El sistema de la difusión social de la ciencia: 2. Motivaciones y agentes

Cuaderno de Cultura Científica - Tue, 2017/01/24 - 08:00

Motivaciones de los agentes

Los motivos por los que diferentes agentes desarrollan actividades de comunicación científica se pueden resumir en tres grandes epígrafes. Ciertos agentes las realizan por los beneficios que reportan, que pueden ser materiales (económicos) o inmateriales (prestigio). La comunicación científica es una actividad económica como cualquier otra ya que hay personas dispuestas a comprar –en formato divulgativo o informativo- contenidos de ciencia. El prestigio, como bien inmaterial, se identifica en muchos casos con una buena imagen y ésta puede conseguirse como consecuencia del desempeño de las actividades de difusión social de la ciencia. Otros agentes actúan por responsabilidad social, por los beneficios sociales que se le atribuyen. Y otros por placer (o afición), porque hay personas que disfrutan desarrollando esa labor. No hay fronteras absolutas entre esas motivaciones. Un agente puede disfrutar con una actividad que la empezó a desarrollar por responsabilidad social y que, además, le reporta un beneficio económico. Y no es extraño que quienes empiezan haciendo divulgación científica por afición acaben haciendo de ello un modo de vida.

Los agentes

Cada uno de los agentes que se señalan a continuación desarrollan su labor en el ámbito de la comunicación científica. Por regla general no actúa de forma aislada, sino que se benefician mutuamente de la colaboración de otros. Y cada uno de ellos desarrolla esa labor debido a un motivo o a un conjunto de ellos.

Medios de comunicación

Dependiendo de su carácter público o privado, la motivación para comunicar ciencia es o puede ser diferente. Los medios privados –normalmente prensa, pero también radio, principalmente- informan sobre ciencia porque interesa a cierto público y son consumidores de información científica (receptores). Para los medios se trata de lograr un rendimiento económico a esa actividad. En el caso de los medios públicos, aparte de satisfacer el interés de una parte de su audiencia, también opera la responsabilidad social. Los medios de comunicación de titularidad pública tienen una función social que cumplir como agentes al servicio de la transmisión de cultura, y la cultura científica es parte inseparable de la cultura humana.

Periodistas independientes

Los periodistas independientes actúan en el sistema de la comunicación científica por razones económicas, con independencia de que, además, consideren que se trata de una actividad socialmente necesaria y gratificante. Los diferenciamos de los medios de comunicación porque aunque su motivación es también económica, las condiciones en que desarrollan su actividad son muy diferentes. Suelen ser periodistas freelance que en ocasiones trabajan para más de un medio de comunicación.

Divulgadores profesionales

Aunque pocos, existen divulgadores científicos profesionales que trabajan de forma independiente. Son autores de libros, mantienen blogs, participan en proyectos de comunicación de empresas del sector, dictan conferencias, etc.

Museos

Hay una gran diversidad de museos e infraestructuras equivalentes. También los hay de concepciones muy distintas, variando desde planteamientos expositivos tradicionales hasta centros concebidos para interactuar con el público visitante. [Ejemplos: MUNCYT, Eureka Zientzia, Planetario, Laboratorium]

Los museos también están dirigidos a públicos amplios y, como ocurre con las exposiciones especiales, también reciben la visita de grupos de estudiantes.

Editoriales

Numerosas editoriales mantienen una colección de libros de divulgación, en ocasiones no sólo del ámbito científico, pero sí principalmente. Al igual que los medios privados de comunicación, su motivación es económica, aunque también puede serlo la búsqueda de prestigio.

Organismos públicos

Dentro de este apartado se incluyen universidades, centros de investigación y otras entidades relacionadas con el mundo de la ciencia o, en general, del conocimiento. La motivación principal es la responsabilidad social, motivación que tiene, a su vez, dos componentes. Una tiene que ver con el interés que se atribuye a la alfabetización científica de la sociedad. Y la otra es un ejercicio de transparencia, pues se entiende que la ciudadanía tiene derecho a conocer el destino que esos organismos dan a los recursos públicos que se destinan a la investigación.

Y a la responsabilidad social habría que añadir el prestigio o, quizás en el caso de estas instituciones, la imagen, que al fin y al cabo es una forma de prestigio o reputación. En la medida en que las actividades de difusión social de la ciencia tienen un alcance importante y llegan a amplios sectores de la sociedad, ello genera una buena imagen de la institución, pues para el público, el correcto desempeño de esa función es un indicador de competencia y de responsabilidad social.

Agencias de comunicación

Numerosas instituciones públicas del ámbito del conocimiento y de la ciencia -universidades y centros de investigación, principalmente- disponen de sus propios gabinetes de comunicación. Además, tanto si disponen de su propio servicio y requieren apoyo adicional como si carecen del mismo, cada vez son más las entidades que recurren a los servicios de agencias especializadas de comunicación. Aunque una agencia generalista puede ofrecer servicios de difusión científica, cada vez es más frecuente encontrarnos con agencias especializadas en materias científicas y tecnológicas.

Empresas de divulgación

Al igual que ocurre con la comunicación, y si bien por el momento se trata de un sector de escasa entidad, también en el terreno de la divulgación científica hay empresas. En algunos casos se trata de compañías especializadas en la organización de eventos; en otros, ofrecen productos de divulgación dirigidos a sectores o segmentos determinados (infancia, por ejemplo), y en otros realizan tareas de producción audiovisual, de edición de medios digitales, etc.

Asociaciones

Existen numerosas asociaciones que desarrollan tareas de difusión social de la ciencia. Unas son asociaciones culturales de carácter general [ejemplo], otras se dedican a la difusión de las ciencias experimentales [ejemplo] y otras, incluso, trabajan campos muy especializados [ejemplo]. Son asociaciones de particulares cuya principal motivación es la afición o, también, la responsabilidad social. Ejemplos especiales de asociaciones con una clara motivación de responsabilidad social son las asociaciones de escépticos, como Círculo Escéptico y ARP Sociedad para el Avance del Pensamiento Crítico.

Investigadores y docentes

Un buen número de investigadores, así como docentes de diferentes niveles formativos (universitarios y de bachillerato, principalmente) realizan actividades de divulgación científica. Para algunas de estas personas la actividad divulgadora ocupa una parte significativa de su tiempo y otras lo hacen de forma muy esporádica. La motivación de estas personas es la responsabilidad social, el prestigio social y el placer. Raramente se trata de una actividad remunerada. En muchas ocasiones esta tarea se enmarca en la actividad de otros agentes, como organismos públicos o medios de comunicación.

Divulgadores aficionados

Aunque no es el caso más habitual, también hay personas ajenas a las instituciones académicas u organismos de investigación que desarrollan, por placer y también por responsabilidad social, una cierta actividad de divulgación científica. Un buen número de investigadores, docentes y divulgadores aficionados engrosan las filas de las asociaciones a que se ha hecho referencia antes.

————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El sistema de la difusión social de la ciencia: 2. Motivaciones y agentes se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El sistema de la difusión social de la ciencia: 1. Introducción
  2. Sobre la difusión social de la ciencia y su función
  3. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
Categories: Zientzia

Bodil Schmidt-Nielsen (I): Ur- eta gatz-orekaren bila

Zientzia Kaiera - Mon, 2017/01/23 - 15:00
Juan Ignacio Pérez Iglesias Schmidt-Nielsen abizena irakurtzen dugunean, Knut izena etortzen zaigu burura gehienetan. Joan den mendeko fisiologo handienetako bat izan zen bera, animalien ingurumen-fisiologian aditu handiena ere, segur aski. Gutako askok berak idatzitako testuliburuarekin ikasi genuen fisiologiaz dakigunaren zati handi bat. Bazen, hala ere, Schmidt-Nielsen abizena zeukan beste fisiologo bat, emakumea, Knuten emaztea izandakoa hain zuzen ere. Bera ere fisiologo ospetsua izan zen, eta bere senarra bezain fisiologo handia, zalantzarik gabe, baina ez hain ezaguna haien lan esparruetatik kanpo. Artikulu honetan eta datozen asteotan plazaratuko ditugun beste bi lanetan ezagutzera eman nahi ditugu hain ezaguna ez den Schmidt-Nielsenen ibilbide eta lorpen zientifikoak, bereak ere handiak izan zirelako eta ezagunak izatea merezi dutelako.

Irudia: Bodil Schmidt-Nielsen haren seme-alabekin. (Argazkia: AEBtako Smithsonian Institution Wikimedia Commons bidez)

Kopenhagen sortu zen Bodil Scmidt-Nielsen, 1918ko azaroaren 3an. August Krogh Nobel sariduna eta Marie Krogh ziren bere gurasoak, fisiologo oso ezagunak biak. Bikote horren lanari esker frogatuta geratu zen oxigenoa atmosferatik biriketako odol-kapilarretara pasiboki (energiarik erabili gabe) iragaten zela. Marie Kroghek “Zazpi deabru txikiak” izena eman zion lan bikain horren emaitzak plazaratzeko argitaratu zuten artikulu sortari, eta izen horrekin ezagunak dira geroztik fisiologiaren esparruan.

Zientzia-giroa zegoen etxean, gurasoen arteko fisiologiari eta lan esperimentalari buruzko elkarrizketak ohikoak baitziren. Holako giro batean haurrek gurasoen lana gorrotatzea gerta daiteke, edo alderantziz. Dirudienez, azken hau izan zen Bodilen kasua, zientziarekiko grina eta ez gorrotoa izan zelako garatu zuena.

Bere lehen ikaste-urteak -6tik 11ra- etxean eman zituen irakasle partikular batekin. 11 urte zituela sartu zen Kopenhageko Rysensteen Gymnasiumen eta 1937an bukatu zituen guk batxilerra deitzen ditugun ikasketak. Zientzia eta matematiketan espezializatu zen. Kopenhageko Unibertsitateko Odontologia Fakultatean sartu zen ondoren. Ikasketetan zehar handitu egin zen fisiologiarako zeukan jakin-mina eta oraindik ikaslea zela, giza hortzetan gertatzen den kaltzio eta fosforoaren trukeei buruzko lehen ikerketa-lanak egin zituen. Ikasketak bukatu baino lehen ezkondu zen 1939an Knut Schmidt-Nielsenekin [1]. Fisiologo norvegiarra zen Knut gaztea; Kroghtarren laborategian zebilen ikerketa munduan bere lehen urratsak ematen. Ikasketak amaitu eta berehala izan zuten lehen haurra. Hori dela eta, Medikuntzako ikasketak egin beharrean, ikerketa-jardueraren bidea hartu zuen Odontologiako Fakultatean. II Munduko Gerraren urteak ziren. Kaltzio eta fosforoaren metabolismoari buruzkoak izan ziren bere lehen lan haiek. 1946an odontologiako titulua lortu zuen eta bera izan zen, izan ere, Kopenhageko Unibertsitatean titulu hori eskuratu zuen lehena. Doktorego titulua 1955an lortu zuen unibertsitate berean.

Baina doktorego gradua lortu baino lehen, Bodil Scmidt-Nielsenek ibilbide luzea egin zuen Danimarkatik urrun, ur eta elektrolitoen balantzea ikertzen. 1946an Ameriketako Estatu Batuetako Swarthmore College delakoan lan egiteko konbitea hartu zuten Knut bere senarrak eta berak. Han egon ziren bi urte (1946-1948). Stanforden izan ziren gero (1948-1949), handik Cincinnatira egin zuten (1949-1952) eta, azkenean, Duke Unibertsitatera joan ziren. Leku horietan guztietan Research Associate postua eduki zuen, eta 1957tik 1964ra Associate Research Professor gisa jardun zuen Duken. Urte horietan zehar (1946-1964) egin zituen Bodilek bere ekarpen garrantzitsuenak ioi eta fluidoen balantzearen eta giltzurrun fisiologiaren esparruetan.

Bodil Schmidt-Nielsenen aita zen August Kroghen ustez, espezie desberdinak erabili behar ziren animalien fisiologia ikasteko, eta gaiaren edo argitu behar zen printzipioaren arabera aukeratu behar zen espezie bat ala bestea, beti ere egokitasunaren arabera. Badirudi Bodil ere, aitaren iritzi berekoa zela. Ez hori bakarrik, animalia espezieen arteko erkaketak ere egin zituen askotan. Izan ere, fisiologia konparatua deitzen dugunaren aitzindariak izan ziren Knut eta Bodil Schmidt-Nielsen. Bere bizitzan zehar anfibio, narrasti, hegazti zein ugaztunekin egin zuen lan Bodilek; izan ere, era guztietako ornodunak erabili zituen bere ikerketarako.

Oharrak:

[1] 1966an dibortziatu ziren eta Bodil 1968an R. G. Chagnonekin ezkondu zen, baina betiko mantendu zuen bere lehen senarraren abizena.

Iturriak:

———————————————————————————-

Egileaz: Juan Ignacio Pérez Iglesias (@Uhandrea) UPV/EHUko Fisiologiako katedraduna da eta Kultura Zientifikoko Katedraren arduraduna.

———————————————————————————-

The post Bodil Schmidt-Nielsen (I): Ur- eta gatz-orekaren bila appeared first on Zientzia Kaiera.

Categories: Zientzia

La sinergia prebiótica de aminoácidos y ácidos grasos

Cuaderno de Cultura Científica - Mon, 2017/01/23 - 11:59

El ADN, el ARN, las proteínas, las membranas, los azúcares… las células están compuestas por diversidad de componentes. En biología, y, concretamente, en los estudios sobre el origen de la vida, es muy común centrarse en una de esas moléculas, y postular hipótesis sobre cómo se originó la vida mediante el análisis de los mecanismos específicos relacionados con ella. “Estos estudios, básicamente, buscan “la molécula de la vida”, es decir, establecer cuál fue la molécula más importante para que fuera posible este hito, comenta Kepa Ruiz-Mirazo, investigador de la Unidad de Biofísica y del departamento de Lógica y Filosofía de la Ciencia de la UPV/EHU. No obstante, teniendo en cuenta que “la vida es un juego entre una gran variedad de moléculas y componentes, en los últimos años está habiendo un cambio de planteamiento, y están tomando fuerza las investigaciones que tienen en cuenta diferentes moléculas al mismo tiempo”, añade.

Además de mostrarse a favor de este nuevo planteamiento, el grupo de Ruiz-Mirazo, en colaboración con la Universidad de Montpellier, mediante la estancia de la doctoranda de la UPV/EHU Sara Murillo-Sánchez, ha podido demostrar que existe interacción entre unas moléculas y otras. “Nuestro grupo es experto en la investigación de las membranas que se crearon en los entornos prebióticos, es decir, en el estudio de las dinámicas que pudieron haber tenido los ácidos grasos, los precursores de los lípidos actuales. El grupo de Montpellier, por su parte, está especializado en la síntesis de los primeros péptidos. Así, al juntar el conocimiento de unos y otros, y cuando experimentalmente mezclamos los ácidos grasos y los aminoácidos, pudimos ver que se da una fuerte sinergia entre ambos”.

Imagen de las estructuras supramoleculares formadas por los ácidos grasos en entorno acuoso, tomada mediante la técnica microscópica cryo-TEM (Adela Rendón, en colaboración con el CIC-BioGUNE).

Según pudieron observar, la catálisis de la reacción se produjo cuando los ácidos grasos formaron compartimentos. Al estar en un medio acuoso, y debido al carácter hidrófobo de los lípidos, estos tienden a unirse entre sí y formar compartimentos cerrados; es decir, toman la función de membrana; “en aquella época, obviamente, las membranas no eran biológicas, sino químicas”, aclara Ruiz-Mirazo. En sus experimentos pudieron ver que las condiciones que ofrecen estas membranas son favorables para los aminoácidos: “El grupo de Montpellier tenía muy bien caracterizadas las reacciones prebióticas de formación de dipeptidos; así, pudieron ver que en presencia de los ácidos grasos, esta reacción se daba con una eficiencia mayor”, añade.

Además de demostrar la sinergia entre los ácidos grasos y aminoácidos, Ruiz-Mirazo considera muy importante haber realizado el estudio partiendo de componentes químicos básicos, es decir, con precursores moleculares: “La vida surgió a partir de esas moléculas básicas; por tanto, para estudiar su origen no podemos partir de los fosfolípidos complejos que se encuentran en las membranas de hoy en día. Hemos demostrado la formación de las primeras uniones y cadenas partiendo de precursores moleculares. O dicho de otro modo, hemos demostrado que es posible llegar a la diversidad y complejidad de la biología, partiendo de la química”.

En sus estudios, además del trabajo experimental, Ruiz-Mirazo trabaja en otros dos ámbitos, por lo que al final estudia el origen de la vida desde tres pilares o perspectivas: “por un lado, está el campo experimental; otro, está basado en modelos teóricos y simulaciones computacionales, que utilizamos para analizar los resultados obtenidos en los experimentos, y el tercero es un poco más amplio, ya que estudiamos desde el punto de vista filosófico qué es la vida, la influencia que tiene en el campo experimental la concepción que se tiene de la vida, ya que cada concepción te lleva a realizar un tipo de experimentos —aclara—. Estas tres metodologías se alimentan mutuamente: una idea que pueda surgir en el análisis filosófico te lleva a realizar una nueva simulación, y los resultados de esas simulaciones marcan el camino para diseñar los experimentos. O al revés. Seguramente, nunca llegaremos a resolver el inicio de la vida, pero trabajamos en ello: todos los seres vivos de la Tierra tenemos el mismo origen, y queremos conocer cómo sucedió”.

Referencia:

Murillo-Sánchez, S., Beaufils, D., González Mañas, J. M., Pascal, R. & Ruiz-Mirazo, K. (2016): Fatty acids’ double role in the prebiotic formation of a hydrophobic dipeptide. Chemical Science 7: 3406-3414 DOI 10.1039/C5SC04796J.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo La sinergia prebiótica de aminoácidos y ácidos grasos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. De los ácidos y las bases (y II)
  2. Ácidos minerales y alquimistas europeos
  3. De los ácidos y las bases (I)
Categories: Zientzia

Nanopartikulak ondarea birgaitzeko

Zientzia Kaiera - Mon, 2017/01/23 - 09:00
Eraikuntzek denborarekin galdu ohi duten osotasuna eta kohesioa itzultzeko helburua dute ondarea sendotzeko tratamenduek. UPV/EHUko ikertzaile batek erkatu egin du gehien erabiltzen den produktuaren eta beste hiru produktu berriren sendotze-gaitasuna, Mediterraneoaren arroan historikoki eraikuntzetan asko erabili izan den harri batean. Helburuetako bat izan da gaur egun dagoen hutsune bat betetzea: produktu berriak eraikuntzetan beretan erabiltzea, arriskutsua izan baitaiteke obrarentzat.

Irudia: Eraikuntza historikoetarako zenbait produktu sendogarri aztertu ditu UPV/EHUko ikertzaile batek, bakoitzaren indargune eta ahulguneak ezagutzeko.

Ondare historiko-artistikoa, ondare soziokultural oso garrantzitsua izateaz gainera, aktibo garrantzitsuenetako bat da gaur egun turismoari lotutako industrian. Denboraren poderioz, eta askotariko hondatze-prozesuen eraginez, beharrezkoa izaten da esku hartzea etorkizunean iraun dezan. “Kontserbazio zientifikoaren alorrean, tratamendu berriak ikertzea alor garrantzitsuenetako bat da gaur egun, eta nanopartikulak erabiltzen dira gehien”, azaldu du Ainara Zornoza UPV/EHUko Arkitektura Goi Eskola Teknikoko Fisika Aplikatua I saileko ikertzaileak.

Birgaitze arkitektonikoan eta arkeologikoan gaur egun gehien erabiltzen den produktu konbentzionalaren sendotze-gaitasuna ebaluatzeko helburuz, batetik, eta, bestetik, nanoegituretan eta nanopartikuletan oinarritutako produktu berritzaileena ezagutzeko, konparazio-ikerketa bat egin zuten Bizertako Gotorleku Espainiarrean (Tunisia), Bizertako muino baten gailurrean dagoen XVI. mendeko gotorlekuan, Mediterraneoaren arroan arkitekturan asko erabili den harri batean, kalkarenita bioklastikoan. “Harria oso hondatuta dago han, materialaren mineral-konposizioa eta porositatea dela eta, gatz-lainoek eta aurreko birgaitze-lanetan erabilitako mortero desegokiek kaltetu egin baitute”, zehaztu du.

Materialaren egoeraren diagnostikoa egindakoan, sendotze-produktuak erabili eta alderatzeari ekin zioten. Lau aztertu zituzten, bai in situ bai laborategian. Etil silikatoa izan zen lehenengoa: “Hori da erabiliena eta sare-formako egitura bat sortzen du, silizearen antzekoa, substratuaren egitura porotsuan”. Bestalde, produktu nanoegituratu bat aztertu zuen, Cadizko Unibertsitatean garatutakoa, eta, aurrekoaren antzeko produktu batekin batera erabilita, hura zartatzea saihesten du (hori da produktu horien muga nagusietako bat). Halaber, nanopartikuletan oinarritutako beste bi produkturekin egin zituzten probak: batetik, silizezko nanopartikulen ur-dispertsio bat (Nano Estel), zeinak silize ez-organikozko gel bat sortzen baitu sistema porotsuaren barruan, eta, bestetik, kaltzio hidroxidozko nanopartikulaz osatutako produktua (Nanorestore®). “Atmosferako karbono dioxidoarekin (CO2) kontaktuan eta hezetasun-egoeretan, erreakzionatu eta kaltzio karbonato bihurtzen da; hau da, jatorrizko  karbonato-harriaren egiturako material bera“, azaldu du ikertzaileak.

Produktu bakoitzaren eragina aztertzeko, ezaugarri asko neurtu zituzten: gainazalaren morfologia, mikroskopio elektronikoa erabiliz; sendotze-maila; lortutako gogortasun-maila; portaera hidrikoan izandako aldaketak, eta kolore-aldaketak. Emaitza guztiak kontuan hartuta, “bi taldetan sailka genitzake produktuak”, dio. Etil silikatoaren eta produktu nanoegituratuaren kasuan, asko handitzen dira propietate mekanikoak, bereziki ingurune hezeetan, baina, bestalde, geruza hidrofobo bat sortzen dute gainazalean eta poroak okluitzen. “Horren eraginez, kanpotik datorren ura barrura sartzea saihesten da, baina, aldi berean, kapilarretatik gora iristen den ura ateratzea oztopatzen dute. Horrenbestez, sendotutako eremuaren eta sendotu gabekoaren arteko interfazean metatzen den ur horrek narriadura fisikoa, kimikoa eta bionarriadura eragin dezake”, gaineratu du.

Nanopartikuletan oinarritutako produktuen kasuan, desberdintasun handiena da mikroporoak sortzen direla; hau da, poroak ez dira erabat ixten, eta, hala, ura kanpora atera daiteke. Silizezko nanopartikulen kasuan, Zornozak zehaztu duenez, “emaitzak hobeak dira kondizio lehorretan, produktuak inguruko hezetasunaren arabera ura xurgatu edo kanporatzen duen gel gisa aritzen baita. Kaltzio hidroxidozko nanopartikulek, berriz, emaitza apalenak eman dituzte”.

Emaitza horiek ikusita, ikertzaileak nabarmendu du helburua ez dela “zehaztea zein den birgaitzeetarako produkturik onena. Aitzitik, bakoitzaren portaera deskribatzea da garrantzitsuena, birgaitu beharreko obra zer kondiziotan dagoen kontuan hartuta, eta artifizialki sor litezkeen kondizioen arabera, substratuaren kondizioen arabera eta abar. Horren arabera aukeratu beharko litzateke produktu egokiena, kasu bakoitzaren beharretara egokituta, azkeneko emaitza faktore askoren araberakoa baita“.

Ikerketaren helburuetako bat izan da zubiak eraikitzea ikertzaileen eta zaharberritzaileen artean. Gaur-gaurkoz, “nahiko urrun daude elkarrengandik: alde batetik, komunitate zientifikoak ikertzen jarraitzen du, lanak argitaratuz eta merkatura produktu berriak ateraz, baina, bestetik, kontserbatzaile-zaharberritzaileek, oro har, uste dute ikerketak ezin direla aplikazio errealetara estrapolatu, eta, hortaz, produktu berriak ez dira asko erabiltzen. Gure ikerketak errealak eta erabilgarriak izan daitezen ahalegindu gara, merkatuan eskura daitezkeen produktuak erabili baititugu eta egin ditugun tratamenduak oso antzekoak izan baitira errealitatean egiten direnekiko. Hala ere, egia da oso gai konplexua dela, eraikuntza-ondarean esku-hartzeari buruz ari gara eta. Gainera, hainbeste faktorek eragiten dutenez aldi berean azkeneko emaitzan, oso zaila da lan egiteko modua aldatzera eta beste produktu batzuk erabiltzera arriskatzea”.

Erreferentzia bibliografikoak:

  • Zornoza-Indart, A., Lopez-Arce, P., Leal, N., Simão, J., & Zoghlami, K. (July 2016). Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Construction and Building Materials, 116, 188-202. doi: http://dx.doi.org/10.1016/j.conbuildmat.2016.04.114.
  • Zornoza-Indart, A., Lopez-Arce, P., López-Polin, L. (November 2016). Durability of traditional and new nanoparticle based consolidating products for the treatment of archaeological stone tools: Chert artifacts from Atapuerca sites (Burgos, Spain). Journal of Cultural heritage. http://dx.doi.org/10.1016/j.culher.2016.10.019
  • Zoghlami, K., Lopez-Arce, P., and Zornoza-Indart, A. (December 2016). Differential Stone Decay of the Spanish Tower Façade in Bizerte, Tunisia. Journal of Materials in Civil Engineering. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001774

Iturria:
UPV/EHUko komunikazio bulegoa: Nanopartikulak ondarea birgaitzeko: laborategitik atera eta obretan erabiltzeko aurrerakada.

The post Nanopartikulak ondarea birgaitzeko appeared first on Zientzia Kaiera.

Categories: Zientzia

El sistema de la difusión social de la ciencia: 1. Introducción

Cuaderno de Cultura Científica - Mon, 2017/01/23 - 08:00

La difusión social de la ciencia, objeto de debate

Empieza con esta anotación una serie de siete entregas en las que se presentará la noción de “sistema de la difusión social de la ciencia” y se describirán los elementos que lo conforman, así como las relaciones funcionales que se establecen entre ellos.

Como seguramente ocurre con otros, el mundo de la difusión científica y aledaños es pródigo en debates. Sus términos y las materias objeto del mismo son, a la vez, variados y recurrentes, surgen una y otra vez. Muestra del interés que suscitan en la comunidad que conforman quienes se dedican, como profesionales o como aficionados, a este tipo de actividades son los artículos que se publican al respecto, principalmente en medios digitales. A continuación recojo unas muestras de lo mucho que se ha publicado, con el único propósito de proporcionar algunas referencias e ilustrar la amplitud de las reflexiones pero –quede claro- sin ninguna intención de ser exhaustivo.

Sobre la relación entre el mundo del periodismo y el de la ciencia han escrito Ana Ribera. Pampa García Molina, Francis Villatoro, Lourdes López y Pere Estupinyá lo han hecho sobre el periodismo científico (y sus limitaciones y problemas). Francis también se ha referido al dilema entre periodistas científicos y científicos divulgadores, a la divulgación como actividad propia e irrenunciable del personal científico y a ciertas licencias que se permiten los divulgadores científicos.

Pere Estupinya se muestra crítico con algunas facetas de la divulgación, tanto en lo concerniente a sus aspectos formales, como a la virtual ausencia de evaluación del impacto de las actividades de divulgación (un punto de vista diferente, aquí).

Manuel Herman ha reflexionado acerca de la importancia creciente de internet en la divulgación científica. José Manuel López Nicolás ha tratado sobre la gran potencialidad de los blogs universitarios como herramientas de divulgación. El papel de las universidades y de sus unidades de cultura científica e innovación en la comunicación científica ha sido motivo de reflexión por parte de Elena Lázaro. Y José Luís Vicente también ha escrito acerca de la importancia de difundir los resultados de la investigación que se realiza en universidades y centros de investigación.

La noción de sistema

Hace tres años publiqué aquí el que podría considerarse primer intento por mi parte de sistematización de las actividades de difusión social de la ciencia. Aquella primera aproximación sirvió para iniciar una línea de reflexión que ha dado lugar a diferentes presentaciones públicas en cursos y seminarios (UEU, UPV/EHU, UPNA-Planetario y Universitat de Vic). Y han sido esas presentaciones y el contraste con puntos de vista diferentes las que han conducido a la preparación del texto cuya primera entrega es esta anotación. Aunque quizás no resulte evidente en primera instancia, creo que la sistematización a que he aludido y que considero útil –no me atrevo a calificarla de necesaria- será de ayuda a la hora de clarificar los debates a que he aludido antes. Con esa confianza me he animado a redactar este texto.

La difusión social de la ciencia se produce mediante flujos de información y conocimiento (contenidos científicos) que ocurren en un determinado ámbito (geográfico, cultural, administrativo, etc.) y en un tiempo determinado. A tal ámbito puede dársele la consideración de sistema, en el sentido que se utiliza esa palabra en ecología, por ejemplo. El sistema lo forman dos tipos de elementos, los agentes (o emisores) y los receptores. Los agentes actúan en virtud de unas motivaciones y, haciendo uso de los medios de los que disponen, transmiten unos contenidos (información y conocimiento) al público receptor. La transmisión de esos contenidos ejerce unos efectos que no tienen por qué corresponder a las motivaciones que impulsan estas actividades.

————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El sistema de la difusión social de la ciencia: 1. Introducción se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sobre la difusión social de la ciencia y su función
  2. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
  3. La responsabilidad social de la investigación
Categories: Zientzia

El futuro ya no es lo que era

Cuaderno de Cultura Científica - Sun, 2017/01/22 - 11:59

futuro

A estas alturas desconozco si fue Niels Bohr, Enrico Fermi o el mismísimo Yogi Berra quien dijo que “hacer predicciones es muy difícil, sobre todo las del futuro”. Pero fuese quien fuese, acertó de pleno.

Son especialmente conocidas las predicciones negativas que resultaron fallidas. El británico Sir John Eric Ericson, cirujano de la Reina, dijo en 1873 que “el abdomen, el pecho y el cerebro estarían para siempre vedados a la intrusión del cirujano sabio y humano”. De ser ciertas todas las que se le atribuyen, el físico británico William Thomson (Lord Kelvin) se lleva la palma de predicciones incumplidas: sostuvo que la radio no tenía futuro, que era imposible que volaran máquinas más pesadas que el aire, y que se acabaría demostrando que los rayos X eran falsos. Einstein dijo en 1932 que “no hay el más mínimo indicio de que pueda llegar a obtenerse energía atómica; significaría que podría desmenuzarse el átomo a voluntad”. Y sir Harold Spencer Jones, Astrónomo Real del Reino Unido afirmó, en 1957 que “los viajes espaciales eran un disparate”; dos semanas después el Sputnik orbitaba la Tierra.

Lo anterior viene a cuento de las listas que han publicado los primeros días de enero numerosos medios de comunicación con lo que será noticia en ciencia y tecnología en 2017. No deja de sorprenderme, porque aunque es cierto que hay temas –tecnológicos, sobre todo- acerca de los cuales es posible aventurar logros, no es raro que surjan imponderables que impidan que se cumplan las expectativas. Antes hemos visto algunas predicciones negativas incumplidas. También se hacen predicciones positivas que acaban resultando fallidas; al contrario que con las anteriores, rara vez se comprueba su cumplimiento, por lo que no solemos tener constancia de ellas.

En realidad, el mismo hecho de hacer predicciones en estos ámbitos es contradictorio con la naturaleza del progreso científico. El motor de la ciencia es la ignorancia. Cuando se aborda una investigación y tras las observaciones o experimentos se obtiene lo que se esperaba, el conocimiento experimenta un pequeño avance. El físico Enrico Fermi decía a sus estudiantes que un experimento que verifica una hipótesis es una medida, y el que no la verifica, un descubrimiento. Así es: un des-cubrimiento de nueva ignorancia. Es cuando se obtienen resultados inesperados cuando realmente se abren nuevos caminos para el progreso del saber. Porque los resultados inesperados iluminan el límite que separa lo que conocemos y lo que ignoramos, y por lo tanto, muestran áreas desconocidas en las que podemos aventurarnos en busca de aspectos ignotos de la realidad.

Cuando los medios informan de “grandes descubrimientos científicos”, lo que hacen normalmente es dar cuenta de la verificación de hipótesis célebres o de algún desarrollo tecnológico de consecuencias espectaculares. En alguna ocasión han informado de resultados que cuestionan nociones sólidamente establecidas (neutrinos supuestamente superlumínicos, por ejemplo). Y rara vez lo harán de alguna conjetura revolucionaria, cuya comprobación, quizás años más tarde, abra nuevos caminos. Sospecho que ningún medio informó en 1928 de que Paul Dirac había desarrollado una ecuación que describía la dinámica del electrón en términos de la mecánica cuántica, incluyendo también los efectos relativistas. La ecuación predecía además la existencia de antielectrones (positrones), o sea, de antimateria. Y desde luego, a nadie se le ocurrió entonces que aquella ecuación, aparte de iluminar una nueva frontera del conocimiento, acabaría siendo el origen de una técnica de diagnóstico médico tan útil como la tomografía por emisión de positrones (PET). Y es que, como dijo Yogi Berra, “el futuro ya no es lo que era”. De hecho, nunca lo fue.

—————————————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————————————–

Este artículo fue publicado en la sección #con_ciencia del diario Deia el 15 de enero de 2017.

El artículo El futuro ya no es lo que era se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Se puede predecir el éxito futuro de un científico?
  2. Otra ventana al futuro
  3. Por qué no podemos recordar el futuro
Categories: Zientzia

Asteon zientzia begi-bistan #138

Zientzia Kaiera - Sun, 2017/01/22 - 09:00
Uxue Razkin Fisika

Informazioa oso azkar eta ia berorik sortu gabe gordetzeko modua aurkitu dute. Argia eta magnetismoa erabiltzen ditu Bialystok Unibertsitateko (Polonia) eta Radboud Unibertsitateko (Herbehereak) ikertzaileek aurkeztu duten teknikak. Elhuyar aldizkariak azaltzen digu laser polarizatu berezi bat erabili dutela informazio-unitate edo bit magnetikoak idazteko. Oxido magnetiko batean oinarritutako isolatzaile batean egitea lortu dute. Material horretan teknika hori aplikatuta inoizko eraginkortasun energetiko handiena erdietsi dute. Aurkikuntza handia da Brnoko Unibertsitate Teknologiko ikertzaile Jon Ander Arregi Uribeetxebarriarentzat: “Bit magnetiko bat idazteko behar den energia ia mila milioi aldiz murriztu dute, gaur egun erabiltzen den teknologiarekin alderatzen bada”.

Geologia

Puntu beroak eta luma gorakorrak izan ditu mintzagai Arturo Apraiz geologoak. W. Jason geofisikaria ahalegindu zen J. Tuzo Wilsonek aurretik azaldutakoari, hau da, puntu beroen kontzeptuari, oinarri fisikoa ematen. Bere esanetan, puntu beroak lurrazaleko prozesu bolkanikoak dira, nukleoaren eta mantuaren arteko mugatik gora egindako mantuko arroka beroen bitartez elikatuak. Mantu sakonetik gora egiten duen egiturari luma gorakor deritzo. Beraz, puntu beroa luma gorakor baten azaleko ondorioa litzateke. 1971 geroztik, luma gorakorren hipotesia izan da plaken barnean gertatzen diren prozesu bolkanikoak (Hawaii, Yellowstone) azaltzeko eredurik hedatuena. Testuak azaltzen duen bezalaxe, luma gorakorrak ere erabili izan dira hainbat egituren bolkanismoaren jatorria azaltzeko. Adibidez, Pitcairn uharteak, MacDonald mendilerroa, Galapagos, Azores edo Kanariar uharteak. Luma gorakorren izaeraz gehiago jakiteko, jo ezazue artikulu honetara:

Giza zientziak

Montrealgo Unibertsitateko eta Geriatria Institutu Unibertsitarioko ikertzaileen arabera, elebidunen garuna elebakarrena baino eraginkorragoa bihurtzen da urteetan zehar baliabideak erabiltzeko orduan. Hori frogatzeko, ikertzaileek adineko elebakarrei eta elebidunei zeregin bat jarri zieten eta haien garunen konexio funtzionalak alderatu zituzten. Zereginak kontzentrazioa eskatzen zuen interferentziei aurre egiteko. Ikerketak erakutsi zuen adineko pertsona elebidunen garunek ibilbide txikiagoak eta egokiagoak erabiltzen dituztela eskatutako informazioa lortzeko. Elhuyar aldizkariak eman digu honen berri.

Astronomia

Berriki Israelgo zientzialariek Ilargiaren formazioaren inguruko teoria berri bat proposatu dute. Aditu gehienek uste dutenez, Lurra jo zuen planeta batek sortu zuen Ilargia. Israelgo zientzialariek zehaztu dutenez, ordea, talka erraldoi bakar batek ez, objektu txikiagoen arteko talkak izan ziren Ilargia sortu zutenak. Hala dio artikuluan behintzat ikerketaren egile nagusi Raluca Rufuk, Ilargia aztertzearen beharra dagoela gaineratuz: “Ilargiaren osaketa oso lotuta dago Lurraren historiari berari. Ilargirik gabe, ezinezkoa izango zen gure planetan bizia garatzea”. Bestalde, beste ikerketa batek proposatu du Ilargia orain arte uste zen baino 40-140 milioi urte zaharragoa dela. Zehazki gutxienez duela 4.510 milioi urte sortu zela proposatu dute. Zirkonio minerala erabili dute Ilargiaren jaiotza data zehazteko, 1971an Apolo 14 misioak Lurrera ekarritako arroketan bildutako laginetan oinarrituta.

Orain dela 10 urte irrati eztanda azkar bat detektatu zuten lehenengoz. Orain, Cornwell Unibertsitateak (New York, AEB) gidatu duen ikerketa batean eztanda horietako baten iturri kosmikoa kokatzea lortu du, uhina bete-betean harrapatuta. Aztertu duten hau hiru mila milioi argi urtetara dagoen galaxia batetik dator. Irrati eztanda azkar horren jatorria zer distantziara eta zer galaxiatan dagoen kokatzea lortu dute. Baina zerk sortzen du, zehazki? Hori argitzeke dago oraindik.

Genetika

Bakterioek ere, zelula eukariotoetan bezalaxe, prioiak badituztela erakutsi du. Elhuyarrek azaldu digu ikerketa: 60.000 genoma bakteriar analizatu zituzten, legamien prioien antzeko sekuentzia genetikoen bila, eta Rho izeneko proteinaren sekuentzia bat hautagai ona izan zitekeela ikusi zuten. Rho proteina gene askoren adierazpena eta aktibitatea erregulatzen duen osagaia da berez. Rho proteinaren bertsio arrunta injektatzean, E. coli-ren aktibitate genetikoa isilarazten zuela ikusi zuten, eta bertsio prionikoa injektatzean, gene asko aktibatu egiten zirela. Hori ikusita, ikertzaileek uste dute bakterioen kasuan, geneen erregulazioaren bidez, prioiek inguruko baldintzen aldaketetara egokitzen lagun ditzaketela bakteriook. Adibidez, antibiotiko baten presentziara.

Ekologia

Namibiako zirkulu mortuen sorrerari buruzko azalpen berria argitaratu dute. Bi teoria ziren nagusiki orain arte. Azalpen sendoenaren arabera, termitak lirateke errudunak. Bestearen arabera, aldiz, landareen arteko lehia izan liteke zirkulu bitxi horiek agertzearen eta desagertzearen arrazoia. Azken teoriak dio aurreko azalpenen konbinazioa gertatzen dela. Ereduen simulazioen bitartez azaldu dute lurrazpiko intsektuen kolonien arteko lehiaren eta landareen arteko lehiaren konbinazioak gertatzen direla.

Medikuntza

Nanozientzian eta materialen kimikan murgilduta, minbiziaren aurkako ohiko tratamenduetatik urruntzen den soluzio bat proposatu du UPV/EHUko ikerketa batek. Izan ere, osagai organikoak eta ez-organikoak konbinatuz, terapia fotodinamikorako nanopartikula egonkorrak sortu dituzte. Terapia honek ez du ia kalterik eragiten tratatu nahi ez diren eskualdeetan. Minbiziari aurre egiteko ez ezik, mikrobio-zelulak, bakterioak, onddoak eta birusak hitzeko ere erabil daiteke. Ikertzaileek helburu zehatza dute: argiaren bidez oxigeno erradioaktiboa sortuz, zelula kaltegarriak hiltzea. Artikulu osoa irakurtzea gomendatzen dizuegu.

Biologia

Animalia asko bizi dira haitz, zoru edo arboletako zulo eta barrunbeetan. Bereziak dira gune horiek, aire-bolumena oso txikia izan eta aire hori oso astiro berriztatzen baita. Karraskariek, adibidez, metabolismo-tasa altuak dituzte. Homeotermoak dira batetik, eta bestalde, jarduera handia garatzen dute. Horrek esan nahi du oxigeno asko hartu behar dutela. Hortaz, horrelako egoeretan bizi ahal izateko moldaera bereziak behar dira. Hainbat karraskarik, esaterako, globulu gorri asko dute; beste hainbatek, globulu gorri gehiago izan gabe, hemoglobina gehiagoko globuluak dituzte. Ezaugarri horiekin, oxigeno gehiago garraia dezakete odolean. Artikulu honetako egileek argi azaltzen digute karraskarien odolak daukan beste berezitasun bat, baina kasu honetan ez da odolean hemoglobina gehiago edukitzea, hemoglobina oxigenoarekiko kidetasun handiagokoa izatea baizik. Hemoglobinari dagozkion moldaera horiei esker, oxigeno-harrera eta zeluletarako garraioa berma daiteke baita barrunbeko oxigeno-kontzentrazioa oso baxua denean ere.

Ekologia

Bilboko itsasadarreko uraren kalitatea ona da. Urak garbitzeko azpiegiturak jarri dituzte, eta horrekin bizitza itzuli da. Urtetik urtera, arrain espezie gehiago agertzen ari dira: azken neurketen arabera, hogei. Itsas zaldia izan da agertu den espezietako bat. Eguzkiñe Gil Getxoko Aquariumeko teknikariak azaltzen du itsasadarrean espezie hori agertu izanak erakusten duela uraren kalitatea hobetzen ari dela. Izan ere, haren hitzetan, itsas zaldiek baldintza oso zehatzak behar dituzte bizi ahal izateko, espezie ahula delako: uraren kalitatea ona izatea, eta ur lasaiak egotea, besteak beste. Artikulu osoa irakurtzea gomendatzen dizuegu!

—–—–

Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Asteon zientzia begi-bistan #138 appeared first on Zientzia Kaiera.

Categories: Zientzia

#Naukas16 Drogas y falsas promesas

Cuaderno de Cultura Científica - Sat, 2017/01/21 - 11:59

Escuchar a Ohiana Iturbide hablar de adicción a la droga impresiona. No importa el número de veces que lo hayas hecho. En los diez minutos de esta charla el público presente no rio, no aplaudió, no tuiteó, no se movió. Solo guardó un atentísimo silencio.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 Drogas y falsas promesas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 Falsas memorias
  2. #Naukas16 ¿Que te chupe la qué?
  3. #Naukas16 Cuando Indiana Jones se hizo astrónomo
Categories: Zientzia

Ezjakintasunaren kartografia #144

Zientzia Kaiera - Sat, 2017/01/21 - 09:00

Kolonek, haren sasoian ezaguna zen bezala, Lurra borobila zela uste zuen baina baita ere Amerika ezin zela existitu, eta horrez gain, ezinezkoa zela hau existitzea. “Holywood”en (“l” bakar batekin) gauzak. Jesús Zamorak azaltzen digu istorio harrigarri hau: Columbus and the shape of the Earth, a “Holywood” story.

Atzo Estatu Batuetako presidente kargua hartu zuen Donald Trumpek. Ongi etorriak ziurgabetasunaren arora. Zeintzuk dira ziurgabetasunak ekonomian dituen eraginak? Erantzuna José Luis Ferreirak ematen digu: The effects of uncertainty in the economy.

Grafenoa gauza sinestezinak lortzeko gai da. Esaterako, sekulako eremu elektriko batekin borrokatzea ilerik harrotu gabe. DIPCko ikertzaileek gaitasun honen azalpen teorikoa aurkitu dute: The ultrafast electronic response of graphene.

Ehiztarien portaera oso konplexua da haren neurologiari erreparatuz gero. Duela gutxi portaera honetan parte hartzen duten mekanismo neurobiologikoak antzeman dituzte eta José Ramón Alonsok azaltzen dizkigu: Predation unchained.
–—–

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #144 appeared first on Zientzia Kaiera.

Categories: Zientzia

El hidrógeno en el Universo (I): La emisión del hidrógeno neutro a 21 cm.

Cuaderno de Cultura Científica - Fri, 2017/01/20 - 12:00
 Ángel R. López-Sánchez (AAO/MQU), Sergio Simón-Díaz (IAC) y Jorge García-Rojas (IAC).

Imagen en falso color de la Nebulosa de Orión, M 42, y la Nebulosa de Marian, M 43, usando datos obtenidos con el Telescopio Isaac Newton, de 2.5m, en el Observatorio del Roque de los Muchachos en la isla de La Palma (España) usando el instrumento de gran campo Wide Field Camera (WFC). Las líneas verticales negras corresponden a la separación entre distintas CCDs. El color rojo codifica la emisión del hidrógeno ionizado, Hα 6563 Å, mientras que en verde de muestra la emisión de oxígeno dos veces ionizado, [O III] 5007 Å. En color azul sólo se muestra el campo estelar. Esta imagen es la típica que se obtiene mediante CCD o película fotográfica sin filtros, donde destaca especialmente el hidrógeno de la nebulosa. Crédito de la imagen: Ángel R. López-Sánchez (AAO/MQU), Sergio Simón-Díaz (IAC) y Jorge García-Rojas (IAC).

El hidrógeno es, con diferencia, el elemento químico más abundante del Universo. Creado durante los procesos que sucedieron al Big Bang, particularmente durante la recombinación de los núcleos atómicos (protones en su mayoría) con los electrones unos 380 mil años después del inicio del Cosmos, el hidrógeno es el “padre” del que provienen el resto de elementos químicos. La transformación del hidrógeno en otros elementos ocurre sobre todo dentro de las estrellas (por fusión termonuclear, por ejemplo formando núcleos de helio a partir del hidrógeno, que luego se fusiona en núcleos de oxígeno, silicio, azufre o hierro en las estrellas más masivas) o por la acción de éstas en sus alrededores (explosiones de supernova, que típicamente producen los elementos químicos más pesados que el hierro). Así, deberíamos esperar que los astrofísicos invirtieran gran parte de su esfuerzo en conocer dónde se encuentran las nubes de hidrógeno dentro de las galaxias y dentro de la estructura a gran escala del Cosmos, y qué características tienen.

Pero la cosa no es sencilla. Desgraciadamente los telescopios convencionales no pueden detectar el hidrógeno neutro y frío. Los átomos de hidrógeno sólo pueden emitir luz en los colores “visibles” cuando son excitados por radiación energética (particularmente emisión ultravioleta emitida por estrellas masivas, enanas blancas, y otros procesos violentos). Es así como “vemos” las nebulosas difusas de emisión, nubes gigantescas constituidas sobre todo de hidrógeno, como la Gran Nebulosa de Orión (Figura 1). El color rojizo que típicamente domina estas nubes de gas proviene de la emisión del hidrógeno ionizado (línea H-alpha). Pero, obviamente, este tipo de excitación del hidrógeno no ocurre en las frías profundidades del espacio, particularmente en el casi vacío espacio extragaláctico.

 La emisión de 21cm (1420 MHz) del hidrógeno atómico ocurre cuando se produce el cambio del espín del electrón de ser paralelo al espín del protón (arriba) al ser anti-paralelo al protón (abajo). La estructura hiperfina del nivel 1s del átomo de hidrógeno indica que en el primer caso se tiene un poco más de energía (5.9 x 10-6 eV) que en el segundo.

La emisión de 21cm (1420 MHz) del hidrógeno atómico ocurre cuando se produce el cambio del espín del electrón de ser paralelo al espín del protón (arriba) al ser anti-paralelo al protón (abajo). La estructura hiperfina del nivel 1s del átomo de hidrógeno indica que en el primer caso se tiene un poco más de energía (5.9 x 10-6 eV) que en el segundo.

Sin embargo, se da la peculiaridad de que el hidrógeno neutro sí emite cierto tipo de luz. Esta radiación no ocurre en los “colores” que nosotros vemos sino en el dominio de las ondas de radio. La emisión del hidrógeno neutro en radio sucede como consecuencia de la transición atómica entre los dos niveles hiperfinos del estado fundamental del hidrógeno.

¿Qué quiere decir esto? La energía del átomo de hidrógeno, que consta de un protón y un electrón, es ligeramente diferente dependiendo si el espín (análogo al “giro”) del protón y del electrón están en la misma dirección (un poco más de energía) que en direcciones opuestas (un poco menos de energía). Un átomo de hidrógeno en el que el protón y el electrón tengan sus espines paralelos puede emitir un fotón (liberar energía) para pasar al estado en el que ambos espines apuntan en direcciones opuestas (Figura 2). Como la diferencia de energía es muy pequeña (5.9 x 10-6 eV), el fotón emitido tiene una frecuencia baja (1420.4 MHz) y, por tanto, una longitud de onda relativamente larga (21.1 cm).

A esta emisión en radio se la designa como “H I”, la emisión del hidrógeno atómico a 21 cm. No obstante es muy raro que ocurra en un átomo en concreto: la vida media del estado excitado es de unos 10 millones de años. Así, cuando en 1944 el astrónomo holandés Hendrik van de Hultz propuso por primera vez que se usaran radiotelescopios para captar la emisión del H I a 21 cm y así detectar nubes de gas hidrógeno en la Vía Láctea no muchos le hicieron caso. Pero, en realidad, como hay tal enorme cantidad de hidrógeno aún disponible en el Cosmos, la emisión a 21 cm del hidrógeno atómico es, en efecto, no sólo observable, sino fundamental para la Astrofísica contemporánea.

 Ángel R. López-Sánchez (AAO/MQU).

Radiotelescopio de Parkes (NSW, Australia), de 64 metros de tamaño, durante la puesta de Sol. Crédito: Ángel R. López-Sánchez (AAO/MQU).

No fue hasta 1951 cuando los astrónomos Harold Ewen y Edward Purcell de la Universidad de Harvard (EE.UU.) detectaron por primera vez la emisión a 21 cm del hidrógeno atómico, que fue rápidamente corroborada por observaciones independientes desde Europa y Australia. En la actualidad, este tipo de observaciones son rutinarias y otorgan a los astrofísicos piezas claves a la hora de entender nuestro Universo.

Precisamente, una de las grandes ventajas que propiciaban las observaciones en la línea de 21 centímetros del hidrógeno atómico es que, al estar en el rango de las ondas de radio, la extinción de la luz por el polvo y gas interestelar es completamente despreciable. Esto no ocurre en “los colores que nosotros vemos” (el rango óptico del espectro electromagnético), que son fuertemente absorbidos por el polvo y el gas difuso. Así, las observaciones en HI a 21 centímetros permitieron por primera vez “ver” la Vía Láctea en su totalidad.

Fue así como, en 1952 y tras conseguir los primeros mapas de la Galaxia, se encontró que la Vía Láctea tiene una estructura espiral. En este punto hay que insistir en que las observaciones radioastronómicas en la línea de 21 cm no son imágenes, sino espectros. Es una línea de emisión más, y como tal no sólo su intensidad máxima (su brillo) sino también otras propiedades, como la anchura, la velocidad o un análisis de componentes, pueden estudiarse en detalle.

Las observaciones en H I permiten, por efecto Doppler, calcular las distancias a las galaxias o inferir a qué velocidad relativa se mueve el gas dentro de una galaxia. Y, en efecto, ha sido usando observaciones H I a 21 cm de otras galaxias (normalmente el gas es mucho más fácil de observar en las partes externas de las galaxias que las estrellas) como se confirmó definitivamente que las partes externas se movían extremadamente rápido contabilizando la cantidad de masa (estrellas, polvo y gas difuso incluyendo hidrógeno atómico) que contenían, necesitando la componente extra de un amplio pero homogéneo halo de materia oscura para poder mantener las galaxias como entidades estables.

 Benjamin Winkel & the HI4PI Collaboration.

Mapa de todo el cielo observando en la línea de 21 cm del hidrógeno atómico, HI, mostrando la emisión de gas neutro de nuestra Galaxia y las Nubes de Magallanes y la velocidad con la que lo vemos moverse (en color). Esta fantástica imagen ha sido conseguida en la colaboración HI 4π survey (HI4PI), que usa datos obtenidos con el cartografiado Effelsberg-Bonn HI Survey (EBHIS), que usa el radiotelescopio Effelsberg (Alemania), de 100 metros de tamaño, y los datos del cartografiado Galactic All-Sky Survey (GASS), que usa “The Dish”, el radiotelescopio de Parkes (Australia), de 64 metros de tamaño. Crédito: Benjamin Winkel & the HI4PI Collaboration.

El mapa más profundo de la Vía Láctea usando la emisión del hidrógeno atómico a 21 centímetros fue obtenido recientemente mediante la colaboración “HI4PI” (acrónimo de “H I 4π”), que usa datos obtenidos por dos de los radiotelescopios más potentes de la Tierra: el radiotelescopio Effelsberg (Alemania), de 100 metros de tamaño, y el famoso radiotelescopio de Parkes, ”The Dish”, (Australia), de 64 metros de tamaño (Figura 3). En esta proyección de todo el cielo, el plano de la Vía Láctea se encuentra en el ecuador, mientras que el centro de nuestra Galaxia corresponde al amasijo de gas brillante hacia la derecha.

La espectacular imagen del hidrógeno atómico de la Vía Láctea obtenida por la colaboración HI4PI (Figura 4) no sólo muestra la distribución de gas difuso (muy asimétrica) sino que codifica en colores la velocidad a la que se mueve dicho gas. Colores azules indican gas que se acerca al observador, mientras que los colores verdosos corresponden a gas que se aleja. Así se puede apreciar la misma rotación de la Vía Láctea, pero aparecen estructuras más complicadas: filamentos, burbujas, grumos, huecos, capas de gas, que narran la dinámica evolución de nuestra Galaxia. Muchos de los huecos, por ejemplo, corresponden a zonas liberadas de gas por explosiones de supernova. El mismo Sol se encuentra cerca de una de estas zonas irregulares, la Burbuja Local, que brilla particularmente en rayos X. La Burbuja Local, de al menos 300 años luz de tamaño. se originó hace poco tiempo (pocos millones de años, algunos estudios apuntan que incluso menos).

Por otro lado, la mayor densidad de gas corresponde precisamente a las regiones donde se están formando las estrellas. Las nebulosas de emisión aparecen justo en estas zonas donde el gas difuso está condensando para crear nuevos soles. Estas regiones de formación estelar se localizan sobre todo si se mira cerca del centro galáctico

Los colores de la imagen también muestran algo muy interesante: aparecen nubes de gas difusas en colores violetas y amarillos (altas velocidades). Estas “nubes de alta velocidad” corresponden a gas que está cayendo sobre la Vía Láctea (quizá por acreción de alguna galaxia enana) o es gas que ha sido expulsado del disco de nuestra Galaxia por las explosiones de supernovas. La más evidente de estas nubes de alta velocidad es la que corresponde a las galaxias enanas satélite de la Vía Láctea, las Nubes de Magallanes (abajo derecha, en colores naranjas). La imagen de la colaboración “HI4PI” permite distinguir que ambas galaxias enanas se encuentran dentro de esta gigantesca nube de hidrógeno neutro. Es más, permite apreciar su estructura alargada apuntando al centro de la Vía Láctea, además de muchas otras de sus características.

Las observaciones tanto de la Vía Láctea como de otras galaxias usando radioastronomía para “ver” la línea de 21 cm del hidrógeno atómico está proporcionando enorme información a los astrofísicos a la hora de entender la formación de las estrellas, la estructura de las galaxias, la interacción con su entorno, la evolución de las galaxias y la propia evolución del Universo. Sin embargo, quizá porque las imágenes en radioastronomía muchas veces no son atractivas para nuestros ojos (o, pensando mal, que la radioastronomía es el único rango espectral que la Agencia Espacial Estadounidense, NASA, no lidera), muchos de estos detalles no suelen conocerse por el público. En próximas entregas indagaremos en algunos de los sorprendentes detalles que, gracias a la radioastronomía y a la línea de H I a 21 cm, hemos conseguido arrancar al Universo.

Este post ha sido realizado por Ángel López-Sánchez (@El_lobo_rayado) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo El hidrógeno en el Universo (I): La emisión del hidrógeno neutro a 21 cm. se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La fusión a un paso gracias al hidrógeno líquido
  2. Hidrógeno a partir de cualquier biomasa
  3. El grafeno distingue entre isótopos del hidrógeno
Categories: Zientzia

Kepa Sarasola: “Hizkuntzalaritza konputazionalarekin lengoaiak errezago erabiltzeko tresnak garatzen ditugu” #Zientzialari (65)

Zientzia Kaiera - Fri, 2017/01/20 - 09:00

Itzultzaile automatikoak, zuzentzaileak, bilatzaileak… Gure eguneroko bizitzan hizkuntzalaritza konputazionalean oinarritutako hainbat tresna erabiltzen ditugu. Haietaz gehiago jakiteko gai honetan aditua den ikertzaile batekin izan gara: Kepa Sarasola UPV/EHUko IXA taldeko ikertzailea.

Zientzialari‘ izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.

The post Kepa Sarasola: “Hizkuntzalaritza konputazionalarekin lengoaiak errezago erabiltzeko tresnak garatzen ditugu” #Zientzialari (65) appeared first on Zientzia Kaiera.

Categories: Zientzia

#Naukas16 La fiesta de las moléculas

Cuaderno de Cultura Científica - Thu, 2017/01/19 - 17:00

Los químicos, algunos, son frikis, pero muy frikis. Daniel Torregrosa es de estos últimos y nos trae una colección de moléculas bautizadas o sintetizadas por químicos frikis.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 La fiesta de las moléculas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas16 Astrofotografía
  2. #Quantum13 Moléculas en el espejo
  3. #Naukas16 Exoplanetas: mundos de ciencia ficción
Categories: Zientzia

Ciencia y tecnología

Cuaderno de Cultura Científica - Thu, 2017/01/19 - 11:59

Aunque se las suele confundir o al menos tratar por igual el objetivo de las ciencias y el de las tecnologías no es el mismo, y eso hace a la verdadera ciencia más resistente a interferencias de poderes externos de lo que pudiera parecer. Buena parte de los ataques a las ciencias en realidad lo que están rechazando es alguna determinada tecnología, o incluso decisiones que no son técnicas sino políticas y económicas. Por eso quizá convenga separar con claridad conceptos y campos de actuación, para delimitar las responsabilidades.

Las ciencias y las tecnologías se diferencian en su objetivo final, que es clara y contundentemente diferente. Las ciencias buscan comprender el universo y su funcionamiento; dilucidar las reglas, los procedimientos y sistemas que hacen que el cosmos exista tal y como es. Son descriptivas en el sentido de que contemplan los fenómenos existentes e intentan explicar sus mecanismos; todas sus intervenciones (experimentos) tienen por objeto ayudar al entendimiento, y por tanto en condiciones ideales las modificaciones que se introducen en el funcionamiento natural están reguladas y son mínimas. El resultado final de las ciencias son las teorías que explican qué hay ahí fuera y de qué manera funciona.

Las tecnologías, sin embargo, no describen el mundo, sino que lo modifican para adaptarlo a las necesidades humanas. Su objetivo no es entender el universo, sino moldearlo para hacerlo mejor para nosotros; el conocimiento que buscan y emplean tiene como objetivo su aplicación en este empeño, no el conocimiento mismo. Las tecnologías siempre son ‘para’ algo: crear vías de comunicación u otras obras públicas, curar enfermedades, extraer minerales, fabricar objetos. La finalidad es utilitaria, y la razón de su existencia es en última instancia mejorar la existencia de la Humanidad.

La relación entre ambos campos es íntima, retorcida y a veces mal entendida; la extensión de conceptos como ‘ciencia aplicada’ no hace más que complicarla todavía más. Las tecnologías emplean el conocimiento del universo generado por las ciencias para mejorar sus técnicas, mientras que la ciencia precisa echar mano de la tecnología más avanzada (y a veces impulsarla más allá de sus límites) para poder llevar a cabo sus experimentos. Hay veces que la investigación científica en una dirección concreta o en un campo específico es dirigida y favorecida para ayudar a resolver una cuestión tecnológica, como ocurre con la biología celular y la cura del cáncer. Otras veces nuevas tecnologías aparecen de pronto surgidas de avances científicos relativamente recónditos o incluso inesperados, como acaba de ocurrir con la ingeniería genética y el sistema CRISPR-Cas. Cuando se habla de ‘ciencia aplicada’ se mezclan conceptos y se diseñan actividades que están a medio camino entre ambas orillas.

Pero se trata de empeños diferentes con objetivos distintos, y mezclarlos conceptualmente tiene consecuencias que pueden ser graves. Porque si en la tecnología entra, por definición, la economía y por tanto la política, en ciencia no es así. Un chiste de ingenieros dice que a la pregunta ‘¿Esto se puede hacer?’ la respuesta siempre es: ‘Depende del presupuesto’, porque en cualquier ámbito tecnológico la clave para la toma de decisiones es la rentabilidad y el acceso a los recursos. En muchas ocasiones las discusiones sobre temas de tecnología no analizan la posibilidad de hacer algo, sino si la solución elegida es la mas conveniente, económica, interesante, rentable: no se discute si es o no posible, sino la conveniencia de hacerlo. No es una decisión sobre hechos, sino sobre política, y así es como debe ser.

El problema surge cuando las cuestiones políticas saltan desde las tecnologías a las ciencias y se intenta doblegar el conocimiento para adaptarlo a las necesidades de la conveniencia social. Se puede (se debe) discutir cuál es la mejor manera de poner límites al cambio climático, si una determinada decisión política será suficiente, o si no habrá otras tecnologías que puedan resolver el problema de modo más económico, ya que hablamos de una cuestión tecnológica (cambiar la realidad). Lo que no es razonable es negar la existencia del calentamiento global medido por la ciencia (describir la realidad). Es posible analizar si los actuales calendarios y sistemas de vacunación son los más eficientes para mantener a raya a las enfermedades contagiosas, pero para ello es absurdo afirmar que las vacunas tienen efectos secundarios que no se han descrito. La decisión política de usar o no usar Organismos Modificados Genéticamente para mejorar el rendimiento de la agricultura debe ser discutida en público para determinar si es la más conveniente o qué sacrificios y de quién estamos dispuestos a hacer para emplearla o no, pero sin usar en la discusión acusaciones infundadas y hechos falsos. La tecnología y en especial sus componentes económico y político siempre puede, y deben, discutirse con pasión, porque todas las decisiones de actuar sobre la naturaleza tienen costes además de beneficios y contrapesarlos es derecho y deber de una sociedad libre.

Lo que no quiere decir que los hechos, los datos, los conocimientos de la ciencia sobre el funcionamiento del universo sean maleables: la ciencia no cambia porque sus resultados sean inconvenientes para una postura política u otra. El planeta se calentará o no; las vacunas causarán autismo o no, y los OMGs serán dañinos o no, y a esa pregunta debe contestar la ciencia y su respuesta debe ser respetada. Después la tecnología determinará si podemos hacer algo para reducir las emisiones de CO2 y cómo, si es mejor vacunar a una edad u otra o si el mejor modo de acabar de una vez con el hambre en el mundo es usar OMGs o no, y la política asignar recursos económicos a la decisión que la sociedad tome. Pero partiendo de una descripción lo más certera posible de la realidad, es decir, de la mejor ciencia disponible. Porque si permitimos que la ideología o la rentabilidad determinen los hechos a partir de los cuales tomamos decisiones nos estaremos haciendo trampas al solitario, que es el modo más estúpido de autoengañarse que existe. Si confundimos la ciencia con la tecnología y ésta con la política no sólo nos irá mal en el futuro, sino que nos habremos merecido que nos pase.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

El artículo Ciencia y tecnología se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
  2. Visión de los jóvenes vascos sobre la ciencia y la tecnología
  3. Ciencia, poder y comercio
Categories: Zientzia

Barrunbeetan ito gabe bizi

Zientzia Kaiera - Thu, 2017/01/19 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Oxigenoa

———————————————————————————————————–

Animalia asko bizi dira haitz, zoru edo arboletako zulo eta barrunbeetan, eta beste asko bertan bizi ez arren, denbora luzea igarotzen dute zulo horien barnean, habia bertan eginik edo babestoki gisa erabilirik. Oso bereziak dira gune horiek, animaliek gertu duten aire-bolumena oso txikia izan eta aire hori oso astiro berriztatzen baita. Hori dela eta, toki arruntetan baino oxigeno gutxiago dago barrunbe horietan.

Lurzorua zulatzen duten muskerrek eta sugandilek ez dute ezaugarri berezirik, guk dakigula. Horrela jokatzen duten anfibioek ere ez dute aparteko portaerarik erakusten. Izan ere, poikilotermoak direnez gero, metabolismo-tasa baxua dute narrasti eta urlehortarrek, eta baliteke hori izatea ezaugarri berezirik ez edukitzearen zioa.

Irudia: Satorra lur azpian bizi den ugaztuna da. 5 metroko sakoneran dituzten haien habiak eta barrunbeetako ugaztunen antzera, ez da karbono dioxidora sentikorra. CO2 gatz solido gisa kanporatzen dute.

Karraskariek, berriz, metabolismo-tasa altuak dituzte, oso altuak. Batetik, homeotermoak dira; bestetik, metabolismo-tasa altuak dituzte berez, txiki izateagatik hain justu[1]; azkenik, jarduera handia garatzen duten animaliak dira. Horrek esan nahi du oxigeno asko hartu behar dutela eta, ondorioz, haien beharretarako baxuegiak diren oxigeno-kontzentrazioak egon daitezkeela karraskarien barrunbeetan. Ohikoak izan daitezke, adibidez, % 6ko O2-kontzentrazioak.

Horrelako egoeretan bizi ahal izateko moldaera bereziak behar dira, zalantzarik ez dago, baina moldaera horiek desberdinak izan daitezke espezie desberdinetan. Hainbat karraskarik, adibidez, globulu gorri asko dute, ohikoa dena baino gehiago; beste hainbatek, globulu gorri gehiago izan gabe, hemoglobina gehiagoko globuluak dituzte. Bai era batera eta bai bestera, oxigeno gehiago garraia dezakete odolean.

Hemoglobinaren ezaugarriei dagokie barrunbeetako karraskarien odolak daukan beste berezitasun bat, baina kasu honetan ez da odolean hemoglobina gehiago edukitzea, hemoglobina oxigenoarekiko kidetasun handiagokoa izatea baizik. Kidetasun altuko hemoglobina edukitzearen ondorioez jabetzeko, hona adibide bat: arboletatik ibiltzen diren karraskarien -hots, katagorrien- hemoglobinaren % 50 dago oxigenoarekin elkartuta odolaren oxigeno-tentsioa 40 mmHg-koa denean. Oxigeno-tentsio beraren azpian, oxigenoarekin elkartua dagoen hemoglobina % 80 izatera irits daiteke barrunbeetako karraskarietan.

Hemoglobinari dagozkion moldaera horiei esker, oxigeno-harrera eta zeluletarako garraioa berma daiteke baita barrunbeko oxigeno-kontzentrazioa oso baxua denean ere. Horra ikusi ditugun moldaera horien zioa.

O2-urritasuna, baina, ez da animalia horiek gainditu behar duten oztopo bakarra edo txikiena. Izan ere, oxigenoa urria bada, karbono dioxidoa (CO2) ugariegia da barrunbeetan, animaliek beraiek sorturikoa delako. Ohikoak izan daitezke, adibidez, % 6ko CO2-kontzentrazioak. Bada, animalia gehienentzat arazo larria izan daiteke hori.

Kontua da karbono dioxidoan aberatsa den atmosfera batean arnasa hartzea ez dela batere osasuntsua. Izan ere, ugaztunok oso sentiberak gara arnasten dugun airearen karbono dioxidoari dagokionez, eta ohikoa baino altuagoa den CO2-kontzentrazioko atmosferan, bihotz-taupadaren frekuentzia oso gora igo daiteke, alferrik igo gainera, horrela ez baita konpontzen kanpoko airean CO2 gehiago egoteak dakarren arazoa.

Hori dela eta, barrunbeetako ugaztunak ez dira, inondik inora, karbono dioxidoarekiko hain sentikorrak, eta, gainera, CO2 kanporatzeko beste bide bat garatu dute horietako batzuek. Izan ere, gas gisa kanporatu beharrean, kaltzio edo manganeso karbonato edo bikarbonato gisa jariatzen dituzte; hau da, gatz solido gisa kanporatzen dute bestela kaltegarria izango litzatekeen gasa. Adibide honen bitartez ikusi dugun bezala, handia da ingurumen desberdinetara moldatzeko animaliek duten ahalmena, eta oso deigarriak horretarako asmatu dituzten bideak.

Oharrak:

[1]Basasagua eta elefantea” izenburuko istorioan azaldu dugun bezala, animalia txikiek handiek baino metabolismo-tasa altuagoa dute; hau da, masa-unitateko jarduera metaboliko handiagoa dute eta, horren ondorioz, oxigeno gehiago kontsumitu behar dute.

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.

The post Barrunbeetan ito gabe bizi appeared first on Zientzia Kaiera.

Categories: Zientzia

La fascinación del oro

Cuaderno de Cultura Científica - Wed, 2017/01/18 - 17:00

Este espejo del futuro telescopio espacial James Webb está recubierto de oro

Desde comienzos del año el oro está subiendo de precio forma sostenida. Eso es indicio de que la incertidumbre aumenta y los inversores buscan refugio en el metal amarillo. Increíblemente es su mera posesión lo que da tranquilidad financiera, aunque el oro no produzca intereses, ni dé nada que se pueda comer, su uso industrial sea limitado, y solo aparezca espectacularmente en naves y sondas espaciales como recubrimiento capaz de reflejar la radiación infrarroja. El oro fundamentalmente encarna la importancia que los humanos damos a los simbólico.

Y es que el oro es un metal raro. De entrada se puede encontrar en estado puro en la naturaleza, ya que hoy sabemos que no se combina con el oxígeno, por lo que es más difícil que entre a formar parte de compuestos como los que forman las rocas. No solo eso, encima es amarillo, brilla y mantiene ese brillo con el tiempo, coloración que no ocurre con ningún otro metal; el cobre es rojo, pero se oxida fácilmente. Por si esto fuese poco, el oro es maleable, por lo que se pueden hacer adornos complejos y fundirlo para hacer monedas. No es de extrañar la fascinación de los humanos con el metal noble desde tiempos inmemoriales.

Corona de Kritonios, s. IV a.e.c.

Pero las maravillas del oro solo aumentan cuando intentamos comprender sus características.

De entrada, su color amarillo está íntimamente relacionado con la teoría de la relatividad de Einstein; son los llamados efectos relativistas debidos a las altísimas energías de los electrones en estos átomos. Estos mismos efectos son los que complican los cálculos teóricos de las propiedades electrónicas del oro. De hecho, los teóricos que se han dedicado durante décadas a intentar describir las características del metal desde primeros principios han encontrado muy difícil explicar las discrepancia entre sus predicciones y las observaciones experimentales. Ahora, un equipo de investigadores ha conseguido resolverlas con un nivel de precisión desconocido incorporando la existencia de interacciones “quíntuples” entre 5 electrones.

Estructura electrónica simplificada del oro

Calcular las propiedades electrónicas de un átomo nunca es fácil, especialmente para los átomos pesados en los que el elevado potencial de Coulomb implica que existen niveles de energías de los electrones para los que la teoría de la relatividad es de aplicación. En el caso del oro, los efectos relativistas son la causa de que exista un salto de energía más pequeño entre los orbitales (regiones en las que puede encontrarse un electrón en un átomo) 6s y 5d, lo que explica que el oro absorba las frecuencias más azules del espectro, y el resultado sea que refleje los tonos amarillo-rojizos.

Pero no todo es tan fácil de explicar. Los cálculos de la energía de ionización (la energía necesaria para arrancar un electrón del átomo) y la afinidad electrónica (la energía necesaria para incorporar un electrón) han resultado siempre en valores inferiores a los experimentales en decenas de mili-electrón-voltios, una discrepancia significativa, aunque no escandalosa.

El equipo que encabeza Lukas Pašteka, de la Universidad Massey (Nueva Zelanda), han conseguido realizar los cálculos más precisos conocidos hasta la fecha para el oro. Su modelo incorpora los efectos relativistas, las correlaciones entre electrones y la electrodinámica cuántica. Las correlaciones entre electrones incluyen todas las interacciones electrón-electrón que tienen lugar en un átomo que tiene 79 electrones.

Una de las principales novedades de este estudio está precisamente en que, a la hora de estudiar estas correlaciones se asumía que un electrón interaccionaba con otros 2, interacciones triples. Pašteka y sus colaboradores lo han ampliado a cuádruples y quíntuples. Al hacerlo así han reducido la discrepancia en las energías de ionización y la afinidad electrónica a tan solo unos pocos de milielectronvoltios, mejorando los resultados anteriores en 10 veces.

Esta metodología, que puede aplicarse a otros átomos pesados, es un indicio de hasta qué punto una creciente capacidad de cálculo nos puede permitir comprender mucho mejor el funcionamiento de la materia y poder predecir características en materiales que ahora son inimaginables.

Referencia:

L. F. Pašteka, E. Eliav, A. Borschevsky, U. Kaldor, and P. Schwerdtfeger (2017) Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.023002

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo La fascinación del oro se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. 30 milésimas por encima del cero absoluto, electrónicamente
  2. La suave piel del núcleo
  3. Un minuto eterno: pares de Majorana y computación cuántica
Categories: Zientzia

Círculo vicioso

Cuaderno de Cultura Científica - Wed, 2017/01/18 - 11:59

Tomen un círculo, acarícienlo, y se hará un círculo vicioso.”
Eugène Ionesco, La cantante calva

Círculo vicioso

Etienne Lécroart es un artista del cómic. Ya hablamos de uno de sus magníficos trabajos en Interpretando mensajes cifrados.

Es miembro, y uno de los pilares, del grupo OuBaPo (Ouvroir de Bande dessinée Potentielle, Obrador del Tebeo Potencial), que crea sus cómics obedeciendo determinadas trabas formales (muchas de ellas matemáticas), al igual que hace con sus textos el grupo OuLiPo.

Lécroart es un maestro del tebeo; basta con recorrer su trabajada página web para observar sus dotes creativas, sus grandes dosis de humor y sus sorprendentes juegos. Destacan los cómics en los que la lectura puede realizarse en horizontal, en vertical y oblicuamente, o en los que se puede progresar según la numeración de la página o en sentido inverso.

En mi opinión, Cercle Vicieux (Círculo vicioso) es una joya dentro de esta familia de tebeos. Es un enorme palíndromo, es decir, Cercle Vicieux puede leerse desde la primera viñeta hasta la última, o viceversa… y la historia narrada es exactamente la misma en cualquiera de los dos sentidos.

El tebeo tiene treinta páginas, con seis viñetas en cada una de ellas. La última viñeta de la página 15 (la número 90) es la que marca el punto de inflexión de este magnífico palíndromo: la imagen que aparece es simétrica respecto al eje vertical, y marca el centro de este enorme palíndromo.

La viñeta central de Cercle Vicieux, con el ayudante del científico protagonista.

A partir de esta viñeta central se observa que la casilla 91 (página 16) es la misma que la 89 (página 15), y se van comprobado sucesivamente estas identificaciones entre viñetas: 92 (página 16) = 88 (página 15), 93 (página 16) = 87 (página 15), …, 100 (página 17) = 80 (página 14),…, 179 (página 30) = 1 (página 1), hasta llegar a la casilla final, la 180 (página 30), que se reserva para la palabra FIN ¿o es el principio?

He puesto el signo de igualdad entre los números de las viñetas, para insistir en que son idénticas, tanto la imagen como el texto sobre ellas.

La historia trata de un sabio un tanto excéntrico y nervioso que trabaja en su laboratorio diseñando una máquina del tiempo. Le acompañan su paranoico asistente y su ingenua secretaria.

En las quince primeras páginas de Cercle Vicieux se habla de la máquina del tiempo, que el profesor y su ayudante no consiguen poner en marcha; quieren invertir el tiempo para salvar a la secretaria que ha sufrido un colapso. El nerviosismo y la desesperación son las claves en esta primera mitad del tebeo. Los mandos de la máquina envían mensajes extraños, uno de los interruptores de la máquina está apagado… Pero algo sucede de repente –exactamente en la viñeta 90, de las 180 de las que consta el tebeo–, algo que hace cambiar el ritmo y el tema de la trama.

En efecto, la acción de la viñeta central tiene lugar en una hora capicúa, son exactamente las 12h21, y como se ha indicado, el cómic empieza a escribirse en sentido inverso. La desesperación lleva a la calma, la secretaria ‘resucita’, aparece la atracción entre el sabio y la mujer…

Insistimos en que Lécroart narra la segunda parte de la historia invirtiendo el sentido de las viñetas, pero sin ningún otro cambio, ni en las imágenes ni en los diálogos. El autor consigue crear una historia coherente, tanto en la primera parte como en la segunda, como en su conjunto: a partir de la página central se construye una trama diferente, ‘deshaciendo’ el camino trazado al ir recorriendo las viñetas en sentido inverso…

Si leyéramos la historia desde el final –casillas 179, 178, 177, etc.– comenzaríamos de nuevo la historia del sabio que dice desesperado a su secretaria que no consigue poner en marcha su máquina del tiempo… se trata, sin duda, de un auténtico Círculo Vicioso…

Referencias

 

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Círculo vicioso se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ” El círculo de los nueve puntos “, una sociedad científica singular
  2. Repasando algunos objetos matemáticos notables
  3. Interpretando mensajes cifrados
Categories: Zientzia

Uhin iheskorra harrapatu dute

Zientzia Kaiera - Wed, 2017/01/18 - 09:00
Amaia Portugal Orain hamarkada bat detektatu zuten lehenengoz irrati eztanda azkar bat, eta horien jatorriaz ezer gutxi dakigu. Orain, baina, eztanda horietako baten iturri kosmikoa kokatzea lortu dute ikertzaile batzuek. Aztertu duten hau hiru mila milioi argi urtetara dagoen galaxia batetik dator. Neutroi izar jaioberri batek sortua izan daiteke, baina badaude bestelako hipotesiak ere.

Irrati eztanda azkarrak uhin oso bizkor eta laburrak dira, haien iraupena segundo milarenetan neurtzen baita. Gisa honetako irrati uhin bat 2007an identifikatu zuten lehenbizikoz, eta horien jatorria misterio hutsa da, gaurtik gaur. Kolapsatutako izarrak, lurrundutako zulo beltzak… bai eta seinale estralurtarrak ere. Horra hor, zabaldu izan diren hipotesietako batzuk.

Haien frekuentziaren ondorioz, badakigu hedapen erraldoia dutela, eta gas kantitate oso handiak zeharkatzen dituztela galaxietan luze eta zabal, gurean antzematerako. Horrenbestez, Esne Bidetik at eta oso urrutitik datozela badakigu, baina ezer gutxi gehiago. Orain, baina, irrati eztanda azkar baten iturri kosmikoa kokatzea lortu dute aurrenekoz, uhina bete-betean harrapatuta. Cornwell Unibertsitateak (New York, AEB) gidatu du ikerketa, eta aztergai izan duten eztanda zehatz honek hiru mila milioi argi urtetara dagoen galaxia batean du jatorria. Hala azaldu dute, Nature aldizkarian argitaratutako artikuluan.

1. irudia: Areciboko Behatokian antzeman zuten lehen irrati eztanda azkarraren jatorria aztertu dute. (Argazkia: Areciboko Behatokia)

Areciboko Behatokian (Puerto Rico) detektatu zen lehen irrati eztanda azkarra izan dute ikergai, zehazki. Laura Spitler doktoretza ondoko ikertzaileak aurkitu zuen 2012ko azaroan, eta horregatik, FRB 121102 du izena. Bere berezitasuna zera da, beste kasu batzuetan ez bezala, irrati eztanda azkar hau gehiagotan antzeman dutela gero; jarraitua dela, alegia. Horrenbestez, haren jatorriak ezin du, adibidez, izar baten eztanda izan, fenomeno egonkorrago bat baizik. Jarraikortasun horrek, aldi berean, ikerketa honetarako hautagai egoki bihurtzen du, aukera gehiago ematen dituelako bere jatorriaren bila aritzeko.

FRB 121102 Auriga konstelazioan dago, Orion baino aurreraxeago, baina hori jakiteak ez du bilaketa nahi beste errazten. “Zeruko gune zehatz batetik datorkigu seinalea, eta gune horren diametroa arku-minututan neurtu daiteke. Ehunka balizko iturri daude hor. Izar, galaxia eta bestelako gauza mordoa“, esan du Shami Chatterjee artikuluaren egile nagusiak.

2. irudia: Karl G. Jansky Behatokiak bereizmen handiagorako ahalmena du. Hari esker, bete-betean harrapatu dute FRB 121102 irrati eztanda azkarra. (Argazkia: John Fowler / CC BY 2.0)

Areciboko irrati teleskopioak ez du hain begi zorrotza, ordea, haren bereizmena Ilargiaren diametroaren hamarrenaren parekoa baita (edo hiru arku-minutu). Horrenbestez, bereizmen handiagorako ahalmena duen Karl G. Jansky Behatokira (Mexiko Berria, AEB) jo zuten ikertzaileek. 80 orduz aritu ziren harekin lanean, eta hala, FRB 121102 bete-betean harrapatzea lortu zuten. Mundu osoko bestelako teleskopio batzuk ere baliatu zituzten lan osagarria egiteko; esaterako, irrati eztanda azkar horren argi espektroa definitzeko. “Hidrogenoaren, oxigenoaren eta beste elementu batzuen kolore oso bereizgarrien seinale detektagarria dauka”, dio Chatterjeek.

Irrati eztanda azkar horren jatorria zer distantziara eta zer galaxiatan dagoen kokatu dute, beraz. Baina zerk sortzen du, zehazki? Hori argitzea litzateke hurrengo urratsa. “Uste dugu neutroi izar jaioberri bat izan daitekeela, eremu magnetiko erraldoia duena. Edo, agian, galaxia nano bateko nukleo galaktiko bat izan daiteke. Edo litekeena da bi ideia horien arteko konbinazioa izatea, eta horrek azalduko luke zergatik den, nolabait, arraroa, ikusten ari garen hau”, gaineratu du ikertzaileak.

Erreferentzia bibliografikoa:

S. Chatterjee et al. A direct localization of a fast radio burst and its host. Nature, 541, 58–61 (05 January 2017). DOI:10.1038/nature20797

———————————————————————————-

Egileaz: Amaia Portugal (@amaiaportugal) zientzia kazetaria da.

———————————————————————————-

The post Uhin iheskorra harrapatu dute appeared first on Zientzia Kaiera.

Categories: Zientzia

#Naukas16 Tiene bigote, carga eléctrica y no lleva gafas

Cuaderno de Cultura Científica - Tue, 2017/01/17 - 17:00

Partículas. Ilustración de Raquel Garcia Ulldemolins.

Mario Herrero Valea nos explica cómo se juega a un quién es quién muy particular.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 Tiene bigote, carga eléctrica y no lleva gafas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas16 La transferencia de conocimiento, ¿nos lleva a la pobreza?
  2. #Naukas16 Si Rajoy fuese nutricionista
  3. #Naukas16 Conviviendo con robots
Categories: Zientzia

El oscurecimiento de la alquimia

Cuaderno de Cultura Científica - Tue, 2017/01/17 - 11:59

Todo hacía presagiar que Europa estaba lista para progresar rápidamente, pero no sería así para la química. El comienzo del siglo XIV supuso un estancamiento de 200 años en la alquimia europea, no así fuera del continente. ¿Por qué?

Los ciudadanos de Tournai (Bélgica) enterrando a las víctimas de la plaga. De “Las crónicas de Gilles Li Muisis” (1352)

El siglo XIV comenzó con una serie de hambrunas que se llevaron por delante muchas vidas, pero lo realmente grave empezó en los años cuarenta del siglo: la peste bubónica, la muerte negra. En unas pocas décadas casi la mitad de la población de Europa murió. Las ciudades, especialmente vulnerables a la enfermedad contagiosa, fueron abandonadas. Los nuevos centros del saber y nuevas ideas tuvieron que cerrar sus puertas. El progreso se detuvo.

Eduardo III contando los muertos tras la batalla de Crécy (1346)

Como si esta locura no fuese suficiente, los gobernantes añadieron la suya propia: la guerra fue continua en el continente entre 1337 y 1453. Los principales protagonistas fueron los Plantegenet ingleses y los Valois franceses y la excusa la sucesión en el trono de Francia, pero los reinos cristianos de la península ibérica también se vieron involucrados en uno y otro bando. En esta llamada Guerra de los Cien Años, bandas de ingleses se dedicaron a rapiñar la campiña francesa, matando y violando, hasta que una muchacha iletrada, Juana de Arco, empujada por su misticismo, consiguió revitalizar el bando francés.

Esta guerra continental terminó derivando en Inglaterra en una guerra interna, la Guerra de las Rosas, entre 1455 y 1487. En la península ibérica la guerra continuó contra los moros hasta 1492.

Pero todos estos males y penurias no podían dejarse pasar sin explicación. La mente racionalizadora de los humanos, que no racional, echó mano de sus sesgos y encontró una base para tanto desastre: era el demonio y sus secuaces los que sembraban el mal y la destrucción en todos los territorios. Una población ya religiosa y supersticiosa se convirtió en aún más religiosa y supersticiosa en los siglos XIV y XV.

Batalla de Nájera (1367) durante la primera guerra civil castellana

Formas extremas de penitencia, como la autoflagelación, se volvieron mucho más comunes. La Inquisición se estableció en Castilla para mantener a raya a herejes y conversos. La vida de un judío valía menos que la de una oveja y hubo estallidos de violencia generalizados. Especialmente relevante, quizás, sea el de 1391 en Castilla, Aragón y Navarra, consecuencia directa de la primera guerra civil castellana. El lema de uno de los grandes predicadores de la revuelta antijudía, Vicente Ferrer (santo de la Iglesia Católica), “bautismo o muerte”, se convertiría en la base de la política para con los no cristianos. El paroxismo llegó con la expulsión de los judíos de Castilla y Aragón en 1492.

La Europa cristiana se volcó en una guerra sin cuartel contra los paganos, las brujas, hechiceros, judíos, musulmanes y contra cualquiera que hiciese cualquier cosa fuera de las normas imperantes y las supersticiones anexas.

Quema de una mujer en Willisau (Suiza) en 1447

Fuera de los grupos étnicos, las mujeres fueron las que más sufrieron esta persecución. A las “brujas” se las cazó, torturó y ejecutó de las formas más salvajes, muchas veces durante campañas de limpieza. En muchas ocasiones las víctimas eran parteras y sanadoras, receptoras del conocimiento existente sobre medicina y química, pero se creía que aquellas personas con “poderes” para sanar tenían necesariamente que haber aprendido esos conocimientos de la boca del mismísimo Belcebú; y, si podían sanar, podían usar esos poderes para hacer daño.

Juan XXII

El papa Juan XXII había prohibido la práctica alquímica fraudulenta en 1317 en el decreto Spondent Pariter. No es de extrañar que la alquimia optase por oscurecerse.

Los alquimistas europeos (serios, no los que se dedicaban a estafar) de esta época fueron extremadamente cautelosos, por tanto, y no muy dados ni a la imaginación ni a los experimentos espectaculares. Si bien se produjeron algunos manuscritos alquímicos, se dedicaron a recoger el conocimiento existente y, en todo caso, a adornar el lenguaje de tal manera que se volviese impenetrable salvo para el iniciado. El simbolismo y el misterio se convirtieron en un arma de defensa, más que una forma de guardar “el gran secreto”, que no era otra cosa que lo que ya circulaba libremente en siglos anteriores. Esta oscuridad servía también como cortina frente a las acusaciones de falta de ortodoxia. No te podían acusar de nada concreto si todo era interpretable…

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo El oscurecimiento de la alquimia se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Alquimia musulmana
  2. Calculadoras (I)
  3. Cuatro páginas para un nobel
Categories: Zientzia

Mantuko luma gorakorrak, benetakoak ote? (II): Lumen eredua

Zientzia Kaiera - Tue, 2017/01/17 - 09:00
Arturo Apraiz “Prozesu magmatiko anomaloak” azaltzeko estreinako saiakera J. Tuzo Wilsonek egin zuen 1963. urtean, puntu beroak (hot spot) aipatuz. Wilsonek esan zuen Hawaii uharteak bezalako kate bolkanikoak plaka tektoniko bat mantuan kokatutako puntu bero baten gainetik igarotzean sortuak direla (1. irudia).

1. irudia: Hawaiiko uharteen sorrerarako J. Tuzo Wilsonek 1963. urtean iradokitako puntu beroaren eredua (aldaketa txiki batzuk eginda).

8 urte beranduago, W. Jason Morgan (1971, 1972) geofisikaria, ahalegindu zen Wilsonen puntu beroen kontzeptuari oinarri fisikoa ematen. Bere esanetan, puntu beroak lurrazaleko prozesu bolkanikoak dira, nukleo eta mantuaren arteko mugatik gora egindako mantuko arroka beroen bitartez elikatuak. Mantu sakonetik gora egiten duen egiturari luma gorakor deritzo. Beraz, puntu beroa luma gorakor baten azaleko ondorioa litzateke. 1971 geroztik, luma gorakorren hipotesia izan da plaken barnean gertatzen diren prozesu bolkanikoak (Hawaii, Yellowstone) azaltzeko eredurik hedatuena. Hala gertatu da era berean ozeano-gandorretako zenbait kokapenetan gertatzen diren isurketa erraldoiak (Islandia) azaltzeko unean.

Aipatutako ingurune bolkanikoekin batera, luma gorakorrak ere erabili izan dira hainbat egituren bolkanismoaren jatorria azaltzeko: Pitcairn uharteak, MacDonald mendilerroa, Galapagos, Azores edo Kanariar uharteak eta Afrikako Afar lurraldea, eta Deccan, Paraná, Ontong-Java edo Siberia bezalako basalto-plataforma erraldoiak. Morganek luma gorakorren eredua iradoki zuenean, Hessen (1962) itsas hondoen zabalkuntzaren eredua zen nagusi, eta iradokitzen zen ozeano-gandorren azpian kokatutako konbekzio-korronte gorakorren eraginez zabaltzen zirela ozeanoak. Baina ereduak ezin zituen puntu beroak azaldu eta, gainera, ozeano-gandorren inguruko xingola magnetikoen azken ikerketek erakutsi zuten Hessen eredua ezinezkoa zela. Ondorioz, plaka-tektonikak ondo deskribatzen zuen Lurraren azaleko bloke zurrunen zinematika, baina mugimenduak azaltzeko mekanismoan aldiz, huts egiten zuen. Morganek, behe-mantuan garatutako luma gorakorrak jotzen zituen plaken mugimenduaren erantzule. Bere esanetan plakak bi arrazoiengandik mugitzen dira: alde batetik, luma gorakor bakoitzaren erdiguneak litosferaren oinaren aurka jo eta astenosferan hedatzen diren korronte erradialen eraginez eta, bestetik, plaken arteko mugetan sortzen diren esfortzuen ondorioz. Morganen arabera, luma gorakorrak ziren mantuko konbekzio-eredu nagusia ahalmena dutelako; plakak apurtzeko, ozeano-gandorren bilakaera mantentzeko eta plaken mugimendua gidatzeko. Mantuko konbekzioa mugimendu gorakor, indartsu, estu eta beroek eta askoz zabalagoak diren mugimendu beherakorrek (subdukzio-eremuak) osatzen dute.

Beraz, Morganen ereduan luma gorakorrak nukleo eta mantuaren arteko mugan sustraituta dauden eta inguruko arrokak baino beroago dauden arroken “tximiniak” dira. Mantu sakoneko materialek mantu solidoan gora egiten dute, ustez tenperatura altuak soilik eragindako dentsitate-murrizketaren eraginez (luma termikoak), litosfera zurrunarekin bat egin arte.

Hasiera batean, beraz, uste zen luma gorakorrek jatorri termikoa zutela. Horrela, mantuaren konbekzioa fluidoen konbekzioarekin pareka liteke, lapiko batean urak duen mugimenduarekin gutxi gorabehera.

Eredu teorikoan, mantuko konbekzioa, beroa kondukzioz garraiatzen dituzten bi geruza-muga termikoen[1] artean gertatuko litzateke. Goikoa litosfera da, gaineko azaleratik hozten dena eta noizean behin mantuan barneratu egiten dena; azpikoa nukleo eta mantuaren arteko mugan dago kokatuta. Nukleorako egindako petrologia esperimentaleko ikerketek erakutsi dute bertako tenperatura gaineko mantuarena baino ehunka gradu altuagoa dela. Tenperatura-desberdintasunak nukleotik mantura doan bero-fluxua eragingo du, eta ondorioz gaineko arrokak berotu, flotazio-anomaliak eragingo eta gorantz abiatzen diren luma gorakorrak abiaraziko dituzte.

Baldintza hauek ezarrita, asko izan dira luma gorakor termikoen izaera erreproduzitu dituzten laborategiko esperimentuak eta zenbakizko simulazioak.

Horietan lortutako argazkiek (2. irudia) eta bestelako emaitzek adierazten dute luma gorakor termikoak bi zati nagusitan bana daitezkeela: aurretik doan buru handia batetik, eta bestetik burua nukleoarekin eta mantuaren arteko mugarekin lotzen duen zutabe estua. Ikerketa hauetan iradoki izan da luma gorakorren buruek 800-1.200 km-ko diametroa dutela litosferara iritsita eta zutabeak, aldiz, 100-200 km-koak direla. Luma gorakorren eta inguruko mantuko arroken arteko tenperatura-desberdintasuna, 150-250ºC bitartekoa izan daiteke.

2. irudia: Laborategian lortutako luma termikoen argazkiak. Geruza-muga ezegonkor batetik sortzen dira, ura azpitik berotu ondoren. (Sparrow et al., 1970)

Lumen ereduan beraz, burua litosferaren oinera iritsita norabide guztietan erradialki hedatuko da, litosfera zurrunaren konkordura eragingo du eta probintzia igneo erraldoia (LIP; Large Igneous Province) garatuko du (3. irudia). Ondoren, burua litosferaren aurka zanpatu eta zabaldu egiten da, gero eta difuminatuago agertuko den disko baten geometria lortuz. Ondorioz, lumaren zutabea baino ez da geldituko, anomalia termiko mugatuagoa sortzen duena, gandor aseismikoak edo bolkan-kateak sortzeko bestekoa baino ez (3. irudia).

3. irudia: Luma gorakorra eta berak sortzen duen puntu beroaren arteko harremana. Luma gorakorren buruak basalto-plataforma eta zutabeak gandor aseismikoa sortzen dute.

Egun, luma gorakorren ereduak sendo dirau, eredua sortu zenean iradokitako hainbat prozesu geologiko egiaztatu ahal izan direlako. Denborarekin egiaztatu diren ereduaren aurreikuspenen artean ondorengoak aipa daitezke:

  • Luma gorakorrak nukleo eta mantuaren arteko mugan sor daitezke eta buru handi eta zutabe estu batekin osatuta daude.
  • Luma gorakorraren buruaren eraginez milioika kilometro kubiko probintzia igneo erraldoiak sor daitezke.
  • Riftaren ertzetan ozeano-lurrazal lodia duen eremu estua gara daiteke, litosferaren azpian kokatutako luma gorakorren buruek garatutako riftingaren ondorioz.
  • 1000 m inguruko domo-gorakada gerta daiteke, luma gorakorren buruek sortutako erupzioak hasi aurretik.
  • Luma gorakor berri baten estreinako erupzioetan pikritak[2] eratuko dira, eta ingurune bolkanikoaren erdigunean kokatuko dira.

Esan bezala, denborak aurrera egin ahala, behaketen bidez egiaztatu ahal izan dira baieztapen hauek guztiak, mantuko lumen hipotesia balizkoa izan daitekeela frogatuz. Hala ere, oraindino ez dago adostasunik puntu beroen eta luma gorakorren kopurua eta kokapenaren kontuan, baina zalantza gutxi daude 4. irudiko mapan agertzen direnen artean.

4. irudia: Urteetan zehar oso aldakorrak izan dira iradokitako puntu beroen kopurua eta kokapenak. Mapa honetan puntu gorriekin adierazi dira zalantza gutxi sortzen dituzten puntu beroak.

 Oharrak:

[1] Geruza-muga termiko: Fluidoen mekanismoaren barne, biskositatearen eragina nabarmena deneko azalera baten albo-alboan kokatutako fluido-geruza da.

[2] Pikrita: Magnesio portzentaia handia duen basalto aldaera, olibinoan oso aberatsa dena. Iluna da olibinozko fenokristal (20-50%) hori-berdexkarekin eta piroxeno (nagusiki augita) beltz edo marroi iluna. Oso tenperatura handiko magmen kristalizazioaren ondorioa da, eta sarritan luma gorakorrekin lotzen da.

Aurreko artikulua:

Mantuko luma gorakorrak, benetakoak ote? (I): Aurrekariak eta sorrera-unea.

Erreferentzia bibliografikoak:

  • Fisher, O. (1878): On the possibility of changes in the latitude of places on the Earth’s surface: Being an appeal to physicists. Geological Magazine, 5: 291-297.
  • Holmes, A. (1928): Radioactibity and earth movements. Transations of the Geological Society of Glasgow, 18: 559-606
  • Holmes, A. (1944): Principles of Physical Geology. London, Thomas Nelson & Son, 532 or.
  • Hess, H.H. (1962): A history of ocean basins. Non: A.E.J. Engel et al. (Edtk.), Petrologic studies: A volume in honor of A.F. Buddington: Boulder, Colorado, Geological Society of America: 599-620.
  • Wilson, J.T. (1963): A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41: 863-870.
  • Morgan, W.J. (1971): Convective plumes in the lower mantle. Nature, 230: 42-43.
  • Morgan, W.J. (1972): Deep mantle convedtion plumes and plate tectonics. Bulletin of the American Association of Petroleum Geologist, 56: 203-213.
  • Sparrow, E.M., Husar, R.B. eta Goldstein, R.J. (1990): Observations and other characteristics of thermals. Journal of fluid mechanism, 41: 793-800.
  • Foulger, G.R. (2010): Plates vs Plumes: A Geological Controversy. Wiley-Blackwell, 340 or.

———————————————————————————-

Egileaz: Arturo Apraiz UPV/EHUko Geodinamika saileko irakaslea eta ikertzailea da.

———————————————————————————-

The post Mantuko luma gorakorrak, benetakoak ote? (II): Lumen eredua appeared first on Zientzia Kaiera.

Categories: Zientzia

Pages