¿Hemos intentando contactar con extraterrestres?
¿Hemos intentando contactar con extraterrestres? Y si es así, ¿cómo y cuándo se ha hecho? ¿Quién lo ha hecho? Y sobre todo, ¿qué se les ha dicho en los mensajes que se han enviado? Todas las respuestas en minuto y medio.
Los vídeos de ¿Preguntas frecuentes? presentan de forma breve y amena cuestiones que, probablemente, nos hayamos planteado en alguna ocasión. Los vídeos, realizados para la Cátedra de Cultura Científica de la UPV/EHU, se estrenarán en el programa de ciencia Órbita Laika (@orbitalaika_tve), a partir del próximo 18 de marzo todos los lunes a las 22:00 en la 2 de RTVE.
Edición realizada por César Tomé López
El artículo ¿Hemos intentando contactar con extraterrestres? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Ciencia express: los transgénicos
- Ciencia express: el carbono-14 y los rayos cósmicos
- Ciencia express: Cómo se formó la luna
Ezjakintasunaren kartografia #253
Lan eta lan. Lanean zazpi ahalak egiten. Hitzez hitz. Eta horren ondorioz ez bazara hiltzen, depresioa ate joka izango da. José Ramón Alonsok ematen dizkigu argibideak: Karoshi, depression and work hours.
Baso-sute handiak matematika erabiliz molda daitezke. Hala ere, sutea zabaltzearen aldagai guztiak kontuan hartu behar baditugu, fluido zurrunbilotsuen fisika eta fisika estatistikoa aintzat hartu beharko dira. Hori berori egin dute BCAMeko ikertzaileek: Wildfire propagation modelling.
Gaur elektronikan erabiltzen diren metalak agortu egingo dira egunen batean, garestiak bihurtuko dira edo arloteren baten menpean izango dira. Arazo honi irtenbidea emateko ona litzateke etorkizuneko elektronikak guztiok eskuragarri izango genituzkeen material merkeak erabiltzea. Adibidez, molekula organikoak. Ondorioz, spintronikaz hitz egingo genuke eta ez elektronikaz baina, une horretara heldu orduko, hainbat pausu eman beharko dira oraindik. Momentuz DIPCko ikertzaileek pausu txiki bat eman dute: Spin in a closed-shell organic molecule stabilized on a metallic surface.
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #253 appeared first on Zientzia Kaiera.
Los biólogos de la UPV/EHU y la conservación de la naturaleza
La Facultad de Ciencias de Bilbao comenzó su andadura en el curso 1968/69. 50 años después la Facultad de Ciencia y Tecnología de la UPV/EHU celebra dicho acontecimiento dando a conocer el impacto que la Facultad ha tenido en nuestra sociedad. Publicamos en el Cuaderno de Cultura Científica y en Zientzia Kaiera una serie de artículos que narran algunas de las contribuciones más significativas realizadas a lo largo de estas cinco décadas.

A menudo se critica a la universidad por falta de conexión con la sociedad. Se afirma que la universidad enseña conocimientos arcanos y que la investigación apenas tiene implicaciones prácticas. Este punto de vista es compartido por bastantes universitarios, por lo que algo habrá detrás del mismo. Sin embargo, un poco de perspectiva histórica muestra que hay numerosas interacciones entre la universidad y la sociedad. A título de ejemplo, vamos a analizar cuál ha sido el impacto de la Sección de Biología en la conservación de la naturaleza.
La Sección de Biología comenzó su andadura muy modestamente en la por entonces denominada Facultad de Ciencias de la Universidad de Bilbao. Esta Sección carecía de catedráticos hasta 1975 y, de los tres profesores agregados de aquel momento, ninguno pertenecía a alguna de las áreas de la biología más naturalistas, es decir, la botánica, la zoología o la ecología. Tampoco llegaban fondos para apoyar proyectos de investigación en estos ámbitos. El bum llegó en la segunda mitad de los años 80, cuando se multiplicó el número de profesores, se potenció la formación de doctores y los grupos de investigación comenzaron a recibir financiación pública para el desarrollo de sus proyectos. Los años 90 vieron la aparición de cursos de postgrado tipo máster, como por ejemplo el de “Evaluación y Recuperación Ambiental”, y el afianzamiento de colaboraciones externas de los equipos de investigación. El siglo XXI ha supuesto la puesta de largo de la investigación en muchos de esos grupos, que participan en proyectos multinacionales de indudable repercusión sobre la conservación y el manejo de los recursos naturales, llegando a alcanzar niveles de excelencia y prestigio internacionales.
En estos años, la Facultad de Ciencia y Tecnología ha formado un gran número de personas en Biología, Ciencias Ambientales y otras disciplinas ligadas con la conservación de la naturaleza. Según las estadísticas oficiales, los egresados de la la FCT incluyen más de 3850 licenciados y más de 450 graduados en Biología, a lo que se suman centenares de estudiantes de master y 475 doctores. De ellos, muchos trabajan en ámbitos relacionados con la conservación de la naturaleza. Algunos lo hacen para la administración como técnicos de medio ambiente municipales, en consorcios y mancomunidades, en las diputaciones forales, departamentos del Gobierno Vasco, parques naturales, etc. Otros muchos trabajan en empresas relacionadas con la conservación de la naturaleza, como consultoras (por ejemplo, Anbiotek o Ekolur) o en centros de I+D+I como Neiker o Azti. Otros muchos se han dedicado a la enseñanza, tanto la reglada en institutos, ikastolas, colegios y universidades, como no reglada en aulas de naturaleza, CEIDAs, etc. Finalmente, muchos egresados colaboran en asociaciones y otras entidades en pro de la conservación de la naturaleza, como grupos ecologistas, asociaciones conservacionistas o entidades de estudio e interpretación del medio ambiente como la Sociedad de Ciencias Aranzadi. Aunque es imposible de cuantificar, podemos afirmar que esta masa de gente con una formación en biología y actitudes conservacionistas ha tenido mucho que ver con la transformación que se ha registrado en la forma de entender la relación de la especie humana con el medio ambiente en el País Vasco.

Por otro lado, algunos equipos de la FCT han sido muy activos en el inventariado y seguimiento de la biodiversidad de nuestro entorno. Por citar sólo algunos de ellos, el laboratorio de zoología abrió varias líneas de investigación sobre fauna fluvial y marina, sobre artrópodos del suelo o sobre moluscos terrestres. A esas líneas posteriormente se han incorporado otros grupos como el de murciélagos. Por su parte, el laboratorio de botánica abrió líneas de investigación sobre algas, musgos, plantas superiores y hongos, así como otra sobre geobotánica, que caracterizó y cartografió las principales comunidades vegetales de nuestro entorno. La información acumulada durante décadas ha sido esencial para caracterizar los lugares más biodiversos del País Vasco, para identificar sus principales factores de riesgo y, entre otras, para diseñar y optimizar la red Natura 2000.
Además de los inventarios de biodiversidad, algunos grupos han trabajado activamente en evaluar el estado de salud del medio ambiente, colaborando en poner las bases del sistema de información medioambiental del País Vasco. Por ejemplo, en los años 80, los entonces laboratorios de zoología y ecología se embarcaron en el primer gran estudio hidrobiológico de los ríos de Bizkaia, así como en la evaluación del estado medioambiental de la ría de Bilbao. El primer trabajo fue la semilla de la que derivó la red de seguimiento de los ríos del País Vasco, actualmente en manos de URA, la Agencia Vasca del Agua, mientras que el segundo comenzó una serie de estudios sobre la salud de nuestra costa. También hay que citar en este apartado al laboratorio de microbiología, que durante muchos años ha colaborado en la determinación de la calidad de las aguas de baño de la Comunidad Autónoma.
Otros grupos han centrado sus estudios en la detección y evaluación de los impactos que causa la actividad humana en la estructura y el funcionamiento de los ecosistemas. El grupo de ecología fluvial ha estudiado el impacto de las prácticas forestales, de la contaminación agrícola y urbana, de las detracciones de agua o del cambio climático en ríos vascos y de otras regiones. Lo que comenzó siendo el laboratorio de citología, por su parte, ha ido convirtiéndose en un grupo de investigación sobre ecotoxicología, que es hoy la base de la Estación Marina de Plentzia, mientras que el grupo de ecotoxicología animal y biodiversidad utiliza especies como centinelas del estado de salud de las aguas continentales. Otras líneas aplicadas han sido el estudio de suelos contaminados, que se ha abordado desde los laboratorios de zoología y fisiología vegetal, o los trabajos más agronómicos realizados en este último. Toda la información obtenida por estos grupos es utilizada por la Diputaciones Forales, por el Gobierno Vasco y por otras entidades en la planificación y gestión del territorio.

Más allá de la obtención de información, algunos grupos de la Sección han colaborado estrechamente con la administración en trabajos de gestión de poblaciones, comunidades o ecosistemas. Por ejemplo, el grupo de ecología y evolución del comportamiento ha trabajado en la gestión de mamíferos amenazados, como el visón, el desmán ibérico o los murciélagos, el de ecología y gestión del pastoreo en la gestión de la ganadería en pastos de montaña, el grupo de ecofisiología vegetal en la, entre otras, recuperación de suelos degradados o contaminados, y el de ecología fluvial en proyectos de restauración de ríos. Estos trabajos no se han limitado a evaluar el efecto de prácticas de conservación realizadas por la administración, sino que han implicado a la universidad en el diseño, ejecución y seguimiento de estas prácticas, muchas de las cuales han sido pioneras a nivel estatal.
Finalmente, no podemos olvidar el papel de asesoría realizado por muchos miembros de la Sección, en su participación en los patronatos de parques naturales o de la Reserva de la Biosfera de Urdaibai, o en Naturzaintza, el consejo asesor de conservación de la naturaleza del Gobierno Vasco. Además de estas colaboraciones, es habitual que miembros de la Sección participen en reuniones para definir estrategias y planes de la administración, como la Estrategia Española de Restauración de Ríos o la Estrategia Vasca de Biodiversidad.
La Sección de Biología continúa aportando conocimiento sobre los ecosistemas de nuestro entorno, lo cual facilita la gestión de nuestros recursos naturales. Si bien hasta hace bien poco esta aportación de conocimiento residía básicamente en las áreas más naturalistas referidas arriba, hoy en día las herramientas de la biología molecular son esenciales en el estudio de la biodiversidad, lo que aumenta el número de grupos que trabajan en este campo. Por todo ello, es de esperar que la Sección de Biología de la FCT siga teniendo un papel importante en la conservación de la naturaleza en el País Vasco y en el mundo en general.
Sobre los autores: Arturo Elosegi es profesor de ecología en el Departamento de Biología Vegetal y Ecología de la Facultad de Ciencia Tecnología de la UPV/EHU. Jesús Pozo se retiró recientemente del mismo departamento.
El artículo Los biólogos de la UPV/EHU y la conservación de la naturaleza se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Una fórmula para dominarlos a todos: La conservación de la energía y la ley de la palanca
- De las leyes de conservación (I)
- Naturaleza, ciencia y cultura en el bicentenario de Henry David Thoreau
Maria Goeppert Mayer (1906-1972): Atomoen geruzen eredua aurkitu zuen emakumea
Goeppert-Mayer 1906an jaio zen, Katowice-n (Polonia, lehengo Alemaniako Inperioko probintzia). Haren familia Göttingenera joan zen bizitzera, aita, Friedrich Goeppert, hiriko unibertsitateko pediatriako irakasle izendatu zutenean. Txikitatik matematikak maite zituen eta baliteke zientziarako grina haren aitak piztu izana. Izan ere, ikastera animatu zuen bere alaba hasieratik; bere heziketaz arduratuta, etxean ez gelditzeko eta zientziaren bidea hautatzeko bultzatu zuen. Horiek hola, sufragistek eraiki zuten institutu batean ikasi zuen, unibertsitatean izena emateko derrigorrezko pausoa emanez.

1. irudia: Maria Goeppert Mayer fisikaria. (Argazkia: U.S. Department of Energy / flickr)
Bada, eskola itxi zuten hain justu unibertsitatean sartzeko azterketa egin aurretik. Halere, Mayerrek bere kabuz ikasten jarraitu zuen: azterketa egin eta Göttingen Unibertsitatean onartu zuten 1924an, matematika ikasle gisa. Bertan, etorkizunean Nobel saridunak izango zirenak izan zituen irakasle, hala nola Enrico Fermi, Werner Heisenberg, Paul Dirac, eta aurretik aipatutako Wolfgang Pauli.
Lehendabiziko urtean, berriz, matematikak utzi zituen fisika ikasi nahi zuelako. Une hartan, mekanika kuantikoa indarra hartzen ari zen arloa zen; erakusleiho baten moduan funtzionatzen zuen, zientzialariek kristalera hurreratu nahi zuten, guztiz asaldatuta, zer zegoen ikusteko irrikan. Mariak kontzeptu matematikoak ezagutzen zituenez, diziplina hori ulertzeko ez zuen aparteko ahaleginik egin. Ikasketak amaitu ondoren, tesia egiteko unea iritsi eta Max Born aukeratu zuen zuzendari gisa. 1930ean doktoregoa lortu zuen fisika teorikoan.
Estatu Batuetako jarduna: nepotismoaren eta sexismoaren arteanJoseph Edward Mayerrekin ezkondu ondoren, etxez aldatu ziren, Baltimore hirira joan ziren bizitzera. Bertan, bere senarra John Jopkins Unibertsitateko Kimikako Departamentuan hasi zen lanean, Mariak, aldiz, Fisikako Departamentuan eskuratu zuen lanpostu bat, lanaldi osorik gabe eta soldatarik kobratu gabe. Unibertsitatean klaseak emateko sobera gai zen baina garaiko nepotismoak ez zion bere jarduna egiten utzi, irakasle baten emaztea baitzen.

2. irudia: Maria Goeppert Mayer (1906-1972) fisikaria, Suediako Gustavo Adolfo erregearekin, 1963. urtean Fisikako Nobel saria jaso ondorengo afarira doazela. (Argazkia: Smithsonian Institution / jabego publikoko argazkia)
Estatu Batuetan egon arren, Bornekin kontaktuan jarraitu zuen. Izan ere, 1930etik 1933ra Göttingenen igaro zituen udak harekin elkarlanean. Artikulu bat idatzi zuten bien artean fisikako entziklopedia ezagun baterako: Handbuck der Physik. Sinbiosi honek ez zuen asko iraun baina, Adolf Hitlerren igoera zela eta, Bornek bere lana galdu baitzuen judutarra izateagatik eta Eskoziara alde egin zuelako. Mayetarrak, bere aldetik, Columbiara joan ziren. Bertan, Mariari lan-eskaintza egin zioten Sarah Lawrence Eskolan zientzia irakasteko. Han aritu zen 1941etik 1945era, eta era berean, laborategi batean egiten zuen lan, uranio isotopoen bereizketan, hain zuzen. Alabaina, Harold Urey laborategiko zuzendariak bigarren mailako zereginak agintzen zizkion. Pozik egon zen baina ez zuen asko lagundu ikerketan. 1946an, Chicagora joan ziren senar-emazteak eta Mariak oso azkar lortu zuen lana Ikasketa Nuklearreko Institutuko fisika irakasle gisa. Gainera, Argonne National Laborategian –lehen Met Lab izan zena, Manhattan Proiektua garatu zuten lekua– hasi zen lanean, energia nuklearraren erabilera baketsuen garapenean.
Zenbaki magikoen dantzaChicagora iritsi zenean, Mariak ez zeukan formakuntzarik fisika nuklearrean. Dena dela, bere lagun Fermi eta Edward Tellerren laguntzaz, arlo hori ikasten eta ikertzen hasi zen. Azken honekin, adibidez, lan egin zuen elementuen jatorria zehazteko. Gainera, haren ikerketak atomoaren nukleoa geruzez osatuta dagoela zehaztu zuen, hots, geruzetan zenbat eta asetasun handiagoa izan, nukleoa -eta, beraz, elementua- orduan eta egonkorragoa zela ikusi zuen. Horretaz gain, nukleo horiek 2, 8, 20, 28, 50, 82 edo 160 protoi edo neutroi (nukleoiak) izanda benetan egonkorrak zirela jabetu zen. Horiei zenbaki magikoak deitu zieten. Honen ondotik, nukleoaren spin-orbita teoria proposatu zuen, atomoen nukleoaren geruzen eredura iritsiz.

3. irudia: Argonne National Laborategiko fisika alorreko eraikinean Maria Goeppert Mayer fisikariaren omenez jarritako plaka. (Argazkia: Argonne National Laboratory / CC BY-NC-SA 2.0 lizentziapean)
Egindako esperimentuek fruituak eman zituen baina oso prozesu geldoa izan zen. Edonola ere, 1948an emaitzak publikatu zituen Physical Review aldizkarian. Gaia teorikoki azaltzen zuen bigarren artikulu bat bidali behar zuenean, ordea, konturatu zen ezagutzen ez zituen beste zientzialari batzuek, Hans Jensen, Otto Haxel eta Hans Suess fisikariak artean, ondorio berera iritsi zirela. Hala, bere testua geroago argitaratzeko eskatu zuen, Jensen eta bere taldeak idatzitakoarekin batera ager zedin. Baina azkenean, Mariarena urtebete geroago publikatu zuten. Horren ondotik, Jensenekin liburu bat argitaratzea erabaki zuen, geruzen egitura nuklearra deskribatuz.
1960an, Kaliforniako Unibertsitatean Fisikako katedraduna izatera iritsi zen, ordainsari baten truke lortu zuen lehenengo lanpostua izan zen. Harritzekoa da baina Mariak une hartan 54 urte zituen. Gainera, Ameriketako Estatu Batuetako Zientzien Akademia Nazionaleko eta Heidelbergeko Zientzia Akademiako kide izendatu zuten. Hori gutxi balitz bezala, hiru ohorezko titulu jaso zituen.
Aipatu dugunez, 1963an jaso zuen Fisikako Nobel saria, azkenean. Dena dela, pozak ez zuen asko iraun, 1972an bihotzekoak emanda hil baitzen. Edozein kasutan ere, Goeppert Mayerrek saria baino, egindako bidea gozatu zuen. Berak esan zuen moduan:
“saria irabaztea ez zen izan lan horixe bera egitea baino asegarriagoa”.
Iturriak:
- eldiario.es: Maria Goeppert Mayer, la última ganadora de un Nobel de Física
- Mujeres con ciencia: Maria Goeppert-Mayer: La belleza de Göttingen
- Rincón Educativo: María G. Mayer
- The Nobel Prize: Maria Goeppert Mayer
———————————————————————–
Egileaz: Uxue Razkin (@UxueRazkin) kazetaria da.
———————————————————————–
The post Maria Goeppert Mayer (1906-1972): Atomoen geruzen eredua aurkitu zuen emakumea appeared first on Zientzia Kaiera.
Aprendiendo de las máquinas

La segunda mitad del siglo XX vio nacer la computación y el sueño de la inteligencia artificial —“la ciencia de conseguir que las máquinas hagan cosas que requerirían inteligencia si las hiciesen humanos”, en palabras de Marvin Minsky—, que hoy en día está despertando un renovado interés gracias a la rama del aprendizaje automático. Se trata de un conjunto de técnicas que se benefician de los avances tecnológicos en materia de computación de las últimas dos décadas, y se caracterizan por su capacidad de engullir enormes cantidades de datos para enfrentarse a problemas de gran complejidad. Las aplicaciones son vastas, y ya forman parte de nuestro día a día: se utilizan para detección de fraude, navegación en vehículos autónomos, sistemas de recomendación (de productos, música…), diagnóstico médico, optimización de procesos, juegos… y un largo etcétera.
En todos estos casos, decimos que la máquina aprende. Y sabemos perfectamente cómo aprende (la lógica matemática y computacional subyacente), pero ¿qué aprende exactamente? Esta pregunta, aparentemente sencilla, nos persigue en todas sus aplicaciones. Por ejemplo, ¿qué lleva a AlphaZero a considerar ventajosos los movimientos que hace y que epatan por igual a aficionados y expertos ajedrecistas? Lo cierto es que no lo sabemos. La importancia de la cuestión puede parecer relativa en decisiones no críticas como la recomendación de una película, pero resulta esencial, e incluso abre derivadas éticas, cuando hablamos de cosas como conceder o no conceder un crédito, o la reacción de un coche autónomo ante un accidente.
En realidad, el tipo de problema al que se enfrentan las técnicas de aprendizaje automático es el mismo al que se viene enfrentando la ciencia, estadística mediante, desde su nacimiento: la inferencia de patrones, de generalizaciones, a partir de datos observacionales con el objetivo de obtener predicciones. En otras palabras, dada una entrada X, ¿qué modelo o función “f” genera la salida Y=f(X)? La gran diferencia se encuentra en que tradicionalmente nos hemos enfrentado a problemas para los cuales hay una teoría matemática previa que establece la estructura de “f”. La estadística clásica es la ciencia que estudia los diferentes tipos de modelos “f” y genera las técnicas para obtener y evaluar el mejor ajuste a partir de las observaciones (x, y). Por otro lado, las técnicas de aprendizaje automático de la nueva ciencia de datos son capaces de aprender la función “f” a partir de los datos sin ningún modelo previo, sin ningún conocimiento a priori del problema. La función “f” inferida se encuentra de alguna forma codificada tras el proceso de aprendizaje, pero nos es completamente desconocida y no hay forma de extraerla: es por eso que suelen llamarse “algoritmos de caja negra”.
Así pues, la estadística clásica define modelos matemáticos en los que las relaciones entre variables son explícitas y, por tanto, son directamente interpretables. Pensemos en una simple relación lineal: cuando crece X, crece Y; por tanto, obtenemos un valor grande de Y porque X es grande. En cambio, estos algoritmos de caja negra son capaces de capturar relaciones arbitrariamente complejas y predecir con gran precisión, pero su desventaja a día de hoy es que nos las ocultan, matemáticamente hablando: no somos capaces de interpretar qué propiedades de X influyen en Y.
Por tanto, uno de los grandes retos que la inteligencia artificial tiene por delante es el de intentar obtener conocimiento a partir de la estructura que las máquinas son capaces de extraer de grandes volúmenes de datos. Quizás se logre mediante una formalización matemática de las técnicas actuales, o quizás se desarrolle una nueva estadística ahora desconocida. Sea como sea, aprender de las máquinas puede ser uno de los principales hitos del presente siglo.
Sobre el autor: Iñaki Úcar es doctor en telemática por la Universidad Carlos III de Madrid e investigador postdoctoral del UC3M-Santander Big Data Institute
El artículo Aprendiendo de las máquinas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Máquinas inteligentes (y III): Deep blue, HAL 9000 y más allá
- Seminario Famelab: aprendiendo a hacer monólogos
- Máquinas inteligentes (II): Inteligencia artificial y robótica
Esploratu gabe dauden lurraldeak kartografiatzen: masa-espektrometria bidezko irudia
Hala ere, zenbait ondorio garrantzitsu atera daitezke bertatik: teknika honekin lagin oso konplexuak analizatu daitezke, aldez aurretik markatu gabe (hau da, detektatu nahi diren molekulak markatu behar izan gabe). Bi ezaugarri horiek izateaz gain, masa-espektrometria teknika oso zehatza, sentikorra eta bizkorra da, eta, horregatik, bereziki erabilgarria da lagin biologikoak analizatzeko. Baina molekula biologikoak kaltegabe gas-fasera transferitu ahal izateko, ionizazio-teknika bigunak garatu behar izan ziren.
Molekula termolabilak masa-espektrometro batean sartzeko gehien erabiltzen diren tekniketako bat MALDI (Matrix Assisted Laser Desoption/Ionization, 1. irudia) da. Hasteko, lagin biologikoaren zati adierazgarri bat altzairuzko plaka batean jarri eta substantzia organiko batekin (matrizea) estali behar da, matrizeak argia xurga dezan laser komertzialen igorpen eremuan (oro har ultramorean, 335-350 nm inguru). Molekula biologikoak gardenak izan ohi dira erradiazio horren aurrean, eta, horregatik, laserrak ez die eragiten. Baina matrizeak laser-erradiazioa xurgatzen du, zatikatzen da eta analitoa askatzen du gas-fasean ionizatuta.

1. irudia: MALDI bidezko masa-espektometriaren eskema. (Iturria: José A. Fernández)
90ko hamarkadan, teknika finago bat garatu zen: masa-espektrometria bidezko irudia, ehunak zuzenean esploratzea ahalbidetzen duena (2. irudia). Noski, lagin solidoetan ez ezik, freskotan izoztutako ehun-ebakiduretan ere aplika daiteke zuzenean MALDI metodologia. Era horretan, molekula biologiko guztiak (detektagarriak) ehunean nola banatzen diren adierazten duten mapak lor daitezke. MALDI-IMS (MALDI-Imaging Mass Spectrometry) teknikaren bidez, esperimentu bakarrean ehunka biomolekula identifikatzeaz gain, molekula horiek ehunean duten kokalekua ere jakin daiteke (informazio espaziala), eta, horrela, aldaketak egitura histologikoekin edo banakako zelulekin erlaziona daitezke.

2. irudia: MALDI-IMS esperimentu baten protokoloa. (Iturria: José A. Fernández)
Koloneko zelulen azterketaMetabolomikan, informazio espazialak garrantzi oso handia du, zelula-mota bakoitzak profil metaboliko propioa baitu eta aldatu egiten baita zelulen zikloarekin. Adibidez, IMS teknika oro erabilgarria izan da digestio-sistemaren amaieran dagoen koloneko zelulen heltze prozesua aztertzeko. Organo horren pareta (3. irudia) estalita dago kripta deritzen inbaginazioez, eta zelula epitelialen (larruazala) geruza bakar batek osatuta daude. Epitelio guztietan gertatzen den bezalaxe, kolonekoa ere higatu egiten da eta zelulak etengabe berritu behar dira. Kripten hondoan, etengabe zatitzen ari diren ama-zelulen nitxo bat dago, eta horiek hornitzen dute zelulaz kripta. Zelula berri horiek gorantz bultzatzen diete aurrekoei, eta heltzen eta zeregin espezifikoak betetzen joaten dira, azkenean kanpoaldera iritsi eta ezkatatzen diren arte.

3. irudia: A) Koloneko kripta baten eskema. B) Giza kolonaren ebakidura baten irudi optikoa, non zenbait kripta ikusten diren; C) Lipido-espezie adierazgarri batzuen banaketaren irudiak giza kolon osasuntsuaren eta adenomatosoaren biopsien ebakiduretan. (Iturria: José A. Fernández)
Barceló-Coblijn doktorearen (IdisPa, Palma) taldearekin elkarlanean egin ditugun MALDI-IMS esperimentuei esker, frogatu dugu zelulak banatzeko eta heltzeko prozesu osoan profil lipidikoa edo lipidoma (zelula batean dauden lipidoen multzoa) aldatu egiten dela: kolonozitoa heltzen den neurrian, azido arakidonikoa (seinale-funtzioak dituen gantz-azidoa) duten lipido-espezieen lekuan kate motzagoko eta asegabetasun gutxiagoko gantz-azidoak jartzen dira. Laburbilduz, lipidoak zorrozki erregulatuta daudenez, profil lipidikoari erreparatuta jakin daiteke kolonozitoa kriptako zer lekutan dagoen. Are gehiago, irudien bidez jakin dezakegu lipodomako aldaketa hori konolozitoaren erdialdean eta amaieran gertatzen dela, baina kolonozitoaren nukleoaren lipidoma ez dela aldatzen heltze-prozesuan zehar.
Koloneko kriptak orri propioa deritzon ehunak inguratuta daude, zeinak euskarri ematen dien eta immunologia-sistemako zelula asko dituen, bakterioen erasoei adi beti. Gogoan izan behar dugu epitelioaren beste aldean bakterio asko daudela, elikagaiak prozesatzen eta mantenugaiak aprobetxatzen laguntzen digutenak. Bakteriak alde zuzenean dauden bitartean, onuragarriak dira. MALDI-IMS teknikari esker frogatu ahal izan genuen orri propioko zelulek eredu guztiz desberdin bati jarraitzen diotela: hanturarekin erlazionatuta dagoen azido arakidoniko asko dute, eta azido hori ugariagoa da kolonaren zati luminaletik gertu. Zelula bakoitzak lipido-konposizio propioa eta berdingabea du, eta horri esker zelulak identifika daitezke.
Ezagutza horren guztiaren aplikazio zuzen eta bistako bat da koloneko minbizia garaiz detektatzea. Zelula baten profil lipidikoa horren zorrozki erregulatuta badago, gaiztotze-prozesuak eragiten duen alterazio metabolikoak inpaktu ikaragarria izan beharko luke zelulen profil lipidikoan. Izan ere, gure emaitzek frogatzen dute koloneko ehun hondatuak alterazio morfologiko nahiz metaboliko adierazgarriak dituela. 3. irudian kolon neoplasikoari egindako biopsia bateko ebakiduraren irudi histologikoak daude. Argi ikusten da kriptek beren ohiko morfologia galdu dutela; izan ere, ama-zelulak kontrolik gabe ugaltzen ari dira eta kolonozito gehiegi sortzen dituzte, eta, gainera, kolonozitoak ez dira heltzen. Espero zitekeen moduan, kolonozito horien aztarna lipidikoa kriptaren hondoko ama-zelulen aztarna lipidikoaren berdina da, eta, ikuspuntu molekularretik, horrek frogatzen du kolonozito heldugabeak direla eta ugaltzen jarraitzen dutela bereiztera iritsi gabe. Bien bitartean, gaiztotze-prozesuak ez du eraginik orri propioko zeluletan eta ehun osasuntsuan dutenaren antzeko profil lipidikoa izaten jarraitzen dute.
Adibide honek frogatzen du garrantzitsua dela lokalizazio espaziala ahalbidetzen duten teknikak erabiltzea metaboloma, edo zehatzago esanda, lipidoma aztertzeko garaian, aldaketak maila zelularrean gertatzen baitira. Bereizmen espazialik gabe, kolonozitoetan gertatutako aldaketak gainerako zelulen lipidomaren artean barreiatuta geldituko lirateke.
Burmuinaren azterketaMALDI-IMS teknikaren aplikazioa iraultza eragiten ari da, lipidomikaren arloan ez ezik, baita proteomikan eta arlo aplikatuagoetan ere, hala nola anatomia patologikoan. Hain zuzen ere, artikulu honetan jarri diren adibideetan lipidoen banaketa islatzen duten mapak aurkeztu diren bezalaxe, proteinak eta peptidoak ere detekta daitezke zuzenean ehunean eta dagozkion irudiak egin daitezke. Egiaz, MALDI bidez detekta daitekeen edozein molekulari aplika dakioke teknika hau eta, horrela, patologoak ehun baten histologia ikus dezake, ikuspuntu molekularretik. Ehun edo zelula mota bakoitzak profil lipidomiko/proteomiko propioa duenez, analisi estatistikorako tresnak erabil daitezke pixelak bistaratzeko aztarna molekularrean oinarrituta; horixe ikusten da 4. irudian, non arratoi baten burmuineko ebakidura sagitalean (luzetara, usaimen-erraboiletik burmuineraino) egindako MALDI-IMS esperimentuaren emaitza jaso den: pixel bakoitzaren espektroak analisi estatistikorako algoritmo baten bidez analizatu dira eta, ondoren, neurona-sare baten gainean proiektatu dira, irudian ikusten den kolore-eredua erabiliz: antzeko profil metabolikoa duten pixelek eskalan gertu dauden koloreak dituzte. Irudiak ehunaren histologia zintzoki islatzen du. Zelula mota baten metabolismoa aldatuko balitz, kolore-eredua aldatuko litzateke eta, horrela, alterazioa erraz detektatuko genuke.

4. irudia: Arratoi baten burmuineko ebakidura sagitalaren aztarna lipidikoaren analisi estatistikoa, 100 mm-ko pixel-tamainarekin.
Laburbilduz, MALDI-IMS teknikak dimentsio gehigarri bat ematen dio lagin biologikoen analisiari: ehun bat osatzen duten metabolitoen eta proteinen lokalizazioa ehunaren baitan. Eta horrek aplikazio ugari izan ditzake etorkizunean, gaixotasun metabolikoen azterketan.
—————————————————–
Egileari buruz: José A. Fernández ikertzailea da UPV/EHUko Zientzia eta Teknologia Fakultateko Kimika Fisikoa Sailean.
—————————————————–
Masa-espektrometriari buruzko artikulu-sorta
- Masa-espektrometria (I). Neoi isotopoetatik elefante hegalariengana
- A new hero is born: Masa-espektrometria justiziaren zerbitzura
- Nor dago icebergaren alden ezkutuan?
- Konposatu galduaren bila
- Metabolomika: osotasuna, zatien baturaren aurrean
- Esploratu gabe dauden lurraldeak kartografiatzen: masa-espektrometria bidezko irudia
The post Esploratu gabe dauden lurraldeak kartografiatzen: masa-espektrometria bidezko irudia appeared first on Zientzia Kaiera.
Paradojas: contando peces, pesando patatas y… detectando agujeros
Tengo un acuario en casa. Contiene doscientos peces, de los cuales el 99% son rojos. Quiero conseguir que sólo el 98% de los peces de mi pecera sean colorados, eliminando sólo algunos de este color, pero sin tener que comprar más de otras tonalidades. ¿Cuántos peces rojos debo sacar del acuario?

Seguro que son pocos los que debo extraer de mi pecera. Veamos: los peces rojos representan el 99%. Por lo tanto, el 1% no son colorados, es decir, solo hay dos peces que no son rojos en el acuario. Necesito extraer algunos peces rojos para conseguir que estos dos peces lleguen a ser el 2% de los peces del acuario. Así, si dos peces no colorados deben ser el 2% del total, una sencilla regla de tres dice que deben quedar en el acuario ¡solo 98 peces rojos! Es decir, deben sacarse 100 peces rojos para que el porcentaje de peces colorados pase del 99%al 98%. Sorprendente, ¿no?
¿Y qué hago ahora con los cien peces que me sobran? Decido cambiarlos a un colega por cien kilos de patatas. Es justo, ¿no? Un pez por un kilo de patatas… Y se me plantea un nuevo problema.
Tengo 100 kilos de patatas. El 99% de su peso corresponde al agua que contienen. Quiero deshidratarlas para conseguir que contengan solo un 98% de agua. Tras hacerlo, ¿cuánto pesan las patatas? ¡Si sólo pesan 50 kilos! ¿Por qué?

Veamos: si de esos 100 kilos, 99 kilos son de agua, 1 kilo corresponde a sólido seco. Vaya, parece que estoy teniendo un “déjà vu”… esto me recuerda mucho al caso de los peces rojos. Pero centrémonos, volvamos a los tubérculos. Si tras deshidratar las patatas la parte sólida pasa a ser del 2% del total –que sigue pesando 1 kilo, porque no se ve afectada por la deshidratación– de nuevo puedo hacer una sencilla regla de tres que me dice que debe de haber solo 49 kilos de agua. Así que, efectivamente, las patatas pasan a pesar 50 kilos. Bueno, así me costará menos transportarlas.
Creo que compraré algo de queso para elaborar alguna receta y acompañar a parte de esas patatas. Me gusta el Emmental porque tiene agujeros, y –como todo el mundo sabe– a las personas que nos dedicamos a la topología nos encanta contar agujeros. Para eso se inventó la teoría de homología, ¿no? Para eso, para contar agujeros de diferentes dimensiones y así distinguir espacios no homeomorfos.
Y me ha dado por pensar en los agujeros del queso, que parece que proceden de la fermentación producida por partículas microscópicas de heno presentes en la leche. A ver:
Cuanto más queso Emmental compre, más agujeros habrá. Pero, cuantos más agujeros haya, tendré menos queso. Es decir, cuanto más queso compre… ¡tendré menos queso!

¡No me lo puedo creer! Y todo esto por culpa de cien peces rojos…
Referencias
-
Marta Macho Stadler, La paradoja de los peces colorados, ZTFNews, 4 octubre 2013
-
Weisstein, Eric W., Potato Paradox, MathWorld
-
Paradoxe du fromage à trous, Wikipédia (consultado el 10 de marzo de 2019)
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Paradojas: contando peces, pesando patatas y… detectando agujeros se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Patatas ‘perfectas’ con el método ‘Edge Hotel School’
- La topología modifica la trayectoria de los peces
- Los peces en el río
Izar-hautsa ez ezik, asteroide-ura ere bagara
Ezinezkoa da eguzki-sistemaren jatorrietara bueltatzea, gure gertueneko planetak eta geure etxea bera den Lurra nola eratu ziren jakiteko. Baina, badugu aukera ikusteko nola eratzen ari diren eguzki-sistematik kanpoko beste hainbat sistema. Halere, nolabait, “nahi eta ezin” egoera da hori. Gero eta bereizmen hobearekin, astrofisikariak gai dira ikusteko nola sortzen diren mundu horiek, eta espektrografiak benetako “mirariak” ahalbidetzen ditu. Baina, zoritxarrez, mundu berrien fabrika horietan gertatzen diren prozesu fisiko-kimikoak atzematea ez da erraza.

1. irudia: Zientzialariek uste dute asteroideek ura ekarri zutela Lurrera, Bonbardaketa Berantiar Handia gisa ezagutzen den une batean. Irudian, NASAK egindako berreraikipen artistikoa. (Irudia: NASA)
Eguzki-sistemaren adreilu diren asteroide eta kometetan egon daiteke gakoa. Horregatik, hein handi batean, objektu horiek ikertzeko hainbat misio burutu dira; beste batzuk oraintxe bertan horretan ari dira, eta beste hainbat misio ere izango dira etorkizunean: Stardust, Rosetta, OSIRIS-Rex, Hayabusa, DART, Hera.. Japoniarrek laginak hartzeko prestatu duten Hayabusa-2k bidalitako azken bideoa ikusita, edo ESAk poesia bisuala eta zientzia uztartuz Rosettari buruz prestatutako Ambition bideo laburra ikustean hunkitzen ez den irakurleak hobe du hemendik aurrera beste irakurketaren bati heltzea.
Idealismoa alde batera utzita, ezagutza hutsa ez ezik, interes komertziala ere piztu dute arrokek, eta Planetary Resources bezalako enpresak horretan ari dira. The Expanse telesailak marraztutako mundua oso urruna eman badezake ere, duela urte gutxira arte ere zaila zirudien irudikatzea enpresa pribatuak espaziora joaten edota Israelgo startup bat Ilargirako bidea egiten.
Ezagutza soilari dagokionez, asteroide eta kometetan aurkitu nahi den erantzun nagusia da nola iritsi zen ura Lurrera. Ura sortzea ez da zaila: kopuruei dagokienez, hidrogenoa eta oxigenoa dira, hurrenenez hurren, unibertsoko lehenengo eta hirugarren postuetan dauden elementuak. Baina eguzki-sistemaren osaketa azaltzen saiatzen diren eredu gehienek oso zail ikusten dute hasierako faseetan barne planetetan ura egotea: eguzkiaren beroa dela, ur gehiena eguzki-sistemaren kanpoaldean geratu zen, izotz-lerro gisa ezagutzen den muga batetik harago, hain zuzen. Bestetik, uste da Ilargiaren sorrera planeta erraldoi baten talkari zor zaiola; talka horrek Lurrean egon zitekeen jatorrizko ur guztia eraman behar izan zuen, halabeharrez.
Asteroide eta kometak dira, beraz, Lurreko uraren jatorria hoberen azaltzen dutenak. Lehen hautagai logikoak kometak izan ziren, objektu horiek dutelako lurrunkorra den material gehien. Baina, oraingoan ere, badirudi isotopoek izango dutela azken hitza. Deuterioaren eta hidrogenoaren arteko proportzioaz ari gara. 1980ko hamarkadan ura meteoritoetatik etorri zeneko hipotesia kolokan jarri zen, orduan ikusi zelako Oort hodeiko kometetan dagoen D/H proportzioa (Deuterio/Hidrogeno) ez datorrela bat Lurreko ozeanoetan dauden proportzioekin. Rosetta misioak egiaztatu ahal izan zuen 67P/Txuriumov-Gerasimenko kometan zegoen proportzioa ere ezberdina zela (zehazki, Lurrean dagoena baino hiru handiz handiagoa da).
Horregatik, asteroideetan jarri da arreta. Bereziki gerrikoaren kanpoaldean kokatuta dauden asteroideek dute ur gehien. Pixkanaka, horien alde egiten duten probak metatzen hasiak dira. Orain aurkeztu dituzte Science Space Science Reviews aldizkarian aukera hori babesten duten proba gehiago (hemen, irekian).

2. irudia: Meteoritoak ikertuz asteroideen osaketari buruzko datuak lortzen dituzte adituek. Irudian, zientzialariak meteoritoak bilatzen, Antartidan. (Argazkia: Katherine Joy / ANSMET)
Ikertzaileek kondrito karbonatodun izeneko meteoritoetan jarri dute interesa. Karbono-konposatu asko duten meteorito horiek asteroideetan dute abiapuntu, eta adituek berretsi dute arroka puska horiek material hidratatuak eta molekula organikoak jaso zituztela eguzki-sistema sortu zenean. Hau ez da kontu berria, baina orain proba gehiago jarri dituzte mahai gainean. Ura ez ezik, kondrito karbonatodunetan biziaren sorrerarako erabilgarri izan zitezkeen molekulak iritsi zirela uste dute. Aukera hau 2016an Scientific Reports aldizkarian proposatu zuten.
Zientzialariek marraztu duten prozesuaren arabera, kondrito horiek arroken eta uraren arteko prozesuetan abiatu ziren. Garai batean, asteroideetan zegoen izotza urtu egin zen, seguruenera, 26Al isotopo erradioaktiboaren desintegrazioan sortutako beroari esker ( 26Mg-ra desintegratzean, isotopo horrek energia kopuru txikia baina etengabekoa isuri dezake, milioika urtez). Ur hori berotzean eta arrakalen artean sartzean sortu ziren kondritoen ezaugarri diren kondruloak. Ondoren, kanpoko planetetako orbitetan izandako aldaketak direla eta, kaosa sortu zen eguzki-sisteman, eta asteroide horietako asko barne planetetara bideratuak izan ziren, beraiekin batera, ura eramanez. Fase hori Bonbardaketa Berantiar Handia gisa ezagutzen dugu, eta udako gau lasai batean zeruari begira gaudela Ilargian ikusten diren kraterrak horren testigu isilak dira.
Bestetik, Lurraren osaketa kimiko berak berretsiko luke ideia hori. Espero zitekeena baino platinoaren taldeko elementu gehiago daude mantuan zein lurrazalean (teorian, siderofiloak diren elementu horiek nukleoa osatzen duten burdinarekin eta nikelarekin lurperatuak izan behar ziren Lurraren osaketaren hasierako faseetan, baina elementu horiek ere asteroideen bonbardaketa masibo horrekin iritsi zirela uste dute zientzialariek).
Dena dela, ia beti bezala, gauzak ez daude guztiz finkatuta, eta ikerketa berriak martxan dira. Gainera, gogoratu beharra dago asteroide baten eta kometa baten arteko aldea ez dela guztiz argia. Adibidez, kometa gehienak Kuiper gerrikotik edota Oort hodeitik datozen arren, orain badakigu asteroide gerrikoan ere hainbat “kometa” badirela. 133/P Elst-Pizarro da horietako bat, eta Txinak hara bidali nahi du misio bat, laginak hartu eta Lurrera ekartzeko asmoz. Unibertsoari bost axola zaio arroka horiek kometa ala asteroide ote diren, baina gizakiak, bere txikitasunean —eta bere handitasunean—, etxetzat duen Lurra nola sortu zen jakin nahi du, eta baita ere Lurrean bizia ahalbidetu duen uraren jatorria zein den. Azken finean, batez bestean, gizakiaren konposaketaren %60-70 ura besterik ez da. Nongoa zaren galdetzen dizuten hurrengoan, badakizu, lasai asko esan dezakezu belterra, zinturonianoa edo gerrikoarra zarela. Asteroide gerrikokoa, hain zuzen; Zientziak babestuko zaitu. Bertan sortu baitira zure arimaren hiru laurdenak.
Erreferentzia bibliografikoa:
Trigo-Rodriguez, J.M., Rimola, A., Tanbakouei, S. et al. (2019). Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth. Space Science Reviews, 215:18. DOI: https://doi.org/10.1007/s11214-019-0583-0
———————————————————————————-
Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.
———————————————————————————-
The post Izar-hautsa ez ezik, asteroide-ura ere bagara appeared first on Zientzia Kaiera.
Reflexión y refracción de la luz

¿Qué ocurre cuando la luz que viaja por un medio (por ejemplo, el aire) alcanza el límite de otro medio (por ejemplo, el vidrio)? Las respuestas a esta pregunta dependen de si se utiliza el modelo de partícula o el de onda para la luz. ¿Qué implica cada uno y cuál es mejor? ¿Cómo explican el siguiente hecho experimental (Figura 1):

El modelo de onda ya lo hemos tratado aquí para la reflexión y aquí para la refracción. Recordemos las conclusiones principales aplicadas a la luz:
1. Un rayo de luz no es otra cosa que una línea perpendicular a las líneas de cresta de una onda. Un rayo representa la dirección en la que viaja un tren de ondas.
2. En la reflexión, el ángulo de incidencia(Θi) es igual al ángulo de reflexión (Θr), esto es, Θi = Θr
3. La refracción implica un cambio de la longitud de onda y velocidad de la onda a medida que pasa a otro medio. Cuando la velocidad disminuye, la longitud de onda disminuye y el rayo gira en una dirección hacia una línea perpendicular al límite entre los medios. Este giro hacia la perpendicular se observa, por ejemplo, cuando un rayo de luz pasa del aire al vidrio.

¿Cómo explicar las mismas observaciones mediante el modelo de partículas? Primero tenemos que considerar la naturaleza de la superficie del vidrio. Aunque aparentemente homogénea, estamos en realidad ante una superficie rugosa: un microscopio lo suficientemente potente mostraría que tiene multitud de colinas y valles. Si las partículas de luz fueran similares a pequeñas bolitas de materia, al golpear una superficie tan rugosa lo que cabría esperar es que se dispersasen en todas direcciones. Por tanto, no serían reflejadas ni refractadas. Por lo tanto, hay que refinar el modelo. Newton argumentó que en realidad debe haber “algún rasgo del cuerpo que esté disperso uniformemente sobre su superficie y por el cual este actúa sobre el rayo sin contacto inmediato (some feature of the body which is evenly diffused over its surface and by which it acts upon the ray without immediate contact).
Vamos a seguir la idea de Newton, a ver a donde nos lleva. De entrada, en el caso de la reflexión, la fuerza actuante tendría que ser una que repela las partículas de luz. Pero claro, por la misma regla de tres, es necesaria una una fuerza que atraiga a las partículas de luz en lugar de repelerlas para explicar la refracción. Esto parece que se complica para el modelo de partículas. O no. Veamos
Cuando una partícula de luz se acerca a un límite con otro medio, primero tendría que superar la fuerza repelente. Si lo consiguiera, entonces encontraría una fuerza atractiva en el medio que la atraería hacia el medio. Dado que la fuerza atractiva sería un vector perpendicular a la superficie del medio, tomando como referencia la dirección del movimiento de la partícula ese vector tendría un componente en la dirección del movimiento original de la partícula, lo que implica que la velocidad de la partícula tendría que aumentar. Otra consecuencia es que, si el rayo de partículas se moviera con un ángulo oblicuo al límite, cambiaría de dirección a medida que entrase en el medio, girando hacia la línea perpendicular al límite.
De acuerdo con el modelo de partículas*, por lo tanto, podríamos afirmar lo siguiente:
1. Un rayo representa la dirección en la que se mueven las partículas.
2. En la reflexión, los ángulos de incidencia y reflexión son iguales. Esta predicción se puede derivar aplicando la ley de conservación del momento a partículas repelidas por una fuerza.
3. La refracción implica un cambio de velocidad de las partículas a medida que entran en otro medio. En concreto, cuando actúa una fuerza atractiva, la velocidad aumenta y el rayo cambia de dirección al entrar en el medio.

Comparemos estas características del modelo de partículas con las características correspondientes del modelo de onda. La única diferencia está en la velocidad predicha para un rayo refractado. Observamos que un rayo se curva hacia la línea perpendicular cuando la luz pasa del aire al vidrio. El modelo de partículas predice que la luz tiene una velocidad mayor en el segundo medio. El modelo de ondas predice que la luz tiene una velocidad menor.
Podríamos pensar que no hay nada más fácil para averiguar qué modelo es el más correcto: diseñar un experimento para determinar qué predicción es correcta. Todo lo que uno tiene que hacer es medir la velocidad de la luz después de que haya entrado en el vidrio o en el agua y compararla con la velocidad de la luz en el aire. Pero no. A a finales del siglo XVII y principios del siglo XVIII, cuando Huygens argumentaba a favor del modelo de onda y Newton apoyaba el modelo de partículas, ningún experimento de este tipo era posible. La única forma disponible de medir la velocidad de la luz era la astronómica.
No sería hasta mediados del siglo XIX que Armand H.L. Fizeau y Jean B.L. Foucault conseguirían medir la velocidad de la luz en el agua. Los resultados concuerdan con las predicciones del modelo de onda: la velocidad de la luz es menor en el agua que en el aire.
Los experimentos de Foucault-Fizeau de 1850 se consideraron como el último clavo en el ataúd del modelo newtoniano de partículas para la luz, ya que, cuando se realizaron estos experimentos, buena parte de la comunidad científica ya había aceptado el modelo de onda por otras razones. Algunas de estas se derivaron del trabajo del científico inglés Thomas Young, y serán las que veamos a continuación.
Nota:
* Implícitamente en el argumento está la asunción sobre el límite del tamaño de las “partículas” de luz de Newton. Las partículas deben ser al menos tan pequeñas como las irregularidades en la superficie de un vidrio. Si fuesen mayores tendríamos el mismo efecto que una pelota de tenis rebotando en el rugoso suelo de hormigón, solo reflexión.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Reflexión y refracción de la luz se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Kimika sukaldean: haragia (eta III). Kozinatutako haragia

1. irudia: Kozinatutako haragiak kolore desberdinak izango ditu tenperaturaren eta kozinatze denboraren arabera. Koloreaz gainera, zapore eta usaina ere desberdina izango da. (Argazkia: Bru-nO – domeinu publikoko irudia. Iturria: pixabay.com)
Haragia kozinatuta jateko arrazoiak lau dira: seguruagoa da -kozinatzean patogenoak hiltzen dira-, errazago mamurtzen eta digeritzen da -desnaturalizatutako proteinak errazago erasotzen dituzte gure digestio-entzimek-, eta zapore hobea du. Segurtasun kontuak alde batera utzita, zaporea bera aldatzea arrazoi nahikoa da haragia kozinatzeko. Haragi gordinak zaporea du, bai, baina, aroma eskasak ditu. Haragiari egindako kalte fisikoa nahikoa da muskulu-zuntzek osagai aromatikoak askatzeko, baina, aroma eta zaporea benetan garatzeko aldaketa kimikoak gertatu behar izaten dira. Aldaketa kimikoei esker zeluletan dauden molekulak askatze dira eta birkonbinatu egiten dira konposatu berriak emateko.
Haragia ez bada berotzen uraren irakite puntutik gora, bere zaporea proteinen eta gantzen deskonposaketaren ondorioz askatutako molekulena izango da. Tenperatura ez bada 100 ºC-tik gora igotzen, ez dira lortuko haragi txigortuaren kolorea. Horrexegatik mikrouhin labean edo uretan egosiz ezin da haragi txigortuaren kolore arrea lortu. Alabaina, haragia 100 ºC-tik gora berotzen bada -frijitzean edo labean erretzean, adibidez-, gainazalean Maillard-en arretze erreakzioak gertatzen hasten dira eta haragi txigortuaren zapore eta usainak agertzen dira. Maillarden erreakzioen ondorioz nitrogenoa, oxigenoa edo sufrea duten eraztun motako molekulak sortzen dira eta horiek dira, hain zuzen ere, «haragi errearen zaporea» bezala ezagutzen duguna. Horietaz gainera, beste hainbat usain agertzen hasten dira haragian, aipatutako molekulen presentziaren kausaz. Esan behar da, bide batez, konposatu horietako batzuk toxikoak eta minbizi-sortzaileak direla, baina, kantitate oxo txikitan sortzen direla, beraz, gehiegi arduratu gabe jan daiteke barbakoan erretako haragia, neurriz egiten bada.
Kozinatutako haragiaren kolorea eta testuraHaragiaren itxura bi modutara aldatzen da kozinatzen denean. Hasiera batean zeharrargia da, uretan murgilduta dauden proteinek osatzen dituztelako zelulak. Alabaina, haragia berotzen hasten den neurrian, tenperaturaren arabera proteinak desnaturalizatzen hasten dira eta erreakzio kimikoak gertatzen dira. Erreakzio eta aldaketa horien arabera, haragiak guretzat hain gozagarriak diren usain eta zaporeak izango ditu.

2. irudia: Haragi gordinaren kolorea uniformea eta zeharrargia da. (Argazkia: gate74 – domeinu publikoko irudia. Iturria: pixabay.com)
Haragia berotzen hasten denean, 50 ºC-ko tenperaturara iristen denerako opakua bilakatzen hasten da miosina desnaturalizatzen hasten delako. Miosina proteina haritsua da, muskuluen uzkurdura ahalbidetzen duena, aktinarekin batera. Miosina desnaturalizatuak kolore zuriko pikorrak osatzen ditu eta, horren ondorioz, haragiak kolore arrosa hartzen du hasieran, berotzen hasten denean. 60 ºC-ra iristean, mioglobina desnaturalizatzen hasten da, hemikromo izena duen eta kobre kolorea duen forma osatuz. Gogoan izan mioglobina dela, hain zuzen ere, haragiaren kolore gorriaren erantzulea. Mioglobina desnaturalizatzearekin batera, haragiaren kolorea arrosa izatetik arre-grisaxka izatera pasatzen da. Mioglobinaren desnaturalizazio-tenperatura eta zuntzetako proteinena tenperatura bera denez, haragia nola eginda dagoen jakin daiteke kolore aldaketari erreparatuz. Gutxi egindako haragia eta bere zukua zukua gorria da eta ondo erretako haragiaren kasuan, aldiz, haragia arre-grisaxka da eta zukua gardena. Tarteko kasuetan, kolore arrosekoa da bai haragia eta bai zukua. Hala ere, mioglobina haragia kozinatu baino lehen desnaturalizatu bada -argiaren eraginez edo haragia izoztuta egon delako-, posible da haragiak kolore arrea izatea tenperatura baxuagoan. Honek, nolabait, sukaldariari pentsarazi diezaioke haragia ondo eginda dagoela, baina hori horrela ez izatea. Mikrobioak guztiz hil direla ziurtatzeko modu bakarra termometroa erabiltzea da haragia 70 ºC-tik gorako tenperaturan egon dela baieztatzeko.

3. irudia: Haragi kozinatuak kolore desberdinak ditu, geruzaka. Kanpoan Maillard erreakzioaren ondorioz sortutako zarakarra du, eta barruan kozinatze mailaren araberako geruza arreak, arrosak eta gorriak. (Argazkia: Global-Tyrol – domeinu publikoko irudia. Iturria: pixabay.com)
Haragiaren barnean gertatzen diren kolore aldaketez gain, zuzenean zartagiarekin kontaktuan dagoen gainazalak 100 ºC-tik gorako tenperatura hartzen duenez, Maillard erreakzioak gertatzen dira. Horiexek dira hain zuzen ere gainazaleko kolore beltz eta arreak dituzten konposatuak sortzen dituztenak, eta horiek sortzearekin batera haragi errearen zapore eta usain bereizgarriak agertzen dira. Maillarden erreakzioak erreakzio-multzo izugarria da, azukreen eta proteinen amino taldeen artean gertatzen direnak. Maillard erreakzioen ondorioz, azukreak eta aminoazidoak elkartu egiten dira eta hainbat etapa dituen prozesu kimikoan sartzen dira. Hasieran kolore marroi argiak agertzen dira eta gero konposatu ilunagoak. Azken erreakzioa, Strecker-en degradazioa deritzona, haragi errearen usainaren erantzulea da.
Erreakzio horiek guztiek eta aldaketa fisikoek haragiaren kolorea aldatzen dute, baina, baita testura ere. Haragiaren testuraren kasuan, kozinatzen denean murtxikatzea posible egiten da, elastikoagoa eta samurragoa bihurtzen delako. Haragia gehiegi egiten bada, aldiz, elastikotasun hori galdu egiten da eta berriro zurruntasuna nagusitzen da. Prozesu guzti hori zuntzen eta ehun konektiboaren proteinen desnaturalizazioaren araberakoa da. Samurtasuna lortzeko gakoetako bat 70 ºC-tan hasten da. Tenperatura horretan ehun konektiboan dagoen kolagenoa disolbatzen hasten da eta gelatina eratzen da. Hori gertatzen denean zuntzak euren artean errazago banatzen dira eta ehun konektiboa bigundu egiten da. Alabaina, horretan dago haragia ondo kozinatzearen zailtasuna. Alde batetik, zuntzen konpaktatzea murriztu behar da eta hezetasuna ez da galdu behar haragia samurra egoteko. Bestetik, ehun konektibo gogorra gelatina bigunean bihurtu behar da. Kontua da bi helburu horiek kontrajarrita daudela, alegia, gehiago berotzen bada gelatina lortzeko haragiak ur gehiegi gal dezake eta lehortu egingo da. Hortxe dago haragia ondo kozinatzearen gakoa. Oraingoan ere, kimikan erantzuna duen gakoa.
Informazio osagarria:
- Kovács, L., Csupor, D., Lente, G., Gunda, T., (2014). 100 chemical myths, misconceptions, misunderstandings, explanations. Springer, Suiza.
- McGee, Harold, (2015). La cocina y los alimentos: Enciclopedia de la ciencia y la cultura de la comida. DEBATE, Madrid.
—————————————————–
Egileaz: Josu Lopez-Gazpio (@Josu_lg) Kimikan doktorea, irakaslea eta zientzia dibulgatzailea da. Tolosaldeko Atarian Zientziaren Talaia atalean idazten du eta UEUko Kimika sailburua da.
—————————————————–
Kimika sukaldean: haragia, artikulu-sorta
- Kimika sukaldean: haragia (I). Haragiaren kolorea
- Kimika sukaldean: haragia (II). Muskulutik haragira
- Kimika sukaldean: haragia (eta III). Kozinatutako haragia
The post Kimika sukaldean: haragia (eta III). Kozinatutako haragia appeared first on Zientzia Kaiera.
Un cartel para el día de pi
María Begoña Medel Bermejo
El alumnado del Grado en Creación y Diseño de la Facultad de Bellas Artes de la UPV/EHU comienza a adentrarse en el mundo del Diseño durante su tercer curso con una asignatura cuyo nombre es Diseño Gráfico.
Existe una discusión recurrente sobre la existencia o no de alguna diferencia entre el Arte y el Diseño. Desde esta asignatura, que imparto desde hace casi 30 años, suelo insistir en el hecho de que una de las características fundamentales, si no la más destacable, es la presencia de un cliente con una necesidad de comunicación. El cliente es el elemento que nos convierte en los profesionales intermediarios que resuelven un problema de comunicación, aplicando los conocimientos sobre el funcionamiento de la percepción humana en la creación de un conjunto único y original de imágenes y textos significantes que transmitirán el mensaje que se necesite.
Suele suceder que en el aula trabajamos con supuestos en los que el rol de cliente lo asume el docente o los propios alumnos, de manera rotativa. Pero, algunas veces tenemos la suerte de enfrentarnos a problemas reales para los que desarrollar soluciones de comunicación gráfica.
Durante este curso 2018-2019, de acuerdo con la Guía Docente de la asignatura Diseño Gráfico, el último proyecto que el alumnado debía desarrollar era un cartel.
Ya habíamos colaborado en otras ocasiones con otras facultades y entidades públicas en temas similares pero, nunca habíamos trabajado con la Facultad de Ciencia y Tecnología.
Tener como cliente a alguien cuyo día a día es tan diferente del nuestro era el mayor atractivo que encontré a esta posibilidad. La innovación, la creación nunca surge si trabajamos dentro de nuestra área de confort. Salir de lo común, de lo reiterativo, supone colocarse en ese lugar que resulta incómodo porque no lo conocemos, y mirar todo aquello que vamos descubriendo con ojos limpios.
Por todo lo dicho hasta ahora me puse en contacto con algunos profesores del área de Matemáticas para preguntarles si tenían algún tema en el que pudiéramos colaborar. La respuesta fue inmediata y muy positiva, necesitaban publicitar la jornada BCAM-Naukas en el día de Pi y era posible colaborar. Participar en un evento organizado por la Cátedra de Cultura Científica de la UPV/EHU, Naukas y BCAM (Basque Center for Applied Mathematics) ha sido un reto para el alumnado y la oportunidad de hacer algo que no quedara entre las paredes de la clase como un proyecto académico más, si no que consiguiera trascender y llegar al público colocando a ambas facultades y a la UPV/EHU en el punto de mira de nuestro cliente específico, el posible futuro alumnado.
Ya teníamos el tema para el proyecto de cartel de este curso.
En clase, cuando planteé el tema, hubo todo tipo de reacciones: desde el entusiasmo al temor ante lo desconocido. Pero, en general, fue bien acogido dado que la posibilidad de hacer algo real suele ser muy valorada por el alumnado.
Participaron 56 alumnas y alumnos de dos grupos, castellano y euskera, de tercer curso del grado en Creación y Diseño. Cada uno de ellos debía llevar a cabo una labor de recopilación de información sobre el tema que les permitiera llegar a concebir al menos tres conceptos totalmente diferentes que sirvieran para comunicar la celebración del día de Pi.
Cuando desarrollamos conceptos de comunicación gráfica trabajamos la creatividad desde diversos lugares para poder encontrar esa imagen que consiga atraer la atención del espectador estableciendo un vínculo emocional al conseguir descifrar el mensaje. Se trata de hacer sonreír a nuestro cerebro.
Creo que el resultado obtenido este curso permite constatar que el acercamiento al mundo de las matemáticas permite una multiplicidad de caminos. Como colofón de esta experiencia se han seleccionado dos carteles: el de Paula Castro como cartel de la jornada del 13 de marzo de 2019 y el de Jone Aldalur para comunicar la realización de talleres para escolares. Se trata de las dos primeras imágenes que aparecen a continuación junto con otros 10 carteles que fueron pre-seleccionados:












Todas ellas son imágenes muy diferentes que aportan acercamientos originales al concepto de PI desde el mundo del Diseño Gráfico.
Esperamos seguir colaborando en próximas ediciones siempre mejorando la presente y que sea de nuevo una experiencia enriquecedora para ambas facultades.
Sobre la autora: María Begoña Medel Bermejo es Doctora en Bellas Artes y profesora del Grado en Creación y Diseño BBAA/AAEE de la UPV /EHU
El artículo Un cartel para el día de pi se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Una fórmula para dominarlos a todos: La conservación de la energía y la ley de la palanca
- Marcas de agua digitales, qué son y para qué sirven
- El consumo de alcohol para el corazón y las dificultades de divulgar ciencia
El hígado y la vesícula biliar
Además de las secreciones pancreáticas, el intestino delgado también recibe secreciones procedentes del sistema biliar, que está formado por el hígado y la vesícula biliar. Nos referimos, en concreto, a la bilis y, en particular, a las sales biliares. Es este el principal asunto que trataremos en esta anotación.

Pero eso será algo más adelante, porque al hígado corresponden funciones adicionales de gran relevancia que queremos consignar aquí para dejar constancia de ellas. Para empezar, es el órgano que gobierna el metabolismo del conjunto del organismo; podría decirse que es el órgano metabólico maestro, su director. Se ocupa del procesamiento metabólico de proteínas, carbohidratos y lípidos, tras su absorción en el intestino, incluyendo también la gluconeogénesis (síntesis metabólica de glucosa a partir de precursores no glucídicos). Y almacena glucógeno y grasas, a la vez que otras sustancias de menor relevancia cuantitativa, como hierro, cobre y varias vitaminas.
El hígado también se ocupa de degradar productos residuales y hormonas, además de eliminar agentes tóxicos y sustancias, procedentes del exterior, sin utilidad biológica o potencialmente peligrosas (fármacos, por ejemplo). También sintetiza proteínas y lipoproteínas plasmáticas, entre las que se encuentran las que participan en la coagulación de la sangre y las que transportan fosfolípidos, colesterol y hormonas esteroideas y tiroideas.
A las tareas anteriores, hay que añadir que activa la vitamina D (tarea compartida con el riñón); elimina, mediante el concurso de sus macrófagos (células de Kupffer), bacterias y glóbulos rojos que ya han finalizado su vida útil; secreta las hormonas trombopoietina (estimula la producción de plaquetas), hepcidina (regula el metabolismo del hierro en mamíferos), IGF 1 o factor de crecimiento insulínico 1 (estimula el crecimiento); excreta el colesterol y la biliverdina y bilirrubina, que son productos derivados de la degradación de la hemoglobina; y en algunas especies de mamíferos (no en primates y conejillos de India) y de aves sintetiza ácido ascórbico (vitamina C).
Es de destacar que con la excepción de las células de Kupffer, todas las funciones aquí consignadas son realizadas por un mismo tipo celular, el hepatocito. Por lo tanto, no hay diferenciación de funciones con arreglo a tipos celulares (puesto que solo hay los dos citados), sino en virtud de los orgánulos en que se desarrolla cada una de ellas. En ellos radica la función y esta se diferencia de unos orgánulos a otros.
El hígado es un órgano muy irrigado, y el flujo sanguíneo en su interior está organizado de tal modo que cada hepatocito está en contacto con sangre venosa proveniente del tubo digestivo y sangre arterial procedente de la aorta. Los capilares procedentes del intestino se van agrupando hasta confluir en la vena porta hepática que penetra en el hígado donde se vuelve a ramificar en múltiples capilares, formando una red de (los denominados) sinusoides hepáticos. Esos sinusoides son los que permiten que la sangre procedente directamente del estómago e intestino delgado difunda a todas las células del hígado para que provean a estos de las sustancias absorbidas. La sangre sale del órgano con los productos elaborados o expulsados para su eliminación (como la urea, por ejemplo) y lo hace a través de la vena hepática, en la que confluyen los capilares que lo drenan. Además de la sangre procedente del digestivo, al hígado también le llega sangre arterial con oxígeno y otras sustancias procedentes del conjunto del organismo para su procesamiento en los hepatocitos.
El hígado se organiza en lóbulos, disposiciones hexagonales de tejido en torno a una vena central. A lo largo de los vértices exteriores de los lóbulos discurren una rama de la vena porta hepática, otra de la arteria hepática y un ducto biliar. De la vena y arteria citadas salen amplios sinusoides que se dirigen hacia la vena central. Las células de Kupffer tapizan los sinusoides, atrapan a cuantas bacterias y eritrocitos fuera de servicio se encuentran, y los eliminan. Los hepatocitos se disponen en placas de dos células cada una, de manera que todas se encuentran en contacto con los vasos sanguíneos, como hemos dicho antes. Las venas centrales de cada lóbulo convergen en la vena hepática que es la que sale del hígado y se une a la vena cava inferior.
El canalículo de la bilis discurre entre las dos células de cada placa, recibiendo secreción biliar de todas ellas. Los canalículos se dirigen hacia el exterior del lóbulo y transportan así la bilis hasta los ductos que se encuentran en los vértices de los hexágonos (lóbulos hepáticos); los ductos de cada lóbulo acaban agrupándose en el ducto hepático común, que es el que lleva la bilis al duodeno.
El hígado produce bilis de forma permanente, pero el acceso de la bilis al duodeno se encuentra controlado por el esfínter de Oddi, que solo permite su paso cuando hay quimo en el duodeno y puede, por lo tanto, ser utilizado. Cuando el esfínter se encuentra cerrado las sales biliares se acumulan en la vesícula biliar, que hace las veces de depósito. Con cada comida la bilis entra en el duodeno debido al vaciado de la vesícula y al aumento en la producción a cargo del hígado. Los seres humanos producimos entre 250 ml y 1 l de bilis cada día. El mensajero que desencadena la contracción de la vesícula y la relajación del esfínter de Oddi es la hormona CCK (la colecistoquinina que vimos en El páncreas) y que se libera por efecto de la presencia de grasa en el duodeno.

La bilis contiene colesterol, lecitina, sales biliares, y bilirrubina y biliverdina, y estas sustancias se encuentran en una solución ligeramente básica, similar a la producida por las células de los ductos del páncreas. Las sales biliares son derivados del colesterol y participan en la digestión y absorción de las grasas debido a su acción detergente y a la formación de micelas. Tras su intervención la digestión de lípidos, son reabsorbidas mediante transporte activo en el íleon, la zona terminal del intestino delgado. De allí, a través del sistema porta, vuelven al hígado. Se calcula que en promedio, en cada comida unas mismas sales circulan dos veces por el duodeno e intestino delgado, y que cada día se pierden con las heces un 5% de las sales biliares. Su pérdida es repuesta por los hepatocitos de manera que el total se mantiene constante.

Las sales biliares intervienen en la digestión de las grasas favoreciendo su emulsificación. Convierten gotas grandes de lípidos en gotas de muy pequeño tamaño suspendidas en el quimo acuoso. De esa forma aumenta muchísimo la relación superficie/volumen y exponiendo una mayor superficie micelar a la acción de la lipasa pancreática, de manera que esta puede atacar las moléculas de triglicéridos. Sin la formación de emulsiones, la mayor parte de esos triglicéridos quedarían en el interior de las gotas grandes lejos del alcance enzimático.
Las sales biliares actúan como los jabones. Ambos son anfipáticos: contienen una porción hidrofóbica (un esteroide derivado del colesterol) y otra hidrofílica con carga negativa (una taurina o glicina) . Las sales se adsorben a la superficie de una gota de grasa, con una orientación acorde a su naturaleza; esto es, la porción liposoluble interactúa con la superficie de la gota lipídica, mientras que la porción cargada queda orientada hacia el exterior y disuelta en agua. Los movimientos intestinales ayudan a fragmentar esas gotas lipídicas y hacer que sean cada vez más pequeñas. En ausencia de sales biliares (detergente), las pequeñas gotas tenderían a caolescer, volviéndose a formar grandes gotas. Pero eso no ocurre porque las cargas negativas solubles en agua lo impiden; forman una especie de capa de cargas negativas que se repelen unas a otras, de manera que no llegan a entrar en contacto. Las gotas lipídicas pequeñas tienen un diámetro que varía entre 200 y 5000 nm.
Para la digestión de las grasas es esencial el concurso de la lipasa procedente del páncreas. La acción de esta enzima es efectiva porque el páncreas secreta la coenzima colipasa, también un péptido alifático, que ocupa el lugar de algunas sales biliares en la superficie de las gotas lipídicas y desde esa posición se une a la lipasa de manera que esta pueda hacer su trabajo. La enzima queda así enganchada a la superficie de las gotas, rodeada de sales biliares, pero de tal forma que puede actuar directamente sobre las moléculas lipídicas.
La absorción de lípidos en el intestino se produce gracias a la formación de micelas. Las micelas son estructuras de entre 3 y 10 nm de diámetro en las que intervienen, además de las sales biliares, el fosfolípido lecitina y el colesterol. La lecitina, como las sales biliares, es anfipática, de manera que se asocia con las sales formando agrupaciones cuya porción hidrofóbica se dispone en el interior, junto al colesterol, y la porción hidrofílica en el exterior. De esa forma, moléculas hidrofóbicas que resultan de la digestión de los lípidos (monoglicéridos, ácidos grasos libres y vitaminas liposolubles) son transportados en emulsión acuosa, gracias a la cubierta hidrofílica, hasta los enclaves del epitelio intestinal donde son absorbidos.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo El hígado y la vesícula biliar se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Avances contra la enfermedad de hígado graso no alcohólica
- Una ecuación para determinar la grasa en el hígado a partir de una resonancia
- Proteínas plasmáticas
Iranzu Laura Guede: “Erdi Aroko biztanleria orokorrean, elikadurari begira orojalea zela ikusi dugu” #Zientzialari (111)
Teknologien aurrerapenek, antzinako gizakien bizimoduen berri izateko metodoak ekarri dizkigu. Zehazki izaki bizidunen hezurretan eta hortzetan neurtutako isotopo egonkor desberdinak ezagutzeko aukera.
Isotopo hauen bidez, antzinako gizakien elikadura eta mugikortasun ereduak eraikitzea ahalbidetzen du. Izan ere “jaten duguna gara”.
Erdi Aroko Ipar Iberiar Penintsulan kokatzen diren aztarnategietan egindako elikadura eta mugikortasun ikerketen berri izateko, Iranzu Laura Guede Geologian doktorearekin eta UPV/EHUko ikertzailearekin elkartu gara.
“Zientzialari” izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.
The post Iranzu Laura Guede: “Erdi Aroko biztanleria orokorrean, elikadurari begira orojalea zela ikusi dugu” #Zientzialari (111) appeared first on Zientzia Kaiera.
La adaptación a los incendios forestales
Para empezar y como ejemplo nos sirve la Comunidad Autónoma del País Vasco. El 27 de diciembre de 2016 aprobó el Consejo del Gobierno Vasco el Plan Especial de Emergencias por Riesgo de Incendios Forestales. En el texto, en la página 9, aparece un cuadro con la superficie quemada en la Comunidad entre 1985 y 2012. El máximo está en el catastrófico 1989, en el mes de diciembre, con más de 27000 hectáreas de superficie arbolada. Fue una sequía en invierno, después de una larga sequía estival, y con fuertes vientos que dificultaban la extinción de los incendios.
El siguiente año en superficie quemada fue 1985, con casi 2600 hectáreas, seguido de 2002 con 700 hectáreas y 1995 con 600 hectáreas. En 2011 fueron 140 hectáreas y en 2012, último año con datos en este Plan, fueron 175 hectáreas. En España, y según datos del Ministerio de Medio Ambiente, los años recientes con más de 400000 hectáreas quemadas fueron 1985, 1989 y 1994.
Estos son los datos para la Comunidad y para España y no hay que olvidar que a nivel del planeta, más o menos el 3% de su superficie se quema cada año. Los incendios forestales aparecen cuando las plantas colonizan la tierra, en bosques de entre 350 y 400 millones de años de antigüedad. Hay restos de carbón de incendios tan antiguos como del Silúrico, hace unos 400 millones de años.
Cada fuego es una combinación particular de frecuencia, intensidad, tamaño, estación, tipo de propagación y extensión. Pero, también es evidente que los incendios influyen, además de todo lo que significan como suceso público, en nuestra percepción del entorno, en concreto, del paisaje. Francisco Lloret y sus colegas, de la Universitat Autònoma de Barcelona, han estudiado los cambios en el paisaje en el municipio de Tivissa, en Tarragona, entre 1956 y 1993.

Es un municipio agrícola con zonas difíciles y poco productivas que se han abandonado en los últimos años, y se han cubierto de matorrales que han homogeneizado el paisaje. Además, ha disminuido la superficie de bosques. Los autores encuentran que los incendios son más probables en áreas homogéneas con árboles, y provocan que el paisaje posterior también sea homogéneo.
Concluyen que, en las zonas con actividad humana el paisaje es más heterogéneo, por ejemplo, con distintas actividades agrícolas y modelos de explotación de la tierra, y los incendios se controlan mejor quizá por ser heterogéneas, con diferentes plantaciones que, a su vez, tienen diferente capacidad de incendiarse. Y, además, los que se aprovechan de las actividades agrícolas procuran defenderlas del fuego y no provocar incendios.
En las zonas sin actividad agrícola, muy iguales, con árboles y arbustos, los incendios se extienden con más facilidad y provocan, después y en primer término, mayor diversidad.
Es evidente que, sea a más o a menos diversidad, los incendios influyen en el paisaje y en nuestra precepción del mismo.

Sin embargo, un paisaje quemado se puede recuperar, quizá no exactamente igual al que existía antes del fuego, y puede convertirse en un área ecológicamente saludable. Fue el año 1988, en una gran sequía que, al año siguiente, en 1989, provocaría los incendios en el País Vasco, cuando ocurrió el gran incendio en Estados Unidos, en el Parque Nacional de Yellowstone, en el que ardieron más de 600000 hectáreas, algo así como Gipuzkoa, Bizkaia y gran parte de Álava. Fue uno de los mayores incendios forestales en una zona templada que aparece en la historia escrita. Daniel Donato y su grupo, del Departamento de Recursos Naturales del Estado de Washington en Olympia, nos cuentan cómo está el parque 24 años después.
Las zonas centrales del bosque, más tupidas y con más árboles, se han regenerado con fuerza y no ha influido la severidad del incendio. Las zonas más secas, con menos árboles, se han recuperado peor, en más tiempo, y, sobre todo, lo hacían con más eficacia si cerca habían quedado parcelas pequeñas sin quemar que pueden funcionar como reserva de semillas.

La regeneración culminó, en general, a los 15 años del incendio aunque, en las mejores zonas, el crecimiento ha continuado. A los 24 años, en esas zonas de bosque más maduro, el reemplazamiento de los árboles anteriores al incendio está completo. En las áreas más secas y con menos bosque, ha quedado, en muchos lugares, una estepa herbácea que necesitará varias décadas o, incluso, teniendo en cuenta el calentamiento global, nunca volverá a ser bosque.
Los resultados sobre incendios en la Península Ibérica son parecidos, tanto en Galicia, según el grupo de Otilia Reyes, de la Universidad de Santiago de Compostela, como en Cataluña, según Santiago Martín y Lluis Coll, del Centro de Ciencias Forestales de Solsona.
Son dos paisajes diferentes en dos climas distintos, en el oeste y este de la Península. En ambos casos, los incendios fueron en bosques de pinos, con el pino marítimo (Pinus pinaster), en Serres, en la costa de A Coruña y en 2014, un año antes del estudio, y pino laricio (Pinus nigra) en el centro de Cataluña y en 1998, siete años anterior al estudio.
Los resultados son parecidos y, como en Yellowstone, cuanto más potente es el bosque original, mejor se recupera. Y, también, ayuda la presencia de pequeñas parcelas no quemadas como origen de semillas para repoblar. Solo en las zonas más secas aparecen áreas con arbustos o praderas. Para la recuperación de las zonas con buen bosque original no se necesita ninguna intervención.
Como nos cuentan William Bond y John Keeley, de las universidades de El Cabo, en Sudáfrica, y de California en Los Angeles, grandes áreas del mundo arden de manera regular y, por tanto, los ecosistemas se han incendiado durante cientos de millones de años. Hay evidencias de incendios de hace 420 millones de años, desde la aparición de las plantas terrestres. Así se ha construido el paisaje que conocemos y se mantienen la estructura y la función de esos ecosistemas, muy adaptados a los incendios periódicos. Por tanto, los incendios son una fuerza evolutiva de selección natural lo que implica que los bosques que ahora conocemos se han seleccionado y aguantan y se recuperan de los incendios porque así se han formado. Y el fuego estimula la regeneración con, por ejemplo, semillas que germinan estimuladas por el calor o por sustancias químicas emitidas por la madera quemada o, también, la floración acelerada por el fuego.
Después de revisar incendios y diversidad de plantas en todo el planeta, excepto la Antártida, y desde finales del siglo XX hasta inicios de XXI, Juli Pausas y Eloi Ribeiro, del CIDE-CSIC de Montcada, en Valencia, y del ISRIC de Wageningen, en Holanda, han recopilado casi 200 millones de citas. Sus resultados demuestran que la mayor diversidad de plantas se da con la mayor productividad y, también, con la actividad de incendios. Así, el fuego explica una proporción significativa de la diversidad de las plantas. En conclusión, el fuego aumenta la heterogeneidad del paisaje y crea nuevos nichos con oportunidades para una gran variedad de especies.

Las plantas adaptadas al fuego han seleccionado determinadas características que les benefician en caso de incendio. En las áreas con clima mediterráneo, como la propia cuenca del Mediterráneo, California, región de El Cabo en Sudáfrica y Chile, el grupo de Philip Rundel, de la Universidad de California en Los Angeles, han revisado el número de especies vegetales adaptadas al fuego. En el Mediterráneo abundan las plantas que rebrotan después del incendio; tienen germinación estimulada por el fuego, sea por el calor, o por el humo; y florecen estimuladas por el fuego. Para estas especies, el fuego ha sido un estímulo importante para la diversificación y aparición de nuevas especies.
Como resumen final sirve la publicación de Juli Pausas y Jon Keeley, del Centro de Investigación sobre Desertificación del CSIC en Valencia y del Servicio Geológico de Estados Unidos respectivamente, cuando escriben que no solo el clima y el suelo explican la distribución de las especies animales y vegetales en el planeta, también interviene el fuego. Desde hace mucho tiempo, unos 400 millones de años, impulsando la aparición de especies nuevas adaptadas a los incendios periódicos. Sin embargo, nuestra especie ha cambiado la relación entre el fuego y los seres vivos. Primero, Homo utilizó el fuego para adaptar el entorno a sus necesidades. Pero, y en segundo lugar, lo hace con tal intensidad y extensión que cambió muchos ecosistemas y pone en peligro la sostenibilidad.
Referencias:
Archibald, S. et al. 2018. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13: 033003.
Bond, W.J. & Keeley, J.E. 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20: 387-394.
Bowman, D.M.J.S. et al. 2009. Fire in the Earth system. Science 324: 481-484.
Donato, D.C. et al. 2016. Regeneration of montane forests 24 years after the 1988 Yellowstone fires: A fire-catalyzed shift in lower treelines? Ecosphere 7: e01410
Pausas, J.G. & Keeley, J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601.
Pausas, J.G. & Ribeiro. E. 2017. Fire and plant diversity at the global scale. Global Ecology and Biogeography DOI: 10.1111/geb.12596
Rundel, P.W. et al. 2018. Fire and plant diversification in Mediterranean-climate regions. Frontiers in Plant Science 9: 851.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo La adaptación a los incendios forestales se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Incendios, los grafos de visibilidad y la conjetura de Collatz
- “El bien común como adaptación” por Antonio Lafuente
- Las aves de Prometeo
Asteon zientzia begi-bistan #245
Nahasmendu bipolarra duten pertsonengan depresio-aldiak prebenitzeko litio gatzek duten eraginkortasuna aztertu dute. Tratamenduari atxikidura ona izan duten pazienteek depresio aldi gutxiago izan dituzte eta baita aldi maniako eta hipomaniako gutxiago. Arabako Unibertsitate Ospitalean egin da ikerketa eta 72 pazienteri jarraipena egin zaie hamar urtez.
Opiodeen krisia AEBek izan duten “osasun-hondamendirik handienetako eta konplexuenetako bat” dela adierazi du AEBko Elikagaien eta Sendagaien Administrazioak (FDA). Neurrien artean, aipatzen dira tratamenduari egokitutako dosi eta neurrian ematea sendagaiak, adikzioak eta gaindosiak saihesteko. Horretaz gain, botikak hartzeko modu berriak ere probatzeko asmoa du. Bestalde, gaindosiak eragindako heriotzak saihesteko, naloxona merkatuan libre saltzeko modua aztertuko du. Testuan dauden gainontzeko neurriak irakurtzeko, jo ezazue artikulura!
MedikuntzaBigarren aldiz, hiesa zuen paziente bat sendatzea lortu dute. Hezur-muineko transplantea eginez, hiesa senda daitekeela berretsi dute. Transplantearen ondoren, ikertzaileek ez dute ikusi birusaren arrastorik eta transplantea egin ziotenetik, ez da birusik agertu, ezta botika erretrobiralak hartzeari utzita ere. Halere, ICISTEM lan-taldeko ikertzaileek esan dute zuhur jokatu eta guztiz sendatuta dagoela ziurtatzeko denbora gehiago itxoin behar dela.
Berriak ere eman ditu xehetasunak albiste honen inguruan. Kasu honetan pazientea 2003. urtetik zen GIBduna; 2012. urtean linfoma bat atzeman zioten, eta hori tratatzeko egin zioten zelula amen transplantea, 2016. urtean. Zelula horiek mutazio jakin bat zuten, GIB birusaren sarbide eragozten duena, eta itxura guztien arabera, horrek lortu du birusaren erremisioa.
BiologiaIpurtargiak oso bitxiak dira. Gauean argi berdexka egiteko gai dira eta horrek bi helburu ditu: jakina da gorteatzeko tresna dela baina era berean, harrapakarietatik babesteko tresna ere bada: ikusgarriago egiten dira haiek jatea kaltegarria eta toxikoa izan daitekeela ohartarazteko. Argi horren atzean luziferina izeneko molekula dago. Baina zer dago zehazki lumineszentzia horren atzean? Ez galdu Josu Lopez-Gazpiok eman digun azalpen interesgarria!
Zenbait erle espeziek elikagaiak non dauden deskribatzeko darabilten “dantza” ikertu dute zientzialariek. Baina badirudi hori mito bat dela. Izan ere, erle gehienek ez dute dantzarik egiten. Hala ere, dantzarena oso kuriosoa eta liluragarria da. Portaera hori izan dute ikergai Mainzeko (Alemania) eta Lausanako (Suitza) Unibertsitateetako ikertzaileek. Proba horien bitartez saiatu dira argitzen dantzaren lengoaiak koloniaren arrakastan duen eragina. “Gure harridurarako, aurkitu dugu elikagaiak biltzerakoan erleen koloniak eraginkorragoak direla dantzaren lengoaia kendu zaienean”, azaldu du ikertzaile batek.
MeteorologiaIkuspuntu meteorologikotik, otsaila ezohikoa izan da: ohi baino tenperatura beroagoak izan ditu eta lehorragoa izan da. Eguraldi honek eragozpenak handitu ditu: alde batetik, alergiak, baina baita suteak ere. Horretaz gain, otsaileko eta martxoaren hasierako eguraldi egonkorrak beste arazo bat eragin du: kutsadura.
FisikaMaterial topologikoak ezagutu ditugu artikulu honen bidez. Berrian azaltzen digutenez, duela hamar urte pasatxo aurkitu zuten lehen material topologikoa, eta itxaropenak piztu zituen haren propietate bereziak. Zientzialariek pentsatu zuten oso material arraroak zirela. Orain, nazioarteko talde batek –bertan bi ikertzaile euskaldun ari dira lanean– materialon katalogo bat antolatu du sarean, eta tresna bat eratu du material batek halako ezaugarriak ote dituen jakiteko. Emaitza harrigarriak: materialen %27 inguruk dituzte propietate topologikoak. Topological Materials Database katalogoan azter daitezke materialak.
Adimen artifizialaGorka Gazkune UPV/EHUko Konputazio Zientzien eta Adimen Artifizialaren saileko irakasleak kontatzen digu honetan Elon Musk enpresari estatubatuarrak orain dela urte batzuk adimen artifiziala modu irekian garatzeko enpresa bat sortu zuela. Orain enpresa hori, OpenAI izenekoa, erreferente bilakatu da. Azken hilabete honetan, esaterako, hizkuntza-eredu zehatz eta boteretsua argitaratu dute. Baina OpenAIko ikertzaileek erabaki dute ez dutela beraien eredua jendearekin partekatuko. Badirudi eredu honek testu onak idazten dituela eta pentsatzen dute helburu gaiztoekin erabil daitekeela. Adimen artifiziala arloarekin batera beti dator etika. Ez galdu Azkuneren zutabea!
GenetikaZer da metabolomika? teknologia omikoen baitako azken diziplinatzat hartzen da; fenotipotik gertuen dagoen diziplina da, eta, hortaz, une jakin bateko organismoaren egoera hoberen adierazten duena. Diziplina honen helburua da metaboloma osoa aztertzea, baina, genomarekin edo proteomarekin alderatuta, metaboloma definitzea ez da erraza, testuan azaltzen digutenez. Diziplina konplexu honi buruz gehiago jakiteko, jo ezazue artikulura!
–——————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxue Razkin kazetaria da.
——————————————————————
The post Asteon zientzia begi-bistan #245 appeared first on Zientzia Kaiera.
¿Existe el geoturismo?
Si cerrásemos los ojos para visualizar la imagen de un geólogo, probablemente imaginaríamos a una persona descubriendo fósiles y recopilando y coleccionando minerales. No obstante, esta disciplina académica cuenta con muchísimas más aplicaciones desconocidas para gran parte de la sociedad.
Con el objetivo de dar visibilidad a esos otros aspectos que también forman parte de este campo científico nacieron las jornadas divulgativas “Abre los ojos y mira lo que pisas: Geología para miopes, poetas y despistados”, que se celebraron los días 22 y 23 de noviembre de 2018 en el Bizkaia Aretoa de la UPV/EHU en Bilbao.
La iniciativa estuvo organizada por miembros de la Sección de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU, en colaboración con el Vicerrectorado del Campus de Bizkaia, el Ente Vasco de la Energía (EVE-EEE), el Departamento de Medio Ambiente, Planificación Territorial y Vivienda del Gobierno Vasco, el Geoparque mundial UNESCO de la Costa Vasca y la Cátedra de Cultura Científica de la UPV/EHU.
Los invitados, expertos en campos como la arquitectura, el turismo o el cambio climático, se encargaron de mostrar el lado más práctico y aplicado de la geología, así como de visibilizar la importancia de esta ciencia en otros ámbitos de especialización.
Asier Hilario, director científico del Geoparque de la Costa Vasca, se encarga de ahondar en la geología como recurso. Algunos de los principales destinos turísticos del mundo son pura geología, tienen millones de visitantes y aunque muchos no lo sepan, hay algo de esa geología que les interesa. Desde su experiencia, expone las principales claves y oportunidades del geoturismo para crear destinos de turismo innovadores y sostenibles que fomenten el disfrute y conocimiento de las ciencias de la Tierra.
Edición realizada por César Tomé López
El artículo ¿Existe el geoturismo? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Geología, ver más allá de lo que pisamos
- Patrimonio geológico: la otra mitad del ambiente
- Geología: la clave para saber de dónde venimos y hacia dónde vamos
Ezjakintasunaren kartografia #252
Ez dago xederik prozesu naturaletan. Hori da Darwinen herentzia. Jesús Zamora Bonillak garatzen du Requiem for final causes artikuluan.
Gure hesteetan bakterio jakin batzuen presentzia edo gabezia izateak, gaua eta eguna suposa dezake minbizia tratatzeko orduan. Pasquale Pellegrini ikertzaileak azaltzen du zergatia: Bacteria and cancer: the deadly mix.
Substantzia bat gainazal metaliko batean pikosegundo bat baino eskala txikiagoan adsorbatzen denean, hor gertatzen dena azaltzen duen teoriarik ez dugu izan esku artean. Orain badugu azalpena DIPCri esker: The ultrafast dynamics of adsorbates deciphered.
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #252 appeared first on Zientzia Kaiera.
Proteómica: cuando las proteínas y la espectrometría de masas van de la mano
La Facultad de Ciencias de Bilbao comenzó su andadura en el curso 1968/69. 50 años después la Facultad de Ciencia y Tecnología de la UPV/EHU celebrará dicho acontecimiento dando a conocer el impacto que la Facultad ha tenido en nuestra sociedad. Durante las próximas semanas en el Cuaderno de Cultura Científica y en Zientzia Kaiera se publicarán regularmente artículos que narren algunas de las contribuciones más significativas realizadas a lo largo de estas cinco décadas. Comenzamos con la serie “Espectrometría de masas”, técnica analítica que supone el ejemplo perfecto del incesante avance de la Ciencia y la Tecnología.
La espectrometría de masas (MS) es una técnica habitual entre los químicos desde hace ya 100 años, pero no fue hasta hace 3 décadas que se empezó a utilizar como técnica de análisis de proteínas. Para analizar un analito mediante espectrometría de masas (MS) es necesario ionizar dicho analito y pasarlo a fase gaseosa. Durante mucho tiempo, la posibilidad de ionizar macromoléculas como las proteínas o fragmentos de proteínas, es decir péptidos, y pasarlos a fase gaseosa se consideraba una tarea tan posible como hacer volar a un elefante. Sin embargo, el desarrollo y comercialización de dos métodos de ionización a los que se denominó ionización “suave”, demostraron que era posible analizar macromoléculas del tamaño de las proteínas, tanto en disolución como en estado seco cristalino; éstos métodos de ionización se conocen hoy día como ionización electrospray (ESI) y ionización por desorción láser asistida por matriz, (matrix assisted laser desorption ionization) (MALDI). En ESI, se aplica un alto voltaje a la solución que contiene el analito a su paso por una fina aguja perforada. A medida que se va evaporando la solución con las moléculas cargadas, se va reduciendo el tamaño de las gotas, hasta conseguir que pasen a estado gaseoso. Por su parte, en MALDI se dispara con láser a una placa de acero en la que se ha secado el analito junto con una matriz. La matriz absorbe la energía del láser que a su vez se transfiere a la muestra, haciendo que cambie a estado gaseoso.
Pero, ¿por qué las proteínas? ¿a qué viene ese interés por analizarlas? La razón es que las proteínas son las moléculas fundamentales de todos los seres vivos. Las proteínas son las encargadas de realizar diversas tareas en nuestras células; entre otras, catalizan reacciones químicas, transportan moléculas, mantienen la estructura celular y nos protegen frente a los patógenos. Nuestro cuerpo está formado por trillones de células, y cada una de ellas cuenta con miles de proteínas diferentes. De hecho, dependiendo del catálogo o conjunto de proteínas que contenga un tipo de célula, llevará a cabo unas u otras funciones y tendrá unas u otras características. Todas las células de un ser vivo contienen la misma información genética, es decir, el genoma de todas sus células es idéntico. La información necesaria para producir cada proteína está escrita en los genes. Dicho de otro modo, los genes son las recetas que se siguen para crear las proteínas, y dependiendo de las recetas que se utilicen en cada momento, se producirán unas proteínas u otras. Se denomina proteoma a la colección de proteínas de las que dispone una célula en un momento concreto. A diferencia del genoma, el proteoma celular varía continuamente; en respuesta a cualquier estímulo que llegue a las células, o cuando deben hacer frente a cualquier ataque, es decir, con el fin de adaptarse al entorno, las células producirán diferentes proteínas que trabajarán conjuntamente. Esto explica cómo, contando ambas con el mismo genoma, una oruga se convierta en mariposa (Imagen 1).

Las proteínas, al igual que nosotros, tienen sus propias «redes sociales». Cumplen sus funciones interaccionando entre ellas más que individualmente. A pesar de ello, estas interacciones suelen ser, en la mayoría de los casos, temporales. Se crean y se destruyen según las necesidades celulares. Habiendo millones de proteínas en la células, la red de interacciones intracelulares es tan compleja como la que puede haber entre todas las personas del planeta. El funcionamiento de esa red de proteínas condicionará la salud de la célula y, en consecuencia, la de todo el organismo. Por eso es tan importante estudiar las proteínas y sus interacciones, es decir, los proteomas, e intentar interpretarlos en su conjunto. En consecuencia, uno de los retos fundamentales de la biología actual es describir los proteomas cualitativamente y cuantitativamente. Dicho objetivo parece alcanzable y pocos dudan del liderazgo que ha tomado la proteómica en este camino.
La proteómica estudia los proteomas. Fue en 1975 cuando por primera vez se separaron miles de proteínas de la bacteria Escherichia coli mediante electroforesis bidimensional en gel (2DE). Sin embargo, la identificación de dichas proteínas, concretar cuáles eran exactamente, constituía otro reto diferente. Para abordarlo, fue necesario, tanto desarrollar técnicas de secuenciación parcial, léase degradación de Edman, como ajustar la propia técnica de espectrometría de masas (MS) al análisis de proteínas. La MS es, a día de hoy, el método que se utiliza habitualmente para identificar proteínas. Para poder interpretar los proteomas en su conjunto, además de identificar las proteínas, hay que cuantificarlas. Los primeros pasos para la cuantificación de proteínas se dieron mediante el análisis de imágenes de los geles de 2DE. Si bien sigue siendo una técnica adecuada para el análisis proteómico, hoy en día ocupa un segundo lugar, muy por detrás de la proteómica basada en la espectrometría de masas (MS-based proteomics). De hecho, actualmente, la MS es el método habitual para identificar y cuantificar las proteínas en muestras proteicas complejas. Se ha convertido pues en una técnica fundamental para interpretar la información codificada en el genoma.
Tal y como se ha mencionado anteriormente, las técnicas habituales utilizadas para ionizar y evaporar proteínas y péptidos son ESI y MALDI. La técnica MALDI-MS se utiliza para analizar mezclas de péptidos relativamente simples. En cambio, los sistemas ESI-MS acoplados a la cromatografía líquida (LC-MS), son los más adecuados para el análisis de muestras complejas. Siendo los proteomas, por definición, complejos, las técnicas de LC-MS han prevalecido en la proteómica. La precisión, sensibilidad y resolución de masas, junto con su velocidad, son las claves del éxito de las técnicas de LC-MS. Durante los últimos años, se ha podido identificar, cuantificar y caracterizar un enorme número de proteomas mediante diferentes procedimientos de LC-MS. Entre los logros conseguidos a nivel de proteómica, cabe destacar dos borradores del proteoma humano publicados en 2014, y el actual Proyecto Proteoma Humano (HPP) dirigido por la Organización Mundial del Proteoma Humano (HUPO)
Pero, ¿qué es lo que hacemos exactamente en un laboratorio de proteómica? Sea cual sea la muestra recibida (muestra obtenida de una biopsia, células animales o vegetales, bacterias, secreción biológica…), habitualmente se aplica el flujo de trabajo denominado proteómica bottom-up o proteómica ascendente, de abajo hacia arriba (Imagen 2). En primer lugar, se extraen las proteínas de la muestra. A continuación, se utiliza una enzima que digiere las proteínas, habitualmente la tripsina, para trocear las proteínas en trozos pequeños denominados péptidos. Los péptidos de la mezcla se separan en la cromatografía líquida de fase inversa acoplada a la ionización por electrospray. A medida que los péptidos eluyen de la columna, se van ionizando y pasan al espectrómetro de masas. Allí, los iones de los péptido se van separando y detectando en función de su relación masa-carga (m/z). Los péptidos más abundantes se aíslan del resto, y se fragmentan, dando lugar a espectros de fragmentación. Estos espectros son los que contienen la información que permite identificar y cuantificar los péptidos. Finalmente, los datos obtenidos por el espectrómetro de masas se analizan mediante herramientas informáticas específicas. De esta manera, es posible saber qué proteínas hay en la muestra analizada y en qué cantidad.

Durante la última década, la proteómica basada en la MS se ha convertido en una de las principales herramientas analíticas para las biociencias. Ha permitido estudiar las proteínas desde diversas vertientes, y ha facilitado el camino para conocer sus estructuras, variaciones, cantidades, modificaciones postraduccionales e interacciones. Además, gracias a la proteómica nos encontramos más cerca de identificar las proteínas implicadas en el desarrollo de diversas enfermedades y los biomarcadores necesarios para el diagnóstico de las mismas. Durante los próximos años, se irán completando los catálogos proteicos de diferentes condiciones celulares. Junto a los resultados obtenidos a partir de la genómica, epigenómica, metabolómica y otras «ómicas» a gran escala, los descubrimientos obtenidos gracias a la proteómica contribuirán a la construcción de modelos celulares. De hecho, esa es la tendencia actual: trabajar desde un punto de vista multidisciplinar con el fin de construir modelos matemáticos y estadísticos que ayuden a aclarar la complejidad de los procesos biológicos; y es precisamente ahí donde la proteómica jugará un papel relevante.
Más información
- Fenn JB (2003) “Electrospray wings for molecular elephants (Nobel lecture)” Angew Chem Int Ed Engl. 42(33), 3871-94. DOI:10.1002/anie.200300605
- Fenn JB et al. (1989) “Electrospray ionization for mass spectrometry of large biomolecules” Science 246(4926), 64-71. DOI: 10.1126/science.2675315
- Tanaka K et al. (1988) “Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry” Rapid Communications in Mass Spectrometry 2(8), 151–153. DOI:10.1002/rcm.1290020802
- Karas M and Hillenkamp F (1988) “Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons” Anal Chem. 60(20), 2299-301. DOI: 10.1021/ac00171a028
- O’Farrell (1975) “High resolution two-dimensional electrophoresis of proteins” J Biol Chem 250(10), 4007-21.
- Kim MS et al. (2014) “A draft map of the human proteome” Nature 509(7502), 575-81. DOI: 10.1038/nature13302
- Wilhelm M et al. (2014) “Mass-spectrometry-based draft of the human proteome” Nature 509(7502), 582-7. DOI: 10.1038/nature13319
- HUPO: https://hupo.org/human-proteome-project
Sobre los autores: Miren Josu Omaetxebarria, Nerea Osinalde, Jesusmari Arizmendi y Jabi Beaskoetxea, miembros del departamento de Bioquímica y Biología Molecular, y Kerman Aloria, técnico de SGIker.
El artículo Proteómica: cuando las proteínas y la espectrometría de masas van de la mano se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Cartografiando territorio inexplorado: imagen por espectrometría de masas
- Espectrometría de masas: de un isótopo de neón a elefantes que vuelan
- A new hero is born: La espectrometría de masas al servicio de la justicia
Erabakitzen dudana izango naiz
“Emakumeen eta neskatoen aurkako edozein motatako diskriminaziori amaiera ematea ez da soilik oinarrizko giza eskubide bat, nahitaez ezinbestekoa da garapen iraunkorra bultzatzeko. Behin baino gehiagotan egiaztatu da emakumeen eta neskatoen ahalduntzeak eragin biderkatzaileak izateaz gain, mundu mailako garapena zein hazkunde ekonomikoa sustatzen laguntzen duela.”
“Lau neska gazte dira `Erabakitzen dudana izango naiz´ kanpainaren protagonistak, eta gizarteari galdetzen diote prest dagoen beraien eskubideak modu aske batean aurrera eramateko aukera bermatzeko. Neskak Historian zehar erreferenteak izan diren emakumeen irudiekin batera agertzen dira. Hala nola, Marie Curie zientzialaria, Clara Campoamor idazle eta politikoa, Frida Kahlo margolaria eta Maria Antonia Uzkudun erraketista, Txikita de Anoeta ezizenez ezagunagoa dena. Berdintasunaren bidean aurrekariak izan ziren emakumeei omenaldia egiteaz gain, beraien irudiek erreferenteak izatearen beharraz hitz egiten digute, eta beraz, hurrengo belaunaldietarako eredu bilakatu daitezen, emakumeak ikusgarri egin eta aintzat hartzeko beharraz.”
Neska-mutilentzat erreferente aparta da Skłodowska-Curie (1867-1934), nahiz eta ez izan zientzia arloko ikasketarik gazte hauen buruan dituzten hautagaien artean. Duela urtebete, Javier San Martin kazetariak Hélène Langevin-Joliot fisikaria elkarrizketatu zuen Mujeres con ciencia blogerako. Hélène Irène Joliot-Curie eta Frédéric Joliot-Curie fisikarien alaba da eta Marie Curie eta Pierre Curieren biloba.
Elkarrizketan kazetariak aipatu zion Hélène Langevin-Jolioti ikerketak denbora tarte handia eskatzen duela eta haren guraso zein aiton-amonek laborategian emango zutela bizitzaren zati handi bat. Hélène Langevin-Joliotek sutsuki erantzun zion: “Hori mitoa da. Marie Curie emakume zientzialariaren ikurra da eta hori oso garrantzitsua da baina sarritan haren figurari buruzko mitoak sortarazten ditugu. Esaterako, haren bizitza zientziarengatik sakrifikatu zuen emakumea izan zela. Ez da horrelakorik pentsatu behar ez baitzen egia. Eta, bestalde, nire gurasoek aisialdi aktiboa praktikatzen zuten. Tenisara jolasten zuten, mendi irteerak egiten zituzten…”.
Horrela da, mitoak ez dira beharrezkoak baina bai erreferentziazko emakumeak, non begiratu izateko. Horretan dihardute Mujeres con ciencia bloga eta baita Zientzia Kaierako Emakumeak Zientzian atala, erreferentziazko emakumeak bistaratzen.
2019ko martxoaren 8an, aldarrika dezagun indarrez berdintasuna oinarrian duen gizarte baten beharra: #NikErabakitzenDut.
—————————————————–
Egileez:
Marta Macho Stadler, (@MartaMachoS) UPV/EHUko Matematikako irakaslea da eta Kultura Zientifikoko Katedrak argitaratzen duen Mujeres con Ciencia blogaren editorea.
Uxune Martinez, (@UxuneM) Euskampus Fundazioko Kultura Zientifikoko eta Berrikuntza Unitateko Zabalkunde Zientifikorako arduraduna da eta Zientzia Kaiera blogeko editorea.
—————————————————–
The post Erabakitzen dudana izango naiz appeared first on Zientzia Kaiera.
El orden es una fantasía

Uno de los cometidos más sofisticados de las ciencias es mostrar el conocimiento de forma elegante. Pensemos en las fórmulas matemáticas que describen las leyes físicas. En los modelos de moléculas y cristales. En el enunciado de hipótesis. Con qué precisión del lenguaje y con qué precisión plástica describimos cómo es lo que nos rodea. Con qué elegancia.
Para muchos, entre los que me incluyo, el paradigma de todo esto es la Tabla Periódica de los Elementos.
A lo largo de la historia se han sucedido varios intentos de ordenar los elementos químicos. Una vez tuvimos la certeza de que algunas sustancias eran elementos químicos, es decir, que estaban formadas por un solo tipo de átomos; comenzamos a ordenarlos de acuerdo con sus propiedades: peso atómico, tipo y número de elementos con los que enlaza, estado natural… Teníamos la intuición y el deseo de que los elementos que lo conforman todo, el aire, la piel, la arena, todo, respondiesen a un orden mayor, como si este orden nos hubiese venido dado.
Hubo intentos bellísimos, como el del tornillo telúrico. Para ello se construyó una hélice de papel en la que estaban ordenados por pesos atómicos los elementos químicos conocidos, enrollada sobre un cilindro vertical, y al hacer coincidir elementos químicos similares sobre la misma generatriz se apreciaba que el resto de las generatrices surgidas también mostraban relación entre los elementos químicos unidos, lo que claramente indicaba una cierta periodicidad. Era tan bonito que era una pena que no fuese cierto. El tornillo telúrico no funcionaba con todos los elementos químicos, solo servía para los más ligeros.
Hubo otro intento especialmente refinado de ordenar los elementos químicos que tenía relación con la música. Qué fabulosa la relación entre la música y la química. Al ordenar los elementos de acuerdo con su peso atómico creciente -exceptuando el hidrógeno y los gases nobles, que todavía no se conocían- el que quedaba en octavo lugar tenía unas propiedades muy similares al primero. Se le llamó ley de las octavas. Era bonito ver tal relación entre la naturaleza de los elementos químicos y la escala de las notas musicales. Lamentablemente la ley de las octavas empezaba a fallar a partir del elemento calcio. Con lo bonita que era. Una lástima.
Cuando ya se conocían 63 elementos químicos -en la actualidad conocemos 118- se ordenaron en grupos de acuerdo con sus propiedades químicas. Y dentro del grupo, se organizaron por peso atómico creciente. Quien lo hizo por primera vez, hace 150 años, tuvo la osadía de corregir algunos pesos atómicos que hacían peligrar la estética de aquella tabla. Dejó huecos para elementos que, según él, se descubrirían en el futuro. Y es que la tabla, ante todo, tenía que ser bonita, porque la realidad es bonita y tiene que responder a algún orden. Qué locura si no. Pues la tabla de los elementos químicos también.
Aquella tabla fue el origen de la actual Tabla Periódica de los Elementos. Con el tiempo, efectivamente descubrimos más elementos químicos. Rellenamos los huecos, tal y como era de esperar. Y hasta descubrimos que aquel orden no respondía a pesos atómicos crecientes, o al menos no siempre, y de ahí los cambios propuestos. Aquel orden respondía al número de protones que cada elemento químico contiene en su núcleo. Lo llamamos número atómico, pero hace 150 años no se sabía nada de esto. Era bonito, era ordenado, era elegante. Tenía que ser verdad.
En las ciencias, y en cualquier otra forma de conocimiento, la belleza es criterio de verdad. Las leyes físicas que conseguimos expresar con fórmulas matemáticas, cuanto más bellas, más ciertas. Cuanto más y mejor comprimamos su verdad en estilosos caracteres del alfabeto griego, más ciertas. Nos brindan esa sensación tan placentera de tenerlo todo bajo control. Nos hacen creer que, si está ordenado, es que lo hemos entendido.
Las ciencias describen la realidad. Lo hacen a su manera, con su lenguaje propio. El de los números, las palabras, las ilustraciones. Esa descripción nos satisface cuando es lo suficientemente elegante. Podríamos tener un conjunto de 118 elementos químicos de los que conocer absolutamente todo, de forma individual, y no haberlos ordenado jamás. Y sabríamos lo mismo, pero nos daría la impresión de que, sin orden, los datos son solo datos. No hay conocimiento sin orden.
El orden es una fantasía. Esto puede interpretarse de dos formas de fácil convivencia. Es una fantasía porque es una ilusión. La realidad es un caos y somos nosotros con nuestras leyes y nuestras tablas los que creamos la ficción de orden. Es un deseo. Y es una fantasía porque es bonito. Porque así entendemos la belleza. Por eso el orden es un deseo de belleza autocumplido.
Los grandes hitos del conocimiento, entre ellos la Tabla Periódica de los Elementos, tienen algo en común: nos hablan de nosotros. Todos ellos revelan la pasta de la que estamos hechos.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo El orden es una fantasía se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Los cuantificadores se aprenden en el mismo orden, sea cual sea la lengua
- Los 880 cuadrados mágicos de orden 4 de Frénicle
- #Naukas15 Fantasía en la divulgación: una estrella para Cervantes