Dozena erdi ariketa 2024ko udarako: erantzunak

Zientzia Kaiera - Wed, 2024/09/11 - 15:00

Aurten ere erantzun asko izan ditugu eta gehienak zuzenak. Eskerrik asko parte hartu duzuen guztioi.

1. ariketa:

Mahai-joko batean animaliak erosten dira. Behi batek 5 euro balio du, txerri batek 1 euro eta 20 txorik ere 1 euro. Gutxienez bakoitzetik bat erosita, 100 animalia erosi ditugu, 100 euro ordainduta. Zenbat txori erosi ditugu?

Esan dezagun x behi, y txerri eta z txori erosi ditugula. Orduan,

x + y + z = 100    eta     5x + y + z/20 = 0.

Bigarren ekuazioari lehena kenduz,

4x – 19z/20 = 0    edo    80x – 19z = 0.

Ezin direnez x eta z  0 izan, 100 baino txikiago den soluzio bakarra x = 19 eta z = 80 da. Hortik y = 1 ondorioztatzen da. Beraz, 19 behi, txerri bat eta 80 txori erosi ditugu.

Beste bide bat hartu nahi izanez gero, kontuan izan prezioa zenbaki osoa denez, txori kopurua 20ren multiploa dela, hots, 20, 40, 60 edo 80 txori erosi ditugula. Banan-banan probatuz, bakarrik 80 txoriren kasuak ematen du soluzio osoa behientzat eta txerrientzat.

2. ariketa:

Irudiko zuzenki batzuen neurriak hauek dira: AB = 9 cm, BC = 14 cm, CD = 13 cm, DA = 12 cm eta BD = 15 cm. Zein da PQ zuzenkiaren neurria?

txori erosi

Pitagorasen teorema erabiliz ABP eta  APD triangeluetan,

AP2 = AB2 – BP2 = AD2 – PD2.

Idatz dezagun BP = x. Orduan, PD = 15 – x da eta

92 – x2 = 122 – (15 – x)2.

Hortik, x = 5.4 cm ateratzen da.

Era berean, BCQ eta CDQ triangeluak erabiliz,

CQ2 = BC2 – BQ2 = CD2 – QD2.

QD = y idatziz, BQ = 15 – y da, eta

142 – (15 – y)2 = 132 – y2.

Hortik, y = 6.6 cm.

Beraz, PQ = 15 – 5.4 – 6.6 = 3 cm.

3. ariketa:

Zenbaki arrunt bati ezkerreko lehen zifra ezabatuta lortzen den zenbakia aurrerakoaren 29rena da (aurrekoa zati 29). Zein da propietate hori duen zenbakirik txikiena?

Zenbaki arrunt baten forma orokorra hau da:  10ka + N, non a lehen zifra den eta N k zifrako zenbaki bat. Adibidez, 4138 = 103 x 4 + 138. Ariketak diosku   10ka + N = 29N   dela, hau da,

10ka = 28 N = 4 x 7 x N.

Ezkerreko atala 7ren multiplo izateko, a izan behar da 7ren multiplo, beraz, a = 7. Hortik, 10k = 4N ateratzen da eta k gutxienez 2 izango da, 10k 4ren multiplo izan dadin. Beraz, 100 x 10k-2 = 4N, hots,  25 x 10k-2 = N dugu.

Txikiena, k = 2rako, N = 25 da. Ondorioz, ariketaren soluzioa 725 da.

Propietatea betetzen duten zenbaki guztiak hauek dira: 725, 7250, 72500, 725000…

4. ariketa:

Aurkitu zenbaki arrunten (a, b, c) hirukote guztiak ekuazio hauek betetzen dituztenak:

ab + bc = 44, ac + bc = 23

Bistan da b eta c ezin direla 0 izan, eta a = 0 balitz, ekuazioak ez lirateke bateragarriak izango (bc = 44 eta bc = 23 izango genuke aldi berean).

Bigarren ekuazioa  (a+b) c = 23 idatzita, a + b = 23 eta c = 1, edo a + b = 1 eta c = 23 izan behar dira. Azken aukera hori ezinezkoa da, a + b gutxienez 2 delako, beraz, a + b = 23 eta c = 1 ditugu. b = 23 – a  eta  c = 1 lehen ekuaziora eramanez,  a2 – 22a + 21 = 0 bigarren mailako ekuazioa lortzen dugu.  Horren soluzioak  a = 1  eta  a = 21 dira.  Hortaz, bilatzen ditugun hirukoteak  (1, 22, 1) eta (21, 2, 1) dira.

5. ariketa:

1 eta 7 arteko zifrak errepikatu gabe erabilita idatz daitezkeen zenbaki arrunt guztietatik, 10.000 baino txikiago direnen artean, zenbat dira 15en multiplo?

Zenbaki bat 15en multiplo izateko, 3ren eta 5en multiplo izan behar da. 5en multiplo izateko, azken zifra 0 edo 5 izan behar da. Hemen azken zifra 5 izango da, ezin dugulako 0 erabili. 3ren multiplo izateko, zifren batura 3ren multiplo izan behar da. Azken zifra 5 denez, horren aurrekoen batura 1, 4, 7, 10, 13 edo 16 izango da (19 edo gehiago izatea ezinezkoa da).

Zifra biko zenbakiak: 15, 45 eta 75.

Hiru zifrako zenbakiak: 135, 165, 345, 375, 465 eta 675, gehi lehen bi zifrak trukatuz lortzen diren beste seiak. Denetara, 12 zenbaki.

Lau zifrako zenbakiak: 1245, 1275, 1365, 2475, 3465 eta 3675, gehi lehen hiru zifrak permutatuz lortzen diren guztiak. Hiru zifren permutazioek 6 aukera ematen dituztenez, denetara 36 zenbaki lortuko ditugu.

Guztira, 3 + 12 + 36 = 51 zenbakik betetzen dute eskatutako baldintza.

6. ariketa:

Egurrezko ABC triangelua dugu mahai gainean. C erpineko angelua 25º-koa da. Triangelua birarazi dugu, B erpina finkatuta, A’BC’ posiziora heldu arte, non A’, B eta C lerrokatuta dauden. Hori egin dugunean, C, A eta C’ ere lerrokatuta geratu dira. Zein da B erpineko angeluaren neurria?

txori erosi

Lehenengo eta behin, kontura gaitezen ABC eta A’CC’ triangeluen angeluak berdinak direla. Izan ere, C erpineko angelua bietan dago, eta A eta A’ erpinetako angeluak berdinak dira eraikuntzagatik. Hortaz, hirugarren angelua ere berdina da, eta bilatzen dugun angelua A’CC’ triangeluaren C’ erpineko angeluaren berdina da.

Bestalde, BCC’ triangelua isoszelea da, BC = BC’ delako. Orduan, ang(BC’C) = ang(BCC’) = 25oda. Gainera, ang(A’C’B) = 25oda  eraikuntzagatik. Beraz, ang(A’C’C) = 50oda, eta hori da eskatutako angeluaren neurria.

Egileaz:

Javier Duoandikoetxea Analisi Matematikoko Katedradun erretiratua da UPV/EHUn.

The post Dozena erdi ariketa 2024ko udarako: erantzunak appeared first on Zientzia Kaiera.

Categories: Zientzia

El círculo de los irascibles

Cuaderno de Cultura Científica - Wed, 2024/09/11 - 11:59

En 1963, René Sousselier planteó un reto, que intituló “Le Cercle Des Irascibles” (“El círculo de los irascibles”), en la Revue Française de Recherche Opérationelle.

Fuenten: Freepik.

 

El problema se planteaba en los siguientes términos:

El presidente de un club pensó que sería conveniente organizar una cena de confraternidad entre todos sus miembros. Para no destacar a ningún miembro frente a otro, pensó que deberían sentarse en una mesa redonda. Inmediatamente se tropezó con algunos problemas: en realidad, el club no era una sociedad demasiado amigable. De hecho, cada uno de los socios tenía únicamente unos pocos amigos en el club y aborrecía a todos los demás. Ante este inconveniente, el presidente pensó que debía asegurarse de que cada miembro tuviera a un amigo sentado a cada lado durante la cena. Lamentablemente, no consiguió encontrar por sí mismo una manera de distribuir a los socios del club.

Desesperado, decidió pedir ayuda a un amigo matemático que, poco tiempo después de conocer el problema, respondió de la siguiente manera al presidente del club: «Es absolutamente imposible conseguirlo. Sin embargo, si puedes persuadir a un miembro del club para que no acuda a la cena, entonces todos podrían sentarse junto a un amigo«. El presidente, esperanzado, preguntó al matemático: «¿A qué miembro debo pedirle que se quede fuera?«. El matemático respondió: «Es indiferente. Cualquier socio vale. Por cierto, si tuvieras menos miembros en el club, no te enfrentarías a esta extraña combinación de propiedades«.

Haciendo caso a su amigo, el presidente puso un pretexto cualquiera, se excusó con el resto de los socios del club, y pudo colocar satisfactoriamente a cada miembro con sendos amigos a su izquierda y derecha en la mesa de la cena.

Tras este extenso enunciado preliminar, Sousselier preguntaba:

¿Cuántos miembros tiene del club? ¿A quién le gusta quién y a quién no le gusta quién?

Un año más tarde, T. Gaudin, J. Herz y P. Rossi propusieron una solución en la misma revista utilizando teoría de grafos.

Algunas definiciones previas

Recordemos que, en matemáticas, un grafo G es un conjunto de objetos, los vértices, algunos de los cuales están unidos por aristas, que representan relaciones binarias entre los vértices.

Un camino (sucesión de aristas adyacentes) en un grafo G se llama hamiltoniano si pasa por todos los vértices exactamente una vez. Si el camino es cerrado (el primer y el último vértice alcanzado es el mismo), se habla de un ciclo hamiltoniano; G se llama hamiltoniano si contiene un ciclo hamiltoniano.

Un grafo hamiltoniano y otro no hamiltoniano. Fuente: Wikimedia Commons.

 

Un grafo G se llama hipohamiltoniano si no es hamiltoniano, pero cualquier grafo construido al eliminar un único vértice (arbitrario) de G es hamiltoniano. Por supuesto, al eliminar este vértice, se suprimen también las aristas que lo alcanzan.

Manera de abordar el problema de Sousselier

Se construye un grafo G con las siguientes reglas: se identifica cada miembro del club con un vértice del grafo en el que dos vértices están unidos si y sólo si los socios que representan son amigos.

El grafo G no puede ser hamiltoniano; si lo fuera, sería posible sentar a todos los miembros del club sin conflictos en una mesa redonda. Pero, según el enunciado, G es hipohamiltoniano.

Así, para resolver el problema, es preciso encontrar el menor (con menos vértices) grafo hipohamiltoniano.

Se puede demostrar que ese grafo es el llamado grafo de Petersen, un grafo con 10 vértices y 15 aristas.

El grafo de Petersen. Fuente: Wikimedia Commons.

 

Este grafo no es hamiltoniano, aunque tiene un camino hamiltoniano (que no es un ciclo hamiltoniano).

Grafos hipohamiltonianos

René Sousselier fue el primero en estudiar los grafos hipohamiltonianos. Este problema que propuso en 1963 no es sencillo de resolver; requiere de una maquinaria matemática elaborada. Como otros problemas de enunciado fácilmente comprensible (como el teorema de los cuatro colores), su solución ha necesitado del avance de la teoría matemática de grafos.

El informático teórico Václav Chvátal demostró en 1973 que para todo n suficientemente grande existe un grafo hipohamiltoniano con n vértices. Posteriormente se demostró que tales grafos existen para todo n mayor o igual a 18.

En este momento, se conoce la lista completa de grafos hipohamiltonianos con 17 o menos vértices: el grafo de Petersen (10 vértices), un grafo de 13 vértices y un grafo de 15 vértices (encontrados mediante búsquedas con ordenador de Herz, 1968), y cuatro grafos de 16 vértices (uno de ellos denominado grafo de Sousselier).

El grafo de Sousselier. Tiene 16 vértices y 27 aristas. Fuente: Wikimedia Commons

Se sabe que existen 14 grafos hipohamiltonianos de 18 vértices y 34 de 19 vértices. Además, el número de grafos hipohamiltonianos crece como una función exponencial del número de vértices; pero queda mucho por encontrar…

Referencias

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y editora de Mujeres con Ciencia

El artículo El círculo de los irascibles se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Zizare memoria

Zientzia Kaiera - Wed, 2024/09/11 - 09:00

Memoria gure adimenaren funtsezko ezaugarria da. Bai eta ahanztura ere, jakina. Oroitzapenak ezinbestekoak dira, gure esperientzia gehienak ahazteko gaitasuna saihetsezina den neurri berean. Jorge Luis Borgesek horixe gogorarazten digu “Funes el memorioso” kontakizun ederrean. Memoria eta ahanztura hain prozesu mental konplexuak dira, ezen oraindik ere ez ditugun zehatz-mehatz ezagutzen haien mekanismoak. Horrexegatik da, hain zuzen ere, garrantzitsua animalia-eredu sinple eta manipulagarriak garatzea.

Animalia bereziki sinplea da Caenorhabditis elegans zizare nematodoa. Milimetro luze da eta 959 zelula somatiko baino ez ditu (ugal-zelulak aintzat hartu gabe). Zelula horietatik 302 neuronak dira. Hau da, neurona horiek dute gaitasuna zentzumenei buruzko informazioa jasotzeko, integratzeko eta erantzun motorrak eta portaerazkoak emateko. Hain baliabide eskasak izanik, gogoratzeko gai al da C. elegans? Eta ahazteko gai?

Bada, bai. Sevillako Biomedikuntza Institutuko ikertzaile baten lankidetzarekin egindako ikerketa batek agerian utzi du C. elegans  zizareak, jarraian adieraziko dugun bezala, gogoratzeko eta ahazteko mekanismo bat duela, eta esperimentuen bidez manipula daiteke mekanismo hori.

Ezer baino lehen ohartarazi behar da emaitzak ez direla formalki argitaratu eta ez zaiela parekoen arteko ebaluaziorik egin. Aurreargitalpen batean bildu dira, baina interesgarriak eta sendoak direnez, aurreikusten da maila altuan argitaratuko direla aurki. Izan ere, Nature aldizkariak ikerketa horren berri eman du.

1. irudia: Caenorhabditis elegansek, hotzaren eraginpean dagoenean, atzeratu egiten du asoziazio desatsegin bat ahaztea. (Irudia: MA Hanson – CC BY-SA 4.0 lizentziapean. Iturria: rawpixel.com / Freepik)

Lehenengo galdera: nola sor ditzakegu oroitzapenak zizare horretan? Ikertzaileek dagoeneko baliozkotuta dagoen memoria asoziatiboaren protokolo bat erabili zuten, Prousten madalena ezagunaren antzekoa, baina estimulu desatsegin batekin. Elikagairik gabeko eta butanona zuen inguru batean jarri zituzten zizareak. Butanona usain melenga eta sarkorra duen substantzia bat da. Zizareek, butanona iturri bat duen beste ingurune batean jartzean, butanonatik aldentzeko joera izaten dute; izan ere, usaina jasan duten barauarekin lotzen dute. Bitxiki, bi edo hiru ordu igaro ondoren, ahaztu egiten dute asoziazio negatibo hori eta ez zaie axola butanona usaintzea. Baina, zizareak izotz gainean inkubatzen badira, 16 orduz baino gehiagoz izaten dute usaina gogoratzeko gaitasuna, eta aldendu egiten dira berriro butanona iturri batetik gertu jartzen direnean. Hala ere, behin hotzaren efektua pasata, oroitzapena ahaztu egiten da hiru ordu igaro baino lehen. Hau da, hotzak ez du zizarearen memoria indartzen; atzeratu egiten du asoziazio desatseginaren ahanztura.

2. irudia: testuan deskribatutako esperimentuen eskema. Butanona barauarekin lotzearen ondorioz, zizareak aldendu egiten dira butanona iturri batetik, baina elkarketa hori ahaztu egiten da bi edo hiru ordu igaro ostean. Hotzak zein litio tratamenduak atzeratu egiten dute elkarketa desatsegina ahaztea. (Irudia: Cuaderno de Cultura Científica – euskaratua)

Emaitza harrigarri horretan oinarrituta, ikertzaileek esperimentu gehiago eta kontrol mota ugari egin zituzten. Adibidez, baraurik baina butanonaren usainik gabe egondako zizareei ez zien axola usain horrek hotzaren eraginpean egon ostean. Beste substantzia usaintsu batzuk erabiltzen baziren (besteak beste, bentzaldehidoa) emaitza berbera zen. Baldintzapena substantzia batekin egiten bazen, zizareei ez zien axola beste edozein usainek. Zizareak esperimentuaren aurretik tenperatura baxuetan (15°C) berregokitzen baziren, galdu egiten zuen izotz gainean memoria luzatzeko gaitasuna. Eta, azkenik, egiaztatu zen litioaren bidez inkubatzeak ere atzeratu egiten zuela zizareen ahanztura bost bat orduz, bai eta giro tenperaturan ere. Litioa nahasmendu bipolarraren tratamenduan erabiltzen den substantzia da.

Laburbilduz, C. elegansen hirurehun bat neuronek ahalbidetu egiten diote usain jakin bat egoera desatsegin batekin lotzea. Oroitzapen hori hiru orduan baino gutxiagoan aktibatzen den “ahanzturaren botoi” moduko batek ezabatzen du. Hotzak edo litio tratamenduak atzeratu egiten dute botoi hori sakatzea. Honako hau da galdera gakoa: zein mekanismok hartzen dute parte ahanzturaren prozesuan?

Jakina da hotzak zurrundu egiten duela zelulen mintza, eta, ondorioz, oztopatu egin daiteke neuronen funtzionamendua, adibidez, neurotransmisoreen trafikoan. Ikertzaileek egiaztatu zuten C. elegansen mintzetan jariakortasuna mantentzen duten geneetan bi mutaziok ere ahanztura atzeratua eragiten dutela. Bestalde, hotzaren eraginpean jarritako zizareen transkriptomak (gene adierazien multzoa) adierazten zuen diazilglizerola molekula seinaleztatzaile garrantzitsua sintetizatzeko bide metabolikoek behera egiten zutela. Lipido txiki horrek prozesu fisiologiko anitzetan hartzen du parte, ikasketa eta memoria barne. Litioaren ondorioetako bat da, hain zuzen ere, diazilglizerolaren sintesia murriztea, eta horrek lotu egiten du haren mekanismoa eta hotzak eragindakoa. Ondorioa da “ahanzturaren botoia” zelulen mintzaren zurruntasunaren eta neuronetan diazilglizerolaren metaketaren araberakoa dela.

Galdera interesgarri bat hau da: zergatik du C. elegansek azkar ahazteko premia? Batetik, ahanztura horiek ingurunera egokitzea kaltetu dezakete, baina, egia da, halaber, 302 neurona bakarrik izanik oroitzapenei epe luzean eusteak kostu ez onargarria zian dezakeela. Gainera, haien bizi-itxaropena bi edo hiru astekoa da laborategiko baldintzetan; hortaz, bizitza osoko oroitzapenak baliteke ez izatea oso baliagarriak.

Ikerketako ikertzaileek organismo konplexuagoetara (tardigradoak edo zeinbat ornodun) hedatu dituzte esperimentuak. Halaber, ez dute baztertzen tenperaturak, litioak eta diazilglizerolak memorian eta ahanzturan duten zereginari buruzko ezagutza horiek klinikan ezin susmatuzko aplikazioak izateko aukera.

Egileaz:

Ramón Muñoz-Chápuli Oriol Animalien Biologiako Katedraduna (erretiratua) da Malagako Unibertsitatean.

Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2024ko maiatzaren 20an: Memoria de gusano.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Zizare memoria appeared first on Zientzia Kaiera.

Categories: Zientzia

Cómo el campo de Higgs da masa (de verdad) a las partículas elementales

Cuaderno de Cultura Científica - Tue, 2024/09/10 - 11:59

En este artículo adaptado de su nuevo libro, «Ondas en un mar imposible» *, el físico Matt Strassler explica que el origen de la masa en el universo tiene mucho que ver con la música.

Un ensayo de Matt Strassler. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

campo de higgsIlustración: Michele Sclafani para Quanta Magazine

El descubrimiento del bosón de Higgs en el Gran Colisionador de Hadrones en 2012 confirmó lo que los físicos de partículas sospechábamos desde hacía tiempo: que existe un campo que permea el cosmos y que genera las masas de las partículas elementales. Por desgracia, a los físicos les ha resultado difícil explicar a los demás cómo este llamado campo de Higgs cumple su enorme tarea.

Un enfoque común ha sido contar una historia fantástica. He aquí una versión:

Existe una sustancia, como una sopa, que llena el universo; ese es el campo de Higgs. A medida que las partículas se mueven a través de él, la sopa las frena, y así es como las partículas adquieren masa.

Otras versiones describen el campo de Higgs como algo parecido a una melaza, un matorral, una multitud de personas o una extensión de nieve.

Sin embargo, todas esas historias entran en conflicto con lo que nosotros los físicos enseñamos en las primeras semanas de los cursos universitarios de primer año. Al sugerir que el campo de Higgs crea masa al ejercer resistencia, se violan tanto la primera como la segunda ley del movimiento de Newton. Entre otros desastres, esta resistencia habría hecho hace mucho tiempo que la Tierra cayese en espiral hacia el Sol. Además, si el campo de Higgs fuera realmente una sustancia, proporcionaría un punto de comparación con el que podríamos medir nuestro movimiento absoluto, violando los principios de relatividad de Galileo y de Einstein.

En realidad, el campo de Higgs no tiene nada que ver con el movimiento ni con la desaceleración, sino que toda su historia gira en torno a la vibración.

La teoría cuántica de campos, el poderoso marco de la física de partículas moderna, dice que el universo está lleno de campos. Algunos ejemplos son el campo electromagnético, el campo gravitacional y el propio campo de Higgs. Para cada campo, hay un tipo de partícula correspondiente, que se entiende mejor como una pequeña ondulación en ese campo. Las ondulaciones del campo electromagnético son ondas de luz, y sus ondulaciones más suaves son las partículas de luz, que llamamos fotones. De manera similar, los electrones son ondulaciones en el campo de electrones, y el bosón de Higgs es una ondulación mínima en el campo de Higgs.

campo de higgs«Ondas en un mar imposible. Cómo la vida común emerge del océano cósmico» *. Cortesía de Matt Strassler

Un electrón estacionario, al igual que la vibración de una cuerda de guitarra, es una onda estacionaria que vibra con una frecuencia preferida, conocida como frecuencia de resonancia. Esta vibración resonante es común y familiar. Como una cuerda de guitarra pulsada suena constantemente a su frecuencia de resonancia, siempre produce el mismo tono. Del mismo modo, la frecuencia fija de un péndulo oscilante es lo que lo convierte en un reloj eficaz. Según el mismo principio, cada electrón estacionario vibra con la frecuencia de resonancia del campo electrónico.

La mayoría de los campos del universo tienen frecuencias resonantes. En cierto sentido, el cosmos se parece vagamente a un instrumento musical; ambos tienen frecuencias características en las que vibran con mayor facilidad.

Para mí, personalmente, el hecho de que la resonancia sea la base de la realidad es motivo de deleite y asombro. Como músico y compositor aficionado de toda la vida, conozco desde hace tiempo el funcionamiento interno de pianos, clarinetes y guitarras. Pero me quedé completamente atónito al descubrir, cuando era estudiante de posgrado, que las estructuras del universo, incluso dentro de mi propio cuerpo, funcionan según principios similares.

Sin embargo, esta musicalidad secreta de nuestro cosmos sería imposible si no fuera por el campo de Higgs.

En la teoría cuántica de campos, una combinación de la física cuántica y la relatividad de Einstein conduce a una relación crucial entre una frecuencia de resonancia y la masa de una partícula elemental: cuanto más rápidamente vibra una partícula estacionaria, mayor es su masa. Los campos que carecen de una frecuencia de resonancia corresponden a partículas que no tienen masa; dichas partículas, incluidos los fotones del campo electromagnético, nunca pueden ser estacionarias.

Aunque los cuentos fantásticos sobre el campo de Higgs sugieren que la masa surge de la desaceleración de las partículas elementales por una sustancia parecida a la melaza, la verdad es que un campo de Higgs más fuerte hace que las partículas elementales vibren a frecuencias más altas, lo que aumenta su masa. Por lo tanto, se podría considerar al campo de Higgs como una especie de agente cósmico de refuerzo, cuya función es aumentar las frecuencias de resonancia de otros campos.

¿Cómo es posible que un campo cambie la frecuencia de otro? El humilde péndulo nos ofrece un ejemplo sencillo.

Imaginemos que colocamos una pelota en el extremo de una cuerda en el espacio profundo, donde el campo gravitatorio es prácticamente nulo. La pelota flotará sin rumbo fijo. Si la empujamos un poco, su posición puede variar lentamente, pero no vibrará.

Sin embargo, si se coloca el péndulo improvisado en un campo gravitatorio distinto de cero, todo cambia. La bola cuelga recta hacia abajo y, si se la mueve, oscila.

campo de higgsIlustración: Mark Belan para Quanta Magazine

Cuando la pelota está en reposo, se dice que está en equilibrio: estable, equilibrada y sin motivo para moverse. Si la pelota se desplaza hacia la derecha, la gravedad hará que se balancee hacia la izquierda y viceversa. La tendencia de la posición de la pelota a volver al punto de equilibrio, conocida como efecto restaurador, es lo que hace que se balancee.

En este caso, el campo gravitatorio actúa como un agente de refuerzo: hace más rígido al péndulo, lo que le confiere una frecuencia de resonancia distinta de cero. Cuanto más fuerte sea el campo gravitatorio, más potente será el efecto de recuperación y más alta será la frecuencia de resonancia del péndulo.

De manera análoga, el campo de Higgs crea un efecto restaurador sobre otros campos elementales que cambia la forma en la que vibran. Aunque cualquier campo puede tener ondas que se desplazan como las que cruzan un estanque, un efecto restaurador permite que un campo tenga ondas estacionarias, esas ondas estacionarias que se parecen a las de una cuerda de guitarra. Como mencioné antes, estas ondas estacionarias no son nada más ni nada menos que partículas elementales inmóviles, ondulando en sus respectivos campos.

Esta idea está en el centro de lo que el difunto físico británico Peter Higgs, homónimo del campo de Higgs, y sus competidores señalaron en la década de 1960: que un campo puede reforzar otros campos, permitiendo así que sus ondulaciones vibren en su lugar con una frecuencia resonante y, por lo tanto, dando masa a sus partículas. Los estudios experimentales del bosón de Higgs en el Gran Colisionador de Hadrones confirman que esto es en efecto lo que hace el campo de Higgs. Al utilizar las matemáticas del Modelo Estándar de la física de partículas (la teoría cuántica de campos que describe todas las partículas elementales conocidas y las interacciones entre los campos del universo), los científicos hacen predicciones sobre el comportamiento del bosón de Higgs que coinciden exactamente con los experimentos. No hay duda: el campo de Higgs crea un efecto restaurador en muchos otros campos.

Así que, con esta comprensión más profunda del campo de Higgs, permítanme sugerir una historia diferente:

Érase una vez un universo que llegó a existir. Abrasadoramente caliente, estaba repleto de partículas elementales. Entre sus campos había un campo de Higgs, inicialmente apagado. Pero a medida que el universo se expandía y se enfriaba, el campo de Higgs se activó de repente, desarrollando una fuerza distinta de cero. Cuando esto sucedió, muchos campos se volvieron rígidos y, como resultado, sus partículas adquirieron frecuencias resonantes y masa. Así es como el universo se transformó, a través de la influencia del campo de Higgs, en el instrumento musical cuántico que es hoy.

* Nota del traductor: La traducción del título podría ser diferente cuando se publique en castellano.

 

El artículo original, How the Higgs Field (Actually) Gives Mass to Elementary Particles, se publicó el 3 de septiembre de 2024 en Quanta Magazine.

Traducido por César Tomé López

El artículo Cómo el campo de Higgs da masa (de verdad) a las partículas elementales se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Sexu-transmisiozko infekzioak ala sexu segurua: bi errealitate lehian

Zientzia Kaiera - Tue, 2024/09/10 - 09:00

Gizabanako bakoitzak osasun sexuala eta ongizatea lortzeko duen gaitasuna zenbait egoeraren aurrean duen kalteberatasunaren mende dago, hala nola inguruan aurki ditzakeen arriskuak eta babesik gabeko sexu-jardueraren ondorio kaltegarriak.

Dudarik gabe, sexu-osasunarekin lotutako arazoak gorabehera handikoak dira, eta zoritxarrez, ondorio negatiboak dituzte, hala nola sexu-transmisiozko infekzioak (STI) eta haiek sorrarazitako ondorio kaltegarriak (esate baterako, minbizia edo antzutasuna).

Sexu-transmisiozkoIrudia: sexu-transmisiozko infekzioak (STI) nahiz eta iraganeko infekzioak diruditen gaurkotasun-albiste dira. (Argazkia: Klaus Nielsen – Domeinu publikoko irudia. Iturria: pexels.com)

Historian zehar, mota honetako infekzioak aspalditik dira ezagunak eta hainbat pertsona ospetsuk ere sufritu egin zituzten, hala nola Shakespeare idazleak, Goya pintoreak edo Mozart konpositoreak. Baina nahiz eta iraganeko infekzioak diruditen gaurkotasun-albiste dira.

Gaur egun hainbat mikroorganismo daude sexu-bidez transmiti daitezkeenak: bakterioak, birusak, onddoak zein parasitoak. Horiek sorrarazitako infekzio batzuk ezagunak dira: gonorrea edo gonokozia, sifilisa, baginitisa, herpes genitala edo HIESa. Beste batzuk ezezagunagoak dira; esate baterako, Chlamydia trachomatis bakterioak eragiten duena, baina honek ere gonokoziaren antzeko sintomak sorrarazi ditzake (uretritisa, zerbizitisa).

Aurreko mendean, giza immunoeskasiaren birusa agertu zen 80ko hamarkadan eta, ordutik hona, hark sorrarazitako harturiko immunoeskasiaren sindromeak (HIESa) sarraskia eragin izan du mundu osoan, 40 milioi hildako baino gehiago zenbatzeraino. Gaur egun, urtero 600.000 hildako baino gehiago gertatu dira. Infekzio honen hasierako urteetan estigmatizazio handia zegoen, arrisku talde batzuei eragiten zielako, gehien bat bena-barneko drogazaleei eta homosexualei. Baina gaur egun kutsatze bide nagusia sexu-bidezkoa da, homosexuala zein heterosexuala izan. Izatez, Euskadin, urtero 100 HIES kasu berri bildu dira; horietatik % 56 homosexualetan eta % 38 heterosexualetan. Zorionez, une honetan birus honen kontra badago terapia antierretrobirala, nahiko eraginkorra, eta birusaren erreplikazioa mozteko gai dena, nahiz eta kutsatutako pertsonak oro har ez diren sendatzen. Arrazoi hori eta arrisku taldeetan erabiltzen den esposizio-aurreko eta –ondoko profilaxiak badirudi beldurra kendu digula birus honekin kutsatzearen aurrean, eta, horren ondorioz, zoritxarrez urtez urte bere horretan irauten dute birusaren kutsatzeak eta HIESaren kasuak.

Infekzio hauen arazoak

Sorrarazitako arazo klinikoetan datza sexu-transmisiozko infekzioen garrantzia. Egia da infekzio horiek sarritan sintomarik gabekoak direla eta infektaturik dagoen pertsonak ez daki benetan infektatuta dagoenik. Hori bada, bai, kezkatzeko arazoa, kutsatuta daudenak babesik gabeko sexu harremanak izatean mikroorganismoa transmiti diezaiekeelako bere sexu-kide guztiei.

Sintoma klinikoak agertzen direnean askotarikoak izan daitezke mikroorganismoaren edo kokapenaren arabera. Horrela, genitaletan agertzen diren klinika arruntenak dira uretraren hantura (uretritisa), zerbixaren hantura (zerbizitisa) edo baginaren hantura (baginitisa). Sexu-harremanaren motaren arabera, kaltetuak egon litezke genitalez kanpo gorputzeko beste hainbat alde ere, hala nola faringea (faringitisa), konjuntiba (konjuntibitisa), ondestearen hantura (proktitisa).

Baina infekzio hauek ez badira arin diagnostikatzen eta tratatzen mikroorganismoa gorputz osora heda daiteke eta nabarmen handitzen da infekzioaren larritasuna. Kasu horietan kaltetuak egon litezke, besteak beste, artikulazioak (artritisa), burmuina edo hezur-muina (neurosifilisa), kardiobaskularra (aortitisa) edo sabela (gaixotasun inflamatorio pelbikoa). Are gehiago, infekzio hauek guztiak antzutasunaren egoera handitzen dute nabarmen. Horiez gain, badaude minbiziarekin erlazionatuak dauden infekzioak, hala nola giza papilomabirusak sorrarazitako minbizi motak (umetoki-lepokoa, faringekoa, uzkikoa, zakilekoa…).

Horri guztiari gehitu behar zaio haurdun dagoen emakumearen umekian arazo kongenitoak ager daitezkeela sexu bidez transmititzen diren mikroorganismoekin infektatzen bada. Batzuetan galdu egiten du umea infekzio horren ondorioz. Beste batzuetan, jaiotzean bertan daude ikusgai arazo klinikoak: begietako arazoak (kataratak, korioerretinitisa), entzefalitisa, larruazaleko exantemak, edo hainbat organotako akatsak.

Infekzio hauen datuak

Sexu-transmisiozko infekzioak sexu ez segurua praktikatzen duen edonor kaltetu dezakete eta, beraz, edozein maila sozio-ekonomikoko gizonak eta emakumeak kaltetu ditzake.

Mundu osoan zehar, gehituz doa urtez urte halako infekzioen intzidentzia edo kasu kopurua. Osasunaren Mundu Erakundearen datuen arabera, egunero milioi bat pertsonak baino gehiagok kutsatzen du STIren batek. Gaixotasunak Prebenitzeko eta Kontrolatzeko Europako Zentroak jakinarazi du 2022an STI kasu kopurua nabarmen igo dela aurreko urteekin konparatuta: gonorrearen kasuek % 48 egin zuten gora, sifili kasuek % 34, edo chlamydia kasuek, % 16. Baina ez da ezaguna arazo honen tamaina benetan zein den, esan bezala STI batzuk sintomarik gabekoak baitira.

Euskadin argitaratuta dauden kasuen arabera, 2011-2022 urteen artean nabarmena izan da STI batzuen gorakada ere, bereziki gonokoziaren eta chlamydiaren kasuak (1. grafikoa).

Sexu-transmisiozko1. grafikoa: sexu-transmisiozko infekzioen kasuen eboluzioa 2011-2022 urteetan zehar Euskadin. Datuak Eusko Jaurlaritzako Osasun publikoaren txostenetik aterata daude.

Bestalde, STIak edozein adinetan ager litezke, pertsona gazteetan zein adinekoetan. Baina 20-50 urte bitartean kasu kopuru gehienak atzematen dira eta, azken urteetan bereziki nerabe eta heldu gazteetan kasuen % 65 zenbatzen dira (2. grafikoa). Infekzio horien guztien artean chlamydia da gehien igo dena adin tarte horretan.

Sexu-transmisiozko2. grafikoa: Euskadin 2022an zenbatzen diren sexu-transmisiozko infekzioak adinaren arabera. Datuak Eusko Jaurlaritzako Osasun publikoaren txostenetik aterata daude.

Igoera horren arrazoiak bilatuz gero hainbat aurki daitezke: sexu-kide ugari izatea, garai bateko HIESari beldurra galdu izana, bai eta beste STIei ere, edo sexu segurua ez praktikatzea.

Zer egin horiek saihesteko

Dudarik gabe, prebentzio-neurri nagusia sexu-harremanetan hesi bat jartzea da, fluidoei esker mikroorganismoa ez dadin garraiatu sexu-kide batetik bestera, eta hori preserbatiboaren bidez lortzen da. Preserbatiboa jartzea ezinbestekoa da; are gehiago, funtsezkoa da modu egokian erabiltzea. Sarritan, nahiz eta erabili, gaizki jartzen baldin bada mikroorganismoaren garraioa gerta liteke. Nahitaezkoa da sexu segurua praktikatzea.

Baina infekzio hauen gorakada saihesteko hartu daitezkeen beste neurri batzuk dira diagnostikoan eta tratamenduan azkar jokatzea. Aurretik esan den moduan, batzuetan infekzio hauek sintomarik gabekoak dira; beraz, norbaitek STI bat duela susmatzen badu, berehala bilatu beharko luke medikuaren arreta, mikroorganismoaren diagnostikoa ahalik eta arinen egiteko. Garrantzitsua da, sexu-harremanak izanez gero, mediku-kontrolak aldizka egitea eta hori ondo burutzea bermatu beharko litzateke.

Zorionez, STI batzuk sendatzeko badago tratamendu eraginkorra. Beraz, tratamendu horiek ahalik eta arinen ematea funtsezkoa da balizko konplikazio klinikoak saihesteko. Horrez gain, badaude beste aholku batzuk ere, hala nola harreman sexualik ez izatea tratamenduak irauten duen bitartean edo babestutako sexu-harremanak izatea tratamenduaren osteko ebaluazioa egin arte. Batzuetan kontrol-ebaluazio horiek pazientea tratatu eta hiru hilabetera egin behar dira. Bestalde, sexu-kideak ere diagnostikatu eta tratatu beharko lirateke. Horrek guztiak transmisioa galarazten lagunduko luke.

Baina nahiz eta STI batzuen kontrako tratamendua egon, gaur egun dagoen arazoa da antibiotikoekiko erresistentzia agertu dela kasu batzuetan. Gonorrearen kasuan, esate baterako, kezkatzekoa da andui erresistenteak atzeman direla bakterioa tratatzeko erabiltzen diren antibiotikoen aurrean. Gainera, andui erresistente horiek non topatzen diren identifikatzea bada osasun publikoko arazo larri bat. Gaur egun ikusi da nazioarteko bidaiek badutela eragin zuzena bakterio erresistente horien garraioan eta bereziki Asiako hego-ekialdeko herrialdeetako bidaiariak, Erresuma Batura bueltatzean, gonorrea erresistentearekin infektaturik bueltatu dira. Pentsatu beharra dago munduko hainbat herrialdetan bakterioaren diagnostikoa edo erresistentziaren detekzioa ez dela egiten eta, beraz, zaintza epidemiologikorik ez dagoela.

Hezkuntza mailan ere lan handia egin beharra dago. Informazio argia kaleratu behar da sexu-transmisiozko infekzio hauek nola transmititzen diren, zer sintomak dituzten, zer arrisku duten argi eta garbi azalduta, eta adinari eta gizarte- edo kultura-testuinguru bakoitzari egokituta.

Ezinbestekoak dira prebentzioa, aldizkako kontrolak, diagnostiko arina, informazioa eta norbanakoaren erantzukizuna infekzio hauen gorakada saihesteko eta etorkizunean, osasun publikorako arrisku larria ez bihurtzea galarazteko.

Iturriak: Egileaz:

Miren Basaras Ibarzabal, UPV/EHUko Medikuntza eta Erizaintza Fakultateko, Immunologia, Mikrobiologia eta Parasitologia Saileko ikertzailea eta irakaslea da.

The post Sexu-transmisiozko infekzioak ala sexu segurua: bi errealitate lehian appeared first on Zientzia Kaiera.

Categories: Zientzia

La araña que atrae presas manipulando señales luminosas

Cuaderno de Cultura Científica - Mon, 2024/09/09 - 11:59

Dentro del gran grupo de los arácnidos, los araneidos son los principales constructores de telarañas. Este sistema de caza plantea dos necesidades, por un lado atraer a la presa hacia la telaraña, por otro no llamar la atención de potenciales depredadores. Vamos a ver qué puede hacer una araña para “convencer” a su presa de que se deje atrapar en sus redes. Anticipo que terminaremos describiendo una estrategia realmente asombrosa que acaba de ser descubierta.

Las estrategias de atracción de presas por parte de las arañas han sido revisadas recientemente en un espléndido artículo. Por ejemplo, la telaraña puede ser decorada con hilos adicionales denominados “estabilimentos”, que reflejan la luz ultravioleta, visible para muchos insectos. Es el caso de la araña Argiope (Figura 1). Se ha demostrado experimentalmente que la presencia de estos motivos decorativos aumenta la captura de presas y evita que las aves y otros animales voladores tropiecen con la tela y la rompan. Otras arañas han desarrollado patrones llamativos de color en sus cuerpos, con bandas brillantes que también reflejan la luz UV. Es el caso de Gasteracantha (Figura 1).

Figura 1. Izquierda: estabilimento en la telaraña de Argiope trifasciata. De Sarefo, CC BY-SA 3.0. Derecha: coloración de la araña Gasteracantha cancriformis. De Mkullen, dominio público

Existen estímulos no visuales aún más sofisticados. La araña Argiope keiserlingi impregna su telaraña con putrescina, una sustancia pestilente, atrayendo a moscas que depositan sus huevos en la carroña. Mallos gregalis abandona carcasas de mosca en las que crecen hongos que producen olores atractivos para otros insectos. La araña boleadora americana (Mastophora) segrega sustancias similares a las feromonas de polillas. No contenta con ello, ha desarrollado un mecanismo para atrapar a sus presas similar a las boleadoras de los gauchos. Pueden verlo en este extraordinario vídeo:

Debemos citar un caso en el que la telaraña se convierte en trampa mortal para su constructora. La araña saltadora Portia sacude la telaraña de su víctima imitando los movimientos de una presa. Cuando la incauta propietaria se acerca imaginando que se va a dar un banquete, la Portia salta sobre ella y la devora. De nuevo, este espectacular vídeo muestra la hábil estrategia.

Pero todos estos comportamientos palidecen al lado del que acaban de describir un grupo de investigadores chinos en la revista Current Biology. La araña Araneus ventricosus atrae sus presas utilizando señales luminosas producidas por la luciérnaga Abscondita terminalis y que son hábilmente manipuladas por la araña (Figura 2).

Figura 2. Izquierda: Araneus ventricosus, la araña estudiada por los científicos chinos, devorando una presa. De KKPCW, CC BY-SA 4.0. Derecha: la luciérnaga Abscondita terminalis. De Sumanth699, CC BY-SA 4.0

Abscondita terminalis es un pequeño coleóptero volador del trópico asiático que emite luz en el abdomen. Los machos producen ráfagas rápidas e intensas de destellos en dos áreas del abdomen, mientras que las hembras emiten pulsos más espaciados y de menor intensidad en una única zona. Si una luciérnaga macho es atrapada por la red, la araña no la mata para que siga emitiendo sus señales. Estas señales producidas por un macho no servirían para atraer a las hembras, que son más sedentarias, por lo que parece que la araña no ha conseguido gran cosa. Ocurre además que la emisión de luz de la presa se hace más débil, menos frecuente y se restringe a un área única del abdomen. De esta forma las señales se asemejan algo a las que produciría una luciérnaga hembra (Figura 3).

Figura 3. Experimentos realizados por los autores del artículo de Current Biology. Cuando un macho de la luciérnaga cae en la telaraña de A. ventricosus cambia su patrón de emisión de luz, pero esto por sí solo no atrae más machos (A). Otros machos son atraídos a la telaraña si hay interacción entre la araña y la presa, haciendo las señales más “femeninas” (B). Si se tapan las señales con tinta, la presencia de la araña tampoco provoca que otros machos sean atraídos (C). Se han utilizado imágenes Freepik de brgfx y Tom, dominio público

Los investigadores chinos comprobaron experimentalmente que se producían estos cambios en las señales luminosas de la luciérnaga atrapada, pero solo si la araña estaba presente se lograba una mayor eficiencia en la captura de presas. La interacción de la araña con la presa producía señales más “femeninas” en cuanto a duración y periodo del pulso luminoso, señales que resultaban más atractivas para otros machos. De hecho, si se oscurecía con tinta el abdomen de la luciérnaga, no se producía la atracción de nuevos machos hacia la telaraña aunque la araña estuviera presente (Figura 3).

¿Cómo manipula la araña a su presa para hacerle cambiar su código de señales? Esto no ha podido ser elucidado, pero los investigadores piensan que puede ser a consecuencia directa de la mordedura de la araña, o por la inyección de alguna toxina que interfiere con el control de la señal luminosa. Conocer este mecanismo debería ser una prioridad en el futuro cercano.

Se trata de un caso excepcional por varias razones, en primer lugar por la utilización de señales luminosas como señuelos, y sobre todo por la astuta manipulación de dichas señales para que mimeticen a las emitidas por las hembras. También es sorprendente que el comportamiento de la araña se asemeje a lo que en psicología humana se conoce como gratificación aplazada o recompensa diferida. Esto consiste en la renuncia voluntaria a un beneficio inmediato (devorar la primera presa capturada) con la expectativa de una mayor recompensa en el futuro (un mayor número de presas). La gratificación aplazada se ha estudiado mucho en humanos, y existen algunas evidencias de este comportamiento en animales vertebrados, desde peces hasta primates. Nos podemos preguntar cómo ha podido evolucionar una estrategia como la que hemos descrito en un animal con un sistema nervioso mucho más sencillo.

Referencias:

Fu, X., Yu, L., Zhou, W., et al. (2024). Spiders manipulate and exploit bioluminescent signals of fireflies. Curr. Biol. doi: 10.1016/j.cub.2024.07.011.

Ratz, T., Bourdiol, J., Moreau, S., et al. (2023). The evolution of prey-attraction strategies in spiders: the interplay between foraging and predator avoidance. Oecologia. doi: 10.1007/s00442-023-05427-5. E

Sobre el autor: Ramón Muñoz-Chápuli Oriol es Catedrático de Biología Animal (jubilado) de la Universidad de Málaga

El artículo La araña que atrae presas manipulando señales luminosas se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Berdeguneak eta haurren garapen kognitiboa

Zientzia Kaiera - Mon, 2024/09/09 - 09:00

UPV/EHUko ikerketa batek ez du ebidentzia garbirik azaldu inguru berdeagoetan edo urdinagoetan bizitzearen eta lan-oroimenaren errendimendu handiagoa izatearen artean.

berdeguneakIrudia: Mikel Subizak aztertu du bizitokiaren inguruko gune berdek eta urdinek haurren garapen kognitiboan duten eragina. (Iturria: UPV/EHUko prentsa bulegoa)

Beti lotu izan da osasun hobea izatea berdeguneak edo inguru urdinak —parkez, lorategiz, urmaelez, erriberaz eta abarrez inguratuta— gertu izatearekin, halakoetan kutsadura-maila txikiagoa espero baita. Hain zuzen, bizitokian gune berde eta urdinak eskuragarri izatea askotariko emaitzekin lotu izan da haurren osasunaren arloan, neurogarapenarena barne. Ikerketa batzuek erakutsi dute gune berdeago eta/edo urdinagoetan bizi diren haurrek puntuazio handiagoak lortzen dituztela ataza kognitiboetan; beste batzuek, ordea, ezin izan dute hori baieztatu.

UPV/EHUko Psikologia Klinikoa eta Osasunaren Psikologia eta Ikerketa Metodologia Saileko ikertzaileek Haurtzaroa eta Ingurumena (INMA) proiektuan parte hartzen dute. Haren baitan egin dute azterlana, eta Mikel Subiza ikertzaileak galdera horri heldu nahi izan dio, horrelako espazioek osasunean eta garapen kognitiboan duten eragina ezagutzeko. Horretarako, INMAn jasotako estatuko hainbat lekutako sei eta hamabi urte arteko 1.500 haurren datuak erabili ditu. Datu horietan, “2000ko hamarkadan haurdun zeuden emakumeen kohorte bat bildu zen. Haien datuak jaso ziren eta urteetan zehar jarraipena egin zitzaien, haien osasunaren eta seme-alabenaren bilakaera aztertzeko, hainbat eremutan”, aipatu du.

Aztergai izan dituzte bizitokiaren inguruko gune berde eta urdinek haurren garapen kognitiboan (besteak beste, haien arreta-, oroimen- eta adimen-gaitasunean) dituzten eraginak, ikusteko ea inguru berdeagoetan bizi diren haurrek puntuazio hobea lortzen zuten. Zehazki, haurren lan-oroimena aztertu zuten: oroimenaren eta arretaren eragin-truketik sortzen den funtzio exekutibo bat, informazioa denbora-tarte laburretan mantentzeko eta manipulatzeko aukera ematen duena.

Emaitza esangarririk ez

Ikerketak ez zuen apenas frogarik topatu abiapuntuko hipotesia babesteko; hau da, bizigune berdeago eta urdinagoetan bizitzeak ez du lan-oroimeneko probetan hobeto aritzen laguntzen. Subizak adierazi duenez, nazioarteko zenbait ikerketak ondorioztatzen du auzorik berdeenetan bizi diren gazteek emaitza hobeak lortzen dituztela adimen- edo oroimen-probetan.  Beste lan batzuek, aldiz, ez dute halakorik erakusten. “Gure ikerketan —gaineratu du Subizak— bizitokiaren berdetasunaren neurri batzuk lotuta daude lan-oroimenarekin, baina beste batzuk ez”.

Ikerketa-arlo honetako ebidentzia ahula bada ere, eta adostasun zientifikoa lortzeko oraindik lan egin behar den arren, emaitza hauek ekarpena egiten diote literatura espezifikoari, eta etorkizuneko azterlanak justifikatzen dituzte. Berdeguneak izateak izan dezake zerikusirik haurren lan-oroimenarekin, baina ikertzen jarraitu beharra dago oraindik. Ikertzaileak erantsi duenez, “badago ebidentzia iradokitzen duena berdeguneek eta, oro har, naturak, lagundu egiten digutela estres-maila txikitzen, gure arreta fokuratzen, eta neke mentaletik suspertzeko bidea ere ematen digutela, besteak beste. Garapen kognitiboari dagokionez, baina, ezin dugu oraindik ospakizunetan hasi, azterlan gutxi dagoelako eta ebidentzia oraindik ere mistoa delako”.

Gaur egun, Subizak Europako LifeCycle (Horizon 2020) proiektuan dihardu lanean, eta proiektu horrek Europako hainbat kohorte-azterlanen ikerketa-datuak biltzen ditu. INMAren antzeko diseinua duen azterlan-sare bat da. “Lanean ari gara INMAko datuekin egin dugun analisi hori gutxi gorabehera 15.000 haurren datuekin erreplikatzeko, ikusi ahal izateko beste leku horietan antzeko zerbait topatzen dugun ala ez”, argitu du. “Uste dugu hirietan berdeguneak eta eremu urdinak izateak lagundu dezaketela haurren osasuna eta garapena hobetzen, baina lan handia egin beharra dago oraindik ere zehazteko zein prozesu psikologikotan eta osasun-prozesutan duten eragina eta zeintzuetan ez”, esan du Subizak, amaitzeko.

Iturria:

UPV/EHU prentsa bulegoa: Berdeguneek izan dezakete zerikusirik haurren garapen kognitiboan.

Erreferentzia bibliografikoa:

Subiza-Pérez, Mikel; García-Baquero, Gonzalo; Fernández-Somoano, Ana; Guxens, Mónica; González, Llucia ; Tardón, Adonina; Dadvand, Payam; Estarlich, Marisa; de Castro, Montserrat;  McEachan, Rosemary R.C.; Ibarluzea, Jesús; Lertxundi, Nerea (2023). Residential green and blue spaces and working memory in children aged 6–12 years old. Results from the INMA cohort. Health & Place, 84. DOI: 10.1016/j.healthplace.2023.103136

The post Berdeguneak eta haurren garapen kognitiboa appeared first on Zientzia Kaiera.

Categories: Zientzia

Cómo hacer un queso duro prensado en casa

Cuaderno de Cultura Científica - Sun, 2024/09/08 - 11:59

Un buen queso puede producirse tanto en una instalación profesional como en un pequeño laboratorio de bioquímica que podamos montar en casa. No es necesario disponer de grandes medios técnicos, sino de seguir disciplina básica de laboratorio, incluyendo materiales y métodos ordenados, procesos planificados, medidas anotadas y mucha limpieza.

en casaVista general del laboratorio limpio, listo para comenzar la fabricación de un queso duro prensado. Foto: Victor Etxebarria

Para comenzar la sesión de laboratorio deben desinfectarse todas las superficies y utensilios. Para ello, podemos utilizar una sencilla solución limpiadora ácida. Por ejemplo, sirve ácido acético común (vinagre) o -mejor aún- ácido fosfórico con surfactante aniónico en un pulverizador, como se muestra en la parte derecha de la Figura 1.

Otros utensilios culinarios muy comunes, como una espumadera, una espátula y un colador -todos de buen acero inoxidable (Figura 1)- son también importantes. Los únicos instrumentos algo más especiales necesarios para fabricar queso son un termómetro preciso (décimas de grado) y un pH-metro de calidad, capaz de medir pH de sólidos blandos con electrodo en forma de lanza. Apera Instruments o Hanna Instruments son conocidos suministradores de medidores de pH precisos y asequibles. Estos dispositivos deben calibrarse siempre al inicio para empezar la sesión de laboratorio.

en casaBaño maría regulable para transformar la leche en queso. A la derecha se muestra la entrada para el llenado del baño con agua sanitaria ordinaria, así como una bomba manual para su vaciado. A la izquierda se observa un simple termo-circulador para el agua. Foto: Victor Etxebarria

 

Comenzamos el experimento templando la leche al baño maría. En la Figura 2 mostramos el dispositivo para procesar 20 litros de leche en una cubeta de acero inoxidable estándar GN 1/1. Una caja de plástico alberga la cubeta llenando el baño con un grifo de agua sanitaria. Si es necesario, una bomba manual sencilla puede vaciar el agua o regular groseramente la temperatura de la camisa de agua. Finalmente, un calentador circulador regula con mayor precisión el calentamiento del baño.

En la Figura 2 se observa el templado de la leche a 27.2ºC, que se encuentra subiendo la temperatura de forma regulada a poco más de 30ºC. En este momento, y para propiciar de forma controlable la acidificación de la leche, añadimos Lactococcus lactis, cremoris y diacetylactis. Existen en el mercado múltiples fermentos lácticos fáciles de adquirir. Con la espumadera mezclamos 2 gramos de fermentos si partimos de 20 litros de leche y mantenemos la temperatura ligeramente por encima de 30ºC.

De forma optativa, y para ayudar a regular después la lipólisis de las largas cadenas de ácidos grasos de la leche, podemos también añadir lipasa, enzima pre-gástrica también fácil de adquirir en la industria láctea, y muy útil para generar sabores y aromas de los ácidos grasos de cadena corta que caracteriza al queso.

en casaBaño maría con una cacerola doble. La temperatura del baño se regula con el fogón de la cocina, y la cacerola de arriba -insertada en la de abajo- contiene la leche. Foto: Victor Etxebarria

 

Otra alternativa más sencilla como recipiente para fabricar queso es usar una cacerola doble como se muestra en la Figura 3: la inferior contiene la camisa exterior de agua y la superior contiene la leche. En cualquiera de los casos, el proceso es mantener la leche al baño maría sin superar los 30-31ºC para que las bacterias mesófilas comiencen a acidificarla a máximo rendimiento. En menos de 60 minutos, se debe detectar con el pH-metro un comienzo de descenso en el pH de la leche. Típicamente partiendo de una leche cruda fresca a pH 6.6, podemos medir un pH 6.4 después de una hora de fermentación.

Este inicio de descenso nos indica que podemos comenzar a controlar el cuajado de la leche. Para ello podemos añadir enzimas proteolíticas (quimosina y pepsina) comunes en el cuajo natural de los estómagos de los rumiantes. Estas enzimas se pueden producir en la industria biotecnológica con todas las garantías mediante fermentación (proceso FPC, según sus siglas en inglés), sin necesidad de elementos animales. En versión líquida ordinaria la dosis es de unos 5 ml para cuajar 20 litros de leche.

Una vez añadida la quimosina (o el cuajo) y mezclada un minuto con la leche, mantenemos tapada y sin perturbar la coagulación de la leche durante al menos 30 minutos. Una vez transcurrido este tiempo, mediante la espátula, probamos si la cuajada presenta textura firme. En caso contrario, es necesario prolongar unos pocos minutos más el cuajado. Una vez obtenida cuajada sólida, la cortamos con la espátula en pequeños cubos de 1 cm de lado, o bien usamos como herramienta para este corte un agitador de varillas, siempre que lo utilicemos troceando la cuajada con mucha delicadeza, hundiendo verticalmente el agitador por toda la superficie de la cuajada, y rotándolo 360 grados lentamente en cada punto.

Los cuajos a temperatura creciente para ir ganando consistencia, elasticidad y separación del suero para producir queso duro. Foto: Victor Etxebarria

 

A partir de este punto, aumentamos muy despacio la temperatura del baño maría y con suavidad removemos los cuajos, que se van encogiendo y separando del suero. La temperatura máxima a la que subimos son 37ºC. A lo largo de una hora aproximadamente continuamos la separación del suero, y los cuajos van descendiendo en tamaño y ganando en consistencia y elasticidad. En la Figura 4 se muestra este proceso removiendo lentamente los cuajos con un agitador de varillas.
El pH sigue descendiendo tanto en el suero como en los cuajos, y llegando hacia pH 6.2, procedemos a escurrir el suero de los cuajos, recogiéndolos en una tela de quesería esterilizada y un colador de acero inoxidable como el mostrado a la izquierda en la Figura 1. De esta manera, los cuajos escurridos van uniéndose en masa sólida de queso a temperatura templada y poco a poco descendiente (35-33-31ºC). Entre tanto, las bacterias siguen consumiendo lactosa y produciendo ácido láctico.

Las masas para quesos duros así producidas pueden introducirse ya ahora en un molde para generar su forma, pero aquí mostraremos un proceso intermedio adicional, específico para los apreciados quesos duros cheddar.

Filetes del proceso de “cheddaring” y medida de pH para después proceder al troceado (“milling”), salado en seco y prensado, a poder ser templado a unos 30ºC. Foto: Victor Etxebarria

 

El “cheddaring” consiste en cortar la masa en filetes gruesos e ir montando uno sobre otro a temperatura templada, volteando su montaje cada 10-15 minutos. Ello consigue que la masa vaya perdiendo más suero a cada movimiento, y que los filetes vayan descendiendo su pH hacia 5.4. En la Figura 5 se ilustra el proceso de cheddaring casi terminado.

En este momento, se trocean los filetes en piezas o cubos de 2-3 cm de lado (“milling”), y se añade sal común no yodada (2% en masa). Típicamente con 20 litros de leche de vaca -cruda y de calidad- el rendimiento mediante este proceso es 11% (2,2 kg de masa de queso) y la sal añadida serían 45 g. Mediante este salado los trozos de masa absorben rápidamente la sal y los Lactococcus dejan de acidificar.

Prensa artesanal sencilla. La masa de queso queda envuelta en tela dentro del molde. Se colocan en este caso 4 discos de mancuernas de 5 kg cada uno para ejercer presión homogénea sobre toda la superficie del queso. Foto: Victor Etxebarria

 

El siguiente paso para terminar un queso duro es el prensado. En un cheddar, se recogen los trozos de masa salados en la tela de quesería y se introducen en el molde. La presión ejercida mediante la simple colocación de pesos sobre una pieza que transmite fuerza sobre toda la superficie del queso es el procedimiento más sencillo y eficaz, como lo mostrado en la Figura 6. Se trata de una prensa fabricada a medida para un molde cilíndrico de 16 cm de diámetro. Un sencillo cálculo para este ejemplo ilustrado de colocar 20 kg sobre la prensa da lugar a ejercer una presión de 10 kilopascales. Esto es más que suficiente para prensar correctamente un queso duro.

Si no se trata de un queso tipo cheddar, sino uno tipo montañés, idiazabal o manchego, el proceso es ligeramente diferente. La masa de queso se introduce en el molde por medio de la misma tela y se pasa a la prensa a baja presión. Por medio de varios volteos a presión creciente y la monitorización de su pH, el queso va tomando solidez, elasticidad y acidez apropiadas. A pH 5.4 sacamos el queso de la prensa y lo sumergimos en una salmuera (solución saturada de cloruro sódico en agua). Este salado húmedo es absorbido por el queso y de nuevo los Lactococcus dejan de acidificar. Aquí termina la fabricación del queso duro.

Cualquiera de los dos principales quesos duros descritos -los que reciben salado en seco y prensado después, o los que primero se prensan y entran en salmuera después- requieren unas horas de oreado, como se ilustra en la Figura 7. Foto: Victor Etxebarria

A partir de aquí, la maduración de estos quesos implica un proceso de afinado (affinage) o maduración. Si se ha utilizado leche cruda, como mínimo deben permanecer 2 meses en una cava a 15ºC. Si se ha partido de leche pasteurizada, y se prefiere queso tierno, puede degustarse inmediatamente. Los quesos con muchos meses de curación presentan sabores y aromas más fuertes y complejos. La afinación de quesos es otro arte que regula sus características organolépticas y hay exquisitos quesos añejos que se maduran durante años.

Sobre el autor: Victor Etxebarria Ecenarro es Catedrático de Ingeniería de Sistemas y Automática en la Universidad del País Vasco (UPV/EHU)

El artículo Cómo hacer un queso duro prensado en casa se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Asteon zientzia begi-bistan #497

Zientzia Kaiera - Sun, 2024/09/08 - 09:00

Asteon zientzia begi-bistan igandeetako gehigarria da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna jaso eta laburbiltzea da gure helburua.

Ikertzaile

Zoologia

Japoniako ikertzaile batek frogatu du Regimbartia attenuata kakalardoak gaitasuna duela Pelophylax nigromaculatus igelaren digestio-sistema zeharkatzeko eta bere kloakatik bizirik ateratzeko irentsita izan ostean. Hau egin dezake digestio-sistema era aktiboan gurutzatzen baitu hankak erabiliz eta exoeskeleto gogorra eta aire-poltsiko moduko bat duelako. Informazio gehiago Zientzia Kaieran.

Mikrobiologia

CNRS Frantziako Zientzia Ikerketarako Zentroko ikertzaileek eredu konputazional bat sortu dute koronabirusen jatorria eta bilakaera aztertzeko. Horren bidez ondorioztatu dute birus horiek saguzarretan sortu zirela Asia ekialdean eta Europan, eta gero beste ugaztun batzuetara jauzia eman zuela. Gizakiak, antza, aldi baterako ostalariak dira transmisio kate horretan. Aurkikuntza horiek erabakigarriak dira etorkizuneko antzeko pandemien aurkako prebentzio-estrategiak diseinatzeko. Datuak Elhuyar aldizkarian.

Klima-aldaketa

Ikertzaile-talde batek modelizatu du klima-aldaketak Artikoaren inguruko lurretan dauden lurpeko suteen sorreran izan dezakeen eragina. Sute horiek, sute zonbi gisa ezagutzen direnak, aktibo egon daitezke lur azpian neguan, eta udaberrian berpiztu. Ikerketak iradokitzen duenez, atmosfera azkar berotzeak zohikatzaren berezko errekuntza eragin lezake, kanpoko txinparten beharrik gabe. Hauek, karbono iturri garrantzitsua den permafrosta urtu dezakete. Azalpen guztiak Zientzia Kaieran.

Adimen artifiziala

Minbizi-zelulak eta birusek kutsatutako zelulak fase goiztiarrenean detektatzeko gai den adimen artifizialeko tresna garatu dute, AINU deiturikoa. Haren garapenean, EHUko, DIPCko eta beste hainbat zentrotako ikertzaileak aritu dira elkarlanean teknologia mikroskopiko aurreratua erabiliz. Emaitzak Nature Machine Intelligence-n argitaratu dituzte. AINUk bereizmen handiko irudiak erabiltzen ditu zeluletan patroi espezifikoak identifikatzeko. Diagnostikoan aukera interesgarriak eskaintzen baditu ere, ikertzaileek ohartarazi dute oraindik muga handiak gainditu behar dituztela. Datuak Elhuyar aldizkarian.

Oihane Cantero Dominguez, Orai zentroko ikertzailea, adimen artifizialaren arloan ari da lanean, bereziki hizkuntza naturalaren prozesamenduan. Bere lanean, hizkuntza-ereduak euskal kulturara egokitzean eta laguntzaile pertsonalizatuak sortzean jartzen du arreta, genero-arrakalari aurre eginez. Teknologian emakumeen ordezkaritza handitzeko beharra nabarmendu du Canterok, eta ikuspegi baikorra du adimen artifizialeko ikerketaren etorkizunari buruz. Ikertzaile honen inguruko informazio gehiago Zientzia Kaieran.

Geologia

Duela 5,5 milioi urte, mugimendu tektonikoek Mediterraneo itsasoa eta Ozeano Atlantikoa banatu zituzten. Horren ondorioz, Mediterraneoko espezieen % 11 baino ez zuen iraun. 1,7 milioi urte gerora arte ez zen aurreko espezieen ugaritasuna berreskuratu. Atlantikoa eta Mediterraneoa berriz konektatu zirenean, espezie atlantikoek Mediterraneoa kolonizatu zuten, eta espezieen mendebaldetik ekialderako mailakatze bat eman zen, gaur arte irauten duena. Informazio gehiago Elhuyar aldizkarian.

Teknologia

Biosentsoreak bioerrezeptore batekin interakzioaren bidez analitoak detektatu eta kuantifikatzen dituzten gailuak dira, seinale hori erantzun neurgarri bihurtuz. Gero eta ohikoagoak dira, batez ere diabetesa kontrolatzeko edo Covid-19a detektatzeko aplikazio medikoetan, baina elikagaien industrian, ingurumenean eta nekazaritzan ere erabiltzen dira. 2022an, munduko biosentsoreen merkatua 26.800 milioi dolarrera iritsi zen. Ekoizpen-erronkak izan arren, etengabeko hazkundea espero da, gailu jasangarriago eta zehatzagoen eskaerak bultzatuta. Azalpen guztiak Zientzia Kaieran.

Biomedikuntza

Suediako, Frantziako eta Erresuma Batuko ikertzaileek Nature aldizkarian argitaratutako ikerketa baten arabera, hiru hilabeteko terapia hormonalaren ostean, trans gizonen erantzun immunitarioa cis gizonen antzekoa da. Hormona sexualek immunitate sisteman duten eragina nabarmentzen du aurkikuntza horrek, eta trans pertsonen osasunari buruzko ikerketen gabezia nabarmentzen du. Ikerketak lagina mugatua izan arren, emaitzak esanguratsuak izan dira, pubertaroaren osteko hormona tratamendua immunitate sistema aldatzeko nahikoa dela erakutsiz. Datuak Elhuyar aldizkarian.

Egileaz:

Enara Calvo Gil kazetaria da eta UPV/EHUko Kultura Zientifikoko Katedrako komunikazio digitaleko teknikaria.

The post Asteon zientzia begi-bistan #497 appeared first on Zientzia Kaiera.

Categories: Zientzia

Día de pi 2024: Viaje hacia la modelación de un NanoUniverso

Cuaderno de Cultura Científica - Sat, 2024/09/07 - 11:59

nanouniverso

El número Pi, representado por la letra griega π, es una de las constantes matemáticas más famosas e importantes que existen en el mundo. Este número irracional, que determina la relación entre la longitud de una circunferencia y su diámetro, concierne a múltiples disciplinas científicas como la física, la ingeniería y la geología, y tiene aplicaciones prácticas sorprendentes en nuestro día a día.

La fascinación que ha suscitado durante siglos es tal, que se viene estudiando desde hace más de 4.000 años e, incluso, cuenta con su propio día en el calendario: el 14 de marzo. Este evento internacional vino de la mano del físico estadounidense Larry Shaw, quien en 1988 lanzó la propuesta de celebrar esta efeméride. La forma en la que se escribe el 14 de marzo en inglés y euskera coincide con los tres primeros dígitos de la famosa constante matemática: 3-14 martxoaren 14 en euskara / 3-14 March, 14th en inglés. En los últimos años, la conmemoración del Día de Pi se ha ido extendiendo, hasta tal punto que el 26 de noviembre de 2019 la UNESCO proclamó el 14 de marzo Día Internacional de las Matemáticas.

Un año más, el Basque Center for applied Mathematics-BCAM y la Cátedra de Cultura Científica de la UPV/EHU nos sumamos a la celebración, organizando la quinta edición del evento BCAM NAUKAS, que se desarrolló a lo largo del 14 de marzo en el Bizkaia Aretoa de UPV/EHU.

Los virus existen y proliferan a escala nanométrica. Se pueden desarrollar modelos matemáticos que describen su comportamiento a esta escala. Y a ello se dedica Daniela Moreno, que en esta charla Viaje hacia la modelación de un NanoUniverso nos da una introducción qué es la nanoescala, a qué es un modelo, y como hacer uno para aquella.

Daniela Moreno es ingeniera mecánica y está realizando su doctorado en el BCAM sobre el transporte pasivo de virus, desarrollando modelos que lo describan.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Día de pi 2024: Viaje hacia la modelación de un NanoUniverso se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Ezjakintasunaren kartografia #504

Zientzia Kaiera - Sat, 2024/09/07 - 09:00
Irudia: Eva-Maria Geigl et al.

Ba al dago genoma europartzat har dezakegun ezer? Baldin badago, estepetako herrien eta mendebaldeko populazio neolitikoen arteko batasuna izan behar du. Eta paleoantropologo talde batek une zehatzaren “argazkia” aurkitu du. The final stage in the formation of a ‘European genome’, Eva-Maria Geigl, Oкuzhan Parasayan, eta Thierry Grangeren eskutik.

Animaliekin eta gizakiekin proba kliniko arriskutsuak egin beharrean, adimen artifizial prediktiboa erabil daiteke. Eta bide batez, ehunka milioi euro aurreztu. De-risking drug discovery with predictive AI, Claire Hendershoten eskutik.

Badirudi sistema immunea eta gantz-ehuna gehiagi komunikatzen badira, zahartzea gertatzen dela. The ageing effect of immune system and adipose tissue chatting, José R. Pineda.

Benetan ez diren estimulu energetikoei aldizkako erantzunak dira ohikoak izaki bizidunentzat. Ikertzaileek denbora asko daramate portaera hori duten sistema artifizialak aurkitu nahian, aplikazio ugari izango lituzkeelako. DIPCko jendeak hutsala izatetik urrun dagoen bat aurkitu du: DNAz estalitako urrezko nanopartikulak. Oscillatory hydrodynamics in DNA-coated gold nanoparticles

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #504 appeared first on Zientzia Kaiera.

Categories: Zientzia

Lo que nos dice el cortisol en tu pelo cuando tienes 11 años

Cuaderno de Cultura Científica - Fri, 2024/09/06 - 11:59

El cortisol es la hormona que segrega el cuerpo para responder a situaciones estresantes y es muy útil medir su concentración en el cabello para analizar el estrés crónico. “Entre otros lugares, el cortisol suele estar en la sangre, en la saliva y en la orina, lo que indica el nivel de cortisol existente en un momento dado: sin embargo, en el pelo se acumula y sirve de indicador del grado de estrés a más largo plazo, es decir, del estrés crónico”, explica Ane Arregi Otxotorena, investigadora de la Facultad de Psicología de la Universidad del País Vasco. Para distinguir entre el estrés puntual y el estrés crónico, Arregi utiliza un claro ejemplo: “No es el mismo estrés el que se produce cuando uno va a comprar pan un día y se da cuenta de que le falta dinero y el que provoca el hecho de saber que no se tiene dinero para comprar pan en el día a día”.

cortisolFuente: Pixabay

La investigadora del grupo Basque Environmental Health Research Group (B-EHRG) ha utilizado muestras de cabello de niños y niñas de 11 años para evaluar el estrés crónico. Los datos para la investigación los ha tomado del proyecto INMA: En el proyecto Infancia y Medio Ambiente (INMA) se recogen datos variados de niños y familias para realizar investigaciones a largo plazo desde el embarazo de la madre.

Así, la investigación concluye que los mayores problemas de comportamiento están relacionados con niveles más altos de cortisol en el cabello. Además, “hemos visto que el estrés de la madre está relacionado con los problemas de comportamiento de los niños y niñas. Esto significa que el estrés materno también puede influir en los niveles de cortisol de los niños a través de los problemas de comportamiento de estos. De alguna manera a lo largo de este camino de dos sentidos”, ha explicado Arregi.

El ruido ambiental también influye en el nivel de cortisol

Por otra parte, también han encontrado algo que no esperaban: “Un mayor grado de exposición al ruido ambiental está relacionado con niveles más bajos de cortisol. Hemos visto que cuanto más alto es el nivel de ruido, más bajos son los niveles de cortisol. En la separación del análisis por sexo, esta relación solo era significativa en el caso de los chicos”. Según los investigadores, “el estrés agudo inicial provocado por el ruido puede provocar un aumento de los niveles de cortisol puntuales, pero el estrés crónico provocado por una exposición a largo plazo al ruido alto puede reducir el nivel de cortisol”. Con el objetivo de reafirmar esos resultados que no se esperaban relacionados con el ruido, van a llevar a cabo la misma investigación en un proyecto europeo más grande, el Athlete (Horizon 2020).

Factores ambientales, sociales e individuales

En general, “en nuestra investigación hemos detectado estos dos factores, pero eso no quiere decir que no haya otros factores relacionados, sino que nosotros no hemos encontrado ninguna otra relación —aclara Arregi—. Es importante dar una visión más amplia a estas investigaciones y a la vez tener en cuenta más de un factor que provoca el estrés”. Así, han creado un modelo para investigar la relación entre factores ambientales, sociales e individuales y la concentración de cortisol en el cabello infantil. Como factores que pueden influir en el estrés han tenido en cuenta todos los factores que aparecen en la literatura, como los espacios verdes y azules, la contaminación del aire, el ruido ambiental, las relaciones familiares y escolares, el nivel de estrés de los padres, los problemas para dormir, la actividad física, la edad, el sexo, etc.

La investigadora de la Universidad del País Vasco ha señalado que “todavía queda mucho por investigar sobre los factores que influyen en los niveles de cortisol del cabello de niños y jóvenes, y los estudios realizados hasta ahora no tenían en cuenta la influencia simultánea de factores”. El modelo ha sido creado con el objetivo de analizar precisamente eso. Arregi ha explicado que es importante tener en cuenta en el modelo muchos factores: “A partir de ahora, el modelo nos permitirá saber qué variables se deberían tener en cuenta cuando se mide el nivel de cortisol en el cabello y cuáles no”.

Las investigaciones futuras deberían utilizar este enfoque más complejo para comprender mejor los factores determinantes de la concentración de cortisol en el cabello infantil, ya que la exposición simultánea a factores ambientales, sociales y individuales puede influir en dicha concentración. La situación de estrés crónico en niños y niñas está relacionada con muchos problemas de salud; “la infancia y la adolescencia son etapas muy vulnerables, porque son etapas de desarrollo rápido. Es muy importante saber cómo influyen en esta etapa los distintos factores en la salud de los niños, niñas y adolescentes para que lleguen a ser personas adultas sanas”, señala la investigadora.

“Creemos que el cortisol del cabello puede ser una herramienta de gran ayuda para evaluar el impacto de las exposiciones ambientales en el estrés crónico. En definitiva, esto puede ayudar a aplicar políticas públicas eficaces, porque sabiendo qué puede provocar el estrés crónico de la población de un lugar, puede ser más fácil aplicar políticas para evitarlo”, ha concluido.

Referencia:

Ane Arregi, Oscar Vegas, Aitana Lertxundi, Gonzalo García-Baquero, Jesus Ibarluzea, Ainara Andiarena, Izaro Babarro, Mikel Subiza-Pérez, Nerea Lertxundi (2024) Hair cortisol determinants in 11-year-old children: Environmental, social and individual factors Hormones and Behavior doi: 10.1016/j.yhbeh.2024.105575

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Lo que nos dice el cortisol en tu pelo cuando tienes 11 años se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Oihane Cantero, adimen artifizialeko ikertzailea: “Ikerketan beti egongo da aurrera segitzeko modua”

Zientzia Kaiera - Fri, 2024/09/06 - 09:00

Oihane Cantero Dominguezek modako arloan egiten du lan: adimen artifiziala. Zehazki, Orai ikerketa-zentroan dabil ikertzen; hau da, hizkuntza naturalaren prozesamenduaren goi-mailako ikerketan eta soluzio teknologikoetan espezializatutako Elhuyarren langunean.

Oihane CanteroIrudia: Oihane Cantero adimen artifizialeko ikertzailea da. (Argazkia: Fernando Gómez – UPV/EHUko Komunikazio Bulegoa)

Horra heltzeko egin duen ibilbidea aintzat hartuta, badirudi ia halabeharrez iritsi dela adimen artifizialeko ikertzaile izatera. “Hendaiarra naiz, eta hasierako ikasketa guztiak Seaskan egin ditut. Azken urtean, galdetzen digute zer egin nahi dugun gure bizitzarekin. Nik ez neukan ideiarik ere, beste askok bezala, baina argi neukan euskaraz ikasi nahi nuela. Horretarako, hegoaldera etorri behar nuen, eta ez nuenez etxetik urrun joan nahi, Donostian zer zegoen begiratu nuen. Informatikako gradua zegoen, eta interesa sortu zidan. Pixka bat probatzeko asmoz joan nintzen, eta han programatzen ikasi nuen, eta gustatu zitzaidan”.

Zehaztu duenez, aurrez ez zekien programazioaz ezer, aita informatikaria den arren. “Programatzeak badauka pentsatzeko modu ezberdin bat, beste logika bat da, beste era batera bisualizatzen dira gauzak, eta hori guztia interesgarria eta erakargarria iruditu zitzaidan”.

Laugarren mailan adimen artifizialari buruz zerbait ikasi zuen, eta, masterra egiteko garaian, bi zeuden aukeran: bat hizkuntzaren prozesamenduaren gainekoa, eta, bestea, adimen artifizialekoa. Azken hori gaztelaniaz zenez, berriz ere euskararekiko grinak bultzatuta, lehenengoaren alde egin zuen, nahiz eta ingelesez zen: “Egia da laugarren mailan eman genituela hizkuntzaren prozesamenduari buruzko gauzak, eta interesa piztu zidatela“, onartu du Canterok. Arlo horretako ikerketa adimen artifizialari lotuta dagonez, horrela iritsi da Orain egiten duen lanera.

Hain zuzen, Oraik bi arlo nagusitan ikertzen du: testuan eta hizketan. Canteroren esanean, hasieratik bietan ibili da, eta master-amaierako lana testuaren arloan egin du, hizkuntza-ereduak euskal kulturara moldatzen saiatzen, hutsune nabarmena baitute. “Gainera, emaitza onak lortzeko, ingelesez egin behar izan ditugu esperimentu guztiak, oraindik ez baitago euskarazko eredurik”.  Hizketaren arloan ere badabil, laguntzaile pertsonalizatuekin, eta ahotsaren sintesian hastekotan da.

Aukerak, arriskuak, arrakalak eta itxaropena

Ez dago zalantzarik adimen artifizialeko tresnak ahaltsuak direla, baina arriskuak ere badituzte. “Horregatik jakin behar da tresnaren alde onak hartzen, eta arriskua apaltzeko neurriak jartzen. Kontuz ibili behar da ez normalizatzea gehiegi; espiritu kritikoz begiratu behar da, alegia, badakigu tresna honek arazo hau duela, ez dugu horrela utziko, eta saiatuko gara arazo hori konpontzen”. Justu horretan aritu da Cantero, adimen artifizialaren alborapen kulturalak zuzendu nahian.

Beste alborapen batzuk ere aipatu ditu, hala nola generoari eta arrazari lotutakoak. Eta adimen artifizialaren ikasketetan ere agerikoa da genero-arrakala. Canteroren esanean, unibertsitatera aurreiritzirik gabe joan zen, baina informatikako graduan gizonak gehiengoa ziren. Gero, masterrean, hizkuntzalaritzatik zetozen emakumeei esker, orekatu egin zen. Orain, ordea, lantaldean, emakumeak berriro daude gutxiengoan.

Arrakala hori txikitzeko zer egin daitekeen galdetuta, azkar erantzuten du: “Badago modu bat: emakume gehiago kontratatzea”. Garbi dauka emakume gehiago behar direla, ikasketetatik hasita. “Emakume ikasleak badaude, baina gutxiago dira, beraz, agian hortik hasi behar da konpontzen”. Emakume informatikari gehiago egoteak ere lagundu dezake ikasketetara emakumeak animatzen.

Aurrerantzean, adimen artifizialarekin lanean jarraitzeko itxaropena du. Lana egiteko modua ere alda daitekeela aurreikusten du; adibidez, hizkuntza-ereduak gai dira kodeak sortzeko, eta, beraz, agian, kodeak sortzetik zuzentzera igaroko dira. Baina ilusioz eta irekita begiratzen dio datorrenari: “Ikerketan beti egongo da aurrera segitzeko modua”.

Fitxa biografikoa:

Oihane Cantero Dominguez Hendaian jaio zen, 1999an. EHUn informatikako gradua egin ondoren, Hizkuntzaren Azterketa eta Prozesamendua Unibertsitate Masterra egin du unibertsitate berean. Gaur egun, Orai languneko ikertzailea da.

Informazio gehiago:
  • EHUko Zientzia eta Gizarte Garapenaren eta Transferentziaren Arloko Errektoreordetza (2024). EHU Ekinean podcasta: Oihane Dominguez Cantero, Campusa Campusa aldizkaria, UPV/EHU.
https://zientziakaiera.eus/app/uploads/2024/09/oihane-cantero-ehu-ekinean.mp3 Egileaz:

Ana Galarraga Aiestaran (@Anagalarraga1) zientzia-komunikatzailea da eta Elhuyar aldizkariko zuzendarikidea.

Elhuyar aldizkariarekin lankidetzan egindako atala.

The post Oihane Cantero, adimen artifizialeko ikertzailea: “Ikerketan beti egongo da aurrera segitzeko modua” appeared first on Zientzia Kaiera.

Categories: Zientzia

La utopía tecnológica de John Jacob Astor IV

Cuaderno de Cultura Científica - Thu, 2024/09/05 - 11:59

Seguramente, la mayoría de los lectores de este artículo reconocerá en el nombre de John Jacob Astor IV a uno de los principales inversores, y amigo, de Nikola Tesla ―Astor era el que le sacaba las castañas del fuego al inventor por no pagar las facturas en el hotel Waldorf Astoria, que era de su propiedad―. A otros tal vez le suene más el nombre porque fue una de las alrededor de 1500 víctimas del hundimiento del Titanic. Y, los que menos, puede que conozcan su faceta más visionaria o incluso hayan leído su novela A journey in other worlds: A romance of the future.

AstorJohn Jacob Astor IV fue uno de los principales benefactores de Nikola Tesla en su momento. Pereció a los 47 años en el hundimiento del Titanic. En aquel momento, era uno de los hombres más ricos del mundo.
Créditos: Dominio público.

Sin ser una obra maestra de la literatura, ni siquiera de la de ciencia ficción, en esta utopía tecnocapitalista de 1894 aparecen varios adelantos que, si bien entonces pudieron considerarse casi inverosímiles, a día de hoy forman parte de nuestra vida cotidiana. Por supuesto, también aparecen algunos que, aunque no del todo desconectados de la realidad, todavía podrían llegar a hacerse realidad y, por extensión, otros que no tienen ni pies ni cabeza ―como buena obra del siglo XIX―, pero eso no la resta interés a esta obra. Dejando a un lado escenas que podrían considerarse más fantásticas que especulativas, lo cierto es que John Jacob Astor IV supo leer muy bien el contexto tecnológico de su época, así como muchos aspectos sociales y culturales, pero esa parte la dejaremos para otra ocasión.

A journey in other worlds se publicó tan solo un año después de la Exposición Universal de Chicago en la que la Westinghouse Electric & Manufacturing Company asombró al mundo con su sistema de iluminación eléctrica alimentado por generadores de corriente alterna, y en la que Nikola Tesla contaba con su propio expositor en el Pabellón de la Electricidad. Se podría decir que la electricidad y el magnetismo fueron para el siglo XIX lo que la inteligencia artificial es hoy para nosotros: una panacea tecnológica que sirve para todo, se puede aplicar a todo y transformará nuestras vidas de formas que ni siquiera somos capaces de imaginar. Es lo que suele suceder casi siempre cada vez que aparece en escena un descubrimiento potencialmente disruptivo. Eso fue precisamente lo que Astor reflejó en su libro y, en muchos aspectos, acertó.

AstorExpositor de la Westinghouse Electric & Manufacturing Company en la que se mostraba el funcionamiento de varios de los inventos de Nikola Tesla. Créditos: Dominio público.

Así, en la obra, aparecen ya vehículos eléctricos, tanto coches como bicicletas, con sus necesarias redes de carga distribuidas por toda la geografía. Y, en realidad, no podía ser de otra manera, el coche eléctrico siempre fue la evolución lógica inicial ―incluso Thomas Edison fabricó baterías para este tipo de vehículos―, pero cuestiones de autonomía, potencia, coste e infraestructura acabaron inclinando la balanza hacia el motor de combustión.

Los faetones eléctricos, como se denomina a los [vehículos] de alta velocidad, tienen tres y cuatro ruedas y pesan, incluyendo la batería y el motor, de quinientas a cuatro mil libras. Con armazones huecos de aluminio tratado galvánicamente pero inmensamente fuertes y llantas neumáticas o de bandaje, circulan a treinta y cinco y cuarenta millas por hora en caminos rurales y alcanzan una velocidad de más de cuarenta en calles de la ciudad, y pueden mantener esta velocidad sin recarga durante varios días. […]

Para recargar las baterías, lo que se puede hacer en casi todas las ciudades y pueblos, se introducen dos clavijas de cobre en agujeros lisos unidas a cables de cobre aislados. […] Una manija en el asiento del salpicadero activa cualquier parte de la corriente alcanzable, ya sea para avanzar o retroceder, hay seis u ocho grados de velocidad en ambos sentidos, mientras que la dirección se maneja con un pequeño volante.

Thomas Edison mostrando las baterías de un vehículo de la compañía Detroit Electric en 1913. Créditos: Dominio público/NPGallery

Astor habla en otro pasaje también de sistemas de frenado regenerativos, algo que ya incorporan algunos automóviles:

Al llegar a la cima de una colina larga y empinada, si no queremos avanzar por inercia, convertimos los motores en dinamos, mientras funcionamos a plena velocidad, y así transformamos la energía cinética del descenso en energía potencial en nuestras baterías.

Lamentablemente, y para desesperación de los conductores, su visión del futuro automotriz incluía, asimismo, algo muy parecido a los radares móviles de tráfico.

¿Y de dónde obtener la electricidad que alimente las baterías de esos vehículos? Según John Jacob Astor, del sol, «en lugar de carbón voluminoso y sucio». De una suerte de dispositivos fotovoltaicos ―algo rudimentarios, eso sí, fabricados con grandes espejos cóncavos y calderas de vapor― situados en grandes extensiones de desierto como el Sahara. También del viento, con aerogeneradores y baterías en el ámbito doméstico y a través de mástiles huecos con turbinas en lugar de velas, en el marítimo. Habló incluso de hidroalas ―una especie de barcos con esquís que sobresalen del agua cuando alcanzan altas velocidades― más de una década antes de que Alexander Graham Bell y Casey Baldwin las inventaran. Y, para concluir con sus visiones sobre el transporte, esta vez de forma no del todo acertada, pensó en un sistema de ferrocarril magnético… pero no de levitación. ¡Tal vez ya hubiera sido demasiado!

La E-Ship 1, del fabricante de aerogeneradores alemán Enercon, utiliza un sistema de rotores en los mástiles que podría asemejarse mucho a la idea de John Jacob Astor IV: : «Los mástiles huecos de nuestros barcos […] llevan turbinas en lugar de velas, a través de las cuales el viento realiza el trabajo de almacenar gran parte de la energía necesaria para moverlos en el mar».
Créditos: CC BY-SA 3.0 DE/Carschten

En A journey in other worlds el viaje al espacio, a Júpiter y Saturno, en este caso, también tiene un papel protagonista. De hecho, es la primera obra de ficción en la que aparece el término «nave espacial». Por supuesto, con esclusas de entrada y salida, para evitar disgustos al salir y al entrar, y un sistema de comunicaciones, de nuevo no muy práctico, de señales luminosas con la Tierra.

El sistema de comunicación luminoso Tierra-nave aparece en una de las ilustraciones de A journey in other worlds. Créditos: Dominio público/Dan. Beard.

 

Lo que está claro, tanto en esta como en otras obras de la época, es que las ideas flotaban en el aire, y eran infinitas. Por eso es difícil afirmar si los visionarios de entonces «acertaron» o simplemente tenían tantísimas ocurrencias que, por una cuestión estadística, daban en el clavo de casualidad en algunas. En ese sentido, el libro de John Jacob Astor también se acerca peligrosamente la línea que separa la ciencia de la ficción cuando habla de control climático o generadores de lluvia, y la cruza directamente cuando describe unos ojos magnéticos ―una especie de ojos de rayos X, pero que funcionan analizando las propiedades magnéticas de los materiales alrededor― o menciona el apergy, una sustancia antigravitatoria que aparece en otra novela similar:   Across the zodiac: The story of a wrecked record de Percy Greg.

Fuera lo que fuera, parece que soñar funcionaba, por muy locos que fueran esos sueños, por muy alejados de la realidad que estuvieran muchos de ellos. John Jacob Astor o Nikola Tesla eran muy dados a este tipo fantasías… y, oye, ni tan mal.

Bibliografía

Astor IV, J. J. (1894). A Journey in Other Worlds: A Romance of the Future.

Greg, P. (1880). Across the Zodiac: The Story of a Wrecked Record.

Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo La utopía tecnológica de John Jacob Astor IV se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Material biologikoen integrazioa teknologian: biosentsoreak

Zientzia Kaiera - Thu, 2024/09/05 - 09:00

Biosentsoreak lagin mota ezberdinetako analitoak detektatzeko edo/eta kuantifikatzeko erabiltzen diren gailuak dira. Azken urteetan, emaitzak eskuragarriago izateko, telefono mugikorretan eta aplikazio adimendunetan oinarritutako hainbat biosentsore garatu dira.

biosentsoreakIrudia: gaur egun gehien ezagutzen diren biosentsoreak diabetesa kontrolatzeko gailua eta haurdunaldiaren testa dira, nahiz eta 2020-2022 urteetan Covid-19aren detekziorakoa ere oso ospetsu bihurtu zen. (Argazkia: Mika Baumeister – Unsplash lizentziapean. Iturria: Unsplash)

Biosentsoreetan, analizatu nahi den substantziaren (analitoaren) eta biohartzaile deritzon material biologiko baten arteko elkarrekintzaren ondorioz seinale bat sortzen da. Seinale hori transduktore batek seinale fisiko-kimiko neurgarri bihurtzen du. Batzuetan, transduktoreak emandako seinalea zuzenean irakur daiteke -kolorearen kasuan, adibidez- baina, besteetan, era analogikotik digitalera eraldatu behar da eta horretarako prozesadorea ere behar da.

Biohartzaileak eta transduktoreak, beraz, biosentsoreen funtsezko osagaiak dira. Biohartzaileak, besteak beste, entzimak, proteinak, zelulak eta inmunosentsoreak izan daitezke. Transduktoreen kasuan, bestalde, elektrokimikoak dira erabilienak (mota horretako transduktorea duten biosentsoreen merkatuaren diru-sarrera % 71,4 izan zen 2022an), baina beste mota batzuk ere badaude, esaterako, optikoak, termikoak, elektronikoak eta grabimetrikoak.

Biosentsoreak erabiliz, analisi kualitatiboak, erdikuantitatiboak edo kuantitatiboak burutu daitezke. Gailu horien propietate analitikoen artean azpimarragarriena espezifikotasuna da; hau da, laginean konposatu ezberdin asko izanda ere, analito bakarra era espezifikoan detektatzeko ahalmena daukate. Nabarmentzekoak dira baita ere analisi horien erreproduzigarritasuna, sendotasuna, sentsibilitatea eta linealtasuna.

Biosentsoreak geroz eta ohikoago

Aplikazioei dagokienez, medikuntza-osasuna da eremurik indartsuena, batez ere arreta-guneko probak eta etxeko osasun-diagnostikoak egiteko. Arlo horretan gaur egun gehien ezagutzen diren biosentsoreak diabetesa kontrolatzeko gailua eta haurdunaldiaren testa dira. Bestetik, 2020-2022 urteetan Covid-19aren detekziorako biosentsorea ere oso ospetsua bihurtu zen. Baina beste alor askotan ere erabilgarritasun handia dute biosentsoreek. Elikagaien industrian, esaterako, lehengaien kalitatea eta prozesaketa kontrolatzeko erabili daitezke (elikagaien freskotasuna edo heldutasun-maila determinatzeko), eta baita produktuen segurtasuna bermatzeko ere; hau da, konposatu kaltegarrien presentzia (patogenoak, alergenoak, biotoxinak eta abar) detektatzeko ere erabil daitezke.

Ingurumenaren alorrean, uretan eta lurzoruan dauden hainbat metal astunen biodetekzioa eta plastikoen degradazioaren monitorizazioa aipa daitezke, besteak beste. Gainera, mikroplastikoen presentziak sortutako toxikotasuna neurtzeko ere balio dute. Nekazaritzan, elikagaien ekoizpenari kalte egin diezaioketen izurriteak, birusak, patogenoak eta ingurumen-baldintzak detektatzeko tresna baliogarriak dira, elikagai-baliabideak alferrik gal ez daitezen. Biosegurtasunaren arloan eraso biologikoen (bioterrorismo delakoaren) kasuan babeserako erabaki azkarrak hartzeko balio dute.

Mundu mailan, 2022. urtean, biosentsoreen munduko merkatuaren balioa 26.800 milioi dolar izan zen, eta horien erabileraren eta salmentaren etorkizuna oso baikorra da. Urte horretan, Ameriketako Estatu Batuak (AEBk) izan ziren biosentsoreen merkatu-kuota handiena izan zuen herrialdea, biztanleen % 11,3ak diabetesaren tratamendua hartzen duelako eta biosentsoreak merkaturatzen dituzten enpresa indartsuenetarikoak herrialde horretan sortu direlako. Erabilerari dagokionez, arreta-guneko osasun-probak egiteko erabiltzen diren biosentsoreek merkatuko diru-sarreraren % 46,7 inguru eragin zuten 2022an, laborategi klinikoko probak pazientea tratatzen den lekutik gertu egitea ahalbidetzen baitute.

Nahiz eta biosentsoreak eskala industrialean fabrikatzeko erronka handiak gainditu behar diren, protagonismo gero eta handiagoa dute gure bizitzan. Biosentsore iraunkor, zehatz eta sentikor gehiago garatzeko premia handia dagoela aurreikusi da eta, erronka teknologikoak kontuak izanik, biologia, kimika, materialen zientzia, fabrikaziorako mikro-nanoteknologia eta merkatu bultzatzailea erabakigarriak izango dira berrikuntzak aurrera eramateko eta, azken finean, biosentsoreen erabilera unibertsala lortzeko.

Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: 45
  • Artikuluaren izena: Material biologikoen integrazioa teknologian: biosentsoreak
  • Laburpena: Biosentsoreak XX. mendeko azken hamarkadetan garatzen hasi ziren gailu analitikoak dira eta derrigorrezko osagai bi dituzte: biohartzailea eta transduktorea. Haien ezaugarri nagusia material biologiko bat (entzima, proteina…) plataforma egokiarekin konbinatzean datza, analitoak sortutako efektua seinale neurgarri bihurtzeko. Analisi kualitatiboa, erdikuantitatiboa edo kuantitatiboa burutu daiteke biosentsoreak erabiliz. Gehien ezagutzen direnak diabetesa kontrolatzekoa eta haurdunaldia detektatzekoa diren arren, sektore askotan hedatzen ari dira eta, medikuntzarako aplikazioez gain, askotariko aplikazioak dituzte elikagaien industrian, nekazaritzan eta beste hainbat eremutan. Mundu mailan, oso baikorra da gailu hauen erabileraren eta salmentaren etorkizuna, eta merkatuaren urteko hazkuntza-tasa konposatua % 7-8 ingurukoa izango dela aurreikusi da 2023-2032 tartean. Nahiz eta biosentsoreak eskala industrialean fabrikatzeko erronka handiak gainditu behar diren, protagonismo gero eta handiagoa dute gure bizitzan, eta tresna baliagarriak dira premiazko erabakiak hartzeko. Beraz, artikulu honen helburua biosentsoreen mundu zabala irakurlegoari hurbiltzea da eta, horretarako, gailu horien osagaiak eta funtzioa deskribatzeaz gain, ezaugarri analitikoak eta sailkapena azalduko dira, erabilerako adibide ugariz hornituta.
  • Egileak: Maite García-Hernando, Naiara Rojo, Astrid Barona, Lurdes Basabe-Desmonts, Fernando Benito-Lopez
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua
  • ISSN: 0214-9001 
  • eISSN: 2444-3255
  • Orrialdeak: 229-244
  • DOI: 10.1387/ekaia.23770
Egileez:
  • Maite García-Hernando UPV/EHUko Microfluidics Clusterreko Lascaray Ikerguneko eta Kimika Analitikoa Saileko ikertzailea da.
  • Naiara Rojo UPV/EHUko Gasteizko Ingeniaritza Eskolako Ingeniaritza Kimikoa eta Ingurumenaren Ingeniaritza Saileko ikertzailea da.
  • Astrid Barona UPV/EHUko Bilboko Ingeniaritza Eskolako Ingeniaritza Kimikoa eta Ingurumenaren Ingeniaritza Saileko ikertzailea da.
  • Lurdes Basabe-Desmonts UPV/EHUko Lascaray Ikerguneko eta Ikerbasque ikertzailea da.
  • Fernando Benito-Lopez UPV/EHUko Microfluidics Clusterreko Kimika Analitikoa Saileko ikertzailea da.

Ekaia aldizkariarekin lankidetzan egindako atala.

 

The post Material biologikoen integrazioa teknologian: biosentsoreak appeared first on Zientzia Kaiera.

Categories: Zientzia

La recta de Euler

Cuaderno de Cultura Científica - Wed, 2024/09/04 - 11:59

Uno de mis pequeños, e inconfesables, divertimentos consiste en coger un libro de geometría, como el libro El diccionario Penguin de geometría curiosa e interesante (The Penguin Dictionary of Curious and Interesting Geometry) del matemático y divulgador británico David G. Wells (1940), y dedicarme a leer y disfrutar de los resultados clásicos de la geometría mostrados en el mismo. Al leer el enunciado de alguno de estos teoremas me emociona ver cómo a partir de una cierta situación geométrica se obtiene un resultado sorprendente, casi mágico, que nos ofrece un cierto orden, por ejemplo, en el teorema de Morley (véase la entrada El teorema de Morley) se consideran un triángulo cualquiera, las trisectrices de sus tres ángulos (recordemos que las trisectrices de un ángulo son las dos rectas que dividen al ángulo en tres ángulos iguales) y los tres puntos de intersección de las trisectrices adyacentes, entonces resulta que esos tres puntos son los vértices de un triángulo equilátero, es decir, las distancias entre cualesquiera dos de esos tres puntos son iguales.

Teorema de Morley: Los puntos de intersección de las trisectrices adyacentes de los ángulos de un triángulo cualquiera, son los vértices de un triángulo equilátero

 

En una de mis últimas incursiones en este diccionario de geometría curiosa e interesante de David Wells llamó mi atención la entrada denominada “Línea de Euler” en la cual se enuncia un teorema del matemático suizo Leonhard Euler (1707-1783) sobre tres puntos notables asociados a un triángulo cualquiera, el ortocentro, el circuncentro y el baricentro, que se encuentran en una misma línea, que se conoce con el nombre de recta de Euler. Hemos de tener en cuenta que dados tres puntos cualesquiera del plano lo más probable es que no sean colineales, es decir, que no estén en una misma recta.

Punto a punto a la recta de Euler

Antes de entrar en el teorema de la recta de Euler, describamos los elementos que aparecen en el mismo, en concreto, esos tres puntos notables asociados a un triángulo cualquiera, el ortocentro, el circuncentro y el baricentro.

El ortocentro de un triángulo

Dado un triángulo cualquiera se define el ortocentro como el punto de intersección de las tres alturas del triángulo (o las rectas que las extienden), donde recordemos que una altura de un triángulo es el segmento de recta que pasa por un vértice y es perpendicular al lado opuesto (o a la recta que lo contiene) del mismo. Por ejemplo, en la siguiente imagen tenemos un triángulo ABC cualquiera. Desde el vértice A se traza la recta que pasa por A y corta perpendicularmente (es decir, formando un ángulo de 90 grados) al lado opuesto del triángulo, el lado BC, que es la altura del triángulo ABC desde el vértice A (se denota A’ al punto de corte, que se denomina pie de la altura), desde el punto B se traza la recta que corta perpendicularmente al lado opuesto AC, la altura desde B (se denota B’ al pie de la altura), y desde C se traza también la altura, es decir, la recta que pasa por C y corta perpendicularmente al lado opuesto AB (siendo C’ el pie de la altura). Un resultado básico de geometría es que las tres alturas AA’, BB’ y CC’ (o las rectas que las extienden) se cortan en un punto (que se denota O en la imagen), que se ha sido bautizado con el nombre de ortocentro del triángulo.

El ortocentro O del triángulo ABC es la intersección de sus tres alturas AA’, BB’ y CC’

 

El resultado clásico de la concurrencia de las tres alturas de un triángulo, es decir, que las tres alturas se intersecan en un solo punto, el ortocentro, no aparece en el gran compendio de geometría y matemática griegas, Los Elementos del matemático griego Euclides (ca. 325-265 a.n.e.), a diferencia de algunos otros puntos notables asociados a un triángulo, como el incentro y el circuncentro. La primera mención explícita al ortocentro que se conoce aparece en el Libro de los lemas, texto atribuido por el matemático árabe Thābit ibn Qurra (826 – 901), al matemático griego Arquímedes (aprox. 287 – 212 a.n.e.). La primera demostración conocida de la existencia del ortocentro es precisamente un comentario del Libro de los lemas realizado por el matemático persa Ali ibn Ahmad al-Nasawi (aprox. 1011-1075), que atribuye dicha demostración al también matemático persa Abu Sahl al-Quhi (940-1000), como se menciona en el artículo Concurrencia de las alturas de un triángulo (Concurrency of the Altitudes of a Triangle), que se menciona en la bibliografía. El famoso matemático británico Isaac Newton (1643-1727) lo demostró en su tratado inacabado La geometría de las rectas (aprox. 1680), que podéis encontrar en el volumen IV de las publicaciones matemáticas de Isaac Newton (The mathematical papers of Isaac Newton).

Páginas de las publicaciones matemáticas de Isaac Newton (The mathematical papers of Isaac Newton), en las que aparece el resultado sobre la intersección de las tres alturas de un triángulo, luego la existencia del ortocentro

El resultado sobre la concurrencia de las alturas de un triángulo en las publicaciones matemáticas de Isaac Newton viene acompañado de una nota histórica sobre este resultado, en la que se menciona que el matemático e ingeniero militar holandés Samuel Marolois (1572-1627) lo demuestra en su obra Geometrie / Geometría (1619). Aunque se suele atribuir al topógrafo y matemático británico William Chapple (1718-1781) la primera publicación, en 1749, del teorema de existencia del ortocentro de un triángulo, como menciona el matemático estadounidense, nacido en Israel, Alexander Bogomolny (1948-2018), en el artículo A Possibly First Proof of the Concurrence of Altitudes, de su magnífica página Cut-the-knot.

En función de la forma del triángulo, el ortocentro estará dentro o fuera del mismo. Si el triángulo es “agudo”, es decir, sus tres ángulos son menores que un ángulo recto (90 grados), como en el ejemplo anterior, entonces el ortocentro se encuentra en el interior del triángulo. Si el triángulo es rectángulo, el ortocentro es exactamente el vértice del triángulo en el que está el ángulo recto. Y si el triángulo es “obtuso”, es decir, uno de sus ángulos es mayor de 90 grados, entonces el ortocentro está fuera del triángulo, como en la siguiente imagen.

El ortocentro O de un triángulo obtuso ABC la intersección de sus tres alturas AA’, BB’ y CC’, se encuentra fuera del triángulo

 

El circuncentro de un triángulo

El siguiente de los puntos destacados que se pueden definir para un triángulo cualquiera y que aparece en el teorema de la recta de Euler es el circuncentro.

Dado un triángulo cualquiera se define el circuncentro como el punto de intersección de las tres mediatrices (la mediatriz de un segmento es la recta perpendicular al mismo que pasa por su punto medio) de los lados del triángulo. Por ejemplo, en la siguiente imagen tenemos un triángulo ABC cualquiera. Se consideran los puntos medios de los lados del triángulo ABC, que se denotan MA (punto medio del segmento BC opuesto al vértice A), MB (punto medio del segmento CA opuesto al vértice B) y MC (punto medio del segmento AB opuesto al vértice C) y las rectas que pasan por esos puntos y son perpendiculares a los segmentos a los que pertenecen, las mediatrices, que se denotan rA (la recta que pasa por MA y es perpendicular al segmento BC), rB (la recta que pasa por MB y es perpendicular al segmento CA) y rC (la recta que pasa por MC y es perpendicular al segmento AB). El circuncentro, CC en la imagen, es la intersección de las tres mediatrices rA, rB, y rC.

El circuncentro CC de un triángulo ABC es la intersección de sus tres mediatrices rA, rB, y rC

De nuevo, en función de la forma del triángulo, el circuncentro estará dentro o fuera del mismo. Si el triángulo es agudo, como en el ejemplo anterior, entonces el circuncentro se encuentra en el interior del triángulo. Si es un triángulo rectángulo, el circuncentro es el punto medio de la hipotenusa. Y si el triángulo es obtuso, entonces el circuncentro está fuera del triángulo.

El circuncentro CC de un triángulo obtuso ABC, que es la intersección de sus tres mediatrices rA, rB, y rC, se encuentra fuera del triángulo

El nombre de circuncentro se debe a que ese punto es también el centro de la circunferencia circunscrita al triángulo. Es decir, si se considera la circunferencia que pasa por los vértices del triángulo A, B y C, el circuncentro CC es el centro de dicha circunferencia. Esto se debe al hecho de que los puntos de la mediatriz de un segmento equidistan (están a la misma distancia) de los extremos del segmento. Como el circuncentro CC está en las tres mediatrices del triángulo y los extremos de los segmentos son los vértices del triángulo, entonces el circuncentro CC equidista de los tres vértices, luego estos están en la circunferencia de centro CC y radio esa longitud entre CC y los vértices del triángulo.

El circuncentro CC de un triángulo obtuso ABC es el centro de la circunferencia circunscrita al triángulo ABC

 

Como se comentaba más arriba, el circuncentro de un triángulo ya aparecía en esa importante publicación de la matemática griega, y universal, que fue Los Elementos de Euclides, y que hasta finales del siglo xix sería el libro de texto de matemáticas por antonomasia.

Para concluir esta sección, vamos a comentar un resultado que relaciona el circuncentro y el ortocentro de dos triángulos asociados de una cierta manera. Dado un triángulo cualquiera ABC, podemos tomar el triángulo cuyos vértices son los puntos medios de los lados del triángulo, según la notación anterior MA, MB y MC, que se conoce con el nombre de triángulo medial del triángulo ABC. Resulta que el ortocentro del triángulo medial MAMBMC es igual al circuncentro del triángulo ABC.

Dado un triángulo ABC, el ortocentro del triángulo medial MAMB MC es igual al circuncentro del triángulo ABCEl baricentro de un triángulo

El tercer punto destacado de un triángulo que forma parte de esta pequeña historia sobre la que estamos escribiendo en esta entrada del Cuaderno de Cultura Científica es el baricentro.

Dado un triángulo cualquiera se define el baricentro (término que viene de barýs “pesado, grave” y centro, es decir, el centro de gravedad), o centroide, como el punto de intersección de las tres medianas (una mediana de un triángulo es el segmento de recta que pasa por un vértice y el punto medio del lado opuesto) del triángulo. Por ejemplo, en la siguiente imagen tenemos un triángulo ABC cualquiera. Como en el caso del circuncentro, se consideran los puntos medios de los lados del triángulo ABC, que se denotan MA, MB y MC y las tres medianas, denominadas sA (la recta que pasa por el vértice A y el punto medio del lado BC, MA), sB (la recta que pasa por B y MB) y sC (la recta que pasa por C y MC). El baricentro, BC en la imagen, es la intersección de las tres medianas sA, sB, y sC.

El baricentro BC de un triángulo ABC es la intersección de sus tres medianas sA, sB, y sC

En el artículo Notes on the centroid / Notas sobre el centroide, publicado por el matemático estadounidense, nacido en Polonia, Nathan Altshiller Court (1881-1968) en la revista The Mathematics Teacher, se explica el origen del centroide de un triángulo. Una de las primeras notas es que el término centroide es un término moderno, del siglo xix, que se introdujo para sustituir el antiguo término de “centro de gravedad” cuando se habla solo desde el punto de vista geométrico y no físico. Y en la siguiente nota se afirma que la primera vez que se publica de forma explícita el resultado de que las tres medianas de un triángulo se cortan en un punto (el centro de gravedad del triángulo) es en el texto Mechanica del matemático e ingeniero griego Herón de Alejandría (sobre el siglo I o II).

La recta de Euler

Ya conocemos qué son el ortocentro, el circuncentro y el baricentro de un triángulo cualquiera, por lo tanto, estamos en condiciones de enunciar el teorema de la línea recta de Euler.

recta de eulerCaricatura de Leonhard Euler, realizada por Enrique Morente, para la exposición de la Real Sociedad Matemática Española, El rostro humano de las matemáticas (2008)

Leonhad Euler ha sido el matemático más prolífico de todos los tiempos. Miremos en la rama de las matemáticas que miremos, seguro que nos encontramos con un gran número de estudios, de resultados importantes y profundos de Euler. A lo largo de su vida publicó más de 500 libros y artículos, añadiendo su obra póstuma (hasta 1911) se alcanza la cifra de 866 (nombrados como E1-E866 y que pueden encontrarse online en el Archivo Euler). La edición moderna de las obras de Euler, que ha acometido la Sociedad Suiza de Matemáticas, empezó en 1911. Es el proyecto Opera Omnia Leonhard Euler, que consta de 81 volúmenes, en cuatro series: Serie I) Opera mathematica (Matemáticas), 29 volúmenes; Serie II) Opera mechanica et astronomica (Mecánica y Astronomía), 31 volúmenes; Serie III) Opera physica, Miscellanea (Física y Miscelánea), 12 volúmenes; Serie IVA) Commercium epistolicum (correspondencia), 9 volúmenes; Series IVB) manuscritos, que se publicará online.

En el artículo E325, titulado Solutio facilis problematum quorundam geometricorum difficillimorum / Soluciones fáciles para algunos problemas geométricos difíciles y publicado en la revista Novi Commentarii academiae scientiarum Petropolitanae en 1767 (fue presentada a la Academia de Ciencias de San Petersburgo en diciembre de 1763), se recoge el conocido como teorema de la recta de Euler.

Teorema de la recta de Euler: Dado un triángulo cualquiera ABC, el ortocentro O, el circuncentro CC y el baricentro BC son colineales (a la recta que incluye a los tres puntos se la denomina recta de Euler). Además, la distancia del ortocentro O al baricentro BC es igual a dos veces la distancia del baricentro BC al circuncentro CC.

recta de eulerEl ortocentro O, el circuncentro CC y el baricentro BC de un triángulo ABC están alineados y la recta que los contiene es la recta de Euler

En el libro 100 grandes problemas de matemática elemental: su historia y soluciones (100 Great Problems of Elementary Mathematics: Their History and Solutions), del matemático Heinrich Dorrie, que se cita en la bibliografía, se puede leer una sencilla demostración del teorema de la recta de Euler.

Además del ortocentro, el circuncentro y el baricentro de un triángulo, existen otros puntos definidos en relación al triángulo que también están en la recta de Euler, como el centro de la circunferencia de los nueve puntos, el punto de Exeter o el punto de de Longchamps, entre otros, pero esa es otra historia que será contada en otra ocasión.

recta de eulerNine-point circle / Circunferencia de los nueve puntos (1970), del dibujante e ilustrador infantil estadounidense Crockett Johnson (1906-1975). Imagen de la página web de The National Museum of American History

Bibliografía

1.- David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin, 1991.

2.- Heinrich Dorrie, 100 Great Problems of Elementary Mathematics: Their History and Solutions, Dover, 1965.

3.- Howard Eves, A Survey of Geometry, Allyn and bacon, 1972.

4.- Mowaffaq Hajja, Horst Martini, Concurrency of the Altitudes of a Triangle, Mathematische Semesterberichte 60 (2), pp. 249–260, 2013.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo La recta de Euler se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Dozena erdi ariketa 2024ko udarako (6): triangelua biratu

Zientzia Kaiera - Wed, 2024/09/04 - 09:00

Ariketa fisikoa egitea osasungarria dela esaten digute behin eta berriro. Fisikoa bakarrik ez, buruari eragitea ere onuragarria da. Nagiak atera eta aurten ere, udako oporretan egiteko asteazkenero ariketa matematiko bat izango duzue, Javier Duoandikoetxea matematikariak aukeratu ditu Zientzia Kaieran argitaratzeko. Guztira sei ariketa izango dira.

Hona hemen gure seigarren ariketa:

Egurrezko ABC triangelua dugu mahai gainean. C erpineko angelua 25º-koa da. Triangelua birarazi dugu, B erpina finkatuta, A’BC’ posiziora heldu arte, non A’, B eta C lerrokatuta dauden. Hori egin dugunean, C, A eta C’ ere lerrokatuta geratu dira. Zein da B erpineko angeluaren neurria?

triangelua

Zein da erantzuna? Idatzi emaitza iruzkinen atalean (artikuluaren behealdean daukazu) eta, nahi izanez gero, zehaztu jarraitu duzun ebazpidea ere. Irailean emaitza zuzenaren berri emango dizugu.

Ariketak “Calendrier Mathématique 2024. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.

The post Dozena erdi ariketa 2024ko udarako (6): triangelua biratu appeared first on Zientzia Kaiera.

Categories: Zientzia

Cómo se forman los condensados dentro de las células

Cuaderno de Cultura Científica - Tue, 2024/09/03 - 11:59

condensados

Las células biológicas contienen pequeñas gotas llamadas condensados que consisten en conjuntos de proteínas y otras moléculas. Estas gotas desempeñan papeles importantes en varias funciones celulares, como las reacciones bioquímicas. Se sabe que las interacciones entre las regiones intrínsecamente desordenadas (IDR, por sus siglas en inglés) de diferentes proteínas (partes de una proteína que carecen de una estructura bien definida) impulsan la formación de condensados. Pero los detalles exactos de cómo intervienen las IDR en esta formación no estaban claros.

Ahora Kyosuke Adachi y Kyogo Kawaguchi del Centro RIKEN para la Investigación de la Dinámica de Biosistemas en Japón han ideado un modelo que proporciona esa información. Los investigadores afirman que su modelo podría usarse para obtener otros conocimientos clave sobre los principios fundamentales de la organización celular.

Adachi y Kawaguchi han realizado simulaciones de la dinámica molecular de la formación de condensados para más de 200 IDR que se conocen en proteínas humanas. A continuación han combinado los resultados de estas simulaciones con una nueva aproximación para la dinámica de los IDR. Finalmente, han desarrollado una teoría que les permite vincular la fuerza de las interacciones entre los IDR de diferentes proteínas con el orden específico de los aminoácidos de los IDR, los componentes básicos de las proteínas.

El nuevo modelo indica que las IDR formadas por ciertas cadenas de aminoácidos tienen más probabilidades de unirse, lo que hace que sus proteínas se agrupen en un condensado. El modelo también muestra que las interacciones entre las IDR afectan a la posibilidad de que varios condensados puedan coexistir en una célula sin que se fusionen, y puede utilizarse para determinar cuántos condensados oexistentes puede albergar una célula.

Según los investigadores, el nuevo modelo podría ayudar a mejorar la comprensión de muchos procesos biológicos, incluidos los mecanismos por los que las células compartimentan sus funciones y la dinámica de las IDR de una proteína en diferentes condiciones.

Referencias:

Kyosuke Adachi & Kyogo Kawaguchi (2024) Predicting Heteropolymer Interactions: Demixing and Hypermixing of Disordered Protein Sequences Phys. Rev. X doi: 10.1103/PhysRevX.14.031011

Ryan Wilkinson (2024) How Droplets Form Inside Cells  Physics 17, s82

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Cómo se forman los condensados dentro de las células se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Sute ‘zonbiak’ azaltzeko eredu matematikoa garatu dute

Zientzia Kaiera - Tue, 2024/09/03 - 09:00

Artikoaren inguruko lurretan abiatzen diren lurpeko suteen sorreran klima aldaketak izan dezakeen eragina modelizatu du ikertzaile talde batek. Uste dute tenperaturaren gorakada faktore abiarazlea izan daitekeela.

Klima aldaketa antropogenikoa abian den testuinguru honetan, Artikoa azkar berotzen ari da. Horretan zalantza izpirik ez dago. Zalantza gehiago daude, ordea, beroketa horrek ekarriko dituen ondorioen inguruan, askotariko agertokiak marraztu direlako. Ohi bezala, ziurgabetasun andana daude gaiaren bueltan, baina nahiko argi dago aldaketak ez direla samurrak izango.

1. irudia: Artikoaren inguruan zohikaztegi ugari pilatzen dira. Irudian, Alaskako zohikaztegi zingiratsu batean izandako sutea. (Argazkia: Western Arctic National Parklands – CC BY 2.0 lizentziapean. Iturria: Flickr.com)

Kezka gehien eragiten duen kontua permafrostaren urtzearen haritik doa, hemen behin baino gehiago aipatu izan dugun moduan. Azken glaziazioan pilatutako sedimentu organikoek osatzen dute permafrosta, eta eremu zabal bat okupatzen dute. Bertan pilatuta dago, AEBetako USGS zerbitzu geologikoaren arabera atmosferan dagoen karbonoa halako bi. Hortaz, permafrosta karbono iturri garrantzitsua izan daiteke, batez ere mikroorganismoak materia hori guztia deskonposatzeko lanean hasten direnean. Bereziki itsas hondoan eta permafrostaren azpian diren metano hidratoen balizko askatze masibo bat ere antzeko kezka iturri izan ohi da, gehienbat metanoa negutegi efektuko gas askoz indartsuagoa delako.

Horrenbeste ospea ez izanda ere, Artikoko lurraldeen inguruan —Alaska, Kanada eta Siberian— dauden zohikaztegiei buruzko kezka ere zabalduta dago adituen artean. Izan ere, zohikaztegi horietan sute zonbi gisa ezagutzen direnak gertatzen ari dira, eta, horien ondorioz, karbono gigatonak askatzen ari dira atmosferara. Oraingoan bederen, kontzeptua ez da kazetariek arreta erakartzeko asmatutako izendapena, zientzialariek beraiek erabilitakoa baizik. Are, oraingoan plaza honetara ekarri dugun Proceedings of the Royal Society A aldizkarian argitaratutako zientzia artikuluaren izenburuan bertan agertzen da arras adierazgarria den kontzeptu hori.

Neguan lurrazaletik desagertzen direla dirudien arren, benetan lurpean suteek jarraitzen dutelako deitzen zaio horrela fenomenoari. Hibernazioan diren ugaztunak balira bezala gordeta mantentzen dira, baina udaberria etorri orduko berriz ere berpizten dira lurrazalean.

Beren ikerketaren berri emate aldera The Conversation atarian argitaratutako dibulgazio artikulu batean ikertzaileek azaldu dutenez, orain arte gehienetan pentsatu izan da lurrazaleko suteen arrasto direla sute horiek, baina zientzialari talde honek bestelako azalpen bat proposatu du. Hasieratik argi utzi nahi izan dute beraiek proposatutakoa hipotesia baino ez dela. “Oraindik ez dugu frogarik ziurtatzeko hau mundu errealean ematen dela”, ohartarazi dute. Baina eredu matematikoak alde dituztela uste dute, eta horietan oinarritu dute argudioa.

Proposatu dutenez, lurrazalaren gainean dagoen atmosferaren berotze azkar batek zohikatzaren bat bateko berotzea eragin dezake, txinparta edo beste ezein sutze behar izan gabe. Ondorioz, sute hauek klima aldaketak eragindako bat-bateko errekuntza baten ondorio izan daitezkeela proposatu dute.

sute2. irudia: azkarren berotzen ari diren eremuak (gorriz) eta karbono asko duten zohikaztegiak (grisez eta beltzez). Zenbait tokitan —Siberia iparraldean dagoen Txerskilurraldean, kasurako— bi motatako eremuak batera agertzen direla ohartarazi dute zientzialariek. (Irudia: O’Sullivan et al. (2023). Iturria: Royal Society A)

Besteak beste, ikerketan ahalegindu dira aurreikusten tenperaturek zein lurzoruek duten karbono kopuruak zelan erantzuten dioten klima aldaketari. Bestetik, eredu hauetan, simulatu dute mikrobioek nola askatzen duten beroa lurzorua deskonposatzen eta atmosferara karbonoa isurtzen duten bitartean. Ondorioztatu dutenez, mikrobioak gai dira bero andana sortzeko, eta, hori dela eta, zohikatza neguan 80 ºC-ra egon daiteke. Horren ondorioz, udaberrian aise piztu daitezke suteak, zoru gainean inolako suterik egon behar izan gabe, edo suteak pizteko tenperatura nahikoak eduki behar izan gabe. Egoera honi zohikatzen egoera metaegonkor beroa deitu diote.

Bestetik, landutako simulazioetan ikusi dute egoera hotz batetik egoera metaegonkor bero horretara igaro daitekeela beroketa globala dela eta. Baina hau gertatzeko, atmosferaren tenperatura azkar igo behar da. Tasa kritiko batera heldu ezean, aldaketarik ez omen da gertatuko. Hau da, beroketa berdina erritmo motelago batean gertatzen bada, ez da zohikatzaren beroketarik egongo. Ondorioz, atmosferaren beroketaren erritmoa da lurrazpiko zohikatzaren erretzea eragiten duena.

Zientzialariek ohartarazi dute balitekeela gaur egungo klimak aldaketa tasa arriskutsuetara hurbildu edo gainditu izana. Eta horrek “azaldu ahalko luke izaten ari den sute zonbien gorakada”. Modu honetan, iritsi daiteke inflexio puntu batera non sistema klimatikoak ez duen lortzen egokitzea azkarregi gertatzen diren aldaketara.

Hau bezalako kontuak aztertzerakoan, askotan zientzialariek ohartarazten dute berrelikaduren arriskuaz, eta, oraingoan ere, horrela egin dute. Diotenez, klima aldaketak eragindako beroketak gora egiten duen heinean, gero eta halako sute zonbi gehiago sortzeko arriskua egongo da, eta, ondorengo karbonoaren askatzearekin, noski, klima beroagoak sute gehiago eragingo ditu, sorgin gurpil bat abiatuz.

Testuingurua ez da erraza: berotasun egoera horretan hamar bat urtez mantendu daiteke zohikatza, erabat erre arte. Gainera, azken bi hamarkadetan horrelako suteak gero eta gehiago gertatzen ari dira, eta intentsitate handiagorekin, gainera. Kasurako, 2024aren hasieran Columbia Britaniarrean (Kanada) halako ehun sute baino gehiago egon direla aipatu dute.

Mundu errealean ikusi duten antzeko fenomeno bat aipatu dute argudio gisa: 2022an Londresko konpost biltegi batean gertatutako sute bat. Seguruenera beroaldi batek eragin zuen sute hori, konposta bere kabuz piztu zenean. Zientzialari hauek diotenez, konposta eta zohikatza parekotzat jo daitezke portaera honi dagokionez.

Erreferentzia bibliografikoa:

O’Sullivan, Eoin; Mulchrone, Kieran; Wieczorek, Sebastian (2023). Rate-induced tipping to metastable Zombie fires. Proceedings of the Royal Society A, 479(2275). DOI: http://doi.org/10.1098/rspa.2022.0647

Egileaz:

Juanma Gallego (@juanmagallego) zientzia kazetaria da.

The post Sute ‘zonbiak’ azaltzeko eredu matematikoa garatu dute appeared first on Zientzia Kaiera.

Categories: Zientzia

Una capa brillante para un planeta oscuro

Cuaderno de Cultura Científica - Mon, 2024/09/02 - 11:59

Mercurio no es solo el planeta más pequeño de nuestro sistema solar, sino que también es uno de los más desconocidos, ya que, casualmente, ha sido el planeta interior -o rocoso- menos visitado por misiones espaciales. Entre otras razones, ello se debe a la dificultad que supone colocarse en órbita alrededor de Mercurio, lo que requiere una gran cantidad de combustible -combustible en sentido amplio- para alcanzar el cambio de velocidad necesario que permita la inserción.

A pesar de esto, misiones como la MESSENGER nos han permitido conocer mucho mejor a Mercurio y detectar, por ejemplo, la presencia de agua y de compuestos orgánicos en su superficie, la existencia de un núcleo en estado líquido e incluso los restos de la actividad volcánica que sufrió el planeta en su pasado. Las observaciones las pudo obtener desde su órbita desde 2011 a 2015, cuando la misión, como despedida, impactó finalmente contra la superficie del planeta.

A simple vista, el aspecto de Mercurio nos recuerda mucho al de nuestra Luna. Sin embargo, son lugares muy, pero que muy distintos. Imagen cortesía de NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

Pero, ¿cómo es el interior de Mercurio? Lo cierto es que es un planeta muy particular, especialmente si lo comparamos el resto de los planetas interiores. Para que nos hagamos una idea, el núcleo -la capa más interna de los planetas- de Mercurio ocupa aproximadamente un 57% del volumen total del planeta, mientras que en Venus ocuparía un 15%, en la Tierra un 16% y en Marte un 13%. Mercurio claramente destaca por tener un valor totalmente anómalo en comparación con el resto.

Este pequeño detalle ya nos cuenta que la historia de Mercurio podría haber sido un poco diferente a la del resto de planetas rocosos, apuntando directamente a su formación o a su infancia -eso sí, infancia en términos planetarios. O bien la zona donde se formó Mercurio dentro de la nebulosa protoplanetaria estaba empobrecida en elementos ligeros -quizás por procesos dinámicos, no tanto por una diferencia composicional dentro de la nebulosa- porque tras su formación, las elevadas temperaturas del Sol mientras este se contraía vaporizaron parte de su corteza y manto rocoso -para lo que Mercurio tendría que tener una masa de partida de aproximadamente el doble- o, por último, un gigantesco impacto que fuese capaz de eliminar una gran parte de su corteza y manto dejando las zonas más densas del planeta y llevándose las ligeras, y para lo que Mercurio también tendría que haber tenido también en torno al doble de masa que en la actualidad.

Pero volvamos al asunto que nos trae hoy aquí y seamos realistas: Mercurio es un planeta muy poco… “brillante”. Apenas refleja el 10% de la luz solar, algo que hasta la llegada de las misiones planetarias había tenido una difícil explicación. Los últimos datos afirman que muy probablemente esta escasa reflectividad se deba a que su superficie está cubierta por una cantidad entre el ~1-4% de grafito -un compuesto de carbono que usamos todos los días, por ejemplo, en las minas de nuestros lápices y que a la luz es evidente que tiene un color bastante oscuro-, a lo que habría que sumar probablemente otros compuestos del carbono, aunque las últimas estimaciones de Xu et al. (2024) dicen que sería inferior al 1%.

La eyecta provocada por los cráteres de impacto -es decir, los materiales que salen hacia fuera del cráter cuando un cuerpo impacta contra la superficie de un planeta- salpican de tonos más claros la superficie de Mercurio. Imagen cortesía de NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

¿Cuál sería la procedencia de este grafito que hoy vemos en la superficie? No está muy claro, y dependiendo del modelo de formación, explicar su presencia puede ser complicado, pero la forma más sencilla sería que, en algún momento de su historia, la superficie de Mercurio estuviese en un estado de océano de magma -una etapa habitual durante la formación de los planetas interiores- y donde toda la superficie se encuentra fundida. Es en este océano donde el carbono, debido a su densidad, flotaría hasta la superficie, quedando expuesto tal y como vemos hoy en día, mezclado con otros minerales silicatados que forman su corteza.

Este detalle sobre la composición de su superficie nos hace pensar que Mercurio podría tener más carbono en su interior del que podríamos pensar a priori y esto puede tener unas consecuencias un tanto inesperadas que podemos leer en Yongjiang et al. (2024): la existencia de una “capa” de diamantes en el interior de Mercurio. Y es que sabemos por nuestra experiencia en la Tierra que los diamantes en los planetas rocosos se forman en ambientes de alta presión y temperatura, lo que en nuestro planeta equivale a profundidades del manto.

Mercurio es mucho más pequeño que nuestro planeta y la presión necesaria para transformar el carbono en su forma de grafito a diamante se alcanzaría en lo que vendría siendo el límite entre el manto y el núcleo, eso sí, también tendrían que darse unas condiciones de temperatura adecuadas. Pero además del carbono hay un elemento que probablemente haya tenido un papel importante para formar esta posible capa: el azufre.

Y es que la presencia de azufre en el interior del planeta podría ayudar a bajar la temperatura que los silicatos presentes en el manto requieren para fundirse, permitiendo unas condiciones que ayudarían a dar estabilidad a la formación de los diamantes. Si a esto le sumamos un ambiente muy reductor -con bajo contenido en oxígeno- los diamantes podrían haberse empezado a formar al mismo tiempo que empezó a solidificarse el núcleo, permitiendo dar lugar una capa de diamantes en el límite entre el manto y el núcleo y que incluso podría tener varios kilómetros de potencia o espesor.

Los científicos que han escrito este artículo, además, han diseñado y ejecutado una serie de experimentos de alta presión y temperatura -sin olvidar los modelos geoquímicos y termodinámicos- a fin de poder replicar las condiciones que se podrían encontrar en este límite entre el manto y el núcleo, observando que efectivamente, los diamantes podrían formarse bajo estas condiciones.

En esta imagen también se puede apreciar perfectamente el fuerte contraste de color entre la eyecta y la superficie de Mercurio, mucho más oscura. Y es que es posible que los minerales que hay a más profundidad de la corteza tengan un tono más claro y sean menos ricos en carbono. Imagen cortesía de NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

Todo esto nos puede parecer una mera curiosidad, pero en Mercurio podrían tener una interesante derivada… puesto que los diamantes son unos excelentes conductores térmicos -de hecho, se usan en algunas aplicaciones electrónicas donde la disipación del calor es algo crítico y los materiales que son buenos conductores eléctricos no se pueden colocar- y una capa rica en diamantes podría tener una gran influencia en la transferencia del calor en el interior del planeta, alterando la propia dinámica interna del planeta. ¿Qué consecuencias tiene esto? La generación de un campo magnético similar al de la Tierra, aunque con una fuerza del 1% del nuestro.

El papel de la capa de diamantes es el de facilitar la pérdida de calor del núcleo, favoreciendo la convección necesaria para que funcione la geodínamo necesaria para la formación del campo magnético.

Mercurio no es el único planeta que podría tener capas con diamantes, sino que los gigantes de hielo, como son Urano y Neptuno, también podrían tener zonas donde las condiciones permitan la formación de los diamantes. De momento ninguno de estos lugares son accesibles a nuestra tecnología. Esta posibilidad pone de manifiesto que los diamantes son un mineral más abundante de lo que podemos pensar. Eso sí, que nadie piense que los va a encontrar perfectamente tallados para recoger y colocar en un anillo: eso ya corre de nuestra cuenta.

La próxima misión destinada a Mercurio, la europea BepiColombo debería alcanzar su órbita en 2025, aportándonos a lo largo de su misión datos que nos ayuden a conocer mejor su geología y quién sabe si a verificar la posibilidad de que Mercurio tenga una resplandeciente capa de diamantes.

Referencias:

Cheng, Bingqing, Sebastien Hamel, y Mandy Bethkenhagen. «Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets». Nature Communications 14, n.º 1 (27 de febrero de 2023): 1104. doi: 10.1038/s41467-023-36841-1.

Frost, Mungo, R. Stewart McWilliams, Elena Bykova, Maxim Bykov, Rachel J. Husband, Leon M. Andriambariarijaona, Saiana Khandarkhaeva, et al. «Diamond Precipitation Dynamics from Hydrocarbons at Icy Planet Interior Conditions». Nature Astronomy 8, n.º 2 (8 de enero de 2024): 174-81. doi: 10.1038/s41550-023-02147-x.

Semerikova, Anna, Artem D. Chanyshev, Konstantin Glazyrin, Anna Pakhomova, Alexander Kurnosov, Konstantin Litasov, Leonid Dubrovinsky, Timofey Fedotenko, Egor Koemets, y Sergey Rashchenko. «Does It “Rain” Diamonds on Neptune and Uranus?» ACS Earth and Space Chemistry 7, n.º 3 (16 de marzo de 2023): 582-88. doi: 10.1021/acsearthspacechem.2c00343.

Xu, Yongjiang, Yanhao Lin, Peiyan Wu, Olivier Namur, Yishen Zhang, y Bernard Charlier. «A Diamond-Bearing Core-Mantle Boundary on Mercury». Nature Communications 15, n.º 1 (14 de junio de 2024): 5061. doi: 10.1038/s41467-024-49305-x.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo Una capa brillante para un planeta oscuro se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Pages