Eguzkia hartzeko zioak

Zientzia Kaiera - Thu, 2017/05/18 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Janaria

———————————————————————————————————–

Askotan kolore berdez tindaturik agertzen dira Britainia Handiko hegoaldeko eta Bretainiako kostaldeetako hondartzak. Hasiera batean alga baten ugaritzearen ondorioa dela dirudi, baina hurbiletik aztertuz gero, argi ikus daiteke hondartzari kolorea ematen diona ez dela alga bat. Algak ez dira lehorrean berez mugitzeko gai, eta hondartza gainean dagoen kolore berdeko materia hori mugitu egiten da. Ez dira, ez, algak hondartza horietan dabiltzanak, zizareak baizik. Acoelomorpha filumeko Symsagittifera roscoffensis izeneko zizare lauak [1] dira, zehatzak izateko.

1. irudia: Bretainiako kostaldean sarritan “marea berdeak” izaten dira.

Horietako har gazte bat mikroskopiopean jartzen bada, erraz ikus daiteke hestea eta zelula parenkimatikoak Tetraselmis generoko mikroalgaz beterik daudela. Horixe da zizarearen kolore berdearen zergatia. Bizimodu berezia du Symsagittifera horrek. Gaztea denean mikroalgak jaten ditu, baina ez ditu digeritzen, eta sinbionte gisa geratzen dira zizarearen barruan. Mikroalgek, bestalde, ez dute fotosintesia egiteko ahalmena galtzen, eta zizarearen garrantzizko energia-iturri bilakatzen dira horri esker. Hogeita bost mila mikroalga zenbatu izan dira zizare bakar batean.

Funtsezko aldaketa anatomiko zenbait gertatzen dira heldutasunera iritsi orduko, bizitzaren aldi horretan ahoa eta hestegorria galtzen baitituzte. Hortik aurrera, mikroalgak dira Symsagittiferaren energia-iturri bakarrak: fotoautotrofo bilakatu dela esan genezake. Beraz, bai, animalia da zizare hori, baina animalia xelebrea: eguzkitik lortzen du energia, eta karbono dioxidotik karbonoa.

2. irudia: Symsagittifera roscoffensis zizare lauak oskol baten barruan. (Argazkia: Wikipedia / CC BY-SA 3.0 lizentziapean)

Gainera, eguzki-argia jasotzeko moldaera egokiak ere garatu ditu. Nerbio-sistema bakuna duen arren, Symsagittiferak baditu pigmentu-koparen moduko bi begi eta estatozisto [2] bat buru aldean. Eguzki-izpiak ahalik eta modu eraginkorrenean hartu ahal izateko, kokapen egokia bilatzen du egitura horiei esker.

Bistan da, beraz, gizonak eta emakumeak ez garela eguzkia hartzea gustukoa dugun animalia bakarrak. Eguzkia hartzeko zioak, baina, ez dira berdinak gizon-emakumeotan eta zizareetan.

Oharrak:

[1] Duela gutxi arte, Convoluta roscoffensis izenekoa.

[2] Estatozistoa organo edo egitura mekano-hartzailea da, eta espazioan animaliak duen kokapenari buruzko informazioa hartzen du.

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.

The post Eguzkia hartzeko zioak appeared first on Zientzia Kaiera.

Categories: Zientzia

Cómo sintetizar casi cualquier biomaterial usando ADN

Cuaderno de Cultura Científica - Wed, 2017/05/17 - 17:00

biomaterial usando ADN

Que el ADN es la molécula en la que se atesora la información que permite hacer un ser vivo es de sobra conocido. Que se puede usar como molde para algunas aplicaciones diferentes a las biológicas, no es tan popular, pero tampoco debería resultar extraño a los lectores de esta sección.

Ahora se ha dado un paso más. Un grupo de investigadores encabezado por Lei Tang, de la Universidad de Duke (EE.UU.) da la receta para usar una enzima para fabricar nuevos biomateriales a partir de ADN. Estas instrucciones permitirán a investigadores de todo el mundo sintetizar moléculas autoensamblables para aplicaciones que van desde el suministro de fármacos a nanohilos.

La maquinaria molecular del cuerpo humano, por ejemplo, normalmente se basa en plantillas genéticas para llevar a cabo la síntesis de moléculas. Por ejemplo, las máquinas moleculares llamadas ADN polimerasas leen el ADN base a base para construir copias precisas.

Hay, sin embargo, algunas ovejas negras en el mundo de la biología molecular que no requieren una plantilla. Una de estas aberraciones, llamada transferasa terminal (TdT), trabaja en el sistema inmune y cataliza la adición sin plantilla de nucleótidos (los componentes unitarios del ADN) a un ADN de una sola hebra (recordemos que el ADN es una doble hebra en forma de doble hélice). Las secuencias de nucleótidos aparentemente aleatorias en una sola cadena de ADN no parecen tener mucho uso biológico, pero los investigadores han descubierto qué hacer con ellas.

La enzima TdT puede producir estructuras biomoleculares sintéticas precisas de alto peso molecular empleando una fracción del tiempo que los métodos actuales, y en un solo sitio en vez de en un montón de pasos diferentes en una secuencia de síntesis. La síntesis puede adaptarse para crear ADN monocatenario que se autoensambla formando recipientes de tipo bola para administrar fármacos o para incorporar nucleótidos no naturales dando acceso a una amplia gama de posibilidades con utilidad médica.

La TdT tiene la ventaja sobre las reacciones típicas de síntesis en cadena de que continúa añadiendo nucleótidos al final de la cadena de crecimiento siempre y cuando estén disponibles en el medio. Esto abre para los científicos de materiales un amplio espectro para el diseño.

Debido a que todas las enzimas funcionan al mismo ritmo y nunca se detienen, las hebras de ADN resultantes son todas de un tamaño muy parecido, un rasgo importante para controlar sus propiedades mecánicas. Un proceso sin fin también significa que los investigadores pueden alimentar forzadamente a la TdT cualquier nucleótido que quieran, incluso los no naturales, simplemente no proporcionando otras opciones.

Por ejemplo, los nucleótidos no naturales pueden incorporar moléculas diseñadas para facilitar la “química clic“, lo que permite la unión de un conjunto completo de biomoléculas. Los investigadores también pueden iniciar el proceso de síntesis con una base hecha de una secuencia de ADN específica, llamada aptámero, que puede dirigirse a proteínas y células específicas.

La enzima terminal transferasa se conoce desde hace décadas, pero esta es la primera vez que alguien deja de estudiar su papel en el sistema inmunológico humano para encontrar una aplicación tecnológica en la síntesis de polinucleótidos.

Referencia:

Lei Tang et al (2017) High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation Angewandte Chemie I.E. doi: 10.1002/anie.201700991

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Cómo sintetizar casi cualquier biomaterial usando ADN se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Usando ADN para sintetizar nanoestructuras de oro
  2. Cómo mecanizar una pieza de cobre usando bacterias
  3. Hidrógeno a partir de cualquier biomasa
Categories: Zientzia

El rostro humano de las matemáticas

Cuaderno de Cultura Científica - Wed, 2017/05/17 - 11:59

El año 2007, con motivo del centenario de la creación de la Junta de Ampliación de Estudios e Investigaciones Científicas (JAE), germen del actual Consejo Superior de Investigaciones Científicas (CSIC), se celebró el Año de la Ciencia en España.

El médico español Santiago Ramón y Cajal (1852-1934) fue presidente de la Junta de Ampliación de Estudios e Investigaciones Científicas entre 1907 y 1934, pocos años antes de su disolución, en 1939, tras la Guerra Civil Española. Esta imagen pertenece al cómic “Neurocómic”, de Matteo Farinella y Hana Ros (Norma Editorial, 2014)

El objetivo del Año de la Ciencia fue “concienciar a toda la sociedad y muy especialmente a los jóvenes de apoyar y participar en los avances de cualquier rama de la ciencia y la tecnología”.

Como respuesta al llamamiento que la Fundación Española para la Ciencia y la Tecnología (FECyT) y el Ministerio de Educación y Ciencia (MEC) hicieron dentro de la Convocatoria de Ayudas para la Realización de Acciones de Difusión y Divulgación Científico y Tecnológica del Año de la Ciencia 2007, la Real Sociedad Matemática Española (RSME) propuso, entre otras acciones, la creación de una exposición de caricaturas de matemáticos y matemáticas.

Con esta exposición se quería acercar a la sociedad un trozo de la Historia de las Matemáticas, y más concretamente, de los protagonistas de la misma, es decir, a los personajes, hombres y mujeres, que habían desarrollado las matemáticas y descubierto los grandes teoremas y teorías matemáticas.

La mayoría de las personas de nuestra sociedad no tienen ningún problema en nombrar grandes personajes de la historia de las artes gráficas, la literatura, el cine, la música o el deporte, sin embargo, son incapaces de nombrar a diez grandes nombres de la historia de las matemáticas, salvo quizás a Pitágoras o Newton. Incluso estudiantes de Bachillerato, a pesar de que han estudiado los teoremas de Tales y Pitágoras, el triángulo de Pascal o de Tartaglia, la sucesión de Fibonacci, el binomio de Newton, las coordenadas cartesianas (de Descartes), el teorema de Lagrange (o del valor medio) del cálculo o la campana de Gauss de la estadística, entre otros. De hecho, cuando se ven estos temas en clase rara vez se habla al alumnado de quienes eran sus autores, nadie suele hablar de Pitágoras, Tales, Hipatia, Arquímedes, Fibonacci, Cardano, Gauss, Fermat o Kovaleskaya, por citar algunos.

Por otra parte, la exposición tenía como destinatario al público general, por lo que era muy importante tenerlo en cuenta, lo cual significaba adecuar el lenguaje, el medio de transmisión de la información. El arte gráfico de las caricaturasnos permitía acercarnos a los jóvenes y al público en general de una forma atractiva, con un lenguaje moderno que fuese capaz de llegar a todo el mundo, y muy especialmente a los jóvenes. Y cada una de las caricaturas se acompañaría de una breve biografíaescrita en un lenguaje comprensible para todo el mundo, sin tecnicismos, que destacase tanto aspectos humanos, como científicos del matemático o matemática. En resumen, la Historia de las Matemáticas a través de sus personajes con una perspectiva no académica sino atractiva y humana. Además, se realizarían versiones en los diferentes idiomas, además del castellano, el catalán, el euskera, el gallego y el valenciano.

El germen de esta idea de utilizar las caricaturas para acercar a los matemáticos y matemáticas, y por lo tanto, su ciencia, a la sociedad, fueron una serie de caricaturas de matemáticos españoles actuales que se habían realizado unos años antes desde la Comisión de Divulgación de la RSME, y que se colgaron del portal DivulaMAT [www.divulgamat.net]. Aquí podéis ver algunas…

Manuel de León (ICMAT-CSIC, Madrid), caricatura realizada por Enrique Morente

Pilar Bayer (Universidad de Barcelona), caricatura realizada por Enrique Morente

Este proyecto fue coordinado por Antonio Pérez Sanz y por mí (Raúl Ibáñez Torres), y en el mismo participaron, además de nosotros dos, un grupo de personas de la RSME: Santiago Fernández Fernández, Pedro M. González Urbaneja, Vicente Meavilla Seguí, Fco. Javier Peralta Coronado y Adela Salvador Alcaide; así como dos dibujantes del País Vasco: Enrique Morente Luque, Gerardo Basabe Pérez de Viñaspre.

Raúl Ibáñez (Universidad del País Vasco, Bilbao), caricatura realizada por Enrique Morente

Antonio Pérez Sanz (IES Salvador Dalí, Madrid), caricatura realizada por Enrique Morente

La exposición estaba formada por de 31 caricaturas de grandes matemáticos, entre ellos se incluyeron 5 mujeres matemáticas y 5 matemáticos españoles, así como una breve reseña biográfica de cada uno de ellos, destacándose no solamente la parte científica sino también la parte humana, y un elemento gráfico de las matemáticas del trabajo de ese personaje.

La primera parte de la organización de esta acción divulgativa consistió en la elección, nada fácil, de las personas de la Historia de las Matemáticas que iban a estar en la exposición. La lista no era muy grande, por lo que cualquier elección que hiciésemos sería polémica y además había que intentar compensar por épocas y áreas de las matemáticas, y pensar que la exposición estaba destinada al público general y no a la comunidad matemática o científica.

La lista de matemáticos, y matemáticas, que salió después de varias listas de nombres y varios debates fue la siguiente (podían haberse elegido otras personas, pero en aquel momento, esta fue el listado que se confeccionó):

1.- Pitágoras (ca. 585-500 a.C.)

2.- Euclides (ca. 325-265 a. C.)

3.- Arquímedes (ca. 287-212 a.C.)

4.- Apolonio (ca. 262-190 a.C.)

5.- Hipatia (¿?-415)

6.- Mohammed ibn Musa Al-Khwarizmi (s. IX)

7.- Leonardo de Pisa, Fibonacci (ca. 1175-1250)

8.- Niccolò Fontana, Tartaglia (ca. 1499-1557)

9.- Gerolamo Cardano (1501-1576)

10.- René Descartes (1596-1650)

11.- Pierre de Fermat (1601-1665)

12.- Isaac Newton (1642-1727)

13.- Gottfried Wilhelm Leibniz (1646-1716)

14.- Madame de Châtelet (1706-1749)

15.- Leonhard Euler (1707-1783)

16.- Joseph-Louis Lagrange (1736-1813)

17.- Sophie Germain (1776-1831)

18.- Carl Friedrich Gauss (1777-1855)

19.- Augustin-Louis Cauchy (1789-1857)

20.- Niels Henrik Abel (1802-1829)

21.- Évariste Galois (1811-1832)

22.- Bernhard Riemann (1826-1866)

23.- Sofía Kovalévskaya (1850-1891)

24.- Henri Poincaré (1854-1912)

25.- David Hilbert (1862-1943)

26.- Emmy Noether (1882-1935)

27.- Ventura Reyes Prósper (1863-1922)

28.- Julio Rey Pastor (1888-1962)

29.- Pedro Puig Adam (1900-1960)

30.- Lluís Antoni Santaló i Sors (1911-2001)

31.- Miguel de Guzmán Ozámiz (1936-2004)

Pitágoras, caricatura realizada por Gerardo Basabe

Hipatia, caricatura realizada por Enrique Morente

Las reseñas biográficas, con algunos aspectos humanos, debían de ser cortas, de una lectura fácil y rápida, puesto que formaban parte de una exposición, motivo por el cual elegimos una extensión de unos 2.000 caracteres. Además, su tamaño permitía, tanto en el libro como en la exposición on-line, las lecturas individualizadas de las mismas y poder disfrutar de su lectura en situaciones de lo más diversas (desde en una clase de matemáticas a un rato mientras se toma un café tranquilamente).

A continuación, podemos observar los paneles expositivos –caricatura (las tres de Enrique Morente), reseña biográfica y detalle gráfico- correspondientes a Sophie Germain, Carl Friedrich Gauss y Julio Rey Pastor.

[…] Tenía 19 años en 1795, cuando se fundó la Escuela Politécnica de París. Como las mujeres no eran admitidas (la Escuela Politécnica no admitirá mujeres hasta 1972) consiguió hacerse con apuntes de algunos cursos, entre ellos, los de Análisis de Lagrange. Al final del período lectivo los estudiantes podían presentar sus investigaciones a los profesores, Sophie presentó un trabajo firmándolo como Antoine-Auguste Le Blanc, un antiguo alumno de la escuela. El trabajo impresionó a Joseph Louis Lagrange (1736-1813) por su originalidad y quiso conocer a su autor. Al saber su verdadera identidad, la felicitó personalmente y le predijo éxito como analista, animándola de esta forma a seguir estudiando.

Sus primeros trabajos en Teoría de Números los conocemos a través de su correspondencia con C. F. Gauss, con el que mantenía oculta su identidad bajo el pseudónimo de Monsieur Le Blanc. El teorema que lleva su nombre fue el resultado más importante, desde 1738 hasta 1840, para demostrar el último teorema de Fermat, además permitió demostrar la conjetura para n igual a 5 […]

[…]En 1796 demuestra que el heptadecágono, el polígono regular de 17 lados, se puede construir con regla y compás, resolviendo de paso el problema clásico de qué polígonos regulares pueden construirse con regla y compás. A partir de ese momento comienza a llevar su Diario científico donde a lo largo de muchos años anotará sus resultados más importantes. Entre los 19 y 21 años escribió su obra maestra Disquisitiones arithmeticae, publicado en 1801, que convirtió a la Teoría de Números, la Aritmética superior, en una ciencia unificada y sistemática.

En 1801, utilizando su método de mínimos cuadrados va a fijar la órbita de Ceres a partir de las pocas observaciones de Piazzi. En 1807 obtuvo la cátedra de Astronomía en la Universidad de Gotinga y la dirección de su observatorio astronómico, permaneciendo en esos cargos hasta el final de su vida.

Las aportaciones de Gauss en la Matemática fueron extraordinariamente amplias y en todas las ramas que trabajó dejó una huella indeleble. Realizó investigaciones en Álgebra, en 1799 realizó la primera demostración del Teorema Fundamental del Álgebra, en Teoría de Números, Geometría Diferencial (1827, Disquisitiones generales circa superficies curvas), Geometría no Euclídea, Análisis Matemático, Geodesia (triangulación de Hannover), Astronomía Teórica (Theoria motus corporum coelestium), Teoría de la Electricidad y el Magnetismo (Allgemeine Theorie Erdmagnetismus, 1839). […]

[…] Nace en Logroño y fallece en Buenos Aires. Suspende el ingreso a la Academia militar y estudia Ciencias Exactas en Zaragoza. Hace el doctorado en Madrid sobre Geometría Proyectiva y participa vivamente en la creación de la Sociedad Matemática Española (1911), de la que es secretario.

Catedrático de Análisis Matemático en Oviedo (1911) y Madrid (1913), sigue su formación en Alemania. En 1915 funda el Laboratorio y Seminario Matemático, origen de nuestra mejor investigación matemática.

La Institución Cultural Española le invita a ir a Buenos Aires, y su magisterio cosecha un gran éxito. Al marchar, desaparece la Revista de la SociedadMatemática Española, y al volver funda la Revista Hispano-Americana.

Tras otros viajes, fija su residencia en Argentina y juega un papel capital en la modernización de su matemática. Alterna luego su actividad con Madrid, salvo de 1936 a 1947 en que permanece en Argentina, y ayuda a instalarse a matemáticos exiliados españoles […]

A partir del material elaborado se desarrollaron cuatro estructuras distintas:

i) Una exposición de calidad para mover por los Museos de la Ciencia y otros Museos, que visitó por ejemplo, Miramon Kutxaespacio de la Ciencia, la Casa de las Ciencias de A Coruña o la Casa de las Ciencias de Logroño.

ii) Varias copias de exposiciones flexibles para mover por los centros educativos del estado español, y que se estuvo moviendo durante muchos años, y aún hoy día siguen demandándola algunos centros educativos.

iii) Una exposición virtual, que las personas que están leyendo esta entrada del Cuaderno de Cultura Científica pueden ver en el portal divulgamat, en Castellano, Catalá, Euskara, Galego y Valencià.

iv) Y el magnífico libro “El Rostro Humano de las Matemáticas”, que publicó la editorial Nivola en 2008.

Portada del libro El Rostro humano de las matemáticas (Nivola, 2008)

Y terminamos con las caricaturas de otros tres personajes de la exposición El rostro humano de las matemáticas.

Sofía Kovalevskaya, caricatura realizada por Gerardo Basabe

Henri Poincaré, caricatura realizada por Enrique Morente

Lluís Antoni Santaló i Sors, caricatura realizada por Enrique Morente

Los autores de este proyecto, incluidos los dibujantes, también fuimos caricaturizados, y nuestra caricatura aparece en la parte final del libro, así como en las versiones de divulgamat.

Caricaturas de los autores de la exposición y del libro: Santiago Fernández Fernández, Pedro M. González Urbaneja, Raúl Ibáñez Torres, Vicente Meavilla Seguí, Francisco Javier Peralta Coronado, Antonio Pérez Sanz, Adela Salvador Alcaide, Enrique Morente Luque y Gerardo Basabe Pérez de Viñaspre

Bibliografía

1.- Archivo de la Junta de Ampliación de Estudios e Investigaciones Científicas (1907-1939)

2.- Raúl Ibáñez, Antonio Pérez (coordinadores de la edición), El rostro humano de las matemáticas, Nivola, 2008.

3.- Matteo Farinella, Hana Ros, Neurocómic, Norma Editorial, 2014

El artículo El rostro humano de las matemáticas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Matemáticas experimentales
  2. Artistas que miran a las matemáticas
  3. Muerte entre las ecuaciones (Historias de muerte y matemáticas 1)
Categories: Zientzia

Glaziarren gainbeherak nazioarteko segurtasunean eragin dezake

Zientzia Kaiera - Wed, 2017/05/17 - 09:00
Juanma Gallego Mundu osoan, glaziarrak urritzen ari dira klima-aldaketaren ondorioz. Horietako batzuk bereziki garrantzitsuak dira nekazaritza eta industriarako; Erdialdeko Asian, esaterako, 800 milioi lagun inguru horiei lotuta daude.

1. irudia: Baltoro glaziarra, Pakistanen. (Argazkia: Guilhem Vellut /CC-BY-SA-2.0)

Paisaia ederrak marrazten dituzte, eta, ekosistemetan, funtsezko rola betetzen dute ere. Baina, horrez gain, zenbait lekutan populazioaren biziraupenaren berma izan daitezke. Munduko populazio gehien duen kontinentean –hamar lagunetik sei asiarrak dira orain-, glaziarrak ezinbestekoak izan daitezkeelako bertako segurtasuna mantentzeko.

Horregatik, politikariek, ekonomialariek, militarrek eta zientzialariek interes handiarekin begiratzen dute bertako glaziarren egoera. Beste inon ez bezala, zientzia eta politika, ezagutza eta etorkizuna, eskutik helduta doaz Asian.

Hamish Pritchard glaziologoak Nature aldizkarian argitaratutako ikerketa batek Erdialdeko Asian dauden mendilerroetan -Himalaia, Hindu Kush, Karakorum, Pamir, Kunlun eta Tian- dauden glaziarren garrantzia kuantifikatu du aurrenezkoz.

BAS British Antartic Survey erakundean lan egiten duen ikertzaile honen arabera, era batean edo bestean, 800 milioi lagun inguru glaziar hauekiko dependentzia dute. Artikuluan zehazten duenez, udaran glaziar horietatik jasotzen den urak zuzenean 136 milioi lagunen beharrak asetzen ditu.

Pritcharden hitzetan, “estres hidrikoa dela eta, eskualde hau ekonomikoki eta sozialki bereziki ahula da lehortearekiko, baina glaziarrak lehorteari aurre egiteko ezinbesteko ur iturriak dira”.

Baina klima-aldaketak oreka garrantzitsu honetan eragin handia izan dezake, eta hori, noski, kezka iturri da. Eredu gehienek glaziarren beherakada aurreikusten dute. Adituaren arabera, horrek egoera nabarmenki zailduko du. “Gehigarriko estres hidriko honek ezegonkortasun soziala, gatazkak zein bat bateko eta kontrolik gabeko migrazioak” eragingo dituela dio zientzialariak.

2. irudia: Estres hidrikoaren mailak eta glaziarren kokapena. Gorri koloreko marra etenaz, Kaxmirreko eskualdean liskarrean dagoen muga. (Irudia: Nature)

Klima-aldaketaren eraginez lehorteak eta gosea indartuko direla dio ere, baina egoera horri glaziarren atzerakada gehitu behar zaiola nabarmendu du. Hori dela eta “erdira jaitsi daitezke ibaietako ur emariak”. Masa horien gorabeherak eta eskualdeen izaten diren prezipitazioen inguruko datuak neurtuta, arroetan glaziarren emaria zein den zehaztu du. Bere kalkuluen arabera, udara bakoitzean 23 kilometro kubiko ur ematen dute glaziarrek.

Datuak eskura izanda, erraza da ur-emari hori kenduta suertatuko zen egoera kalkulatzea. Urte normal bateko udaretan, Indus ibaiko arroan %38 gutxituko litzateke ura. Lehortea izanez gero, berriz, kopuruak %58ra igoko luke. Aral ibaiaren goiko arroan, berriz, datuak are kezkagarriagoak dira, bertan %100era heltzeko aukera baitago.

Adituak ikerketan ohartarazi duenez, glaziarrek izan ohi duten masa aldaketak jarraitzeko zuzenezko neurketa gutxi egiten dira. Askotan munduan zehar sakabanatuta dauden ezaugarriak goitik bera ezagutzen direneko ustea zabalduta dagoen arren, benetako egoera oso bestelakoa da. Adibidez, glaziarretan izaten den izotzaren galera zehazteko orduan, zeharkako estimazioak dira nagusi. Egileak emandako datuaren arabera, glaziarren %0,01 baino ez dira neurtzen zuzenean. Gainerako guztia estimazioak dira, eta horietan alde nabarmenak daude.

Tentsioaren gorakada

“Udaran eskualde hauek prezipitazio gutxi jasotzen dute, soroak ureztatzeko beharra handiena den momentuan, hain zuzen”, dio Tobias Bolch geografoak Nature aldizkariaren ale beran idatzitako iruzkin batean. Bolchek azpimarratu duenez, arazoaren muinetako bat da herrialde hauetan nekazaritzak garrantzi handia daukala. Baina, bestalde, eskualdean pisua den beste faktore bat nabarmendu du: energia. Kirgizistanen kasua mahai gainean jarri du; bost planta hidroelektrikok sortzen dute herrialdearen elektrizitatearen %80.

Züricheko Unibertsitateko ikertzaile honen ustez, zenbait herrialdetan “existitzen diren edo planifikatuta dauden urtegiek uraren eskuragarritasunari lotuta dauden tentsioak indartuko dituzte”.

3. irudia: Suitzako armadako kideak Aletsch glaziarraren inguruetan. (Argazkia: Juanma Gallego)

Nazioarteko segurtasunari dagokionez, eskualdean bereziki kezka pizten du India eta Pakistanen arteko harreman gatazkatsuak. 1947an independentzia eskuratu zutenetik, auzokideek hiru gerra izan dituzte: 1947an eta 1965ean, Kaxmirren kontrola gora behera, eta 1971n, Bangladeshen independentzia zela eta.

India koloniala zena bi herrialde berrien artean banandu zutenean, ibaietako goi-ibar gehienak Indiaren lurraldean geratu ziren, baina ureztatze bidezko nekazaritzari lotutako nekazari gehienak Pakistanen zeuden. Sinplifikatuz, Indiak ura kontrolatzen zuen, eta Pakistanek ur horren premia bizia zeukan. 1960an, Munduko Bankuaren bitartekaritzari esker, akordio batera iritsi ziren bi herrialdeak. Horren arabera, goi-ibarrak Indiaren esku mantentzen ziren, baina Pakistanek ur-emarien %80 bermatuta izan zuen. Oreka horrek Pakistango nekazaritza ahalbidetu du, orain arte bederen. Baina giroa ez da guztiz baretu, eta mugetako tentsioak bere horretan dirau. Kezka, beraz, ez da debaldekoa: India eta Pakistan etsai sutsuak dira, eta, gainera, biek dute armamentu nuklearra.

Glaziarrak, maldan behera

Maila globalera begira jarrita, klima-aldaketak mundu osoko glaziarretan izaten duen eragina nabarmena da, eta aurreikuspenak ere ez dira oso positiboak. Coloradoko unibertsitateko Twila Moon ikertzaileak Science aldizkarian idatzi duenez, glaziarrak “azkar urtzen ari dira”. Haren esanetan, glaziarren beherakada itsasoetako ur mailaren gorakada ekarriko du, eta, horrek, “gaur egungo ume askoren bizitza tartean milioika lagunen desplazamendua” ekarriko du. Zentzu horretan, bere artikuluaren izenburua oso esanguratsua da: “Glaziarrei agur esanez”.

Adituaren arabera, datorren 25 urtetan Suitzak glaziarren erdia galduko du, eta Antartidan, Patagonian, Himalaian, Groenlandian eta Artikoan dauden glaziarrak txikituko dira.

Ia-ia hilabetero plazaratzen ikerketek berresten dituzte aurreikuspen ilun hauek. AEBtako Zerbitzu Geologikoak hil honetan bertan jakinarazi duenez, azken 50 urteetan Mendi Harritsuetan dauden 39 glaziar %39 urritu dira, batez bestean. Zenbait kasutan, murrizketa %85ekoa izan da. Horietatik 26k baino ez dute 10 hektarea baino gehiago, eta, beraz, teknikoki horiek dira glaziartzat har daitezkeenak. Horren arrazoia da zientzialariek zabalera neurri hori erabiltzen dutela bereizteko zer den eta zer ez den glaziarra.

Iazko mendearen hasieran Mendi Harritsuetan 150 glaziar zeudela kalkulatu dute ikertzaileek. Adituek nabarmendu dutenez, eskualdean izan den glaziarren beherakada maila globalean dauden joerekin bat dator: gero eta glaziar gutxiago daudela eta, hortaz, gero eta ur gezako biltegi natural gutxiago dagoela. Ez da txantxetako kontua. Glaziarretan baitago planetan dagoen ur gezaren %75 inguru.

Erreferentzia bibliografikoa:

Hamish D. Pritchard, Asia’s glaciers are a regionally important buffer against drought. Nature. DOI: 10.1038/nature22062

———————————————————————————-

Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.

———————————————————————————-

The post Glaziarren gainbeherak nazioarteko segurtasunean eragin dezake appeared first on Zientzia Kaiera.

Categories: Zientzia

Las actividades animales

Cuaderno de Cultura Científica - Tue, 2017/05/16 - 17:00

Los animales pueden ser tratados como sistemas abiertos que intercambian materia y energía con su entorno y que ejercen un cierto control sobre esos intercambios. Agua, sales, elementos estructurales, energía química, oxígeno, calor, así como los restos químicos de sus actividades (CO2, sustancias nitrogenadas,…) son objeto de un trasiego continuo. La capacidad de un animal para que ese flujo, en una y otra dirección (hacia dentro y fuera del organismo), rinda el máximo beneficio energético posible, a la vez que las condiciones estructurales y fisico-químicas internas permiten el mantenimiento de su integridad funcional, es lo que determina su éxito reproductor y, por lo tanto, su aptitud biológica en términos darwinianos.

Cualquier clasificación que se quiera hacer de las actividades animales de acuerdo con las funciones a cuyo servicio se encuentran contiene, necesariamente, algún criterio arbitrario. Eso es así porque varias de esas actividades cumplen funciones en más de un ámbito. A los efectos de lo que nos interesa exponer aquí, las actividades pueden agruparse en las siguientes tres grandes categorías: (1) mantenimiento de la integridad estructural y funcional del organismo; (2) adquisición y procesamiento de los recursos necesarios para producir copias de sí mismo; y (3) control e integración de los procesos implicados en las funciones anteriores y en las relaciones (del tipo que fueren) con el resto de organismos del mismo o de otros linajes.

La primera categoría engloba las actividades implicadas en el mantenimiento de las condiciones que permiten que los procesos fisiológicos cursen de tal forma que el sistema animal en su conjunto mantenga su integridad. En rigor cabría atribuir a esta categoría casi todas las actividades –todas con la única excepción de las reproductivas-, pero algunas de ellas tienen cometidos más específicos, por lo que serán tratadas de acuerdo con su especificidad. La integridad funcional depende de los siguientes elementos: (1) mantenimiento del balance de agua y solutos en las células y en el individuo en su conjunto, incluyendo el concurso del sistema excretor; (2) equilibrio ácido-base de los líquidos corporales; (3) funcionamiento del sistema cardio-vascular como sistema de distribución y transporte de información, gases, nutrientes, deshechos y calor; (4) tareas de defensa; y (5) sistema de captación de O2 y eliminación de CO2 y transporte de estos gases.

La segunda categoría comprende las actividades mediante las cuales se adquieren y procesan los recursos que proporcionan: (1) la energía química que alimenta el conjunto de las actividades animales; y (2) los elementos estructurales que se necesitan para elaborar nuevos tejidos, ya sean para la línea somática o la línea germinal. Incluye, por lo tanto, (1) funciones de adquisición, digestión y absorción del alimento; (2) el metabolismo en su conjunto en su doble vertiente de indicador del nivel de actividad global del organismo y de gasto de energía en forma de calor disipado; y (3) balance energético de los procesos de ganancia y pérdida de energía, del que depende el crecimiento y la reproducción del individuo.

Y en la tercera categoría se incluyen las actividades que permiten: (1) recibir información del estado del organismo y del entorno; (2) procesar esa información y elaborar respuestas; y (3) ejecutar esas respuestas mediante cambios en las funciones fisiológicas internas o mediante actuaciones sobre el entorno. Esta categoría comprende el funcionamiento de los sistemas nervioso, endocrino y de los órganos efectores, especialmente los sistemas musculares.

Para concluir debemos remarcar una idea presentada al comienzo: los animales del presente son los herederos actuales de antecesores que, bajo las específicas circunstancias ambientales en que vivieron, han dejado mayor número de réplicas (parciales) de su información genética que otros muchos miembros de su linaje. Son, por lo tanto, herederos de los animales con mayor aptitud biológica de sus respectivas generaciones. Es a la luz de ese hecho como debe valorarse el modo en que cada individuo animal desarrolla sus actividades.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Las actividades animales se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El tamaño relativo de los órganos animales
  2. Los animales
  3. El sistema de la difusión social de la ciencia: Efecto de las actividades de difusión científica
Categories: Zientzia

La máquina de vapor (1)

Cuaderno de Cultura Científica - Tue, 2017/05/16 - 11:59

Segunda máquina de vapor construida por Newcomen (1714)

El desarrollo de la ciencia moderna del calor estuvo estrechamente ligado al desarrollo de la tecnología moderna de máquinas diseñadas para realizar trabajo. Durante milenios y hasta hace dos siglos la mayor parte del trabajo se realizaba por animales (humanos y de otras especies). El viento y el agua también proporcionaban trabajo mecánico, pero en general no son fuentes de energía fiables, ya que no siempre está disponibles cuando y donde se necesitan.

En el siglo XVIII, los mineros comenzaron a cavar cada vez a más profundidad en su búsqueda de mayores cantidades de carbón. El agua tendía a filtrarse e inundaba estas minas más profundas. Se planteó la necesidad de un método económico para bombear el agua y sacarla de las minas. La máquina de vapor se desarrolló inicialmente para satisfacer esta necesidad concreta.

La máquina de vapor es un dispositivo para convertir la energía térmica del calor que produce un combustible en trabajo mecánico. Por ejemplo, la energía química de la madera, el carbón o el petróleo, o la energía nuclear del uranio, pueden convertirse en calor. La energía térmica a su vez se utiliza para hervir el agua para formar vapor, y la energía en el vapor se convierte en energía mecánica. Esta energía mecánica puede ser utilizada directamente para realizar trabajo, como en una locomotora de vapor, o utilizada para bombear agua, o para transportar cargas, o se transforma en energía eléctrica. En las sociedades post-industriales típicas de hoy, la mayor parte de la energía utilizada en las fábricas y en los hogares proviene de la energía eléctrica. Parte viene de saltos de agua y del viento pero la fuente que garantiza el suministro continuo y a demanda sigue siendo la proveniente de generadores.

Existen otros dispositivos que convierten el combustible en energía térmica para la producción de energía mecánica, como los motores de combustión interna utilizados en automóviles, camiones y aviones, por ejemplo. Pero la máquina de vapor sigue siendo un buen modelo para el funcionamiento básico de toda la familia de los llamados motores térmicos y la cadena de procesos desde la entrada de calor hasta la salida de trabajo y el escape de calor residual es un buen modelo del ciclo básico involucrado en todos los motores térmicos.

Modelo moderno de eolípila

Desde la antigüedad se sabe que el calor se puede utilizar para producir vapor que, a su vez, puede realizar trabajo mecánico. Un ejemplo fue la eolípila, inventada por Herón de Alejandría alrededor del año 100. Se basaba en el mismo principio que hace que giren los aspersores de jardín, excepto en que la fuerza motriz era el vapor en vez de la presión del agua. La eolípila de Herón era un juguete, hecho para entretener más que para hacer un trabajo útil. Quizás la aplicación más “útil” del vapor en el mundo antiguo fue otro de los inventos de Herón. Este dispositivo asombraba a los fieles congregados en un templo al hacer que una puerta se abriera cuando se encendía un fuego en el altar.

No fue hasta finales del siglo XVIII que los inventores empezaron a producir máquinas de vapor con éxito comercial. Thomas Savery (1650-1715), un ingeniero militar inglés, inventó la primera máquina de este tipo, a la que dio en llamarse “la amiga del minero”. Podía bombear el agua de una mina llenando alternativamente un tanque con vapor de alta presión, lo que llevaba vaciaba el agua del tanque empujándola hacia arriba, condensando después el vapor, lo que permitía que entrase más agua en el tanque.

Máquina de Savery (1698)

Desafortunadamente, el uso de vapor de alta presión por parte de la máquina Savery implicaba unimportante riesgo de explosiones de calderas o cilindros. Thomas Newcomen (1663-1729), otro ingeniero inglés, solucionó este defecto. Newcomen inventó una máquina que utilizaba vapor a menor presión. Su máquina era mejor también en otros aspectos. Por ejemplo, podía elevar cargas distintas al agua. En lugar de usar el vapor para forzar el agua dentro y fuera de un cilindro, Newcomen utilizó vapor para forzar un pistón hacia adelante y presión de aire para forzarlo hacia atrás. El movimiento del pistón podía utilizarse para mover una bomba u otro tipo de máquina.

Principio de funcionamiento de la máquina de Newcomen

El movimiento del pistón en una máquina de vapor, hacia adelante y hacia atrás, es uno de los orígenes de la definición de trabajo mecánico, W, como fuerza (F) x distancia (d), W = F·d.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La máquina de vapor (1) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Los experimentos de Joule
  2. La máquina térmica
  3. El calor no es un fluido
Categories: Zientzia

Biomimetika: natura gizakion inspirazio-iturri

Zientzia Kaiera - Tue, 2017/05/16 - 09:00
Nagore Elu eta Nerea Osinalde Egunero etengabe eta ia ohartu gabe erabiltzen ditugu asmakizun asko, orokorrean bizitza izugarri errazten digutenak. Horietako gehienek natura dute inspirazio-iturri. Batzuk ikerketa luzeen emaitzak dira, eta beste batzuk aldiz, zoriaren ondorio. Lehengo taldean sartuko lirateke, besteak beste, azken urteotan sortu diren zenbait produktu itsaskor. Jada aztekek erabiltzen zituzten animalien odolarekin eta buztinarekin egindako nahasdurak, oraindik tente dirauten eraikinetako harriak elkarren artean itsasteko. Ordutik, gizakiak hamaika produktu itsaskor lortu ditu zenbait konposatu erabiliz.Naturari jarraituz egin ditu berrienetariko batzuk.

1. irudia: Produktu itsaskor berriak ekoiztu dira muskuiluek ingurune urtsutan zenbait gainazal ezberdinei itsasteko duten ahalmen indartsuan oinarrituta.

Haitzetako ostra, muskuilu edo lapak dira naturari so eginez aurkitu ditzakegun organismo itsaskorren artean ezagunenak. Hauen propietate itsaskorrak aspalditik dira ezagunak, baina azken bi hamarkadetan ezagutu da bai substantzia itsaskortasun-eragilearen konposizio kimikoa, bai ekoizpen mekanismoa. 2006an MaxPlanck Institutuko zientzialariek aurkitu zuten muskuiluen barnealdea gehienbat kolageno zuntzez dagoela osatua, eta hain zuzen ere horrek ematen dio animaliari erresistentzia eta elastikotasuna. Kanpoaldea, aldiz, DOPA izeneko proteina batez eta burdin ioiz osatua dago. Azken bi hauen artean erreakzio kimiko bat gertatzen denean substantzia likatsu bat sortzen da, eta substantzia hori gradualki polimerizatzen doa, naturarekin kontaktuan jartzen denean. Horri esker, muskuilua bere bizileku izango den harri, zura edo metalari oso gogor itsasten zaio.

Itsasgarri sintetiko biodegradagarri ez-toxikoak ekoiztu dira, muskuiluek medio urtsuan itsasteko duten ahalmen berezi honetan oinarrituta. Etorkizun handia aurreikusten zaie itsasgarri hauei, erresistentzia handiko itsasgarri gisa ingeniaritzan, eta bai zauriak ixteko edota hausturak sendatzeko biomedikuntzan.

Horman gora edo buruz behera ibiltzen den geko muskerraren oinetan topatu zuen inspirazioa etorkizun oparoko beste itsasgarri batek. Gekoak ahalmen bikaina dauka markarik utzi gabe azalera ezberdinei itsasteko eta desitsasteko. Ahalmen berezi hori oin-hatzetan dauden ile mikroskopikoei esker gauzatzen da.

2. irudia: (A) Geko muskerraren oina eta (B) oin-hatzetako ile mikroskopikoak.

Aspalditik aztertu da gekoaren oina baina duela gutxi lortu da animaliaren antzeko eraginkortasuna duen itsasgarri bat. Massachusettseko unibertsitateko zientzialari talde batek “Geckskin” deritzon itsasgarria plazaratu zuen 2012an. Kuxin bigun bat egitura egonkor batean jarriz eta tendoi artifizial bat erabiliz mimetizatu zuten gekoaren oina. Geckskin itsasgarriak 300 kilotik gorako pisuari eusteko ahalmena du, eta beraz, itsasgarri gogor eta iraunkorrenen artean egongo da etorkizunean.

Arestian aipatutako itsasgarriak ez bezala, hain ezaguna den belkroa zoriz aurkitu zen. 1941ean George Mestral ingeniaria bere txakurra paseatzen zebilela konturatu zen oso zaila zitzaiola bere jantziei eta txakurraren ileei itsatsitako lapa-belarraren hazia askatzea. Hazi hauek mikroskopioarekin aztertuta konturatu zen makina bat puntaz osatuta zeudela eta punta bakoitzaren muturrak gantxo edo kako itxura zuela. Hain zuzen ere, egitura horretan oinarrituta sortu zuen guztiok ezagutzen dugun belkroa, mantalak, eskularruak edo zapatak lotzeko erabiltzen dena besteak beste.

3. irudia: Lapa-belarra eta bere puntetako muturretan dauden kakoak.

Hasiera batean sistema honek kotoiz osatutako bi zinta zituen, eta horietako batean kako txiki batzuk zeuden. Alabaina, kotoia nahiko erraz apurtzen zela eta, hurrengo saiakerak nylonarekin egin ziren. Azkenean, poliester zuntzekin eraikitako belkroa izan zen 1951n patentatu zena.

Itsasgarriez gain, beste kontu askok ere agerian uzten dute natura gizakion inspirazio-iturri garrantzitsua dela. Hauetako bat da berriki Alemaniako Ornilux enpresak kaleratutako kristal berezia. Estimatzen da urtero 250 milioi hegazti hiltzen direla Europan eraikinetako kristalen kontra danba egin ostean. Arazo honi aurre egiteko ohikoa da eraikin handien leihoetan, baita autobideko paneletan ere, txori itxurako pegatinak ikustea. Baina metodo hau ez da batere eraginkorra. Duela hamarkada eskas bat arestian aipatutako Ornilux enpresak “txorien lagun” bezala definitzen duten kristala merkaturatu zuen: kristalak kolpatzeagatik txorien hilkortasuna % 75ean murrizten du. Kristal hau berezia da, txorientzat ikusgarria den sare batez estalia dagoelako, gizakiontzat ikusiezina bada ere. Izan ere, sare horrek argi ultramorea islatzen du.

4. irudia: Armiarma-sareek argi ultramorea islatzen dute, eta horrenbestez txoriak uxatu egiten dituzte. Horretan oinarrituta egin dituzte kristal hauek, argi ultramoreari esker txoriak uxatzeko.

Sortzaileek aitortu bezala, kristal honen diseinua armiarma sareetan dago inspiratuta; izan ere, hauen zetek argi ultramorea islatzen dute harrapakinak erakartzeko nahiz txoriak uxatzeko. Hortaz, kasu honetan gizakiak natura kontserbatu nahi du, naturaren beraren trikimailuak antzeratuz.

Oso bestelakoa da tardigradoengandik, hots uretako hartz mikroskopikoengandik, gizakiak hartutako mailegua. Tardigrada filumeko bizidunak munduko animaliarik erresistenteenak direla onartu ohi da. Izan ere, ahalmena dute beste edozein izaki bizidunentzako jasangaitzak diren muturreko baldintzetan bizitzeko, baita espazioko baldintzetan ere. Esaterako, lehorte egoeran uretako hartzek anhidrobiosia deitzen den prozesua jasaten dute; guztiz deshidratatzen dira baina DNA, RNA eta proteinak kaltetu gabe, trehalosa deitzen den azukre batez babesten baitira.

5. irudia: Txertoak hotzik gabe kontserbatzeko metodoak garatu dira, uretako hartzek lehorte garaian bizirik irauteko garatutako mekanismoa antzeratuz.

120 urte ere egon daitezke uretako hartzak loaldi egoeran, urak berriz ere berpizten dituzten arte. Horretan oinarrituta, ikertzaileek frogatu dute txertoak azukrez estalita gorde daitezkeela eta hotzetan gordetzen direnak bezain ondo mantentzen direla. Horrek izugarrizko abantaila ekarri du, batez ere hotz-baldintza kontrolatuak ez dauden munduko guneetara ere txerto eraginkorrak onik helarazteko.

Gizakiak ez ote dauka ideia txundigarririk natura antzeratu gabe?

Naturan aurretiaz antzerako ezer behatu gabe, kristo aurretik III. mendean gizakiak gurpil itxurako horzdun engranaje mekanikoak asmatu zituen. Horien antzekoak erabiltzen dira egun, ibilgailu edota bizikletetan. Esan bezala, uste zuten naturan ez zegoela horrelako mekanismorik, baina beste behin ere usteak erdi ustel. 2013an Science aldizkari ospetsuak plazaratu zuen horzdun engranajeak dituztela matxinsaltoaren antzekoa den Issus coleoptratus intsektu gazteen atzeko hankek. Hauei esker intsektu mota honek oso azkar egiten du salto aurre-alderantz, erlojuetan orratzek aurrera egiten duten antzera.

6. irudia: (A) Issus coleoptratus intsektua eta (B) bere atzeko hanketan aurkitutako engranaje mekanikoaren mikroskopio irudia.

Beraz, aurkikuntza honek frogatzen du engranaje mekanikoak ez direla gizakiaren diseinua, milioika urteko eboluzioaren emaitza baizik. Ez dago zalantzarik natura oso argia dela; hortaz jarrai dezagun natura behatzen eta bere liluretatik ikasten.

—————————————————–

Egileez: Nagore Elu UPV/EHUko Biokimika eta Biologia Molekularra Sailean doktorego-ikasketak egiten ari den ikaslea da. Nerea Osinalde Biokimikan doktorea da eta UPV/EHUko Biokimika eta Biologia Molekularra Saileko irakaslea.

—————————————————–

The post Biomimetika: natura gizakion inspirazio-iturri appeared first on Zientzia Kaiera.

Categories: Zientzia

El terrorismo como sacerdocio

Cuaderno de Cultura Científica - Mon, 2017/05/15 - 17:00

El sufrimiento por las creencias propias facilita que otros compartan las mismas creencias, religiosas y de otro tipo, porque les otorga credibilidad. Esta es la tesis que sostiene Joseph Henrich, de la Universidad de la Colombia Británica (Canada). El prestigio de una persona en el seno de su comunidad facilita considerablemente que las costumbres, ideas y creencias de esa persona sean adoptadas por el resto de sus miembros. Si además de eso, la persona en cuestión está dispuesta a realizar actos costosos o que acarrean sufrimiento en pro de esas costumbres, ideas o creencias, su credibilidad es aún mayor, porque otorgamos mucho valor a ese tipo de actos. Por eso, en las primeras fases de las religiones que tienen éxito suelen aparecer personas de prestigio que los realizan. La gente se fija, sobre todo, en modelos o referencias comunitarias y la credibilidad de su fe es mayor si están dispuestas a sufrir o pasarlo mal para demostrarlo.

Esa es la razón por la que el martirio se convierte en una poderosa herramienta para que las creencias del mártir sean aceptadas por otras personas y para que éstas se comprometan, a su vez, con la causa. Es también el mecanismo que subyace a los votos de castidad y pobreza, o al ayuno, de los líderes religiosos, porque la renuncia (real o aparente) a los correspondientes bienes, supone una muestra de lo genuino de las creencias y promueve su adopción por parte de otras personas.

El mismo argumento vale para los terroristas, sobre todo si son suicidas. Por esa razón, las medidas que puedan adoptar las autoridades para punir determinados comportamientos pueden, en la práctica, servir de estímulo para la aparición de nuevos seguidores de la causa. Los mártires del primer cristianismo son ejemplos claros de ese fenómeno. No es que los terroristas hagan votos de castidad o pobreza, o que ayunen de forma voluntaria, pero ante los potenciales adeptos a su causa aparecen como personas dispuestas a renunciar a bienes, como la libertad o el bienestar material, de los que muchos disfrutan y que tienen en alta estima. Desde ese punto de vista y en sus modalidades menos exageradas, la militancia terrorista bien podría asimilarse a una especie de sacerdocio. Y si los terroristas están dispuestos a arriesgar sus vidas o, incluso, se la quitan a sí mismos como consecuencia inevitable de sus actos, más que sacerdotes, alcanzan la condición de mártires.

Fuente:

Joseph Henrich (2015): The secret of our success. Princeton University Press.

El trabajo original fue publicado por el autor en Evolution and Human Behavior (2009) y se puede consultar aquí.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El terrorismo como sacerdocio se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Del relativimo al cientifismo, por Experientia Docet
  2. La prolongación de la juventud como precarización de lo adulto
  3. El óxido de grafeno que se mueve como una oruga y coge cosas como una mano
Categories: Zientzia

Un espectrómetro Raman portátil mide el punto óptimo de maduración del tomate

Cuaderno de Cultura Científica - Mon, 2017/05/15 - 11:59

Un espectrómetro Raman portátil

El espectrómetro Raman portátil, un equipo que se utiliza en campos tan diversos como la metalurgia, la arqueología o el arte, permite obtener datos sobre la variación de la composición del fruto del tomate en sus diferentes fases de maduración, según los resultados de un estudio realizado en el Departamento de Química Analítica de la UPV/EHU.

El espectrómetro Raman portátil es un instrumento muy utilizado en sectores muy diferentes, ya que es una técnica no invasiva que sirve, por ejemplo, para observar los pigmentos que contiene un cuadro o una escultura sin tener que extraer muestra alguna, preservando así la integridad de la obra en cuestión. En este caso, los investigadores han aplicado el espectrómetro Raman a la investigación culinaria. Según Josu Trebolazabala, autor del estudio, “se trata de un trasvase de esta tecnología, que tenía un uso concreto, a la cocina. Nuestra idea era crear una herramienta que pudiera ayudar al productor a saber cuál es el punto óptimo de maduración del tomate. Con esta técnica se consigue, además, hacerlo sin destruir el fruto”.

Josu Trebolazabala analiza en el laboratorio la composición de un tomate mediante el espectrómetro Raman. Foto: Txetxu Berruezo.

Los resultados ofrecidos por este instrumento portátil han sido comparados con los ofrecidos por un instrumento similar de laboratorio, y “aunque la calidad de los espectros Raman del instrumento de laboratorio ha resultado ser superior, la información obtenida con la instrumentación portátil puede considerarse de suficiente calidad para el objetivo propuesto, es decir, que el productor pueda ir a la huerta con este equipo y, posando la sonda Raman de contacto sobre el fruto del tomate, pueda saber si el tomate está en un punto de recogida óptimo o hay que dejarlo madurar más tiempo”, comenta Josu Trebolazabala.

La monitorización de la composición del fruto del tomate en sus fases de maduración ha permitido observar los cambios que se producen en la composición del tomate en su tránsito desde su estado inmaduro hacia el estado maduro. “Cuando el tomate está verde, los pigmentos mayoritarios son la clorofila (de ahí su color verde) y las ceras cuticulares, que se encuentran en el exterior”, explica Trebolazabala. Pero la presencia de dichos compuestos desciende a medida que el fruto alcanza su punto óptimo de maduración. “Una vez que el color pasa al anaranjado, se observan otro tipo de compuestos; se activan los compuestos carotenoides. El tomate va adquiriendo nutrientes hasta llegar al punto óptimo, es decir, cuando el licopeno (carotenoide de color rojo) está en su máximo. Después, el tomate empieza a perder contenido en carotenoides, como demuestran los análisis realizados en tomates excesivamente maduros”.

Esta innovadora técnica es extrapolable a cualquier otro alimento que cambie de coloración durante su etapa de maduración. “Se han realizado pruebas con el pimiento y con la calabaza, por ejemplo, y también es posible obtener datos sobre su composición”, aclara.

Referencia:

J. Trebolazabala, M. Maguregui, H. Morillas, A. de Diego, J.M. Madariaga.. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 180: 138-143. DOI: 10.1016/j.saa.2017.03.024.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Un espectrómetro Raman portátil mide el punto óptimo de maduración del tomate se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La pantalla de tu móvil solo tiene tres colores
  2. Otra pieza en el puzle de la fotosíntesis
  3. La contaminación por metales pesados no llega a los tomates
Categories: Zientzia

Laborategiko teknologia tomateen heltze puntua antzemateko

Zientzia Kaiera - Mon, 2017/05/15 - 09:00
Tomateen heltze puntu optimoa zein den jakiteko, pigmentuak neurtu dituzte espektrometria bidez. Raman espektroskopio eramangarria aplikazio honetarako baliagarria dela frogatu du Josu Trebolazabalaren ikerketak.

Tomatearen heltze prozesuak hainbat fase ditu eta, fasez fase, kolorea aldatuz joaten da. Heltze faseetan tomateak duen konposizioa monitorizatuta konposizioan gertatzen diren aldaketak ikus daitezke espektrometria bidez.

Tomatea berde dagoenean, adibidez, gehien agertzen diren pigmentuak klorofila eta argizari kutikularrak dira. Fruitua heldu ahala gutxitu egiten dira konposatu horiek eta laranja kolorea hartzean bestelako konposatuak ikusten dira: konposatu karotenoideak. Likopenoa (karotenoide gorria) gorenean dagoenean iristen da tomatea puntu optimora. Karotenoide edukia galtzen hasten da puntu horretatik aurrera, gehiegi heldutako tomateetan egindako azterketek erakusten duten bezala.

Irudia: Tomateak heltze une desberdinetan.

Metalurgian, arkeologian ala artelanen analisian erabiltzen den Raman espektrometroa tomateen heltze prozesua monitorizatzeko erabili da lehen aldiz. “Erabilera jakin bat zuen teknologia sukaldaritzara aplikatu da. Ekoizleari tomatearen heltze-puntu optimoa zein den jakiten lagunduko dion tresna sortzea zen ideia”, azaldu du Josu Trebolazabala ikertzaileak. Espektrometro mugikor honen bidez, ekoizleak in situ kontrola dezake tomatea eta, hala, heltze-puntu optimoa aurkitu.

Metodologia

Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits” ikerketak frogatu du tomatearen heltze faseetan dauden konposizio aldaketei buruzko datuak eskuratzeko balio duela Raman espektrometro mugikorrak. Oso erabilia da askotariko sektoreetan Raman espektrometroa, izan ere, teknika ez-inbaditzailea da eta inolako laginik atera gabe erabili daiteke. Baliagarria da, esate baterako, koadro baten edo eskultura baten pigmentuak ikusteko lanari/produktuari kalterik eragin gabe. Fruituaren konposizio molekularra aztertzen duen neurgailu honekin, beraz, fruitua hondatu gabe monitorizatu daiteke.

Laborategiko antzeko tresna baten emaitzekin alderatu dira tresna eramangarri honek emandakoak eta ikusi da laborategiko Raman espektroen kalitatea hobea izan arren, instrumentu eramangarriak emandako informazioak ere baduela nahikoa kalitate ezarritako helbururako. Ekoizlea ekipo mugikorrarekin baratzera joan eta kontakturako Raman zunda tomate-fruituaren gainean jarrita jakin dezake biltzeko punturik egokienean dagoen edo denbora gehiago utzi behar zaion.

Heltze prozesuan kolorea aldatzen zaion edozein elikagairi aplika dakioke teknika berritzaile hori. “Piperrarekin eta kuiarekin probak egin ditugu, besteak beste, eta haien konposizioari buruzko datuak ere eskuratu ditugu”, argitu du Josu Trebolazabalak.

Erreferentzia bibliografikoa:

J. Trebolazabala, M. Maguregui, H. Morillas, A. de Diego, J.M. Madariaga. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 180: 138-143. DOI: 10.1016/j.saa.2017.03.024.

Iturria: UPV/EHUko komunikazio bulegoa: Neurgailu eramangarri bat, tomatearen heltze-puntu optimoa aurkitzeko.

The post Laborategiko teknologia tomateen heltze puntua antzemateko appeared first on Zientzia Kaiera.

Categories: Zientzia

Sin atajos frente al cáncer

Cuaderno de Cultura Científica - Sun, 2017/05/14 - 11:59

El archiconocido empresario norteamericano Steve Jobs murió a consecuencia de un cáncer de páncreas que no fue operado a tiempo. Si hubiese sido intervenido cuando le fue diagnosticada la enfermedad, el desenlace podría haber sido otro. Sin embargo, Jobs optó por recurrir a terapias alternativas, y retrasó la intervención que, realizada a tiempo, podría quizás haberle salvado. Ese no es, desgraciadamente, el único caso en que la renuncia a las terapias más eficaces de que disponemos conduce a un desenlace fatal.

Aparte de para curarse, también hay quien recurre a remedios supuestamente preventivos. Se promocionan dietas con la pretensión declarada de prevenir la aparición de tumores. Y en el colmo de la desfachatez –por no decir, directamente, de la maldad- hay quienes atribuyen a los enfermos la responsabilidad de su situación, al afirmar que el cáncer tiene origen en algún problema psicológico no resuelto mediante alguna práctica o modo de vida supuestamente indicado a tal efecto.

Proliferan ahora dietas “anti-cáncer”. Una de las más populares es la llamada “dieta alcalina”, que usaré aquí, a modo de ejemplo, para ilustrar el sinsentido de esta y otras falsas terapias. Para entender el fundamento en que supuestamente se basa, hay que tener en cuenta que el entorno de las células cancerosas suele ser ácido y que los promotores de la dieta milagrosa sostienen que esa acidez es la que provoca el cáncer. Creen que hay que neutralizarla ingiriendo una dieta alcalina.

La razón de que las células cancerosas se encuentren en un entorno ácido es que, para obtener energía, tienden a utilizar más glucosa que las sanas, haciendo uso de una vía metabólica llamada glucolisis, sin que esa ruta sea complementada por otras que son las que en muchos tejidos animales proporcionan más energía y acaban requiriendo el concurso del oxígeno que respiramos. En esas condiciones, los productos finales de la glucolisis son sustancias ácidas, y es por eso por lo que el entorno de esas células se acidifica. Algo parecido ocurre, por cierto, con las células de nuestros músculos cuando los sometemos a un esfuerzo muy intenso; bajo esas condiciones la glucosa, tras una serie de etapas, acaba convirtiéndose en ácido láctico.

A la utilización preferente de glucosa por las células cancerosas se le denomina “efecto Warburg”, pues fue Otto Warburg quien lo describió en 1924. De hecho, fue él quien sugirió que el cáncer podía ser una consecuencia del fenómeno descrito. Sin embargo, como hemos visto, la secuencia causal es la opuesta: son las células cancerosas las que provocan la acidificación del entorno, y no al revés. Y en todo caso, conviene aclarar que el grado de acidez del organismo no puede modificarse con la dieta, puesto que está regulado fisiológicamente de forma muy estricta, sin que la acidez de aquélla ejerza ningún efecto.

Los diagnósticos de cáncer son difíciles de aceptar, sobre todo cuando el tratamiento prescrito es agresivo, como suele ocurrir con la quimioterapia. Y por esa razón no es raro que a la hora de afrontar un tratamiento duro, de efectos secundarios muy desagradables e incluso temporalmente incapacitantes, haya quien valore la posibilidad de probar terapias alternativas. No faltan, además, personajes que, valiéndose del sufrimiento de los enfermos, les ofrecen remedios sin los duros efectos de los tratamientos oncológicos habituales. Pues bien, conviene tener siempre presente que son los médicos de nuestro sistema de salud los únicos capacitados para prescribir la terapia más eficaz posible. Cuando el camino a recorrer es muy duro, la tentación de tomar atajos es muy fuerte, también frente a la enfermedad. Pero tampoco frente al cáncer hay atajos.

Adenda:

Tras su publicación en la sección con_ciencia del diario Deia el 29 de enero pasado, este texto recibió comentarios críticos con la idea de que el cáncer que sufría Jobs tuviese mejor pronóstico que la mayoría de los que afectan al páncreas, razón por la cual no debía criticarse su opción por explorar tratamientos alternativos a los que le ofrecía la medicina. Quien suscribe no es especialista en oncología; ni siquiera es médico. Recurro, por ello, a lo que señala la Wikipedia en inglés a ese respecto y que cada cual juzgue:

En octubre de 2003 a Jobs se le diagnosticó cáncer. A mediados de 2004 él anunció a sus empleados que tenía un tumor canceroso en el páncreas. El pronóstico para el cáncer de páncreas es normalmente muy negativo. Jobs especificó que él tenía un tipo de tumor raro, no tan agresivo, conocido como carcinoma de los islotes pancreáticos.

A pesar del diagnóstico, durante nueve meses Jobs no hizo caso a las recomendaciones de sus médicos de que se operase, confiando, por el contrario, en una dieta pseudo-médica para intentar un tratamiento natural para combatir la enfermedad. De acuerdo con el investigador de Harvard Ramzi Amri, su opción por un tratamiento alternativo le condujo a una muerte innecesariamente temprana. El investigador en cáncer y crítico de la medicina alternativa David Gorski disentía de la opinión de Amri, y manifestó que “según mi criterio, Jobs probablemente solo redujo de manera modesta sus posibilidades de sobrevivir”. Barrie R. Cassileth, el jefe del departamento de medicina integrativa del Memorial Sloan Kettering Cancer Center dijo que “la fe de Jobs en la medicina alternativa probablemente le costó la vida…. Él tenía el único tipo de cáncer de páncreas que es tratable y curable… Él, básicamente se suicidó.” De acuerdo con el biógrafo de Jobs, Walter Isaacson, “durante nueve meses él rehusó someterse a una cirugía para su cáncer de páncreas, una decisión que más tarde lamentaría conforme su salud empeoró. En vez de ello, probó una dieta vegana, acupuntura, hierbas y otros tratamientos que encontró en internet, e incluso, consultó a un vidente. El estaba muy influido por un médico que dirigía una clínica que prescribía enemas, ayunos y otros tratamientos carentes de fundamento antes de ser operado en julio de 2004 y de serle extirpado el tumor. Jobs no recibió radioterapia ni quimioterapia.”

—————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Sin atajos frente al cáncer se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Inmunoterapia contra el cáncer
  2. Beber alcohol produce cáncer
  3. #Naukas14 Mitos del cáncer
Categories: Zientzia

Asteon zientzia begi-bistan #154

Zientzia Kaiera - Sun, 2017/05/14 - 09:00
Uxue Razkin

Geologia

Arturo Apraiz, Arantxa Aranburu eta Arantxa Bodego EHU Euskal Herriko Unibertsitateko geologoak Aiako Harrian izan ziren –Geolodia ekinbidea izan da Iberiar Penintsulako hainbat tokitan– eta bisita gidatuetako bat zuzendu zuten: Aiako harria, inguruak eta Pangeako superkontinetearen apurketa. Granitoa da han nagusi, “arroka plutonikoak dira”, Lurraren hastapenetan sortutakoak Pangea superkontinentean, magmatik. Higadurak, biluzi egin zituen ondoren. Apraizek, esaterako, koloreari erreparatzeko esan zien bisitan parte hartu zutenei. “Izan ere, ikusten dira arroka berdeak eta zuriak; arroka berdeak dira, magma klase bat, eta arroka zuriak, beste magma klase bat”. Bisita gidatu honetan, arroka bila ere ipini zituzten. Valderejon ere izan zen beste bisita gidatu bat. Artikulu osoa irakurtzea gomendatzen dizuegu.

Biologia

Ozeano Bareko hondoak baditu bizitza oparoko gune batzuk. Bertan, ozeano-fosak izeneko sakonera handiko guneak aurkitu ditzakegu. 1977 urtean ozeano-fosa horiek aztertzera ikerketa-urpekari bat bidali zenean, aurkikuntza harrigarria egin zuten ikertzaileek: tamaina handiko izakiak eta kolore biziko animaliez osatutako dentsitate altuko populazioak aurkitu zituzten. Topatu zituztenen artean, metrotik gorako zizare tubikolak eta muxila erraldoiak zeuden. Azterketa egin zutenean ohartu ziren hazkunde-tasa harrigarriak ez zirela gertatzen tenperatura altuengatik, eta haatik sufrearen erabileran oinarrituta zeudela. Eguzkiko energia erabili beharrean sufrearen oxidazioko energia erabiltzen dute karbohidratoak eta beste baliabide batzuk ekoizteko.

Zilarrak estuarioetan kutsatzaile gisa duen papera eta elementu honek kobrearekin duen elkarreragina aztertzeko, Understanding the impact of silver as an emerging contaminant in the Ibaizabal and Gironde Estuaries ikerketa egin du Ane Rementeria ikertzaileak. Ikerketa gauzatzeko zilar-kontzentrazioa aztertzeko ostrak eta muskuiluak monitorizatu dira. Ondorioei dagokienez, lehenik eta behin ikusi dute ostrek muskuiluak baino metal kontzentrazio handiagoak bereganatzen dituztela. Bigarrenik, Girondeko animaliek metal kontzentrazio handiagoak dituztela ikusi dute. Azkenik, ohartu dira zilarraren eta kobrearen konbinazioak areagotze efektua duela, toxikotasun handiagoa erakusten du zilarrak kobrearekin elkarreraginean.

Osasuna

Kannabinoideek sagu heldu eta zaharren ikasteko gaitasuna eta memoria hobetzen dutela ondorioztatu dute. Emaitzek iradokitzen dute THC kannabinoidea (marihuanaren osagai psikoaktibo nagusia) dosi txikian hartzeak lagun dezakeela zahartzearekin lotutako galera kognitiboari aurre egiten. Ikertzaileek ikusi dute sagu gazteetan memoriari eta ikasteko gaitasunari kalte egiten diela, eta, helduetan eta zaharretan, berriz, hobetu. Gainera, frogatu dute hobekuntza hori lotuta dagoela garuneko eremu batean gene-espresioa areagotzearekin. Elhuyar aldizkariak kontatu digu ikerketaren nondik norakoa.

Tiritei erreparatzen die testu honek. Tirita mota ezberdin asko daude merkatuan egun. Lehenengo tirita Earle Dickinsonek asmatu zuen, Johnson & Johnson konpainian lan egiten zuen kotoi saltzaile batek. Tiritek funtsean zauria ingurunetik babesten dute eta bakterioen migrazioa ekiditen dute. Jo ezazu artikulura tirita motak ezagutzeko: arruntak, gardenak, urarekiko erresistenteak, detektagarriak, hidrokoloideak, …

Teknologia

Gauzak digitalizatuz gero betiko izango zirela esan zuten eta errealitateak erakutsi du hori ez dela horrela. Edu Lartzanguren kazetariak azaltzen digu: zenbat eta teknologia konplexuagoa erabili, orduan eta zailagoa da informazio hori berreskuratzea. Eresbil euskal musikaren artxiboko arduradun Jon Baguesek azaltzen du euskarri fisikoak gorde egin behar direla: “Jendeak esaten du: ‘Behin digitalizatuta, papera edo bestelako euskarriak bota daitezke’. Kontuz horrekin!”. Halaber, Interneten zabaldutakoa gordetzeko bidean, estekak erabili ordez –zaharkituta geratzen dira Interneten objektu bat gunez aldatzen denean, DOI egitasmoa nabarmendu du Iñaki Alegriak, EHUko informatika irakasleak. Zientzia aldizkarietan-eta ari dira erabiltzen, artikuluak galduko ez direla ziurtatzeko.

Medikuntza

Gizakiok usaimen eskasa dugula mito bat besterik ez dela esan du John McGann neurozientzialariak. Haren ustez, gizakiok bilioi bat usain desberdintzeko gaitasuna dugu –beste ugaztunen pare–, eta usaimen-erraboila 5.600 glomerulutan antolatua dugu, saguek baino askoz ere gehiagotan (1.800). Geneek, neurogenesiak eta beste zenbait faktorek usainekiko sentikortasunean izan dezaketen eragina aztertuta, aditzera eman du espezie bakoitza usain batzuekiko sentikorragoa dela. “Txakurrak gizakiak baino hobeak izan daitezke gernuak bereizten, eta agian gizakiok ardoen usainak bereizten”. Horretaz gain, McGannek dio zenbait ikerketak erakutsi duela usaimena galtzen hastea memoria-arazoen hasieraren adierazle izan daitekeela.

Arkeologia

Aurrenekoz topatu dituzte Egiptoko antzinako marrazkiekin bat egiten duen hileta lorategi baten arrastoak, duela lau mila urtekoak. Espainiako Ikerketa Zientifikoen Kontseilu Nagusiak (CSIC) egin du aurkikuntza, gaur egungo Luxor hirian, Nilo ibaiaren ertzean. Zehazki, Dra Abu el-Naga muinoan aurkitu dute, Inperio Ertaineko hilobi baten atari irekian. Egiptoko XII. dinastiari dagokiola iritzi diote ikertzaileek, k.a. 2.000 urtekoa. Datilak eta bestelako fruituak zituen katilu bat ere aurkitu dute lorategiaren ertz batean; ziurrenik, eskaintza erritual gisa baliatu zituzten. Amaia Portugalek eman digu albiste honen berri.

Biokimika

Gure gorputzeko tenperatura 37º ingurukoa den arren, gure zelulen barruko organulu batzuetan oso tenperatura altuak egoten direla ikusi dute: 50º neurtu dituzte mitokondrietan. Nola lortu dute hori neurtzea? Bada, tenperaturaren araberako fluoreszentzia ematen duten tindatzaileak garatu dituzte haiei esker egin da aurkikuntza berria. Zelularen zentral energetiko gisa jokatzen dute mitokondrioek: mantenugaiak oxidatzen dituzte, energia lortzeko (ATPa). Ikertzaileen ustez, prozesu horrek sortzen duen beroak bermatzen du organismo osoaren barne-tenperatura egonkorra, odol beroko espezieetan.

Kimika

Josu Lopez-Gazpiok kosmetikoak izan ditu aztergai artikulu honetan. Jakina da gizartean kezka dagoela kosmetikoen osagaien segurtasunari eta kontsumitzaileengan izan ditzaketen albo ondorioei dagokienez. Badira zenbait substantzia, derrigor zerrendan jarri behar direnak alergiak eragiteko gai direlako. Substantzia horietako gehienak osagai usaintsuak direnez, lurrin alergeno (PAS) deritze. PASak etiketan azaldu behar dira kontzentrazioa %0,001 baino handiagoa bada kosmetiko iraunkorren kasuan —perfumeak, kremak, eta abar—, eta %0,01 baino handiagoa bada eliminatzekoak diren produktuen kasuan —gelak, xanpuak, xaboiak, eta abar—. Kosmetikoen etiketan alergenoei buruzko informazio hori ematea garrantzitsua da alergiak saihestu edo kontrolatu behar dituzten gaixoentzat.

Paleontologia

Gizakia uste baino lehenago iritsi zen Amerikara. Hala dio 1992an San Diegotik (AEB) gertu eraikitzen ari zen autobide batean topatutako mastodontearen hezurrek. Hezur horiek animalia hil berritan harriz hautsi izanaren markak dituzte, hezur-muina ateratzeko asmoz. Gainera, alboan ingude eta mailu gisa erabilitako harriak ere topatu zituzten. Informazio osagarria, Argian izango duzue irakurgai.

Zientzia azoka

Elhuyar fundazioak antolatutako Zientzia Azoka izan dugu aste honetan. Euskal Herri osoko 33 ikastetxetako 1.150 ikasle aritu dira aurtengo ikasturtean zientzia eta teknologia proiektuak taldeka lantzen, eta egindako lan horren guztiaren lagin bat jarri dute ikusgai Bilboko Plaza Berrian. Egitasmo honen helburua aipatzen du Leire Cancio Elhuyar fundazioko zuzendariak: “Gazteei zientzia, teknologia eta ikerketa hurbiltzea da gure helburua”.

CAF-Elhuyar sariak

CAF-Elhuyar 2017 sariak banatu ziren ostiralean. Urtero bezala, zientzia eta teknologia gizarteratzeko ahalegina egiten dutenen lana aitortzea izan dute helburu sariek. Irabazleak eta euren lanak ikusteko aukera izango duzue hemen.

———————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Asteon zientzia begi-bistan #154 appeared first on Zientzia Kaiera.

Categories: Zientzia

Los ojos que explorarán la superficie de Marte (Mars2020)

Cuaderno de Cultura Científica - Sat, 2017/05/13 - 11:59

Un equipo de investigación de la UPV/EHU está participando en la misión de la NASA Mars2020, que pretende transportar un nuevo vehículo científico a Marte para explorar potenciales signos de vida, analizar su habitabilidad y mejorar el estudio del clima, la atmósfera y la geología marciana. Estos investigadores se encargarán de calibrar una cámara que, mediante diferentes mediciones espectroscópicas, analizará el suelo del planeta rojo para buscar señales orgánicas y determinar la mineralogía y la composición química, atómica y molecular de las muestras localizadas.

El director de este equipo de investigación, Juan Manuel Madariaga, habló sobre este proyecto en una charla que tuvo lugar el pasado 22 de febrero en Azkuna Zentroa (Bilbao). Esta charla forma parte del ciclo de conferencias Zientziateka, que organizan todos los meses la Cátedra de Cultura Científica de la UPV/EHU y Azkuna Zentroa para divulgar asuntos científicos de actualidad.

Los ojos que explorarán la superficie de Marte

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Los ojos que explorarán la superficie de Marte (Mars2020) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Investigación con medicamentos en seres humanos: del laboratorio a la farmacia
  2. La detección de ondas gravitacionales: el nacimiento de una nueva astronomía
  3. La batalla contra el cáncer: la importancia de la alimentación
Categories: Zientzia

Ezjakintasunaren kartografia #159

Zientzia Kaiera - Sat, 2017/05/13 - 09:00

Neutrinoen izaerari buruzko esperimenturik interesgarrienetariko bat Espainian egiten ari dira. Víctor Marínek aurkezten digu: The Spanish take on the nature of the neutrino: the NEXT Experiment.

Ba al dago desberdintasunik helduen entzefaloen artean sexuen arabera? Badago galdera bera sexista dela esaten duenik, eta galdearen aurrean ezetz erantzuten dute. Badago galderaren aurrean baietz erantzuten duenik, baina ez dakite zeintzuk diren garunen arteko desberdintasunak. José Ramón Alonsok gaiaren bueltan dauden ebidentzia zientifikoak errepasatzen ditu Sexual differences in the human brain artikuluan.

Badaude moduak molekula organiko ez magnetiko baten erantzuna lortzeko eremu magnetiko baten aurrean. Hau berori oso erabilgarria izan daiteke fluido biologikoak aztertzeko orduan. DIPCko ikertzaileek badakite zelan gauzatu: Magneto-optical activity of a nonmagnetic organic compound.

–—–

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #159 appeared first on Zientzia Kaiera.

Categories: Zientzia

Las cartas de Darwin: El capitán y el filósofo

Cuaderno de Cultura Científica - Fri, 2017/05/12 - 12:00

Las cartas de Darwin, una serie para conocer aspectos sorprendentes de la vida del naturalista

Carta de Charles Darwin a John Stevens Henslow [15 septiembre 1831]

“El capitán FitzRoy es todo lo que puede ser de grato, si fuera a alabarlo solo la mitad de lo que me siento inclinado, a pesar de haberlo visto solo una vez, le parecería a usted absurdo…[…] No puede usted imaginar nada más grato, gentil y abierto que las maneras del capitán FitzRoy para conmigo. Si no congeniamos seguramente será por mi culpa”.

Así de optimista y elogioso se mostraba el joven Charles Darwin tras su primer encuentro con el capitán que iba a dirigir su expedición durante los próximos años. A ojos del naturalista, FitzRoy aparecía como un hombre experimentado (a pesar de tener solamente cuatro años más que Darwin), una persona disciplinada, de trato afable y dispuesta a agradar. Darwin mantuvo esta favorable opinión del capitán durante gran parte del viaje y, aunque no se puede decir que se convirtieran en amigos, sí que hubo una relación correcta durante los cinco largos años que tuvieron que compartir un pequeño camarote y las incomodidades de un barco de esas características.

Carta de Charles Darwin a su hermana Susan Darwin [09/14 de septiembre 1831]

“Te daré una prueba de que FitzRoy es un buen capitán: todos los oficiales serán los mismos del anterior viaje y dos tercios de su tripulación y los ocho infantes de marina que fueron antes con él, todos se han ofrecido a volver de nuevo, así que el servicio no puede ser tan malo”.

Unos días más tarde y tras algunos encuentros más con el capitán para la organización del viaje, Darwin vuelve a escribir a su hermana reiterando su admiración por FitzRoy.

“Por mis cartas anteriores, quizá llegaste a pensar que admiraba yo a mi bello ideal de capitán, pero todo ello no es nada respecto de lo que siento ahora. Todo el mundo lo alaba y, si juzgamos por el poco tiempo que he compartido con él, no hay duda que lo merece. Esto no quiere decir que una admiración tan intensa como la que siento por él pueda durar para siempre. Nadie es un héroe para su ayuda de cámara, como dice el dicho, y desde luego que me encontraré en el mismo predicamento con el tiempo”.

Además, en la primera carta a su hermana, Darwin hace una pequeña profecía que, como comprobaremos más adelante, no se iba a cumplir:

“No creo que nos peleemos por la política, aunque Wood (como debe esperarse de un irlandés de Londonderry) advirtió solemnemente a FitzRoy que yo era liberal”.

El capitán Robert FitzRoy en uno de los pocos retratos de joven

Mucha gente cree que las escasas, aunque potentes, discusiones que tuvieron Darwin y FitzRoy durante el viaje en el Beagle se debieron a motivos religiosos, y no es cierto. Tanto el capitán como el filósofo (así llamaba la tripulación al joven Darwin) se enfrascaron en varias disputas pero siempre por motivos políticos y sociales. Las desavenencias religiosas llegaron mucho más tarde, casi 30 años después, a raíz de la publicación en 1859 del Origen de las especies.

En el barco, no obstante, la gran discusión entre Darwin y FitzRoy se produjo por un asunto que imprimió una profunda huella en el naturalista: la esclavitud.

Carta de Charles Darwin a John Maurice Herbert [01 de junio de 1832]

“[Durante su estancia en Brasil] No me había dado cuenta de cuán íntimamente está conectada la que podríamos llamar parte moral con el goce del paisaje. Tales ideas, al igual que la historia del país, la utilidad de los productos y más especialmente la felicidad de la gente, nos acompañan. Pero cambia al trabajador inglés por un pobre esclavo que trabaja para otro y ya no reconoces el mismo paisaje”.

A pesar de lo que se pudiera pensar, sobre todo por las grandes ilusiones que Darwin se hizo al inicio del viaje, nuestros dos personajes nunca llegaron a ser grandes amigos. De hecho, si tuviésemos que juzgar su relación por las cartas que se escribieron en toda su vida tendríamos muchas dificultades puesto que apenas se intercambiaron un puñado de ellas.

Darwin y FitzRoy tan solo intercambiaron 22 cartas (diez escritas por Darwin, doce por FitzRoy) entre los años 1831 y 1846, año en el que dejaron de escribirse.

Para conocer a fondo la intensa relación entre Darwin y el capitán, lo más eficaz es acudir a la “Autobiografía” que el propio naturalista escribió haciendo gala de una sinceridad en muchos aspectos implacable.

“FitzRoy poseía un carácter singular dotado de muchas facetas muy nobles: era un hombre entregado a su deber, generoso hasta el exceso, audaz, decidido, de una energía indomable y amigo apasionado de todo el que se hallase bajo su autoridad. Sería capaz de asumir cualquier tipo de inconveniente para dar su ayuda a quien pensaba que la merecía”

“El temperamento de FitzRoy era de lo más desventurado. Así lo demostraban no solo su apasionamiento sino sus accesos de prolongada taciturnidad con quienes le habían ofendido. Solía empeorar en las primeras horas de la mañana, y con su vista de águila era, por lo general, capaz de detectar cualquier cosa que estuviese mal en el barco, y a continuación se mostraba implacable con sus acusaciones. Cuando se turnaban antes del mediodía, los oficiales de menor rango solían preguntarse “Cuánto café caliente se había servido aquella mañana”, con lo que se referían al humor del capitán. Era también un tanto suspicaz, y de vez en cuando, muy depresivo, hasta el punto de rayar la locura en cierta ocasión. A menudo me parecía que carecía de sensatez o de sentido común”.

“Conmigo se portó con una amabilidad extrema, pero era un hombre con el cual resultaba muy difícil convivir con la intimidad derivada necesariamente del hecho de comer solos en el mismo camarote”.

“Tuvimos varias peleas y cuando perdía los estribos era absolutamente irrazonable. Al comienzo del viaje, por ejemplo, en la localidad brasileña de Bahía, defendió y elegió la esclavitud, que a mí me parecía abominable, y me dijo que acababa de visitar a un gran propietario de esclavos que, tras convocar a muchos de ellos, les había preguntado si eran felices y deseaban ser libres, a los que todos habían respondido con un: “No”. Yo le pregunté, quizá con cierta sorna, si pensaba que las respuestas dadas por unos esclavos en presencia de su dueño tenían algún valor. Esto lo sacó de quicio y me dijo que, si dudaba de su palabra, no podríamos seguir viviendo juntos. Pensé que se me obligaría a dejar el barco, pero en cuanto se difundió la noticia, el capitán mandó llamar al primer teniente para calmar su furia insultándome a mí, me sentí profundamente gratificado al recibir una invitación de los oficiales de la sala de armas para que comiera con ellos.

No obstante, al cabo de unas horas, FitzRoy demostró su habitual magnanimidad enviándome a un oficial con sus disculpas y una petición para que siguiéramos compartiendo su camarote”.

Robert FitzRoy con su uniforme de la marina británica en la que llegó a ser ViceAlmirante

De esta tensa relación, y también de la disputa a cuenta del espinoso asunto de la esclavitud, Darwin se explicaba así en una carta a Henslow:

Carta de Charles Darwin a John Stevens Henslow [16 junio 1832]

“El capitán hace todo lo que está en su mano para ayudarme, y nos llevamos bien, pero doy gracias a mi buena fortuna que no me haya convertido en un renegado de los principios liberales. No seré un conservador aunque tan solo sea a cuenta de sus fríos corazones acerca del escándalo de todas las naciones cristianas: la esclavitud”.

Finalizando el viaje, y tras cinco años embarcado, Darwin escribe a su hermana Susan resumiendo el estado de la relación con el capitán en los últimos meses.

Carta de Charles Darwin a su hermana Susan Darwin [28 de enero 1836]

“En los últimos doce meses he estado en muy buenos términos con él. Es un hombre extraordinario y de noble carácter, aunque por desgracia afectado por ciertas peculiaridades de su temperamento, de lo cual nadie se da tanta cuenta como él mismo, lo cual se demuestra en sus intentos por controlarlo.

A menudo dudo de cuál sea su fin: bajo muchas circunstancias estoy seguro de que será brillante, pero por otras me temo que no será feliz”.

En esta ocasión, Darwin sí acertaría de pleno con su profecía. FitzRoy fue un hombre brillante, al que bien podemos considerar hoy como el padre de la meteorología moderna, pero que tuvo un final trágico y suicida, como él mismo temió durante su vida.

Una vez finalizada la travesía del Beagle, Darwin y FitzRoy apenas mantuvieron el contacto, salvo en algunas cartas sueltas, una de ellas escrita con indignación y enfado por parte del capitán a cuenta de los créditos en el prólogo de la obra Zoology of the voyage of HMS Beagle.

Placa conmemorativa en Londres dedicada a FitzRoy como hidrógrafo y meteorólogo

El final, y abrupto desencuentro, entre los dos personajes lo resume mejor que nadie el propio Darwin en su Autobiografía:

“Tras mi vuelta a Inglaterra, solo vi a FitzRoy de vez en cuando, pues temía siempre ofenderle sin querer, como lo hice realmente en un caso sin posibilidad de reconciliación”.

Darwin se refiere aquí a la carta de FitzRoy de 16 de noviembre de 1837, aunque el colofón final llegaría en 1859 con la publicación de su obra más célebre.

“Más tarde se mostró muy indignado conmigo por haber publicado un libro tan heterodoxo como El origen de las especies, pues en esa época Fitzroy se había vuelto muy religioso. Me temo que hacia al final de su vida se empobreció mucho, debido en gran parte a su generosidad. De todos modos, tras su muerte se organizó una suscripción para pagar sus deudas. Tuvo un triste final, por suicidio, exactamente igual que su tío Lord Castlergah, a quien se parecía mucho en modales y aspecto.

Su carácter fue, en varios sentidos, uno de los más nobles que he conocido, aunque empañado por graves imperfecciones”.

Para finalizar, me gustaría recomendar el libro “FitzRoy, capitán del Beagle” de John y Mary Gribbin, en cuya introducción se recogen las que posiblemente sean las palabras más célebres de Darwin sobre su compañero de viaje:

“A mi entender, es un individuo extraordinario. No había jamás a un hombre de convertirse en un Napoleón o un Nelson. No le llamaría listo, aunque estoy convencido de que no hay misión demasiado noble o ambiciosa para él. Su influencia sobre los demás es muy curiosa: antes de conocerle me habría resultado incomprensible el grado al que cada oficial y marinero siente la menor reprimenda elogio. Su peor fallo como compañero es un silencio austero, producto de su carácter excesivamente pensativo. Tiene muchas y muy importantes cualidades positivas: en conjunto es la persona con el carácter más fuerte con el que haya congeniado en mi vida”.

Este post ha sido realizado por Javier Peláez (@irreductible) y es una colaboración deNaukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo Las cartas de Darwin: El capitán y el filósofo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Las cartas de Darwin: La vida a bordo de un balandro ataúd
  2. Las cartas de Darwin: Casi me vuelvo a casa antes de las Galápagos
  3. Las cartas de Darwin: ¿Dejamos que el chaval se vaya de viaje?
Categories: Zientzia

Ibon Uriarte: “Planktona berreskuratzen ari da Euskal Herriko estuarioetan” #Zientzialari (72)

Zientzia Kaiera - Fri, 2017/05/12 - 09:00

Itsaso, ibai zein lakuetan bizi den organismo txikien multzoa da planktona. Bizidun hauek berebiziko funtzioa betetzen dute ekosisteman. Batetik, kate trofikoaren oinarrietako bat dira eta, bestetik, atmosferan dagoen CO2 soberakina xurgatu eta klima erregulatzaile eginkizuna betetzen dute.

Gai honen inguruan sakontzeko Ibon Uriarte, UPV/EHUko Ingurumen Zientzietako irakaslearekin izan gara. Bere ustez, Euskal Herriko itsasadarrak leku aproposak dira espezie hauen bilakaera aztertzeko.

Zientzialari izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.

The post Ibon Uriarte: “Planktona berreskuratzen ari da Euskal Herriko estuarioetan” #Zientzialari (72) appeared first on Zientzia Kaiera.

Categories: Zientzia

¿Jugar al ajedrez te hace más inteligente? Un vistazo a las pruebas

Cuaderno de Cultura Científica - Thu, 2017/05/11 - 17:00

Giovanni Sala & Fernand Gobet

&nbsp

El estereotipo del jugador de ajedrez es alguien que es inteligente, lógico y bueno en matemáticas. Esta es la razón por la que muchos padres de todo el mundo desean que sus hijos jueguen al ajedrez, con la esperanza de que el juego pueda ayudar a aumentar los niveles de inteligencia de su hijo o hija y ayudarlos a tener éxito en una amplia variedad de asignaturas.

Pero aparte de que el ajedrez sea un gran juego, su historia arraigada en los ejércitos de la India oriental, ¿hay alguna evidencia que demuestre que jugar al ajedrez puede hacerte más inteligente?

En un artículo anterior, mostramos que los jugadores de ajedrez exhiben, en promedio, una capacidad cognitiva superior en comparación con los jugadores que no son ajedrecistas. Y las habilidades necesarias para jugar al ajedrez también se ha demostrado que se correlacionan con varias medidas de la inteligencia – como el razonamiento fluido, la memoria y la velocidad de procesamiento.

Pero si bien la existencia de una relación entre la habilidad cognitiva general y la capacidad ajedrecística es clara, ¿es esto simplemente porque las personas inteligentes son más propensas a jugar al ajedrez, o jugar al ajedrez hace que la gente sea más inteligente?

Juego mental

La noción de que jugar ajedrez te hace más inteligente va más o menos así: el ajedrez requiere concentración e inteligencia, y como las matemáticas y las capacidades lectora y escritora requieren las mismas habilidades generales, entonces practicar el ajedrez también debe mejorar tu rendimiento académico.

Con esta idea en mente, el Instituto de Educación [del University College London] llevó a cabo una gran investigación para comprobar los efectos de la instrucción en ajedrez sobre las habilidades académicas de casi 4.000 niños británicos.

Club de ajedrez en un colegio. Imagen: Pexels

Los resultados publicados recientemente fueron decepcionantes – parece que el ajedrez no influye en los niveles de logros de los niños en matemáticas, capacidades lectora y escritora o ciencia.

Rápidamente, la comunidad ajedrecista cuestionó la fiabilidad de los resultados, sobre todo teniendo en cuenta que otros estudios ofrecen un panorama más optimista sobre los beneficios académicos de la instrucción en ajedrez.

Evaluando las evidencias

La comunidad ajedrecista probablemente tiene razón al criticar el estudio reciente, ya que sufre de varias deficiencias metodológicas que probablemente invalidan los resultados.

Antes de que se publicasen los resultados, llevamos a cabo una revisión de todos los estudios en el campo. Nuestros resultados muestran algunos efectos moderados de la instrucción en ajedrez sobre la capacidad cognitiva y el rendimiento académico – especialmente matemáticas.

¿Requiere inteligencia el ajedrez? Imagen: Shutterstock

Y, sin embargo, todavía tenemos que ser cautelosos en la interpretación de estos resultados como una indicación positiva del poder del ajedrez sobre las habilidades cognitivas o académicas. Esto se debe a que la mayoría de los estudios revisados compararon el efecto del ajedrez con grupos que no realizaron actividades alternativas.

Esto es un problema porque la investigación ha demostrado que la excitación y la diversión inducidas por actividades novedosas pueden causar un efecto temporal positivo en los resultados de las pruebas – un efecto placebo.

Llamativamente, cuando se le compara con una actividad alternativa – como los damas o los deportes – el ajedrez no muestra ningún efecto significativo en las habilidades de los niños. Por lo tanto, podría muy bien ser sólo que los efectos positivos observados de la instrucción en ajedrez sean meramente debido a efectos placebo.

Notas de ajedrez

Lo que todo esto demuestra es que es improbable que el ajedrez tenga un impacto significativo en la capacidad cognitiva general. Así que aunque puede sonar como una victoria rápida – que un juego de ajedrez puede mejorar una amplia gama de habilidades – desafortunadamente no es este el caso.

El fracaso de la generalización de una habilidad particular, de hecho, ocurre en muchas otras áreas más allá del ajedrez, como la formación musical, que se ha demostrado que no tiene ningún efecto sobre las habilidades cognitivas o académicas no musicales. Lo mismo se aplica al entrenamiento con videojuegos, al entrenamiento mental [brain training], y al entrenamiento de la memoria de trabajo, entre otros.

¿Inteligencia antigua o solo un buen juego?

El hecho de que las habilidades aprendidas por entrenamiento no se transfieran a diferentes dominios parece ser un universal en la cognición humana. En otras palabras, mejoras, en el mejor de los casos, en lo que entrenas – lo que puede sonar a sentido común de toda la vida.

Pero aunque esperar que el ajedrez mejore la capacidad cognitiva de los niños y el rendimiento académico en general es sólo una ilusión, esto no significa que no pueda agregar valor a la educación de un niño.

Claramente, jugar al ajedrez implica algún nivel de habilidad aritmética y geométrica, y el diseño de juegos matemáticos o ejercicios con material de ajedrez puede ser una forma sencilla y divertida de ayudar a los niños a aprender.

Sobre los autores:

Giovanni Sala está realizando su tesis doctoral en psicología cognitiva en la Universidad de Liverpool y Fernand Gobet es catedrático de toma de decisiones y conocimiento en esa misma universidad

Texto traducido y adaptado por César Tomé López a partir del original publicado por The Conversation el 9 de mayo de 2017 bajo una licencia Creative Commons (CC BY-ND 4.0)

The Conversation

El artículo ¿Jugar al ajedrez te hace más inteligente? Un vistazo a las pruebas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Crónica de la jornada “Las pruebas de la educación”
  2. Jugar a ser dios
  3. Por qué los colegios no deberían enseñar habilidades de pensamiento crítico generales
Categories: Zientzia

Argi uhina ala argi partikula?

Zientzia Kaiera - Thu, 2017/05/11 - 15:00
Ziortza Guezuraga Argi espektroa definitzeaz gain, argia partikulaz osatuta dagoela ondorioztatu zuen Newtonek “Opticks” (1704) liburuan. Partikula, beraz. Fisikaren ikuspuntutik aztertuta, hala ere, uhina da argia.

Uhinen ezaugarriak betetzen baititu:

Islapena eta errefrakzioa

Substantzia garden batetik bestera (airetik uretara) pasatzean jasaten duen norabide aldaketa da errefrakzioa.

1. irudia: Errefrakzioaren eskema. Josell7-ren irudian oinarritua.

Islapena, bere aldetik, gainazal batekin topo egitean jatorrizko norabidera itzultzen den norabide aldaketa da.

2. irudia: Islapenaren eskema. (Egilea: Ziortza Guezuraga)

Interferentziak

Bideoan ikus daiteke zelan bi zirrikitudun xaflatik pasaraztean argitasun handiko aldeak eta iluntasuna tartekatzen diren. Argitasun handiko aldeetan interferentzia konstruktiboa eman da eta iluntasun aldeetan suntsitzailea.

3. irudia: Interferentzia konstruktiboa (ezk.) eta interferentzia suntsitzailea (esk.). Haade, Wjh31 eta Quibik-en irudia oinarritua.

Uhinak gainjartzen direnean interferitu egiten dute. Frekuentzia berdineko bi uhin batzen direnean euren artean eragiten dute. Interferentziak konstruktiboak izan daitezke, hau da, uhinen gehiketa eman daiteke ala suntsitzaileak eta uhinak deuseztatu. Young-en esperimentuak frogatzen du argiaren interferentzia.

4. irudia: Young-en esperimentuaren eskema. Stannered-en irudian oinarritua.

Difrakzioa

Oztopo bat aurkitzean ala zirrikitu bat zeharkatzerakoan uhinen desbideratzea da difrakzioa. Zirrikitutik pasatzen den argia zirrikitua bera eta laserra baino zabalera handiagoa duela ikus daiteke, difrakzioa da hau. Efektu hau ikusteko, dena den, zirrikitua txikia izan behar da, bideoan ikus daitekeen bezala, zabalera handitzerakoan efektua aldatzen da.

6. irudia: Difrakzioaren eskema. (Egilea: Ziortza Guezuraga)

Polarizazioa

Plano bakar batean bibratzen duen argia da argi polarizatua. Kontrako bi polarizazio filtro (bata 90º eta bestea 180º) aurrez aurre jartzean ez da uhinik eta, beraz, argirik pasatzen.

Uhinen norabideak du eragina polarizazioan. Filtro polarizatzaileak norabide jakin batean ondulatzen diren uhinak baino ez ditu pasatzen uzten. Bideoan ikus daitekeen bezala, malgukia hainbat norabideetan ondulatu daiteke, filtroa jartzerakoan, ordea, soilik ondulazio horizontalak jarrai dezake, besteak blokeatzen dira.

7. irudia: Polarizazioaren eskema.

Oker zegoen Newton, orduan

Newtonek bere teoria argitaratu zuenean polemika handia izan zen, bere teoria defendatzen zutenen eta kontra egiten ziotenen artean. Fisikaren ikuspuntutik argia uhina dela argi geratu da, uhinen ezaugarriak betetzen baititu. Argiaren eta materiaren arteko elkarreragina gertatzen denean, ordea, argiak ez du uhinek duten portaera agertzen, partikulek dutena baizik.

Efektu fotoelektrikoa da uhina baino, argia partikula dela frogatzen duena. Materialengan inziditzean hauek elektroiak askatzea da efektu fotoelektrikoa.

Bideoan ikus daitekeen bezala, negatiboki kargatzen da girlanda lataren bidez, elektroi kopurua handituta. Karga negatibo horiek euren artean aldaratu egiten dira, karga bereko imanak bezala. Lata ukitzerakoan kargak girlanda uzten du eta jada ez dira aldaratzen. Berriro ere kargatzen da negatiboki eta argiaztatzen da lata. Argiak sortzen duen efektu fotoelektrikoa dela eta elektroiak askatzen doaz girlanda aldaratzen ez den arte.

Zelan frogatzen du horrek argia partikula dela, baina? Bada, energia kuantifikatuagatik. Argiak ez du edozein energia kantitate elkartrukatzen, modu kuantifikatuan askatzen du, hurrengo formulari jarraiki:

Energia ‘paketeak’, fotoi izenekoak, askatzen ditu argiak, E horrek ehuneko balioa badu, argiak 100 edo 200 edota 500 emango ditu baina inoiz 386 ala 79. Uhinek bai, edozein energia kantitate aska dezakete. Horrela demostratzen da argia partikula dela, energia ‘pakete’ zatiezinez (fotoiez) osatuta dagoelako.

Oker eta zuzen zegoen Newton, orduan? Bai, izan ere, izaera duala du argiak, uhina eta partikula da.

Argia, fisikaren ikuspegitik

———————————————————————–

Egileaz: Ziortza Guezuraga kazetaria eta UPV/EHUko Kultura Zientifikoko Katedraren kolaboratzailea da.

———————————————————————–

The post Argi uhina ala argi partikula? appeared first on Zientzia Kaiera.

Categories: Zientzia

Ciencia y política: el papel de la verdad

Cuaderno de Cultura Científica - Thu, 2017/05/11 - 11:59

ciencia y política

La ciencia, se suele decir, no debe ser política; debe ser independiente, ajena a los tejemanejes del gobierno, tan sólo dedicada a su tarea principal de comprender el funcionamiento del Universo. El único punto de contacto debiera ser la financiación de un sistema público de ciencia, basada en la comprobable observación de que los países que ponen los medios para cultivar la ciencia terminan siendo más ricos y poderosos que aquellos que no lo hacen. Es decir, en razones puramente prácticas, complementadas en el mejor de los casos por un reconocimiento del valor cultural del avance científico. La política debería por tanto mantenerse alejada de la ciencia, limitándose a financiarla y a liberar un espacio de independencia en el que pueda medrar.

Lo malo es que garantizar la independencia de la ciencia es una decisión política, y la decisión de financiarla, con cuánto y cómo es una práctica política por excelencia. De ahí los actuales conflictos entre determinados gobiernos y determinados campos científicos: los políticos se han dado cuenta de que cuando la ciencia contradice sus ideologías y con sus datos se niega a reforzar sus argumentos tienen un modo de contraatacar: presionar política y económicamente hasta amenazar los sistemas científicos en su esencia.

Los científicos, por supuesto, son de cualquier color político: los hay radicales y conservadores, de izquierdas y de derechas, partidarios de Keynes y de Friedman. Cada uno de ellos tiene su opinión sobre el papel de la religión en la vida pública, sobre la mejor forma de regular el mercado eléctrico o de mejorar la vida de las clases menos privilegiadas. Aunque pueda haber tendencias generales derivadas de su educación, carrera profesional y ocupación no hay una única orientación política entre quienes trabajan en ciencia. Y sin embargo sí que tienen algo abrumadora, aplastantemente en común en lo que se refiere a las relaciones entre ciencia y política: son partidarios de los hechos y los datos sobre las emociones y las movilizaciones a la hora de tomar decisiones, también cuando se trata de cómo gobernar un grupo humano.

Está claro que la política no es un simple asunto de toma de decisiones racional y basada en datos: cuando se trata de guiar a un grupo humano grande y complejo hay otros factores a tener en cuenta. Los datos tienen siempre un cierto grado de incertidumbre, pero esa no es la principal diferencia: la cuestión es que en política los sentimientos y las pasiones son también determinantes. La política no es el reino de la razón y la desapasionada toma de decisiones; antes al contrario, es un campo en el que rutinariamente se azuzan las más bajas pasiones y se utilizan simpatías y antipatías, querencias y rechazos para aglutinar voluntades y apoyos y generar capacidad de acción.

Por eso sucede que política y ciencia a veces colisionan, cuando la gestión de pasiones de la política se encuentra con hechos que le resultan inconvenientes y carga contra ellos. En esos casos se producen enfrentamientos entre lo que la política quiere y lo que la ciencia sabe. Y las consecuencias pueden ser devastadoras. Lo estamos viendo actualmente en cuestiones como los organismos genéticamente modificados, la resistencia a las vacunas, la negación del cambio climático de origen antropogénico o el supuesto riesgo de las ondas electromagnéticas como el Wifi.

Cuando la política se enfrenta a la ciencia no sólo niega los hechos, sino que emplea contra quienes los han creado las mismas tácticas que se usan en la contienda ideológica: acusar al contrario de malas intenciones, asumir que usa las mismas formas de propaganda, descalificar y buscar trapos sucios, manchar por asociación con ‘malos’ reconocidos, deslegitimar sus móviles, etc. Es una contienda que los científicos tienen muy mal para ganar, o siquiera empatar, ya que no hay nada en su formación o en sus carreras profesionales que les prepare para ello. En una batalla política con políticos la ciencia lleva todas las de perder, puesto que carece del armamento necesario.

Pero las peores consecuencias no las sufre la ciencia, sino la sociedad en su conjunto. Por supuesto que la ciencia pública recibe los golpes en forma de descalificaciones, recortes presupuestarios, deterioro de las carreras profesionales e incluso destrucción de datos acumulados, como ha ocurrido en el caso del calentamiento global. El avance de la ciencia se resiente, hay menos futuros científicos y el prestigio social de la actividad decae. El impacto es muy real y muy doloroso para una comunidad que no está acostumbrada a defenderse, mucho menos en términos de política.

Aun así, la principal pérdida la sufrimos todos cuando se ataca el papel de los hechos a la hora de tomar decisiones políticas, porque eso lleva a las sociedades a cometer errores terribles. Es cierto que la política no es, ni debe ser, exclusivamente una cuestión de datos y toma racional de decisiones. Creerlo así es ingenuo, ya que los humanos tenemos emociones y cuando nos juntamos en grandes grupos tenemos el derecho, si queremos, de saltarnos la realidad en la búsqueda de una realidad diferente (y mejor). La política puede, y debe, aspirar a cambiar el mundo, y para ello a veces es imperativo que desprecie o aspire a superar los hechos de hoy. No se puede cambiar la realidad sin prescindir, hasta cierto punto, de la realidad tal como es hoy.

Lo cual no quiere decir que prescindir por completo de los hechos y los datos sea una buena idea: al contrario, es un error fatal. La política puede y debe superar los datos pero a partir de ellos, no prescindiendo de ellos. La realidad se puede cambiar, pero desde el conocimiento de cuál es la realidad actual. Cuando los políticos atacan el papel de la ciencia e incluso de los datos para avanzar sus posiciones ideológicas están contribuyendo a destruir la mejor herramienta que tienen las sociedades para conocer la realidad; que luego pueden decidir (si así lo quieren) cambiar.

Los datos, los hechos y la razón no tienen por qué ser los únicos participantes en la toma de decisiones políticas, pero si se prescinde de ellos estas decisiones estarán equivocadas con seguridad. La política es el arte de usar un mapa, la ideología, para llegar a un destino mejor. Pero para orientarte lo primero que necesitas es saber dónde estás, porque de lo contrario jamás podrás trazar un rumbo. Ése es el papel de la ciencia y de los datos: darle a la sociedad la mejor estimación de dónde está, para que luego la política decida a dónde quiere ir. Si por conveniencia política de corto plazo atacamos y desprestigiamos a quien nos informa de dónde estamos nunca podremos saber qué dirección debemos tomar. El papel de la verdad, de los datos y de la razón es proporcionar ese punto de partida.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

El artículo Ciencia y política: el papel de la verdad se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia, ideología y práctica política
  2. Ciencia y tecnología
  3. La verdad no es ciencia
Categories: Zientzia

Ba ote bizitzarik sakonera ilunean?

Zientzia Kaiera - Thu, 2017/05/11 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Janaria

———————————————————————————————————–

Ozeanoetako hondoetako fauna ez da oso aberatsa. Itsasoaren behealdeak itsas azaletik hainbat kilometrotara daude, eta, beraz, urrutiegi eguzkiaren argitik; ondorioz, alde horiek ilunegi daude horretarako gai diren izakiek fotosintesia burutu dezaten. Goragotik erortzen den materia hila edo detritikoa izan ohi da hondo horietara heltzen den materia organiko bakarra. Bakterio batzuek metaboliza dezakete, eta zenbait ekinodermok eta moluskuk bakterio horiek jan ditzakete. Azkenik, badaude arrain gutxi batzuk ornogabe horiek jaten dituztenak, baina goragotik iritsitako “euri” horrek ez du askorako ematen. Bizitza urriko inguruak ditugu, beraz, itsas hondoak.

1. irudia: Garai batean, itsas hondoko eremu abisalean bizidunik ez zegoela uste zen baina Atlantikoan komunikazio banaketarako jarri zen lehen kableko lanak egin zirenean, animaliaz beteta zegoela ikusi zen eta, gainera, hauetariko asko ezezagunak zirela.

Ozeano Bareko hondoak ere arau orokor horri egokitzen zaizkio, baina hala ere badira, tarteka, bizitza oparoko gune batzuk. Asia eta Amerika elkarrengandik aldentzen ari direnez (zentimetro gutxi batzuk urteko), eta plaka tektoniko batzuek alde horretan talka egiten dutenez, ozeano-fosak izeneko sakonera handiko guneak aurkitu ditzakegu munduko alde horretan (baita beste zenbaitetan ere). Fosa horietan, plaken arteko tentsioen ondorioz arrakalak edo zirrikituak irekitzen dira noizbehinka, zirrikituotatik lurraren barruko laba atera, eta solidotu ondoren berriro arrakalatzen da. Zirrikitu horiek irekitzen direnean, sufre- eta sulfuro-kontzentrazio altuak dituzten ur beroak (20 bat gradu) isurtzen dira bertatik itsasoko ur hotzetara (5 gradu baino gutxiago), tximinia edo fumarola izenez ezagutzen diren azaleratzeak eraginez.

1977 urtean ozeano-fosa horiek aztertzera ikerketa-urpekari bat bidali zenean, aurkikuntza harrigarria egin zuten ikertzaileek: tamaina handiko izakiak eta kolore biziko animaliez osatutako dentsitate altuko populazioak aurkitu zituzten. Horien artean metrotik gorako zizare tubikolak aurkitu zituzten kantitate handitan, eta baita muxila erraldoiak ere (>30 cm). Aurkitutako har-espezie berriari Riftia pachyptila izena eman zitzaion (Vestimentifera filum berezi samarreko partaideak omen dira), eta bibalbio-espezieari, berriz, Calyptogena magnifica.

2. irudia: Itsaspeko sumendien bueltan dauden tximinia hidrotermalen inguruan bizi diren zizare tubikolak. (Argazkia: NOAA Okeanos Explorer Program, Galapagos Rift Expedition 2011 / Wikipedia)

Animalia erraldoi horien azterketari ekin ziotenak berehala ohartu ziren azaleratzeen inguruan neurtutako hazkunde-tasa harrigarriak ez zirela gertatzen tenperatura altuengatik, eta haatik sufrearen erabileran oinarrituta zeudela. Sulfitoa edo sulfatoa osatzeko sufrea oxidatzen denean, energia askatzen da. Aspalditik dira ezagunak energia hori lurrazaleko sufre-azaleratzeetan erabiltzen dituzten bakterioak (sufre-oxidatzaileak, kimiolitotrofoak). Fotosintetizatzaileak diren landareak ez bezala, eguzkiko energia erabili beharrean sufrearen oxidazioko energia erabiltzen dute karbohidratoak eta beste baliabide batzuk ekoizteko.

Ozeano-fosetan, sufrea oxidatzen duten bakterio askeez gain, badira zizareen eta moluskuen ehunetan bizi diren bakterio sufre-oxidatzaile sinbionteak. Hodi zuri batzuen barruan bizi da Riftia zizare erraldoia; kolore gorri biziko lumak (brankiak) soilik ateratzen ditu hoditik kanpo. Ez dauka ez ahorik ez sabelik, eta, beraz, ezin du jan. Haren barne-organo handiena, trofosoma izena duena, sufre-oxidatzaileak diren bakterioz josita dagoen barrunbe bat da. Trofosomaren pisua animalia osoaren pisuaren erdia izatera hel daiteke, ohikoena % 30 baino gehiago izatea bada ere. Trofosomako bakterioek elikagaiak sintetizatzeko beharrezkoak dituzten sufrea, oxigenoa eta karbono dioxidoa uretatik odolerantz bideratzeko lana, hoditik kanpo ateratzen diren kolore gorriko luma brankialek egiten dute. Hain zuzen ere, hemoglobinak ematen die brankiei kolore gorri bizia. Animalia hauen odoleko hemoglobina, hala ere, hemoglobina berezia da, oxigenoa eta sufrea, biak lotzeko gai baita. Beraz, hemoglobinarekin konbinatuta garraiatzen dira bi sustantzia hauek trofosomara. Ezohiko hemoglobina da, sufreak hemoglobina arrunta ezgaitu egiten baitu, horrela oxigenoa lotzeko guneak blokeatuz. Horregatik da hain kaltegarria eta pozoitsua hidrogeno sulfuroa gizakiarentzat eta beste hainbat animaliarentzat. Riftiaren hemoglobinak, aldiz, banatuta dauden lotura-guneak ditu oxigenoarentzat eta sufrearentzat.

3. irudia: Calyptogena magnifica tximinia hidrotermalen inguruan bizi den almeja zuri erraldoia da. Taldeetan biltzen da tximinien inguruan eta Ozeano Barearen hondo abisalean bizi da. (Argazkia: Woods Hole Oceanographic Institution)

Calyptogenaren kasuan, bere bakterio sufre-oxidatzaileak brankietan “umatzen” ditu, eta horrela oxigenoa eta CO2-a zuzenean heltzen zaizkie uretatik. Baina zizare erraldoien kasuan ez bezala, almejen hemoglobinak ezin du sufrea garraiatu; are gehiago, pozoitsu gerta dakioke. Sufrea odoleko plasmako proteina handi eta berezi batzuek garraiatzen dute. Sufrea lortzeko modu berezi batean kokatzen dira bibalbio hauek azaleratzeetan: tximiniaren zirrikituetan txertatuta dute oina; sifoiak, ordea, gorantz, ohiko itsas uretarantz zuzentzen dituzte (sifoietatik sartu eta ateratzen da brankiak irrigatzen dituen ura). Horrela, bada, oinak eta brankiek inguruan duten ur-masak zeharo desberdinak dira: oinak ia oxigenorik gabea eta sufretan aberatsa den ur beroa jasotzen du; brankiek, ostera, ohiko itsasoko ur hotz eta oxigenatua hartzen dute, ia sufrerik gabea. Beraz, oxigenoa eta CO2-a zuzenean barreiatzen dira brankietan, eta sufrea, berriz, oinak hartu eta odolean zehar garraiatzen da brankietaraino.

Jokaera korapilatsua da, bai, baina bada horretarako arrazoi bat. Oxigenoak eta sufreak berez erreakzionatzeko joera dute, hau da, baldin eta bero ateratzen den ur-emari sufreduna eta oxigenoa duen ohiko itsasoko ura elkartzen badira, oxigenoak sufrea oxidatuko du bakterioetara heldu baino lehen. Beraz, bakterioez baliatzen diren animaliek sulfuroa eta oxigenoa bananduta mantendu behar dituzte beren sinbionteei hala helarazteko. Zizareek, horretarako, lur barrutik ateratzen den emarirantz eta ohiko itsas uretarantz txandaka zuzentzen ditu brankia-lumak. Muxilek, zirrikituetarantz zuzendutako oinetik jasotzen dute sufrea, eta, aldiz, oxigenoa, itsasoko uretarantz zuzendutako brankien bidez. Lan latza dute bai batzuek eta bai besteek bi konposatuak banandurik mantentzen, baina ordainetan, “gordetzen” dituzten bakterioak behar dituzten baliabideez hornitzen dituzte, eta hauek ekoitzitako materia organikoaz balia daitezke. Riftiaren kasuan, oso-osoan, ez baitu energia lortzeko beste modurik!

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.

The post Ba ote bizitzarik sakonera ilunean? appeared first on Zientzia Kaiera.

Categories: Zientzia

Pages