Tokian tokiko jarduera: katenariarik gabeko tranbia elektrikoak

Zientzia Kaiera - Tue, 2021/09/28 - 09:00

Ozeanoen, atmosferaren, lurrazalaren, kriosferaren, biosferaren eta klimaren jokaera gaur egun ez da oraindik formalki bizitzen ari garen eta duela 11.000 urtetik baino gehiagotik ezaugarritu duen garai geologikoko (Holozenoa) bera. Gizakiak Lurra aldatu du.

Gure planetaren garapen geologikoa hainbeste alda dezakegula ikusita, 2009an Antropozenoari buruzko lantalde bat sortu zen, Nazioarteko Taula Kronoestratigrafikoan (Denbora Geologikoaren Eskala modura ezagutzen dena) Antropozeno terminoa formalizatzeko eta gehitzeko aukera aztertzeko.

Klimaren ikuspegitik, XIX. mendetik aurrera berotegi efektuko gasak azkar gehitu direnez, tenperatura eta itsasoaren maila ere gehitu egin dira, eta kontinenteetan geroz eta izotz gutxiago dago. Berotze maila Holozenoan detektatutakoa baino handiagoa da, eta Kuaternarioko fase interglaziarreko beste garai batzuetan izandakoaren antzekoa da.

tranbiaIrudia: Hiri handietan ezinbestekoa da kutsatzen ez duen eta berotegi efektuko gasik emititzen ez duen garraio publikoa izatea. (Argazkia: GoranWaldt – Pixabay lizentziapean. Iturria: pixabay.com)

Berehala hartu behar dira neurriak klima aldaketaren ondorio kaltegarriak gelditzeko eta egoera lehengoratzeko, eta hori guztia maila diplomatikoan formalizatu zen orain dela bost urte Parisko Akordioan. Akordio hori gorabehera, herritarren kontzientziari esker, erakundeak, gobernuak eta enpresak neurriak ezartzen ari dira berotegi efektuko gasen emisioak gutxitzeko.

Komunikabideetan askotan nahasten badira ere, klima aldaketa eta kutsadura ez dira gauza bera. Beharbada, hori gertatzen da komunikabide handiak hirietan kokatuta daudelako eta kontzeptu horiek nahasten dituztelako. Baina ez da horrela. Adibidez, klima aldaketak Salamanca iparraldeko nire arbasoen herrixkari eragiten dio, baina hangoentzat kutsadura Madrilen dagoen zerbait bat da, Bernabeu bezala.

Beraz, hiri handietan kutsaduraren eta klima aldaketaren aurkako borroka gauza bera dira; izan ere, iturri bera dute: ibilgailuen errekuntza motorrak eta berogailuetako galdarak. Arazo biak konpontzeko, energia metagailuak behar dira: lehenengo kasuan, adibidez, autoen bateriak, eta bigarren kasuan, besteak beste, panel fotovoltaikoentzako metagailuak.

Hiri handietan ezinbestekoa da kutsatzen ez duen eta berotegi efektuko gasik emititzen ez duen garraio publikoa izatea, ez bakarrik klima aldaketarako eta herritarren osasunerako, baizik eta baita hiriko monumentuen osasunerako ere. Dena den, eskakizunak ez dira hor geratzen. Garraiobide berria fidagarria, kutsatzen ez duena eta berotegi efektuko gasik emititzen ez duena nahi baldin badugu, zergatik ez gehitu zaratarik ez sortzea eta egitura iraunkorren ingurua ez aldatzea?

Sevillan lanean ari nintzen bertan metroko obrak egiten ari zirenean; hain zuzen, metroa hiriaren erdigunean azaletik igarotzen da. Noizean behin lankideok zerbait hartzera ateratzen ginen katedralaren inguruko taberna ñimiño batera, non sukaldea ezin hobea den, eta gutariko batek, ingeniaria bera, hauxe esaten zuen obrak ikustean: “Ea zer egiten duten katenariekin”. Ez dago katenariarik Sevillako metroan monumentuen eremuan, eta elektrikoa da. Bateriak erabiltzen ditu, baina ez nolanahikoak.

Ez da batere erraza tren bat hainbat kilometrotan (egunero 130 km baino gehiago Sevillari dagokionez), bere martxan jartze eta gelditzeekin, eta neguan hotza (berogailua) eta udan bero jasanezina egiten duela kontuan hartuta (aire girotua), mugitzeko gai diren bateriak sortzea. Bi euskal erakunde elkarlanean ari dira eskakizun horiek guztiak beteko dituzten bi metagailu sortzeko: CIC energiGUNE, zeinak ikerketako alderdiak lantzen baititu, eta CAF Power & Automation, zeinak garapeneko alderdiak jorratzen baititu. Emaitza bideo honetan ikus daiteke:

Egileaz:

Cesár Tomé López (@EDocet) zientzia dibulgatzailea da eta Mapping Ignorance eta Cuaderno de Cultura Cientifica blogen editorea.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Tokian tokiko jarduera: katenariarik gabeko tranbia elektrikoak appeared first on Zientzia Kaiera.

Categories: Zientzia

Naukas Bilbao 2021: En busca del monolito de “2001: una odisea espacial”

Cuaderno de Cultura Científica - Mon, 2021/09/27 - 11:59

María Larumbe / GUK

 

Miguel Santander durante su intervención en Naukas Bilbao 2021. Foto: Iñigo Sierra / Cátedra de Cultura Científica de la UPV/EHU.

 

Esta historia ocurrió un buen día en un santuario de orangutanes en la isla de Borneo. Un grupo de estos primates se coló en la cocina, robó una olla y la sacó al exterior. Los orangutanes colocaron una pila de rocas en el suelo, pusieron la olla encima y se sentaron a esperar pacientemente a su alrededor tal como habían visto hacer cientos de veces a sus cuidadores humanos. Sin encender el fuego, claro.

El astrofísico y escritor Miguel Santander se sirvió de esta anécdota, contada por el psicólogo Steve Stewart-Williams en su libro “The ape that understood the Universe” (“El simio que comprendió el universo”) para demostrar al público de Naukas Bilbao 2021 la dificultad para encontrar pruebas de vida extraterrestre. Esta ponencia, llamada “Tecnomarcadores: cómo buscar marcianos sin salir en Cuarto Milenio”, cerró la sesión de la mañana del segundo día de Naukas Bilbao, que esta edición celebraba su décimo aniversario.

Los seres humanos llevamos buscando marcianos durante mucho tiempo. “De hecho, los hemos encontrado más veces incluso de las que los hemos buscado y sabemos muy poco de ellos. Que gustan de abducir a personas borrachas o incapacitadas mentalmente de algún modo, que son extremadamente tímidos y que solo se muestran antes personas potencialmente abducibles y que, a pesar de eso, decoran sus naves con luces de colores fácilmente identificables por los periodistas del misterio”.

Sin embargo, pese a lo ‘poco discretos’ que supuestamente se muestran en sus contactos con los humanos, no existe prueba científica alguna de que sean reales; lo que tampoco quiere decir necesariamente que estemos solos en el universo. La posibilidad de que haya o de que haya habido civilizaciones extraterrestres está ahí. De hecho, los seres humanos somos prueba de que se puede dar en el Universo.

“Es posible -explicó Santander- que las condiciones para que surja la vida no sean tan restrictivas como aseguran los biólogos después de todo y quizá incluso las condiciones de la vida simple unicelular dé el salto a la vida más compleja o intenten hacer potajes de garbanzos”. O quizá sea que, aunque exista vida en otros planetas, estén tan lejos de la Tierra que nunca vayamos a encontrarnos ni en tiempo ni en espacio. O puede que tengamos una civilización extraterrestre ‘vecina’, es decir, lo bastante cerca como para encontrarla.

De ser así, ¿cómo podríamos encontrarlas? A través de tecnomarcadores, evidencias o huellas del uso de tecnología presente o pasada o actividad industrial en otros lugares del Universo, pruebas objetivas que produzcan efectos en el medio frente a los avistamientos de ovnis y abducciones nocturnas sin testigos.

En este sentido, el investigador del Instituto de Astrofísica de Canarias (IAC) Héctor Socas-Navarro -que la pasada edición de este evento charló en el evento por partida doble ante el público de Naukas Pro y el de Naukas Bilbao 2019– ha liderado este año una investigación en la que se proponen distintas ideas sobre los tecnomarcadores que indicarían la existencia de vida más allá de nuestro planeta; desde las más cercanas como la presencia de contaminantes industriales como el dióxido de nitrógeno en una atmósfera exoplanetaria, enormes enjambres de satélites o esferas de Dyson, “estructuras que recubrirían de paneles solares la estrella alrededor de la cual vive la civilización avanzada para aprovechar casi toda la energía de la estrella. Esto produciría una disminución de la luz que nos llegaría de esa estrella”.

Otra huella irrefutable sería la presencia de enjambres de satélites alrededor de un exoplaneta. “En la órbita de la Tierra tenemos alrededor de mil, pero una civilización que tuviera un cinturón más denso, con más de estos satélites produciría al pasar por delante de su estrella una huella característica que nos permitiría distinguirlo de algo natural como pueden ser, por ejemplo, los anillos de Saturno”. Esta idea propuesta por Socas-Navarro se conoce como exocinturones de Clarke, en honor a Arthur C. Clarke, divulgador científico, escritor y padre de uno de los tecnomarcadores más potentes y bellos que ha imaginado la mente humana: el monolito de “2001: una odisea espacial (1968)”, una máquina avanzada extraterrestre de color negro mate que puede, entre otras funciones, dotar de inteligencia a los primates o transformarse en un agujero de gusano.

Al final de su ponencia, Miguel Santander volvió a recordar a los orangutanes del santuario de Borneo y se planteó si es más posible que el ser humano encuentre la evidencia de alguno de estos tecnomarcadores o si los orangutanes aprenderán a hacer potaje de garbanzos. “Me temo que mi apuesta es a favor de los orangutanes. Sin embargo, del mismo modo que ellos ponen todo su empeño en obtener ese potaje de garbanzos, nosotros también deberíamos seguir buscando evidencias de vida extraterrestre. No solo porque se trata de algo ‘barato’ ya que se pueden utilizar datos de otras misiones espaciales sino, y sobre todo, porque de tener suerte y encontrar una de estas huellas estaríamos ante el descubrimiento más importante de la historia. Y, por fin, ante la prueba de que no estamos solos en el Universo”.

El artículo Naukas Bilbao 2021: En busca del monolito de “2001: una odisea espacial” se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Naukas Bilbao 2021: Cualquier tiempo pasado fue, simplemente, anterior
  2. Sigue en directo todo lo que sucede en Naukas Bilbao 2021
  3. Javier Peláez – Naukas Bilbao 2019: Una odisea ártica
Categories: Zientzia

Legez kanpoko zenbakien existentziaren inguruan

Zientzia Kaiera - Mon, 2021/09/27 - 09:00

Argi dago zenbait informazio edukitzea legez kanpokoa dela. Izan ere, jendearen duintasun edo intimitatearen kontrako informazioa duzularik edo estatu-sekreturen baten aditu zarelarik harrapatzen bazaituzte, informazio hori edukitzea legearen kontrakoa bada, zigor bat (isun txiki bat edo zenbait urte kartzelan, informazioaren arabera) merezi duzula esaten du gaur egungo legeak. Alabaina, informazio hori digitala bada, esate baterako, dokumentuak, argazkiak, bideoak edo programazio-hizkuntza baten kodea bada, zenbaki baten bidez identifika daiteke. Hortaz, zenbaki hori edukitzea legez kanpokoa izango litzateke. Baina zenbaki bat, entitate abstraktua izanik, nola izan daiteke ilegala?

Matematikariak asko hitz egiten ari dira legez kanpoko zenbakien inguruan azkenaldian. Esate baterako, 2007an eztabaida sortu zen hurrengo zenbakiarekin:

 

09 F9 11 02 9D 74 E3 5B D8 41 56 C5 63 56 88 C0

 

Goikoa hamaseitar zenbakia da. Zenbaki-sistema hamaseitarrak 16ko oinarria du eta, beraz, 0 – 9 eta A – F ikurrak erabiltzen dira. Horrela, 0-9 balioak berdinak dira sistema hamartarrean eta hamaseitarrean, baina sistema hamaseitarreko A balioari sistema hamartarreko 10a dagokio, B balioari 11a, C balioari 12a, D balioari 13a, E balioari 14a eta, azkenik, F balioari 15a. Adibide bezala, goiko zenbakiko azken bi digituak hartuko ditugu, hau da, C0 zenbaki hamaseitarra. Hartutako zenbakia 192 da sistema hamartarrean; izan ere, 192 = 12*16+0. Bestalde, AA zenbaki hamaseitarra 170 zenbakia da sistema hamartarrean (konturatu 170 = 10*16+10 dela).

Askotan, sistema hamaseitarreko bi digitu erabiltzen dira byte baten balioa adierazteko (honen arrazoia da 16 zenbakia biren berretura izatea, (alegia, 16 = 24 da). Izan ere, byte bat 8 bit dira, hau da, 8 zenbaki sistema bitarrean. Zortzi zenbaki bitarrekin 0tik 255rako balioak lortzen dira (zero balioa 00000000 zenbaki bitarra izango litzateke eta 255 balioa 11111111 zenbaki bitarra). Bestalde, 00 zenbaki hamaseitarrari hamartar sistemako zero balioa dagokio eta FF zenbakia hamaseitarra, berriz, 255a. Beraz, goiko zenbakiak 32 zenbaki hamaseitar dituenez, 16 byteko zenbakia da hura ere.

Goiko zenbaki hamaseitarra (16 byte erabiliz adierazi daitekeena) legez kanpokotzat jo zen 2007an. Izan ere, zenbaki hori lehena da eta ezaugarri berezi bat zuen. Zenbaki honek zuen, hain zuzen ere, DVDak pirateriatik babesten dituen enkriptazioa gainditzeko behar zen informazioa. Beraz, zenbaki horrekin DVDen segurtasuna apurtu zitekeen. Eta, ondorioz, zenbaki hau partekatzean DVDak pirateriatik babesteko behar den informazioa partekatzen da eta agerikoa da hori legez kanpokoa dela. Goiko zenbakia, hortaz, oso ospetsua egin zen eta 09–F9 gako izenaz ezagutzen da (konturatu 09 eta F9 09-F9 gakoaren lehenengo bi digituak direla).

Antzeko kasu bat gertatu zen 1999. urtean DeCSS kodearekin. Kode honen zenbakiak balio zuen ordenagailu arruntetan enkriptatutako DVDak ikusi ahal izateko. Kasu honetan, John Lech Johansen pirata informatikoa atxilotu zuten 2000. urtean informazio hau partekatzea leporatuta. Prozesua ondo bukatu zen Johansen informatikariarentzat, epaiketa egin ondoren libre geratu zen eta. Antza denez, beste informatika bik berarekin lan egin zuten, baina zoritxarrez ez zituzten aurkitu. Hala ere, kasu honek adierazten du ez dagoela beti argi, zenbakiez ari garenean, zer den legala eta zer ez.

Irudia: Interneten erabiltzaileak irudi honen bertsioak zabaldu zituzten blog eta DiGG bezalako guneetan, Adierazpen Askatasunaren Bandera deituz. Koloreen RGB osagaien balio hamaseitarrek kodea kodetzen dute. (Argazkia: Wikimedia Commons / Domeinu publikoko argazkia)

Bukatzeko, adierazpen-askatasuneko banderari buruz hitz egingo dut. RGB sisteman (red-green-blue = gorri-berde-urdin), kolore bakoitza hiru zenbaki erabiliz definitzen da, zenbaki bakoitzak 0tik 255rako balioa hartzen duelarik (edo beste modu batean esanda, RGB sisteman kolore bakoitza hiru bytez osatuta dago). Lehenengo zenbakiak gorri kopurua adierazten du, bigarrenak berde kopurua eta hirugarrenak urdin kopurua. Lehen esan dugun bezala, bi digitu hamaseitarrekin 0tik 255rako balioak lortu ahal dira. Hortaz, RGB sistemako edozein zenbaki sei digitu hamaseitarrekin definitu ahal da. Adibidez, FF0000 gorria da RGB sisteman, 00FF00 berdea, 0000FF urdina eta FFFFFF zuria. Ondoko irudian agertzen den bezala, adierazpen-askatasuneko banderak 5 kolore du: lehenengo kolorea 09 F9 11 zenbaki hamartarrarekin (09–F9 gakoaren lehenengo 6 digituak) RGB sisteman lortutako zenbakia da; bigarrena 02 9D 74 zenbakiarekin (09–F9 klabearen hurrengo 6 digituak) lortutakoa eta berdin gainontzeko koloreekin. Horrela, 09-F9 kodearen lehen 15 byterekin bost koloredun bandera sortu da, hau da, adierazpen-askatasuneko bandera. Horretaz gain, banderaren ezker-beheko ertzean +C0 agertzen da, C0 zenbaki hamaseitarra baita 09–F9 kodearen azken byteari dagokiona.

 

Egileaz:

Josu Doncel Matematikan doktorea da eta UPV/EHUko Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saileko irakaslea.

The post Legez kanpoko zenbakien existentziaren inguruan appeared first on Zientzia Kaiera.

Categories: Zientzia

Naukas Bilbao 2021: Cualquier tiempo pasado fue, simplemente, anterior

Cuaderno de Cultura Científica - Sun, 2021/09/26 - 11:59

María Larumbe / GUK

Esther Samper durante su charla. Foto: Iñigo Sierra / Cátedra de Cultura Científica de la UPV/EHU.

Ya no se hace música como la de antes. Lo recordaba todo mucho más bonito… No hay duda de que algunas personas tienden a idealizar el pasado. Piensan que cualquier tiempo pasado era mejor, pero puede ser que, simplemente, como cantaba Karina mientras buscaba en `su baúl de los recuerdos’, nos lo parezca. Sin embargo, al menos, tal y como demostró la médica y divulgadora científica Esther Samper durante su charla en la primera jornada de Naukas Bilbao 2021, en lo que se refiere a medicina “ninguna época pasada fue mejor”.

Y lo hizo a través de ejemplos de lo más sorprendentes, retrotrayéndose a alguno de los falsos mitos más impactantes relacionados con la salud de la historia reciente. “En aquellos tiempos había una gran ignorancia en cuestiones de medicina, mucho charlatán que vendía falsos remedios y muchos falsos tratamientos ‘milagrosos’ que, sin tener evidencia científica, se extendieron rápidamente por el boca a boca a través de frases como ‘A mí me funciona’ o ‘si escuece, cura’”.

Como el furor que hubo por lo radioactivo en los años 30, al que se le atribuyeron propiedades cosméticas y curativas. “En aquellos tiempos, aún no se conocían la toxicidad y mortalidad que provocaba este elemento químico en altas exposiciones y se añadió a productos cotidianos de lo más variopintos: desde pasta de dientes, chocolates, agua mineral o cremas de belleza, ‘para tener una belleza radioactiva’, como rezaba el eslogan de la época, literal y metafóricamente”.

A mediados del siglo XX, pero en otro ámbito, el de la psiquiatría, el neurocirujano portugués António Egas Moniz, inventó un nuevo tratamiento para tratar la esquizofrenia y otras enfermedades mentales: la lobotomía prefrontal, procedimiento quirúrgico que consistía en seccionar la corteza prefrontal y que, teóricamente, mitigaba trastornos mentales.

No obstante, según precisó Samper, no fue una práctica muy popular hasta que el doctor americano Walter Freeman desarrolló la técnica del picahielo, un instrumento quirúrgico similar a una maza con el que “destruía parte del lóbulo prefrontal sin utilizar ni siquiera anestesia en muchas ocasiones”. Entonces, la lobotomía se convirtió en un espectáculo, llegando incluso a hacer giras donde ponía en práctica este procedimiento para calmar el ‘tormento mental’. En algunos pacientes llegaban a calmar, pero en la mayoría de los casos el remedio fue mucho peor que la enfermedad. Daños cerebrales e irreparables, indiferencia con el mundo, pasividad, “zombización” y una alta mortalidad entre los pacientes tratados. En la cultura popular, películas como “Alguien voló sobre el nido del cuco” (1975) o “Shutter Island” (2010) han reflejado estos horrores.

Egas Moniz llegó a ganar el premio Nobel de Medicina en 1949 por esta invención, Nobel de la vergüenza en palabras de Samper. De hecho, en la actualidad grupos de familiares de lobotomizados siguen luchando para que le sea retirado el premio, pero conforme a los Estatutos de la Fundación Nobel, hasta el momento es imposible retirar el galardón una vez otorgado.

Pero en España tampoco se estaba mucho mejor. “En los años 50 los vinos quinados, con un 15% de alcohol se vendían directamente a un público infantil como una especie de medicina para aumentar su apetito. De hecho, se hicieron anuncios representando a Kinito, un niño que consumía este alcohol, dibujados por el historietista Franscisco Ibáñez -padre de Mortadelo y Filemón-.”

Saltando a la realidad actual, “podemos pensar que ahora que la medicina ha avanzado esto ya no pasa, pero desafortunadamente no es cierto”. En algunas zonas de África, por ejemplo, los albinos son perseguidos, mutilados e incluso asesinados por sus supuestas propiedades mágicas”.

La sociedad occidental tampoco se libra. “Ante la incertidumbre sanitaria y la ignorancia han proliferado los negacionistas y antivacunas y personas que se han tratado, sin el aval de la ciencia, con dióxido de cloro o incluso Ivermectina, un antiparasitario para hacer combatir el coronavirus y evitar contagiarse, lo que ha provocado muchas intoxicaciones. Y es que, sea la época que sea, la construcción de un pensamiento crítico y riguroso con los hechos, teniendo como base las evidencias científicas es clave porque – como concluyó Samper-, “cuando la ciencia sale por la puerta… ¡la medicina salta por la ventana!”.

El artículo Naukas Bilbao 2021: Cualquier tiempo pasado fue, simplemente, anterior se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Naukas Pro 2021: Medicina de precisión para combatir el cáncer de próstata
  2. Sigue en directo todo lo que sucede en Naukas Bilbao 2021
  3. Naukas Bilbao 2017 – Mónica Lalanda: Una muerte de cómic
Categories: Zientzia

Asteon zientzia begi-bistan #361

Zientzia Kaiera - Sun, 2021/09/26 - 09:00

Asteon zientzia begi-bistan igandeetako gehigarria da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna jaso eta laburbiltzea da gure helburua.

Arkeologia

Aste honetan Zientzia Kaieran, harri-industriak historiaurreko gizakiari buruz ematen dituen jakintzen inguruan egin zaio elkarrizketa Joseba Rios Bizkaiko Arkeologia Museoko ikertzaileari. Harri-industria edo industria litikoa lehenengo gizakiek erabiltzen zituzten harri tresneriari egiten dio erreferentzia. Egun, harri tresna hauek garrantzizkoak bilakatu dira, izan ere, historiaurreko gizakien kultura, ekonomia eta gizarte-antolakuntza nolakoa zen ikusteko eta bilakaera ikertzeko baliagarriak dira.

Osasuna

Autismoaren etiologia eta fisiopatologia oraindik guztiz ezaguna ez bada ere, badakigu genetikak eragin garrantzitsua duela eta gaixoek aldaketa genetiko amankomunak dituztela. Hainbat ikerketa egin dira gene hauek identifikatzeko baina oraingoz, autismo kasuen %75ak tratamendu farmakologikoa jasotzen du asoziaturiko sintometarako. Hala ere, momentuz ez dago sintoma nagusietarako eraginkorrak den farmakorik. Testuinguru honetan, oxitozinak autismoaren tratamenduan izan dezakeen erabilgarritasuna eta arrakasta aztertzen ari dira. Oxitozina esne ekoizpenean eta erditze garaiko muskulua uzkurketan parte hartzen duen peptidoa da. Azalpenak Zientzia Kaieran: Oxitozina, autismoan ematen den urritasun sozialerako erabilgarria izan daiteke?

Minbiziaren ikerketaren aldeko eguna izan zen irailaren 24a eta honen harira Minbiziaren mitoak eta errealitateak: ulertu sendatzeko hitzaldia eman zuen Ibarrangelun Arkaitz Carracedo ikertzaileak. Carracedoren hitzetan, minbiziaren oinarria eta eboluzioarena berdin-berdinak dira. Gorputzean ditugun milioika zelulek, ugaltzen diren bakoitzean, informazio genetikoa bikoiztu egiten dute eta gehienetan prozesua ongi gertatzen de arren, batzuetan akatsak gertatzen dira. Akats horiek dira bai minbiziaren bai eboluzioaren oinarria. Azalpenak Berrian: “Egun hemen egoteko ordaindu behar dugun prezioa da minbizia”.

Zoologia

Mahastien modernizazioak ondorioak ditu hegaztiek eta ugaztunek mahastiak erabiltzeko moduan. Horixe aztertu dute UPV/EHUko Zoologia eta Animalien Biologia Zelularreko Saileko ikertzaileek eta egiaztatu dute espezie desberdinak daudela mahasti tradizionaletan eta besorakoetan. Mahasti mota bat edo beste bat aukeratzea espeziearen araberakoa dela ziurtatu dute. Hala ere, jakina da zenbait espezie babesturentzat, hala nola, basoiloa, besorako mahastiak kaltegarriak direla. Datu guztiak Zientzia Kaieran.

Ingurumena

Aste honetan, Unibertsitatea.net webgunean, Ioar de Guzman biologoari eginiko elkarrizketa irakur daiteke, erreketako kutsaduraren inguruan. Egun, Ioar EHUko ibai ekologia taldean tesia egiten dabil. Giza populazioaren hazkundearen ondorio diren ur erauzketak eta kutsadurak erreketan duen inpaktua aztertzeko bertako bizidunak aztertzen ditu Ioarren taldeak eta bere esanetan, kutsaduraren eragina ur erauzketarena baino handiagoa da gure erreketan.

Astronomia

Osaketa kimikoari erreparatuz, Eguzkiaren antzekoak diren izarren laurden batek planetaren bat ‘irentsi’ izanaren zantzuak erakusten dituela kalkulatu du astronomo talde batek eta Nature Astronomy aldizkarian argitaratu dituzte eginiko aurkikuntzak. Artikuluak dioenez, izar ezberdinen osaketa kimikoak aztertu dituzte eta izar batzuen osaketa kimiko berezia, planetak irentsi izanagatik datorkiela esateko froga sendoak aurkitu dituzte. Juanma Gallegok kontatzen du Zientzia Kaieran: Beren planetak irensten dituzten izarrak.

Turistak soilik zeramatzan lehenengo espazio-ontzia Lurrera itzuli dela azaltzen da Berrian. Lau bidaiari zituen astronauta profesionalik gabeko lehenengo saio hau Atlantikoan jaso dute, misiotik bueltan. ‘Inspiration 4’ misioa espazioko turismoaren aroan mugarri izango da, arrakastaz amaitu baitute lau bidaiariek. Hiru egun igaro dituzte Lurraren azaletik 575 kilometrora.

Geologia

Zumaiako itsaslabarretan egindako ikerketa batek frogatu du kretazeo bukaeran Indian jazotako muturreko bolkanismoak, Lurrean inoiz izan den bortitzenak, oso eragin txikia izan zuela dinosauroen desagertzean. Dinosauroen suntsipen masiboaren aurretik, 2 °C eta 5 °C bitarteko berotze globala gertatu zen eta Indiako bolkanismo erraldoiaren eraginez izan zitekeela pentsatzen zen. Baina azterketa honek hipotesi hori ezeztatu du, dinosauroen eta beste bizidun askoren suntsipena duela 66 milioi urte Mexikoko Yucatán penintsulan jotako asteroidearen inpaktuak eragin zuela berretsiz. Datu guztiak Elhuyar aldizkarian.

Cumbre Vieja sumendiko erupzioaren gakoak azaldu ditu aste honetan Aitziber Agirrek Elhuyar aldizkarian. 2021eko irailaren 19an La Palman hasitako erupzioak, ikertzaile asko jarri ditu martxan eta horri esker argitzen ari dira erupzioaren ezaugarriak eta izango duen eboluzioa. Besteak beste, erupzioaren azalpen geologikoak, laba itsasora iristeak sortzen dituen kezken zergatia edo erupzio honek jada eragin duen geografia aldaketaren inguruan dihardu Aitziberrek.

Teknologia

Material eta osagai ezberdinek itsaso zabalean duten bilakaera aztertzeko laborategi flotagarri handiago bat uretaratuko du Tecnaliak. Itsasoa eremu fisiko gogorra da, eta lur lehorrean erabiltzeko balio duten gailu eta material askok ez dute jasaten olatuen, kresalaren edo ugerraren eragina. Hori probatzeko, hain zuzen, eraiki du Tecnaliak HarshLab berria. 2018an uretaraturiko izen bereko laborategiaren bertsio handiagoa da. Azalpenak Berrian: ‘Offshore’-an murgiltzeko probalekua.

Egileaz:

Irati Diez Virto Biologian graduatu zen UPV/EHUn eta unibertsitate bereko Kultura Zientifikoko Katedrako kolaboratzailea da.

The post Asteon zientzia begi-bistan #361 appeared first on Zientzia Kaiera.

Categories: Zientzia

Naukas Pro 2021: Quesos de pastoreo frente a quesos de producción intensiva

Cuaderno de Cultura Científica - Sat, 2021/09/25 - 11:59

María Larumbe / GUK

Luis Javier Rodríguez Barron: “Los quesos de pastoreo como el queso Idiazabal son nutricionalmente más saludables que los de producción intensiva”

La expresión “darla con queso” se utiliza habitualmente cuando se intenta engañar a alguien y tiene su origen en La Mancha Medieval. Ya en aquella época, la región era conocida por la calidad de sus vinos y a ella acudían taberneros de todos los lugares para comprar toneles de este caldo. Antes de realizar el pago del producto, lo cataban para asegurarse de su buena calidad. Cuando los bodegueros querían dar salida a partidas de vino picado o de peor condición, obsequiaban a los compradores con poca experiencia con un plato de queso manchego en aceite ya que su fuerte sabor hacía que el paladar del cliente novato no distinguiera un buen caldo de uno picado.

Precisamente, para evitar que ‘nos la den con queso’, existen diferentes sistemas que permiten controlar la trazabilidad de un alimento, es decir, conocer todos los pasos que ha seguido un alimento desde su origen hasta las manos de los consumidores, pasando por todo el proceso de transformación. Se trata de un proceso de rastreo esencial para poder garantizar la seguridad alimentaria, así como para autentificar los alimentos, verificando que un alimento cumple con la descripción de su etiqueta.

Luis Javier Rodríguez Barron durante su intervención en Naukas Pro 2021. Foto: Iñigo Sierra / Cátedra de Cultura Científica de la UPV/EHU.

En el grupo Lactiker de la UPV/EHU llevan más de 10 años trabajando en la identificación de distintos marcadores que garantizar la autentificación de productos lácteos y cárnicos que proceden de animales en pastoreo, como los quesos tradicionales producidos en sistemas de pastoreo extensivo o semi-extensivo y en especial, el queso Idiazabal, elaborado exclusivamente con leche pura de oveja latxa y/o carranzana, sin mezcla alguna y sin pasteurizar.

¿Cómo se puede distinguir un queso que procede de animales que pastan al aire libre frente a uno procedente en estabulación? Luis Javier Rodriguez Barron, líder de este grupo, doctor en Ciencias Químicas y catedrático de Tecnología de los Alimentos en la UPV/EHU, aprovechó su ponencia en Naukas Pro el viernes por la tarde para dar respuesta a esta y otras preguntas referentes relacionadas con su ámbito de trabajo, el de la calidad y seguridad de alimentos de origen animal y desde el que colaboran con distintas pequeñas queserías artesanas, la Denominación de Origen Idiazabal o asociaciones de productores.

“Para poder hacer esta autentificación, nosotros estudiamos ciertos compuestos presentes en la grasa láctea como los ácidos grasos insaturados o el contenido de vitaminas liposolubles como la A que actúan como marcadores para poder diferenciar los quesos de pasto de otros”.

En este sentido, tal y como explicó ante el público del Auditorio del Euskalduna, los quesos elaborados de pastoreo son más saludables debido, entre otras cosas, al consumo de hierba fresca por parte de los rumiantes. “Esto provoca que la grasa láctea tenga más compuestos saludables como ciertos antioxidantes y ácidos grasos insaturados que los no producidos por este sistema”. Asimismo, también han podido observar que estos quesos tienen un mayor contenido en vitamina E y A.

Más allá de establecer biomarcadores para garantizar la calidad nutricional, sensorial e higiénico-sanitaria de estos quesos, el desafío principal del grupo Lactiker es contribuir a la producción sostenible de alimentos procedentes de animales en pastoreo y facilitar al sector productivo la información necesaria para obtener un producto de alta calidad y seguridad.

A este respecto, Barron recalcó la importancia de la investigación, el apoyo de las administradores y la innovación para ayudar a los pequeños productores y frenar la desaparición de las queserías, ya que “el abandono del pastoreo pondría en peligro, no solo las características de quesos de pasto como el Idiazabal, sino que también se perdería de forma gradual el impacto positivo que genera este sistema en distintos ámbitos como el medioambiente, la biodiversidad, el bienestar animal, la cultura o el desarrollo rural. Y eso no lo debemos permitir”.

El artículo Naukas Pro 2021: Quesos de pastoreo frente a quesos de producción intensiva se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Naukas Pro 2021: Medicina de precisión para combatir el cáncer de próstata
  2. Naukas Pro 2017: Inma Estévez y la producción animal
  3. Sigue en directo todo lo que sucede en Naukas Bilbao 2021
Categories: Zientzia

Ezjakintasunaren kartografia #366

Zientzia Kaiera - Sat, 2021/09/25 - 09:00

“Ni”a zer den definitzeko berebiziko garrantzia du Teseoren itsasontziaren istorioak (The ship of Theseus) eta, beraz, psikologiarentzat garrantzia du. Pertzepziozko jarraikortasuna irtenbide erraza da, baina ez dio oinarrizko arazoari irtenbidea ematen: zelan izan dezake zerbaitek jarraikortasuna, baldin eta bere oinarri materiala denborarekin aldatzen den. JR Alonsok hurbilketa psikologikoa dakar.

Suge olioa ez da ezertarako balio ez duen zerbait. Baina bere onurak hainbeste puztu ziren, ezen, egun, Fierabrásen baltsamoaren baliokidea den. How snake oil got a bad name Caitjan Gaintyrena.

Angelu magikodun grafeno bigeruzaren supereroaletasuna bezalako kontu harrigarria ezin zen DIPCtik at geratu: How the screened Coulomb interaction induces superconductivity in twisted bilayer graphene

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #366 appeared first on Zientzia Kaiera.

Categories: Zientzia

Naukas Pro 2021: Medicina de precisión para combatir el cáncer de próstata

Cuaderno de Cultura Científica - Fri, 2021/09/24 - 11:59

María Larumbe / GUK

Las células del cuerpo humano están en constante comunicación. Intercambian información entre sí bien mediante señales directas o bien a través de la emisión de una sustancia recibida por otra célula. Se trata de una relación esencial que permite mantener el estado normal de los órganos. Pero no siempre es así. De hecho, cuando una de estas células pierde conexión con las células de su entorno y, con ello, la capacidad de responder a las señales de otras células podría convertirse en cancerosa. Y, si un grupo de estas células cancerosas ‘decide’ irse por su cuenta a otras zonas del cuerpo y asentarse creando nuevos tumores, es cuando surge la metástasis y, con ella, el riesgo de muerte.

Sobre la importancia de la comunicación intercelular y su impacto en la progresión del cáncer habló ayer Verónica Torrano Moya, doctora en Biología e investigadora Ramón y Cajal en el Departamento de Bioquímica y Biología Molecular de la UPV/EHU en su sesión dentro de Naukas Pro en el Palacio Euskalduna de Bilbao. En concreto, dentro del grupo de investigación que lidera- llamado Cancer Transcription and Cell Communication Lab- trabajan en una línea de investigación relacionada con los procesos biológicos responsables de la aparición del cáncer de próstata, una patología de gran prevalencia ya que, como explicó Torrano, “afecta a alrededor de 1 de cada 6 hombres a lo largo de su vida”.

“A pesar de que aproximadamente el 80% de los pacientes que padecen esta enfermedad consiguen curarse con los tratamientos disponibles actualmente, alrededor de un 20% de los pacientes desarrollan un tumor agresivo que es el principal causante de muerte en estos pacientes”.

En este sentido, el trabajo de Torrano y su equipo está principalmente enfocado en tratar de conocer los procesos biológicos asociados a este tipo de cánceres agresivos ya que, según puntualizó “al conocer estos procesos seremos capaces de diseñar estrategias terapéuticas personalizadas que consigan mejorar la calidad de vida de los pacientes con tumores agresivos e incluso curarlos”.

Veronica Torrano, investigadora Ramón y Cajal en el Departamento de Bioquímica y Biología Molecular de la UPV/EHU en su intervención en NaukasPro 2021. Foto: Iñigo Sierra / Cátedra de Cultura Científica de la UPV/EHU.

Para poder diseñar un tratamiento específico para pacientes de cáncer de próstata agresivo, primero los identifican en el laboratorio mediante el análisis de la expresión de aquellos genes que tienen un impacto en la comunicación celular, esencial para que la estructura de un tejido se mantenga. ¿El objetivo? Poder anticiparse, detectar y clasificar de forma temprana a aquellos pacientes que es probable que desarrollen en unos años un cáncer de próstata agresivo. “De esta manera, seremos capaces de diseñar terapias específicas para ellos”, puntualizó.

Con este fin en el laboratorio trabajan con distintos tres modelos experimentales: células en cultivo, murinos (ratones) y muestras de los pacientes. En el caso de las muestras de los pacientes, “disponemos de acceso al historial y a la evolución clínica de pacientes distintos tipos de pacientes de cáncer de próstata, lo que nos da una información muy valiosa para ser capaces de analizar cómo es la expresión del gen en una situación preagresiva del tumor y en el mismo paciente cuando el tumor se ha vuelto agresivo”.

Esta línea de trabajo tan personalizada se enmarca dentro de la medicina de precisión, una nueva tendencia en medicina que utiliza la información de los genes o las proteínas de una persona con el fin de prevenir, diagnosticar o tratar una enfermedad. En el caso de la medicina personalizada para el cáncer, se usa información específica del tumor de una persona con el objetivo de facilitar el diagnóstico, planificar el tratamiento, determinar si es eficaz o dar un pronóstico.

A este respecto, la investigadora, con más de 17 años de experiencia investigadora en la biología del cáncer, hizo hincapié en los tres aspectos que considera claves para poder combatir esta enfermedad: la detección temprana, que es posible “gracias al trabajo de los investigadores en el desarrollo de métodos de diagnóstico y a las campañas de detección precoz de diferentes patologías que están en aumento desde los últimos años”; el tratamiento eficaz y personalizado mediante la medicina de precisión; y la prevención, para reducir el riesgo de padecer cáncer.

Por último, además de poner en valor la colaboración entre investigadores básicos y clínicos, reclamó más financiación para la investigación, “porque solo los países con alta inversión en ciencia tienen modelos productivos sostenibles”. O, lo que es lo mismo, parafraseando el hashtag, sin ciencia no hay futuro, pero con ciencia sí que lo hay.

El artículo Naukas Pro 2021: Medicina de precisión para combatir el cáncer de próstata se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Lo mejor de dos mundos para avanzar en el tratamiento del cáncer
  2. La senescencia celular: el gran desafío para entender y tratar el cáncer
  3. Nanopartículas recubiertas para el tratamiento localizado del cáncer por hipertermia magnética
Categories: Zientzia

Joseba Ríos: “Harri-industriaren ikerketak historiaurreko gizarteari buruzko jakintzak ematen ditu” #Zientzialari (160)

Zientzia Kaiera - Fri, 2021/09/24 - 09:00

Harri-industria edo industria litikoa lehenengo gizakiek erabiltzen zituzten harri tresneriari egiten dio erreferentzia. Harriak elkarren kontra kolpatuz, aho zorrotzak zituzten tresnak sortzen zituzten, biziraupenerako beharrezkoak ziren giza jarduera desberdinak burutzeko, hala nola, haragia moztu edo larrua eta egurra landu.

Lehenengo harri tresnak orain dela 2,6 milioi urte agertu ziren Etiopian (Afrika). Egun, garrantzizkoak bilakatu dira, izan ere, historiaurreko gizakien kultura, ekonomia eta gizarte-antolakuntza nolakoa zen ikusteko eta denboran zehar izan zuten bilakaera ikertzeko baliagarriak dira. 

Euskal Herrian neandertalen okupazioaren xehetasunak eta historiaurreko harri-industriari buruz gehiago jakiteko, Joseba Ríosekin, Bizkaiko Arkeologi Museoko ikertzailearekin, bildu gara.

Zientzialari” izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.

The post Joseba Ríos: “Harri-industriaren ikerketak historiaurreko gizarteari buruzko jakintzak ematen ditu” #Zientzialari (160) appeared first on Zientzia Kaiera.

Categories: Zientzia

Aves de bajos vuelos

Cuaderno de Cultura Científica - Thu, 2021/09/23 - 11:59
Cormorán piquicorto (Microcarbo melanoleucos). Ilustración: María Lezana

Los cormoranes son buenos buceadores. Lo que no hacen tan bien es volar. Son de tamaño relativamente grande; en algunas especies los individuos adultos pueden llegar a pesar 5 kg. De hecho, ese tamaño es un hándicap considerable a la hora de levantar el vuelo y volar. Hay que tener en cuenta que, al aumentar las dimensiones lineales de un organismo, su masa aumenta en mayor medida que lo que lo hace la fuerza que es capaz de desarrollar esa masa.

Por otro lado, los cormoranes tienen las alas relativamente cortas, por lo que han de batirlas con mucha fuerza para poder alzar el vuelo y mantenerse en el aire. Sin embargo, si los comparamos con los de otras aves, los músculos del vuelo de los cormoranes son de pequeño tamaño también. Así pues, tienen que hacer un esfuerzo tan grande para volar, que se ven obligados a hacer uso de la máxima potencia que pueden desarrollar sus músculos. Por esa razón, no suelen volar durante periodos largos; de hecho, la distancia media que recorren al volar es de 1 km, y difícilmente se mantienen en el aire durante más de 10 minutos. Si se computa el tiempo total que vuelan en un día, no suele superar la media hora. Estos datos, no obstante, pueden variar entre especies.

Pero como hemos dicho antes, los cormoranes son grandes buceadores. Tienen, por un lado, gran capacidad para almacenar en sus tejidos el oxígeno que necesitan durante la inmersión, y lo que es muy importante: esa capacidad aumenta con el tamaño del animal en mayor medida que lo que se eleva su consumo de oxígeno. Por eso pueden permanecer largo tiempo bajo el agua, más cuanto mayor es el tamaño del cormorán. El tamaño grande, que es una desventaja cuando de volar se trata, resulta ser un factor beneficioso a la hora de bucear. Una cosa por la otra.

Por otra parte, si bien es cierto, como hemos visto, que las alas pequeñas son inadecuadas para volar, resultan muy útiles a la hora de sumergirse, porque de esa forma la tendencia a flotar es menor, como también lo es la resistencia que oponen a la inmersión.

Por último, los músculos de sus extremidades inferiores son de un tamaño considerable, representan entre un 10 y un 12% de la masa corporal. Son los músculos, precisamente, de los que hace uso para sumergirse. Está claro que sus rasgos anatómicos son ideales para bucear.

Las tendencias anatómicas y fisiológicas que hemos visto aquí alcanzan su grado más extremo en el cormorán mancón o cormorán de las Galápagos (Phalacrocorax harrisi), donde es endémica. Ha llevado las características de su género hasta su máxima expresión porque se trata del único cormorán que no vuela; ha perdido la capacidad de volar, aunque resulta ser, como era previsible, un buceador excelente.

Después de lo señalado antes, no sorprenderá saber que sus ejemplares son los cormoranes que alcanzan un mayor tamaño, pues pueden llegar a medir 100 cm de longitud y alcanzar una masa de 5 kg. Sus alas miden una tercera parte de lo que necesitarían para permitirles volar con esa masa. Además, la quilla del esternón, que es donde se anclan los músculos del vuelo de las aves, es de tamaño muy inferior al de las aves que vuelan.

Fuente: Yuuki Y. Watanabe, Akinori Takahashi, Katsufumi Sato, Morgane Viviant y Charles-André Bost (2011): Poor flight performance in deep-diving cormorants. The Journal of Experimental Biology 214: 412-421 doi: 10.1242/jeb.050161.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Aves de bajos vuelos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Tamaño corporal y función renal de aves y mamíferos
  2. Los pulmones de reptiles y aves
  3. Las aves de Prometeo
Categories: Zientzia

Oxitozina, autismoan ematen den urritasun sozialerako erabilgarria izan daiteke?

Zientzia Kaiera - Thu, 2021/09/23 - 09:00

Autismoaren espektroaren nahastea jokabidean definitutako garapen neurologikoaren desoreka da. Bi sintoma dira bere bereizgarri nagusi: batetik, urritasun soziala; bestetik, mugimendu errepikakorrak eta murriztaileak. Autismoa garatzen duten haurren ezaugarririk ohikoena urritasun soziala da, eta hau komunikazio berbalean zein ez berbalean ere ikusten da. Izan ere, autismoa duten umeek ez dute seinalatzea gauzatzen nahi duten objektua zein den esateko, eta ez dituzte gauzak ematen ezta erakusten ere ez. Gaixo hauek, sintoma nagusiekin batera, beste sintoma batzuk pairatu ditzakete: atentzio arazoak, ezgaitasun intelektuala, hiperaktibitatea, antsietatea, suminkortasuna, defizit motorea, edo agresibitatea besteak beste.

autismoanIrudia: Autismoaren sintoma nagusiekin batera ager daitezkeen sintomak (Iturria: Ekaia aldizkaria)

Nahiz eta autismoaren etiologia eta fisiopatologia oraindik guztiz ezaguna ez izan, badakigu genetikak eragin garrantzitsu bat duela. Autismoak jatorri genetiko konplexua dauka, gaixo gehienek gene bat baino gehiago mutatua baitaukate. Hala ere, autismoa pairatzen duten gaixoek aldaketa genetiko amankomunak dituztela ere zehaztu da, eta hainbat ikerketa egin dira gene hauek identifikatzeko (familietan eta bizkietan egindako ikerketak garrantzitsuak izan dira). Autismoaren klinikaren heterogeneotasunagatik, eta etiologia eta fisiopatologia konplexuagatik, farmakoterapia zuzendu bat garatzea da gaur egungo erronka garrantzitsua. Erabiltzen den ohiko interbentzioa portaeraren terapia bada ere, autismo kasuen %75ak tratamendu farmakologikoa jasotzen du asoziaturiko sintometarako, baina momentuz ez dago sintoma nagusietarako eraginkorrak den farmakorik. Medikamentuen agentzia erregulatzailea den FDAk (Food and Drug Administration) autismorako onartutako medikamentu bakarra antipsikotiko atipikoak dira; hauek suminkortasunean eta agresibitatean daukate eragin terapeutiko nagusia. Beraz, farmako berriak garatzeko ahalegin handia egiten ari da ikerketa biomedikoa, eta hauen artean oxitozina daukagu.

Oxitozina, esne ekoizpenean eta erditze garaiko muskulua uzkurketan parte hartzen duen peptido bat izateaz gain, nerbio sistema zentralean neuromodulatzaile bezala jokatzen du ere. Oxitozina, beraz, hainbat portaera sozialen modulatzailea da, besteak beste, aurpegien ezagutzearen hobetzea, lagun hurkoaren emozioen identifikazioa eta agresioaren murrizketa eragiten duelarik. Gainera, garapen goiztiarrean mutazio genetikoengatik emandako oxitozina-sistemaren porrotak jokaera sozialean eragin dezakela ikusi da, aktibitate eta plastikotasun sinaptikoan eraginez. Testuinguru honetan, oxitozinak autismoaren tratamenduan izan dezakeen erabilgarritasuna eta arrakasta aztertzen ari dira.

Batetik, autismoaren forma monogenikoetan oinarritutako zenbait animalia-ereduk oxitozina sisteman nolabaiteko alterazioak erakusten dituzte, eta hauetan oxitozinaren administrazioak urritasun sozialaren hobekuntza eragiten du. Bestetik, gizakietan ere hainbat saio kliniko burutzen ari dira oxitozinaren erabilgarritasun terapeutikoa aztertzeko. Baina kasu honetan, animalia-ereduetan ikusi denarekin parekatuz, lortutako emaitzak ezberdinak dira, ikerketa batzuetan kognizio sozialean hobekuntzak ikusi direlarik, baina beste batzuetan ez. Gizakien artean dagoen heterogeneotasuna dela eta, hau ez da oso harritzekoa. Ondorioz, ikerketa gehiagoren beharra dago oxitozinak autismoan izan dezakeen erabilgarritasuna modu sendoago batean balioztatzeko eta baita tratamendu mota hau onuragarriena zein banakorentzat izango litzatekeen zehazteko ere. Izan ere, oraindik argitu gabe dago zein den oxitozina emateko biderik egokiena, dosi optimoa, maiztasuna, oxitozinaren eragina epe luzera, eta emakumeetan zein haurretan duen eragina, besteak beste. Erronka handia suposatzen duten ikerketa guzti hauek autismoaren etiologia eta patologiari buruzko mekanismoak hobeto ulertzen lagunduko ligukete, eta gainera, autismoaren sintoma nagusietarako oxitozinaren erabileraren potentzialari buruzko ondorio landuagoak lortuko lirateke.

Iturria:

Ruiz de Mendoza Ruiz de Arechavaleta, Celia; Peñagarikano Ahedo, Olga; Erdozain Fernández, Amaia Maite (2020). «Oxitozina, autismoan ematen den urritasun sozialerako erabilgarria izan daiteke?»; Ekaia, 37, 2020, 241-256. (https://doi.org/10.1387/ekaia.20886) Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: Ekaia 37
  • Artikuluaren izena: Oxitozina, autismoan ematen den urritasun sozialerako erabilgarria izan daiteke?.
  • Laburpena: Autismoaren espektroaren nahastea jokabidean definitutako garapen neurologikoaren desoreka da. Bi sintoma dira haren bereizgarri nagusi: batetik, urritasun soziala; bestetik, mugimendu errepikakor eta murriztaileak. Autismoaren klinikaren heterogeneotasunagatik, eta etiologia eta fisiopatologia konplexuagatik, farmakoterapia zuzendu bat garatzea da gaur egungo erronka garrantzitsua. Erabiltzen den ohiko interbentzioa portaeraren terapia bada ere, autismo kasuen % 75ek tratamendu farmakologikoa jasotzen du asoziaturiko sintometarako, baina momentuz ez dago sintoma nagusietarako eraginkorra den farmakorik. Beraz, farmako berriak garatzeko ahalegin handia egiten ari da ikerketa biomedikoa, eta horien artean oxitozina dugu. oxitozina nerbio sistema zentralean neuromodulatzaile gisa jokatzen duen peptido bat da. Ikusi da garapen goiztiarrean mutazio genetikoengatik gertatutako oxitozina-sistemaren porrotak jokaera sozialean eragin dezakeela eta aktibitate eta plastikotasun sinaptikoan ere bai. testuinguru horretan, oxitozinak autismoaren tratamenduan izan dezakeen erabilgarritasuna eta arrakasta aztertzen ari dira. Batetik, autismoaren forma monogenikoetan oinarritutako zenbait animalia-ereduk oxitozina sisteman nolabaiteko alterazioak erakusten dituzte, eta horietan oxitozina emateak urritasun sozialaren hobekuntza eragiten du. Bestetik, gizakietan ere hainbat saio kliniko egiten ari dira oxitozinaren erabilgarritasun terapeutikoa aztertzeko. Baina kasu horretan, animalia-ereduetan ikusi denarekin konparaturik, lortutako emaitzak ezberdinak dira: ikerketa batzuetan kognizio sozialean hobekuntzak ikusi dira, baina beste batzuetan ez. Gizakien artean dagoen heterogeneotasuna dela eta, ez da oso harritzekoa hori. ondorioz, ikerketa gehiagoren beharra dago oxitozinak autismoan izan dezakeen erabilgarritasuna modu sendoago batean balioztatzeko eta baita tratamendu mota hau zein banakorentzat litzatekeen onuragarriena zehazteko ere.
  • Egileak: Celia Ruiz de Mendoza Ruiz de Arechavaleta, Olga Peñagarikano Ahedo, Amaia Maite Erdozain Fernández
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua
  • ISSN: 0214-9001
  • eISSN: 2444-3255
  • Orrialdeak: 241-256
  • DOI: 10.1387/ekaia.20886

————————————————–
Egileez:

Celia Ruiz de Mendoza Ruiz de Arechavaleta, Olga Peñagarikano Ahedo eta Amaia Maite Erdozain Fernández UPV/EHUko Farmakologia Sailekoak dira.

———————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.

The post Oxitozina, autismoan ematen den urritasun sozialerako erabilgarria izan daiteke? appeared first on Zientzia Kaiera.

Categories: Zientzia

Contando lentejas, las particiones de los números

Cuaderno de Cultura Científica - Wed, 2021/09/22 - 11:59

 

Hace unos años escribí una biografía sobre el matemático británico Arthur Cayley (1821-1895), que es uno de esos matemáticos por los que siento cierta admiración. Arthur Cayley investigó prácticamente en todas las áreas de las matemáticas –escribió 967 artículos y un libro sobre funciones elípticas–, en un tiempo en el que la investigación matemática era como una de esas expediciones geográficas, llenas de aventuras, del siglo XIX y principios del siglo XX, pero por territorio matemático. Escribiendo el libro Cayley, el origen del álgebra moderna aprendí algunas cosas sobre las particiones de los números naturales, tema al que vamos a dedicar esta entrada del Cuaderno de Cultura Científica.

Portada del libro Cayley, el origen del álgebra moderna (Raúl Ibáñez), de la colección Genios de las Matemáticas, RBA, 2017

 

Sin embargo, me gustaría empezar con un poco de literatura. En concreto, con una cita de la novela El contable hindú (Anagrama, 2011), del escritor estadounidense David Leavitt, novela que se centra en la relación de los matemáticos Srinivasa Ramanujan (1887-1920) y Godfrey H. Hardy (1877-1947), y en el ambiente de la Universidad de Cambridge de principios de siglo XX.

Por la mañana, va hasta las habitaciones de Hardy. Cuando se quita el abrigo, las lentejas se le caen del forro.

¿Le pasa algo? — pregunta Hardy— Parece agotado.

Me pasé la noche cocinando. Voy a dar una cena. El martes que viene. Me pregunto si me haría el honor de asistir.

Pues claro —dice Hardy—. ¿Qué se celebra?

Que Chatterjee se va a casar. […]

¿Está seguro de que se encuentra bien? —pregunta Hardy. Ramanujan asiente con la cabeza.

Se lo pregunto porque parece un poco distraído. ¿Es por la cena?

Qué va. Son las lentejas.

¿Qué lentejas?

Las del rasam. —Y Ramanujan se pone a explicarle que, mientras preparaba los ingredientes para el rasam, se dedicó a contar las lentejas, y eso le hizo pensar en las particiones.

No es la primera vez que hablan sobre las particiones. De hecho, tienen la teoría de las particiones en mente (aunque de un modo bastante disperso) desde que Hardy recibió la primera carta de Ramanujan y se topó con un enunciado sobre la serie theta cuya inexactitud permitía enfocar la cuestión desde un ángulo nuevo realmente sorprendente. Calcular p(n) —el número de particiones de un número— es fácil cuando n es 5 o 7; el problema es que, a medida que el número va siendo más alto, p(n) aumenta a un ritmo asombroso. Por ejemplo, el número de particiones de 7 es 15, mientras el número de particiones de 15 es 176. Así que ¿cuál es el número de particiones de 176? 476.715.857.290. Y entonces, ¿cuál sería el número de particiones de 476.715.857.290?

¿Y adónde le han llevado las lentejas?

Tengo una idea sobre una fórmula para calcular el número de particiones de un número. Aunque sea un número muy alto. —Se levanta—. ¿Puedo?

Claro. —Hardy borra la pizarra, y Ramanujan se acerca a ella. Empieza a trazar diagramas: puntitos que representan las lentejas. Luego escribe la serie theta de su primera carta. Entonces Hardy menciona la función generadora que descubrió Euler, y […].

Portada de la novela El contable hindú, de David Leavitt, publicada por Anagrama en 2011

 

Pero vayamos con las particiones. Una partición de un número natural es una forma de expresarlo como suma de números naturales, donde el orden no es relevante. Por ejemplo, el número 3 puede expresarse como suma de números naturales de tres formas distintas

1 + 1 + 1, 2 + 1, 3,

es decir, hay tres particiones del número 3, mientras que existen cinco particiones del número 4, a saber,

1 + 1 + 1+ 1, 2 + 1 + 1, 2 + 2, 3 + 1, 4.

Dicho de una forma un poco más técnica, una partición de un número entero positivo n es una sucesión no creciente de números enteros

de forma que su suma es n,

Se denota por p(n) el número de particiones de un número n y por convención se toma p(0) = 1. Calcular las particiones de números pequeños es un problema sencillo, incluso un juego entretenido. Se puede ver fácilmente que p(6) = 11, p(7) = 15, p(8) = 22, p(9) = 30 y p(10) = 42. Sin embargo, la cuestión se complica según vamos avanzando en los números naturales. Por ejemplo, un número bajo como 100 tiene ya p(100) = 190.569.292 particiones, que no es precisamente un número pequeño. Solo en escribir explícitamente las particiones de 100 tardaríamos bastante más de 18 años y eso considerando que se estuviese escribiendo a un ritmo muy rápido y sin parar a descansar en todo el día, las 24 horas del día. O 36 años, a 12 horas diarias. Además, como se menciona en El contable hindú es una función que crece exponencialmente.

Por otra parte, se define como pk(n) el número de particiones del número n con k, o menos, sumandos. Por ejemplo, p3(6) = 7, ya que el 6 se puede expresar como suma de 3, o menos, sumandos de estas siete formas distintas

2 + 2 + 2, 3 + 2 + 1, 3 + 3, 4 + 1 + 1, 4 + 2, 5 + 1, 6.

Mientras que se denota por qk(n) al número de particiones del número n cuyos sumandos son menores, o iguales, a k. Por ejemplo, q3(6) = 7, ya que existen siete particiones del 6 cuyos sumandos son 1, 2 o 3,

1 + 1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1, 2 + 2 + 1 + 1, 2 + 2 + 2, 3 + 1 + 1 + 1, 3 + 2 + 1, 3 + 3.

Se estudian muchos más tipos de particiones: con números impares, con números distintos, con determinado tipo de números, con solo ciertos números, planas, perfectas, etcétera. Además, si en las particiones se tuviera en cuenta el orden se obtendrían las composiciones o particiones ordenadas, pero hoy no vamos a hablar de estas.

La primera referencia a las particiones aparece en una carta, de 1669, del matemático alemán Gottfried Leibniz (1646-1716) al matemático suizo Johann Bernoulli (1667-1748), aunque las llama «divulsiones». Sin embargo, fue Leonhard Euler quien realizó el primer estudio serio de las particiones en su libro Introductio in analysin infinitorum (1748). Además de Euler, han estudiado las particiones de los números matemáticos como Arthur Cayley, James J. Sylvester (1814-1897), Percy A. MacMahon (1854-1929), Godfrey H. Hardy, Srinivasa Ramanujan y muchos más.

Edición original del libro Introductio in analysin infinitorum (1748), de Leonhard Euler. Imagen de la Galería Swann

 

En el texto Introductio in analysin infinitorum, Leonhard Euler expresó la sucesión de los números de particiones {p(n)} como coeficientes de una función generatriz, una serie infinita de potencias. En concreto, demostró que

pero no vamos a explicar en esta entrada del Cuaderno de Cultura Científica el significado e importancia de esta potente fórmula matemática, sino que vamos a mostrar una técnica más visual de estudio de las particiones de los números, los denominados diagramas de Ferrers.

Norman Macleod Ferrers (1829-1903) fue un matemático británico de la Universidad de Cambridge, como muchos de los protagonistas del estudio de las particiones de los números. Un diagrama de Ferrers es un diagrama de puntos en el que cada partición se representa con una serie de puntos de forma que en cada fila haya tantos puntos como el número que se está sumando. Por ejemplo, la partición 21 = 6 + 4 + 4 + 2 + 2 + 2 + 1 se representa con una fila de seis puntos, dos de cuatro puntos, tres de dos puntos y una de un punto, como se ve en la siguiente imagen.

Si en el diagrama de Ferrers de una cierta partición se intercambian las filas por las columnas, se obtiene el diagrama de una nueva partición del mismo número, que es la denominada partición conjugada de la primera. Por ejemplo, si al diagrama de la imagen anterior, correspondiente a la partición 21 = 6 + 4 + 4 + 2 + 2 + 2 + 1, se le intercambian filas y columnas, se obtiene el diagrama de la partición conjugada de la anterior, la partición 21 = 7 + 6 + 3 + 3 + 1 + 1.

Observando los diagramas de Ferrers de particiones conjugadas se deduce que dada una partición de un número n con k, o menos, sumandos (el número de sumandos se corresponde con el número de filas, que no puede ser mayor que k), su partición conjugada es una partición de n donde los sumandos son números menores, o iguales, que k (puesto que ahora el número de puntos de cada columna no puede exceder k, que era la cantidad de filas que había antes). Y el recíproco también es cierto. Por ejemplo, en las imágenes anteriores, la partición 6 + 4 + 4 + 2 + 2 + 2 + 1, tiene siete o menos sumandos, y su conjugada, 7 + 6 + 3 + 3 + 1 + 1, tiene sumandos que no son mayores que siete.

En consecuencia, los diagramas de Ferrers ofrecen una sencilla demostración de la «bella ley de Euler», como la denominó Sylvester,

pk(n) = qk(n),

es decir, el número de particiones de n con k, o menos, sumandos es igual al número de particiones con sumandos que no exceden a k.

Veamos otro resultado sencillo que puede demostrarse con la ayuda de estos diagramas:

pk(n) = pk – 1(n) + pk(n – k).

Como ya hemos mencionado en más de una ocasión en la sección Matemoción del Cuaderno de Cultura Científica las demostraciones son una parte muy importante, de hecho, fundamental, de las matemáticas, por lo que este ejemplo nos sirve para ilustrar el proceso de una demostración matemática.

Vamos a demostrar la anterior fórmula. Es decir, la vamos a demostrar que pk(n) –el número de particiones del número n con k, o menos, sumandos- es igual a la suma de pk – 1(n) –el número de particiones del número n con k – 1, o menos, sumandos- y pk(n – k) –el número de particiones del número n – k con k, o menos, sumandos-. Para demostrarlo vamos primero a dividir el conjunto S de particiones del número n con k, o menos, sumandos en dos subconjuntos, a saber, el subconjunto S1 de particiones del número n con exactamente k sumandos y el conjunto S2 de particiones del número n con menos de k sumandos. Luego si contamos la cantidad de elementos de los subconjuntos S1 y S2, obtendremos que su suma es igual al número de elementos del conjunto S, esto es, pk(n).

Pero claramente el conjunto S2 es igual al conjunto de particiones del número n – 1 con k, o menos, sumandos, de donde se deduce que la cantidad de elementos de S2 es igual a pk – 1(n).

Para obtener el número de elementos de S1 vamos a utilizar los diagramas de Ferrers. Como los elementos de S1 tienen exactamente k sumandos, sus diagramas de Ferrers tienen exactamente k filas, como se muestra en el ejemplo de la imagen, luego si se elimina la primera columna –que para cualquier elemento de S1 tiene k puntos- se obtiene una partición de nk (ya que se han quitado k puntos) con k, o menos, sumandos. Por lo tanto, el número de elementos de S1 es pk(n – k).

Dos ejemplos de cómo una partición del número 21 en exactamente 7 sumandos, nos da –al quitar la primera columna- una partición de 21 – 7 = 14 con 7, o menos sumandos

 

En conclusión, pk(n) es igual a la suma de las cantidades de elementos de S1 y S2, luego pk(n) = pk – 1(n) + pk(n – k); QED (Quod erat demonstrandum).

Otra propiedad, esta vez de las particiones autoconjugadas –aquellas particiones de un número que son iguales a sus conjugadas-, que se puede probar fácilmente de forma visual teniendo en cuenta los diagramas de Ferrers es la siguiente:

El número de particiones autoconjugadas es igual al número de particiones con números impares distintos.

La idea que subyace a esta prueba es que una línea con un número impar de puntos se puede plegar en una partición autoconjugada (con una única fila y una única columna, con la misma cantidad de puntos en ambas), como en la siguiente imagen.

A partir de la anterior idea se puede observar que el número de particiones autoconjugadas es igual al número de particiones con números impares distintos, sin más que aplicar el plegado a cada una de las filas con un número impar de puntos, todos ellos distintos, como se muestra en la siguiente imagen.

Observemos que si hay dos columnas con el mismo número impar de puntos no se genera una partición autoconjugada, como se muestra en el siguiente ejemplo.

Estos ejemplos nos sirven para mostrar, una vez más, como en ocasiones podemos diseñar herramientas visuales potentes para realizar demostraciones matemáticas, como son el caso de los diagramas de Ferrers en el estudio de las particiones de los números.

Cartel de una de las representaciones de la obra teatral Partition, de Ira Hauptman, en la Universidad de California, Berkeley. Imagen: University of California, Berkeley. Para más información la entrada de Marta Macho, Particiones: Hardy y Ramanujan

 

Aunque pueda sorprender por su sencillez, las particiones de los números, como muchas otras herramientas de la combinatoria, tienen muchas aplicaciones en ciencia y tecnología. Aparecen en ocasiones en las que hay que contar determinado tipo de elementos o estructuras que pueden pensarse como particiones de los números. Por ejemplo, el matemático inglés Arthur Cayley se interesó en el estudio de la teoría de particiones como herramienta en el cálculo de ciertos invariantes algebraicos, pero lo mismo ocurre con muchas otras ramas de las matemáticas, y también de la física de partículas, la computación o la estadística, entre otras.

Más aún, las particiones están relacionadas, por ejemplo, con lo que en teoría combinatoria se llaman “problemas de ocupación”, que consisten en contar el número de formas de colocar una cierta cantidad de bolas n en una cierta cantidad de cajas k. Las particiones, en general, se corresponden con los problemas en los que las bolas son indistinguibles. Si las cajas son también indistinguibles, son las particiones propiamente dichas, y si son distinguibles, son las particiones ordenadas. Un ejemplo, de una aplicación de un problema de ocupación lo mostramos en la entrada Aprendiendo técnicas para contar: lotería primitiva y bombones.

Bibliografía

1.- Raúl Ibáñez, Cayley, el origen del álgebra moderna, Genios de las Matemáticas, RBA, 2017.

2.- R. B. J. T. Allenby, Alan Slomson, How to count, an introduction to combinatorics, CRC Press, 2011.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Contando lentejas, las particiones de los números se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Particiones: Hardy y Ramanujan
  2. Calcular el área contando puntos
  3. Dos conjeturas sobre números primos
Categories: Zientzia

Mahastien modernizazioak ondorioak ditu hegaztiek eta ugaztunek mahastiak erabiltzeko moduan

Zientzia Kaiera - Wed, 2021/09/22 - 09:00

UPV/EHUko Zoologia eta Animalien Biologia Zelularreko Saileko lan batek, IRECeko eta Michigan Estatuko Unibertsitateko ikertzaileekin batera, mahastietan bizi ohi diren hegaztietan eta ugaztunetan mahastien modernizazioak duen eragina aztertu du, eta egiaztatu du espezie desberdinak daudela mahasti tradizionaletan eta besorakoetan, eta espeziearen araberakoa dela mahasti mota bat edo beste bat aukeratzearen aldeko apustua.

Mendeetan zehar, mahastiak asko landu dira Mediterraneoko eskualdean. Gaur egun, mahasti-azalera handia du Espainiak eta berregituratze- eta areagotze-prozesu sakona jasaten ari da, besorako mahastiak ezarriz. Prozesu hori Europar Batasuna sustatzen ari da kostuak murrizteko eta produktibitatea handitzeko. Mahasti tradizionalak besorako mahasti bilakatzeak mahats altuagoak eskatzen ditu, bilketa mekanizaturako mahatsondo-ilara arteko distantzia handiagoa, ureztatzeko sistema eta lur-zati handiagoak.

mahastien modernizazioakIrudia: Mahastiak modernizatzeak dituen ondorioak oso ezezagunak dira oraindik, beraz, funtsezkoa da ulertzea nola eragiten dion biodibertsitateari. (Argazkia: rperucho – Pixabay lizentziapean. Iturria: pixabay.com)

“Mahastiak modernizatzeak dituen ondorioak oso ezezagunak dira oraindik, eta mahastiaren berregituraketak eragina izan dezake haietan bizi den faunan. Beraz, funtsezkoa da ulertzea nekazaritzaren modernizazioak nola eragiten dion biodibertsitateari. Lan honen helburua hau da: mahastiaren egitura eta erabilera zertan aldatzen den ikustea eta nekazaritza-ingurune horietan normalean bizi diren hegazti eta ugaztunetan zer eragin duen kalkulatzea”, adierazi du Xabier Cabodevilla Bravok, UPV/EHUko Zoologia eta Animalien Biologia Zelularreko Departamentuko ikertzaileak. Horretarako, Espainiako hego-mendebaldeko 52 mahasti (26 tradizionalak eta 26 besorakoak) aztertu dituzte udan, mahastiaren egitura eta mahastietan egindako kudeaketa-praktikak konparatuz, eta mahasti-mota bakoitzean ohikoenak diren hegazti eta ugaztunak behatu dituzte.

Cabodevillaren arabera, “mahastien modernizazioak ondorio nabarmenak ditu faunaren biodibertsitatean, baina ez du eragin negatibo orokorrik hegaztiek eta ugaztunek mahastiari egiten dioten erabileran. Ikusi dugu espeziearen araberakoa dela eta espezie batzuk (eper gorria, buztantentea, kardamirua, txolarrea eta zozoa) besorako mahastietan ageri dira sarri eta beste batzuk (txorrua eta untxia), berriz, mahasti tradizionaletan. Hala ere, gauza jakina da ikerketa honetan aztertu ez diren beste zenbait espezie babesturentzat, hala nola, basoiloa, besorako mahastiak kaltegarriak direla”.

Ikerketan ere ikusi dute espezie batzuek mahastiak erabiltzen dituztela mahastiaren ondoko lurrak goldagarriak badira. Adibidez, eper gorria eta Europako untxia agertzeko probabilitatea handiagoa da mahastiak lur goldagarrien ondoan daudenean. Horrek iradokitzen du mahastiak ez direla espezie horientzako habitat egokienak. Izan ere, espezie horiek, seguruenik, mahastiak erabiltzen dituzte udan babesleku gisa, zereala uzta eginda dagoenean, bere egituragatik eta eguneko ordu beroenetan berotik babesteko itzal-eskaintzagatik.

Mahasti tradizionalen eta besorako mahastien arteko kudeaketaren beste desberdintasun nagusietako bat ureztaketa da. “Baliabide hidriko hori erakargarria izan liteke, halaber, hegazti edo ugaztun askorentzat udan. Gainera, ureztatze-sistemak ongarriak gehitzeko aukera ematen du, batez ere nitratoak. Hori arrisku larria izan daiteke ur hori edaten duten animalientzat. Jarduera hori, udan, besorako mahastien heren batean aplikatzen da ur-iturri naturalak urriak direnean, eta bereziki arriskutsua izan daiteke baliabide hidriko toxiko horrek erakarrita gerturatzen den faunarentako”, adierazi duUPV/ EHUko ikertzaileak.

Ikertzaileek aurreikusita dute aztertzen jarraitzea ureztapenak zer neurritaraino erakartzen dituen lehorreko laborantzako lurretako hegaztiak eta bestelako animalia basatiak besorako mahastietara, eta zenbatestea ureztatze-sistemaren bidez ura eta ongarriak aldi berean aplikatzean zenbatekoa den nitrato dosi toxikoen eraginpean egoteko arriskua.

Iturria:

UPV/EHU prentsa bulegoa: Mahastien modernizazioak ondorioak ditu hegaztiek eta ugaztunek mahastiak erabiltzeko moduan

Erreferentzia bibliografikoa:

Cabodevilla, Xabier; Arroyo, Beatriz; Wright, Alexander D.; Salguero, Antonio J.; Mougeot, Francois (2021). «Vineyard modernization drives changes in bird and mammal occurrence in vineyard plots in dry farmland»; Agriculture, Ecosystems and Environment (DOI: 10.1016/j.agee.2021.107448)

The post Mahastien modernizazioak ondorioak ditu hegaztiek eta ugaztunek mahastiak erabiltzeko moduan appeared first on Zientzia Kaiera.

Categories: Zientzia

Montañas y explicaciones naturalistas

Cuaderno de Cultura Científica - Tue, 2021/09/21 - 11:59

Incluso cuando las sociedades mediterráneas se volvieron más sofisticadas y la mente científica griega despertó del letargo, las montañas seguían siendo distantes, misteriosamente temibles e inaccesibles. Era tal el efecto que producían a quien se aventuraba en ellas que, como a Polibio, que viajó a través de los Alpes y vio el monte Atlas a la distancia, solo las cifras equivalentes al infinito servían para describirlas.

Dolomitas, en el norte de Italia. Foto: Andrew Mayovskyy / Shutterstock

Los pocos ascensos de montañas registrados se produjeron por razones militares. Así, Alejandro de Macedonia en el siglo IV a.e.c. cruzó las montañas Tauro del sureste de Turquía y el Hindú Kush de Afganistán. Aníbal de Cartago atacó Roma en el 218 a.e.c. después de haber cruzado los Pirineos y luego los Alpes. El historiador romano Livio registró el ascenso del monte Hebrus en Tracia a principios del siglo II a.e.c. por parte del rey Filipo de Macedonia, en guerra con Roma. Filipo habría subido a la montaña para espiar los movimientos de las tropas romanas. Los montañeros tardaron tres días en atravesar las estribaciones y ascender a la cima. El descenso posterior duró dos días. El sufrimiento de los hombres fue inmenso, sobre todo por el frío; la tercera noche en la cumbre fue terrible en este sentido. Según Livio, quien obviamente sabía poco sobre montañismo, la espesa niebla que envolvió a Filipo y sus hombres en la cima era un fenómeno inusual.

Los griegos, y después de ellos los romanos, rara vez intentaron explicar los fenómenos montañosos. La ciencia requiere no solo observación, sino análisis basado en la experiencia directa y, cuando es posible, en la experimentación. Y a los griegos les faltó la voluntad de ascender a las altas cumbres. Además, las montañas se consideraban sagradas, asociadas con lo sobrenatural y trascendente.

Lucrecio el epicúreo, que se negaba a creer en todo lo que no pudiera explicarse según la materia en movimiento, el movimiento perpetuo de los átomos invisibles [1], no hizo una excepción con las montañas y los fenómenos asociados a ellas. Las montañas son huecas, creía Lucrecio, y las erupciones volcánicas ocurren cuando los átomos de fuego son expulsados del cono. Más cercana a la realidad fue su observación de que las nubes se forman en los picos de las montañas debido al aire caliente que sube por las laderas hacia el frío de la cumbre.

Monte Vesuvio. Fuente: Wikimedia Commons

El romano más famoso que investigó las montañas fue Cayo Plinio Secundo, Plinio el Viejo. En el 79 e.c. el Monte Vesubio entró en erupción, arrojando cenizas, gases y lava. Plinio, que podía ver el volcán desde su casa en la bahía de Nápoles, se hizo a la mar para investigar la densa columna de humo que se elevaba desde el Vesubio. Tomó notas de sus observaciones y cuando el barco llegó a las costas al sur de Pompeya, continuó observando la caída de ceniza y rocas hasta su muerte por asfixia [2].

Contemporáneamente, en el siglo I e.c., una nueva secta palestina, los cristianos, supusieron una renovación de la fascinación judía con las montañas. Su líder fundador, Jesús de Nazaret, encontró, como Moisés milenios antes en el Sinaí o Zacarías en el Monte de los Olivos, significado y trascendencia en las pequeñas montañas que rodean Jerusalén. Sin embargo un teórico de la ya religión, Agustín de Hipona, varios siglos después, condenó la fascinación humana por las montañas a expensas de la autoconciencia. La influencia de san Agustín explica el desdén de la europea medieval hacia los monumentos físicos al Creador y su concentración en lo incorpóreo y espiritual. Hubo que esperar al Renacimiento para que se despertase de nuevo el interés por las montañas, y fue con una excusa espiritual: el humanista y montañista Francesco Petrarca en el siglo XIV mostró las posibilidades de autodescubrimiento y contemplación en la experiencia de ascender una montaña.

Procession de saint Janvier à Naples pendant une éruption du Vésuve (1822)  de Antoine Jean-Baptiste Thomas. Procesión de San Jenaro para implorar la intervención divina ante una erupción del Vesubio.

Nota:

[1] Algunos periodistas televisivos, al informar sobre erupciones volcánicas, siguen a Lucrecio, sin saberlo. Es más, oyéndoles uno pensaría que creen que la lava es algo que está ardiendo, pero uno no lo piensa porque no puede creer que la ignorancia y la incompetencia lleguen a esos niveles.

[2] En vulcanología se llama erupción pliniana a la erupción violenta de un volcán liberando gases en una columna eruptiva que puede alcanzar decenas de kilómetros, como la del Vesubio, en honor a Plinio el Viejo.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Montañas y explicaciones naturalistas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Montañas y mitos
  2. En Marte el viento crea montañas
  3. Galileo vs. Iglesia Católica redux (III): Observaciones
Categories: Zientzia

Tokian tokiko jarduera: simulazio hiperrealistak

Zientzia Kaiera - Tue, 2021/09/21 - 09:00

Etorkizun distopiko batean, gizateria, jakin gabe, preso dago errealitate simulatu batean, Matrix batean. Errealitate hori makina adimendunek sortu dute, gizakia ohartu gabe egon dadin, haien gorputzak energia iturri modura erabiltzen duten bitartean. Horixe zen Matrix filmaren oinarria, 1999an wachowskitarrek sortu zuten lana. Ikuspegi termodinamikotik argumentua oso efizientea ez bada ere, bere inpaktu kulturala nabarmena da, eta filmaren izenburua kaleko hizkeran erabiltzen da asmatutako eta errealitatetik banandutako mundu batean bizi garela adierazteko.

Hala ere, simulazio batean bizi garen ideia ez da berria inolaz ere. Historian konstante bat da, adibidez, hinduismoko munduaren ilusioa (maia), Zhuang Zhouk tximeleta taoista bat zela amestu zuen unea, Platonen kobazuloa, Descartesen jeinu gaiztoa (malin génie), Berkeleyren Jainkoa, kubetan dagoen saguzarra, eszeptikoaren tentaldi solipsista, alegia, existitzen den gauza bakarra nire kontzientzia eta informazioa ematen dion zerbait dela dioen ideia.

simulazio hiperrealistakIrudia: errealitate birtuala geroz eta leku gehiagotan dago, garuneko infartua izan dutenen errehabilitazio guneetan, bideo jokoetan eta oso zeregin konplexuak eta arriskutsuak egiten dituzten langile adituak modu seguruan entrenatzeko simulazio hiperrealistetan ere bai. (Argazkia: JESHOOTS-com – Pixabay lizentziapean. Iturria: Pixabay.com)

Gure unibertso guztia zibilizazio hiperaurreratu bateko ordenagailu simulazio bat besterik ez den ideia ezin da hala-hola baztertu. Soilik Ockhamen labana aplikatuz esan genezake ez dirudiela oso gertagarria. Hala ere, 2003an Nick Bostrom-ek 2003an Philosophical Quarterly aldizkarian artikulu bat argitaratu zuen, “Ordenagailu bateko simulazioan bizi zara?” izenburuarekin, eta horrekin “simulismo” deritzon mugimendu metafisiko bat sortu zen –ez epistemologikoa– errealitatea simulazio bat dela dioena.

Bitxiki, gizakiok ezagutzen ditugun gauzekin konparatzen ditugu beste gauza batzuk. Gure ezagutzak denborarekin aurrera egiten duen moduan, konparazioek ere haiekin batera egiten dute aurrera. Adibide ohikoena garunaren funtzionamendua da; izan ere, garunaren funtzionamendua unean uneko teknologia aurreratuen eta harrigarrienarekin alderatzen da, eta misterioarekin lotu. Hala, Descartesek entzefaloa makina hidrauliko batekin konparatu zuen; Freudek, bapore makina batekin; gerora, telefonogune batekin konparatu zen eta, azkenik, ordenagailuarekin; azkenaldian batzuek garuna web nabigatzaile batekin edo Internetekin konparatzen dute.

Etorkizuna imajinatzen dugunean joera kognitibo horren beraren preso gaude. Unibertsoa simulazio bat izan daitekeela uste dutenen oinarria errealitate birtualak gaur egun egin dezakeena da, eta horrek baliozkotasun emozionala ematen dio konparaketari, baina, horrek ez du esan nahi probabilitate handiagoa duenik egia izateko.

Izan ere, errealitate birtuala geroz eta leku gehiagotan dago, garuneko infartua izan dutenen errehabilitazio guneetan, bideo jokoetan (mota guztietakoak) eta oso zeregin konplexuak eta arriskutsuak egiten dituzten langile adituak modu seguruan entrenatzeko simulazio hiperrealistetan ere bai.

Virtualware euskal enpresak ongi irudikatzen du errealitate birtualarekin zer lor daitekeen; adibidez, GE Hitachi Nuclear Energyrentzat simulazio bat sortu dute eta, bertan, zentral nuklear bateko erregai erradioaktiboaren mugimenduaren entrenamendu errealista egin daiteke. Zeregin horretan, ezagutzak eta langileen arteko koordinazioa maila gorenekoak dira, eta errealitatearekin bat ez datorren edozerk ondorio larriak izan ditzake.

Egileaz:

Cesár Tomé López (@EDocet) zientzia dibulgatzailea da eta Mapping Ignorance eta Cuaderno de Cultura Cientifica blogen editorea.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Tokian tokiko jarduera: simulazio hiperrealistak appeared first on Zientzia Kaiera.

Categories: Zientzia

Julio Garavito, con la mirada en la Luna

Cuaderno de Cultura Científica - Mon, 2021/09/20 - 11:59

Alberto Mercado Saucedo

El billete de veinte mil pesos colombianos es un raro ejemplo: lleva impreso el retrato de un matemático. En efecto, entre sus similares de los países de habla hispana es común encontrar militares y políticos, algunas personalidades de la pintura o de la literatura, pero casi nunca de las ciencias. Este billete lleva impresas figuras geométricas, una representación de la Luna y la imagen de Julio Garavito Armero. Su uso en las transacciones cotidianas ha llevado a una curiosa costumbre urbana alrededor de la tumba de Garavito en el cementerio de Bogotá, que se ha convertido en objetivo de visitas espontáneas de diversas personas, especialmente en medio de la noche, que dejan pequeños regalos como flores azules, del mismo color del billete, en solicitud o agradecimiento de favores personales. Como si fuera un santo a quien acuden en peregrinación. Su nombre también aparece en otro inusual lugar: un cráter de la Luna. Julio Garavito Armero, esta es su historia.

Nació en Bogotá el 5 de enero de 1865. De joven, al tiempo que asistía a la escuela, trabajó para contribuir al ingreso de la familia y después de sus estudios secundarios se interesó por seguir aprendiendo ciencias. Como frecuentemente ocurría durante el siglo XIX (y parte del XX) en países de Latinoamérica, la enseñanza de las matemáticas estaba mayormente enfocada a la ingeniería, área que estudiaban quienes se sentían atraídos por la disciplina de Pitágoras. Además, los distintos cambios políticos de la época, usualmente violentos, afectaron el desarrollo de las ciencias, como ocurrió con los planes de Garavito: a causa de la guerra civil colombiana de 1885, la Universidad Nacional cerró por algún tiempo y él debió esperar a que reabriera para poder estudiar.

Finalmente estudió en la Facultad de Matemáticas e Ingeniería, donde además de los estudios de ingeniería, se podía optar al titulo de profesor de matemáticas, para lo cual se debía de realizar una tesis de temática adecuada. Garavito fue el primer graduado como profesor de matemáticas. Podemos encontrar registros de dos trabajos de tesis que realizó: uno donde estudia matemáticamente el funcionamiento de un barómetro, aparato para medir la presión de un gas, y una segunda tesis donde estudió el problema que hoy conocemos como la aguja de Buffon, que consiste en calcular la probabilidad de que una aguja, arrojada a una superficie reglada por líneas paralelas (como una hoja de cuaderno) separadas por la misma longitud de la aguja, resulte en una posición en que toca a una de las líneas. La solución no se obtiene directamente por algún proceso de conteo y son necesarios argumentos de geometría integral para obtener el resultado: el valor de 2/. De manera interesante, esto proporciona un método práctico para aproximar a  (se debe realizar el experimento repetidas veces, digamos N, contar el número de casos favorables A, y entonces A/N se acercará a 2/ cuando N es grande, de donde se puede despejar el valor de ).

Después de graduarse, Garavito dictó clases en la Facultad y se fue interesando cada vez más en lo que se convertiría en su pasión por el resto de su vida: la Astronomía. Ideó métodos para establecer latitudes y longitudes del país, llevó a cabo con éxito un proyecto para cartografiar Colombia y en particular para obtener la latitud de Bogotá. También trabajó en la predicción del paso del cometa Halley. Fue director del Observatorio Nacional desde 1892 y hasta su muerte, ocurrida el 11 de marzo de 1920, cuando tenía apenas 55 años de vida.

Quizá el más grande logro científico de Garavito es el relacionado con sus cálculos sobre el movimiento lunar, lo que está incluido en varios de sus trabajos, en particular en uno de sus artículos de la Academia Colombiana de Ciencias. Extendiendo un método propuesto anteriormente, resolvió las ecuaciones que rigen el movimiento de la Luna alrededor de la Tierra. La teoría de la gravitación universal, desarrollada con Newton un par de siglos antes, junto con todas las herramientas del cálculo diferencial, habían proporcionado un marco matemático para modelar, de manera precisa, el movimiento de los astros. Pero la Luna ha tenido por costumbre volver locas a las personas, y ésta no fue una excepción. Siendo el cuerpo celeste más cercano a nosotros, se le ha observado desde la antigüedad, y la comparación con las observaciones se convirtió en una verdadera prueba para la teoría de gravitación, que no era evidente que aprobara fácilmente.

La ley de gravitación universal permitió comprender de forma conjunta dos fenómenos que ya se habían estudiado: la ley de inercia y las leyes de Kepler del movimiento elíptico. Con las nuevas herramientas matemáticas comenzó una era en la que los detalles del universo podrían cabalmente ser descritos. La luz de las matemáticas iluminó rincones que habían permanecido oscuros. Nació así el área de estudio con el bello nombre de mecánica celeste. En particular, surgió un problema que en términos generales se puede plantear de la siguiente manera: si se conocen las posiciones y velocidades iniciales de N cuerpos celestes en el espacio, los cuales afectan unos a otros por medio de la gravedad ejercida mutuamente, se debe determinar las posiciones y velocidades que tendrían en el curso del tiempo. Para N=2, se tiene un sistema de dos cuerpos, (pensemos en el Sol y la Tierra), que fue resuelto poco después de que Newton estableciera su teoría. Pero para valores mayores, la cuestión es mucho más compleja.

Es asombroso pensar que, en el problema de los N cuerpos, aumentar un objeto para simplemente pasar de dos a tres cuerpos (el Sol y dos planetas girando a su alrededor, por ejemplo) complica enormemente la complejidad del problema, y ya no hay soluciones explícitas. A finales del siglo XIX, el matemático francés Poincaré encontró que este tipo de sistemas siempre incluyen soluciones caóticas (esto significa que pequeños cambios en la situación inicial de los cuerpos pueden llevar, con el curso del tiempo, a inmensas diferencias). Actualmente se conocen algunas soluciones particulares, en particular para el caso de tres cuerpos de la misma masa, pero no del problema en general. Es interesante constatar que recién el año 2000 fue encontrada un nuevo tipo de órbitas de tres cuerpos: la figura del ocho, que es recorrida por tres planetas distribuidos de forma simétrica a lo largo de la trayectoria y que se persiguen mutuamente. Esto fue encontrado por el matemático estadounidense Richard Montgomery en lo que significó un importante descubrimiento. Como dato curioso, la conocida novela de ciencia ficción El problema de los tres cuerpos, de Cixin Liu, se inspira en la trayectoria encontrada por Montgomery.

Fuente: Wikimedia Commons

Dentro del problema de los tres cuerpos, es natural pensar en el ejemplo de los tres astros que tenemos más cerca en nuestra vida diaria: nuestro hogar la Tierra, el Sol y, claro, la Luna. Este sistema tiene la peculiaridad de que un cuerpo es de masa mucho menor comparada con los otros dos, por lo que podemos pensar en una simplificación: considerarlo como un punto en el espacio, con masa despreciable. Además, se puede simplificar pensando que los tres cuerpos se mueven dentro de un plano. Entonces resulta lo que se conoce como el problema restringido de los tres cuerpos, planteado por Poincaré y que ha sido estudiado a lo largo del tiempo.

Uno de los principales aportes en el problema restringido de los tres cuerpos fue realizado por George William Hill (1838-1914) y continuado por Ernest William Brown (1866-1938). La teoría de Hill-Brown, construida a finales del siglo XIX, fue un gran avance en el estudio del movimiento lunar y sirvió como el método más preciso para calcular las efemérides lunares por décadas. Uno de los puntos geniales en este trabajo fue el uso de series complejas infinitas por Hill, quien usó su conocimiento fino de la teoría desarrollada por Euler sobre números complejos (recordemos la fórmula de Euler, la más hermosa de las matemáticas: exp( i) = -1), para encontrar una solución periódica al problema restringido de los tres cuerpos. Fue tal el éxito de esta teoría que astrónomos proponían medir el tiempo usando las efemérides lunares en vez del tiempo universal (lo cual no tuvo mayor éxito, en parte por el descubrimiento de precisos métodos de cálculo del tiempo usando relojes atómicos).

Pues bien, aún siendo muy precisa, la teoría de Hill-Brown no bastaba para describir completamente el movimiento lunar en todos sus detalles, y con el tiempo aparecieron más y más discrepancias entre las observaciones y la teoría. Garavito se abocó a la tarea de mejorar tal teoría, lo que consiguió después de mucho trabajo. Mejoró los resultados de Hill y Brown, resolviendo las ecuaciones diferenciales de la teoría con varios grados mayores de precisión. Llegó a construir las tablas del movimiento lunar más adelantadas de su época. En 1970, la Unión Astronómica Internacional decidió asignar el nombre de Garavito a un cráter de la Luna, en conmemoración de este inmenso logro intelectual. En la Luna, Garavito es vecino de Poincaré y otros nombres de científicos que también fueron asignados a varios cráteres.

Garavito también se interesó en problemas de álgebra y geometría. Por ejemplo, publicó una demostración original del Teorema Fundamental del Álgebra y de varias propiedades de geometría no euclidiana, entre las cuales está una demostración … del Quinto Postulado de Euclides. Evidentemente, una demostración equivocada, pues sabemos que tal axioma es independiente de los otros, aunque muchas personas se empeñaron en demostrar lo contrario a lo largo de la historia. Y sucede que Garavito tuvo una relación complicada con las geometrías no euclidianas, la que podríamos resumir diciendo que simplemente no las aceptaba, no le hacían sentido como modelo de la geometría del universo real. Comprendía bien y dominaba los resultados referentes a propiedades geométricas de la esfera y de las geometrías hiperbólicas (de hecho, publicó varios artículos en tales temas, más allá de sus intentos por probar el Quinto Postulado). Pero todo parece indicar que, para Garavito, la euclidiana era la geometría del universo.

¿Qué es la geometría no euclidiana? Como su nombre lo indica, es la teoría que se sigue cuando nos salimos de las reglas establecidas por Euclides, el conocido geómetra de la Grecia clásica. No se trata de que Euclides se haya equivocado o que queramos corregirlo. Euclides realizó un compendio de lo que se sabía de Geometría, con la característica que lo escribió como un sistema lógico completo: primero los axiomas, que son algo así como las reglas básicas del juego, establecidas como verdades absolutas, de los cuales se desprenden los teoremas, las propiedades de las figuras y toda la teoría. Uno de esos axiomas causaba especial atención: el Quinto Postulado, que afirma que siempre es posible trazar paralelas a una recta dada, exactamente una paralela para cada punto exterior a la recta. Sucede que algunas personas creían que tal propiedad se podría deducir de los demás axiomas, quizá por considerarla tan natural y evidente. Eso habría vuelto el Quinto Postulado como innecesario, se habría convertido en un teorema. Podemos pensar que Euclides tuvo bastante intuición al incluirlo como postulado, sobre todo por todo lo que ocurrió durante los siglos siguientes.

Con el tiempo, ocurrieron muchos intentos por demostrar el Quinto Postulado, aparecían artículos donde se afirmaba que se tenía una prueba matemática, que con el tiempo era descubierto que tenía un error. Se dice fácil, pero es impresionante darse cuenta de que pasaron unos 18 siglos para que a alguien se le ocurriera una jugada genial: no intentar demostrar el axioma, sino negarlo. Es decir, considerar el juego que se obtiene al cambiar esta regla: al fin y al cabo, si éste no es un resultado que depende de los demás axiomas, entonces puede considerarse independiente, y por tanto su negación proporcionará otro sistema lógico con validez. Eso fue lo logrado por Bolyai, Lobachevsky y otros matemáticos del siglo XIX. Fue una jugada genial, pues surgieron teorías matemáticas precisas e interesantes. Básicamente hay dos opciones cuando se niega el Quinto Postulado: que no existe ninguna paralela o que exista más de una. En la segunda opción nos encontramos con lo que se conoce como geometría esférica: los meridianos en la tierra son las rectas, pues realizan la distancia más corta entre dos puntos (es decir, un círculo máximo es la trayectoria que realiza la trayectoria de un avión). Pues bien, dos meridianos siempre se intersectan (en dos puntos opuestos) y por tanto, en la geometría esférica no hay paralelas. Por otra parte, si asumimos que hay más de una paralela, se llega a lo que se conoce como geometría hiperbólica, la que, para sorpresa (y rechazo) de muchas personas de ciencia, llegaría a mostrarse como un modelo del universo.

Regresando a Garavito, todo indica que comprendía las geometrías no euclidianas, pero no las consideraba sino meros malabarismos de las matemáticas puras (citando a Alvárez Lleras, su principal biógrafo). Artificios alejados de la sólida estructura edificada por Euclides y en la cual se basa la física de Newton y de Laplace, la verdad absoluta e inmutable del universo real que habitamos. Hay evidencia que indica que esta postura pudo haber sido motivada por la fuerte influencia del positivismo en el espacio y tiempo que habitaba Garavito. Lo que está claro es que, ya para entonces, se conocían contradicciones entre observaciones astronómicas y la teoría clásica, como el célebre experimento de Michelson y Morley, que hoy sabemos es explicado por la teoría de la relatividad, que justamente establece que el espacio-tiempo de nuestro universo se comprende nítidamente a través de los lentes de la geometría no-euclidiana, pues la gravedad ocasiona una curvatura que los dominios de Euclides simplemente no permiten. Pero, para muchas personas, no era claro si tales discrepancias se debían a errores de cálculo o a algo más profundo.

En su momento, la teoría de la relatividad tuvo oposición en el medio científico. No es difícil imaginarlo, dado el cambio de paradigma que traía consigo. Probablemente Garavito, como muchos otros, consideraba la teoría desarrollada por Newton como la culminación del poder de las matemáticas para modelar el universo: Como ya mencionamos, por medio de la teoría de la gravitación y usando el cálculo infinitesimal es posible calcular el movimiento de los cuerpos celestes. Las discrepancias con lo observado eran producto de los factores no tenidos en cuenta o de las aproximaciones particulares usadas en cada cálculo. Todo era cuestión de mejorar los métodos, alcanzar mejores aproximaciones, como él mismo hizo respecto a los cálculos de Brown-Hill, y listo. No había más que matematizar los fenómenos por estudiar. Como ya lo dijimos, es la influencia del positivismo, corriente filosófica que otorga completa confianza en los fenómenos observados, los cuales tienen un carácter positivo, y elimina posibles explicaciones alternativas. Se tiende siempre a la búsqueda de leyes universales que funcionen en todo contexto, y los detalles son menospreciados. Para Garavito, las discrepancias en las observaciones astronómicas eran de una naturaleza distinta a las verdades establecidas por Newton.

Por supuesto, no tiene sentido juzgar a Garavito por su postura en un contexto particular de hace más de un siglo. Más allá de las influencias filosóficas que hayan existido, consideremos que la mecánica newtoniana es efectivamente una elegante y poderosa caja de herramientas para comprender el universo, que ya para ese tiempo mostraba falencias pero que podía ser mejorada, pulida constantemente por los trabajadores de la ciencia como Garavito, quien ciertamente se dedicó a ello durante toda su vida. Es comprensible que existiera resistencia a abandonar el mundo clásico para dar ese salto incierto que la relatividad demandaba. Garavito falleció con sólo 55 años, al parecer por complicaciones ocasionadas por una tuberculosis. No sabemos qué hubiera pasado si hubiera vivido algunas décadas más, si la Luna lo habría continuado inspirando, quizá, para cambiar de opinión. Pero muy probablemente hubiera continuado trabajando con la constante y absoluta pasión con la que siempre lo hizo.

Referencias

  1. Los ingeniero-matemáticos colombianos del siglo XIX y comienzos del XX. Las tesis para ser Profesor en Ciencias Matemáticas. Facultad de Matemáticas e Ingeniería 1891-1903. Clara Helena Sánches. Universidad Nacional de Colombia. Facultad de Ciencias, Bogotá. ISBN: 978-958-701-843- 1. 2007.
  2. ¿Por qué Garavito?. Charla de Bernardo Mayorga, The 1st Colombia-ICRANet Julio Garavito Armero Meeting, Bucaramanga, 2015. Bogotá, Colombia.
  3. Fórmulas definitivas para el cálculo del movimiento de la luna por el método de Hill-Brown y con la notación usada por Henri Poincaré en el Tomo III de su curso de Mecánica Celeste. Julio Garavito Armero. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 1945, 6 (24):560-570. http://dx.doi.org/10.18257/raccefyn.568

  4. Garavito Armero, J. (2017). Fórmulas definitivas para el cálculo del movimiento de la luna por el método de Hill-Brown y con la notación usada por Henri Poincaré en el Tomo III de su curso de Mecánica Celeste. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat.41(Suplemento), 80-91. https://doi.org/10.18257/raccefyn.568

  5. Wilson, Curtis. The Hill-Brown theory of the moon’s motion.
    Its coming-to-be and short-lived ascendancy (1877–1984). With an appendix of undated pages from a file of George William Hill. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, 2010.

  6. Jacques Féjoz. The N-body problem. Celestial Mechanics (ed. Alessandra Celletti). EOLSS publishers, Oxford. 2015. https://www.ceremade.dauphine.fr/~fejoz/Articles/Fejoz_2014_nbp.pdf

  7. Richard Montgomery. The Three-Body Problem. ScientificAmerican. August 2019.

  8. Editorial, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(170): 9-13, enero-marzo de 2020.

  9. Sobre las geometrías no euclidianas: Notas históricas y bibliográficas. Francisco José Duarte Isava. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 1946, 7 (25-26): 63-81.

  10. El positivismo en la física moderna y la evolución de la ciencia. Jorge Álvarez Lleras. Conferencia del curso de extensión universitaria, Universidad de Bogotá, enero 1937.

  11. Gabriel Poveda Ramos. Historia de las matemáticas en Colombia. Ediciones UNAULA 2012.

Sobre el autor: Alberto Mercado Saucedo es profesor de matemáticas en la Universidad Técnica Federico Santa María (Valparaíso, Chile)

El artículo Julio Garavito, con la mirada en la Luna se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Una mirada topológica al conjunto de Cantor
  2. Otra mirada al planeta: arte y geología
  3. La pandemia desde una mirada infantil
Categories: Zientzia

Beren planetak irensten dituzten izarrak

Zientzia Kaiera - Mon, 2021/09/20 - 09:00

2009

Osaketa kimikoan abiatuta, astronomo talde batek kalkulatu du Eguzkiaren antzekoak diren izarren laurden batek planetaren bat ‘irentsi’ izanaren zantzuak erakusten dituela.

Ohiko irudia da unibertsoari buruzko dokumental eta erreportajeetan: astro batek bestea irensten duenekoa. Irudi harrigarriak dira, zalantza izpirik gabe, kasu gehien-gehienetan irudikapen artistikoak diren arren. Baina irudimena pizteko modukoak dira. Neutroi izar batek bikotekidea irensten, edo bi zulo beltz talka egiten, adibidez. Izar batek planeta bat irensten duelako irudia ez dago agian horrenbeste zabalduta, seguruenera izarraren aldean planetak erakusten duen txikitasunagatik edo. Baina perspektiba kontua da, noski. Planeta horretan egonez gero, zaila litzateke egoeraren tamainari neurria ez hartzea.

1. irudia: Izar askok haien planetak irensten dituztela ondorioztatu dute. Irudian, haren izarretik oso hurbil dagoen Kepler-10b exoplanetaren irudikapena. (Irudia: NASA)

Irudi hori, baina, uste baino ohikoagoa izan daiteke unibertsoan, gaiaren bueltan egin den azken ikerketa bati kasu eginez bederen. Nature Astronomy aldizkarian argitaratutako artikulu batean (hemen, irekian ) proposatu dutenez, Eguzkiaren antzekoak diren izarren artean, gutxi gorabehera laurden batek haren inguruko planetaren bat irentsi du.

Gure Eguzki-sistemaren inguruan daukagun esperientziatik abiatuta, lehen kolpe batean bederen zaila da pentsatzea fenomeno hori gerta daitekeela. Izan ere, gure auzo kosmikoan, planeten lerrotzea nahiko ordenatua dirudi. Eguzkitik gertuen daude arrokazko planetak: Merkurio, Artizarra, Lurra eta Marte. Ondoren, gas erraldoiak: Jupiter eta Saturno. Azkenik, izotz planetak: Urano eta Neptuno. Handik harago, gure ezagutza nahiko mugatua da, baina jakin badakigu izotzez osatutako planeta nano eta bestelako objektuak badirela, Kuiper gerrikoan eta Oorten hodeian.

Horregatik, hasiera batean uste zen beste eguzki-sistemek antzeko hurrenkera izango zutela. Behaketek bestelako irudi bat eman dute, ordea. Azken hamarkadetan zehar aurkitu diren exoplanetei esker, jakin badakigu mota askotako eguzki-sistemak badirela Esne Bidean. Adibidez, Jupiter beroak aurkitu dira beren izarretik nahiko gertu. Izar bakar batez ez baizik bi izarrez osatutako sistema bitarrak oso ohikoak dira, eta, muturretara joanda, sei izarrez osatutako sistemak ere aurkitu dira. Funtsean, hein handi batean, eguzki-sistemen ezaugarriak izar bakoitzaren edo izar multzo bakoitzaren araberakoa da.

Bestetik, planetak hain dira zailak atzemateko ezen astronomoek gehienetan izarren argira jo behar baitute mundu urrun horien inguruko informazioa jasotzeko. Oraingo ikerketan horrela izan da ere. Izarren espektroari erreparatu diote. Zehazki, Eguzkiaren antzekoak diren 107 izar sistema bitar aztertu dituzte. Bikote horietatik, 74k antzeko osaketa kimikoa dute. Gainerako 33 sistematan, berriz, izar baten burdin eta litio kontzentrazioak bikotearenak baino dezente handiagoak dira.

Aukeraketa egiterakoan, antzeko masa eta tenperaturak dituzten sistema bitarrak aukeratu dituzte, horiek izar biki gisa hartu ahal izateko. Bestetik, sistema bitarrak aztertu izanak azalpen garbia du. Gure Eguzkia G motako izarra da. Esne Bideko izarren %7 inguru horrelakoak dira. Baina Eguzkia oso berezia da beste aldagai batean. Horrelako izarrak normalean bitarrak izaten dira, hau da, bikoteka azaltzen dira, masa zentro baten inguruan biraka.

Bikoteka eta jatorrizko material beretik jaiota, zentzuzkoena da pentsatzea izar biki hauen osaketa kimikoa berdina izan beharko zela, baina, behaketek erakutsi dute hau ez dela beti horrela. Hortaz, zientzialariek aurretik bazekiten Eguzkiaren antzekoak diren izarren artean badirela aldeak osaketa kimikoari dagokionez. Desberdintasun horrek azalpenaren bat izan behar du, eta horren bila joan dira oraingoan astrofisikariak.

Eta hau azaltzeko, orain arte bi teoria jarri dira mahai gainean. Lehen aukera da planeten eta izarren sorrera ahalbidetu zuen jatorrizko gas hodeian desberdintasun kimikoak egon izana. Bigarren aukera da izarrak planetak irentsi izana, eta handik eskuratu izana osaketa kimiko berezia. Hipotesi honen alde “froga sendoak” aurkeztu dituzte orain, zientzia artikuluan bertan ikertzaileek aldarrikatu dutenaren arabera. Ondorioz, ikertzaile hauek uste dute G motako izarren portzentaje batek (probabilitatea %20-%35 tartean kokatu dute) planetaren bat bereganatu duela. Osaketa kimikoa desberdina horren zantzua litzateke.

irensten2. irudia: Izar bitarrak hodei berean jaiotzen dira, eta, hortaz, espero izatekoa da antzeko osaketa kimikoa izatea. Baina beti ez da horrela. Argazkian, ALMA behatokiak hartutako irudia, bi izar jaiotzen ari diren unea jasotzen duena. (Argazkia: ESO/NAOJ/NRAO).

Oro har, izarren osaketa kimikoa nahiko sinplea da. Haien bizitzaren zati handienean bederen hidrogenoa eta helioa dituzte batez ere, eta baita oxigenoa eta karbonoa. Zahartu ahala, elementu horiek “erre” eta eraldatzen doaz, taula periodikoan aurrera eginez. Arrokazko planetek, berriz, elementu pisutsuak dituzte haien osaketa kimikoan, eta, horregatik, izarraren kontra jotzen dutenean, elementu hauen aztarnak sartzen dira izarrean. Hori gertatzeko, litekeena da bi planeten arteko grabitazio tira-birak gertatu izana, eta, ondorioz, horietako bat izarrera amildu izana, edo izarretik hain gertu geratzea ezen pixkanaka planeta gizajoa guztiz lurrunduta geratu baita.

Ikusi dute ere beroen dauden izarretan aukera gehiago dagoela irenste hauen zantzuak aurkitzeko. Beroenek kanpoko geruza meheagoak dituzte, eta horrek aukera ematen du planetek haien heriotzan utzitako zantzu kimikoak hobeto atzemateko. Burdin gehiago ez ezik, litio gehiago dute ere, eta hau oso adierazgarria dela azaldu dute. Izan ere, litioa nahiko azkar desagertzen da izarretan, baina planetetan aise kontserbatzen da. Horregatik uste dute litio hori irenste prozesu horren arrastoa dela ere.

The Conversation atarian argitaratutako artikulu batean Lorenzo Spinoza astrofisikariak azaldu du ikerketaren muina: “Gure eguzki-sisteman, Eguzkiaren inguruan biratzen dute planetek, modu egonkor eta ia-ia zirkularrean, eta horrek iradokitzen du orbitak ez direla asko aldatu planetak eratu zirenetik. Baina beste izarren inguruan orbitatzen duten beste sistema planetario askok oso iragan kaotikoa izan dute”.

Eguzki-sistemaren historia nahiko lasaia suertatu izanak bultzatu du bizitzaren agerpena Lurrean. Horregatik, beste sistema planetario urrunetan bizia bilatzerakoan, astrofisikariek uste dute ataza errazagoa izango dela baldin eta jakin badakigu identifikatzen zentzuk izan diren antzeko iragan lasaia izan duten sistema planetarioak. Ikertzaileek argudiatu dutenez, garatu duten metodoari esker errazagoa izango da identifikatzea zenbait eguzki-sistema: Lurraren atzekoak diren planetak izateko moduko baldintzak ez dituztenak, alegia.

Erreferentzia bibliografikoa:

Spina, L., Sharma, P., Meléndez, J. et al. (2021).  Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nature Astronomy. DOI: https://doi.org/10.1038/s41550-021-01451-8

Egileaz:

Juanma Gallego (@juanmagallego) zientzia kazetaria da.

The post Beren planetak irensten dituzten izarrak appeared first on Zientzia Kaiera.

Categories: Zientzia

Microorganismos, sin ellos, usted no estaría leyendo este artículo

Cuaderno de Cultura Científica - Sun, 2021/09/19 - 11:59

Ignacio López-Goñi y Víctor Jiménez Cid

Placa de Petri con bacterias, levadura y moho.
Shutterstock / luchschenF

 

Cada 17 de septiembre se celebra el Día Internacional de los Microorganismos. Dicha celebración parece contradictoria en medio de una pandemia, como si algo bueno pudiera salir de estos seres vivos. Los gérmenes nos causan enfermedades e incluso la muerte, pero no permitamos que el árbol no nos deje ver el bosque: la inmensa mayoría de los microorganismos son buena gente. Es más, son necesarios para nuestra supervivencia y la todos los ecosistemas del planeta, así que se merecen que celebremos su día.

Una de las 190 cartas que el holandés Anton Van Leeuwenhoek escribió a la Royal Society entre los años 1673 y 1723.
Wikimedia Commons / WikiProject Royal Society / Mike Peel

Pero, ¿por qué el 17 de septiembre?

Probablemente el 17 de septiembre de 1683 amaneció frío y lluvioso en la pequeña ciudad holandesa de Delft, famosa por sus canales. Anton van Leeuwenhoek, comerciante de telas primero y luego empleado municipal, sin formación científica alguna, decidió ese día enviar una carta que cambiaría el curso de la ciencia. En aquella misiva, dirigida a la Royal Society de Londres, describía por primera vez los microorganismos, formas de vida microscópicas aparentemente simples que él denominó “animálculos”.

Anton van Leeuwenhoek.
Wikimedia Commons, CC BY

Leeuwenhoek era aficionado a construir pequeñas lupas que los comerciantes empleaban para analizar la calidad de los tejidos. Pulía sus propias lentes biconvexas que fijaba entre dos hojas de latón y sostenía muy cerca del ojo. Las muestras se colocaban sobre una especie de alfiler, que se podía acercar o alejar de la lente para enfocar mediante unos tornillos. Tenía tal habilidad para pulir lentes que sus lupas llegaban a alcanzar más de 250 aumentos y un poder de resolución (capacidad para diferenciar entre dos puntos muy próximos entre sí) de 1,5 micras. Esto alcanza casi la resolución de un moderno microscopio óptico. Fue, por tanto, la primera persona que logró observar bacterias y otros microorganismos.

Réplica de uno de los ‘microscopios’ de Leeuwenhoek.
Wikimedia Commons, CC BY

En realidad, Leeuwenhoek no inventó el microscopio. Probablemente fue otro holandés, Zacharias Janssen (1588-1638), quien construyó el primero, compuesto de dos lentes. Este consistía en un simple tubo de unos 25 cm de longitud y 9 cm de ancho con una lente convexa en cada extremo.

El inglés Robert Hooke (1635-1703), contemporáneo de Leeuwenhoek, publicó en 1665 el libro Micrographia, donde describía las observaciones que había llevado a cabo con un microscopio similar al de Janssen diseñado por él mismo. Este libro contiene por primera vez la palabra “célula”. Hooke las descubrió observando en su microscopio una lámina de corcho, dándose cuenta de que estaba formada por pequeñas cavidades poliédricas que recordaban a las celdillas de un panal.

Sin embargo, aquellos microscopios compuestos eran solo una lupa capaz de conseguir unos pocos aumentos. Ni Janssen ni Hooke fueron capaces de observar lo que poco después describiría Leeuwenhoek usando una sola lente.

El mundo de los microorganismos estuvo oculto para la ciencia hasta que Leeuwenhoek decidió enfocar con su microscopio más allá de los tejidos y telas de su comercio.

Espermatozoides de perro y conejo dibujados por Anton van Leeuwenhoek en 1678.
Wikimedia Commons

Leeuwenhoek fue el primero en ver los glóbulos rojos y los espermatozoides. Sus dibujos de bacterias publicados en 1684 son de una excelente calidad y nos permiten reconocer varios tipos de bacterias frecuentes y sus agrupaciones: bacilos, cocos, etc.

Fue muy celoso con sus microscopios. No compartió con nadie su forma de pulir o tallar las lentes y no dejó ninguna indicación sobre sus métodos de fabricación. Destruyó la mayoría de sus creaciones, de las que actualmente solo se conserva una docena. Uno de ellos está expuesto hasta el 8 de diciembre en el Museo Nacional de Ciencias Naturales de Madrid, con motivo de la exposición “Explorando más allá de lo visible” que organiza la Sociedad Española de Microbiología con motivo de su 75 aniversario.

Los primeros habitantes del planeta

La ciencia tardó casi doscientos años en volver a desarrollar una técnica equivalente a la de Leeuwenhoek. Sus observaciones demostraron tres características del mundo microbiano: que está integrado por seres muy pequeños, que están en todas partes y que son muy diversos.

Los microorganismos han tenido y tienen un papel esencial en nuestros ecosistemas. Se estima que hace unos 3 800 millones de años surgió la vida en la Tierra. Desde entonces, hasta la aparición de los primeros seres vivos pluricelulares hace unos 900 millones de años, el planeta solo ha estado habitado por seres microscópicos. Bacterias, arqueas, virus y microorganismos más complejos pero unicelulares.

Esto supone que, durante unos 2,9 millones de años, han sido los únicos habitantes del planeta. Nos han precedido y muy probablemente seguirán aquí cuando nuestra especie desaparezca.

Han sido responsables de grandes cambios a nivel planetario: hasta la aparición de las cianobacterias (un tipo de microorganismos que llevan a cabo una fotosíntesis que genera oxígeno) hace unos 2,8 millones de años, la Tierra era un ambiente anaerobio. El oxígeno atmosférico es un invento de los microorganismos. Por tanto, no solo la vida en la Tierra ha sido y será fundamentalmente microbiana, sino que los seres más complejos, plantas y animales hemos evolucionado a partir de ancestros microbianos en una biosfera modificada y condicionada por su actividad.

Halobacterium salinarum.
Wikimedia Commons, CC BY

Cuando hablamos de conservación de la biodiversidad en el planeta, no debemos olvidar que el grueso de la biodiversidad en la Tierra es invisible. Estas formas de vida diminutas han llegado a colonizar prácticamente todos los ecosistemas terrestres y son capaces de sobrevivir a las condiciones más extremas. Incluso donde a primera vista la vida es imposible: Geogemma barossi es capaz de sobrevivir a 121 ⁰C en chimeneas hidrotermales en las profundidades marinas. La bacteria Psychromonas ingrahamii se aísla de ambientes polares y crece a temperaturas de -12 ⁰C. Picrophilus oshimae fue aislada de fumarolas volcánicas a un pH ácido de 0,7. Halobacterium salinarum se aísla por ejemplo del Mar Muerto a concentraciones de sal saturantes, incompatibles con otras formas de vida.

¡Están por todas partes! Se han aislado hongos microscópicos y bacterias en capas altas de la atmósfera, a más de 15 km de altura. Se encuentran en las profundidades marinas a más de 10 000 metros de profundidad e incluso a varios cientos de metros bajo la superficie terrestre.

El 90 % de la biomasa marina es microbiana y son responsables de la mitad del CO₂ fijado y de la mitad del O₂ producido. Por eso, también los microorganismos pueden influir en el cambio climático y viceversa: cambios de temperatura y humedad pueden alterar la biología de estos seres vivos y, a su vez, eso puede cambiar las condiciones del hábitat.

El suelo que pisamos, sin ir más lejos, es uno de los ecosistemas más complejos. Se calcula que un gramo de suelo puede contener más de 10 000 millones de microorganismos, más que seres humanos tiene el planeta. Son responsables de completar todos los ciclos biogeoquímicos de la materia. Por ejemplo, realizan la fijación del nitrógeno atmosférico (en simbiosis con las leguminosas o de vida libre en el suelo) y lo transforman en amonio, nitrito y nitrato. Sin microorganismos no existiría el ciclo del nitrógeno, esencial para la vida tal y como la conocemos.

La extinción de bacterias como Nitrobacter, que intervienen en el ciclo del nitrógeno, supondría el colapso inmediato de la vida.
Wikimedia Commons / William Hickey, CC BY-SA

Aunque suene drástico, es muy probable que la extinción del pingüino emperador (aunque sea una pérdida de valor incalculable) no suponga el colapso del planeta, pero la extinción de bacterias como Nitrosomonas o Nitrobacter, que intervienen en el ciclo del nitrógeno, supondría el colapso inmediato de la vida. En esencia, sin microorganismos la vida macroscópica que apreciamos a simple vista, nuestra propia vida, no sería posible.

Medio humanos, medio microbios

Hoy en día las nuevas técnicas de metagenómica (secuenciación masiva), que superan los métodos tradicionales del cultivo, nos permiten comprobar la enorme biodiversidad microbiana que se oculta en la naturaleza.

Los científicos conocemos con cierto detalle la biología de mucho menos del 1 % de los microorganismos que realmente existen. El hábitat de muchos de ellos es la superficie o el interior de otros seres vivos. Es lo que conocemos como la microbiota de las plantas, de los animales o del ser humano. Nosotros mismos somos mitad humanos, mitad microorganismos: por cada una de nuestras células humanas, tenemos al menos una célula microbiana. Están en nuestra piel y en todas nuestras mucosas: en la boca, en los intestinos, en la vagina, en las vías respiratorias, etc.

Somos un conjunto ambulante de ecosistemas microbianos en los que se producen multitud de interacciones entre nuestras células y los microorganismos. El equilibrio de estos ecosistemas es esencial para nuestra salud. Estos diminutos seres evitan la colonización de nuestra piel y mucosas por otros microorganismos patógenos. Estos forasteros deben recurrir a complejos mecanismos de virulencia para imponerse en un entorno bien defendido por los colonos.

Los microorganismos que forman nuestra microbiota ayudan a mantener la barrera intestinal y contribuyen a la digestión degradando sales biliares, proteínas y polisacáridos. También modulan y entrenan a nuestro sistema inmunitario, regulan los procesos inflamatorios, sintetizan vitaminas y otros compuestos necesarios para nuestra salud, degradan drogas y toxinas o producen neurotransmisores y hormonas.

Cuando ese equilibrio entre nuestros microbios y nuestro organismo se altera (disbiosis) se pueden producir patologías.

La caries dental y la periodontitis son ejemplos directos de “problemas diplomáticos” con nuestra microbiota, pero recientemente se ha descrito la relación de múltiples patologías con una alteración de nuestra microbiota: desde la obesidad, diabetes, alergias, asma, enfermedades inflamatorias, hasta la depresión, el alzhéimer e incluso el autismo.

Así, la medicina del siglo XXI cuenta con un nuevo sistema en el cuerpo humano esencial para la salud: la microbiota. Del mismo modo, cuando estudiamos la función del genoma humano, no debemos pasar por alto que el sistema se completa con el microbioma, el conjunto de genes codificados en los genomas de los cientos de especies microbianas que forman parte de nosotros. La ecología microbiana entra en la ecuación de nuestro bienestar y la biomedicina se enfrenta a nuevos retos.

Levadura, yogur, queso y PCRs

Si a alguien le parecen aún pocos los motivos, añadiremos que gracias a los microorganismos nuestra vida es más fácil e incluso más agradable. Saccharomyces, la levadura que se utiliza ancestralmente en fermentaciones alimentarias, es un hongo unicelular gracias al cual tenemos en la mesa pan, cerveza y vino.

Lácteos como el yogur y el queso son fruto de la fermentación bacteriana. Alimentos y bebidas fermentadas, antibióticos, enzimas, vitaminas, hormonas, aminoácidos (aditivos, edulcorantes, antioxidantes…) son productos del metabolismo de los microorganismos. La biotecnología cuenta también con ellos para la producción de energía verde, el control de plagas, el bienestar animal y la descontaminación.

La técnica de la PCR es posible gracias a una enzima termoestable que se obtiene de Thermus aquaticus.
Wikimedia Commons / Diane Montpetit (Food Research and Development Centre, Agriculture and Agri-Food Canada)

La famosa técnica de la PCR que ha sido un elemento esencial durante la pandemia es posible gracias a una enzima termoestable que se obtiene de Thermus aquaticus,una de esas bacterias capaces de sobrevivir a altísimas temperaturas.

Hoy somos capaces de modificar microorganismos en el laboratorio para que fabriquen todo tipo de medicamentos o productos esenciales en biomedicina y biotecnología. Podemos emplearlos para desarrollar plantas transgénicas capaces de resistir a la sequía, para producir biocombustibles, para degradar compuestos contaminantes, e incluso emplearlos como vacunas para controlar una pandemia.

En aquella famosa carta del 17 de septiembre de 1683 se realizó una descripción exquisita de la primera observación de bacterias vivas presentes en la placa dental, acompañada por dibujos de los microorganismos observados y sus movimientos. Ese día comenzó una nueva era para la ciencia que tardaría dos siglos, ya en tiempos de Louis Pasteur y Robert Koch, en desarrollarse como disciplina científica, y nos permite conocer y estudiar el mundo de los microorganismos, que tanta influencia tiene en nuestro planeta. Vivimos en un mundo microbiano.

Celebre con nosotros el Día Internacional de los Microorganismos.The Conversation

Sobre los autores: Ignacio López-Goñi es Catedrático de Microbiología de la Universidad de Navarra y Víctor Jiménez Cid es Catedrático de Microbiología de la Universidad Complutense de Madrid

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Microorganismos, sin ellos, usted no estaría leyendo este artículo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”
  2. La extinción de la megafauna chilena dejó a este árbol sin ayuda para dispersar sus semillas
  3. Identificadas 472 posibles dianas inmunes en la interacción planta-microorganismos
Categories: Zientzia

Asteon zientzia begi-bistan #360

Zientzia Kaiera - Sun, 2021/09/19 - 09:00

Asteon zientzia begi-bistan igandeetako gehigarria da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna jaso eta laburbiltzea da gure helburua.

arropagintza

 

Emakumea zientzian

Aste honetan Zientzia Kaieran, genero-arrakalaren inguruko artikulu bat izan dugu, lanaren eta bizitza pertsonalaren arteko orekaren inguruan. Yana Gallen eta Melanie Wasserman ekonomialari laboralen ikerketa baten arabera, emakumezko ikasleek askoz ere bat-bateko informazio gehiago jasotzen dute lanaren eta bizitza pertsonalaren arteko bateragarritasunaren inguruan gizonezkoek baino. Eskatu gabe emandako informazioa da eta gizonezkoekin alderatuta probabilitatea bikoitza baino gehiago dute informazio hori jasotzeko.

Ingurumena

Ikerketa batek lehen aldiz frogatu du suteetan sortutako aerosolek itsasoa ongarritu dezaketela eta horren ondorioz, algen ezohiko loratze handiak sortu. Halaxe gertatu zen Ozeano Antartikoan, 2019-2020an Australian izan ziren sute erraldoien ondoren. Nature aldizkarian argitaratu dituzte emaitzak, eta, fitoplaktonaren hazkundea aireko karbono dioxidoarekin erlazionatu dute. Izan ere, litekeena da algek, neurri batean, suteek askatutako CO2-a xurgatzea, fotosintesia egiteko. Datu guztiak Elhuyar aldizkariko Australiako suteek Ozeano Antartikoan algak neurriz kanpo ugaritzea ekarri dute artikuluan.

Ostreopsis cf. siamensis mikroalgak arazoak sortu ditu aste honetan Donostian ere. Abuztuan Lapurdin hondartza batzuk itxiarazi eta gero, oraingoan Gipuzkoako hiriburuko uretan azaldu da. Ez da lehenengo aldia honakorik gertatzen dela, baina oraindik ez dakigu gauza handirik, oraindik deskribatuta ez dagoen Ostreopsis generoko mikroalga bati buruz ari baikara. Hala ere, Aitor Laza EHUko biologoak aitortu duenez, uraren tenperaturaren igoerarekin eduki dezake erlazioa gertaera honek. Datu guztiak Garan: klima larrialdia, ate joka euskal herriko kostaldean artikuluan.

Osasuna

Zientzia Kaieran irakur daitekeenez, minbiziaren kontrako tratamendu alternatibo bat agertu da, argiak zuzendurikoa. Minbizia tratatzeko erabiltzen diren metodo terapeutiko ohikoenak albo-efektu kaltegarriak dauzkate gizakien osasunean eta horregatik, ahalegin ugari egiten ari dira horren kontra egiteko metodo eraginkor eta selektiboagoak aurkitzeko. Ildo honetatik terapia fotodinamikoa (TFD) agertu da etorkizun handiko alternatiba bezala.

Elhuyar aldizkarian irakur daitekeenez, SARS-CoV-2arekiko immunitate zelularra detektatzeko test erraz bat garatu dute Kanarietako Unibertsitate Ospitalean. Larruazaleko test erraz eta merkea da, tuberkulinarena bezalakoa: S proteinaren zati bat injektatzen da larruazalean, eta erreakziorik sortzen ote duen ikustea besterik ez da. Denborarekin antigorputzak desagertzen joaten dira eta beraz, antigorputz-testak ez dira nahikoak immunitate-maila neurtzeko. Larruazaleko testak, berriz, T linfozitoak detektatzen ditu eta aurrez izandako infekzioak edo txertoak emandako immunitate-maila adieraziko digu.

COVID-19 larria garatu eta ospitalean amaitzen duten pazienteek, antigorputzez gain, autoantigorputzak ere sortzen dituztela azaltzen du Elhuyar aldizkariak. Hori da, hain zuzen ere, COVID-19 larria garatzearen arrazoia. Gaixotasun autoimmuneetan bezala, autoantigorputz horiek birusari aurre egiten dioten antigorputzen aurka jotzen dute eta hala, antigorputzek ezin diote infekzioari aurre egin. Stanfordeko Unibertsitatean egindako ikerketa batean ohartarazi denez, autoantigorputz hauek, COVID-19 larria garatzeaz gain, pazienteek etorkizunean benetako gaixotasun autoimmune bat garatzea ere eragin dezakete. Aitziber Agirrek kontatzen du Elhuyar aldizkarian: COVID-19 larriaren mekanismoa argitu dute.

Genetika

Giza geneak izendatzen dituen erakundeak 27 generi izena aldatu die, Excel edo Google Sheets programa ospetsuen autozuzentzaileek sortzen zituzten arazoak saihesteko. Autozuzentzaileek uste dute SEPT4 edo MARCH1 geneak datak direla eta “irailak 4” edo “martxoak 1” izenpean gordetzen dituzte. Arazoa oso hedatuta dago: Lan berri batean 11.000 artikulurekin batera eskuragarri jarri diren kalkulu-orriak aztertu dira, eta horien heren batean akatsak aurkitu dira geneen izenetan. Orain, SEPT4 genea SEPTIN4 izendatzen da eta MARCH1, berriz, MARCHF1. Datu guztiak Koldo Garcia genetistak eman dizkigu Zientzia Kaierako Akatsek genetikaren ikerkuntza oztopatzen dutenean artikuluan.

Teknologia

Litio-ioi baterien arazoen inguruan idatzi du aste honetan Imanol Landa kimikariak eta Zientzia Kaierako kolaboratzaileak. Bateria hauen hastapenetan nabarmendu ziren hiru ikertzailerik 2019 urteko Kimika Nobel saria irabazi zuten, auto elektrikoek erabiltzen dituzten bateriak baitira. Imanolek ordea, zalantzan jartzen du sari honek ezkutuko interesik ba ote duen, autogintzarena hain zuzen. Argi esaten du: ingurumen-inpaktua gutxi murriztuko da auto elektrikoen erabilerarekin, auto hauen bateriak kargatzeko egungo energia ekoizte-ereduari eusten badiogu. Azalpenak Zientzia Kaieran: Litio-ioi bateriak: irtenbidea edo arazo berria?

Arkeologia

Arropagintza duela 120.000 urte hasi zela argitu dute Max Planck Institutuko arkeologoek, Marokon aurkitutako hezur-erreminta batzuei esker. Erreminta gisa erabiltzeko moldatutako 60 hezur baino gehiago aurkitu dituzte Contrebandiers izeneko kobazuloan, eta duela 120.000-90.000 urtekoak zirela frogatu dute. Erreminta horietako asko, arropagintzarako erabiltzen zituztela ondorioztatu dute, hezurrek dituzten markak aztertuta. Aitziber Agirrek kontatzen du Elhuyar aldizkarian.

Egileaz:

Irati Diez Virto Biologian graduatu zen UPV/EHUn eta unibertsitate bereko Kultura Zientifikoko Katedrako kolaboratzailea da.

The post Asteon zientzia begi-bistan #360 appeared first on Zientzia Kaiera.

Categories: Zientzia

Pages