Cuaderno de Cultura Científica jarioa-rako harpidetza egin
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Eguneratua: duela 39 min 27 seg

El primer postgrado en Ilustración Científica, esa profesión invisible

Og, 2017-07-20 17:00

Vega Asensio

El ser humano es visual. Buena parte de las capacidades cognitivas de nuestro cerebro están orientadas al procesamiento de la imagen. Por ello, para comprender y comunicar la ciencia la imagen es una herramienta fundamental. Dibujos, diagramas, gráficas, ilustraciones,… no sólo están presentes en prácticamente todo artículo, libro, clase, presentación de ciencia sino que las hemos estado disfrutando desde nuestra infancia en todo tipo de formatos: enciclopedias, guías, folletos, museos, periódicos, etc. Los profesionales formados para crear estos materiales son las ilustradoras e ilustradores científicos.

Estos y estas profesionales tienen normalmente formación científica y han virado hacia la ilustración o son profesionales de las bellas artes que se han especializado en ciencia. La ciencia y el arte se unen para crear la profesión de la Ilustración Científica, una de las ramas de la comunicación científica, cuyo objetivo es comunicar la ciencia de forma visual per se o apoyando a la palabra oral o escrita.

Normalmente son profesionales autodidactas ya que la formación reglada en está disciplina es inexistente en España. Puede que este sea uno de los principales factores que hacen de la profesión de Ilustración Científica una desconocida. Pequeños talleres o cursos, principalmente relacionados con la ilustración de la naturaleza, organizados de forma esporádica por museos o ayuntamientos y que no pueden abarcan la complejidad de la disciplina, es lo que podemos encontrar.

En Europa hay muy pocos centros donde se dé formación reglada [1], aunque en estas universidades este tipo de postgrado se oferta desde hace años y se impulsa desde departamentos diferentes: bellas artes o diseño, ciencias o medicina. La universidad pionera en el mundo y una de las más prestigiosas es la Johns Hopkins (http://medicalart.johnshopkins.edu/) de Estados Unidos con más de 100 años de historia.

Sabiendo que la comunicación científica es fundamental para que la ciencia avance, la Facultad de Ciencia y Tecnología (ZTF-FCT) de la Universidad del País Vasco con el apoyo de otras facultades e instituciones oferta por primera vez un título propio de Especialista Universitario en Ilustración Científica. Toda la información referente al postgrado está en www.ehu.eus/ilustracion-cientifica.

El profesorado está compuesto por un grupo variado y equilibrado de excelentes científicos, artistas, juristas y comunicadores reconocidos y galardonados internacionalmente. Este equipo docente está fuertemente motivado para dar lo mejor de sí en este postgrado primicia.

El postgrado cuenta con el apoyo económico del museo Laboratorium de Bergara, el centro tecnológico experto en innovación marina y alimentaria AZTI-Tecnalia y la casa de material de bellas artes Colart y sigue abierto a nuevos patrocinadores que quieran embarcarse en el proyecto.

El postgrado se ofertará el año académico 2017-2018, actualmente está en periodo de prematrícula hasta septiembre y en octubre comenzarán las clases. Los requisitos para entrar en este postgrado son ser graduado o licenciado y tener conocimientos básicos de dibujo. Para garantizar la calidad en la formación del alumnado, sólo un máximo de 15 alumnos serán aceptados por año académico. Esto permitirá realizar un seguimiento individualizado de cada alumno o alumna por parte del profesorado.

El postgrado tiene 40 créditos entre clases presenciales (34,5 ECTS) y el proyecto final (5,5 ECTS) que podrá realizarse en entidades colaboradoras como museos, departamentos universitarios o centros tecnológicos, etc. y aprovechamos la ocasión para invitar a nuevos colaboradores. Estos proyectos serán de provecho reciproco entre el alumnado, que realiza prácticas reales, y estas entidades, que disfrutarán y conocerán de estos y estas profesionales y la profesión en sí misma.

El postgrado formará la primera generación de tituladas y titulados en Ilustración Científica de España. Pero pretende ir más allá y convertirse en un referente en el área de la ciencia visual, ser un nexo de unión para las ilustradoras e ilustradores científicos, dar a conocer y promocionar esta profesión al servicio de la ciencia, la tecnología y la sociedad.

Más información:

www.ehu.eus/ilustracion-cientifica

ilustracioncientifica.fct@ehu.eus

[1]

Universidad de Aveiro

Maastricht Academy of Fine Arts and Design

Liverpool John Moores University

University of Dundee

École Supérieure Estienne des Arts Graphiques

Zurich University of the Arts Scientific Visualization

Hochschule Luzern Design & Kunst

Medical Artists’ Education trust.

Sobre la autora: Vega Asensio, doctora en biología e ilustradora científica profesional, es la directora del título propio de Especialista Universitario en Ilustración Científica de la UPV/EHU

El artículo El primer postgrado en Ilustración Científica, esa profesión invisible se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La ciencia moderna y la Ilustración
  2. Planeta X, en busca del inquilino invisible del sistema solar
  3. Science + : 1 – La carrera científica I: el doctorado y la investigación académica”
Kategoriak: Zientzia

Errar es humano, y científico

Og, 2017-07-20 11:59

Por un clavo se perdió una herradura; por una herradura se perdió un caballo, por un caballo se perdió un reino. A veces los más pequeños detalles puede echar a perder todo un complejo edificio teórico (hermosas teorías asesinadas por feos e insignificantes datos), o dificultar la comprensión de un fenómeno durante décadas. El último caso célebre es justo lo contrario: localizar un error de calibración de un instrumento en un satélite ha permitido dar sentido a un incomprensible dato que se interponia ante la aceptación de un proceso en marcha. Como tal se convertirá seguramente en polémica y se discutirá ferozmente, ya que se trata de un tema políticamente candente como es el calentamiento global. Pero sobre todo subraya una realidad de la práctica científica que a veces no se entiende bien desde fuera: la ciencia no es perfecta, y lo sabe: por eso jamás es permanente y siempre está en proceso de mejora.

En este caso se trataba de explicar el hecho de que una serie de satélites puestos en órbita para medir, con precisión milimétrica, el nivel del mar en el planeta mostraban datos que no encajaban con otros fenómenos conocidos. En la superficie de la Tierra abundan los indicios de que el sistema océano-atmósfera se está haciendo más cálido, con sus lógicas consecuencias que incluyen el retroceso de los glaciares y por tanto el vertido a los mares de mayores cantidades de agua. Se daba por supuesto que esto causaría un aumento del nivel global del mar, y para medirlo con precisión se diseñaron, construyeron y pusieron en órbita estos satélites. Y sin embargo los datos mostraban que el nivel del mar no estaba subiendo; de hecho incluso podría estar bajando en algunos lugares. Un regalo para los negacionistas del cambio climático, y un quebradero de cabeza para los científicos, porque no hay nada que incordie más a una mente que dos juegos de datos incompatibles sobre el mismo fenómeno.

En un artículo recién publicado un grupo de climatólogos han llegado a la conclusión de que un error de calibración del primero de los satélites lanzados ha provocado un sesgo sistemático en las medidas de todos los que vinieron después, contaminando esos datos. Al eliminar este factor de distorsión y corregir otros errores sistemáticos el resultado encaja mucho mejor con el resto de los datos sobre el calentamiento global: el nivel del mar aumenta, y lo hace a ritmo creciente. Las líneas de tendencia ahora encajan con las que muestran otras fuentes de información. La discrepancia ha desaparecido.

La ciencia trabaja con la suposición de que toda hipótesis debe ser confirmada y de que toda medida es susceptible de contener errores. Por eso se desarrollan complejos e ingeniosos sistemas para poner a prueba las hipótesis, y por eso se trabaja denodadamente en localizar y eliminar, a ser posible de antemano, cualquier fuente de error. Por eso también la práctica científica puede ser frustrante cuando diminutas imperfecciones ajenas a propio científico (errores del instrumental, fallos en la composición de los reactivos, pequeñas catástrofes como congeladores desenchufados, etc) echan a perder un experimento en el que se puede llevar trabajando meses, o incluso años. El método científico da por supuesto que todo puede fallar, desde el equipo a los materiales estudiados e incluso el propio científico, y por eso sistemáticamente trabaja para eliminar toda fuente de error.

Algo que, por supuesto, es imposible, porque los científicos son humanos y errar también lo es. Por eso el método científico incorpora el reconocimiento de los errores entre sus herramientas: porque la gente que practica ciencia es consciente de que hay que luchar con denuedo contra los fallos, pero también de que esa lucha puede fácilmente terminar en derrota. Los errores se cuelan en los experimentos, tanto más en cuanto que los actuales aparatos y sistemas de investigación tienen una sensibilidad mucho más elevada que antaño y los fenómenos que se estudian están mucho más cerca del umbral del ruido. Los errores son inevitables, y aunque el científico hace lo que puede por mantenerlos a raya, sabe que nunca podrá estar seguro del todo de haberlo conseguido.

Por eso la ciencia aprende, y cuando se detecta y corrige el error el nuevo dato se incorpora al acervo científico sin demora. Esto a veces supone cambiar teorías completas o adaptar partes de hipótesis tenidas por ciertas durante mucho tiempo, algo que resulta desconcertante desde fuera. A veces puede dar la impresión de que los científicos no tienen bemoles intelectuales; que hoy están dispuestos a confiar en una teoría que ayer consideraban rechazable. Pero no se trata de volubilidad o de falta de principios, sino de honestidad intelectual. La ciencia actúa como un sastre, ajustando sus hipótesis y teorías lo más posible a la realidad; a veces se descubre un desgarrón en la tela o un deshilado, y entonces hay que rehacer el patrón en una parte concreta. El proceso es continuo y no se trata de tropezones, sino de avances sucesivos: en cada prueba el traje ajusta mejor a la realidad del cosmos. Así es como la ciencia avanza: eliminando sus errores y cambiando, cuando es preciso, de opinión. Un empeño humano por antonomasia.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

El artículo Errar es humano, y científico se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Errar es humano
  2. Pena de muerte contra el fraude científico
  3. La ciencia y la duda
Kategoriak: Zientzia

Un observador cuántico de lo más útil

Az, 2017-07-19 17:00

De todos es conocida la aparente paradoja del gato de Schrödinger, en la que el papel del observador humano determina el destino del gato encerrado en la caja. Sin embargo el papel del observador en mecánica cuántica es real. Tanto que un grupo de investigadores, encabezado por Robert Biele, de la Universidad del País Vasco (UPV/EHU) ha conseguido controlar los flujos térmicos y eléctricos en un dispositivo de tamaño nanoscópico por medio de observaciones cuánticas locales.

Ilustración artística del papel de un observador cuántico en un nanodispositivo. Al observar solamente la parte derecha de la figura (cubriendo la parte izquierda con la mano), el agua parece fluir hacia abajo del canal, por el contrario, mirando el cuadro entero el agua en fluye hacia arriba, Esta aparente paradoja imita la superposición coherente de dos estados cuánticos (el agua que fluye hacia arriba y hacia abajo) .Al observar en partes específicas de nuestro sistema, somos capaces de elgir entre estos dos estados y por lo tanto cambiar la “respuesta física del nanodispositivo” de forma controlada. Imagen de K. Aranburu

La medición, que no es más que una forma de observación, desempeña un papel fundamental en la mecánica cuántica. La ilustración más conocida de los principios de superposición y entrelazamiento es el gato de Schrödinger. Invisible desde el exterior, el gato se encuentra en una superposición coherente de dos estados, vivo y muerto al mismo tiempo.

Mediante una medición, esta superposición se colapsa en un estado concreto. El gato está muerto o vivo. En este famoso experimento mental, una medición del “gato cuántico” puede ser vista como una interacción con un objeto macroscópico que colapsa la superposición en un estado concreto al destruir su coherencia.

En el trabajo que nos ocupa los investigadores describen cómo un observador cuántico microscópico es capaz de controlar las corrientes térmicas y eléctricas en dispositivos a nanoescala. La observación cuántica local de un sistema puede inducir cambios continuos y dinámicos en su coherencia cuántica, lo que permite un mejor control de las corrientes de partículas y energía en los sistemas a nanoescala.

La termodinámica clásica de no equilibrio se desarrolló para entender el flujo de partículas y energía entre múltiples reservorios de calor y partículas. El ejemplo más conocido e intuitivo es la formulación de Clausius de la segunda ley de la termodinámica, que dice que que cuando dos objetos con diferentes temperaturas se ponen en contacto, el calor fluirá exclusivamente de la más caliente a la más fría.

En objetos macroscópicos, la observación de este proceso no influye en el flujo de energía y partículas entre ellos. Sin embargo, en dispositivos cuánticos, es necesario revisar los conceptos termodinámicos. Cuando un observador clásico mide un sistema cuántico, esta interacción destruye la mayor parte de la coherencia dentro del sistema y altera su respuesta dinámica.

En cambio, si un observador cuántico actúa sólo localmente, la coherencia cuántica del sistema cambia continua y dinámicamente, proporcionando así otro nivel de control de sus propiedades. Dependiendo de lo fuertes que sean y dónde se realicen estas observaciones cuánticas locales, surgen nuevos y sorprendentes fenómenos de transporte cuántico.

Los científicos estudiaron esta idea en una rueda de trinquete cuántica teórica. Dentro de este sistema, los lados izquierdo y derecho están conectados a dos baños térmicos, caliente y frío, respectivamente. Esta configuración fuerza a la energía a fluir de caliente a frío y a que las partículas fluyan en el sentido de las agujas del reloj dentro de la rueda. La introducción de un observador cuántico, sin embargo, invierte la corriente anular de partículas en contra de la dirección natural del trinquete; un fenómeno causado por el estado electrónico localizado y la alteración de la simetría del sistema.

Además, la observación cuántica también es capaz de invertir la dirección del flujo de calor, contradiciendo aparentemente la segunda ley de la termodinámica. Esta capacidad para controlar el flujo de calor y las corrientes de partículas podría encontrar un amplio uso en el diseño de dispositivos termoeléctricos, espintrónicos y fotónicos. La observación podría usarse incluso para escribir en una memoria magnética.

Desde un punto de vista más fundamental, este trabajo resalta el papel del observador cuántico. En contraste con el gato de Schrödinger, donde el estado coherente es destruido a través de la interacción con un “observador” macroscópico, aquí, mediante la introducción de un observador cuántico local, la coherencia se cambia local y dinámicamente, permitiendo a los investigadores seleccionar entre los estados coherentes del sistema . O, dicho de otra manera, esto demuestra cómo la termodinámica es muy diferente en el régimen cuántico.

Referencia:

Robert Biele et al (2017) Controlling heat and particle currents in nanodevices by quantum observation, npj Quantum Materials. doi: 10.1038/s41535-017-0043-6

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Un observador cuántico de lo más útil se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un gato de Cheshire cuántico
  2. Cómo medir el trabajo cuántico
  3. Transmisión de voz con cifrado cuántico a larga distancia
Kategoriak: Zientzia

Triangulando: Pascal versus Sierpinski

Az, 2017-07-19 11:59

En su Traité du triangle arithmétique (Tratado del triángulo aritmético, publicado por primera vez en 1654), Blaise Pascal iniciaba su texto con una página en la que dibujaba su triángulo aritmético (ver figura 1). Le seguían casi un centenar de páginas en las que el matemático daba diecinueve propiedades de ese triángulo, bastante sencillas de demostrar en general. Pascal probaba algunas de ellas, otras las mostraba mediante un ejemplo y otras quedaban solo enunciadas.

Figura 1: El triángulo de Pascal (figura original de Pascal de 1654 y la usada actualmente).

Ese triángulo, conocido hoy en día como triángulo de Pascal –aunque ya era conocido en el siglo X–, proporciona una manera de ordenar los coeficientes binomiales. Recordemos que el coeficiente binomial C(n,k) es el número de grupos de k objetos que pueden elegirse en un conjunto formado por n objetos. En la figura 2 puede verse su expresión:

Figura 2: Coeficiente binomial.

Los coeficientes binomiales también pueden calcularse por recurrencia, utilizando la llamada fórmula de Pascal que aparece debajo.

Figura 3: Fórmula de Pascal.

El triángulo de Pascal Pn es el reordenamiento de los coeficientes binomiales desde el C(0,0) hasta el C(n,n), de manera que en la fila m aparecen (y en ese orden):

C(m,0), C(m,1), C(m,2), …, C(m,m-1) y C(m,m).

El triángulo de Sierpinski es un conjunto fractal que se construye de manera recurrente como se indica a continuación: se toma un triángulo equilátero ‘lleno’, S0, al que se le quita el pequeño triángulo formado al unir las mitades de sus tres lados (ver la figura 4). Obtenemos S1 formado por tres triángulos ‘llenos’ sobre los cuales se realiza el mismo proceso que acabamos de describir. Logramos así una figura formada por nueve triángulos llenos, S2, a los que se les vuelve a aplicar el mismo procedimiento.

Figura 4: Primeras etapas de la construcción del triángulo de Sierpinski.

Iterando este procedimiento indefinidamente, se obtiene el triángulo de Sierpinski, que lleva el nombre del matemático Wacław Sierpiński, quien lo describió en 1915 (aunque aparece como elemento decorativo –alguna etapa de su construcción– mucho antes).

Figura 5: El triángulo de Sierpinski.

¿Existe alguna relación entre estos dos triángulos? El primero, el de Pascal, se construye de manera combinatoria y el segundo, el de Sierpinski, de manera geométrica… ¿pueden vincularse de alguna manera?

Como se observa en la figura 6, todos los triángulos ‘llenos’ que modelan cada Sn pueden rellenarse con coeficientes binomiales impares. Y, a su vez, cada coeficiente binomial impar puede colocarse dentro de uno de los triángulos ‘llenos’ en determinada etapa de la iteración en la construcción del triángulo de Sierpinski.

Figura 6: Los triángulos de Pascal y de Sierpinski.

El enunciado preciso que proporciona la propiedad que acabamos de mostrar es la siguiente: “Para cada número natural n, el triángulo de Sierpinski Sn se corresponde con el triángulo de Pascal de 2n filas, del que se han eliminado los coeficientes pares”.

Observar que este resultado ofrece otra manera de construir Sn. En efecto, bastaría con dividir un triángulo equilátero en triángulos equiláteros más pequeños, de modo que cada lado del triángulo original se divida en 2n partes iguales. Superponiendo el triángulo de Pascal de 2n filas, bastaría con colorear únicamente los pequeños triángulos correspondientes a los coeficientes binomiales impares…

Figura 7: Los triángulos de Pascal y de Sierpinski.

¡Una bella y curiosa propiedad!

Referencias

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Triangulando: Pascal versus Sierpinski se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La traba de Pascal: geometría proyectiva y literatura
  2. El juego del Sim
  3. El teorema de los cuatro colores (2): el error de Kempe y la clave de la prueba
Kategoriak: Zientzia

Evolución de los sistemas nerviosos: variación del tamaño de las regiones encefálicas

Ar, 2017-07-18 17:00

Las neuronas que inervan el órgano eléctrico de las rayas Torpedo ocupan un impresionante 60% de todo el encéfalo. Un ejemplo de evolución en mosaico espectacular.

En los encéfalos se pueden diferenciar conjuntos de neuronas de los que sabemos que están implicados en determinadas funciones. Así, nos referimos a la corteza visual, al área de Broca o a los parches faciales, por ejemplo. Es interesante la cuestión de si las diferentes áreas encefálicas han evolucionado en los vertebrados de forma independiente (evolución en mosaico) o, por el contrario, lo han hecho de forma conjunta o coordinada con el resto de áreas (evolución en concierto). Esto es importante porque si la evolución del encéfalo se produce de forma concertada, sobre cada una de sus áreas actuarían restricciones que impedirían que una de ellas, cualquiera, se desarrollase de manera independiente bajo la acción de presiones selectivas concretas. Sin embargo, en el supuesto de no operar restricciones anatómicas y funcionales provocadas por el conjunto del encéfalo, la evolución en mosaico permitiría que la selección natural actúe sobre determinadas áreas en concreto de manera independiente.

Una forma de abordar esta cuestión consiste en comprobar si el tamaño del área objeto de interés varía de forma homogénea en función del tamaño encefálico total (o, por razones que no vienen al caso, del tamaño del resto del encéfalo) para un amplio conjunto de especies. Cuando la variación es homogénea, ello es indicativo de que el tamaño del órgano ha condicionado el tamaño de las áreas de acuerdo con un patrón general y, por lo tanto, que la evolución ha sido en concierto. De haber sido en mosaico, habría habido especies que se alejen de la tendencia general, seguramente porque sobre ellas han operado presiones selectivas en esa dirección y porque no existen restricciones anatómicas (por configuración) o funcionales (por cómo funciona el encéfalo) que condicionen el tamaño que un área en concreto puede alcanzar.

Al realizar ese análisis para un amplio conjunto de mamíferos (que incluía primates, insectívoros y murciélagos) por ejemplo, se observa que en estos hay una correspondencia muy considerable entre el tamaño de diferentes regiones encefálicas y el del resto del órgano. El 96% de la variación de las áreas encefálicas viene explicado por la variación del tamaño total del encéfalo. La evolución, en este caso, se habría producido en concierto, y el neocortex es el área que más proporción representa en los encéfalos grandes. Al parecer, las diferencias de tamaño relativo se producen porque las áreas que surgen más tarde son las que más aumentan de tamaño. En otras palabras, “tarde” implica “grande”. O sea, el neocórtex es el área encefálica que más tarde empieza su desarrollo y la que, al aumentar su tamaño, su proporción relativa con respecto a la masa encefálica total también aumenta.

No obstante lo anterior, al realizar esos análisis u otros similares hay elementos de la metodología estadística (en cuyo detalle no merece la pena entrar aquí) que han de ser tenidos en cuenta, puesto que el procedimiento que se utiliza puede oscurecer algunos casos en los que ciertas estructuras encefálicas muestran tamaños muy diferentes de lo que cabría esperar a partir del tamaño general del encéfalo. En otras palabras, si bien en los casos comentados las estructuras principales han evolucionado de forma concertada, hay áreas, normalmente de menor tamaño, que han experimentado evolución en mosaico –normalmente implicadas en el procesamiento de determinadas señales (olfativas, visuales, o sonoras)-, muy probablemente porque esas áreas están implicadas en procesos que han sido sometidos a presiones selectivas específicas.

Si nos salimos del grupo de los mamíferos hay ejemplos de evolución en mosaico espectaculares. Las neuronas que inervan el órgano eléctrico de las rayas Torpedo ocupan un impresionante 60% de todo el encéfalo, mucho más que lo que ocupan zonas homólogas en otros peces cartilaginosos. Y en teleósteos también hay algunos casos claros de evolución en mosaico, sobre todo en los lóbulos medulares, aunque sin llegar a los extremos de la raya Torpedo. Es preciso comentar que en vertebrados no mamíferos, al contrario que en estos, la neurogénesis puede ser importante a lo largo de periodos más prolongadas de la vida, y eso introduce un elemento de flexibilidad importante.

La conclusión que se extrae de lo recogido hasta aquí es que muy probablemente la evolución concertada es un principio que tiene una validez muy general en los vertebrados, aunque la evolución en mosaico ha podido ser muy importante en determinados casos. Cuando ésta se ha producido, ello ha dado lugar, seguramente, a cambios importantes en el funcionamiento encefálico y, por ello, ha podido abrir nuevos nichos ecológicos y posibilidades de cambio adicional. Por esa razón, es mucho más probable que la evolución en mosaico haya dado lugar a más diferencias entre clases que entre órdenes, más entre órdenes que entre familias, y más entre familias que entre géneros. En otras palabras, las constricciones propias de la evolución en concierto seguramente operan de forma más clara cuanto menor es el nivel taxonómico y es más probable que las diferencias entre taxones de más nivel puedan deberse a evolución en mosaico.

Fuente: Georg F. Strider (2005): Principles of Brain Evolution, Sinauer Associates, Inc, Sunderland, Massachusetts, EEUU.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Evolución de los sistemas nerviosos: variación del tamaño de las regiones encefálicas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Evolución de los sistemas nerviosos: el tamaño encefálico
  2. Evolución de los sistemas nerviosos: el sistema central de vertebrados
  3. Evolución de los sistemas nerviosos: cnidarios y gusanos no segmentados
Kategoriak: Zientzia

La segunda ley de la termodinámica

Ar, 2017-07-18 11:59

Dijimos anteriormente que íbamos a introducir dos leyes fundamentales del universo a partir de elemento muy sencillos. Ya introdujimos la primera ley, y ahora vamos con la segunda, que ilustra cómo estudiar algo muy concreto, como una máquina de vapor, puede tener consecuencias amplísimas.

Las personas que habitan en este inmueble están contribuyendo a que la entropía del universo aumente.

La segunda ley de la termodinámica es una generalización de los límites de una máquina térmica y se basa en el trabajo de Carnot. Pero para poder llevarla a cabo necesitamos una idea nueva.

Hemos visto previamente que una máquina reversible es la máquina más eficiente. Cualquier otra máquina no es tan eficiente. Para formular esa idea de manera general y precisa, debe introducirse un nuevo concepto: la entropía. El cambio de entropía de un sistema, ΔS, se define como la energía neta transferida como calor, ΔQ, ganada o perdida por el sistema, dividida por la temperatura (en Kelvin) del sistema, T: ΔS = ΔQ/T

donde el segundo miembro de la igualdad entronca directamente con lo que vimos del ciclo de Carnot (véanse notas 1 y 2). Es importante señalar que, por la forma en la que la hemos definido esta expresión es solamente válida para sistemas cerrados y procesos reversibles (ideales).

Cuando introdujimos el concepto de máquina reversible ideal vimos que una máquina de este tipo trabaja en un ciclo entre cuerpos calientes y fríos (como cualquier motor térmico). Una máquina que trabaje de esta manera debe tener la misma entropía al final de un ciclo que tiene al principio. Esto se debe a que, al final del ciclo, T vuelve a su valor inicial, y la energía transferida como calor o trabajo cedidos en una parte del ciclo deben ganarse en el resto del ciclo; por lo tanto ΔQ en el conjunto durante todo el ciclo es cero. Como el cambio de entropía se define como ΔS = ΔQ/T, el cambio de entropía durante un ciclo es también cero, ΔS = 0.

¿Qué pasa con un motor que no es reversible y deja de ser ideal, como una máquina de vapor real? Sabemos que debe ser menos eficiente que una máquina perfectamente reversible, que tendría un 100% de eficiencia. Por lo tanto, para una máquina real las las pérdidas de energía en forma de calor deben ser mayores que las de una ideal.

Pero si miremos a la máquina desde el punto de vista del entorno resulta que obtenemos un resultado de consecuencias cósmicas. Efectivamente, al final de cada ciclo de trabajo, ΔQ en elentorno de la máquina no será cero sino positivo (véase la nota 3), y ΔS, correspondientemente, tendrá un valor positivo. Es decir, aunque la energía total dentro y fuera de la máquina se conservará (consideramos el entorno como parte del sistema), por la primera ley, la entropía del entorno habrá aumentado. Fijémonos en que esto sucederá una y otra vez cada vez que una máquina no ideal repita su ciclo de trabajo. Por tanto, la entropía del universo aumentará constantemente mientras la máquina no ideal esté funcionando.

Podemos resumir las consecuencias del funcionamiento de las máquinas térmicas en el cambio de entropía del universo de forma muy simple:

ΔSuniverso = 0, si la máquina es ideal

ΔSuniverso > 0, si la máquina es real.

Aunque aquí solo hemos hablado de máquinas térmicas muy sencillas, estos resultados son generales. De hecho, se aplican a todos los procesos térmicos. Por simplicidad, pueden expresarse en una sola línea:

ΔSuniverso 0

Esta expresión, de hecho, es una formulación matemática que expresa la segunda ley de la termodinámica. Rudolf Clausius, que fue el primero en formular la segunda ley en la forma dada aquí, parafraseó las dos leyes de la termodinámica en 1850 así:

“La energía del universo permanece constante, pero su entropía tiende a un máximo.”

Y todo ello sin entrar a describir qué es energía o entropía más allá de las definiciones macroscópicas que hemos empleado.

Una frase breve, pero de consecuencias vastísimas, obtenida del estudio de cosas muy sencillas como hemos visto. Veremos algunas de estas consecuencias en entregas posteriores.

Notas:

[1] Esta ecuación define sólo los cambios de entropía, ΔS, en lugar del valor absoluto de la entropía. Esto es similar a lo que se encuentra cuando se estudia cualquier energía potencial: lo que interesa es el cambio. Si se necesitan valores absolutos de la entropía basta con definir un estado estándar al que se asigna entropía cero y la diferencia de entropía con cualquier otro estado será el valor absoluto de la entropía para éste.

[2] Creemos que es interesante resaltar que la entropía es una propiedad macroscópica pero no molecular o atómica, a diferencia de la energía. Una molécula individual no tiene entropía, como tampoco la tiene un átomo.

[3] Reiteramos el criterio de signos que establecimos al hablar de la primera ley, aquí, y nuestra recomendación a los estudiantes de ser muy escrupulosos con el uso de signos que hagan sus profesores o libros de texto, que puede ser diferente.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La segunda ley de la termodinámica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Carnot y los comienzos de la termodinámica (1)
  2. Carnot y los comienzos de la termodinámica (2)
  3. La primera ley de la termodinámica
Kategoriak: Zientzia

Catástrofe Ultravioleta #18 INVASORES

Al, 2017-07-17 13:17

Catástrofe Ultravioleta #18 INVASORES

Nuestro planeta no es demasiado grande y está lleno de vida. A veces unas especies llegan a nuevos lugares viajando y a veces somos los humanos quienes las llevamos. En este intercambio se producen todo tipo de situaciones, a veces con riesgo para los ecosistemas locales y a veces para que la vida prolifere donde no esperábamos. En el capítulo de hoy os enseñamos el revoltijo que es la vida y hablamos con los expertos que tratan de evitar que el asunto se nos vaya de las manos.

Agradecimientos: Antonio Quesada, Javier Benayas, Carlos Briones, SEO BirdLife. Con las voces invitadas de Severine Beata, Inés Almirón, Lalo, Katita, Siddhartha Montoya, Mariana Cancela, Diego Briones, Jose María del Río, Celine y Ana González.
La Cumparsita es una versión del tango original de Gerardo Matos Rodríguez.

* Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el apoyo de la Cátedra de Cultura Científica de la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.

Puedes conocernos en nuestra web: Catastrofeultravioleta.com y seguirnos en el twitter Catastrofe_UV. También puedes encontrar todos los capítulos en este enlace.

El artículo Catástrofe Ultravioleta #18 INVASORES se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Preparados para una Catástrofe Ultravioleta
  2. Catástrofe Ultravioleta #14 VULCANO
  3. Catástrofe Ultravioleta #13 LEVIATÁN
Kategoriak: Zientzia

La condición física de los árbitros de fútbol

Al, 2017-07-17 11:59

El interés científico por conocer el rendimiento físico durante los partidos y el perfil de condición física de los árbitros de fútbol ha crecido de forma sustancial a lo largo de las últimas dos décadas. En ese sentido, la tesis doctoral de Daniel Castillo Alvira, que lleva por título ‘Cuantificación de las respuestas físicas y fisiológicas y análisis de la fatiga inducida por los partidos oficiales en árbitros de fútbol’, se ha elaborado a partir de cuatro estudios científicos publicados en revistas internacionales indexadas en la lista JCR. Todos los estudios presentados en esta tesis siguen una misma temática basada en la descripción de las respuestas físicas y fisiológicas y el análisis de la fatiga producida por los partidos oficiales en árbitros de fútbol.

Los árbitros, independientemente de la categoría en la que arbitren, han de superar unas pruebas físicas en distintos momentos a lo largo de la temporada, cuyos resultados, junto con los informes técnicos de los partidos elaborados por los Comités de Árbitros correspondientes (internacionales, nacionales, autonómicos o provinciales), les habilitan para ejercer su actividad y, en su caso, ascender o descender de categoría.

Los estudios que conforman esta investigación demuestran que los árbitros de campo recorren más distancia y registran un valor de velocidad media mayor que los árbitros asistentes durante el desarrollo de los partidos oficiales. Se observa, además, un descenso en la capacidad de esprintar en distancias de 15 y 30 metros después del partido cuando se compara con el rendimiento registrado antes del mismo, tanto en árbitros de campo como en árbitros asistentes. El descenso observado en el rendimiento de esprint podría ser considerado como un indicador de fatiga ocasionada por el partido. Sin embargo, no se encuentra una pérdida de rendimiento en la capacidad de salto vertical bilateral y unilateral.

También se ha comprobado un descenso en el rendimiento de otros parámetros medidos o que los árbitros asistentes tienen una fatiga muscular más acentuada en la pierna derecha al final del partido. “Este hecho –explica Daniel Castillo-, podría sugerir que los árbitros asistentes pueden tener una mayor implicación durante el juego de la extremidad inferior derecha y, en consecuencia, una fatiga debido a que las acciones específicas y más relevantes que realizan se producen hacia su lado derecho donde se encuentra el área de penalti”.

Dado que una inadecuada preparación física en este colectivo podría limitar sus acciones durante los partidos y también podría influir negativamente en un descenso de categoría, la tesis sugiere la necesidad de diseñar programas de entrenamiento específicos tanto para árbitros de campo como para árbitros asistentes, con el fin de mejorar su rendimiento físico durante la competición. “Aunque la FIFA ha establecido unos test para valorar la capacidad de esprintar en árbitros de campo y árbitros asistentes, parece interesante valorar esta cualidad en distancias más cortas especialmente en categorías provinciales. Además, los preparadores físicos deberían incluir entrenamiento específico, basado en mejorar la capacidad de aceleración, atendiendo a las demandas físicas que les supone a los árbitros de campo y a los árbitros asistentes arbitrar los partidos de fútbol”, indica Daniel Castillo.

Referencias:

Castillo, D., Yanci, J., Cámara, J., Weston, M. ‘The influence of soccer match play on physiological and physical performance measures in soccer referees and assistant referees’. Journal of Sports Sciences (2016) 34(6), 557-563. doi: 10.1080/02640414.2015.1101646

Castillo, D., Cámara, J., Sedano, S., Yanci, J. ‘Impact of official matches on soccer referees’ horizontal-jump performance’. Science and Medicine in Football. Pages 1-6. Accepted 23 Apr 2017, Published online: 01 Jun 2017. doi: 10.1080/24733938.2017.1330549

Castillo, D., Weston, M., McLaren, S.J., Cámara, J., Yanci, J. ‘Relationships between internal and external match load indicators in soccer match officials’. International Journal of Sports Physiology and Performance (2016) Dec 5:1-21. DOI: 10.1123/ijspp.2016-0392. doi: 10.1123/ijspp.2016-0392

Castillo, D., Cámara, J., Castellano, J., Yanci, J. ‘Football match officials do not attain maximal sprinting speed during matches‘. Kinesiology (2016) 48(2), 207-212.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo La condición física de los árbitros de fútbol se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Fórmulas matemáticas y números: cómo ayuda la economía al fútbol
  2. La ciencia del balón de fútbol
  3. La conferencia improvisada que cambió la física
Kategoriak: Zientzia

Una buena muerte

Ig, 2017-07-16 11:59

En más de una ocasión, cuando me entrevistan por mis novelas, ha llegado un periodista y me ha dicho: “¿Y por qué escribes sobre la muerte?”. Es una pregunta que me deja turulata: ¿es que acaso uno puede dejar de escribir sobre eso? Siempre siento la tentación de responder: lo siento mucho, querido, pero tengo que darte una malísima noticia: te vas a morir.

Rosa Montero, El País Semanal, 15 enero 2017.

&nbsp

“Soy un hombre a quien la suerte
hirió con zarpa de fiera,
soy un novio de la muerte
que va a unirse en lazo fuerte
con tan leal compañera.”

El novio de la muerte, canción de la Legión, letra de Fidel Prado, música de Juan Cosa, 1925.

&nbsp

Si la muerte fuera un bien, los dioses no serían inmortales.”

Safo.

Hay mucho escrito sobre la muerte, sobre la buena muerte y sobre cómo aceptarla. Quizá deba comenzar, o terminar, visto el tema que trato, con aquel antiguo proverbio, creo que de Confucio o de algún otro sabio oriental, que decía que “Cuando un problema no tiene solución, deja de ser un problema”. Y asumir, también, como hizo Benjamin Franklin hace dos siglos y medio, que, junto a los impuestos, la muerte es la otra certeza de nuestra vida. Pero podemos luchar por tener una buena muerte, ya que la muerte es nuestra, personal e inevitable.

Los seres humanos somos muy conscientes, quizá sin asumirlo del todo, de nuestra forzosa mortalidad. Es una idea que ataca o, por lo menos, relativiza, nuestra autoestima de transcendencia sin final, y defender con fuerza nuestra visión del mundo y de la vida nos ayuda a mantenerla.

Para entender cómo la muerte influye en nuestra vida, podemos, como ejemplo, comentar la investigación de Marcelo Vinhal Nepomunceno y Michael Laroche, de la Universidad Concordia de Montreal, sobre el consumo y la muerte. Sabemos que en nuestra cultura, los pensamientos sobre la muerte aumentan la propensión a consumir, a consumir lo que sea. Aceptamos que posesiones y bienes materiales nos permiten vivir más felices o, por lo menos, a vivir sin más, aunque cueste aceptar que no ayuda a vivir más. Los pensamientos de muerte nos llevan a una actitud positiva ante artículos de lujo o a consumir de manera impulsiva. Así, el consumo creció en Estados Unidos después del 11-S.

En su investigación, Nepomuceno y Laroche encuentran que a los contrarios al consumo les da igual sentir pensamientos de muerte y siempre consumen poco. En cambio, los consumidores medios, los ciudadanos que no destacan en las compras, la idea de la muerte les empuja a consumir más.

Y, ahora, pasemos a repasar no lo que la muerte hace en nuestra vida, sino a cómo deseamos que sea la inevitable muerte. Primero, una definición de buena muerte que nos da Jacquelin Flaskerud, de la Universidad de California en Los Angeles. Dice así: “Una buena muerte es la que está libre de angustia y sufrimientos evitables para los pacientes, la familia y los cuidadores. Transcurre, en general, de acuerdo con los deseos de los pacientes y de las familias. Y es razonablemente consistente con los estándares clínicos, culturales y éticos.”

Es una definición sencilla, vaga y quizá difícil de llevar en los detalles para cada caso. Vamos a extendernos sobre lo que dice esta definición. Emily Meier y su grupo, de la Universidad de California en San Diego, han revisado lo que respondemos si nos preguntan sobre la buena muerte y han publicado recientemente un meta-análisis sobre ello.

Para ello, recuperan de las bases de datos lo investigado hasta 2015 y encuentran 3434 artículos de los que, tras una primera revisión, rescatan 392 y, después de un repaso más exhaustivo en cuanto a métodos y análisis, quedan 36. La mayoría de los datos vienen de pacientes y de sus familias, además de profesionales sanitarios.

En conclusión, son once cuestiones importantes para llegar a una buena muerte, y las enumero y resumo a continuación:

1.- El 94% de los trabajos revisados mencionan donde y cuando morir, por ejemplo, en casa y durante el sueño y, además, después de dejar bien establecido lo necesario para el funeral y el entierro.

2.- El 81% desea una muerte sin dolor y sufrimiento.

3.- Hasta el 64% menciona como importante el bienestar emocional, con apoyo psicológico si es necesario y, si es posible, con un diálogo sobre el significado de la muerte.

4.- Es importante tener cerca a la familia, preparada y aceptando la muerte del familiar que, además, desea no sentirse una carga para ellos.

5.- Es esencial respetar y mantener la dignidad de la persona que muere.

6.- Debe aceptar que ha cumplido con su vida, despedirse con dignidad y aceptar la muerte.

7.- Si es religioso, debe buscar consuelo espiritual y tener cerca al sacerdote.

8.- No abusar de los tratamientos médicos en un intento de prolongar la vida por medio de todas las terapias posibles. En relación con los tratamientos médicos entra el debate, no resuelto en absoluto, sobre la eutanasia.

9.- Hay que conseguir la mejor calidad de vida posible e intentar vivir como siempre, con esperanza, placer y gratitud y, en resumen, considerar que merece la pena vivir y haber vivido la vida.

10.- Los médicos y enfermeras deben ser un apoyo para el paciente e, incluso, los propios profesionales sanitarios deben aceptar la muerte.

11.- Según la cultura, la educación y el entorno de cada uno, se menciona el sentir el contacto físico con las personas cercanas y, en este apartado, se sugiere la importancia y cercanía de las mascotas.

Es evidente que todo lo dicho hasta ahora trata de la muerte en nuestra cultura en el mundo occidental. Incluso en esta cultura concreta, la muerte ha cambiado a lo largo de la historia, como cuenta David San Filippo, de la Universidad Nacional Louis de Chicago. Sin entrar en detalles de su exposición, su escrito termina con la constatación de que la presencia de la muerte en nuestra sociedad es un recordatorio constante de la propia mortalidad personal de cada uno (como nos recuerda Rosa Montero en la cita inicial de este texto). Todo lo eventualmente vivo, muere. Y la aproximación de la sociedad a la muerte debe ser el reflejo de la actitud colectiva de respeto a las creencias individuales sobre la vida y la muerte. Como dijo Steve Jobs, “Nadie quiere morir… Nadie escapa de ello”.

Es importante conocer nuestras creencias, actitud y prácticas ante la muerte y, también, el cómo vivimos sabiendo que nadie se va vivo de esta vida. Todo ello debe llevar a una vida sin miedo a la muerte, a una vida con propósitos y proyectos. Como escribió en El club de los poetas muertos, Nancy Kleinbaum,“para no descubrir, a la hora de mi muerte, que no había vivido”.

Referencias:

Filippo, D.S. 2017. A historical perspective of death in the Western World. En “Dying and death in Oncology”, p. 99-114. Ed. por L. Berk. Springer, Switzerland.

Flaskerud, J.H. 2017. Individual and dynamic: Western views of a good death. Issues in Mental Health Nursing doi: 10.1080/01612840.2017.1295492

Meier, E.A. et al. 2016. Defining a good death (Successful Dying): Literature review and a call for research and public dialogue. American Journal of Geriatric Psychiatry doi: 10.1016/j.ajgp.2016.01.135

Montero, R. 2017. Arrojar palabras. El País. 15 enero.

Nepomuceno, M.V. & M. Laroche. 2016. Do I fear death? The effects of mortality salience on anti-consumption lifestyles. Journal of Consumer Affairs 50: 124-144.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Una buena muerte se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Muerte entre las ecuaciones (Historias de muerte y matemáticas 1)
  2. La creatividad científica y el arte: La muerte de Sócrates
  3. Neandertales ¿crónica de una muerte anunciada?, por María Martinón-Torres
Kategoriak: Zientzia

Arte & Ciencia: Sobre la dimensión cognitiva del arte en relación a la ciencia

La, 2017-07-15 11:59

El arte y la ciencia son dos formas de conocimiento aparentemente alejadas, en gran medida consecuencia de la especialización profesional y la educación compartimentada. Del estudio de esta impostada separación surgió el estereotipo de las dos culturas, las ciencias y las humanidades, para referirnos a esa brecha de conocimiento. La realidad es que la ciencia y el arte sí están conectadas y que ninguna forma de conocimiento es impermeable a otra. Por poner algunos ejemplos: ¿Cómo podría crearse una obra plástica sin las técnicas propiciadas por la ciencia? ¿Cómo podríamos interpretar la elección de materiales?

Estas y otras cuestiones relacionadas furon tratadas por destacados profesionales -artistas, ilustradores, filósofos y científicos- que han puesto el foco en ese difuso trazo que une la ciencia y el arte. El ciclo Ciencia & Arte se desarrolló, bajo la dirección de Deborah García Bello, a lo largo de cuatro jornadas que se celebraron los jueves días 6 y 27 de abril y 11 y 25 de mayo de 2017 en el auditorio del Museo Guggeheim Bilbao.

Esta actividad de la Cátedra de Cultura Científica de la UPV/EHU se enmarca en el programa TopARTE que conmemora el XX Aniversario del Museo Guggenheim Bilbao.

Tercera jornada. 1ª Conferencia

Juan Luis Moraza, escultor y Profesor de la Universidad de Vigo: Sobre la dimensión cognitiva del arte en relación a la ciencia

''Sobre la dimensión cognitiva del arte en relación a la ciencia''

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Arte & Ciencia: Sobre la dimensión cognitiva del arte en relación a la ciencia se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Arte & Ciencia: La relación entre el desarrollo de la ciencia y la creación artística
  2. Arte & Ciencia: La importancia de la ciencia para la conservación del arte
  3. Arte & Ciencia: Cómo descubrir secretos que esconden las obras de arte
Kategoriak: Zientzia

La astronomía transformada en arte

Or, 2017-07-14 12:00

A lo largo de nuestra vida, pocas experiencias son comparables a contemplar el cielo estrellado en una noche oscura, a sobrecogernos con un eclipse, a despertar con la impresión del sol naciente. Probablemente estas sensaciones han acompañado a los humanos desde nuestros orígenes, desde aquel lejano día en que por primera vez alzamos la vista para contemplar el cielo y comenzar a hacernos grandes preguntas. Durante milenios, la fascinación por la inmensidad del Cosmos y por los acontecimientos celestes que podíamos observar ha caminado a nuestro lado, sea por el terror que algunos fenómenos astronómicos inspiraron, por la creencia irracional de que nuestro destino pudiera estar escrito en las estrellas, o por la propia inquietud científica que surgió en el munco clásico y cristalizó en el Renacimiento. Todo ello ha quedado plasmado en numerosas obras de arte pertenecientes a diferentes culturas y épocas.

Antes de la llegada de la fotografía y su aplicación al estudio de los cuerpos celestes durante el siglo XIX, los astrónomos con talento artístico tenían una gran ventaja ya que podían representar gráficamente los resultados de sus observaciones del Cosmos. El propio Galileo Galilei ilustró lo que veía a través de su telescopio a partir de 1609, como el relieve de la Luna, los satélites de Júpiter o las fases de Venus. Artistas de su tiempo, entre ellos Pieter Paul Rubens (en su famoso cuadro “Saturno devorando a un hijo”) o Ludovico Cigoli (“Inmaculada”), plasmaron en sus obras los descubrimientos del gran científico italiano.

Saturno devorando a un hijo” (1636-1638; Museo del Prado). Rubens representa el planeta Saturno como una estrella triple, tal y como lo había descrito Galileo Galilei.

Aunque pocas, también hubo mujeres en aquella época que estudiaron y dibujaron los cielos. Finalizando el siglo XVII, la astrónoma y artista alemana Maria Clara Eimmart realizaba cientos de ilustraciones (a menudo basadas en sus propias observaciones) que mostraban las fases de Mercurio, la superficie de la Luna, la diversa morfología de los cometas y el aspecto cambiante de los anillos de Saturno.

Dibujos de Saturno y sus anillos realizados por Maria Clara Eimmart (1693-1698)

En ocasiones, científicos y artistas colaboraban para dejar constancia del saber astronómico. Así, en 1711 el pintor italiano Donato Creti representó los objetos del Sistema Solar conocidos entonces en la serie de ocho cuadros titulada “Observaciones astronómicas”, siguiendo las directrices del astrónomo Eustaquio Manfredi.

En el siglo XIX la ciencia brillaba ya con luz propia. Fenómenos celestes como los cometas, que durante siglos se consideraron mensajeros de enfermedad y de muerte, habían sido despojados por completo de ese aura de terror. Pintores como el escocés William Dyce (“Pegwell Bay, Kent. Recuerdo del 5 de octubre de 1858”), fascinados por la naturaleza y los mecanismos que subyacen a ella, representaron los cometas como meros elementos presentes en el cielo de sus paisajes. Al mismo tiempo los astrónomos dibujaban minuciosamente su aspecto, que en ocasiones resultaba espectacular. Quedaban atrás las antiguas ilustraciones en las que los cometas auguraban lluvias de sangre, ciudades devastadas o la maldición de animales nacidos con dos cabezas.

Desde los albores del siglo XX, nuestra visión del Cosmos se ha expandido a escalas de tiempo y tamaño tan gigantescas que son imposibles de imaginar en el contexto de nuestra existencia efímera y de nuestra posición como habitantes del extrarradio de una galaxia vulgar. Sin embargo, para lograr entender la grandiosidad de Universo hemos desarrollado una nueva manera de hacer ciencia, que es también otra forma de crear arte: los programas informáticos. Con el rigor más estricto de las ecuaciones físicas somos capaces de visualizar, utilizando sugerentes simulaciones computacionales, fenómenos imposibles de observar en la naturaleza: procesos tan rápidos o tan lentos, o que suceden en escalas espaciales tan enormes o tan minúsculas, que no pueden reproducirse en los laboratorios. Podemos recrear nada más y nada menos que la historia del Universo desde su origen hasta la actualidad: 13.800 millones de años que transcurren en tres minutos, en una secuencia de imágenes hermosas y coloristas que bien podrían ser la obra de un artista contemporáneo.

Fotograma de la simulación creada por la colaboración Illustris que recrea la evolución del Universo desde poco después de su nacimiento hasta la actualidad

En 2016 se cumplieron 50 años de la obtención de la primera imagen de la Tierra desde la vecindad lunar. Antes de que se produjera aquel logro tecnológico hubo grandes soñadores que imaginaron nuestro planeta visto desde el espacio. Novelas (como “Hector Servadac”, de Julio Verne, publicada en 1877) y libros de divulgación de la astronomía (“Las Tierras del cielo: Viaje astronómico sobre otros mundos”, de Camille Flammarion, 1884) contenían ricas ilustraciones de cómo podría ser la Tierra contemplada desde el espacio.

El paisaje de la Luna con nuestro planeta en la distancia, en aquel retrato icónico de hace medio siglo, inspiró un cambio profundo en la percepción del ser humano acerca del lugar que ocupamos en el Universo: nos hizo comprender que la Tierra no es el único hábitat posible, que aunque singular y extraordinario para nosotros, es un planeta más en la vastedad del Cosmos. Desde entonces, aquellas imágenes han seducido a generaciones, como demuestra la obra “Un cierto eclipse lunar: Proyecto para la humanidad Nº 2 A” (1991) del artista chino Cai Guo Qiang, creador del espectáculo de fuegos artificiales en las ceremonias de apertura y clausura de las Olimpiadas de Pekin en 2008.

Primera imagen de la Tierra desde la vencidad lunar, tomada el 23 de agosto de 1966 (NASA / LOIRP)

La Tierra en cuarto creciente vista desde la Luna. Ilustración de Paul Foché para el libro “Las Tierras del cielo: Viaje astronómico sobre otros mundos” (Camille Flammarion, 1884).

Desde hace varias décadas, diferentes misiones espaciales exploran los astros de nuestro vecindario cósmico, el Sistema Solar. En Marte han descubierto profundos cañones, volcanes imponentes y cráteres que un día fueron lagos: el planeta rojo es un mundo de terrenos y texturas sorprendentes. También hemos podido observar grietas y acantilados en el corazón del cometa 67P/Churyumov-Gerasimenko, cuyo perfil se recorta contra un fondo negro y vacío. Aún más lejos de nosotros, otras misiones nos han mostrado geysers en Encédalo que se proyectan desde su océano interior, y cicatrices en Caronte que revelan un violento pasado. Actualmente, la sonda Cassini de la NASA está enviando, a sólo dos meses del grand finale de esta misión, decenas de fotografías de Saturno y sus anillos con un valioso contenido científico… y cuya belleza es sobrecogedora.

Todas estas imágenes nos hablan de texturas y sombras, de geometrías y contrastes, de hielo y de silencio. Las propias agencias espaciales NASA y ESA colaboran con artistas y fotógrafos para seducir a la humanidad con el sugerente esplendor de estos mundos, mostrando en diversos proyectos tanto las imágenes seleccionadas por su valor estético como la obra de artistas que se han inspirado en ellas. Es el caso de la rusa Ekaterina Smirnova, que ha creado una serie de acuarelas de considerables dimensiones a partir de las imágenes del cometa 67P enviadas por la exitosa misión Rosetta-Philae de la ESA.

Acuarela de la serie “67P” (2015). Ekaterina Smirnova

La belleza hipnótica de las imágenes del planeta Júpiter, obtenidas recientemente por la misión Juno de la NASA, nos ha vuelto a situar en esa frontera difusa entre el arte y la ciencia. Dejándonos llevar sólo por la estética, nos parecería más natural exponerlas en un museo de arte que en uno de ciencia. De hecho, la NASA ha habilitado una página web en la que cualquier persona puede aportar sus propias interpretaciones de los datos de Juno.

Imagen de una zona de la superficie de Júpiter tomada por la misión Juno y procesada por Bjorn Jonsson.

En el procesamiento de las imágenes más hermosas han contribuido ciudadanos de diferentes países, en muchos casos astrónomos aficionados, que a partir de unos datos originales de atractivo visual discutible (aunque con un gran valor científico), han producido resultados de una delicadeza exquisita. Ante estas imágenes cobra especial actualidad la pregunta que se hacía Richard Feynmann, “¿Qué clase de hombres son esos poetas que pueden hablar de Júpiter como si fuera humano, pero deben guardar silencio si se trata de una inmensa esfera de amoniaco y metano en rotación?

Este artículo ha sido realizado por Montserrat Villar (astrofísica) y Carlos Briones (bioquímico, @brionesci) son investigadores del Consejo Superior de Investigaciones Científicas (CSIC) en el Centro de Astrobiología (CAB), centro mixto del CSIC y del Instituto Nacional de Tecnología Aeroespacial (INTA), asociado al NASA Astrobiology Institute (NAI) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo La astronomía transformada en arte se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia, arte, religión
  2. El Elogio del Horizonte de Chillida, un encuentro entre ciencia y arte
  3. Goethe, pensar la ciencia con el espíritu del arte
Kategoriak: Zientzia

Tomas poca estevia

Og, 2017-07-13 11:59

Reducir el consumo de azúcar no es sencillo. Nos hemos acostumbrado al sabor dulce. En artículos anteriores hemos concluido que consumir miel, siropes o azúcar moreno no es la solución, ya que son como consumir azúcar. Por eso una de las opciones que se nos plantean es sustituir estos azúcares por otros edulcorantes. Los datos de consumo apuntan en esta dirección: «Actualmente el volumen de consumo de azúcar en España es casi 40 veces mayor que el del edulcorante. En cambio, desde 2015 el volumen consumido de azúcar ha disminuido un 13%, mientras que el del edulcorante ha aumentado un 11,7%» [1].

De entre todos los edulcorantes que encontramos en el mercado (aspartamo, sacarina, maltitol, xilitol, acesulfamo, etc.) de los que hablaremos en una próxima entrega de la serie «Azúcar y otros edulcorantes», el que tiene una mejor imagen es la estevia.

  • Qué es la estevia

La sacarina, el aspartamo, y demás edulcorantes suelen denominarse coloquialmente «edulcorantes artificiales», mientras que la estevia suele llamarse «edulcorante natural». Esta distinción no es trivial, sino que atiende a una estrategia publicitaria: aquello que se relaciona con la naturaleza nos resulta más atractivo y saludable.

Los productos denominados estevia que encontramos en el mercado, tienen un aspecto similar al azúcar blanco, aunque en el envase encontremos la imagen de una planta.

Realmente, la estevia no se comercializa en España. Está prohibido vender la planta como alimento, ni siquiera sus hojas secas. La principal razón es que no es un producto de consumo tradicional y, la segunda razón, es que la planta contiene compuestos con actividad farmacológica, entre ellos hipotensores. Lo que se vende como estevia (a veces bajo otros nombres comerciales) se trata de una mezcla de diferentes edulcorantes, entre los cuales se encuentra el E-960 [2].

El aditivo E-960 se corresponde con el compuesto rebaudósido A. Este compuesto es un glucósido de esteviol, formado por tres moléculas de glucosa unidas a una molécula de esteviol. Al igual que los demás edulcorantes, tiene su propio número E. Esto significa que se trata de una sustancia que puede emplearse como aditivo alimentario, que ha pasado los controles sanitarios y que es segura para consumo.

  • Cómo se obtiene la estevia

Para la obtención del E-960 se utiliza la planta de stevia rebaudiana, originaria de sudamérica. De ahí el nombre comercial de los productos que contienen este aditivo y de ahí la estrategia de denominarlo «edulcorante natural».

Ilustración cortesía de Tamara Feijoo

El proceso de fabricación del E-960 comienza con una extracción de las hojas de la planta en el que se eliminan los compuestos que no interesan mediante floculación. Posteriormente se pasa la solución que queda por resinas de absorción, para concentrar los glucósidos. Después se recuperan los glucósidos mediante una solución alcohólica. A continuación, se realiza una purificación con una solución hidroalcohólica y se recristaliza [3]. De esta manera se obtiene el E-960 puro.

Los alimentos procesados que dicen contener estevia, como mermeladas, cremas de cacao o refrescos, suelen contener otros edulcorantes además del E-960. Podemos consultar todo lo que llevan revisando la lista de ingredientes.

  • ¿Qué llevan los productos llamados estevia?

Los edulcorantes comercializados bajo el nombre de estevia o similares (como stevia, steviva, svetia o truvia) contienen un escaso porcentaje de E-960, la mayoría es otro edulcorante, generalmente eritritol.

Si nos fijamos en la imagen superior, entre la lista de ingredientes encontramos el glucósido de esteviol (el E-960) por debajo del 1%, de modo que el 99% restante del producto es el otro ingrediente: eritritol. En una porción de 1,5 g de estevia, hay 1,5 g de eritritol.

El eritritol es el aditivo alimentario E-968. Forma pequeños cristales que se disuelven con facilidad, lo que recuerda al azúcar común. Pertenece a de la familia de los polialcoholes, como el xilitol, el sorbitol o el maltitol.

  • Ventajas e inconvenientes de la estevia comercial

El principal inconveniente a corto plazo del uso de polialcoholes como edulcorantes, es que producen efectos laxantes (unos en mayor medida que otros), y por eso figura esa advertencia en los envases de esta clase de productos. A la larga, si el consumo de estos edulcorantes es excesivo, provocarían diarrea, infamación, flatulencias, deshidratación y problemas de malabsorción asociados. De entre todos los edulcorantes, el eritritol es el polialcohol al que tenemos mayor tolerancia. Prácticamente no se metaboliza. El 90% se excreta por la orina sin causar problemas y, el 10% restante fermenta en el intestino y en el colon, pudiendo causar molestias digestivas [4].

Si el azúcar común tiene un poder edulcorante de 1, el E-968 lo tiene de 0,7, y el E-960 lo tiene de 3, con lo que la combinación de ambos edulcorantes da como resultado una sustancia que se utiliza casi en la misma proporción que utilizaríamos azúcar común. La principal ventaja es que la capacidad edulcorante de estos productos es similar a la del azúcar, pero con un aporte calórico prácticamente nulo.

La otra ventaja es que estos productos no fermentan en la boca, con lo que no están relacionados con la aparición de caries, como sí ocurre con los azúcares.

Otra ventaja es que el índice glucémico (IG) tanto del E-968 como del E-960 es nulo, es decir, que no afectan a los niveles de glucosa en sangre. Esto hace que puedan ser consumidos por diabéticos.

Una de las grandes desventajas de este tipo de edulcorantes es que un consumo continuado afecta a la percepción del sabor, aumentando el apetito y la tolerancia al sabor dulce. Las personas que toman habitualmente este tipo de productos aumentan de media un 30% el consumo de calorías frente a aquellas que no toman edulcorantes [5]. Esto se debe al efecto halo de los alimentos light [6], ya que saber que aportan menos calorías y que parecen más saludables, afecta a la conducta y el resultado es que comemos más de lo necesario. Cada vez tenemos más edulcorantes, más alimentos bajos en calorías, pero los índices de obesidad no paran de aumentar.

  • El mito de la estevia

Uno de los mayores mitos que nos encontramos haciendo una búsqueda por internet sobre las bondades de estos edulcorantes, es que la estevia cura la diabetes [7]. Ni cura la diabetes ni ninguna otra enfermedad. La única relación entre estos edulcorantes y la diabetes es que son aptos para diabéticos.

Otras bondades atribuidas a la estevia no se corresponden con ninguna propiedad achacable al E-960. Ni es antioxidante, ni bactericida, ni hipotensor, ni antiácido, ni un largo etcétera de propiedades sobre las que no hay ninguna evidencia.

  • Conclusiones

El producto que se comercializa como estevia no se trata de un edulcorante más natural que cualquier otro edulcorante. Aunque el adjetivo «natural» no significa nada concreto, lo asociamos con sustancias que se encuentran libres en la naturaleza y con sustancias con propiedades beneficiosas para la salud. La estevia no cumple ninguna de estas características. Eso no la hace ni mejor ni peor. La estrategia publicitaria de lo «natural», en oposición a lo «artificial», como si una cosa fuese buena y la otra no, es una estrategia que nace de la incultura y la promueve.

La estevia que se comercializa en España y gran parte de la Unión Europea se basa en una mezcla de diferentes edulcorantes, donde el E-960 (rebaudósido A que se extrae de la planta) es el que está en menor proporción. La mayor parte de estos productos son eritritol, edulcorante E-968.

En conjunto, sí podemos asumir que este edulcorante es mejor para la salud que el azúcar, ya que no afecta a la diabetes, a las caries, y afecta en menor medida a la obesidad y sus enfermedades asociadas. Que no sea malo para la salud, tampoco implica que sea beneficioso.

El gran factor contra del uso de este edulcorante es que perpetúa conductas alimentarias insalubres y la tendencia de consumir todo con un extra de dulzor. Los edulcorantes enmascaran el verdadero sabor de los alimentos y esa es la mayor pérdida de todas.

Principales fuentes consultadas:

[1] Estudio sobre el consumo y el gasto en azúcar y edulcorante de la población española, a partir de datos del Panel de Consumo Alimentario del MAPAMA. Revista Consumer, 2017

[2] ¿Es tan buena la Stevia? Dimetilsulfuro.es, 2015.

[3] Bioquímica, farmacología y toxicología de Stevia rebaudiana Bertoni. Alejandro Gutiérrez Cruz, Paulina Bermejo Benito. Memoria Trabajo Fin de Máster. Facultad de Farmacia. Universidad Complutense de Madrid, 2015.

[4] Efecto de los polioles en la nutrición y sus aplicaciones en la industria alimentaria. María Rodríguez Pérez y Mª Teresa Agapito Serrano. Memoria Trabajo Fin de Grado. Grado en Nutrición Humana y Dietética. Universidad de Valladolid, 2014.

[5] Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response. Qiao-Ping Wang, Yong Qi Lin, Lei Zhang, Yana A. Wilson, Lisa J. Oyston, James Cotterell, Yue Qi, Thang M. Khuong, Noman Bakhshi, Yoann Planchenault, Duncan T. Browman, Man Tat Lau, Tiffany A. Cole, Adam C.N. Wong, Stephen J. Simpson, Adam R. Cole, Josef M. Penninger, Herbert Herzog, G. Gregory Neely. Cell Metabolism. Volume 24, Issue 1, p75–90, 12 July 2016

[6] El “efecto halo” de los alimentos “saludables” (el efecto sacarina). Juan Revenga. El nutricionista de la general, 2013.

[7] Estudio de la Stevia (Stevia rebaudiana Bertoni) como edulcorante natural y su uso en beneficio de la salud. Rebeca Salvador-Reyes; Medali Sotelo-Herrera; Luz Paucar-Menacho. Departamento de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad Nacional del Santa, Ancash-Perú, 2014.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo Tomas poca estevia se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Miel y siropes, ¿son mejores que el azúcar?
  2. El azúcar oculto en los alimentos
  3. Azúcar moreno, ¿mejor que el azúcar blanco?
Kategoriak: Zientzia

Cómo fabricar hielo extraterrestre y verlo molécula a molécula

Az, 2017-07-12 17:00

La luna joviana Europa

Un equipo de investigadores encabezado por Arianna Gleason, del Laboratorio Nacional Los Álamos (Estados Unidos), ha sido capaz, por primera vez, de observar como se forma, molécula a molécula, un tipo de hielo de agua particualrmente denso llamado hielo VII. Este tipo de hielo solo se encuentra de forma natural fuera de la Tierra en entornos muy concretos, como tras la colisión de dos cuerpos planetarios helados.

Además de ayudar a los científicos a comprender mejor esos mundos remotos, los resultados podrían ayudar a comprender cómo el agua y otras sustancias experimentan transiciones de líquidos a sólidos, algo en absoluto trivial y mucho menos conocido de lo que se cree. Aprender a manipular esas transiciones podría abrir el camino algún día a crear materiales con nuevas propiedades exóticas.

Los estudios científicos de cómo los materiales sufren cambios de fase entre los estados de gas, líquido y sólido se han venido realizando durante siglos. Pero el diablo está en los detalles: los cambios de fase pueden ocurrir muy rápidamente y lo interesante ocurre a escala atómica. Simplemente por facilidad de planteamiento experimental los estudios de transiciones de fase a nivel atómico-molecular se han hecho a partir de sólidos estables y se ha tratado de reconstruir los pasos moleculares que han dado los líquidos predecesores. Lo que el actual trabajo ha hecho ha sido lo que nunca se había hecho: se ha observado directamente cómo se ha formado el hielo VII en tiempo real.

Para conseguir algo así no vale cualquier instrumental como veremos a continuación. Por ejemplo, para trabajar en las escalas de tiempo necesarias se ha empleado el Linac Coherent Light Source, el láser de rayos X más potente del mundo. Un haz de este láser se hizo incidir sobre una pequeña muestra de agua líquida contenida en un recipiente con una de las caras de de diamante. La incidencia del láser hace que las capas externas del diamante se vaporicen instantáneamnete generando una presión dentro del contenedor que supera en más 50.000 veces la presión que ejerce la atmósfera a nivel del mar.

Conforme el agua se compacta, un segundo haz láser de otro instrumento, el X-ray Free Electron Laser, incide en una serie de pulsos de solo un femtosegundo, la mil-billonésima parte de un segundo. Al igual que los flashes de una cámara, este láser de rayos X estroboscópico genera un conjunto de imágenes que ponen de manifiesto la progresión de los cambios moleculares que ocurren en el agua presurizada que cristaliza como hielo VII. El cambio de fase dura solo 6 mil millonésimas de segundo, o nanosegundos. Sorprendentemente, durante este proceso, las moléculas de agua se unieron formando “varillas” y no esferas como cabría esperar.

En las condiciones existentes en la superficie de nuestro planeta el agua cristaliza de una sola manera, denominada hielo Ih (“hielo uno-hache”) o simplemente “hielo hexagonal”, ya sea en glaciares o cubetas de hielo en el congelador. La investigación sobre los tipos de hielo extraterrestre, incluyendo el hielo VII, ayudará a los científicos a modelar entornos tan remotos como los impactos de cometas, las estructuras internas de cuerpos potencialmente sustentadores de vida y llenos de agua como la luna Europa de Júpiter y la dinámica de exoplanetas gigantescos, rocosos y oceánicos llamados super-Tierras.

Referencia:

A. Gleason et al (2017) Compression Freezing Kinetics of Water to Ice VII Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.025701

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Cómo fabricar hielo extraterrestre y verlo molécula a molécula se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. En Groenlandia el hielo recupera el agua que pierde por sublimación
  2. La fusión nuclear como fuente de neutrones eficiente
  3. Hielo cuadrado por doquier
Kategoriak: Zientzia

La insoportable levedad del TRES, o sobre la existencia de sistemas numéricos en base 3

Az, 2017-07-12 11:59

En dos entradas anteriores de la sección Matemoción del Cuaderno de Cultura Científica hemos hablado de las palabras para los números que utilizaban diferentes “pueblos primitivos” del mundo.

I) “Los números deben estar locos

II) “El gran cuatro, o los números siguen estando locos

En la primera entrada, se contaba como muchos de estos pueblos solamente disponían de dos vocablos para los números básicos “uno” y “dos”, términos que podían combinar para construir las palabras para algunos números más, de forma que para el tres se utilizaba una expresión del tipo “dos uno” o para el cuatro “dos dos”, como mucho hasta el número diez. A este método de contar se le denominaba “contar por pares” y en el libro Numbers through the ages, de Graham Flegg, se citan unos noventa “pueblos primitivos”, de África, Sudamérica, Norteamérica y la zona de Australia y Nueva Guinea, que utilizaban el método de contar por pares, o alguna sencilla variación.

En la segunda entrada, se mostraban algunos ejemplos de lenguas de “pueblos primitivos” que utilizaban métodos de contar por cuartetos, es decir, con el número cuatro como base. Estos no eran tan frecuentes como los métodos basados en el mencionado número 2 (contar por pares), o en los números 5, 10 o 20, muy frecuentes debido a que disponemos de 5 dedos en la mano, 10 en ambas manos o 20 dedos entre manos y pies.

El número 3 está muy presente en la obra de Joan Miró, como por ejemplo, en el cuadro “13, La escalera ha rozado el firmamento” (1940)

En esta entrada vamos a fijarnos en métodos de contar mucho más raros aún, aquellos que tienen como base el número tres. Como se menciona en el artículo Rarities in Numeral Systems, de Harald Hammarström, se han encontrado muy pocos ejemplos de “pueblos primitivos” que utilizaran un método de contar basado en el número tres, aunque alguno hay, en particular, en la zona de Nueva Guinea.

La lengua Ámbulas, que es una de las pertenecientes a la familia de lenguas Ndu de Papua Nueva Guinea, tiene unos 44.000 hablantes de la zona de Maprik, según Patricia Wilson (referencia [4], de 1989). Tiene tres dialectos, uno de ellos el Wingei, que es del que vamos a hablar aquí.

Los números en Wingei se cuentan, esencialmente, en grupos de tres, aunque en el relacionado dialecto Maprik de la lengua Ámbulas se utiliza la base cinco.

A continuación, mostramos una tabla con las palabras de los números en la lengua Ámbulas.

La palabra para el número “seis” es “taabak”, que es la palabra para designar la mano, luego en la lengua Ámbulas la mano se ve como una entidad de seis elementos. Esto quizás, es una especulación, sea debido a que cuentan en la mano cada uno de los cinco dedos, así como la propia mano, luego seis elementos (más abajo se muestra otra posible explicación). Para los números 7, 8 y 9 se suman los números básicos 1, 2, 3 al número 6. Así, el número “ocho” se dice “taabak kaayek vétik”, algo así como “seis más dos”, el número “nueve” es “taabak kaayek kupuk”, mientras que el número “siete” se dice solo “taabak kaayek”, en lugar de la expresión lógica “taabak kaayek nawurak”, como si se sobreentiende que se suma una unidad, ya que se suma algo.

La palabra para el número “doce” es dos manos o dos veces seis, “taaba vétik”. Y a partir de esta palabra se generan las palabras 10 y 11 al restarle 1 o 2. Así, la palabra para “diez” es “vétik taaba vétik”, es decir, 12 “taaba vétik”, menos (al colocarla por delante, como en los número romanos) 2 “vétik”, y la palabra para “once” es “nawurak taaba vétik”. Y así se puede seguir contando hasta el número 24. Y para el número “veinticuatro”, ya que no se puede decir cuatro veces seis, se utiliza una nueva palabra en Wingei, es “nawura mi”, cuya etimología no está clara.

Mujer Wingei en un mitin político

Otro ejemplo de pueblo que utiliza un sistema en base tres son los Waimiri Atroari, o Kinja (como se autodenominan), en la zona del Amazonas en Brasil, que está casi completamente desaparecido como consecuencia de su oposición al progreso que se estableció en su territorio (la construcción de una carretera o la instalación de algunas empresas, minera e hidroeléctrica), como se menciona en esta página sobre pueblos indígenas de Brasil.

Los Waimiri Atroari tenían un sistema en base tres para contar hasta nueve, que era “tres tres tres”. Las palabras para los números eran:

“uno” (1) = awenin (o awini, awinini);

“dos” (2) = typytyna;

“tres” (3) = takynyna, takynynapa;

“cuatro” (4) = typytypytyna (algo así como el doble de dos, ya que había una repeteción, algo así como en el método de contar por pares), o también, takynynapa awenini (que es el más lógico “tres más uno”);

“cinco” (5) = takynynapa typytyna (3 + 2);

“seis” (6) = takynynapa takynynapa (3 + 3);

“siete” (7) = takynynapa takynynapa awenini (3 + 3 + 1);

“ocho” (8) = takynynapa takynynapa typytyna (3 + 3 + 2);

“nueve” (9) = takynynapa takynynapa takynynapa (3 + 3 + 3).

Los Waimiri Atroari del Amazonas (Brasil)

Para terminar, la lengua Bukiyip, otra lengua de Papua Nueva Guinea (de las montañas Torricelli), también conocida como Arapesh de las montañas, que dispone de dos sistemas para contar, uno en base tres y otro en base cuatro, y cual de ellos se utiliza depende de cuales sean los objetos que se cuente. Así, para contar cocos, boniatos pequeños, fardos de leña, días, huevos, pájaros, lagartos, peces, árboles del pan, arcos o flechas se utiliza el sistema en base tres, mientras que el sistema en base cuatro se utiliza para contar nueces de areca, boniatos grandes, troncos (individuales) de leña, lunas (meses), carne de caza, plátanos o escudos.

La palabra para “mano” en la lengua Bukiyip, anauwip, aparece en ambos sistemas para contar. En el sistema en base tres significa “seis” (6) ya que se cuentan los 5 dedos y la base del pulgar, mientras que significa “veinticuatro” (24) en el sistema en base 4, ya que se considera que se multiplica por cuatro cada uno de los seis elementos mencionados de la mano, como se explica en el libro When languages die, de K. David Harrison.

Figura arapesh de las montañas Torricelli, en Papua Nueva Guinea

Bibliografía

1.- Georges Ifrah, Historia universal de las cifras, Espasa Calpe, 2002.

2.- Graham Flegg, Numbers through the ages, Macmillan, Open University, 1989.

3.- Harald Hammarström, Rarities in Numeral Systems, Rethinking universals: How rarities affect linguistic theory 45, 2010, p. 11-53.

4.- Patricia Wilson, Ambulas-Wingei statement, 1989 [http://www-01.sil.org/pacific/png/pubs/50783/Ambulas_Wingei_Stat.pdf]

5.- Diana Green, Diferenças entre termos numéricos em algumas línguas indígenas do Brasil, Boletim do Museu Paraense Emílio Goeldi, Série Antropologia, 1997, p. 179-207.

6.- K. David Harrison, When languages die: the extinction of the world languages and the erosion of human knowledge, Oxford University Press, 2007

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo La insoportable levedad del TRES, o sobre la existencia de sistemas numéricos en base 3 se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El problema de los tres caballeros y los tres criados
  2. El Ballet Triádico: un homenaje al número tres
  3. El Mengenlehreuhr: existencia y unicidad
Kategoriak: Zientzia

A mayor tamaño menor intensidad metabólica

Ar, 2017-07-11 17:00

En el curso de la evolución han ido surgiendo animales de tamaños cada vez mayores (aquí). Ese mayor tamaño ha ido acompañado por una especialización progresiva en el trabajo biológico, de manera que han ido surgiendo nuevos tejidos y ha aumentado el número de tipos celulares (aquí). Por otra parte, como vimos aquí, los animales de diferente tamaño tienen características estructurales diferentes; la proporción que representa cada componente, órgano o tejido es distinta en animales grandes y animales pequeños. En los pequeños el encéfalo o el tegumento, por ejemplo, son relativamente mayores que en los grandes; y estos tienden a tener osamentas proporcionalmente mayores y más tejidos grasos.

No solo los aspectos estructurales varían de acuerdo con el tamaño. También los aspectos funcionales cambian. Y el que quizás sintetiza de forma más clara ese cambio es el metabolismo. Obviamente, un animal de tamaño grande despliega una mayor actividad metabólica total que uno pequeño, por la simple razón de que el animal grande tiene más biomasa, más células y más mitocondrias. En términos puramente energéticos, el grande disipa una mayor cantidad de calor que el pequeño. Sin embargo, si en vez de considerar el metabolismo total de dos individuos de diferente tamaño atendemos a sus respectivas tasas metabólicas, comprobaremos que los animales pequeños tienen tasas metabólicas mayores que los grandes. La tasa metabólica representa la actividad metabólica por unidad de masa corporal; es pues, una medida de la intensidad relativa del conjunto de las reacciones químicas que tienen lugar en un organismo.

Los animales de menor tamaño desarrollan una mayor actividad biológica por unidad de masa que los grandes, y esto vale tanto si consideramos individuos de la misma especie como si la comparación la hacemos entre animales de distintas especies. Dado que el metabolismo se traduce, al final, en disipación de calor hacia el exterior, se suele decir que si un elefante tuviera la tasa metabólica de un ratón, el elefante ardería; el calor que generaría su actividad no podría disiparse a través de la superficie corporal, se acumularía y, a partir de una determinada temperatura, se echaría a arder1.

En 1883 Max Rubner, a partir de resultados experimentales, propuso que el metabolismo de un animal era proporcional a su superficie corporal, y no a su masa; esa idea era compatible con el hecho de que el calor resultante de la actividad metabólica se disipa a través de la superficie corporal. Hace ahora un siglo, August Krogh, el fisiólogo que recibió el premio Nobel por descubrir el mecanismo (apertura y cierre de arteriolas y capilares) mediante el que los músculos reciben cantidades variables de sangre en función de sus demandas metabólicas, propuso que el metabolismo debería ser una función de la masa del individuo de acuerdo con una ecuación potencial del tipo M = a Wb, en la que M es el metabolismo y W es la masa del animal. Si la idea de Rubner hubiese sido correcta, la potencia de esa ecuación debería valer 0,67 (2/3), ya que la masa es proporción lineal del volumen y 2/3 es la relación superficie:volumen. Sin embargo, Max Kleiber, en 1933 observó que, al menos para animales endotermos, el valor de esa potencia era 0,75 (3/4) y no 0,67. Y en 1960, A. M. Hemmingsen generalizó esa relación a los animales ectotermos.

Desde entonces se han buscado todo tipo de explicaciones para el valor 0,75, pero ninguna ha concitado suficiente acuerdo en la comunidad científica. La última propuesta de cierto éxito se debe a Geoffrey B. West, James H. Brown y Brian J. Enquist (1997) y se trata de una explicación basada en la arquitectura de los sistemas circulatorios. Según un elegante análisis teórico en el que incorporan todas las variables relevantes de los sistemas respiratorios y circulatorios llegan a la conclusión de que la potencia 0,75 (3/4) es una característica de todos los organismos y se deriva de un modelo general que describe el modo en que los materiales esenciales son transportados a través de redes fractales de tubos que al ramificarse van ocupando el espacio interno disponible para tales estructuras. Es un modelo que asume que la energía disipada en esos procesos de transporte se minimiza y que los tubos terminales (capilares en el sistema circulatorio) no varían con el tamaño del animal. El modelo no solo proporciona un valor teórico para la potencia que relaciona el metabolismo con el tamaño; también lo hace para otros parámetros característicos de la fisiología respiratoria y circulatoria que se hallan muy próximos a las determinaciones experimentales.

Sin embargo, aunque cosechó un éxito considerable, tampoco da cuenta precisa de la variabilidad observada. La razón es que conforme se han ido obteniendo datos para más especies y se han ido refinando los análisis, se ha comprobado que la función que relaciona metabolismo y tamaño tiene una mayor curvatura que la que corresponde a una relación potencial o, en otras palabras, que el valor de b de la ecuación M = a Wb se eleva conforme aumenta el tamaño de los animales. Cuando se trata de animales de pequeño tamaño, ese valor se aproxima a 2/3, y en animales de gran tamaño, a 3/4. Y aunque se han propuesto modificaciones al modelo que dan cuenta del fenómeno descrito, en realidad seguimos sin conocer la naturaleza íntima de la relación existente entre metabolismo y tamaño, o sea, la base funcional de tal relación.

En todo caso, y para concluir, si consideramos la enorme variabilidad de tamaños en el mundo animal, no es mala aproximación seguir trabajando con una potencia cuyo valor sea 0,75 (3/4), si bien cuando se dispone de buenos datos para alguna especie, lo lógico es utilizar la ecuación propia de esa especie siempre que sea preciso. Por otra parte, si de lo que se trata es de constatar, sin ulteriores intenciones, que la intensidad metabólica de los animales disminuye conforme aumenta su masa, la ecuación M = a W3/4 es perfectamente adecuada.

Fuentes:

Tom Kolokotrones, Van Savage, Eric J. Deeds & Walter Fontana (2010): Curvature in metabolic scaling. Nature 464, 753-756 (doi: 10.1038/nature08920)

Geoffrey West (2017): Scale, Penguin Press, New York

1Es una imagen muy expresiva, pero en realidad es una exageración, porque el elefante moriría enseguida y la actividad metabólica se detendría antes de que llegase a acumularse tanto calor como para iniciarse la combustión.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo A mayor tamaño menor intensidad metabólica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. A mayor tamaño, mayor complejidad
  2. El tamaño relativo de los órganos animales
  3. Evolución del tamaño animal
Kategoriak: Zientzia

La primera ley de la termodinámica

Ar, 2017-07-11 11:59

Lo que llevamos visto en esta serie, cosas fáciles de entender, macroscópicas, en las que solo hemos empleado algunas relaciones matemáticas muy elementales, nos sobra y nos basta junto con alguna definición adicional para establecer dos de las leyes fundamentales del universo. Así, como suena. En ambos casos son afirmaciones de imposibilidad, es decir, establecen que hay cosas imposibles. veremos en esta entrega la primera y veremos la segunda en la próxima.

Si consideramos al Bugatti Chiron en movimiento como un sistema termodinámico, en él no se cumple la primera ley de la termodinámica. ¿Por qué?

La primera ley de la termodinámica es una generalización de la conservación de la energía en los procesos térmicos. Se basa en la conclusión de Joule de que el calor y la energía son equivalentes. Pero para llegar a ella hay que sortear algunas trampas en el camino.

A partir de la conclusión de Joule podríamos caer en la tentación de llamar al calor energía “interna” asociada con la temperatura. Podríamos entonces agregar calor a las energías potencial y cinética de un sistema, y llamar a esta suma la energía total, que es lo que conservaría. De hecho, esta solución funciona bien para una gran variedad de fenómenos, incluyendo los experimentos de Joule. Los problemas surgen con la idea de “contenido” de calor de un sistema. Por ejemplo, cuando se calienta un sólido hasta su punto de fusión, una “entrada de calor” adicional provoca la fusión pero sin aumentar la temperatura. Con este sencillo experimento vemos que considerar simplemente la energía térmica medida solo por un aumento de temperatura como parte de la energía total de un sistema no dará una ley general completa.

En lugar de “calor”, podemos usar el concepto de energía interna, esto es, una energía en el sistema que puede tomar formas no directamente relacionadas con la temperatura. Podemos entonces usar la palabra “calor” para referirnos solamente a una transferencia de energía entre un sistema y su entorno. De forma análoga, el término trabajo no lo utilizaremos para describir algo contenido en el sistema, sino que describe una transferencia de energía de un sistema a otro. Calor y trabajo son, pues, dos formas en las que la energía se transfiere, no energías.

Estas definiciones no permiten una declaración simplista como “la entrada de calor a un sistema aumenta su energía interna, y el trabajo hecho en un sistema aumenta su energía mecánica”. La entrada de calor a un sistema puede tener efectos distintos al aumento de la energía interna. En un máquina de vapor, por ejemplo, la entrada de calor aumenta la energía mecánica del pistón. Del mismo modo, el trabajo realizado en un sistema puede tener efectos distintos al aumento de la energía mecánica. Al frotarnos las manos en un día frío, por ejemplo, el trabajo que hacemos aumenta la energía interna de la piel de las manos lo que, en este caso, se traduce en un aumento de la temperatura.

En resumen, una ley general de conservación de la energía debe incluir la transferencia de energía como trabajo y la transferencia energía como calor. Además, debe incluir el cambio en la energía total del sistema, pero no con una parte “mecánica” y una parte “interna”.

En un sistema aislado, esto es, un sistema que no intercambia materia ni energía con su entorno, la energía total debe permanecer constante. Si el sistema intercambia energía con su entorno pero no materia (lo que se llama sistema cerrado), puede hacerlo solo de dos formas: una transferencia de energía bien en forma de trabajo realizado sobre o por el sistema, bien en forma de calor hacia o desde el sistema. En el caso de que exista transferencia de energía, el cambio en la energía del sistema debe ser igual a la energía neta ganada o perdida por el entorno.

Formalmente*, llamemos W al trabajo realizado sobre o por el sistema (como el cilindro en una máquina de vapor). Si el trabajo lo realiza el sistema, diremos que W es negativo; si el trabajo se realiza sobre el sistema, diremos que W es positivo. De forma similar, llamemos ΔQ a la transferencia neta de calor hacia o desde el sistema. Si la transferencia neta de calor es hacia el sistema, ΔQ será positiva; si la transferencia neta sale del sistema, ΔQ será negativa.

Ya lo tenemos todo para enunciar la primera ley de la termodinámica:

La primera ley de la termodinámica establece que el cambio en la energía total de un sistema cerrado, ΔE, viene dado por la suma del trabajo realizado sobre o por el sistema y la transferencia neta de calor hacia o desde el sistema. Simbólicamente, ΔE = W + ΔQ.

Esta expresión general incluye como casos especiales las versiones preliminares de la ley de conservación de la energía que hemos dado en entregas anteriores de esta serie. Si no hay transferencia de calor en absoluto, entonces ΔQ = 0, y ΔE = W. En este caso, el cambio en la energía de un sistema es igual al trabajo realizado sobre o por él. Por otra parte, si no se realiza trabajo ni sobre ni por el sistema, entonces W = 0 y ΔE = ΔQ. En este caso el cambio en la energía del sistema es igual a la transferencia neta de calor.

Esta ecuación tan sencilla es de una utilidad tremenda. Pero, si bien hemos enunciado la primera ley, aún queda un misterio por resolver, que es la estructura de esa energía interna de la que, de momento, solo sabemos que en algunos casos está relacionada con la temperatura y cómo se relaciona con la enería total del sistema. Lo veremos más adelante en esta serie, cuando tengamos la necesidad de introducir el concepto de átomo. Algo que, hasta ahora no nos ha hecho falta.

Nota:

* Este criterio de signos es importante, ya que varía en función del autor. Nosotros empleamos el criterio más intuitivo, a saber, tomar al sistema como referencia. Por tanto, lo que recibe el sistema es positivo y aumenta su energía total y lo que sale del sistema es negativo y la disminuye. Si usas este texto como apoyo en tus clases comprueba que el criterio de signos es el mismo.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La primera ley de la termodinámica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Carnot y los comienzos de la termodinámica (2)
  2. Carnot y los comienzos de la termodinámica (1)
  3. Los experimentos de Joule
Kategoriak: Zientzia

Naturaleza, ciencia y cultura en el bicentenario de Henry David Thoreau

Al, 2017-07-10 17:00

Antonio Casado da Rocha

Henry David Thoreau

El escritor norteamericano Henry David Thoreau (Concord, Massachusetts, 1817) es mundialmente conocido por sus méritos literarios (en particular, como detonante del género que luego se ha dado en llamar como nature writing) y por haber inspirado a activistas sociales como Gandhi, Martin Luther King, etc., diferentes prácticas políticas en torno al concepto de “desobediencia civil”. Pero en las numerosas menciones que ha recibido en los medios de comunicación a propósito del bicentenario de su nacimiento, que se celebra este 12 de julio, no abundan las referencias a su trabajo como naturalista ni como crítico de la cultura tecnocientífica. Son estas las que quisiera presentar aquí aunque sólo sea en parte.

Afortunadamente, la revista Nature publicó este 15 de junio una oportuna pieza sobre ese mismo tema. En ella, Randall Fuller describe la evolución del pensamiento de Thoreau con respecto a la ciencia tras la publicación de su obra maestra, Walden, en 1854. Hasta esa fecha, Thoreau se había mantenido más o menos fiel al movimiento trascendentalista, un grupo de intelectuales agrupados en torno a Ralph Waldo Emerson. No es sencillo definirlo, pero por un lado podemos decir (como hace Fuller) que el trascendentalismo surgió como una reacción de descontento con el modo de vida americano en la primera mitad del siglo XIX. Por el otro, cabe añadir que el trascendentalismo fue una forma de adaptar a la cultura americana el idealismo y el romanticismo europeos (como dijo Emerson, es “el idealismo tal como se lo entiende en 1842”).

Ese movimiento trascendentalista tenía una visión peculiar de la naturaleza. En lo que podríamos considerar su manifiesto, el ensayo Nature de Emerson (1836), se la describe como “el símbolo del espíritu”. Para los trascendentalistas el mundo empírico, visible, tenía un aspecto moral y espiritual que era intrínsecamente bueno. De hecho, como para ellos toda naturaleza es humana o aspira a ser humanizada, Emerson y sus seguidores veían el avance de la ciencia moderna y la revolución industrial como algo inevitable y positivo, prueba del progresivo paso del reino de la necesidad al de la libertad, de la asimilación de todo el universo a la racionalidad.

Thoreau habría sido el primer pensador norteamericano en tomar en serio a Darwin, en la imagen.

Emerson, que era teólogo por formación, estaba encantado con la idea. Thoreau, que sabía algo más de ciencia, no tanto. Fuller describe cómo Thoreau se sentía dividido porque sus investigaciones sobre el terreno le alejaban cada vez más de esa visión optimista de la naturaleza. Y lo hace relacionándolo con Darwin, cuyo Origin of Species (1859) leyó en 1860. El artículo de Nature muestra a Thoreau como el primer norteamericano que se tomó en serio a Darwin y puso en práctica sus intuiciones sobre una naturaleza capaz de autodirigirse sin necesidad de acción divina: “un mundo natural ciegamente autónomo, guiado por la lucha y la contingencia, autor de sí mismo”. Darwin reforzó en Thoreau una intuición revolucionaria para su tiempo: que la naturaleza existía al margen de lo humano, y que con eso bastaba para la ciencia (Fuller 2017: 350).

No hay duda de que, efectivamente, Thoreau sintió verdadero entusiasmo por lo esa “teoría del desarrollo” que había encontrado en su lectura de Darwin: una teoría que, a juicio de Thoreau, “implica una fuerza vital mayor en la naturaleza, porque es más flexible y adaptable, y equivale a una especie de nueva creación constante” (18/10/1860). Para Thoreau la ciencia no era una práctica contemplativa y alejada de cuestiones mundanas, sino la mejor herramienta para la lucha por la vida, y admiraba por igual el valor de Darwin, el de Tales en sus observaciones nocturnas y el de Linneo preparándose para una expedición a Laponia (Thoreau 1842: 4-5).

Ahora bien, Nature no tiene mucho espacio para temas de humanidades y el relato que cuenta Fuller carece de matices. Es cierto que Darwin ayudó a poner en marcha el programa de Alexander von Humboldt (brevemente, dar cuenta del mundo de manera generativa y holística, como un cosmos), pero también que lo hizo dentro de una tendencia general hacia la especialización del conocimiento. Y, como explica otra autora (Walls 2010: 97), en ese momento ya se estaba dando en la cultura literaria un similar movimiento de profesionalización. En respuesta a la desintegración de esa “cultura única” en la que ciencias y artes no estaban separadas, la literatura comenzó a independizarse de la ciencia natural. A su vez, esta abandonó sus roles tradicionales de creación estética, conciencia moral y critica social, que fueron progresivamente asumidos por la cultura literaria.

Alexander von Humboldt

Thoreau no fue ajeno a ese fenómeno y, por así decirlo, vio abrirse un abismo a sus pies. Como seguidor de Humboldt, Thoreau quería que la ciencia fuera poética, que la literatura pudiera hablar del mundo natural tanto como del social, y encontraba en la naturaleza intuiciones morales (lo que entonces llamaban la higher law o “ley superior”) desde las que criticar al sistema económico vigente. Pero ni la ciencia ni la poesía iban en esa dirección. De ahí la enorme vacilación o inquietud que atraviesa los 25 años de escritura de su diario. En él, Thoreau se debate con la pregunta de si una descripción científica del mundo puede o no hacer justicia a la pluralidad de la experiencia humana. En un apunte Thoreau duda de que la persona dedicada a la ciencia “descubra un mundo que la mente humana pueda habitar con todas sus facultades” (5 de septiembre de 1851). En otro, elogia al científico porque “la suma de lo que cualquier escritor puede ofrecer es simplemente cierta experiencia humana, ya sea poeta o filósofo u hombre de ciencia. La persona con más ciencia es la persona más viva; su vida es el mayor de los eventos” (6 de mayo de 1854).

El pasaje anterior está escrito poco antes de la publicación de Walden; hasta ese momento, la ciencia era un elemento de la cultura común o colectiva de los EE.UU. y no había una autoridad central que otorgase sus credenciales a quienes luego trabajarían como científicos, a menudo al margen de la universidad. Formado en Harvard, el propio Thoreau colaboró con científicos universitarios como Louis Agassiz, pero la palabra scientist no fue de uso común hasta después de la muerte de Thoreau en 1862. Sin embargo, en esa década de 1850 los “hombres de ciencia” comenzaron a identificarse como un grupo distinto, formado en las universidades.

Durante esos años Thoreau presenció cómo se separaban, entre otras, la cultura de las ciencias y la de las letras. Y lo constata en repetidas ocasiones, afirmando por ejemplo que ya “es imposible que la misma persona vea las cosas desde el punto de vista del poeta y desde el punto de vista del científico” (18 de febrero de 1852). De modo que el diario de Thoreau es de gran interés para estudiar lo que luego se llamó el problema de la separación de “las dos culturas”, por decirlo con la ya muy trivializada distinción de C. P. Snow.

Lago Walden (Concord, Massachusetts, EE.UU.). Fueron los dos años que pasó viviendo en su orilla los que inspiraron a Thoreau su obra “Walden” (1854). Foto: Antonio Casado da Rocha

Mi hipótesis, que aquí no puedo más que esbozar, es que Thoreau se resistió a la separación de esas dos culturas y que esa oposición se refleja en sus escritos sobre la percepción y apreciación del paisaje. En un momento de auge del positivismo y su ideal de completa objetividad, Thoreau desarrolló una visión que no es ni empirista ni idealista. En ella, el paisaje no es algo meramente natural ni cultural, objetivo o subjetivo, sino una relación que se halla entre el sujeto y el objeto, un proceso que le afecta. Un fenómeno que no es independiente del observador, sino que interactúa con él. Este pasaje me parece crucial al respecto:

“Creo que el científico comete un error que también repite la mayoría de la humanidad: prestar toda tu atención únicamente al fenómeno que te interesa, como si fuera algo independiente de ti, y no como si estuviera relacionado contigo. El hecho relevante es su efecto sobre mí. […] El filósofo que pretende reducir el arco iris a su explicación nunca lo ha visto de verdad. Con respecto a esos objetos, observo que lo que me importa no son ellos mismos, ese objeto con el que trafican los científicos, sino que mi punto de interés es algo que está entre los objetos y yo.” (5 de noviembre de 1857)

En esta manera de concebir el paisaje Thoreau no lo construye como un objeto estático, sino como una interacción con el sujeto observador a través de las posibilidades vitales que le ofrece (affordances). Para ilustrarlo podemos acudir a otro pasaje del diario, del 3 de octubre de 1859, en el que advirtió el humo que salía de la chimenea de una granja entre los bosques donde, supuso, alguna familia estaría preparando la cena. “Hay pocas vistas más agradables para el viajero pedestre”, escribió, suponiendo que bajo el humo todo sería felicidad doméstica. Pero también era consciente de que eso solo era una suposición, que de cerca las cosas de la granja no tendrían por qué ser tan idílicas como las imaginaba el viajero. Thoreau se lanza entonces a una larga meditación sobre ese fenómeno de idealizar todo aquello que vemos. Esta es su conjetura:

“¿Por qué nos encantan las perspectivas lejanas? Porque, inmediata e inevitablemente, imaginamos una vida que vivir allí […] Mentalmente, siempre estamos tomando muestras. ¿Por qué siempre nos parecen bellos los valles lejanos, los lagos, las montañas en el horizonte? Porque por un momento nos damos cuenta de que pueden ser la casa del hombre, que la vida humana puede estar en armonía con ellos. […] Creemos que vemos estas hermosas moradas y la alegría nos invade, cuando tal vez solo veamos nuestros propios tejados. Siempre estamos ocupados en alquilar casa y tierras y poblarlas con nuestra imaginación. No hay belleza en el cielo, sino en el ojo que lo ve. La salud, la moral alta, la serenidad: he ahí los grandes paisajistas.”

Es una reflexión inicialmente trascendentalista en su reconocimiento de la belleza como algo subjetivo y como fuente de inspiración moral, pero que al mismo tiempo va más allá y deconstruye en cierto sentido ese sentimiento de idealización, haciéndolo depender de la salud y las circunstancias objetivas del sujeto. Para Thoreau la belleza no está en el cielo, sino en una capacidad que es inmanente a la humanidad. Es una llamada a habitar humanamente la tierra; dicho de otra forma, a sostener las condiciones sociales que hacen posible la vida y su mejora, que Thoreau identifica con la salud y la virtud.

Esa intuición de que la percepción del entorno está relacionada con lo que el entorno nos ofrece en términos de su habitabilidad u otras oportunidades vitales (affordances) ha sido elaborada por la psicología ecológica del siglo XX y puede ser aplicada a la filosofía del paisaje (Menatti y Casado 2016). Esa aplicación permite al menos dos cosas. Por un lado, celebra la pluralidad de la experiencia humana al tiempo que, por el otro, intenta hacer justicia epistémica y dar a la ciencia lo que es de la ciencia: un mundo natural y cultural con límites reales pero que, como escribe Thoreau, “no están fijados ni son más rígidos que la elasticidad de nuestra imaginación” (31 de mayo de 1853). Thoreau explora los límites de la racionalidad, tanto aquella con la que trabajamos los humanos en nuestra toma de decisiones cotidiana, que está acotada por muchos factores que no la hacen perfecta, como la racionalidad colectivamente desplegada sobre el mundo a través de las tecnociencias, que también tiene límites que tenemos que conocer y aprender a aceptar, los propios límites biofísicos del planeta.

Esa racionalidad es en lo que estamos trabajando ahora, en el siglo XXI, buscando algo que ya no puede ser la racionalidad ilusoria o desalmada de los siglos XIX y XX. Ha de ser una racionalidad consciente de sus límites pero tan rica como puede llegar a ser la experiencia humana en toda su pluralidad. Pues no hay una respuesta única a la pregunta sobre la naturaleza, ese conjunto de procesos con los que seguimos traficando, y que no son objetivos ni subjetivos, de ciencia o de letras, o eso al menos parece decirnos aún Thoreau desde la atalaya de sus dos siglos de vida.

En resumen, Thoreau apreció la cultura y la ciencia de su tiempo, de Humboldt a Darwin, y entendió la naturaleza en una clave más empírica o factual que el trascendentalismo de Emerson. Pero no puede decirse que recibiera el darwinismo como un ácido que disuelve toda idea de trascendencia (a la Dennet) sino que mantiene algunos elementos románticos dentro de esa visión intersubjetiva de la percepción humana que hemos esbozado mediante el concepto de affordance, contribuyendo así a una propuesta de racionalidad consciente en la que se aúnan ciencia y experiencia humana.

Referencias:

Casado da Rocha, Antonio. Una casa en Walden y otros ensayos sobre Thoreau y cultura contemporánea. Logroño, Pepitas, 2017.

Fuller, Randall. Thoreau’s debt to Darwin. Nature 546 (15 June 2017): 349-350.

Menatti, Laura, y Antonio Casado da Rocha. Landscape and Health: Connecting Psychology, Aesthetics, and Philosophy through the Concept of Affordance. Frontiers in Psychology 7:571 (2016): 1-17.

Thoreau, Henry David. Natural History of Massachusetts.The Natural History Essays, Edited by Robert Sattelmeyer. Salt Lake City, Peregrine Smith Books, 1980.

Walls, Laura Dassow. Greening Darwin’s Century: Humboldt, Thoreau, and the Politics of Hope. Victorian Review 36:2 (2010): 92-103.

Sobre el autor: Antonio Casado da Rocha es investigador titular en el Departamento de Filosofía de los Valores y Antropología Social de la UPV/EHU

El artículo Naturaleza, ciencia y cultura en el bicentenario de Henry David Thoreau se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La cultura científica como cultura contemporánea: sobre “Ciencia ficción”, de Cristina Blanco
  2. Ciencia, naturaleza y arte: la química y sus metáforas, por Fernando Cossío
  3. Ciencia y desarrollo: naturaleza de una relación, por Juan Ignacio Pérez
Kategoriak: Zientzia

Riesgo de sufrir los efectos de un vertido de petróleo en el mar de las costas europeas

Al, 2017-07-10 11:59

El profesor Javier Fernández-Macho ha llevado a cabo un estudio con el que propone un método para medir y comparar el riesgo que tienen las regiones costeras europeas de padecer los efectos de un vertido de petróleo en el mar. El modelo estadístico propuesto y probado por el investigador ha fijado un ranking de riesgo relativo o vulnerabilidad de regiones costeras frente a este tipo de polución, que de aplicarlo “podría ayudar a diseñar políticas de protección y reducir la vulnerabilidad de recursos marinos y costeros sensibles”, explica Fernández-Macho.

“El enfoque del índice no es tanto evaluar uno a uno el daño que vaya a causar un vertido, sino poner en relación el riesgo de vertidos relativo de cada región frente al resto de regiones europeas —añade—. Se trata de una ordenación para saber cuáles son las regiones que corren más riesgo, y quizá se tengan que proponer soluciones en los territorios donde corren más riesgo antes que en otros”.

El investigador ha utilizado un modelo computacional que simula el efecto de vertidos de petróleo marinos en toda la costa europea. Para componer este modelo ha considerado cuatro variables relevantes, como son la distancia desde la costa hasta el lugar donde ocurre cada incidente marítimo, la magnitud del vertido liberado como resultado del incidente marítimo, la forma y longitud de la zona costera potencialmente afectada y el efecto de las corrientes oceánicas en el lugar y fecha del incidente.

El modelo se basa en datos de 301 incidentes y accidentes ocurridos en aguas europeas entre 1970 y 2014, obtenidos de la base de datos pública de ITOPF —organización de compañías navieras y diversas instituciones relacionadas con el transporte internacional en aguas oceánicas de todo el mundo—. Con todo ello, se ha evaluado y dibujado en un mapa el riesgo relativo de 429 unidades territoriales y 156 regiones costeras definidas por Eurostat, la Oficina Europea de Estadística.

Los resultados del estudio muestran una alta heterogeneidad entre las regiones costeras europeas, y las áreas con mayor riesgo de vertido marino se encuentran predominantemente en la costa atlántica. En particular, según el estudio, las costas del Reino Unido se ven notablemente afectadas, ya que de las primeras 25 unidades territoriales más expuestas a los vertidos marinos solo hay cinco que no son británicas.

Tal y como señala Fernández-Macho, las conclusiones obtenidas en este estudio han resultado ser de bastante sentido común. Como ejemplo, cita los resultados relacionados con el Reino Unido: “En el Canal de la Mancha existe un gran tráfico marítimo, y debido a la estrechez de algunas zonas es muy lógico que a lo largo del tiempo haya habido más accidentes importantes cercanos a la costa que en otras zonas”. Asimismo, el investigador constata que “mientras no se apliquen políticas de cambio, es muy fácil extrapolar lo conocido históricamente al futuro”, es decir, es muy probable que donde haya habido accidentes graves vuelvan a ocurrir. Por todo ello, el investigador de la UPV/EHU advierte de que “las costas europeas, y sobre todo la costa atlántica, están en gran riesgo, y que es necesario aplicar políticas a nivel europeo, nacional o local para paliar el grave problema que pueden causar los vertidos de petróleo”.

En lo que respecta a las costas vascas, el investigador explica que “no son rutas por las que pasan grandes transportes marítimos y petroleros peligrosos. Nuestra afectación va más bien por el sentido de que las corrientes marinas puedan traer el vertido a nuestras costas. Por lo que nuestros niveles de riesgo son relativamente bajos”.

El estudio ha captado la atención de investigadores internacionales, interesados en ver cómo se podría adaptar el mismo tipo de índice en aguas de otros entornos geográficos.

Referencia:

J. Fernández-Macho.. Risk assessment for marine spills along European coastlines. Marine Pollution Bulletin, vol 113 (2016), pp. 200-210. DOI: 10.1016/j.marpolbul.2016.09.015.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Riesgo de sufrir los efectos de un vertido de petróleo en el mar de las costas europeas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Los efectos protectores de la lactancia materna frente a la contamincación atmosférica
  2. El petróleo, los desastres y la prensa
  3. La filosofía como actividad de alto riesgo
Kategoriak: Zientzia

La ecología de una enfermedad

Ig, 2017-07-09 11:59

Erythema migrans (literalemente, enrojecimiento que se desplaza) en la cara de una niña a la que ha picado una garrapata en la cabeza.

La borreliosis de Lyme puede ser bastante grave. Es la enfermedad más transmitida por garrapatas en el Hemisferio Norte y, al menos en los Estados Unidos, la que más se contagia a través de una picadura. La contraen unas 300.000 personas al año en Norteamérica y 65.000 en Europa. La causa una bacteria de tipo Borrelia.

El síntoma más normal de la infección es un enrojecimiento de la piel denominado erythema migrans que comienza en el lugar de la picadura una semana después de haberse producido, aunque muchos afectados no lo experimentan. Otros síntomas tempranos incluyen fiebre, dolor de cabeza y sensación de cansancio. En caso de no tratarse a tiempo la enfermedad, puede haber síntomas adicionales, como imposibilidad para mover uno o ambos lados de la cara, dolores articulares, fuertes cefaleas con rigidez de cuello, y palpitaciones, entre otros. Y meses o años más tarde pueden producirse nuevos episodios de algunos de estos síntomas. En esta enfermedad es importantísimo el detectarla cuanto antes porque los tratamientos disponibles son mucho más efectivos en fases tempranas. A día de hoy, la única prevención posible consiste en no exponerse a las garrapatas y, en caso de ser picado por una de ellas, retirarla cuanto antes porque, al parecer, el ácaro necesita varias horas para producir una infección efectiva.

La incidencia de la enfermedad de Lyme no ha dejado de aumentar últimamente; el número de personas contagiadas ha crecido, y cada vez es mayor la extensión del área geográfica en que se dan casos de borreliosis. Ese aumento sería una consecuencia más del aumento global de temperatura, pues este factor tiene una incidencia directa en el ciclo de vida de las garrapatas. La supervivencia de los ácaros y su velocidad de desarrollo son más altas a temperaturas elevadas.

Al igual que ocurre con otras enfermedades infecciosas, también la de Lyme tiene su propia ecología. Los ratones de campo de zonas boscosas son los principales responsables de la extensión de la enfermedad. Las garrapatas se adhieren con facilidad a los roedores y mediante su picadura les transmiten las bacterias. Por esa razón, los años en que cuentan con abundante alimento (bellotas, por ejemplo), sus poblaciones crecen mucho, y las garrapatas tienen muchas posibilidades de encontrar un huésped. De esa forma, los años buenos para los ratones también lo son para las garrapatas que, andando el tiempo, verán aumentar notablemente su población. Las consecuencias para los seres humanos son evidentes: cuantas más garrapatas hay, más probable es que se produzcan picaduras y, por lo tanto, contagios. La relación causal está bien establecida y los especialistas son capaces de predecir con dos años de antelación brotes especialmente importantes de borreliosis a partir de la abundancia de bellotas en los bosques.

La borreliosis no sería tan preocupante si hubiese una vacuna efectiva pero a día de hoy tal vacuna no existe, aunque existió. Se llegó a comercializar una hace algunos años, pero la compañía que la desarrolló decidió retirarla del mercado cuatro años después, como consecuencia de las presiones ejercidas por los grupos anti-vacunas que difundieron la especie de que provocaba artritis; era una acusación sin fundamento.

Es bueno conocer con antelación cuándo aumentará la densidad de garrapatas y, con ella, la posibilidad de contagios. Puede alertarse así a la población de las zonas más afectadas, de manera que extremen los cuidados para evitar la infección o detectarla cuanto antes. Pero la solución más efectiva, sin duda, es la vacuna. El que carezcamos hoy de ella es otra triste victoria de quienes se oponen al progreso de la dignidad y bienestar humanos.

—————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————

Una versión anterior de este artículo fue publicada en el diario Deia el 23 de abril de 2017.

El artículo La ecología de una enfermedad se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. En busca de los genes de la enfermedad celíaca
  2. Celiaquía: el ADN no codificante es clave en el desarrollo de la enfermedad
  3. Parkinsonia parkinsoni
Kategoriak: Zientzia

Arte & Ciencia: La relación entre el desarrollo de la ciencia y la creación artística

La, 2017-07-08 11:59

El arte y la ciencia son dos formas de conocimiento aparentemente alejadas, en gran medida consecuencia de la especialización profesional y la educación compartimentada. Del estudio de esta impostada separación surgió el estereotipo de las dos culturas, las ciencias y las humanidades, para referirnos a esa brecha de conocimiento. La realidad es que la ciencia y el arte sí están conectadas y que ninguna forma de conocimiento es impermeable a otra. Por poner algunos ejemplos: ¿Cómo podría crearse una obra plástica sin las técnicas propiciadas por la ciencia? ¿Cómo podríamos interpretar la elección de materiales?

Estas y otras cuestiones relacionadas furon tratadas por destacados profesionales -artistas, ilustradores, filósofos y científicos- que han puesto el foco en ese difuso trazo que une la ciencia y el arte. El ciclo Ciencia & Arte se desarrolló, bajo la dirección de Deborah García Bello, a lo largo de cuatro jornadas que se celebraron los jueves días 6 y 27 de abril y 11 y 25 de mayo de 2017 en el auditorio del Museo Guggeheim Bilbao.

Esta actividad de la Cátedra de Cultura Científica de la UPV/EHU se enmarca en el programa TopARTE que conmemora el XX Aniversario del Museo Guggenheim Bilbao.

Segunda jornada. 3ª conferencia

José Ramón Marcaida, especialista en historia de la ciencia e historia del arte de la Edad Moderna de la Universidad de Cambridge : La relación entre el desarrollo de la ciencia y la creación artística

Las primeras ilustraciones de animales y plantas, el coleccionismo de maravillas naturales, el trabajo de los artistas… A lo largo de su historia, el ser humano ha representado la naturaleza de diferentes maneras que han jugado un papel fundamental en la generación de conocimiento científico. Pero esta influencia también se ha dado en la dirección inversa, puesto que los descubrimientos científicos han servido de inspiración y han influido en el desarrollo de técnicas pictóricas y estilos artísticos, marcando el devenir de la historia del arte.

La relación entre el desarrollo de la ciencia y la creación artística

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Arte & Ciencia: La relación entre el desarrollo de la ciencia y la creación artística se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Arte & Ciencia: Química y Arte, reacciones creativas
  2. Arte & Ciencia: La importancia de la ciencia para la conservación del arte
  3. Arte & Ciencia: Imaginario marino
Kategoriak: Zientzia

Orriak