El Confidencial
El artículo Cinco motivos por los que sin jirafas el mundo sería un lugar peor se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Titikaka aintzirako igela
———————————————————————————————————–
Irudia: Telmatobius Culeus igela, desagertzeko arriskuan dagoen Titikakako espezie endemikoa da. (Argazkia: Bolivian Amphibian Initiative)
Jakina da anfibioen arnasketan larruazalak zeregin garrantzitsua betetzen duela. Ez da hain ezaguna, ostera, hainbat anfibio taldetan, garrantzi hori zenbaterainokoa den. Titikaka aintzirako (3.812 m) uretan bizi den igelak (Telmatobius culeus) ez du egiazko birikarik, gasen trukerako egokiak ez diren biriken aztarnak baino ez ditu. Oso berezia da igel hori, ez baita anfibioa, urtarra baizik. Ezagunak ditugun igel gehienak ez bezala, ez da uretatik irteten; horregatik ez du arnasa hartzeko balio duen egiazko birikarik. Izan ere, larruazaletik hartzen du arnasa. Hau da, larruazala da oxigenoa hartzeko eta karbono dioxidoa kanporatzeko duen organo bakarra.
Kontuan hartu behar da, bestalde, 3.812 m-tan oxigeno gutxi dagoela eta horrek, berez, zaildu egiten duela arnasa hartzea. Hortaz, Telmatobius culeus-ek tolesturaz beterik du larruazala. Tolesturei esker, gasen trukerako azalera oso handia dauka, eta horrek konpentsatu egiten du oxigeno-urritasunaren eragina. Gainera, tolestura horiek mugituz, ur-korronteak sor ditzake inguruko ura berriztatzeko eta, era horretara, oxigenoaren kanpo-kontzentrazioa ahalik eta altuen mantendu. Aurrekoaren osagarri modura, larruazalaren barnealdea odol-hodiz josita dago, eta, hori gutxi balitz, igel honen odola berezia da oso. Batetik, beste igelen odolak baino hemoglobina gehiago du eta, bestetik, globulu gorri gehiago edukitzeaz gain, txikiagoak dira eritrozito horiek; horrela, oxigenoa xurgatzeko azalera handiagoa du eritrozitoen multzo osoak. Faktore horiei guztiei esker, erraztu egiten da altuera horretan guztiz urria den oxigenoaren transferentzia.
Titikaka aintziran Telmatobius culeus igelaren irudiak erakusten dituen bideoa. (Irudiak: Bolivian Amphibian Initiative)
Telmatobius culeus igela estimu handian dute Titikaka aintziraren inguruko herritarrek. Estimu handia, baina, ez dagokio igelaren arnas fisiologia bereziari. Izan ere, ohiko janaria da inguruko jatetxeetan, eta hori nahikoa ez eta afrodisiakoa omen da igela. Hori dela eta, «igel-irabiakiak» prestatzen eta “edaten” dituzte bertako biztanleek. Viagra perutarra deitzen diote orain. Ez dakigu gordinik ala egosirik hartzen duten «irabiakia»; erabili ditugun iturriek ez digute hori argitu.
—————————————————–
Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.
—————————————————–
Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.
The post Titikaka aintzirako igela appeared first on Zientzia Kaiera.
La fusión a un paso gracias al hidrógeno líquido
Las estrellas como el Sol producen cantidades ingentes de energía a partir de una masa limitada porque los átomos que la componen, fundamentalmente hidrógeno, se fusionan entre sí para formar helio, liberando en el proceso mucha energía. A diferencia de la fisión nuclear, en la que un átomo pesado como el uranio se rompe (fisiona), la fusión nuclear no genera en principio productos radioactivos. En estos momentos existen en ejecución grandes proyectos para intentar reproducir lo que hace el Sol en la Tierra empleando dos técnicas principalmente, el confinamiento magnético como el proyecto ITER (en Francia), y el confinamiento inercial como el NIF (en California), con la idea de obtener una energía limpia y abundante.
En el caso de la fusión por confinamiento inercial cientos de láseres producen rayos X que impactan desde todos lados en una cápsula hueca de combustible (isótopos de hidrógeno), con el objetivo de que implosione. Si la presión que se consigue en el centro es suficientemente grande, los núcleos del combustible se fusionarán en una reacción que ya es capaz de mantenerse por si misma. En el confinamiento magnético se emplean campos electromagnéticos para confinar un plasma caliente.
Como decíamos hace un momento, en el confinamiento inercial la estrategia es usar láseres de alta energía para calentar y comprimir rápidamente una cápsula de hidrógeno. Para mantener el hidrógeno en su sitio la cápsula suele estar formada por hidrógeno congelado. Ahora un nuevo trabajo sugiere que podría emplearse hidrógeno en estado líquido, lo que aparte de hacer algo menos exigentes las condiciones iniciales (el hidrógeno se vuelve sólido a – 259 ºC, mientras que se convierte en líquido a -253 ºC), podría facilitar alcanzar las condiciones de fusión. Los experimentos llevados e cabo en el NIF consiguen temperaturas de fusión empleando una mezcla líquida de hidrógeno pesado como material de partida.
Durante su campaña inicial entre 2009 y 2012 el NIF empleó cápsulas que contenían una capa de hielo de hidrógeno pesado. Estos experimentos alcanzaron a producir la fusión pero no a un ritmo que permitiese que fuese autosostenida, en parte porque la asimetría en la iluminación con rayos X impide que se alcance la alta compresión del combustible que es necesaria. Ahora R.E. Olson, del Los Alamos National Laboratory, y sus colaboradores han experimentado con una capa líquida que requiere menos compresión que el hielo.
Diseño de la cápsula empleada
Para llevar a cabo las pruebas los investigadores usaron una espuma especial que absorbe el hidrógeno líquido haciendo que forme una capa esférica simétrica a lo largo de la pared de la cápsula. Cuando la cápsula se expuso a láseres de potencia reducida, la cápsula alcanzó temperaturas al implosionar suficientes como para dar comienzo a la reacción de fusión, como pudo comprobarse por el flujo de neutrones medido (similar al de los experimentos con hielo).
El siguiente paso, actualmente en fase de desarrollo, comprobará si los láseres a toda potencia se puede alcanzar la reacción de fusión autosostenida.
Referencia:
R.E. Olson et al (2016) First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.245001
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo La fusión a un paso gracias al hidrógeno líquido se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: