#Naukas15 Mosquito tigre
Aitana Oltra habla del mosquito tigre, sí. Pero también de ciencia ciudadana.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Mosquito tigre se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Eso qué es? Y otras formas de ser curioso
Hace unos días, mi ahijada estuvo visitando la Biblioteca Regional de Murcia con su padre. Mara cumple tres años a finales de diciembre, tardó un poco en empezar a hablar pero llegado ese momento no ha parado su boca. En pocos meses ha desarrollado un vocabulario más propio de una abuela que de una niña. Su maestra dice que es muy madura para su edad, yo le digo que es una vieja.
No para de preguntar por todo lo que no conoce, su pregunta favorita es “¿eso qué es?”. Y eso fue precisamente lo que le dijo a su padre cuando al entrar a la biblioteca se encontraron con una exposición fotográfica sobre Chernóbil. La respuesta rápida fue esa: “una exposición de fotos sobre Chernóbil” y a continuación la conversación siguió así:
- ¿Pero eso qué es?
- Pues eso, una exposición de fotos sobre Chernóbil
- Pero papá, ¿eso qué es?
- Mara, otra vez, una exposición de fotos sobre Chernóbil
- Papá, ¿pero eso, Chernóbil?
Y ahí el quiz de la cuestión, ella lo que estaba interesada en saber era qué significaba esa palabra que nunca había oído.
Y a eso se agarró mi primo (el papá de Mara) para contarle no solo la historia de lo que pasó en Chernóbil sino otros datos como: qué es una central nuclear, los distintos tipos de energía, que son los elementos radioactivos, etc. De hecho, siguió preguntando un buen rato y cuando llegaron a casa estuvieron buscando información juntos en Internet.
Ahora le puedes preguntar a Mara qué sabe sobre Chernóbil y ella te da una lección magistral. Porque no pregunta por preguntar sino que realmente le interesa y se aprende las historias. Asimismo te habla de la fundación de Roma, de las obras de Leonardo Da Vinci o de María Antonieta y la toma de la Bastilla.
Claro está que mi ahijada es una niña excepcional (si no lo digo yo no sé quién lo va a decir) pero la clave de todo esto estriba en una capacidad que muchos perdemos con los años: la curiosidad.
A día de hoy la ciencia no ha podido explicar qué es, más allá de saber que se trata de un impulso innato que no solo experimentamos los humanos sino también algunos animales y que nos permite aprender.
Porque es esa curiosidad la que nos lleva a querer saber más, la que ha hecho que se invente la rueda, que se avance en medicina, que se sepa que la Tierra es redonda o que nos encontramos en un universo que se expande, por mencionar algunos ejemplos.
Actualmente existen diferentes equipos de científicos investigando en torno a esta capacidad y, obviamente, los trabajos se centran en el cerebro. Si bien no se trata tanto de descubrir qué es sino de conocer los mecanismos por lo que se produce y para ello se han basado en imágenes tomadas mediante resonancia magnética.
Los resultados muestran que cuando tratas de dar con la respuesta de algo que desconoces, en tu cerebro se activan al menos dos áreas: una ubicada en el estriado ventral, la cual está relacionada con la motivación y la recompensa y otra situada en el hipocampo e implicada en la memoria.
Los científicos creen que la curiosidad es la forma que tiene el cerebro de destacar la información que merece la pena recordar, es decir, que cuando aprendemos algo como fruto de nuestro interés personal, lo recordamos más fácilmente. Es más, se sabe que aprender motivados por el deseo de adquirir nuevos conocimientos provoca que la memoria funcione con mayor precisión, incluso a corto plazo.
Lo que no se sabe todavía es por qué durante la infancia somos más curiosos que de mayores o por qué, a medida que vamos creciendo, unos adultos pierden esa capacidad más que otros, ni si hay algo que se pueda hacer para que no sea así o si esto podría tener alguna repercusión en el cerebro y por tanto en la lucha contra algunas enfermedades neurodegenerativas, entre otras cosas.
De lo que no cabe duda es de que el saber no ocupa lugar y además es importante estar informados para ser capaces de tomar nuestras propias decisiones por lo que hay que ponerse manos a la obra.
Centrándonos en el ámbito científico, que es el que nos ocupa, hay que señalar que la semana pasada numerosos lugares celebraron la Noche Europea de los Investigadores, el próximo mes de noviembre tendrá lugar la Semana de la Ciencia, también en muchas ciudades españolas; los museos, las bibliotecas y otros muchos centros públicos cuentan con una variada oferta de actividades para todas las edades y durante todo el año.
Desde aquí os animo a que acudáis con vuestros hijos, sobrinos, alumnos, o simplemente solos, como adultos pero con curiosidad de niño, a ver qué sucede. Y sobre todo, la próxima vez que alguien os pregunte ‘¿eso qué es?’ no os quedéis en lo evidente, tratad de profundizar y dejaros sorprender por las respuestas.
Ojalá que Mara os sirva a muchos de inspiración, como me ha ocurrido a mi con este post.
Sobre la autora: Maria José Moreno (@mariajo_moreno) es periodista
El artículo ¿Eso qué es? Y otras formas de ser curioso se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El entrenamiento mental solo sirve para entretenerse un rato
Cada cierto tiempo revive el interés en juegos, pasatiempos y aplicaciones específicas que se supone que mejoran nuestro rendimiento mental. Según la publicidad que los acompaña jugar y practicar con estos entretenimientos puede mejorar nuestra memoria, nuestra atención y, ¿por qué no?, nuestra inteligencia. ¿Es esto realmente así? El pasado día 3 se publicó una revisión de la literatura científica al respecto y sus resultados no pueden ser más contundentes: no existen pruebas que indiquen que el llamado entrenamiento mental (brain-training) funcione.
Siete científicos coordinados por Daniel J. Simmons, de la Universidad de Illinois en Urbana-Champaign (EE.UU.), revisaron los más de 130 estudios citados por las páginas web y el material promocional de las compañías que comercializan estos productos. Como resultado encontraron pocos indicios de que los juegos de entrenamiento mental mejoren el rendimiento en tareas cognitivas diarias. No solo eso, los revisores encontraron fallos metodológicos en todos y cada uno de los estudios que analizaron.
Los juegos de entrenamiento mental suelen incluir tareas basadas en el tiempo de reacción o en la memoria que se suponen que mejoran estas funciones cognitivas en nuestro día a día. Los autores de la revisión señalan que una idea-fuerza de la publicidad de estos juegos es que la mejora en rendimiento en la tarea que realizas en la pantalla se traduce (transfiere, es el verbo que se usa en la jerga) en una mejora en el rendimiento en situaciones de la vida real similares.
Si bien existen muchos estudios bien realizados que indican que el entrenamiento mental mejora la capacidad de la persona para jugar al juego concreto (una persona que suela hacer crucigramas, se hará mejor haciendo crucigramas; una que haga sudokus, lo será resolviendo sudokus y una que juegue habitualmente al ajedrez será mejor al ajedrez, por nombrar actividades mentales clásicas), no existen sin embargo aquellos que indiquen que existe una transferencia hacia otro tipo de actividad diaria.
Los autores también han considerado las buenas prácticas de investigación, en concreto el establecimiento de grupos de control y las pruebas doble-ciego. De forma muy llamativa encontraron que muy pocos estudios de los analizados se aproximaban al cumplimiento de los estándares mínimos. Ninguno de los estudios estaba libre de fallos.
En este análisis se ha cuidado en extremo la atención a las pruebas objetivas y es un modelo al que cualquier evaluación de las pruebas escéptica pero de mente abierta debería parecerse. Sus conclusiones abundan en las que ya expuso un grupo de científicos en 2014 en una carta abierta y que, como ahora, provocó las reacciones airadas de la industria del entrenamiento mental.
Quizás convenga recordar que el único entrenamiento mental que sepamos con seguridad que tiene transferencia a las situaciones de la vida real es aquel que te dota de una mente crítica y abierta, pero no tanto como para que se te caiga el cerebro.
Referencias:
Simmons, D.J. et al (2016) Do “Brain-Training” Programs Work? Psychological Science in the Public Interest doi: 10.1177/1529100616661983
Yong, E (2016) The Weak Evidence Behind Brain-Training Games The Atlantic
Henry B.A. (2016) Evidence Lacking for Brain-Training Products The Scientist
“A Consensus on the Brain Training Industry from the Scientific Community”(2014) Max Planck Institute for Human Development and Stanford Center on Longevity
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo El entrenamiento mental solo sirve para entretenerse un rato se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Los huesos de Napier, la multiplicación árabe y tú
En este paseo que hemos iniciado en mis dos anteriores entradas del Cuaderno de Cultura Científica, sobre diferentes métodos de multiplicación que se desarrollaron a lo largo de la historia de la humanidad, y que nos ha llevado de los algoritmos que utilizaron los babilonios y los egipcios a los métodos de multiplicar que hasta recientemente han continuado utilizando los campesinos rusos, ha llegado el momento de hablar de la llamada multiplicación por celosía, o multiplicación árabe, y su relación con nuestro algoritmo de multiplicación moderno.
Quienes no pudieron leer las anteriores entradas, lo pueden hacer aquí:
1) ¿Sueñan los babilonios con multiplicaciones eléctricas?
2) Multiplicar no es difícil: de los egipcios a los campesinos rusos
Pero iniciemos esta nueva jornada del paseo en la sala 28 (dedicada a la edad moderna) del Museo Arqueológico Nacional en Madrid. Esta sala contiene el denominado Ábaco neperiano, que consiste, como se ve en la imagen de abajo, en un pequeño mueble de madera con incrustaciones de hueso con 30 cajones en su interior, en los cuales se guardan las fichas de los dos ábacos que diseñó el matemático escocés John Napier (1550-1617), cuyo nombre latinizado es Johannes Neper y que fue el matemático que inventó los logaritmos, el conocido como huesos de Napier, del que hablaremos en esta entrada, y uno de tarjetas llamado promptuario (este es el único ejemplo conocido de este tipo de ábaco). Sobre este último podéis leer el artículo de Ángel Requena de la bibliografía.
Estuche de madera que contiene los dos ábacos que diseñó John Napier. Su interior consta de 30 cajones, los de arriba contienen las 60 fichas del ábaco huesos de Napier, y los de abajo las 300 fichas del ábaco promptuario. Foto de Raúl Fernández para el Museo Arqueológico Nacional
Estos dos ábacos fueron descritos por John Napier en su obra Rabdologiae, seu numerationis per virgulas libri duo: cum appendice expeditissimo multiplicationis promptuario, quibus accesit et arithmetica localis liber unus –Rabdología, numeración o varillas a través de los dos libros: apéndice con el repositorio de ejecución multiplicación, que entró un local gratuito y aritmética– (1617).
Portada y dos páginas interiores del texto Rabdologiae (1617) de John Napier
Los huesos de Napier, también conocidos como varillas o bastones de Napier, fueron desarrollados por el inventor de los logaritmos para realizar multiplicaciones, divisiones y raíces cuadradas. Los huesos de Napier consistían en una versión individualizada y particular de las tablas de multiplicar. Cada varilla contenía la tabla de multiplicar de una de las 10 cifras básicas de nuestro sistema de numeración decimal, 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, donde el resultado de cada multiplicación individual se escribía en un cuadrado con una diagonal que separaba la parte de las decenas, arriba de la diagonal, de la parte de las unidades, debajo de la diagonal (como se puede ver en la imagen de abajo). Así, la varilla del 7, empieza con el 7 (que es 7 x 1), después 14 (que es 7 x 2), con el 1 encima de la diagonal y el 4 debajo, a continuación, 21 (7 x 3), con el 2 encima de la diagonal y el 1 debajo, y así hasta 7 x 9, que es 63.
Versión moderna, en madera, de las 10 varillas de Napier, que contienen las tablas de multiplicar
Aunque, en realidad los huesos de Napier (que deben su nombre al material con el que fueron realizados) eran diez prismas cuadrados en los que se utilizaban las cuatro caras del prisma. Cada cara tenía los múltiplos de una cifra básica, es decir, la tabla de multiplicar de ese número, de forma que en caras opuestas estaban los múltiplos de dos números cuya suma fuese 9, por ejemplo, 3 y 6. De esta forma se disponían de varias caras con los múltiplos de un mismo número, lo cual era necesario para las diferentes operaciones aritméticas, por ejemplo, para multiplicar 355 x 7 se necesitaban dos varillas con la tabla del 5.
Detalle de los huesos de Napier, prismas cuadrados de marfil, del mueble denominado Ábaco neperiano que se conserva en el Museo Arqueológico Nacional
Pero veamos cómo se multiplicaba con la ayuda de los bastones de Napier. Para empezar, veamos una multiplicación sencilla, en la que uno de los números, el multiplicador, es de una sola cifra, por ejemplo, 673 x 5. Se disponen, como se muestra en la siguiente imagen, las varillas de las cifras del número que multiplicamos, el multiplicando, en el orden en el que aparecen en este 6, 7 y 3, y puestas a continuación de una varilla fija con los números del 1 al 9. Como vamos a multiplicar el número 673 por 5, consideramos la fila correspondiente al número 5, como se muestra en la imagen, es decir, 3/0, 3/5 y 1/5. Para obtener el resultado de la multiplicación, se empieza por la derecha y se van sumando en diagonal los números que aparecen en la fila del 5. Así, se obtiene el resultado, 673 x 5 = 3.365.
En el siguiente ejemplo consideramos números de más de una cifra. Vemos cómo se realiza la multiplicación con los huesos de Napier de los números 4.392 y 175. Como en el ejemplo anterior se disponen las varillas de las cifras del multiplicando 4.392, en el orden en el que aparecen en el número (como se muestra en la siguiente imagen). Después nos fijamos en las filas de las cifras del multiplicador, 1, 7 y 5, que deben de “considerarse” en el orden en el que aparecen en el número, 175. Finalmente, empezando por la derecha, se suman los números de cada una de las diagonales que aparecen (entendiendo que en la fila del 1, aunque solo aparezcan los números, sería como 0 arriba y la cifra abajo, en este caso, 0/4, 0/3, 0/9 y 0/2). En cada paso nos quedamos con la cifra de las unidades y sumamos a la siguiente diagonal la cifra de las decenas (la “llevada”).
Veamos cómo se obtiene el resultado. En la primera diagonal, que nos dará las unidades del resultado, solo tenemos un 0, luego 0 es la cifra de las unidades. La siguiente diagonal nos dará la cifra de las decenas, que como la suma es 4 + 1 + 5 = 10, la cifra para las decenas es 0, y nos llevamos el 1 a la siguiente diagonal. La suma de la tercera diagonal, junto con la llevada, es 2 + 1 + 3 + 4 + 5 [+1] = 16, luego el 6 está en la posición de las centenas y nos llevamos 1 para la siguiente diagonal. Y así hasta el final. En consecuencia, se obtiene que 4.392 x 175 = 768.600.
La técnica de multiplicar de los bastones de Napier fue utilizada para desarrollar algunos mecanismos de cálculo. Por ejemplo, el médico y escritor Pierre Petit (1617-1687) tomó los bastones de Napier y diseñó un cilindro aritmético, el tambor de Petit, con tiras de papel, que contenían los múltiplos de las varillas de Napier, pegadas sobre el cilindro.
Tambor de Petit, cilindro aritmético basado en los huesos de Napier
Un ejemplo más avanzado es el “reloj calculador”, desarrollado por el matemático alemán Wilhelm Schickard (1592-1635) en 1623. Como se explica en la página del Museo de la Ciencia de la Universidad Pública de Navarra “se compone de dos mecanismos diferenciados: un ábaco de Napier de forma cilíndrica en la parte superior y un mecanismo en la inferior tipo pascalina para realizar las sumas parciales de los resultados obtenidos con el aparato de la parte superior. De este modo, se pueden efectuar las cuatro operaciones aritméticas fundamentales de forma manual y mecánica”. Recordemos que la “pascalina” es la primera calculadora mecánica (funcionaba a base de ruedas y engranajes), diseñada en 1642 por el matemático francés Blaise Pascal (1623-1662).
Calculadora Schickard, o “reloj calculador”, del Museo de la Ciencia de la Universidad Pública de Navarra
Sobre otros mecanismos de cálculo que hicieron uso de los huesos de Napier se puede leer en el volumen 3 de las Recreaciones matemáticas de Édouard Lucas.
El sistema de multiplicación de los huesos de Napier está basado en la multiplicación árabe, también llamada multiplicación por celosía. Este nombre se debe a que la cuadrícula, con diagonales, sobre la que se realiza la multiplicación recuerda a los enrejados de madera, hierro u otro material que permitían ver sin ser vistos.
Como podemos leer en el excelente libro Historia universal de las cifras (2002), de Georges Ifrah, este es un procedimiento que inventaron los árabes alrededor del siglo XIII, y que posteriormente fue transmitido a Europa, China o India. Este algoritmo fue descrito por primera vez, que tengamos conocimiento de ello, en el texto Talkhis a’mal al hisab –Exposición sumaria de las operaciones aritméticas– (1299), del matemático marroquí Ibn al-Banna al-Marrakushi al-Azdi (1256-1321). Un comentario de este libro se debe al matemático árabe del Reino nazarí de Granada Al-Qalasadi (1412-1486). Entre las obras originales de aritmética de Al-Qalasadi se encuentra su libro Hadha al-kitab kashf al-asrar fi’ilm al-ghubar –Revelación de los secretos de la ciencia aritmética- (1486), que es una simplificación de una obra anterior más completa, en el cual describe el método de multiplicar que los árabes llamaban “multiplicación en cuadro” (ad darb bi’l jadwal).
Página del libro Hadha al-kitab kashf al-asrar fi’ilm al-ghubar –Revelación de los secretos de la ciencia aritmética- (1486), del matemático Al-Qalasadi, que contiene dos multiplicaciones “en cuadro”, arriba 64 por 3 y abajo 534 por 342. Imagen de la Hathi Trust Digital Library
Expliquemos el método de multiplicación empleado por los árabes mediante un sencillo ejemplo, 934 x 314. Las diagonales de la multiplicación pueden tomarse en dos sentidos, pero empezaremos la explicación de este algoritmo considerando el mismo sentido que en el texto árabe de Al-Qalasadi.
Como vamos a realizar la multiplicación de dos números de 3 cifras, se realiza una cuadrícula 3 x 3, en la que se dibujan las diagonales que van de arriba a la izquierda hacia abajo a la derecha. Se escriben los dos números a multiplicar, el multiplicando, 934, escrito arriba (de izquierda a derecha) y el multiplicador, 314, en el lado derecho (escrito de abajo hacia arriba), como se muestra en la imagen.
Entonces se empieza la multiplicación. En cada cuadrado de la cuadrícula 3 x 3 se escribe el producto de las cifras que determinan ese cuadrado, como en el juego de los barcos, con la cifra de las decenas debajo de la diagonal y la cifra de las unidades encima. Por ejemplo, en el cuadrado de arriba a la derecha, que se corresponde con el producto de 9 por 4, que es 36, se colocará 36. Y así con el resto, como se muestra en la imagen.
Por último, de una forma similar a la vista para los huesos de Napier, pero con las diagonales en el sentido opuesto, se van sumando las diagonales de números desde la derecha-arriba a la izquierda-abajo. La primera diagonal, que nos aporta las unidades, solo consta de un número, el 6, que será la cifra de las unidades. La siguiente diagonal nos dará las decenas, y su suma es 2 + 1 + 4 = 7. La tercera diagonal suma 6 + 1 + 3 + 0 + 2 = 12, por lo que la cifra de las centenas es 2, y el 1 se suma a la siguiente diagonal (es la “llevada”), a la de los millares. Y así se continúa con el resto. Estos resultados, 6, 7, 2, etc, que hemos ido obteniendo se van escribiendo cerca del final de la diagonal correspondiente, como se muestra en la imagen. El resultado del producto será el número formado por estas cifras que hemos ido obteniendo, leídas de izquierda a derecha y de abajo a arriba, 293.276.
En la imagen anterior hemos escrito todos los elementos del proceso para que quede más claro, sin embargo, lo único que escribiría sobre la cuadrícula 3 x 3 una persona que tuviese que realizar la multiplicación 934 x 314 es lo siguiente:
Aunque en los textos árabes se suelen escribir las sumas de las diagonales en un segmento inclinado en el vértice superior izquierdo de la cuadrícula 3 x 3, como se muestra la siguiente imagen.
Otra disposición para este método de multiplicar es considerar las diagonales ascendentes, en lugar de descendentes, de forma que en el resultado del producto de dos cifras en la cuadrícula 3 x 3 se coloca la cifra de las decenas encima de la diagonal del cuadrado y la de las unidades debajo, y los dos números a multiplicar se colocan, el multiplicando arriba (de izquierda a derecha) como antes, pero el multiplicador, que va a la derecha, de arriba abajo, como se muestra en la imagen siguiente. Precisamente, es esta disposición la que han heredado los huesos de Napier.
Como ya hemos comentado, este método de multiplicación fue desarrollado por los árabes alrededor del siglo XIII, quienes lo trasmitirían a la parte occidental de Europa, donde recibió el nombre de multiplicación por celosía. En Europa se describió este método, así como algunas variantes del mismo, en un tratado anónimo sobre aritmética publicado en Treviso en 1478, Larte de labbacho (conocido también como Aritmética de Treviso). También se describe en la obra Summa de arithmetica, geometría, proportioni et proportionalita precipitevolissimevolmente (1494) del matemático italiano Luca Pacioli (aprox. 1445-1517). Aunque, como podemos leer en el libro A History of Algorithms: From the Pebble to the Microchip (1999), la primera referencia escrita sería un tratado inglés, escrito en latín alrededor del año 1300, Tractatus de minutis philosophicis et vulgaribus, en el que aparece la multiplicación de 4.569.202 por 502.403.
Multiplicación de 4.569.202 por 502.403, mediante el método por celosía, que aparece en el texto “Tractatus de minutis philosophicis et vulgaribus” (aprox. 1300), que se encuentra en la Bodleian Library de Oxford
Páginas de la “Aritmética de Treviso” (1478) con diferentes variantes de la multiplicación por celosía, o multiplicación árabe
Este método también llegó a China. Según el libro A History of Algorithms: From the Pebble to the Microchip aparece por primera vez explicado en el texto Jiuzhang suanfa bilei daquan –Suma de los métodos de cálculo de los Nueve Capítulos que consisten en problemas resueltos por analogía con problemas tipo- (1540), de Wu Jing.
Sin embargo, aunque también se suele denominar a este algoritmo de multiplicación bajo el nombre de multiplicación hindú, lo cierto es que no hay constancia de su uso en la India hasta mediados del siglo XVII, que aparece explicado en el comentario Ganitamañjari (1658) del matemático indio Ganesha sobre el libro Lilavati (1150) del matemático indio Bhaskara II.
Volviendo a la imagen de las páginas de la Aritmética de Treviso (1478), se encuentra en la misma imagen una variación de la multiplicación por celosía, en la que en lugar de escribir todos los detalles del procedimiento de la multiplicación árabe, se limita a escribir en cada cuadrado de la cuadrícula únicamente las unidades de las multiplicaciones intermedias, por lo que la persona que realiza la operación debe de tener cuidado con las decenas de dichas multiplicaciones, que ahora no se escriben pero que se añaden al resultado del siguiente cuadrado (a la izquierda), las “llevadas”. Esto último se corresponde, en el método de multiplicación árabe, a añadir la “llevada” a la siguiente diagonal.
A continuación, mostramos en diferentes etapas el ejemplo de la multiplicación 934 x 314 mediante este método (las diagonales que se pintan en la siguiente imagen pertenecen a la explicación, pero no aparecían en el desarrollo de la multiplicación).
Esta versión tendría su variante con las diagonales en el sentido contrario y con el multiplicador escrito en el lateral ahora de arriba hacia abajo.
Y la última variante, que también aparece en Larte de labbacho (1478) y que habría empezado a utilizarse a finales del siglo XV, simplifica las anteriores. Para empezar se traza una línea horizontal y sobre ella el multiplicante, después se escribe el multiplicador debajo a la derecha y escrito de abajo hacia arriba (como en el algoritmo árabe o la variante descrita en la anterior imagen), pero siguiendo sus cifras una línea inclinada hacia la derecha. El proceso es similar al anterior, como vemos en la imagen.
Este método, salvo por el hecho de que nosotros colocamos el segundo número debajo del primero, es exactamente el algoritmo que utilizamos para multiplicar. Por lo tanto, nuestro método de multiplicación, el que tú y yo utilizamos, el que nos enseñaron en la escuela, es una variación de la multiplicación árabe que se desarrolló a finales del siglo XV.
“The end of the multiplication” es un ejemplo de multiplicación moderna perteneciente a un libro de ejercicios para estudiantes de 1814
Bibliografía
1.- Museo Arqueológico Nacional
2.- Frank J. Swetz, Mathematical Treasure: John Napier’s Rabdologiae, Mathematical Association of America
3.- Nelo Alberto Maestre e Inmaculada Conejo (DIVERMATES), Ábaco neperiano, Museo Arqueológico Nacional, octubre 2014.
4.- Ángel Requena Faile, Una joya de la corona: el ábaco neperiano, mateturismo [xxx].
5.- Georges Ifrah, Historia universal de las cifras, Espasa, 2002.
6.- Calculadora Schickard, Museo de la Ciencia de la Universidad Pública de Navarra
7.- Éduoard Lucas, E., Recreaciones matemáticas, vol. 1 – 4, Nivola, 2007 y 2008.
8.- Jean-Luc Chabert, A History of Algorithms, From Pebble to Microchips, Springer, 1999.
9.- A S Saidan, Biography in Dictionary of Scientific Biography (New York 1970-1990).
10.- Mathematical Art: “The End of Simple Multiplication“, 1814, JF Ptak Science Books LLC, Post 982
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Los huesos de Napier, la multiplicación árabe y tú se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Bilbao, centro del universo
Manu Arregi, hincha de la Real Sociedad, aparte de afirmar lo obvio, usa la geografía bilbocéntrica para darnos una idea de las escalas del universo.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Bilbao, centro del universo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Secretos
El ideal de la comunicación abierta hizo su aparición con la propia ciencia moderna en los siglos XVI y XVII. Antes, distintos factores filosóficos, sociales y económicos limitaron la circulación libre de los conocimientos acerca de la naturaleza. Con el tiempo, los conflictos bélicos, los intereses económicos y la propia forma de hacer ciencia convertirían grandes parcelas del conocimiento científico en secretos. La ciencia abierta es solo una parte de toda la ciencia, y puede que no la mayor.
Solo para iniciados
Las tradiciones pitagórica y aristotélica distinguían el conocimiento esotérico (interno) del público y restringían el acceso al primero, que incluía la filosofía natural, a los discípulos elegidos.
La filosofía hermética que floreció en el Renacimiento y que con tanta intensidad abrazó los aspectos místicos de la alquimia y cualquier otro conocimiento de igual transcendencia reservaba los secretos de la naturaleza para los iniciados.
Pero no todo era filosofía, las consideraciones económicas siempre pesan mucho. Así, el sistema de gremios no fomentaba la diseminación de los conocimientos propios de los distintos oficios más allá del propio taller del maestro artesano y la ausencia de derechos de propiedad intelectual evitaba que ingenieros e inventores publicasen su trabajo; si alguno se animaba a escribir, lo hacía cifrando el texto, de forma que solo los elegidos pudiesen entenderlo. A este respecto, Leonardo da Vinci y su escritura especular (para ser leída usando un espejo) es un ejemplo muy conocido.
Imprenta, patentes y academias
Distintos desarrollos durante la llamada Revolución Científica se combinaron para superar la tendencia a guardar los conocimientos sobre la naturaleza como secretos. Quizás el más importante fue el desarrollo y expansión de la imprenta de tipos móviles, que permitía que las obras tuviesen una difusión muy amplia y muy rápida (en relación al uso de manuscritos), y que fomentó la ética de publicar los resultados de las investigaciones. Este paso culminaría en nuestra situación actual, en la que los científicos deben “publicar o perecer”.
Las ciudades-estado italianas fueron las primeras en implementar leyes de patentes en el siglo XV, que probaron ser tan provechosas que los sistemas legales de protección de patentes se extendieron rápidamente por Europa en el siglo XVI, llegando finalmente a extender los derechos de propiedad a las creaciones intelectuales a través de los derechos de autor (copyright).
Finalmente, las nuevas sociedades científicas, como la Royal Society de Londres o la Académie Royale des Sciences de París, ambas fundadas a mediados del siglo XVII, proporcionaban el cauce práctico adecuado para comunicar públicamente los nuevos descubrimientos mediante conferencias a los miembros y la publicación en sus medios periódicos.
Secretos, secretos
Y, sin embargo, los secretos se perpetuaron en la ciencia moderna en tres formas distintas.
El secreto personal surgía del propio sistema de recompensa de la comunidad científica, que hacía énfasis en la prioridad del descubrimiento individual y animaba a los científicos a mantener en secreto los resultados no publicados; si no lo hacían así un colega podía llegar a tener conocimiento de su trabajo todavía no concluido y adelantarse en la publicación, obteniendo así el reconocimiento y todo lo que él conlleva.
El secreto industrial se deriva de las recompensas a la prioridad a los derechos de propiedad que da el capitalismo. Si bien el sistema de patentes anima a publicar una vez la patente está asegurada, hasta ese momento el secreto tiene que guardarse celosamente. Este celo lleva a rigidizar el sistema de revisión por pares (los que revisan suelen ser competidores potenciales). El ejemplo más espectacular de lo que esto significa está en cómo se duplicaron los esfuerzos en la investigación genómica a finales del siglo XX y, el más reciente, en la guerra de patentes por el sistema CRISPR/Cas9 que aun se está librando, en ambos casos debido al enorme potencial económico que encierran.
Finalmente el secreto también surge de la relevancia de la ciencia para la seguridad nacional. Pero, curiosamente, la historia demuestra el promotor del secretismo no es necesariamente el estado en cuestión. Un ejemplo precoz lo protagonizaron Antoine Lavoisier y sus colaboradores, que trabajaron en un laboratorio secreto de explosivos que montaron ellos mismos durante la Revolución Francesa. La ignorancia excusable de los líderes políticos y militares sobre los últimos avances en investigación, combinado con el habitual conservadurismo de los estamentos militares, llevó a los propios científicos hasta superada la primera mitad del siglo XX a asumir la iniciativa en el desarrollo de nuevas tecnologías militares y a mantenerlas en secreto.
Quizás el ejemplo más conocido e importante por su transcendencia posterior fue la autocensura que se impusieron los físicos e ingenieros británicos y estadounidenses tras el descubrimiento de la fisión nuclear en 1939 con objeto de impedir que sus resultados llegasen a manos de la Alemania nazi. Finalmente científicos norteamericanos y de otros países aliados consintieron en trabajar en secreto en el desarrollo de un arma nuclear en el denominado Proyecto Manhattan.
Durante la Segunda Guerra Mundial se crearon multitud de laboratorios secretos y se desarrolló trabajo en universidades bajo el auspicio de las autoridades militares en condiciones de estricta confidencialidad. Las contribuciones de la ciencia y la tecnología en ambos bandos (criptografía, cohetes, bombas atómicas, motores, gasolina sintética, radar, sonar, por mencionar solo algunos) al desarrollo de la guerra convenció a los gobiernos de la necesidad de mantener en funcionamiento laboratorios secretos, institucionalizando de esta manera el secreto en la ciencia. Esta forma de trabajar sobrevivió al fin de la Guerra Fría, y hoy día el secreto afecta a todas las áreas concebibles del conocimiento: desde la entomología a la exploración espacial, pasando por la neurociencia básica y las matemáticas.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Secretos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Dando valor a los residuos marinos para cuadrar la economía circular
El grupo de investigación Biomat de la Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) valoriza residuos marinos de la costa guipuzcoana (residuos de calamar, pescado, algas…) para la obtención de nuevos materiales. Esta línea de investigación ofrece una nueva visión de los plásticos alineada con los principios de la economía circular, basada en preservar y mejorar el capital natural, controlando las existencias finitas y equilibrando los flujos de los recursos renovables. En este contexto, la investigación del grupo hace especial hincapié en la valorización de subproductos o residuos industriales a través de procesos que minimizan el uso de recursos, tanto materiales como energéticos, para obtener productos competitivos y sostenibles.
“La creciente preocupación sobre la contaminación ambiental-explica Pedro Guerrero, investigador del Departamento de Ingeniería Química y del Medio Ambiente de la Escuela de Ingeniería de Gipuzkoa y miembro de Biomat-debe conducir al desarrollo de nuevos productos basados en materiales renovables con menor impacto ambiental durante su ciclo de vida. La demanda europea de plástico en 2014, según la asociación PlasticsEurope (2015), fue de 47,8 millones de toneladas, de las cuales el 90% procedía de fuentes no renovables. Además, 25,8 millones de toneladas de plásticos terminaron en la basura, de los cuales el 30,8% finalizó su ciclo de vida en vertederos debido a que ésta todavía sigue siendo la primera opción para la gestión de residuos en muchos países de la UE. La alternativa a esta gestión se basa en la economía circular, que a diferencia de la tradicional economía lineal, convierte los recursos en productos, los productos en residuos y los residuos otra vez en recursos. De esta forma, se conseguiría cerrar el ciclo en los ecosistemas industriales y minimizar la cantidad de recursos utilizados, residuos generados y emisiones ambientales. Sin embargo, la investigación e innovación en este campo son esenciales para demostrar a gobiernos y empresas que este planteamiento es factible. Las empresas de bienes de consumo y de envases plásticos y los fabricantes de productos plásticos juegan un papel fundamental en esta iniciativa, porque son las que determinan qué materiales y qué productos se introducen en el mercado”.
En este contexto, el grupo de investigación Biomat de la UPV/EHU valoriza residuos y subproductos industriales de cara a obtener productos biodegradables/compostables con excelentes propiedades en servicio y procesables por las técnicas empleadas actualmente por la industria del plástico, cuantificando las cargas ambientales implicadas en cada uno de los procesos realizados. En relación con las etapas implicadas en la economía circular, Biomat centra sus trabajos de investigación en la mejora de los procesos de extracción, producción y tratamiento del producto tras desecho, con el objetivo de aumentar los rendimientos de estos procesos y reducir costes e impactos ambientales, permitiendo el desarrollo de materiales sostenibles y competitivos. Actualmente el grupo Biomat trabaja en un proyecto financiado por la Diputación Foral de Gipuzkoa en el que utiliza como materia prima residuos de la costa guipuzcoana para la obtención de proteínas y polisacáridos (celulosa y quitina). El campo de aplicación de estos materiales va desde films para embalajes a hidrogeles para apósitos en medicina.
Dentro del campo de los envases, Biomat está inmerso en la obtención de envases activos que alarguen la vida útil del alimento y, al mismo tiempo, contribuyan a reducir la cantidad de alimentos que son desechados. “La finalidad es aportar valor al envase, que pasa de ser un mero contenedor a interactuar con el alimento para conservar su calidad durante más tiempo. Para ello, se están valorizando desechos de la industria pesquera para obtener proteína, quitina y celulosa por medio de procesos sencillos, económicos, medioambientalmente sostenibles y con unos rendimientos cercanos al 95%. A partir de estos materiales, se han obtenido films transparentes para envase alimentario que pueden ser sellados térmicamente y que presentan excelentes propiedades barrera a gases y a productos grasos. Además, estos films se han sometido a procesos de biodegradación con buenos resultados por lo que, además de valorizar subproductos de la industria pesquera, se cierra el ciclo de vida del material”, comenta el investigador Guerrero. Los resultados de este trabajo, en el que se ha determinado el impacto ambiental asociado a cado uno de los procesos implicados, se han publicado recientemente en la revista ACS Sustainable Chemistry and Engineering.
Además de la aplicación en el campo de los envases alimentarios, las proteínas obtenidas se pueden utilizar para la elaboración de materiales biocompatibles. Esta característica abre un campo de aplicación muy amplio como biomateriales en medicina. “Uno de los retos en este campo-continúa el investigador Pedro Guerrero- es la obtención de materiales que puedan ser procesados utilizando la fabricación aditiva, impresión 3D. Las estructuras 3D son creadas depositando el material, capa sobre capa, de forma continua. Para ello, la primera capa debe tener integridad estructural antes de que se deposite la segunda capa, y así sucesivamente. En consecuencia, hay que controlar los parámetros reológicos del material, que debe ser viscoso o viscoelástico inicialmente y convertirse en gel antes de depositar capas adicionales. Por tanto, es fundamental examinar no sólo las características del material para obtener una estructura 3D, sino también la viabilidad del material para ser fabricado utilizando las técnicas industriales de diseño asistido por ordenador”. Los resultados para la obtención del hilo de proteína han sido publicados en la revista European Polymer Journal.
Referencias:
Alaitz Etxabide, Itsaso Leceta, Sara Cabezudo, Pedro Guerrero, Koro de la Caba. Sustainable fish gelatin films: From food processing waste to compost. ACS Sustainable Chemistry and Engineering, 2016; 4, 4626-4634. DOI: 10.1021/acssuschemeng.6b00750
Alaitz Etxabide, Koro de la Caba, Pedro Guerrero. A novel approach to manufacture porous biocomposites using extrusion and injection moulding European Polymer Journal, 2016; 82, 324-333. DOI: 10.1016/j.eurpolymj.2016.04.001
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Dando valor a los residuos marinos para cuadrar la economía circular se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La historia de la vida
Árbol de familia de la vida en la Tierra. ¿Te encuentras? (amplia la imagen pulsando sobre ella)
Nuestro planeta se formó hace unos 4.500 millones de años (en adelante m.a.) Las primeras pruebas de la existencia de vida en la Tierra son muy endebles: unas rocas de 3.800 m.a. de antigüedad contienen un grafito en el que los isótopos estables del carbono (variedades cuyos átomos tienen masas ligeramente diferentes: carbono-12 y carbono-13) se hallan en una proporción que refleja alguna forma de actividad biológica. La vida podría haber surgido hace aproximadamente 4.000 m.a., o algo antes incluso, en un mundo acuático, cuando el planeta sufría aún el impacto frecuente de asteroides.
Las primeras células pudieron haberse formado hace unos 3.500 m.a. y los primeros organismos que hacían la fotosíntesis (convertían la energía electromagnética en energía química) quizás surgieron entonces. Pero la producción masiva de oxígeno a cargo de bacterias fotosintéticas ocurrió unos 1.000 m.a. después. Ese oxígeno transformó la atmósfera terrestre, oxidó su superficie y condicionó el desarrollo biológico posterior.
Las primeras células complejas surgieron hace unos 2.000 m.a. o algo más tarde. Los primeros organismos pluricelulares aparecieron hace unos 1.700 m.a. o quizás antes, y 200 m.a. después se produjo, seguramente, la división que dio lugar a las actuales plantas, hongos y animales. Hace 1.200 m.a. ya había organismos pluricelulares con células diferenciadas. Y los primeros animales surgieron hace unos 650 m.a.. Los que tienen simetría bilateral y, por lo tanto, una parte delantera y una trasera, aparecieron hace unos 550 m.a., con la llamada explosión cámbrica, una gran diversificación de esquemas corporales que dio lugar a la aparición de gran variedad de animales, incluidos los primeros vertebrados.
Las primeras plantas terrestres aparecieron hace unos 445 m.a., los primeros anfibios unos 30 m.a. después, y los primeros insectos hace unos 400 m.a. Hasta entonces, todos los vertebrados habían sido peces, aunque quizás alguno de ellos ya había colonizado el medio terrestre. Hace 360 m.a. ya había grandes árboles y hace 320 m.a. surgieron los primeros reptiles. En aquella Tierra abundaban los insectos.
Los primeros amniotas -animales cuyos huevos pueden sobrevivir en ambientes secos- surgieron hace 300 m.a.. Hace 250 m.a. aparecieron los primeros dinosaurios y los primeros mamíferos ovíparos. Hace 200 m.a. surgieron los primeros mamíferos marsupiales y las primeras aves, y hace unos 130 m.a. evolucionaron las primeras plantas con flores, que experimentaron una diversificación enorme hasta hace unos 90 m.a., diversificación paralela a una gran proliferación de insectos polinizadores.
Hace 66 m.a. se extinguieron los dinosaurios, con excepción de las aves, y a partir de ese momento, los mamíferos crecieron de forma espectacular, tanto en tamaño como en número de especies. Los simios se diferenciaron del resto de primates hace unos 25 m.a., y el linaje humano se separó hace un 6 o 7 m.a. del de los chimpancés y bonobos. Hace algo más de dos m.a. surgió el género al que pertenecemos, Homo, y hace unos 250.000 años, nuestra especie.
Como el humano, todos los demás linajes que han llegado hasta hoy hunden sus raíces en el principio de los tiempos de nuestro planeta. Todos los seres vivos procedemos de un mismo organismo primigenio, un antepasado común. Todas las especies han evolucionado bajo la acción de la selección natural, pero la mayoría se han extinguido porque sus individuos no sobrevivieron o porque otras se reprodujeron con mayor éxito. Cada vez sabemos más acerca de los pasos intermedios que han dado lugar a unas formas y a otras. Pero hay algo que todavía no sabemos: desconocemos cómo surgió la vida, que características tenía aquel organismo primigenio del que proceden todos. Es posible, además, que no lleguemos a saberlo nunca.
—————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————————
Este artículo fue publicado en la sección #con_ciencia del diario Deia el 22 de mayo de 2016.
El artículo La historia de la vida se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Katy Perry, Zooey Deschanel y otros sosias naturales
Existen personas que se parecen mucho entre sí aunque no tengan rasgos de parentesco. En la naturaleza ocurre lo mismo pero con especies diferentes. Txema Campillo lo explica.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Katy Perry, Zooey Deschanel y otros sosias naturales se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La nebulosa del Bicho* y el anillo no único
¿Cuántas veces en astronomía (y, en general, en el mundo de la ciencia) descubrimos algo que no era el objetivo que nos movía en un principio? Estos descubrimientos “colaterales” a veces son más relevantes que lo que se buscaba originalmente. Otras veces, complementan determinados campos de estudio con sus aportaciones.
De esto sabe algo Miguel Santander (investigador del Grupo de Astrofísica Molecular del Instituto de Ciencia de Materiales de Madrid – CSIC), que en alguna ocasión se ha topado, junto con su equipo, con sorpresas que le han llevado a publicar sus resultados en la revista Nature (pueden ver una de estas historias en su charla de Naukas “Cómo ser una estrella, morir dos veces y hacerlo con estilo”). [1]
Sin embargo, en esta ocasión, no se trata de estrellas, sino de anillos.
Para empezar por donde es debido, debemos explicar qué es una nebulosa planetaria. Pues bien, una nebulosa planetaria es el cadáver de una estrella de masa baja o intermedia (generalmente estrellas que tienen hasta ocho masas solares). Nos llaman la atención porque resulta difícil de explicar cómo un objeto esférico (pues damos por hecho que así son las estrellas, esencialmente esféricas) puede dar lugar, al morir, a formas tan diversas y fantásticas.
La estrella, al agotar el hidrógeno de su núcleo, atraviesa varias fases que harán que se hinche, multiplique su tamaño cientos de veces, y acabe liberando su materia al medio, dejando en el centro sus restos en forma de densa estrella enana blanca. A su alrededor, el gas que una vez formó parte de ella se disgrega, condensándose parcialmente en granos de polvo y formando diferentes moléculas. Su destino final será la total desaparición de la nebulosa planetaria tal y como la vemos ahora. Acabará difuminándose en el medio interestelar y, muy probablemente, el ciclo de la vida de las estrellas volverá a dar comienzo cuando el gas y el polvo se reúnan en otro lugar y se condensen lo suficiente como para generar reacciones nucleares. Pero esa es otra historia. Sigamos con la nebulosa planetaria.
Hace un tiempo se dio a conocer el resultado del trabajo de un equipo (liderado por Valentín Bujarrabal, del OAN-IGN) que estudiaba la presencia de discos de material alrededor de estrellas evolucionadas. Se trata de discos muy similares a los que se crean cuando nacen las estrellas, aunque desconocemos muchas de sus características y tampoco sabemos si en esos discos de estrellas moribundas podrían nacer planetas. Con la intención de seguir investigando estos interesantes discos, se obtuvo tiempo de observación con el interferómetro ALMA, un radiotelescopio formado por 66 antenas y situado en el desierto de Atacama (Chile).
Y, al recibir los datos, se llevaron una sorpresa.
Una nebulosa no solo asimétrica
Seguimos con la pregunta. ¿Cómo es posible que objetos esféricos como estrellas den lugar a simetrías tan distintas y, en algunos casos, tan extremas? Es lo que le ocurre a nuestra protagonista, la nebulosa del Bicho (NGC 6302), una nebulosa planetaria relativamente joven y cuya estrella central tiene una temperatura muy alta (en realidad aún no se sabe si en el centro hay una o varias estrellas, pero eso es objeto de otro estudio).
La forma es impresionante. Un centro ardiente del que salen despedidos vientos estelares, provocados por la enana blanca, que ionizan todo el medio y dan forma a los chorros bipolares, también conocidos como lóbulos (los que hacen que la nebulosa parezca ser un bicho con alas o tener forma de diábolo). Pero, un momento… No vemos el centro.
Y no lo vemos en esta imagen porque hay un anillo de polvo y gas que lo impide. Ojo, hagamos una distinción clara entre anillo y disco. Buscábamos un tipo de disco mucho más pequeño que este anillo y no lo hemos detectado. Pero ahí está ese anillo y, si nos fijamos bien, en el rango visible de la luz vemos un filamento en forma de arco envuelto en los lóbulos principales.
Aunque no sabemos muy bien de qué se trata… a no ser que observemos en otros rangos de la luz, como el milimétrico y el submilimétrico, los rangos en los que observa ALMA y que logran ofrecernos una información sorprendente.
¿El anillo único?
Algunas nebulosas tienen, alrededor del núcleo, un anillo de gas y polvo muy denso y espeso que, normalmente, se asocia con su simetría extrema y que creemos relacionado con los vientos de la estrella, la presencia de una compañera o los campos magnéticos.
En el caso de la nebulosa del Bicho, el proceso de creación del anillo empezó hace unos 5.000 años y duró aproximadamente unos 2.000. Más tarde, en un espacio de tiempo que iría entre hace 3.600 y 4.700 años, se crearon los lóbulos. Pero la nebulosa planetaria no tiene un único eje de simetría ni un solo chorro bipolar. Hace unos 2.200 años, otro chorro surgió del núcleo, este con una simetría distinta. Es decir, hay un tercer lóbulo, más joven y con un eje diferente al de los lóbulos principales.
Pero eso no es todo.
Paralelamente, en una época similar, se formó otra estructura cuya existencia se desconocía hasta ahora: un segundo anillo, más joven que el primero, que está orientado en otra dirección y que, además, se expande más rápido.
Aunque no es la primera nebulosa planetaria descubierta con varios anillos con distintos grados de inclinación, sí es la primera vez que se estima que hay bastante diferencia de edad y de masa entre los anillos. Los anillos secundarios de otras nebulosas planetarias son casi tan masivos como los primarios y, en este caso, si el anillo primario tiene 0,1 masas solares, el secundario tiene solo 2,8 masas de Júpiter.
¿Y tú, de quién eres?
Tanto el origen como la orientación de este segundo anillo de la nebulosa del Bicho son un misterio para los investigadores, pero hay varias teorías que especulan sobre su posible formación. Una de ellas plantea el escenario de un sistema triple en el que una de las estrellas habría pasado por la fase de gigante roja, desestabilizando a todo el sistema. Las otras dos estrellas podrían haber originado el nuevo anillo.
Hay otra hipótesis mucho más arriesgada, pero igualmente interesante. Que el anillo sea el resultado de la destrucción de un planeta gigante gaseoso que hubiese estado en una órbita demasiado cercana a la estrella durante su proceso de evolución a gigante roja.
En ambos casos se trata de especulaciones y llegar a alguna conclusión plausible requeriría de datos más precisos de la zona en concreto.
El caso es que no, no se han encontrado los discos que se buscaban en un principio y para lo que se pidió tiempo de observación, pero sí se ha descubierto un nuevo tipo de anillo de forma casual. Sorpresas nos da la ciencia.
Este post ha sido realizado por Natalia Ruiz Zelmanovitch (@Bynzelman) con ayuda de Miguel Santander (@Migusant) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
Notas:
[1] Esta charla está inspirada en los resultados de este artículo científico: “The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2–428”.
Enlaces:
Artículo científico: ALMA high spatial resolution observations of the dense molecular region of NGC 6302
Nota de prensa del CSIC: Descubierto un segundo anillo en la Nebulosa del Insecto
Imágenes:
Imagen 1. Nebulosas planetarias. Crédito: Montaje de Judy Schmidt.
Imagen 2. Nebulosa del Bicho. Crédito: NASA, ESA y el equipo del Hubble SM4 ERO.
Imagen 3. Anillos de la densa región molecular de la nebulosa del Bicho vistos por ALMA. Crédito: M. Santander-García et al./ALMA/HST
Vídeo: Observaciones de ALMA en 12CO y 13CO (isotopólogos de monóxido de carbono) superpuestas a una imagen del Telescopio Espacial Hubble. El número mostrado en la parte inferior corresponde a la velocidad referida al sistema estándar de reposo en km/s (la velocidad del centro de masas del sistema es -30.4 km/s). La emisión traza la estructura y el patrón de velocidades de ambos anillos. La región izquierda (oeste) del anillo interior está asociada con el filamento en forma de arco visible en la imagen de Hubble.
Crédito: M. Santander-García et al./ALMA/HST
* No sé por qué se empeñan en llamar a esta nebulosa planetaria “Nebulosa del Insecto”, cuando la palabra inglesa “bug”, de toda la vida, se ha traducido como bicho. Para la palabra “insecto” está la palabra “insect”. ¿Y cómo se llama la nebulosa? Bug Nebula. ¿Por tanto? Nebulosa del Bicho. Sin duda.
El artículo La nebulosa del Bicho* y el anillo no único se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 ¿Es necesario usar animales en investigación?
El uso de animales es un tema controvertido pero en el que la falta de información y los prejuicios campan a sus anchas. Sergio Pérez Acebrón intenta aclarar algunas ideas.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 ¿Es necesario usar animales en investigación? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Una colaboración fructífera: The Studio – Jet Propulsion Laboratory
Hace quince días hablábamos en este mismo espacio del perfil ideal que los artistas científicos deberían tener para conseguir que su trabajo fuera fructífero y provechoso para ambas partes y concluíamos pensando si era posible encontrar ese perfil ideal en nuestros días.
Es posible y de hecho existe.
El Jet Propulsion Laboratory (JPL) es un centro de investigación y desarrollo de la NASA (forma parte del Instituto de Tecnología de California que lo gestiona para la agencia espacial estadounidense), responsable de algunas de las misiones más ambiciosas, y también más espectaculares, de la agencia espacial estadounidense. En él trabajan algunos de los mejores ingenieros, astrónomos, astrofísicos y científicos del mundo.
En el año 2003, el director del JPL, Dr. Charles Elachi, realizó una visita guiada para Richard Koshalek, entonces Director del Art Centre de Pasadena y actualmente Director del Smithsonian’s Hirshhorn Museum en Washington. Al terminar el recorrido Koshalek le dijo a Elachi: “deberías contratar un artista para hacer vuestro trabajo accesible a los legos”.
Para Elachi, como para el resto del personal científico del JPL, la idea de necesitar a un artista o un diseñador o a alguien alejado de su mundo para presentar su trabajo era algo si no inconcebible, digamos inesperada. Elachi sin embargo siguió el consejo de Koshalek y contrató a Dan Goods con una condición: tienes un año para hacer que esta contratación tenga sentido, para hacer valer tu trabajo.
Goods comenzó a trabajar y a pasearse por el JPL para ofrecer sus servicios, sus capacidades, a los ingenieros de la NASA. Uno de ellos, Steve Matousek, le pidió ayuda para preparar la presentación a los miembros de la Junta de Gobierno de un proyecto muy ambicioso y en cierta manera imposible: el envío de la sonda Juno a Júpiter. Se trataba de conseguir que un proyecto a 10 años vista fuera presentado con una estética atractiva pero coherente con las propuestas de la misión, ajustada a las posibilidades reales de la ciencia y con modelos que demostraran que los planes eran de hecho realistas.
Como todos sabemos, el proyecto salió adelante y este año Juno entró en la órbita de Júpiter y todos hemos podido ver el éxito de esta misión.
Actualmente trabajan en The Studio 8 personas con especialidades dispares: efectos especiales en cine, arquitectura, antropología, publicidad e ilustración. Son contratados independientes, autónomos los llamaríamos en España, y cada uno de ellos gestiona un mínimo de 5 proyectos.
¿Qué ventajas tiene para la ciencia contar con un grupo de no científicos paseando por las instalaciones?
-Preguntan sin miedo. Los integrantes del Studio pueden decirles a los ingenieros cuándo no entienden algo y hacen preguntas que entre iguales, entre científicos, podrían considerarse tontas.
-A través de esas preguntas obligan a los científicos a repensar sus ideas, a enfocarlas de otra manera, a manosearlas y verlas desde fuera para intentar explicarlas.
-Este intercambio permite a los científicos acercarse a su trabajo de manera más libre, diciendo cosas que no dirían en un ambiente más de ciencia, entre iguales.
Este nuevo acercamiento no está reñido con el rigor. El propósito de los trabajos, diseños y visualizaciones de los artistas que trabajan en el Studio del JPL no es hacer la ciencia más fácil, ni más bonita. Su propósito fundamental, y la idea que guía todos los proyectos, es provocar el asombro y el interés tanto de los legos como de los propios científicos que participan en los proyectos, pero sin olvidar que en ellos se invierten millones de dólares y es fundamental mantener el rigor científico.
En los años 50, la fotógrafa Berenice Abbott fue contratada por el MIT para documentar la ciencia y las investigaciones que se estaban llevando a cabo en la prestigiosa institución. Abbott opinaba que
“Para conseguir que la ciencia tenga un amplio apoyo popular, es necesario que haya un intérprete amigable entre la ciencia y el profano. Creo que la fotografía puede ser ese portavoz, mejor que cualquier otra forma de expresión”.
Casi 70 años después la ciencia sigue necesitando ese intérprete amigable del que hablaba Abbott, ese intermediario entre la ciencia y los legos, como le dijo Koshalek a Elachi, para conseguir no solo el apoyo popular que es fundamental sino también, y más importante, que los poderes políticos y económicos comprendan, asuman y arriesguen en los proyectos científicos del futuro.
El Studio del JPL ve, ahora mismo, peligrar su futuro. Elachi, el hombre que lo puso en marcha, que arriesgó al contratar a un artista para que les dijera a sus científicos e ingenieros lo que nadie les había dicho y les hiciera pensar de otra manera, se jubila el año que viene. En un par de meses habrá elecciones presidenciales en Estados Unidos y la NASA y la decisión sobre sus misiones es responsabilidad directa del Presidente; él o ella es quien decide cuál será la prioridad de la agencia espacial americana durante su mandato.
Esperemos que la política no eche por tierra esta exitosa y fructífera colaboración.
Referencias:
La ciencia, pasión, asombro y curiosidad.
Nasa’s secret art studio: how to make rocket science beautiful
Sobre la autora: Ana Ribera (Molinos) es historiadora y cuenta con más de 15 años de experiencia en el mundo de la televisión. Es autora del blog Cosas que (me) pasan y responsable de comunicación de Pint of Science España.
El artículo Una colaboración fructífera: The Studio – Jet Propulsion Laboratory se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El universo no rota
El fondo cósmico de microondas
Imagina un lavabo lleno de agua hasta el borde. El agua está tranquila, no existe corrientes de aire y no se mueve nada en la superficie. Está tan tranquila que de hecho hay que fijarse bien para ver que el lavabo está lleno de agua. Bien, imagina ahora que abrimos el desagüe sin alterar nada más. La rotación que se genera nos permite ver claramente el agua porque se generan perturbaciones en forma de vórtice que apuntan hacia donde está escapando el agua. Antes de abrir el desagüe la masa de agua era perfectamente isótropa (igual en cualquier dirección); después de abrirlo lo que se forman son desviaciones en la densidad local del agua que vemos como líneas del vórtice.
El mismo principio nos permite saber si el universo está rotando y hasta qué punto es isótropo. ¿Cómo? Estudiando el rastro del Big Bang, la radiación cósmica de microondas.
En promedio el universo es igual mires en la dirección que mires siempre y cuando consideres una escala suficientemente grande. Pero si el universo estuviese rotando la velocidad a la que se expande variaría con la dirección. . Un grupo de investigadores encabezado por Daniela Sadeeh, del University College London (Reino Unido), ha buscado estas anisotropías en los mapas del fondo cósmico de microondas. Tras considerar todas las anisotropías posibles han fijado los límites más estrictos hasta la fecha a la dependencia intrínseca de la inflación cósmica con la dirección; en otras palabras, han determinado que nuestro universo es isótropo con una probabilidad muy alta.
La mejor huella de la isotropía del universo es el fondo cósmico de microondas. En él se puede observar que es prácticamente uniforme en cualquier dirección. Existen pequeñas fluctuaciones (por pequeñas queremos decir de 1 parte en 100.000) que pueden explicarse como perturbaciones en la densidad del universo. Sin embargo, algunas de las fluctuaciones podrían ser el resultado de una expansión anisotrópica, lo que se traduce en un desplazamiento de la longitud de onda de las microondas dependiendo de su dirección de llegada al observatorio. Un universo anisótropo sería incompatible con algunos modelos cosmológicos, especialmente con el más popular actualmente, ese que incluye la inflación.
Comparación de la calidad de las mediciones del fondo cóamico de microondas con tres satélites distintos.
Estudios anteriores se han ceñido generalmente a modelos de anisotropía que se representaban como una rotación (una anisotropía tipo vector, en la jerga). Los investigadores en esta ocasión, y esto es lo interesante, han hecho un estudio más general incluyendo cualquier tipo de anisotropía imaginable fuesen tipo escalar, vector o tensor, construyendo un modelo genérico. En este modelo se pueden variar los parámetros y comparar sus resultados con las mediciones efectuadas por el satélite Planck, cuyas mediciones de polarización son muy sensibles a los modelos anisotrópicos.
Los resultados obtenidos muestran que los modelos anisotrópicos son inconsistentes con las mediciones. En concreto las probabilidades de que sea anisótropo son de solo 1 entre 121.000 o, lo que es lo mismo, es isótropo con un 99,917 % de certeza.
Referencia:
Saadeh, D. et al (2016) How Isotropic is the Universe? Phys Rev. Lett. doi: 10.1103/PhysRevLett.117.131302
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo El universo no rota se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El Mengenlehreuhr: existencia y unicidad
El Berlin-Uhr o Mengenlehreuhr (en alemán, el reloj de Berlín o reloj de teoría de conjuntos) se instaló en la ciudad alemana de Berlín el 17 de junio de 1975. Fue el primer reloj público en el mundo en dar la hora mediante un sistema de iluminación con diferentes áreas de colores.
Fue diseñado por el inventor Dieter Binninger (1938-1991), por encargo del Senado de Berlín.
Imagen del reloj y sus instrucciones (Wikipedia).
Como se muestra en las instrucciones, cada luz encendida indica una determinada duración de tiempo ya pasada. En concreto –y de arriba abajo en la anterior imagen– cada luz en la primera fila representa 5 horas, en la segunda 1 hora, en la tercera 5 minutos y la cuarta fila 1 minuto. En la parte superior, un círculo oscila –se enciende y se apaga– cada segundo.
¿Seguro que Mengenlehreuhr es un verdadero reloj? Es decir, ¿cada hora del día puede representarse por medio de este reloj (existencia) y, además, ninguna configuración horaria se repite (unicidad)?
Para demostrar que es un ‘auténtico’ reloj, vamos a convertir todos los tiempos a minutos: un día tiene 24 horas, es decir 1440 minutos. Además, cada una de las cuatro luces en la primera línea representa 5×60=300 minutos, en la segunda fila 1×60 = 60 minutos (también hay cuatro), cada una de las once luces en la tercera línea equivale a 5 minutos, y en la cuarta fila 1 minuto (hay cuatro de estas).
Cualquier momento de un día, expresado en minutos pasados desde la medianoche, se representa por un número entero entre 0 y 1440. Por ejemplo, 1h34 son 94 minutos y 20h10 equivalen a 1210 minutos.
Probar que Mengenlehreuhr es un verdadero reloj consiste entonces en demostrar el siguiente teorema:
Todo número entero N entre 0 y 1440 (ambos incluidos) se escribe de manera única de la forma:
N = 300x1 + 60x2 + 5x3 + x4,
donde x1, x2y x4 son enteros entre 0 y 4 (ambos incluidos) y x3 es un entero entre 0 y 11 (ambos incluidos).
Notar que x1 representaría cada luz de la primera fila (empezando por arriba), x2 de la segunda, etc.
La prueba de este teorema no es complicada, puede verse en este enlace [PDF].
Tras la prueba puede afirmarse sin ninguna duda que: ¡Mengenlehreuhr es un auténtico reloj!
Más información:
- L’horloge de Berlin, Blogdesmaths, 14 septiembre 2014
- Set Theory Clock, 3 Quarks
- Berlin-Uhr, Wikipedia
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
Esta entrada participa en la Edición 7.6 del Carnaval de Matemáticas, que organiza el blog Gaussianos.
El artículo El Mengenlehreuhr: existencia y unicidad se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Vídeo ganador del premio especial del jurado de Ciencia Clip: “Nanotecnología”
Ciencia Clip es un concurso de vídeos divulgativos de ciencia diseñados, producidos y protagonizados por estudiantes de Educación Secundaria.
El objetivo del concurso es fomentar el interés por la ciencia y la tecnología. Y ofrecer a los concursantes una oportunidad para ejercitar su creatividad y habilidades comunicativas usando herramientas que proporciona internet.
Ciencia Clip es una iniciativa de la Cátedra de Cultura Científica de la UPV/EHU, patrocinada por la Diputación Foral de Bizkaia y en la que colaboran el grupo Big Van y la plataforma de divulgación científica Naukas.
El día 17 de septiembre, en el marco del evento Naukas Bilbao 2016, se anunció el ganador del premio especial otorgado por el jurado, que premia al vídeo mejor valorado de todos con una visita al CERN en Ginebra. El premio recayó en “Nanotecnología” de Pablo Eléxpuru, Gabriel Ibarra y Guillermo Hurtado (Colegio Gaztelueta, Leioa).
El artículo Vídeo ganador del premio especial del jurado de Ciencia Clip: “Nanotecnología” se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Maxwell y el éter
La idea del “éter lumínico”, medio por el que se propagaban las ondas de luz, aparece en el siglo XVII con Christian Huygens, desaparece en el XVIII y resurge en el XIX cuando los experimentos de Young y Fresnel apuntan a la naturaleza ondulatoria de la luz. Maxwell también pensó que el éter podría considerarse un medio para la transmisión de las fuerzas eléctricas y magnéticas. Más tarde se daría cuenta de que podía olvidarse completamente de este modelo concreto del éter si se centraba en la forma matemática de la teoría. Sin embargo, justo antes de su muerte, en 1879, Maxwell escribió un artículo sobre el éter para la Enciclopedia Britannica (1878) en el que aparece como convencido defensor del concepto:
“Sean las que fueren las dificultades que tengamos a la hora de formar una idea consistente de la constitución del éter, no puede haber duda de que los espacios interplanetarios e interestelares no están vacíos, sino que están ocupados por una sustancia o cuerpo material, que es ciertamente el más grande, y probablemente el más uniforme del que tengamos alguna noticia.”
Maxwell era consciente de los fallos que presentaban los modelos anteriores del éter. En la primera parte del mismo artículo decía:
“Los éteres se inventaron para que los planetas nadaran en ellos, para constituir atmósferas eléctricas y efluvios magnéticos, para comunicar sensaciones de una parte de nuestros cuerpos a otra, y así, hasta que todo el espacio había sido ocupado tres o cuatro veces con éteres. Solo cuando recordamos la gran y maliciosa influencia que las hipótesis acerca de los éteres solían ejercer, podemos apreciar el horror a los éteres que los hombres de mente seria tuvieron durante el siglo XVIII.”
Maxwell había formulado su teoría electromagnética matemáticamente, independientemente de cualquier modelo concreto de éter. ¿Por qué, entonces, continuaba hablando del “gran océano de éter” que llena todo el espacio? Porque para Maxwell era impensable que pudiesen existir vibraciones sin que exista algo que vibre, u ondas sin un medio. Por otra parte estaba el hecho de que el concepto de “acción a distancia”, presente en Newton y en la electrodinámica de Àmpere (véase De los campos), era algo que para los físicos de la segunda mitad del XIX era absurdo. ¿Cómo podía un objeto ejercer una fuerza sobre otro alejado de él si no había algo que transmitiese esa fuerza? Un cuerpo se dice que actúa sobre otro, y la palabra sobre incluye la idea de contacto. De forma sutil, el lenguaje común hacía la idea de éter poco menos que necesaria.
Con todo, pocas décadas después de la muerte de Maxwell el concepto de éter había perdido mucho de su apoyo. Para la segunda década del siglo XX había desaparecido del catálogo de conceptos útiles en buena medida gracias a los experimentos de Michelson-Morley y a las ideas de un tal Albert Einstein. Sin embargo, la principal fuente de desgaste de la hipótesis del éter fue la propia teoría electromagnética de Maxwell, simplemente porque sus ecuaciones no necesitaban esa hipótesis para explicar completamente los cambios y relaciones entre los campos eléctricos y magnéticos en el espacio.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Maxwell y el éter se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El caso de los cangrejos viajeros
“e procurado que parta un hombre criado del Granduque en una nave que parte de Liorno para Alicante el qual lleba algunos vasos de ganbaros vivos el qual a echo espirienzia de tenerlos tres meses vivos y que le basta el animo de que llegaran vivos a Madrid o Aranjuez, aunque de mi parecer estaran mejor en Aranjuez.”
Carta de Gonzalo “Gonzalito” de Liaño a Felipe II, con fecha de 22 de febrero de 1588.
Hay cuatro especies de cangrejos de río en la Península Ibérica. De las cuatro, tres son especies introducidas y para la cuarta, el debate es apasionado sobre si es nativa o introducida. Es más, hasta el siglo XVI no hay ninguna cita, que sepamos, sobre cangrejos de río en la Península. Vamos a contar la historia de los cangrejos viajeros.
Las tres primeras, las introducidas, son Procambarus clarkii o cangrejo rojo o de las marismas, Pacifastacus leniusculus o cangrejo señal, y Cherax destructor o yabbie. La especie en discusión, que analizaremos más adelante, es el Austropotamobius italicus, el cangrejo de nuestra infancia (para los que tengan suficiente edad).
Procambarus clarkii
El cangrejo rojo Procambarus llegó primero a una finca de Extremadura en 1973, pero fracasó su cultivo. Eran 500 ejemplares los que llegaron desde las marismas de Louisiana. Al año siguiente, en 1974, fue introducido en las marismas del Guadalquivir por el Archiduque Andrés Salvador Habsburgo-Lorena para promover su cría y comercio. Ahora eran 500 kilogramos los que se enviaron desde los Estados Unidos pero solo llegaron vivos 100 kilogramos. Pronto escapó de las zonas de cría y en tres décadas colonizó casi todos los tramos medios y bajos de los ríos ibéricos.
Cangrejos rojos al estilo de Louisiana
Siempre que se cocine con cangrejos de río debe hacerse con cangrejos vivos.
En una cazuela ponemos un tercio de agua y dos cabezas de ajo sin pelar, laurel, caldo de marisco o, si no tiene, pastilla de caldo, sal, pimienta, naranjas y limones partidos por la mitad, alcachofas y patatas. Llevamos a hervir, bajamos el fuego y tenemos unos veinte minutos. Añadimos maíz, cebollas, champiñones y judías verdes y cocemos quince minutos más. Removemos bien y echamos al cocido salchichas ahumadas cortadas por la mitad. Cocer otros cinco minutos.
Ponemos los cangrejos, llevamos de nuevo a hervir y bajamos el fuego. Esperamos a que el color de los cangrejos sea rojo brillante. Suele bastar con cinco minutos.
Sacar los cangrejos y servirlos en seco con todo el acompañamiento que tenemos en la cazuela.
Pacifastacus leniusculus
El cangrejo señal Pacifastacus llegó desde Suecia, aunque su origen está en Norteamérica. Lo importaron en 1974 y 1975 dos criaderos de cangrejos de Soria y Guadalajara y, al año siguiente, en otros dos criaderos de Cuenca y Burgos. Al contrario que el cangrejo rojo, esta especie coloniza los tramos altos de ríos y arroyos. Durante un tiempo se utilizó para repoblar los ríos de los que había desaparecido el Austropotamobius pues vive en hábitats parecidos y se reproduce en la naturaleza. Como es habitual, tanto el cangrejo rojo como el señal fueron llevados a muchos ríos y arroyos por iniciativa personal.
Cangrejo señal a la cazuela como en Oregón
En la cazuela ponemos agua, cebolla en cuartos, ajo, pimiento rojo picado, unas pastillas de caldo de verdura, cayena, laurel, pimienta, pimentón, mostaza en semillas y sal. Llevamos a hervir y dejamos cocer una media hora a fuego suave. Añadimos zumo de limón y calentamos de nuevo.
En otra cazuela cocemos patatas unos cinco minutos, añadimos maíz y hervimos otros cinco minutos y, finalmente, añadimos el cocido anterior y los cangrejos y cocinamos unos seis minutos. Y a la mesa.
Cherax destructor
El cangrejo Cherax destructor, llamado yabbie, proviene de Australia y llegó en 1983. Ahora se mantiene en pocas poblaciones, una en Aragón y tres en Navarra. Es una especie de fondos blandos, con limo, en aguas lentas y, por ello, en pantanos, balsas y tramos finales de grandes ríos. Se trajo para cultivar pues en Australia es un cangrejo muy apreciado, con recetas, por ejemplo, con mayonesa y ajo, como veremos, o con pasta.
Yabbies con ajo y mayonesa
Cocemos los cangrejos unos diez minutos en agua hirviendo con sal. Calentamos el horno a 200ºC, envolvemos una cabeza de ajo sin pelar en papel de plata y dejamos en el horno hasta que se ablande. Quitamos el papel de plata, cortamos la cabeza de ajo por la mitad y la pelamos.
Ponemos ese ajo pelado, huevo, vinagre y mostaza y batimos, poco a poco, añadiendo aceite de oliva, hasta conseguir la mayonesa. Añadimos sal y pimienta.
Ponemos en la mesa los cangrejos cocidos y, en una salsera, la mayonesa para que cada uno se sirva a gusto. Esto debería estar bueno con alioli.
Austropotamobius italicus
En cuanto a la historia, más complicada y antigua, de la presencia del Austropotamobius en la Península Ibérica, nos la va a contar Miguel Clavero, de la Estación Biológica de Doñana. Es partidario de que esta especie también es introducida, pero lo que relata nos servirá de guía.
No hay evidencias ni en la paleontología ni en la arqueología de la presencia de cangrejos de río en la Península Ibérica. Cierto es que es un grupo de difícil fosilización y, si la hay, no será fácil hallarlo en un yacimiento. Sin embargo, no hallar ejemplares fosilizados ni en excavaciones históricas no supone que la especie no exista, simplemente no estaba en el lugar adecuado en el momento preciso.
En cuanto a testimonios escritos históricos, podemos empezar por uno que niega la presencia de cangrejos. Son los textos de un excelente viajero y naturalista italiano, Ulisse Aldrovandi, que vivió entre 1522 y 1605, y viajó por la Península catalogando plantas y animales. Su viaje fue en el siglo XVI aunque sus escritos se publicaron en 1606, después de su muerte. El mismo escribió que en sus textos solo aparecen los animales “que he visto con mis propios ojos y tocado con mis propias manos”. Pues bien, sobre el cangrejo de río afirmó que “abunda en los arroyos, los ríos y los lagos de Europa, pero no se encuentra en España, a pesar de que allí no faltan los ríos.” Una viajero y escritor de confianza que afirma que en la Península no hay cangrejos de río.
Parece, afirma Miguel Clavero, que el cangrejo de río llegó a la Península a finales del siglo XVI y el relato de cómo lo hizo nos lleva a la corte de Felipe II. La historia más detallada nos la cuenta Luis Cabrera de Córdoba (1559-1623), que nació y murió en Madrid, y que, hijo de un criado, llegó a ser uno de los secretarios más eficaces y respetados de Felipe II. Entre otras obras, escribió una monumental biografía del rey, exacta y prolija, que todavía en la actualidad nos sirve para conocer en detalle a aquel rey tan poderoso y, me parece, tan triste.
Cabrera de Córdoba nos cuenta que Felipe II se interesaba por la naturaleza y que organizó muchas expediciones por varias regiones del imperio para conocer y catalogar las especies recogidas. Incluso importó a la Península especies curiosas o útiles o, es mi opinión, bastante inútiles, como, por ejemplo, elefantes, rinocerontes, leones, guepardos, leopardos, camellos o avestruces. Para los estanques del Monasterio de El Escorial trajo carpas y tencas de Flandes, que escaparon, como es habitual, y colonizaron muchos ríos peninsulares. Y también importó, para esos estanques, cangrejos de río desde Milán. Cabrera de Córdoba, en su biografía del rey, escribió que “hasta peces hizo traer de Flandres, carpas, tencas, burguetes y gambaros de Milan.” Los gambaros es como llaman a los cangrejos de río en Italia.
Sin embargo, quien negoció el traslado de los cangrejos a España fue otro representante de Felipe II. Era Gonzalo de Liaño, llamado “Gonzalito”, por ser de pequeña estatura y, en los inicios de su carrera, bufón de la Corte. Con los años y su inteligencia, se convirtió en un diplomático de confianza para Felipe II. Fue enviado a Milán a negociar con el Gran Duque de la Toscana el envío de los gambaros a Madrid. El asunto le interesa a Liaño y mantiene varias reuniones con el Gran Duque y sus representantes. En 1583, Luigi Dovara, diplomático toscano en la corte de Felipe II, escribe a su Gran Duque y le reitera el interés del rey por los cangrejos de la Toscana. Hubo años de rechazo y problemas, sobre todo en Toscana, y fue en 1588 cuando fueron embarcados en Livorno hacia Alicante, todo ello confirmado en una carta de Gonzalo de Liaño a Felipe II. Es la constancia escrita de la llegada de los gambaros a España aunque, es obvio, quizá hubo otros envíos. Por cierto, en la misma época y por influencia del rey, también nos llegó desde Toscana el Juego de la Oca. Y, además, es curioso constatar que, de las cuatro especies de cangrejo de río que hoy se encuentran en la Península Ibérica, dos fueron introducidas por miembros de la casa de Habsburgo, con Felipe II en el siglo XVI y el Archiduque Andrés Salvador en el siglo XX.
Es interesante también la primera vez que el cangrejo de río aparece en una recopilación de recetas de cocina. Fue en 1611 y en un libro publicado por Francisco Martínez Motiño, Cocinero Mayor de Felipe II y de sus sucesores, Felipe III y Felipe IV. Escribe así en la página 319 de su libro:
Como se aderezan los mariscos
“Estos pescadillos de conchas, y que se llaman mariscos, como son los cangrejos, pesebres, gambaros, almejas, y otros muchos, todos son buenos cocidos con agua, sal, y pimienta, porque es mucho gusto descascarlos, y comer los tuetanos; y descascando los gambaros, y langostinos, y los mexillones, y otros muchos que hay, son buenos ahogados con su manteca, y cebolla, y sazonando con todas sus especias, y aderezándolos en su cazuela, echarás su verdura picada, y su agrio de limón, y agrax, sazonándolo de sal, son muy buenas cazuelas, y fritos con naranja, y pimienta son buenos.”
Este gambaro es, con seguridad, nuestro cangrejo de río con su nombre italiano.
Hay que esperar casi dos siglos, hasta 1775, para que el cangrejo de río peninsular aparezca en un texto escrito por un naturalista reconocido. Es el ingles William Bowles que, después de viajar por España, escribió su “Introducción a la historia natural y a la geografía física de España”. Allí cita al cangrejo, por ejemplo, en Fontibre, en el nacimiento del Ebro, donde “abunda en excelentes truchas, y en multitud increíble de cangrejos”. O en Burgos donde nos cuenta que “en los ríos hai cantidad de truchas, de anguilas y cangrejos”.
En menos de dos siglos, este cangrejo aparece en el Duero, el Ebro y la parte alta del Tajo. En los siglos XIX y XX se expande por la Península, y en los setenta, hace unas cuatro décadas, ocupaba toda Castilla-León, el País Vasco y todas las zonas montañosas hacia el sur, hasta la zona oriental de Andalucía, siendo el máximo de distribución que alcanzó esta especie.
Cangrejos de río a la alavesa según la casa de mi abuela
Recordad, siempre con cangrejos vivos. Cortamos cebolla, ajo y pimiento verde y los pochamos con aceite en una cazuela. Añadimos guindilla y, si no están a mano, una cayena (esto es más moderno), o más según el gusto picante del cocinero. También echamos pimienta negra y sal.
Añadimos los cangrejos, tapamos la cazuela, y cocemos a fuego suave hasta que estén a punto con un bonito color rojo. Podemos flambear con coñac y, después, bañamos en salsa de tomate. Se cuece todo como un cuarto de hora a fuego suave.
Llevamos a la mesa y, atención, se comen con la mano, con los rechupeteos correspondientes de cangrejos y de dedos.
Y, después, comenzando parece que en 1978, empezaron a morir y a desaparecer excepto en tramos escondidos y en poblaciones muy pequeñas. Era la afanomicosis, una enfermedad mortal producida por un hongo, Aphanomyces astaci, que viene, parece ser, de Norteamérica. Apareció en Europa hacia 1880 en Italia, poco después en Francia y, después, en el norte del continente. En la Península, aparte de algunos episodios aislados y dudosos, se extendió la enfermedad en los setenta del siglo pasado, hace unos 40 años y casi acabó con el Austropotamobius, nuestro cangrejo de río. La primera confirmación oficial de la mortandad provocada por este hongo se publicó en 1977 para cangrejos de Segovia y Burgos.
El origen del hongo ha sido y es motivo de discusión aunque, parece cada vez más cierto, la llegada vino con los cangrejos de Norteamérica, el rojo y el señal. En su lugar de origen, la presencia del hongo Aphanomyces es continua pero no provoca daños a los cangrejos que han desarrollado inmunidad a la afanomicosis. Pero estos animales portan el hongo y, cuando llegaron a la Península en los setenta, traían el hongo y, con su expansión, lo llevaron a muchas de las poblaciones del cangrejo de río que aquí vivían. Se desarrolló la enfermedad y casi acabó con esta especie, el Austropotamobius.
Ahora discutiremos si este cangrejo era nativo o importado, pero es curioso que la enfermedad traída por dos especies importadas casi hizo desaparecer a otra especie, quizá importada, que llevaba varios siglos en la Península. Como ha ocurrido en otros casos, es nuestra especie la que pone en contacto a diferentes especies y, en muchos casos, transfiere parásitos y provoca desastres de este tipo. Se puede recordar, como ejemplo, el escarabajo de la patata, historia en que la patata de los Andes la llevamos a Norteamérica, pasando por Europa, y allí se encontró con el escarabajo de Colorado y lo convirtió en una peste global.
Hay un intenso debate entre los expertos en nuestros cangrejos de río sobre si el Austropotamobius italicus es una especie nativa o importada. Ya hemos visto que para Miguel Clavero es importada y traída de Italia en tiempos de Felipe II. Para otros, como el grupo de Ricardo Miranda, de la Universidad de Navarra, o el de Francisco Galindo, de la Agencia de Medio Ambiente y del Agua de Andalucía en Granada, es una especie nativa. Los análisis de ADN debería ayudar a responder a este enigma.
Los primeros trabajos encontraban una diversidad genética muy baja, lo que implica que es una especie introducida. Solo hay que recordar los centros Vavilov que demuestran que, cuanto mayor es la diversidad genética más cerca estamos del lugar de origen de una especie.
Sin embargo, en estudios posteriores con más ejemplares se encontró una diversidad mayor. Aparecieron hasta ocho tipos de ADN en las mitocondrias de las células del cangrejo. Parece sugerir que la especie es nativa. Pero de nuevo surgen las dudas, pues estas variaciones en el ADN no siguen una pauta geográfica concreta, lo que sería lógico si derivan unas de otras, sino que están mezcladas. Y esta mezcla puede deberse a que se trajeron de Italia varios grupos de cangrejos o, por el contrario, a que los tipos se distribuyen así porque han ocurrido muchas introducciones de cangrejos puntuales por iniciativa individual. Es más, el grupo de Miranda asegura que esta variabilidad genética ha necesitado entre 20000 y 30000 años para producirse.
Es de destacar que se alcanzan conclusiones contrarias sobre los análisis genéticos a partir de los mismos datos. Si no hay variabilidad o si la hay, sea lo que sea, para un grupo de investigadores supone que el Austropotamobius es una especie nativa desde hace, por lo menos, 20000 años, y para otro grupo es una especie introducida hace unos 500 años.
En conclusión, que el debate continua. Y tiene su importancia práctica pues el cangrejo recibe muchos recursos oficiales para recuperar sus poblaciones casi extinguidas por la afanomicosis, y algunos se preguntan si debemos dedicar el tiempo y los presupuestos a recuperar una especie que no es de aquí, si es que un animal introducido (aunque sea por Felipe II). Desde el punto vista conceptual, lo que se deben recuperar son hábitats completos, no solo especies, y mucho menos especies introducidas que suponen, siempre, cambios para el hábitat original. Sigue la discusión, seguro.
Es la sociedad la que tiene que tomar la decisión de las especies que hay que conservar. Si es una especie nativa, no hay duda. Si no lo es, la decisión se debe basar en parámetros científicos y sociales. Por ejemplo, no hay duda de que no se deben dedicar recursos para la conservación de los cangrejos americanos, el rojo y el señal. En cambio, para el cangrejo de río que lleva, si es especie introducida, varios siglos entre nosotros, el debate es, además, de biológico, cultural y social. El tiempo transcurrido desde que llegó es una de las características que puede hacer que tomemos por nativa una especie introducida. Así, a largo plazo, una especie introducida se asimila como nativa cuando es funcional o culturalmente valiosa por su papel en el ecosistema o por su incorporación a las tradiciones culturales. A cualquiera que ha tenido al Austropotamobius en el río al lado de casa desde hace generaciones, le gustaría que se recuperara esta especie.
En nuestro entorno más cercano, el grupo de Ana Rallo, de la UPV/EHU en Leioa, ha muestreado los ríos de Bizkaia, desde 1993 a 2007, en busca del cangrejo de río. Según su estudio, publicado en 2009, han visitado más de 600 puntos de muestreo y han encontrado 108 arroyos con el cangrejo de río nativo, 96 con el cangrejo señal y 7 con el cangrejo rojo. Afirman que las poblaciones de cangrejos dependen, además de la afanomicosis para el cangrejo nativo, de la gestión adecuada del uso del agua para todas las poblaciones.
Para terminar, hay muchos expertos en especies invasoras que afirman que, si hay suerte, algunas invasiones son comestibles, lo que plantea dos cuestiones: por una parte, habrá voluntarios para extenderlas a nuevos hábitats, como ocurrió con los cangrejos de río, y, por otra parte, facilita en parte su control si se permite su captura para la alimentación. Como habrán notado, me apunto a esta segunda cuestión y propongo recetas para el aprovechamiento de estas ricas especies invasoras. Pero, aviso, primero deben consultar los reglamentos para la captura y traslado pues varían en el tiempo y con la región de que se trate. En general, capturar rojo y señal será libre, el nativo estará prohibido hasta que se aclare su estatus, y el australiano es demasiado reciente como para tener datos concretos. Ya saben: “Coman al invasor”. Espero ayudar con esta propuesta.
Referencias:
Clavero, M. & D. Villero. 2014. Historical ecology and invasion biology: Long-term distribution changes of introduced freshwater species. BioSciences 64: 145-153.
Clavero, M. et al. 2015. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biological Reviews doi: 10.1111/brv.12205
Clavero, M. 2015. Non-native species as conservation priorities: response to Díez-León, M. et al. Consercation Biology DOI: 10.1111/cobi.12524
Clavero, M. et al. 2016. El cangrejo de río… italiano. Quercus 359: 42-52.
Diéguez-Uribeondo, J. et al. 1997. The crayfish plague fungus (Aphanomyces astaci) in Spain. Bulletin français de la pêche et de la pisciculture. 347: 753-763.
Díez León, M. et al. 2014. Setting priorities for existing conservation needs of crayfish and mink. Conservation Biology 29: 599-601.
Galindo, F.J. et al. 2014. Cangrejo de río: la ciencia sí es aval de su carácter nativo. Quercus 342: 74-79.
García-Arberas, L. et al. 2009. The future of the indigenous freshwater crayfish Autropotamobius italicus in Basque Country streams: Is it posible to survive being an inconvenient species? Knowledge and Management of Aquatic Ecosystems DOI: 10.1051/Kmae/2010015
Vedia, I. & R. Miranda. 2013. Review of the state of knowledge of crayfish species in the Iberian Peninsula. Limnetica 32: 269-286.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo El caso de los cangrejos viajeros se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La ambulancia como vehículo de infecciones
Las ambulancias pueden ser fuente de microorganismos que originen o desarrollen enfermedades transmisibles a pacientes o personal sanitario. Estos organismos patógenos son, en ocasiones, resistentes a múltiples fármacos; y las manos, el principal origen de transmisión. Un equipo de profesionales de Enfermería, Medicina, y Biología —coordinado por el catedrático en Microbiología e investigador principal, Guillermo Quindós— ha efectuado un estudio transversal para analizar la contaminación de microbios o bacterias en las ambulancias. Es la primera vez que se realiza en nuestro país una investigación de este tipo circunscrita a los vehículos de soporte vital básico.
La recogida de muestras se llevó a cabo en julio de 2012 en 10 de las 17 ambulancias de soporte vital básico del área metropolitana de Bilbao. Los vehículos sanitarios realizaron una media de 225 intervenciones en los 30 días anteriores al estudio microbiológico. El equipo universitario utilizó técnicas de enmascaramiento ciego para no alterar las condiciones habituales del vehículo y evitar posibles sesgos en el muestreo, el análisis y la interpretación.
Durante la toma de las muestras, se detectó que ninguna de las diez unidades de emergencias disponía de lavabo (aunque no es obligatorio) para lavarse las manos, aunque ocho de ellas sí llevaban un gel hidroalcóholico, un sustituto del agua y jabón. También se observó que no disponían de un protocolo escrito sobre la manera de limpiar y desinfectar la ambulancia. “La existencia de un protocolo es deseable porque facilita la realización de una correcta desinfección al aparecer con detalle los pasos a dar”, apunta Guillermo Quindós, catedrático de Microbiología de la Universidad del País Vasco.
En cada ambulancia se analizaron seis puntos: dos en la cabina de conducción y cuatro en el área de pacientes. En el 73% de las 60 muestras tomadas había una mayor presencia de microbios en el volante, en la manilla interior de la puerta del pasajero y los asideros de la camilla. Estos datos sugieren que existe una contaminación cruzada entre el área del paciente y la cabina del conductor provocada por hábitos inadecuados como, por ejemplo, conducir con las manos enguantadas después de proporcionar asistencia o no lavarse las manos. Guillermo Quindós, investigador principal, destaca que “entre las personas que trabajan en la sanidad el hábito de lavarse las manos es deficiente y sería necesario concienciar sobre la importancia que esta medida de higiene tiene para evitar la contaminación microbiana”.
Tras el análisis de las diferentes muestras, el equipo de la UPV/EHU observó la existencia de Staphylococcus aureus, estafilocos coagulasa negativa y otros cocos Gram-positivos, enterobacterias y otros bacilos Gram-negativos que, aunque no alcanzaron niveles alarmantes, si alertan sobre la posibilidad de una contaminación cruzada entre el espacio interior y exterior del hospital a través de los traslados que se realizan en ambulancias. Aún así, los niveles de contaminación encontrados en los vehículos sanitarios fueron bajos; de hecho, sólo en dos ambulancias se encontraron tres cultivos de Staphyloccocus aureus, agentes infecciosos, más agresivos que aunque pueden estar presentes en las personas sanas, son causa de infecciones hospitalarias, sobre todo en personas enfermas. Un hallazgo relevante era que la contaminación microbiana de las ambulancias del área metropolitana de Bilbao fue mucho menor que la encontrada en estudios similares realizados en EEUU.
Referencia:
Aketza Varona-Barquin, Sendoa Ballesteros-Peña, Sergio Lorrio-Palomin, Guillermo Ezpeleta, Verónica Zamanillo, Elena Eraso, Guillermo Quindós.. Detection and characterization of surface microbial contamination in emergency ambulances.. American Journal of Infection Control (2016). DOI: 10.1016/j.ajic.2016.05.024.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo La ambulancia como vehículo de infecciones se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El proyecto BRAIN y sus implicaciones para la ciencia, medicina y sociedad
¿Seremos capaces de comprender cómo funciona el cerebro en su totalidad? La neurobiología se encuentra en una encrucijada y para avanzar necesita del desarrollo de nuevos métodos. Los científicos ya están dando los primeros pasos… Rafael Yuste, uno de los protagonistas de estos avances nos contó el pasado 20 de octubre en primera persona como surgió el proyecto BRAIN, cuáles son sus objetivos y las posibles consecuencias en el futuro de la ciencia, la medicina y la sociedad.
Rafael Yuste es Catedrático de Ciencias Biológicas y Neurociencias en la Universidad de Columbia (USA). Nacido en Madrid, Yuste es líder de una iniciativa internacional a gran escala cuyo objetivo es registrar y manipular la actividad de cada neurona dentro de los circuitos cerebrales, y que cuenta con el patrocinio de la administración Obama dentro la ambiciosa iniciativa BRAIN.
Edición realizada por César Tomé López a partir de materiales suministrados por dipc.tv
El artículo El proyecto BRAIN y sus implicaciones para la ciencia, medicina y sociedad se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El primer descubrimiento Advanced LIGO
Por primera vez, los científicos han detectado ondulaciones en el tejido del espacio-tiempo, las llamadas ondas gravitacionales, que llegan a la Tierra procedentes de la fusión de dos agujeros negros a 1.300 millones de años luz en el distante universo. Este descubrimiento confirma una importante predicción de la teoría de la relatividad general de Albert Einstein de 1915 y abre una nueva ventana sin precedentes en el conocimiento del cosmos.
Los físicos Alicia M Sintes Olives y Sascha Husa son miembros del Grupo de Relatividad y Gravitación de la Universidad de las Illes Balears (UIB), único grupo de investigación español que ha participado en la Colaboración Científica LIGO. En esta charla conoceremos de primera mano qué son las ondas gravitacionales y cómo se ha gestado el primer gran descubrimiento de Advanced LIGO.
Edición realizada por César Tomé López a partir de materiales suministrados por dipc.tv
El artículo El primer descubrimiento Advanced LIGO se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: