Subscribe to Cuaderno de Cultura Científica feed
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Updated: 9 min 22 sec ago

Diferencias en la conducta suicida entre hombres y mujeres: una visión con perspectiva de género

Sun, 2024/05/05 - 11:59
Foto: Andreea Popa / Unsplash

El suicidio es una de las principales causas de muerte externa o no natural en el mundo. Y aunque se puede prevenir, su incidencia sigue al alza. En España, por ejemplo, se ha registrado un aumento sostenido de los fallecimientos por esta causa desde 2018.

Así, los datos publicados por el Instituto Nacional de Estadística (INE) muestran que en 2022 (último año con información consolidada) la mortalidad por suicidio se incrementó en un 5,6 % con respecto a 2021. Esta subida no es uniforme, ya que la tasa se ha acrecentado casi un 8 % más en menores de 30 años y un 42 % en adolescentes de entre 15 y 19 años.

Las cifras también indican que la proporción de hombres que se quitan la vida es significativamente mayor que la de mujeres: el triple. No obstante, en 2020, el año que estalló la pandemia de covid-19, se constató una igualación de estas tasas (casi un hombre fallecido por mujer fallecida) en adolescentes de 12 a 18 años.

Brecha de sexo: ¿a qué responde?

La brecha de sexo también se refleja en las diferentes formas del comportamiento suicida, como la ideación y el intento. Desde este punto de vista, los expertos han identificado un patrón por sexo contrario: las mujeres muestran más presencia e intensidad de ideaciones y un mayor número de intentos.

También se registra una mayor tasa de consultas femeninas en servicios de salud (sobre todo hospitalarios) por esta causa, lo que podría indicar que buscan ayuda antes. ¿A qué podrían deberse las diferencias?

La brecha entre mujeres y hombres atiende a tres variables: método y daño médico (por lo general, los hombres tienden a utilizan formas asociados a mayor severidad de la lesión física) e intentos previos de morir (se percibe el comportamiento de los hombres con mayor intención de morir). Tales disparidades varían según el contexto sociocultural, por lo que estos factores pueden guardar más relación con los roles de género que con el sexo biológico de la persona.

Por otro lado, los estudios indican alta ideación y de justificación del intento de suicidio (ambos estrechamente asociados con el inicio de la conducta suicida) y menor ratio de muerte en las mujeres, mientras que la cifra más abultada de suicidios masculinos se asocia a una ideación más fugaz.

La paradoja del género

Toda esta evidencia apoyaría lo que se conoce como la “paradoja del género” en la conducta suicida. Y aunque tradicionalmente se ha asociado a las diferencias biológicas entre hombres y mujeres, también tiene mucho que ver con las disimilitudes y expectativas culturales en relación al género.

Por ejemplo, las tasas más elevadas de fallecimiento por suicidio en varones suelen estar asociadas a una mayor prevalencia de trastornos externalizantes (asociados a problemas de conducta o dependencia de sustancias), rasgos psicológicos como impulsividad o agresividad y la preferencia por métodos más letales (por ejemplo, saltos desde edificios o uso de armas de fuego).

En contraste, los estudios indican que las mujeres son más propensas a mostrar trastornos de ansiedad, depresión o del estado del ánimo asociados a niveles altos de ideación o intento suicida.

La evidencia es más escasa y contradictoria para los factores que disminuyen la probabilidad de que se produzca esta conducta. Una evaluación centrada en las necesidades, sensibles a la pluralidad y los cambios en las de las circunstancias de las personas, podría aportar luz a dichas diferencias.

Nada es blanco o negro

El problema es que los estudios sobre este asunto en las culturas occidentales han analizado los datos conforme a estructuras de análisis binario: bueno/malo, hombre/mujer, negro/blanco… Desde este punto de vista, mujeres y hombres serían opuestos: ellas lo intentan y ellos lo consiguen.

Además, la conducta suicida en mujeres se ha atribuido erróneamente a la ambivalencia (inestabilidad psicológica), la expresión emocional exacerbada o a la consecuencia de un acto de debilidad precipitado por las turbulencias en sus relaciones. Por contra, los hombres manifestarían un comportamiento suicida firme o calculado o como resultado de una respuesta fuerte a la adversidad.

Adicionalmente, la lectura binaria de los datos puede alimentar la profecía autocumplida (cuando la percepción social sobre las diferencias alienta de forma indirecta a que estas se produzcan) o reproducir estereotipos en las conclusiones sobre frecuencia y letalidad en la conducta suicida.

¿Se puede entonces atribuir la menor incidencia en mujeres a la temprana identificación de casos de riesgo, dado que ellas se muestran más dispuestas a buscar ayuda en los servicios de salud o a expresar sus emociones? ¿Y la mayor mortalidad en hombres al uso de métodos más letales y su menor disposición a buscar apoyo, con tal de no contradecir los estereotipos de masculinidad tradicionales? Pues no únicamente. Y si consideramos que son explicaciones válidas, habría que cuestionarlas, porque evidencian cómo los propios estereotipos ligados a la socialización de nuestra identidad masculina o femenina tienen un efecto en la conducta suicida.

Una mirada única desde el binarismo reproduce clichés de género –tanto para las identidades normativas como para la divergencia–, limita el derecho a la elección de la identidad de género y puede llevar a una contención emocional del malestar. En consecuencia, el sistema de sexo y género binario podría considerarse, en sí mismo, un factor de riesgo de la estigmatización de la conducta suicida. No contribuye a la adopción de una conciencia social amplia para prevenirla.

Hacia una mirada más abierta

De todo lo anterior se concluye que el análisis binario de los datos o abordar por separado las variables que influyen en la conducta suicida puede llevar a excluir factores relevantes. Y si estos no se tienen en cuenta, las explicaciones sobre un fenómeno tan complejo como es el riesgo de suicidio quedan limitadas.

Incorporar la perspectiva de género en las acciones preventivas y de análisis de datos significa abrir el foco a explorar cómo conectan o se solapan las diversas categorías sociales: etnia, clase social, orientación sexual, estado de salud mental, etc.

Aquí cabe destacar las iniciativas que tienen en cuenta la autodeterminación de género en la comunidad LGTBIQ+, con mayores tasas de riesgo suicida: un 34 % más de ideación y un 18 % más de intentos con respecto al resto de la población. Por otro lado, existen alternativas de cuidado respetuoso que podrían maximizar la prevención, como espacios seguros de acogida, apoyo y aceptación.

La hoja de ruta para evaluar y abordar la conducta suicida contempla considerar la diversidad y la matización propia de cada individuo. Son aspectos cruciales para mejorar la capacidad de detectar el riesgo y poder prevenirlo, un asunto que concierne a toda la sociedad.The Conversation

Sobre las autoras: Anna Pedrola-Pons es investigadora predoctoral y Alejandro de la Torre Luque, investigador doctor, en el Departamento de Medicina Legal, Psiquiatría y Patología de la Universidad Complutense de Madrid.

Este artículo fue publicado originalmente en The Conversation. Artículo original.

Para saber más:
Podemos prevenir el suicidio
El peor enemigo de la prevención del suicidio
Prevención de la conducta suicida en jóvenes usando perros

El artículo Diferencias en la conducta suicida entre hombres y mujeres: una visión con perspectiva de género se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

¡Ups! Darwin y la herencia

Sat, 2024/05/04 - 11:59

 

Durante el viaje en el Beagle, Charles Darwin se había percatado de que los animales americanos se parecían mucho a los europeos, aunque no eran exactamente iguales. Pensó que esas diferencias podían ser producto de adaptaciones provocadas por los diferentes entornos. Pensó que, tal vez, los animales con capacidades mejor adaptadas a su entorno sobrevivían en mayor número que el resto. Y al hacerlo transmitían esas capacidades a sus hijos por medio de unas células especiales. A ese fenómeno le puso un nombre: Selección natural. Hoy sabemos que la herencia genética no funciona así. A pesar de este error, Darwin lo puso todo patas arriba con su idea.

Producción ejecutiva: Blanca Baena

Guion: José Antonio Pérez Ledo

Grafismo: Cristina Serrano

Música: Israel Santamaría

Producción: Olatz Vitorica

Doblaje: K 2000

Locución: José Antonio Pérez Ledo

Edición realizada por César Tomé López

El artículo ¡Ups! Darwin y la herencia se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Los grandes descubrimientos epigráficos

Fri, 2024/05/03 - 11:59

De vez en cuando los medios de comunicación se hacen eco de espectaculares descubrimientos arqueológicos, en especial rarísimas inscripciones escritas en lenguas y escrituras exóticas, que prometen aclarar misterios o arrojar luz sobre periodos oscuros de la historia.

Foto: Chris Linnett / Unsplash

Posiblemente el hallazgo más famoso de este tipo es la llamada Piedra de Rosetta, hallada en 1799 por las tropas napoleónicas en el delta del Nilo, que le permitió a Jean-François Champollion descifrar la escritura jeroglífica egipcia hacia 1823. Ha habido muchísimos otros descubrimientos importantes que, sin tener la fama de la Piedra de Rosetta, han representado pasos cruciales en el conocimiento del pasado. En noviembre de 2022, toda la prensa vasca y muchos periódicos de difusión española e internacional daban cuenta del hallazgo de un epígrafe sobre bronce, conocido como “La mano de Irulegi”, escrito en un sistema de escritura propio de la península ibérica, que recoge un corto texto presumiblemente redactado en la lengua de los vascones a comienzos del siglo I a.C.

epigráficosLa Piedra de Rosetta y como podría haber sido originalmente. Ilustración de Claire Thorne. Fuente: British Museum

Limitándonos al campo de los desciframientos de lenguas y escrituras desconocidas, aunque el aporte de algunas inscripciones singulares como la Piedra de Rosetta haya sido crucial, el avance suele venir habitualmente por la comparación y confrontación de varios documentos epigráficos, por limitados o parciales que sean. Muchas veces, la propia inscripción que resulta clave para el desciframiento de una escritura o lengua ha sido, hasta ese momento, un verdadero misterio, que suele empezar a resolverse mediante el recurso al conocimiento de un aspecto o ámbito externo al propio texto. Si Champollion logró descifrar el jeroglífico, antes que el brillante científico inglés Thomas Young, fue gracias a su conocimiento de la lengua copta.

La virtualidad explicativa de los grandes hallazgos epigráficos depende tanto de la propia información aportada como del conocimiento previo existente. Hacia 1925 Manuel Gómez Moreno fue capaz de descifrar la escritura ibérica, una de las escrituras paleohispánicas usadas en la península ibérica antes de la generalización del alfabeto latino, pero aún hoy en día somos incapaces de entender la lengua ibérica. En el desciframiento de la escritura tuvieron un papel importante los hallazgos de dos inscripciones, que curiosamente no estaban redactadas en escritura ibérica: una, aparecida en Ascoli (Italia) en 1908, recogía la concesión de ciudadanía romana a los jinetes ibéricos de una unidad auxiliar que luchó junto a Roma; la otra, aparecida en Alcoy en 1922, contenía un texto en lengua ibérica, pero alfabeto griego. Sin estos dos epígrafes hubiera sido mucho más difícil, por no decir imposible entonces, descifrar la escritura ibérica. Ahora bien, a diferencia de la Piedra de Rosetta, no hay ningún texto bilingüe ibérico-latino o ibérico-griego, de modo que esta limitación en los epígrafes conocidos nos impide pasar por el momento del nivel de la lectura del texto al nivel de su comprensión.

epigráficosCara B del plomo de la Serreta (Alcoy) en alfabeto greco-ibérico. Fuente: Tautintanes / Wikimedia Commons

Hay ocasiones en las que la función de un epígrafe no es servir de llave para el desciframiento, sino de prueba posterior de la bondad de la hipótesis. El desciframiento del Lineal B por Michael Ventris en 1952 fue el resultado de un concienzudo trabajo de comparación de muchos textos procedentes de los materiales excavados en Cnossos (Creta) por Evans. De manera marginal le ayudó en la tarea un singular epígrafe en silabario chipriota, escritura descifrada en 1871 que tenía relaciones genéticas con el Linear B, pero la base del desciframiento residía en un análisis detallado de las combinaciones de los signos que parecían cuadrar en la expresión de algunas palabras que podían identificarse con topónimos cretenses y sus derivados. La bondad del desciframiento le quedó clara a Blegen, un arqueólogo norteamericano que había excavado en Pilos (Grecia) en 1939, cuando, aplicando los valores propuestos por Ventris, pudo comprender una tablilla inédita de Pilos, la famosa tablilla de los trípodes.

Un ejemplo muy ilustrativo de diálogo entre conocimiento previo e información aportada por nuevos epígrafes nos proporcionan los avances recientes (2021) sobre el desciframiento de la escritura lineal elamita. Aquí intervienen, por un lado, un conjunto homogéneo de inscripciones conocidas desde el inicio del siglo XX; por otro, el hecho de que la lengua elamita es conocida por un gran número de inscripciones en otra escritura descifrada, la cuneiforme; por último, un nuevo conjunto de textos recién descubiertos que remiten a personajes distintos del primer conjunto. En esencia, se ha ampliado la lista de nombres de reyes, en los que ensayar el análisis combinatorio de los signos.

epigráficosLa mano de Irulegi. Foto: S.C. Aranzadi. Fuente: Gobierno de Navarra / Nafarroako Gobernua

Cada año se descubren en la península ibérica inscripciones de mayor o menor entidad que vienen a ampliar nuestro conocimiento de las escrituras y las lenguas paleohispánicas. Aunque algunas han sido espectaculares, como los grandes bronces de Botorrita que significaron un avance en nuestro conocimiento del celtibérico, todos los textos nos aportan información valiosa sobre esas lenguas mal conocidas o simplemente inextricables, con tal de que la información aportada sea auténtica y esté bien referenciada arqueológicamente. Desgraciadamente, abundan los epígrafes obtenidos en intervenciones ilegales, en los que se ha perdido toda la información histórica que proporciona el contexto arqueológico, a las que hay que sumar las falsificaciones destinadas al mercado de antigüedades.

Cada epígrafe es un pequeño tesoro, que a veces posee por sí solo una gran virtualidad explicativa y otras, como los fósiles paleontológicos, debe esperar a ser interpretado para proporcionar entonces toda la información, quizá sorprendente, que encierra.

Sobre el autor: Joaquín Gorrochategui es Profesor emérito de Lingüística Indoeuropea en la Facultad de Letras y miembro del Instituto de Ciencias de la Antigüedad de la UPV/EHU

Una versión de este texto apareció originalmente en campusa.

El artículo Los grandes descubrimientos epigráficos se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Elmer, Elsie, una puerta al verano y el aspirador del futuro

Thu, 2024/05/02 - 11:59
ElmerFoto: Denny Müller / Unsplash

La idea de crear vida artificial lleva entre nosotros desde prácticamente nuestros orígenes, tal vez como forma de tratar de comprendernos a nosotros mismos y lo que somos. En los mitos de la Antigua Grecia ya aparecen seres como el gigante de bronce Talos, que custodiaba la isla de Creta, y también se mencionan las sirvientas autómatas de oro y plata del dios Hefesto, el encargado de fabricar todo este tipo de artilugios y, probablemente, el primer ingeniero de la historia. Sin embargo, estaremos de acuerdo en que los mitos no son ciencia, y que hace falta algo más que imaginación para poder hablar de «vida artificial» o máquinas que imitan las funciones de los seres vivos.

El cambio de paradigma que hizo posible plantearse la posibilidad real de crear algo así llegó a principios del siglo XX, con la llegada de una idea teórica que, pocas décadas después, se convertiría en algo muy práctico: la máquina universal de Alan Truing. A partir de este momento es cuando el mito empezó a convertirse en una posibilidad y despertó la curiosidad, ya no solo de mecánicos e ingenieros, sino de matemáticos, físicos, filósofos, lingüistas… y, por supuesto, psicólogos y neurólogos.

William Grey Walter pertenecía a esta última categoría. Había visitado el laboratorio de Hans Berger, el inventor del electroencefalograma ―un dispositivo capaz de medir la actividad eléctrica del cerebro― y él mismo había creado algunas versiones mejoradas de este aparato en el Burden Neurological Institute de Bristol que permitieron la detección de nuevos tipos de ondas cerebrales. También, al igual que tantos otros colegas científicos, como el matemático y cibernético Norbert Wiener, participó en la Segunda Guerra Mundial, en su caso diseñando sistemas de detección de radares y guiado de misiles, pero no es realmente por todo esto por lo que más se lo conoce, sino por haber fabricado los dos primeros robots completamente autónomos de la historia.

Tras la guerra, y con el desarrollo de la informática, Grey Walter empezó a preguntarse si alguna de aquellas máquinas que habían empezado a desarrollarse podría ser capaz algún día de simular el sistema nervioso humano. Teniendo en cuenta que gracias a sus trabajos con las máquinas de encefalografía conocía bien la actividad eléctrica del cerebro, aquella idea tenía todo el sentido. La ciencia abría la posibilidad de transformar un antiguo mito en ciencia. Y él lo explicó muy bien:

En los años oscuros antes de la invención de la válvula de vacío había muchas leyendas sobre estatuas vivientes e imágenes mágicas […]. La gran diferencia entre la magia y la imitación científica de la vida es que la primera se contenta con copiar la apariencia externa, la segunda se preocupa más por su desempeño y comportamiento.

Así que se puso a ello y creó la que se podría considerar la primera especie animal artificial: la Machina speculatrix o, como se las suele conocer, las tortugas robóticas Elmer y Elsie, por la forma que tenían. No eran dispositivos muy complicados, estaban fabricados con dos válvulas de vacío, dos sensores ―uno fotoeléctrico y otro antichoque― y dos motores ―uno para desplazarse y otro para girar―. Y esa era precisamente la idea: comprobar qué nivel de complejidad y aleatoriedad en el comportamiento podía conseguirse con el menor número de componentes posible. ¡Y fue bastante! Elmer y Elsie merodeaban por la habitación en la que se encontraban dando vueltas, evitando los muebles y las paredes… Cuando su batería estaba cargada, solían evitar las áreas luminosas y preferían las zonas de penumbra; a medida que la batería se descargaba, hacían justo lo contrario: buscar puntos de luz, que eran los lugares donde Grey Walter había situado los cargadores y, de esta manera, se cargaban solas.

A día de hoy, Elmer y Elsie resultan unos aparatos muy simples y obsoletos, pero en su momento causaron el suficiente impacto como para aparecer en la revista Scientific American, en el número de mayo de 1950, en un artículo escrito por el propio Grey Walter y titulado «An imitation of life».

Es probable que, a estas alturas, cualquiera haya pensado ya en Elmer y Elsie como una suerte de precursoras de los aspiradores robóticos actuales, solo por su aspecto, aunque esa no fuera la intención de su inventor. Suele haber un proceso de maduración intelectual, cultural, científica y tecnológica, que puede durar décadas e incluso siglos, desde que una idea aparece hasta que se le encuentra utilidad y, además, es posible llevarla a cabo. Algo así sucedió en este caso y, una vez más, la ciencia ficción formó parte de ese proceso.

Scientific American, así como otras revistas de divulgación científica, eran publicaciones a las que solían estar suscritos los escritores de ciencia ficción, sobre todo en aquella época, en la que las historias bebían, sobre todo, de los avances científicos y tecnológicos del momento mientras especulaban con otros nuevos: la Edad de Oro de escritores como Isaac Asimov, Arthur C. Clarke y Robert A. Heinlein.

Cualquiera que conozca la biografía de Heinlein, sabrá el impacto que tendría su matrimonio, en 1948, con Virgina Gerstenfeld ―el tercero del autor― tanto en la vida como en la obra de este y tanto para bien como para mal. Si bien es cierto que Heinlein tenía una mentalidad muy liberal en lo referente a las relaciones interpersonales, y en su obra encontramos relaciones homosexuales, heterosexuales, poliamorosas, matrimonios temporales y hasta intergeneracionales, en lo referente a su matrimonio con Virginia seguía defendiendo los roles tradicionales de marido proveedor y esposa ama de casa.1 En cualquier caso, no le restaba ni un ápice de valor al trabajo de su mujer y, no solo eso, sino que trataba de facilitarle todos los medios a su alcance para que le llevara el menor tiempo posible y dispusiera también de tiempo para ella.

Fue por ello que, en cuanto tuvieron la ocasión, diseñaron entre los dos y mandaron construir su casa de Colorado Springs ―y, más adelante, otra en California―, pensada, dentro de las posibilidades de la tecnología de la época, para que tuviera el mínimo mantenimiento posible. Tan moderna fue en ese momento, que Thomas E. Stinton le dedicó un artículo en la revista Popular Mechanics en 1952, «A house to make life easy», donde aparecía el matrimonio Heinlein contando las maravillas de su nuevo hogar. El autor, aunque se le pasó por la cabeza, no pudo dotarla de todo lo que hubiera querido, como un sistema de aspiración automático. No obstante, que no pudiera realizarlo en la vida real, no significa que la idea no apareciera en sus novelas.

Entre noviembre y diciembre 1956 se publicó por entregas en The Magazine of Fantasy & Science Fiction una de las que se convertiría en una de sus obras más conocidas: Puerta al verano, cuyo protagonista, David Boone Davis, era un ingeniero entre cuyos inventos se encontraba uno muy curioso, la «Muchacha de Servicio»:

Lo que la Muchacha de Servicio hacía (el primer modelo, no el robot semiinteligente en que lo transformé) era limpiar suelos; toda clase de suelos, todo el día y sin vigilancia […].

Barría, o fregaba, o limpiaba aspirando, o pulía, consultando cintas en su memoria idiota para decidir qué era lo que tenía que hacer […]. Se pasaba todo el día buscando suciedad, moviéndose infatigablemente según curvas que no dejaban nada por barrer, pasando de largo sobre los pisos limpios, en su incansable búsqueda por los sucios […]. Hacia la hora de comer se iba a su puesto y se tragaba una carga rápida ―eso antes de que le instalásemos la carga permanente―.

No había mucha diferencia entre la Muchacha de Servicio, Marca Uno, y un aspirador doméstico. Pero la diferencia ―que podía limpiar sin vigilancia― fue suficiente; se vendió.

Me apropié del esquema básico de las «Tortugas Eléctricas» descritas en el Scientific American hacia finales de los años cuarenta […].

A través del protagonista de su novela, Robert Heinlein manifestaba que conocía el artículo de William Grey Walter y, seguramente, en su cabeza, la Muchacha de Servicio se parecía más a Elmer y Elsie que a la ilustración que Frank Kelly Freas hizo para la primera entrega de la novela.

ElmerLa «Muchacha de Servicio», tal y como la ilustró Frank Kelly Freas en la primera entrega de Puerta al verano en The Magazine of Fantasy & Science Fiction, no se parecía demasiado a Elmer y Elsie ni a un aspirador robótico actual, aunque, según la descripción de Heinlein sí parece que lo era. Ilustración: Frank Kelly Freas

Cabe recalcar, en cualquier caso, que Heinlein no fue el primero en imaginar un aparato de ese estilo. Ya a finales del siglo XIX aparecen robots limpiadores, por ejemplo, en aquella famosa colección de ilustraciones francesas, En L’an 2000, con la que se trataba de festejar la entrada en el año 1900. También Miles J. Breuer habló de algo similar en Paradise and iron, de 1930, aunque su dispositivo era una especie de motor con tubos que surgía del techo:

Alcanzaban aquí y allá, se metían en rincones, debajo de sillas y alrededor de objetos; y podía escuchar el sonido de la succión mientras su aspiradora limpiaba el polvo. Cuando la habitación estuvo completamente limpia, el aparato se retiró hacia una abertura en la pared y se ocultó de la vista.

También Philip K. Dick, casi a la par que Heinlein, mencionó en su relato «La M imposible» algo que se le podría parecer, aunque lo describió de forma muy vaga: «La mayor parte del departamento se había ido a dormir; eran casi las tres de la madrugada y los pasillos y oficinas estaban desiertos. Algunos dispositivos de limpieza automáticos se movían aquí y allá, en la oscuridad».

ElmerLimpiador de suelos robótico imaginado por Jean-Marc Côté en 1899. Ilustración: Jean-Marc Côté

En cualquier caso fue Heinlein, sin duda, el que más se acercó, y de forma más realista, al tipo de electrodoméstico que conocemos hoy. Su mérito no consistió en imaginarlo, sino en enraizarlo sobre unas bases científicas sólidas y posibles, basándose en lo más novedoso de su época. Tengamos en cuenta que cuando se publicó Puerta al verano el transistor apenas se había empezado a emplear en la tecnología de consumo. John Bardeen, Walter House Brattain y William Shockley lo crearon en 1947, pero no se hizo público hasta el año siguiente, y el primer dispositivo comercial en incluirlo fue una radio: la Regency TR-1, que no salió al mercado hasta 1954. Fabricar un aspirador robótico autónomo tal y como los conocemos hoy era una posibilidad completamente fuera del alcance de los medios de aquella época. La informática, la robótica y la inteligencia artificial todavía tenían que dar sus respectivos saltos cualitativos.

Y lo fueron haciendo en las siguientes décadas. En 1956 se celebró la Conferencia de Dartmouth, el primer encuentro de expertos en inteligencia artificial del que se tiene constancia, y desde entonces y hasta mediados de los años setenta despegó la disciplina. Lo hizo principalmente, en tres instituciones: la Universidad de Stanford, la Universidad de Carnegie Mellon, y el MIT. Por las tres pasó, en ese orden, un estudiante de matemáticas cuyo interés en la computación había germinado, en parte, gracias a las novelas de ciencia ficción que había leído en su adolescencia y a películas como 2001: una odisea espacial, donde HAL 9000 le resultó tan inquietante como fascinante. Ese estudiante era Rodney Brooks.

En un momento en el que la inteligencia artificial estaba mucho más centrada en algoritmos y sistemas simbólicos ―principalmente porque la construcción de «cuerpos» artificiales había resultado más complicada de lo que se pensaba en los tiempos de Grey Walter y la cibernética―, Brooks apostó por la robótica:

Aceptar la hipótesis de la conexión al mundo físico como base para la investigación implica construir los sistemas de abajo arriba, esto es, se deben concretar las abstracciones de alto nivel. Los sistemas que se construyan deben ser capaces, en última instancia, de expresar todas sus metas y deseos como acciones físicas y extraer todo su conocimiento de sensores.

Esto es, en un momento en el que no existía internet y el acceso a los datos era limitado, él pensaba que la mejor manera en la que podían aprender los sistemas de inteligencia artificial era obteniendo la información que necesitaban directamente del entorno, a través de sensores.

Para demostrar su hipótesis construyó numerosos robots en el MIT: Allen, capaz de sortear obstáculos; Herbert, que iba por los despachos recogiendo latas de refresco vacías y las llevaba a la papelera de reciclaje; Genghis, un hexápodo capaz de adaptarse a terrenos irregulares; Squirt, que era capaz de detectar ruidos y esconderse de ellos, o Toto, que se guiaba a través de un sistema de visión artificial. Lo innovador de estos robots fue su programación; para ellos, Brooks desarrolló lo que denominó «arquitectura de subsunción», que determinaba sus comportamientos a través de jerarquías: los comportamiento más sencillos estaban en la base, los más complejos en la cúspide, de tal forma que las jerarquías superiores englobaban las inferiores.

En 1990, Rodney Brooks, Colin Angle y Helen Greiner, también del MIT, fundaron iRobot… y el resto es historia. En 2002 lanzaron la Roomba, el primer aspirador robótico que tuvo éxito comercial y del que ya se han venido millones de unidades en todo el mundo.

Pero, ¿fue casualidad que la Roomba fuera como es y tuviera esa forma tan parecida a Elmer y Elsie y a la Muchacha de Servicio? Sabemos que Rodney Brooks conocía el trabajo de William Grey Walter y que supuso una gran influencia en él, también que leyó a los tres grandes de la Edad de Oro de la ciencia ficción. Asimov, Clarke y Heinlein, porque él mismo lo ha comentado en alguna ocasión, aunque es difícil saber qué papel jugó Puerta al verano y si ejerció alguna influencia directa en el desarrollo de la Roomba como tal. También puede ser que el hecho de que los aspiradores robóticos tengan la forma que tienen hoy tal vez fuera la única posibilidad lógica y por eso muchos los imaginaron así.

Roomba de primera generación. Otras compañías, como la sueca Electrolux con su Trilobite, crearon antes electrodomésticos similares, pero no consiguieron el mismo éxito comercial. Fuente: Wikimedia Commons/CC-BY 4.0/Larry D. Moore

Lo que es innegable a varios niveles es que la historia de la Roomba es uno de tantos ejemplos a lo largo de la historia en los que ciencia y ciencia ficción se retroalimentan de maneras que no son siempre conocidas, aunque en muchas ocasiones no es fácil encontrar las conexiones o tal vez no estén tan claras. A lo que, indudablemente, ayuda la ciencia ficción es a crear historias, relatos y visiones del futuro que flotan en el ambiente, que guían nuestra imaginación y que, en última instancia, tienen la capacidad de llevarnos, de manera casi inconsciente, en una dirección o en otra.

Bibliografía

Baños, G. (2024). El sueño de la inteligencia artificial. Shackleton Books.

Breuer, M. (1930). Paradise and iron. Amazing Stories Quarterly.

Brooks, Rodney A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6(1-2).

Davenport, A. (13 de octubre de 2021) The development and significance of cybernetics by William Grey Walter.Cosmonaut Magazine.

Dick, P. K. (2008 [1957]). La M imposible. En: Cuentos completos 4. Minotauro.

Grey Walter, W. (1950). An imitation of life. Scientific American.

Heinlein, R. A. (1956). The door into summer. The Magazine of Fantasy & Science Fiction.

Heinlein, R. A. (2002). Puerta al verano. La Factoría de ideas.

Mayor, A. (2019). Dioses y robots: mitos, máquinas y sueños tecnológicos de la Antigüedad. Desperta Ferro Ediciones.

Polanco Masa, A. (2015). Elmer y Elsie, las tortugas robot de 1948. Tecnología obsoleta. https://alpoma.net/tecob/?p=11359

Stimson, T. E. (1952). A house to make life easy. Popular mechanics.

Nota

1 No le pidamos pidamos peras al olmo en este caso. Robert Heinlein nació en 1907 y no dejaba de ser hijo de su época. No obstante, también es cierto que su segunda mujer, Leslyn, no encajaba para nada en ese perfil y fueron muy felices hasta la aparición de Virginia, pero esa es otra historia.

Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo Elmer, Elsie, una puerta al verano y el aspirador del futuro se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

La curva de Sierpinski, o sobre lo que esconden algunas obras de arte

Wed, 2024/05/01 - 11:59

En la primavera del año 2022 tuve la enorme fortuna de poder asistir a la primera retrospectiva que se ha organizado en España del excepcional artista Bruno Munari, la exposición Bruno Munari, que la Fundación Juan March organizó en Madrid entre el 18 de febrero y el 22 de mayo de 2022, y que posteriormente visitaría Palma de Mallorca y Cuenca.

Dos vistas generales de la exposición Bruno Munari, en la Fundación Juan March de Madrid (18 de febrero – 22 de mayo de 2022)

El italiano Bruno Munari (1907-1998) fue un diseñador, escritor, educador y artista multidisciplinar, para quien la experimentación y el juego son una parte fundamental de la creación, de la educación y de la sociedad. Una de sus frases célebres relacionada con los juegos es la siguiente:

Jugar es algo serio, los niños de hoy son los adultos de mañana. Ayudémosles a crecer libres de estereotipos; ayudémosles a desarrollar todos los sentidos; ayudémosles a ser más sensibles. Un niño creativo es un niño feliz.

(en Direzione Sorpresa (1986), de Bruno Munari y Mario de Biasi)

Por otra parte, la geometría y las matemáticas fueron fundamentales en su obra artística y sus diseños. Este hecho se puede apreciar tanto en sus obras de arte y diseño, como en sus magníficos libros, entre los que podemos destacar: El cuadrado: más de 300 ejemplos ilustrados sobre la forma cuadrada (publicado originalmente en 1960), El círculo (publicado originalmente en 1964), El triángulo. Más de 100 ejemplos ilustrados sobre el triángulo equilátero (1976) o ¿Cómo nacen los objetos? Apuntes para una metodología proyectual (1981).

Entre las muchas obras que llamaron mi atención durante la visita a la exposición Bruno Munari en la Fundación Juan March (Madrid) estaban algunas obras de la serie “curva de Peano” y que tomaban como herramienta de creación artística una conocida curva fractal, de la que vamos a hablar en esta entrada del Cuaderno de Cultura Científica. Por ejemplo, ya en el siguiente cartel de esta exposición, que reproduce la pintura Curva de Peano (1977), se puede observar una estructura geométrica relacionada con la mencionada curva fractal, relación que podemos apreciar, aunque no es evidente, los que ya conocemos este objeto geométrico.

Cartel realizado con motivo de la exposición Bruno Munari, que reproduce la obra Curva de Peano (1977), del artista Bruno Munari, que es una pintura acrílica sobre óleo, cuyas dimensiones son 120 x 120 cm. Este cartel puede verse y comprarse en la tienda online de la Fundación Juan March

O también, otras dos obras que se podían ver en la exposición, Curva de Peano (1975) y De los colores del papel (1995), en las que se aprecia la forma básica a partir de la cual se crea la curva fractal.

La pintura acrílica sobre lienzo titulada Curva de Peano (1975) y el óleo sobre lienzo De los colores del papel (1995), del artista Bruno Munari, fotografiadas en la exposición Bruno Munari, de la Fundación Juan MarchCurvas que llenan un cuadrado

En 1890, el matemático y lógico italiano Giuseppe Peano (1858-1932), en su artículo Sur une courbe, qui remplit toute une aire plane / Sobre una curva que rellena toda una zona plana (publicado en la revista de investigación matemática Mathematische Annalen), construyó el primer ejemplo de una curva continua que llena completamente el cuadrado. La idea de una curva continua (intuitivamente una línea, luego de dimensión 1), que llena el cuadrado (una superficie, de dimensión 2), va completamente en contra de nuestra intuición de lo que es una curva. Pero pongamos este descubrimiento en su contexto.

Once años antes, en 1877, el matemático ruso-alemán George Cantor (1845-1918), que acababa de poner patas arriba al mundo de las matemáticas al demostrar que existía más de un infinito (en su artículo Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen / Sobre una propiedad de la colección de todos los números algebraicos reales, publicado en 1874, demostró que los números reales eran un conjunto infinito no numerable, es decir, que es un infinito “más grande” que el conjunto de los números naturales, ya que no se puede establecer una correspondencia uno-a-uno entre los números reales y los números naturales, estos últimos son los utilizados para numerar, para contar), demostró que existe una correspondencia uno-a-uno entre el segmento unidad [0,1], es decir, todos los números reales entre 0 y 1, y cualquier espacio de dimensión n, sea quien sea n (1, 2, 3, 4, etc), en particular, el cuadrado unidad [0,1] x [0,1]. Es decir, la cantidad infinita de puntos del segmento unidad, es la misma que la cantidad de puntos del cuadrado unidad. En la carta al matemático alemán Richard Dedekind (1831-1916) en la que le enviaba la demostración de la anterior verdad matemática, el propio Cantor escribió “Je le vois, mais je ne le crois pas” (en francés en el original, aunque la carta estaba escrita en alemán), es decir, “Lo veo, pero no lo creo”.

Teorema de Cantor: hay la misma cantidad infinita de puntos en el segmento unidad, que en el cuadrado unidad

 

Tras el resultado de Cantor, la comunidad matemática, que estaba perpleja ante los descubrimientos del matemático sobre el infinito, se planteó la siguiente cuestión lógica en este contexto, si es posible definir una tal aplicación uno-a-uno (en matemáticas estas aplicaciones reciben el nombre de aplicaciones “biyectivas”) entre el intervalo unidad y el cuadrado unidad, que fuese “continua” (sin discontinuidades). Rápidamente, en 1879, el matemático alemán Eugen Netto (1848-1919) demostró que esto no era posible, es decir, no existen aplicaciones biyectivas continuas del intervalo unidad en el cuadrado unidad (de hecho, en cualquier espacio de dimensión n).

Como el resultado de Netto establecía que cualquier aplicación uno-a-uno entre el segmento unidad y el cuadrado unidad debía ser discontinua, entonces se plantearon la siguiente cuestión: ¿es posible construir una aplicación continua del intervalo unidad en el cuadrado unidad que cubra todos los puntos del cuadrado (en matemáticas a estas aplicaciones, las que llegan a todos los puntos del conjunto imagen, se las llama sobreyectivas)? Ahora, la aplicación no era biyectiva (uno-a-uno), solo sobreyectiva, puesto que habría puntos del cuadrado que serían imágenes de varios puntos del segmento unidad, lo cual rompe que sea una aplicación uno-a-uno. Puesto que una aplicación continua del segmento unidad [0,1] en el plano es lo que se llama una curva, entonces se estaban preguntando si existían curvas que llenaran completamente el cuadrado unidad.

En este punto es en el que encontramos a nuestro matemático italiano Giuseppe Peano, quien construye el primer ejemplo de curva (continua) que llena completamente el cuadrado unidad, es decir, la primera aplicación continua del intervalo unidad en el cuadrado unidad, que cubre completamente este último, es decir, es sobreyectiva.

Primera página del artículo Sobre una curva que rellena toda una zona plana, publicado por el matemático italiano Giuseppe Peano, en la revista Mathematische Annalen, en 1890

La demostración de Peano era teórica y no incluía una explicación geométrica que permitiera visualizar, de alguna forma, la curva que llena el cuadrado. El primer artículo en incluir imágenes que ayudasen a entender la construcción de una curva continua que llenase el cuadrado, se publicó, en la misma revista, un año más tarde. El artículo era Ueber die stetige Abbildung einer Linie auf ein Flächenstück / Sobre el mapeo continuo de una línea sobre un trozo de superficie, y su autor, el matemático alemán David Hilbert (1862-1943), construyó otra curva que llenaba el cuadrado, que recibiría el nombre de curva de Hilbert.

Primera página del artículo Sobre el mapeo continuo de una línea sobre un trozo de superficie, publicado por el matemático alemán David Hilbert, en la revista Mathematische Annalen, en 1891

Otros ejemplos fueron construidos por matemáticos como el estadounidense E. H. Moore (1862-1932), en 1900, el francés Henri Lebesgue (1875-1941), en 1904, el polaco Wacław Sierpiński (1882-1969), en 1912, el húngaro George Pólya (1887-1985), en 1913, entre otros. A este tipo de curvas continuas se las bautizó con el nombre de “space-filling curves”, curvas que rellenan el espacio, pero también se las conoció con el nombre de curvas de Peano.

La curva fractal de Peano

Como acabamos de comentar, la construcción de Peano de una curva continua que llena el cuadrado era teórica, sin embargo, sí existen realizaciones geométricas de la mencionada construcción, como vamos a mostrar a continuación.

Para empezar, comentemos que la curva de Peano es una curva fractal, es decir, es autosemejante, rugosa (de dimensión fractal no entera) y creada mediante un proceso iterativo infinito (véase la entrada Fractus, arte y matemáticas). No vamos a ahondar en esta cuestión, pero sí vamos a construir la curva de Peano mediante un proceso iterativo infinito. El primer paso del proceso iterativo es la pieza básica de la construcción, un 2 tumbado (que estaría en el cuadrado unidad) que aparece en la siguiente imagen.

En la anterior imagen, además de la pieza básica, tenemos un cuadrado dividido en 9 zonas cuadradas, marcadas con un número, los cuales nos dan una manera de recorrer los 9 cuadrados, sobre los que vamos a colocar la pieza básica, pero reducida al tamaño de esos cuadrados. La forma de colocar esas 9 copias reducidas de la pieza básica (que también valdrá para los siguientes pasos del proceso iterativo) tiene que seguir unas reglas. En cada cuadrado colocamos una copia de la pieza básica, que puede estar colocada en la misma posición que la original, girada o volteada, con la condición de que un extremo de un cuadrado se pueda conectar de forma directa (añadiendo un pequeño segmento recto) con un extremo del siguiente, para que al final en este segundo paso de la iteración (pero también para el resto) tengamos una curva continua que empieza en el cuadrado 1 y termina en el 9. En la siguiente imagen, podemos apreciar, por ejemplo, que en el cuadrado 1 está la pieza básica (2 tumbado), mientras que en el cuadrado 2 está la pieza básica dada la vuelta (su imagen especular), y podemos conectar los extremos con un pequeño segmento.

Paso 2 del proceso iterativo de construcción de la curva de Peano

 

Antes de iniciar el tercer paso del proceso iterativo de construcción de la curva de Peano, debemos de explicar una regla más. En cada paso la pieza básica para utilizar es el resultado del paso anterior y se colocarán sus copias, una vez reducidas de tamaño, en el cuadrado dividido en 9 zonas, de la misma manera que hemos hecho en el segundo paso. Por este motivo, en la imagen anterior, y la siguiente (que se corresponde con el paso 3), hemos dado el mismo color a los cuadrados que tienen la misma posición para la pieza básica. En esta realización que estamos mostrando solo hay dos posiciones, la original (casillas azules) y la volteada (casillas naranjas).

Paso 3 del proceso iterativo de construcción de la curva de Peano

 

La curva de Peano es el límite de este proceso iterativo infinito. En la siguiente imagen mostramos las tres primeras iteraciones, después del paso 1, es decir, los pasos 2, 3 y 4, de otra elección diferente de posiciones de las piezas básicas.

Pasos 2, 3 y 4 del otro proceso iterativo de otra construcción geométrica de la curva de Peano. Imagen de Alexander Bogomolny, en su página Cut the KnotLa curva fractal de Sierpinski

La curva fractal que utilizó el artista italiano Bruno Munari como herramienta de creación artística, aunque es una curva de Peano, puesto que es una curva continua que llena el cuadrado, no es “la” curva de Peano, sino otra curva fractal posterior, la conocida como curva de Sierpinski.

Este objeto fractal debe su nombre al matemático polaco Waclaw Franciszek Sierpinski (1882-1969), que nació un 14 de marzo, día que hoy celebramos como Día Internacional de las Matemáticas, por ser el llamado día de pi, 03/14. Este gran matemático del siglo XX, que escribió más de 700 artículos de investigación y 50 libros (entre ellos: Números cardinales y ordinales (1958), Introducción a la topología general (1934), Topología general (1952), Triángulos pitagóricos (1952) o Teoría elemental de números (1914 y 1959)), trabajó en teoría de conjuntos –con contribuciones al axioma de elección y la hipótesis del continuo-, teoría de números, teoría de funciones, topología y lógica matemática. Su nombre se ha asociado a algunos objetos matemáticos, como los fractales denominados curva de Sierpinski, triángulo de Sierpinski (sobre este objeto fractal puede leerse la entrada ¿Conocían los romanos el triángulo fractal de Sierpinski?) y alfombra de Sierpinski, o a los conocidos como números de Sierpinski.

La curva de Sierpinski, también conocida con el nombre de copo de nieve cuadrado de Sierpinski, es una curva continua que rellena el cuadrado, pero que a diferencia de las dos anteriores es una curva cerrada. Como curva fractal se define de forma recursiva.

El primer paso de la construcción de la curva fractal de Sierpinski es el siguiente.

Paso 1 de la construcción del copo de nieve cuadrado de Sierpinski

 

En el segundo paso tomamos la imagen anterior, la reducimos en un 25%, una copia se coloca en el centro del cuadrado y se le acopla una nueva copia en cada uno de los extremos, arriba a la izquierda, arriba a la derecha, abajo a la izquierda y abajo a la derecha, obteniendo así la segunda iteración en la construcción de la curva de Sierpinski.

Paso 2 de la construcción del copo de nieve cuadrado de Sierpinski

 

Y para los siguientes pasos se actúa de la misma manera. Se toma el paso anterior, se reduce un 25% y se hacen cinco copias que se colocan como antes, una en el centro y cuatro en los extremos. Y la curva de Sierpinski es el límite de este proceso iterativo infinito.

Veamos juntas las cinco primeras iteraciones de la construcción del copo de nieve cuadrado de Sierpinski.

Primeros cuatro pasos de la construcción del copo de nieve cuadrado de Sierpinski

 

Paso 5 de la construcción del copo de nieve cuadrado de Sierpinski

 

Si miramos al paso 1 de la construcción de la curva de Sierpinski, llamémosle S1, y calculamos su longitud, simplemente utilizando el teorema de Pitágoras, se obtiene que su longitud es (asumiendo que está dentro del cuadrado unidad):

Longitud de la primera iteración de la construcción del copo de nieve cuadrado de Sierpinski

 

De igual forma, puede calcularse la longitud del paso n-ésimo de la construcción, obteniendo la siguiente fórmula.

Longitud de la iteración n-ésima de la construcción del copo de nieve cuadrado de Sierpinski

Como podemos observar la longitud crece de forma exponencial, luego en su límite, por lo que la curva de Sierpinski tiene longitud infinita.

De la misma forma, podemos calcular el área encerrada por la curva S1, obteniendo que su valor es 11/32 del área del cuadrado. Además, el límite del área encerrada por la curva Sn, es decir, el área encerrada por la curva de Sierpinski es 5/12 del área del cuadrado. Esto es algo que puede sorprender mucho, puesto que podríamos pensar que el área encerrada por una curva que rellena el cuadrado unidad fuese 1, pero no es así.

Por último, mencionar, aunque no vamos a ahondar en esta cuestión, que la dimensión fractal (de Hausdoff) de la curva fractal de Sierpinski, como la de todas las curvas que rellenan el cuadrado, es 2. Como decíamos al principio, esto es algo que rompe nuestros esquemas, ya que es una curva continua cuya imagen tiene dimensión 2. Además, contrariamente a lo que solemos pensar que ocurre con los objetos fractales, la dimensión fractal no es un número no entero, como sí ocurre con fractales como la curva de Koch, cuya dimensión es 1.2619 (sobre la curva de Koch puede leerse la entrada Fractus, arte y matemáticas).

Regreso al arte de Bruno Munari

Volviendo a la serie de obras “curva de Peano” del artista italiano Bruno Munari, es cierto que trabaja con una curva fractal de la familia de las curvas de Peano, pero no con la conocida como “la” curva de Peano, sino con la curva de Sierpinski.

El interés artístico de Munari por la curva fractal de Sierpinski no es representar este curioso, e incluso hermoso, objeto geométrico, sino utilizar esta curva fractal, cada una de sus primeras iteraciones, para crear estructuras artísticas que dotadas de color se convierten en hermosas creaciones de arte concreto, movimiento artístico en el que la forma y el color son elementos principales.

Obras como las mostradas al principio, Curva de Peano (1975) y De los colores del papel (1995), que pudimos disfrutar en la exposición de la Fundación Juan March, y en otras obras, como las que mostramos en la siguiente imagen, están basadas en el primer paso de la construcción de la curva de Sierpinski.

Colores sobre la curva de Peano (1992) y Curva de Peano (1975), del artista Bruno Munari, pintura acrílica sobre lienzo, 30 cm x 30 cm, basada en la primera iteración de la construcción de la curva de Sierpinski

En otras obras trabaja sobre la segunda iteración de la curva de Sierpinski, como las dos que vemos a continuación, entre las muchas que creó.

MunariCurva de Peano P16-1 (1974), del artista Bruno Munari, pintura acrílica sobre lienzo, 80 cm x 80 cm, basada en la segunda iteración de la construcción de la curva de SierpinskiMunariColores de la curva de Peano (1985), del artista Bruno Munari, pintura acrílica sobre lienzo, 80 cm x 80 cm, basada en la segunda iteración de la construcción de la curva de Sierpinski

Y en general se basó en diferentes iteraciones de esta curva fractal de la familia de las curvas de Peano, como el cartel que mostramos al principio o la siguiente obra, entre las numerosas obras de esta serie.

MunariCurva de Peano P64-1 (1974), del artista Bruno Munari, óleo sobre lienzo, 80 cm x 80 cm, basada en la tercera iteración de la construcción de la curva de Sierpinski

Sin lugar a dudas, Bruno Munari es uno de los grandes artistas contemporáneos. Además, sus creaciones alrededor de esta curva continua que llena el cuadrado, es decir, de la familia de las curvas de Peano, la curva de Sierpinski, son de una gran creatividad y belleza.

Bibliografía

1.- Bruno Munari (catálogo de la exposición), Fundación Juan March, 2022.

2.- Hans Sagan, Space-Filling Curves, Universitext, Springer, 1994.

3.- Martin Gardner, Penrose Tiles to Trapdoor Ciphers, … And the Return of Dr Matrix, Cambridge University Press, 1997.

4.- Alexander Bogomolny, Cut the Knot: Plane Filling Curves: All Peano Curves

5.- Wikipedia: Sierpinski curve

6.- R. Ibáñez, Las matemáticas como herramienta de creación artística, Libros de la Catarata – FESPM, 2023.

 

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo La curva de Sierpinski, o sobre lo que esconden algunas obras de arte se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Gaia BH3, un agujero negro supermasivo en la Vía Láctea

Tue, 2024/04/30 - 11:59

La misión Gaia, el proyecto más ambicioso de la Agencia Espacial Europea (ESA) para detallar la cartografía estelar de nuestra galaxia, ha descubierto en la Vía Láctea un agujero negro masivo de origen estelar, el Gaia BH3. Este tipo de agujero negro se había localizado antes en galaxias lejanas mediante observaciones de ondas gravitatorias, y ahora se identifica por primera vez en nuestra galaxia. Se trata de un agujero negro inactivo, es el segundo más cercano a la Tierra —se encuentra a una distancia de 590 pc (o 1926 años luz)—, tiene unas treinta y tres masas solares y forma un amplio sistema binario con su estrella acompañante.

Gaia BH3Fuente: ESA

Este descubrimiento excepcional confirma algunas teorías y exige revisar otras. Este es un resultado emocionante para la comunidad astronómica, que hace que nos preguntemos cuántos agujeros negros de este tipo hay en el espacio, o qué rangos de masas de agujeros negros podrá descubrir la misión Gaia.

Cómo detectar un agujero negro inactivo

Si el agujero negro está inactivo, ¿no es muy difícil poder detectarlo? Los agujeros negros más conocidos se detectan a través de los rayos X que emiten cuando el material de su compañero estelar es devorado. Con los agujeros negros inactivos, la fuente emite poca o ninguna radiación, por lo que el agujero negro solo puede verse realmente por el efecto gravitatorio que ejerce sobre su estrella acompañante. Los agujeros negros inactivos nunca se habían detectado antes de la misión Gaia. En concreto, después de la publicación de la tercera entrega de datos de Gaia —la Gaia Data Release (DR3)—, se pudieron identificar los primeros agujeros negros inactivos de nuestra galaxia: Gaia BH1 y Gaia BH2.

Durante la validación de los datos preliminares procesados por Gaia Data Release (DR4), y dados los resultados preliminares del análisis de datos para estrellas no individuales, esta fuente galáctica requería más comprobaciones para ver si los datos detectados eran correctos. En un primer momento, el equipo del Consorcio para el Procesamiento y Análisis de Datos (DPAC) consideró que estos resultados no podían ser reales. La sorpresa fue mayúscula cuando, tras muchas verificaciones internas, todos los datos sugirieron que se trataba de una auténtica detección, un hallazgo científico que es importante publicar antes de la difusión de la Gaia Data Release (DR4) para permitir un seguimiento posterior del descubrimiento por parte de la comunidad científica.

El agujero negro de origen estelar más masivo en nuestra galaxia

Pero, ¿qué hace que este hallazgo sea tan sorprendente? Sobre todo, la gran masa del agujero negro. Con treinta y tres masas solares, Gaia BH3 no es solo el agujero negro de origen estelar más masivo conocido en nuestra galaxia, sino que también está en línea con los resultados obtenidos por observatorios de ondas gravitacionales como LIGO/VIRGO/KAGRA. Estos equipamientos encontraron a una población de agujeros negros con masas que contradicen los modelos de evolución estelar a través de la observación de las ondas gravitatorias procedentes de fenómenos de fusión de agujeros negros. El hallazgo de Gaia confirma que en nuestra propia Vía Láctea también existen agujeros negros masivos con origen estelar.

La mayoría de los agujeros negros de origen estelar de nuestra galaxia tienen una masa de unas 10 masas solares, y el mayor concido hasta ahora era el agujero negro de Cyg X-1, con una masa calculada de unas veinte veces la del Sol. Gaia BH3 va mucho más allá y es el nuevo récord de nuestra galaxia. Su masa también se fija con una precisión mejorada (32,7 +/- 0,82 Msol), un valor que se sitúa firmemente en el rango de 30 masas solares.

«La distribución de masa de la población de agujeros negros derivada de observaciones de ondas gravitatorias muestra un claro pico en torno a treinta masas solares», explica Tsevi Mazeh, de la Universidad de Tel Aviv, miembro de la Colaboración Gaia. «Es muy interesante ver ahora que Gaia BH3 está justo en este pico con sus treinta y tres masas solares. Esto proporciona un fuerte apoyo científico para la existencia de ese pico».

El segundo agujero negro más cercano a la Tierra

Este agujero negro, que se encuentra a una distancia de 1926 años luz, es actualmente el segundo más cercano a la Tierra. ¿Por qué ese agujero negro solo se puede ver ahora? El período de tiempo más largo de observaciones que constituirá la base de la Gaia Data Release 4 (DR4) es decisivo para responder a esta cuestión. Se calcula que la órbita de la compañera estelar en torno a su centro de masa común es de 11,6 años. Esto significa que, con 5,5 años de datos que se están procesando para el próximo DR4, Gaia es capaz de mapear la mitad de su órbita. Esto es suficiente para distinguir la oscilación adicional en la posición y movimiento de la estrella acompañante. Se espera que, con un período de tiempo más largo de observaciones de Gaia, se puedan identificar cada vez más sistemas binarios. Por tanto, es de esperar que las próximas publicaciones de datos de Gaia revelen muchos resultados excepcionales.

«En el rango de longitud de onda visible y en el infrarrojo, la luz de la estrella acompañante visible obviamente eclipsa cualquier cosa que pueda provenir de la propia Gaia BH3; de lo contrario, el agujero negro se habría descubierto mucho antes y sin Gaia», detalla Uli Bastian, miembro de la Colaboración Gaia.

Por su especial naturaleza, y para descartar la posibilidad de que la solución sea errónea, se realizó una confirmación del resultado con varios observatorios terrestres. El espectro UVES de este sistema se obtuvo del archivo de la ESO y se realizaron observaciones de seguimiento con el espectrógrafo HERMES en España y el espectrógrafo SOPHIE en Francia. Las velocidades radiales obtenidas con estos observatorios terrestres complementan las velocidades radiales de Gaia, lo que confirma la solución orbital derivada de los datos de Gaia.

«Gaia es una auténtica máquina de detección de agujeros negros porque cada uno de los tres instrumentos puede detectarlos», comenta Laurent Eyer, del Observatorio de Ginebra, miembro de la Colaboración Gaia.

¿Cómo se originó este agujero negro en la Vía Láctea?

La fotometría y los espectros de Gaia, así como los espectros obtenidos mediante observaciones en tierra con HERMES, SOPHIE y UVES, permiten desentrañar aún más los secretos de este sistema binario. Como no podemos ver el agujero negro, la mayoría de la información debe deducirse de la estrella acompañante, que es una única estrella gigante antigua. Sin embargo, no es fácil determinar la edad de esta antigua estrella gigante. Al comparar los colores y magnitud con modelos teóricos, se estima que tiene más de 11.000 millones de años.

Sobre el espectro de la estrella acompañante, puede deducirse que tiene una abundancia baja de elementos pesados. Esto sugiere que Gaia BH3 se formó a partir de una estrella masiva pobre en elementos pesados. Tras los hallazgos de la población de agujeros negros extragalácticos en esta gama de masas a partir de observaciones de ondas gravitatorias, se ha propuesto que estos agujeros negros de gran masa son restos de estrellas masivas pobres elementos pesados. Ahora, el agujero negro Gaia BH3 apoya esta teoría.

Un compañero estelar muy particular

La estrella que orbita el Gaia BH3, a unas dieciséis veces la distancia Sol-Terra, es bastante excepcional: es una antigua estrella gigante, que se formó los primeros dos mil millones de años después del Big Bang, en el momento en que nuestra galaxia empezó a crearse. Forma parte de la familia del halo galáctico estelar y se está moviendo en dirección contraria a las estrellas del disco galáctico. Su trayectoria indica que esta estrella probablemente formaba parte de una pequeña galaxia, o un cúmulo globular, que nuestra propia galaxia tragó hace más de ocho mil millones de años.

Esto apoya, por primera vez, la teoría de que los agujeros negros de gran masa observados por los experimentos de ondas gravitacionales fueron producidos por el colapso de estrellas masivas primitivas pobres en elementos pesados. Estas estrellas tempranas podrían haber evolucionado de forma diferente a las estrellas masivas que vemos actualmente en nuestra galaxia. La composición de la estrella acompañante también puede arrojar luz sobre el mecanismo de formación de este sorprendente sistema binario. ««Lo que me llama la atención es que la composición química del acompañante es similar a la que encontramos en las estrellas antiguas pobres en metales de la galaxia»», explica Elisabetta Caffau, del CNRS, Observatorio de París del CNRS, también miembro de la colaboración Gaia.

Por ahora, el proceso de formación de este sistema binario con un agujero negro plantea muchas incógnitas. Este nuevo agujero negro desafía nuestra comprensión de cómo se desarrollan y evolucionan las estrellas masivas. La mayoría de las teorías predicen que, a medida que envejecen, las estrellas masivas arrojan una parte considerable de su material a través de vientos potentes; en última instancia, son parcialmente expulsadas en el espacio cuando explotan como supernovas. Lo que queda de su núcleo se contrae para convertirse en una estrella de neutrones o en un agujero negro, dependiendo de su masa que tenga. Los núcleos lo suficientemente grandes como para acabar siendo agujeros negros de treinta veces la masa de nuestro sol son muy difíciles de explicar.

La estrella compañera tiene muy pocos elementos más pesados que el hidrógeno y el helio, lo que indica que la estrella masiva que se convirtió en Gaia BH3 también podría haber sido muy pobre en elementos pesados. Esto apoya, por primera vez, la hipótesis de que los agujeros negros de alta demasiado observados por los experimentos de ondas gravitacionales fueron producidos por el colapso de estrellas masivas primitivas pobres en elementos pesados. Estas primeras estrellas podrían haber evolucionado de forma diferente a las estrellas masivas que vemos actualmente en nuestra galaxia.

También hay muchas dudas sobre dónde proviene este agujero negro. Aunque actualmente se encuentra en el plano de la Vía Láctea, su movimiento lo sitúa en una órbita retrógrada con una gran inclinación con el plano de la Vía Láctea. El agujero negro puede provenir de un evento de fusión de una pequeña galaxia o de un cúmulo globular con nuestra galaxia. En el futuro, es de esperar que más estudios proporcionen más información sobre cómo Gaia BH3 terminó en la Vía Láctea.

«Un número creciente de agujeros negros que se encuentran en la Vía Láctea con diferentes métodos, incluido a través de microlentes como se documentó en 2022 por OGLE y HST, nos acerca a una imagen más amplia de la población de estos objetos en la galaxia y puede arrojar luz sobre la naturaleza de la materia oscura si se detecta un exceso de estos agujeros negros cerca», comenta Łukasz Wyrzykowski de la Universidad de Varsovia en Polonia y miembro de la colaboración Gaia.

«Desde un punto de vista observacional, descubrir el Gaia BH3 no es demasiado difícil y los instrumentos astronómicos y especializados serán capaces de detectar sus indicios. La dificultad radica en que es necesario saber a cuál de los millones de estrellas debes dirigir tu telescopio. Aquí es donde la enorme capacidad de Gaia entra en juego. La misión Gaia observa todas las fuentes celestes que son suficientemente brillantes para ser vistas por sus detectores, y nosotros pudieron encontrar la aguja en el pajar», dice Johannes Sahlmann, miembro del equipo de operaciones científicos de Gaia del Centro Europeo de Astronomía Espacial Europeo.

Hasta ahora, los datos de la misión Gaia solo han desvelado la punta del iceberg. Los períodos de tiempo más largos de las futuras publicaciones de Gaia revelarán, sin duda, otros sistemas binarios que contienen agujeros negros, pero también exoplanetas y otros sistemas binarios exóticos. La Gaia Data Release (DR4) se basará en 5,5 años de observaciones, casi el doble del período de tiempo de la tercera entrega de datos, con cerca de tres años de observaciones. Actualmente, se espera que la vida útil completa de Gaia sea de unos 10,5 años.

Referencia:

Gaia Collaboration – Panuzzo, P. et al. (2024) Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry Astronomy & Astrophysics doi: 10.1051/0004-6361/202449763

Edición realizada por César Tomé López a partir de materiales suministrados por la Agencia Espacial Europea y la Universidad de Barcelona.

El artículo Gaia BH3, un agujero negro supermasivo en la Vía Láctea se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Kamoʻoalewa, un asteroide con sabor lunar

Mon, 2024/04/29 - 11:59

Asteroides y cometas son los cuerpos más abundantes de nuestro Sistema Solar y, muy probablemente, representen una memoria de aquellos bloques primitivos con los que se construyó. Sabemos que algunos han sufrido ciertos procesos evolutivos posteriores que han podido alterar su estructura y composición a partir de impactos, la radiación o incluso por la presencia de agua. Y en los casos más extremos, algunos podrían haber formado parte de cuerpos planetarios.

¿Cómo es posible seguir ese camino evolutivo al revés? Pues a lo largo de la historia de todo nuestro Sistema Solar, los planetas y los satélites han sufrido violentos impactos que en algunos casos han tenido la fuerza necesaria como para lanzar materiales a una velocidad suficiente como para escapar a su atracción gravitatoria y ponerse en órbita alrededor del Sol.

En abril de 2016, el telescopio Pan-STARRS descubrió un pequeño asteroide de entre 40 y 100 metros de diámetro denominado 469219 Kamoʻoalewa y que tarda algo menos de media hora en girar sobre sí mismo y alrededor de un año en completar una vuelta alrededor del Sol. A pesar de su pequeño tamaño muy pronto comenzó a llamar la atención de los científicos por un par de peculiaridades muy interesantes.

KamoʻoalewaEl entorno de la Tierra es un lugar realmente congestionado a nivel orbital, con alrededor de 30000 asteroides cercanos a la Tierra. ¿Y si algunos son fragmentos de la Luna o de nuestro propio planeta? Imagen cortesía de NASA/JPL.

La primera es que es un asteroide coorbital de la Tierra, es decir, que comparte una órbita alrededor del Sol muy parecida a la de nuestro planeta, manteniendo una relación más o menos estable a lo largo del tiempo. Pero más concretamente es un cuasisatélite, cuerpos que parecen estar en órbita alrededor de un planeta porque prácticamente tardan lo mismo en completar una órbita alrededor del Sol, aunque en realidad ambos giren alrededor del Sol. De hecho, de los siete cuasisatélites confirmados hasta el momento, probablemente Kamoʻoalewa sea el más estable de todos. De la población de los cuasisatélites se sabe muy poco porque son muy pequeños, lo que hace muy difícil su observación.

En 2021, los datos en luz visible e infrarrojo cercano obtenidos por el Large Binocular Telescope y el Lowell Discovery Telescope permitieron a los científicos (Sharkey et al. 2021) hacerse una idea sobre su composición, descubriendo que estaba formado principalmente por silicatos. Pero, además, el espectro que habían obtenido mostraba un enrojecimiento fruto de la alteración en el espacio, un fenómeno relativamente habitual en los asteroides y otros cuerpos.

Para ver si pertenecía a alguna de las familias de asteroides conocidas, los científicos compararon el espectro con asteroides de tipo S -asteroides con una composición mineralógica formada por silicatos o, de una manera más sencilla, rocosos- y que suelen mostrar ese enrojecimiento que mencionábamos anteriormente. La conclusión: este asteroide estaba más enrojecido de lo que debería. Entonces, ¿pertenecía a este tipo o podría tener otra procedencia?.

Al comparar su espectro con el de muestras lunares y espectros de la superficie lunar tomados por los telescopios se observa que muestra una mayor afinidad a la superficie lunar que a los asteroides de tipo S, por lo que en realidad no sería descabellado pensar que fuese material lunar expulsado durante un impacto y haber sufrido la alteración por los distintos procesos que se dan en el espacio -desde el efecto de la radiación a los micrometeoritos que impactan contra su superficie-.

KamoʻoalewaArrokoth es el objeto más lejano visitado por una sonda, en este caso, la New Horizons. Destaca por intenso color rojo debido a la alteración de los compuestos orgánicos como consecuencia de los rayos cósmicos y la luz ultravioleta. Cortesía de NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

¿Podría este pequeño asteroide ser fruto de una carambola cósmica? Jiao et al. (2024) acaban de publicar en Nature Astronomy como podría haber ocurrido. Para ello han desarrollado un modelo numérico para descubrir que tipos de impactos -tamaño, velocidad, ángulo…- podrían haber lanzado un trocito de la Luna a una órbita como la que vemos hoy en día.

Pues bien, de sus modelos hay dos importantes derivadas que quizás algún día no muy lejano podamos comprobar: La primera es que el impacto ha tenido que ocurrir en el pasado reciente -por reciente hablamos en términos geológicos- para que tenga la órbita que observamos hoy día y las perturbaciones que sufre por efecto de la gravedad del Sol y los demás planetas no la hayan llevado mucho más lejos de nuestro entorno.

KamoʻoalewaEl cráter Giordano Bruno visto desde la Lunar Reconaissance Orbiter. Se aprecia su forma bien definida y el escaso número de cráteres de impacto que pueblan su superficie, lo que atestigua su reciente formación… en términos geológicos. Cortesía de NASA/Goddard/Arizona State University.

La segunda es: ¿De que cráter podría provenir este asteroide? En este estudio se afirma que uno de los candidatos podría ser el Giordano Bruno, un cráter de unos 20 kilómetros bastante reciente -se estima que en torno a los cuatro millones de años aproximadamente- y que está en el rango de tamaños que coincide con los resultados de las simulaciones realizadas para el estudio, que requerían de un impacto que provocase un cráter de entre 10 y 20 kilómetros de diámetro.

La Agencia Espacial China (CNSA) tiene previsto el despegue, para el mes de mayo de 2025, de una misión denominada Tianwen-2 y cuyo primer destino será el asteroide 469219 Kamoʻoalewa y del que deberá traer a la Tierra al menos cien gramos de muestras con las que podríamos comprobar si efectivamente el origen de este asteroide es realmente la Luna o si en el espacio las apariencias… también engañan.

Referencias:

Castro-Cisneros, Jose Daniel, Renu Malhotra, y Aaron J. Rosengren (2023) Lunar Ejecta Origin of Near-Earth Asteroid Kamo’oalewa Is Compatible with Rare Orbital Pathways Communications Earth & Environment doi: 10.1038/s43247-023-01031-w.

Jiao, Yifei, Bin Cheng, Yukun Huang, Erik Asphaug, Brett Gladman, Renu Malhotra, Patrick Michel, Yang Yu, y Hexi Baoyin (2024) Asteroid Kamo‘Oalewa’s Journey from the Lunar Giordano Bruno Crater to Earth 1:1 Resonance Nature Astronomy doi: 10.1038/s41550-024-02258-z.

Sharkey, Benjamin N. L., Vishnu Reddy, Renu Malhotra, Audrey Thirouin, Olga Kuhn, Albert Conrad, Barry Rothberg, Juan A. Sanchez, David Thompson, y Christian Veillet (2021) Lunar-like Silicate Material Forms the Earth Quasi-Satellite (469219) 2016 HO3 Kamoʻoalewa Communications Earth & Environment  doi: 10.1038/s43247-021-00303-7.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario, divulgador científico u autor de la sección Planeta B.

El artículo Kamoʻoalewa, un asteroide con sabor lunar se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

El día que humanos y tigres dientes de sable comieron de la misma mamut

Sun, 2024/04/28 - 11:59
mamutRecreación de la explotación del cadáver del mamut por parte de los humanos.
Jesús Gamarra, CC BY-NC

 

Entre los años 2001-2003, en Fuente Nueva 3 (Orce, Granada), se excavaron unos fósiles excepcionales. De entre todos ellos destacó el cadáver casi completo y conectado de una mamut hembra. Tenía un estado de conservación excelente con una antigüedad de 1,2 millones de años. A esta mamut se la llamó Amparo, en honor a un personaje televisivo de la época llamado El Pozí conocida como Amparito.

A Amparito, la mamut, le faltan las patas y el cráneo. Tenía una edad avanzada, de entre 50 y 60 años, cuando murió. Acabamos de publicar el estudio de sus restos y sabemos que fue el menú de humanos y tigres dientes de sable.

Lo que el ojo no ve

Los yacimientos arqueológicos son, con frecuencia, fruto de la acumulación de múltiples historias. Con el paso del tiempo, éstas, literalmente, se comprimen, dando lugar a una falsa percepción de que todo ocurrió al mismo tiempo. ¿Cómo desvelarlas? Lo logramos magnificando la escala a la que se estudian los sedimentos.

Los especialistas en micromorfología extraen bloques de sedimento que convierten en láminas de 30 micras de grosor (el mismo que las cintas adhesivas de aluminio). Estas microláminas se estudian bajo el microscopio, desvelando características imperceptibles para el ojo humano.

Fuente Nueva 3: las incidencias de un lago

Fuente Nueva 3, en Orce (Granada), es un yacimiento conocido por albergar unos de los mejores conjuntos de útiles en piedra tallada de los albores del poblamiento humano del suroeste de Europa. La aplicación de la micromorfología al yacimiento ha puesto de manifiesto que donde, con anterioridad, se proponía una historia al estilo Pompeya –la foto fija de un instante geológico– existe toda una película con situaciones diferentes.

Esto es especialmente visible en el denominado nivel 5. Este intervalo temporal, lejos de ser homogéneo, incluye, de más antiguas a más recientes: arcillas desecadas en el borde de un lago, abanicos fluviales, arcillas formadas en la orilla de un lago, una lámina de agua permanente o semipermanente y arcillas típicas de un lago en regresión.

La muerte de la mamut

De entre todas las escenas propuestas para el nivel 5, hasta hace poco no se sabía en cuál había muerto Amparito. No obstante, había una forma de averiguarlo: aplicando la misma técnica de la micromorfología a alguno de sus huesos.

El resultado fue sorprendente: el relleno del hueso y los restos de sedimento adheridos a él coinciden con el momento en que el lago estaba en transgresión.

Amparito, la hembra de proboscídeo, falleció cuando el entorno del yacimiento estaba aún cubierto por las aguas. Esto también explica el excelente estado de conservación del esqueleto, ya que las aguas y sedimentos protegieron los huesos.

Las marcas de mordedura de humanos y tigres

Uno de los grandes retos de las ciencias del pasado es dilucidar qué agentes que actuaron sobre los cadáveres de los animales que se encuentran en los yacimientos arqueológicos. Dado que cada especie presenta características dentales diferentes, su reflejo en la superficie de los huesos también lo es. Por tanto, las marcas de mordedura se convierten en un documento identificativo del animal que las mordió.

Para poder reconocer qué carnívoro produjo las marcas de mordedura se utilizan técnicas novedosas de gran resolución. Estas pueden resumirse en un escaneado digital tridimensional de las alteraciones óseas del hueso que ayudan a obtener un modelo digital de las marcas. Los modelos obtenidos se comparan con las marcas que otros carnívoros producen y, tras realizar diferentes test estadísticos, se clasifican.

¿Quiénes comieron del cadáver de mamut?

Siempre se ha postulado que los tigres dientes de sable no dejarían marcas sobre los huesos debido a que, supuestamente, estos felinos tenían una dentición muy delicada. Sin embargo, se han encontrado marcas de diente sobre una costilla y la pelvis de Amparo que han podido relacionarse con la acción de un Homotherium, el más grande de los felinos que vivieron en Orce hace 1,2 millones de años, un tigre dientes de sable.

mamutEl momento en que los tigres dientes de sable accedieron al mamut. Posiblemente facilitaron el trabajo a los humanos que llegaron después, quitándole la piel.
Jesús Gamarra, CC BY

En cuanto a la acción humana, se han documentado tres marcas de corte en la pelvis y en una costilla que parecen haberse realizado con un útil de sílex para desarticular y descarnar. Es decir, un “cuchillo” humano.

Implicaciones de este estudio

Los yacimientos de Orce ofrecen una ventana a través de la que vislumbrar episodios precisos de la vida en el pasado. En este caso, el escenario de la muerte de una hembra de mamut, que posteriormente sirvió de festín a humanos y tigres dientes de sable. Hay que tener en cuenta que este animal pesaría tres o cuatro toneladas, lo que proporcionaría suficientes recursos a ambos.

Por otra parte, las marcas de corte de la pelvis están en el área de inserción del psoas ilíaco, y pueden asociarse a la desmembración de una pata (la izquierda) o a la extracción de las vísceras del animal.

Además, teniendo en cuenta el utillaje lítico encontrado en Fuente Nueva 3, pequeñas lascas de sílex, cabe la posibilidad de los Homotherium llegaran antes que los humanos y les facilitaran el trabajo rasgando la gruesa piel de mamut con sus dientes. Lo que no se encuentra es evidencia alguna de competencia entre ambos taxones.

Los avances en la técnica y la investigación aplicados a los tiempos profundos de la Prehistoria nos están permitiendo aproximarnos con más detalle a las actividades cotidianas de subsistencia desarrolladas por los primeros pobladores de Orce. Nos permiten conocer cómo era su dieta, y también su interacción con el medio que les rodeaba, los ambientes de lago, los paisajes arbolados mediterráneos, los animales enormes de gran tonelaje o los grandes y peligrosos felinos. Todo sugiere un comportamiento más flexible y adaptado de lo que tal vez pensábamos.

Amparito, la elefante hembra, narra esa pequeña escena en la película de Orce en la que humanos y tigres dientes de sable celebraron un banquete de carne de mamut.The Conversation

José Yravedra Sainz de los Terreros, Profesor Titular de Prehistoria, Universidad Complutense de Madrid; José A. Solano García, Lecturer in Prehistory and Archaeology, Universidad de Granada y Juan Manuel Jiménez Arenas, Profesor Titular del Departamento de Prehistoria y Arqueología / Instituto Universitario de la Paz y los Conflictos, Universidad de Granada

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo El día que humanos y tigres dientes de sable comieron de la misma mamut se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

¡Ups! La edad de la Tierra según Lord Kelvin

Sat, 2024/04/27 - 11:59

edad de la Tierra

Hoy sabemos que la edad de la tierra es de 4540 millones de años, con un margen de error de 50 millones de años, claro. A una cifra muy muy próxima llegó el geofísico estadounidense Clair Cameron Patterson analizando meteoritos con un espectrógrafo de masas. Pero, antes que él, muchos habían intentado calcular la edad de la Tierra. Usando desde la Biblia hasta la datación radiométrica. Aunque todas ellas dieron como resultado cifras muy alejadas de la actual.

 

Producción ejecutiva: Blanca Baena

Guion: José Antonio Pérez Ledo

Grafismo: Cristina Serrano

Música: Israel Santamaría

Producción: Olatz Vitorica

Doblaje: K 2000

Locución: José Antonio Pérez Ledo

Edición realizada por César Tomé López

El artículo ¡Ups! La edad de la Tierra según Lord Kelvin se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

La neurodegeneración de la retina precede al deterioro cognitivo del párkinson

Fri, 2024/04/26 - 11:59

Aunque todavía hay algunos aspectos que se deben confirmar para su uso en el ámbito clínico y mejorar ligeramente su resolución, en un estudio de la UPV/EHU y Biobizkaia se ha comprobado que un método utilizado habitualmente para realizar pruebas oftalmológicas se puede usar también para monitorizar la neurodegeneración que se produce en los pacientes de párkinson. Es probable que la neurodegeneración de la retina preceda al deterioro cognitivo.

Häggström, Mikael (2014). «Medical gallery of Mikael Häggström 2014». WikiJournal of Medicine 1 (2). doi: 10.15347/wjm/2014.008. ISSN 2002-4436. Public Domain.

En el momento en que se diagnostica la enfermedad de Parkinson u otra enfermedad neurodegenerativa, los pacientes siempre preguntan: “¿Y ahora qué? ¿Qué pasará? ¿Qué cabe esperar de la enfermedad?”. Para los neurólogos, sin embargo, no es posible responder con precisión a estas preguntas, ya que “la evolución de los pacientes suele ser muy variada: algunos no experimentan cambios con el paso de los años, mientras que otros terminan con demencia o en una silla de ruedas”, explica Ane Murueta-Goyena, investigadora del departamento de Neurociencias de la UPV/EHU.

Hoy en día, la identificación de pacientes de párkinson con riesgo de sufrir deterioro cognitivo supone un gran reto, necesario para proporcionar tratamientos clínicos más eficaces y avanzar en los ensayos clínicos. De hecho, Murueta-Goyena, en colaboración con el personal investigador de Biobizkaia, ha querido ver “si el sistema visual permite predecir ese deterioro, es decir, qué futuro puede tener el paciente en unos años”. Para ello se ha utilizado el grosor de la retina.

La retina es una membrana situada en la parte posterior del globo ocular, relacionada con el sistema nervioso y formada por varias capas. Durante el estudio, a una cohorte o grupo de pacientes de párkinson se les ha medido el grosor de la capa más interna de la retina mediante tomografía de coherencia óptica. Este tipo de tomografía es un instrumento utilizado habitualmente para la realización de pruebas oftalmológicas, ya que permite hacer mediciones de alta resolución, repetibles y precisas. Así, se ha analizado y comparado la evolución de esta capa de la retina en personas con la enfermedad de Parkinson y en personas sin ella durante el periodo 2015-2021. Por otra parte, el análisis de las imágenes de las capas de la retina de pacientes de párkinson en un hospital del Reino Unido ha confirmado los resultados.

Los resultados muestran que la capa de la retina es notablemente más fina en pacientes con párkinson. Además, han observado que “en las fases iniciales de la enfermedad es en la retina donde se detecta la mayor neurodegeneración, y, a partir de un momento dado, cuando la capa es ya muy fina, se produce una especie de estabilización en el proceso de neurodegeneración. La pérdida de grosor de la retina y el deterioro cognitivo no se producen simultáneamente. Los cambios que se producen inicialmente en la retina son más evidentes y luego, con el paso de los años, se observa cómo los pacientes empeoran clínicamente tanto a nivel cognitivo como a nivel motor —explica Murueta-Goya. Es decir, la pérdida de grosor más lenta de la capa de la retina está relacionada con un deterioro cognitivo más rápido; esa lentitud va ligada a una mayor gravedad de la enfermedad”.

La investigadora ha dado mucha importancia a los resultados: “Hemos obtenido información sobre la progresión de la enfermedad, y además la herramienta que proponemos no es invasiva y está disponible en todos los hospitales”. Los resultados deben ser validados internacionalmente y “mejorando ligeramente la resolución de la tecnología, estaremos más cerca de validar el método para monitorizar la neurodegeneración que tiene lugar en la enfermedad de Parkinson”.

Referencia:

Ane Murueta-Goyena, David Romero-Bascones, Sara Teijeira-Portas, J. Aritz Urcola, Javier Ruiz-Martínez, Rocío Del Pino, Marian Acera, Axel Petzold, Siegfried Karl Wagner, Pearse Andrew Keane, Unai Ayala, Maitane Barrenechea, Beatriz Tijero, Juan Carlos Gómez Esteban, Iñigo Gabilondo (2024) Association of retinal neurodegeneration with the progression of cognitive decline in Parkinson’s disease NPJ Parkinson’s disease doi: 10.1038/s41531-024-00637-x

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo La neurodegeneración de la retina precede al deterioro cognitivo del párkinson se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Megalodón, el tiburón extinto que alimenta nuestra imaginación

Thu, 2024/04/25 - 11:59
Póster original de la película Jaws, conocida en España como Tiburón. Imagen propiedad de la Academy Film Archive (Archivo de la Academia de Cine de los Estados Unidos de América) Fuente: www.oscars.org

En 1975 se estrenó la película Jaws, traducida al español como Tiburón, dirigida por Steven Spielberg. Para mí, una obra maestra de terror que llegó a crear un subgénero particular, el del cine de “bichos comiéndose a la gente”, por llamarlo de alguna forma. Este éxito inicial dio lugar a varias secuelas de la película original, así como a una especie de fiebre por crear películas en las que un gran escualo, o varios, aparecían como protagonistas. Algunas de tinte serio, pero la gran mayoría rozando la parodia, apareciendo tiburones mecanizados, tiburones fantasmas, tiburones moviéndose por la arena o, incluso, tiburones cayendo del cielo desde tornados o huracanes.

Esta evolución del subgénero pronto culminó con la necesidad de que el animal protagonista fuera cada vez más grande, creando monstruos capaces de comerse un buque de guerra o atacar un avión en pleno vuelo, colocando el prefijo “mega” antes de la palabra tiburón en los títulos de las películas, para remarcar que nos encontraríamos ante animales gigantescos. Pero el mundo de Hollywood tardó un poco en darse cuenta de que la realidad siempre supera la ficción y, en la historia geológica de nuestro planeta, ya habían existido enormes tiburones cuyo nombre científico ya incluía el prefijo “mega”. Me refiero al animal protagonista de dos películas relativamente recientes, y también de una canción del grupo musical El Reno Renardo (cuya letra no es apta para menores de edad), el megalodón.

megalodonPóster promocional de la película Meg, conocida en España como Megalodón, inspirado en el póster original de la película Jaws. Imagen propiedad de Warner Bros PicturesEl megalodón era de sangre caliente

Otodus megalodon, que es el nombre científico de la especie, fue un tiburón prehistórico que apareció en el Mioceno, hace unos 20 millones de años, y se extinguió durante el Plioceno, hace unos 3,6 millones de años. Se estima que llegó a medir más de 18 m de largo y a pesar más de 50 toneladas, teniendo un cuerpo estilizado que le permitía nadar a gran velocidad, convirtiéndole en uno de los principales depredadores marinos de esa época. Con varias hileras de enormes dientes afilados y aserrados, posiblemente acechaba a sus presas en el fondo marino, atacándolas rápidamente atravesando la columna de agua de manera casi vertical, llegando a sobresalir varios metros sobre la superficie marina si fuese necesario. Su comida favorita eran los cetáceos de tamaño medio o grande, a los que acechaba en zonas próximas a la costa. Además, se acercaban a estas zonas litorales para reproducirse y dejar a sus crías en bahías cerradas, donde encontrarían abundante comida basada en reptiles y mamíferos marinos de menor tamaño mientras permanecían protegidas de los depredadores hasta que se hiciesen adultas.

Por otro lado, estudios recientes han demostrado que se trataba de un pez de sangre caliente, es decir, que era capaz de regular su temperatura interior elevándola por encima de la del agua circundante. Esto le permitía desplazarse por todos los océanos del planeta, llegando a acercarse a zonas polares, aunque no habitaba aguas frías, por debajo de 10-5ºC de temperatura. Y esta capacidad de regular su temperatura interna también parece ser la explicación a que alcanzase estos tamaños tan enormes. Finalmente, pasando a las causas de su extinción, se sugieren cambios en el clima y en la circulación oceánica durante el Plioceno, pero recientemente se alude a la competencia con el gran tiburón blanco, que acabaría imponiéndose como el mayor depredador marino desde entonces.

megalodonA) Comparación del tamaño de un ejemplar de Otodus megalodon (clasificado con el antiguo nombre Carcharocles megalodon) con el tamaño de un ser humano y de un ejemplar actual de tiburón blanco (Carcharodon carcharias). B) Reconstrucción de Otodus megalodon a tamaño natural (18 m de longitud). La imagen A es obra de Mary Parrish, ambas son propiedad de la Smithsonian Institution

Como habéis comprobado, la descripción sobre la biología y ecología del megalodón la he redactado empleando mayoritariamente el condicional. Esto es debido a que los únicos restos fósiles que, de momento, tenemos de esta especie son dientes y vértebras, no se ha encontrado un esqueleto completo. O son evidencias indirectas, como las marcas de sus mordeduras preservadas en los fósiles de sus presas. Por este motivo, los cálculos sobre su tamaño, su forma o su hábitat son estimaciones, muchas veces realizadas a partir de la comparación con otros tiburones recientes que se consideran sus parientes más cercanos. Y, aunque esto es muy habitual en Geología y convierte a la investigación en esta ciencia en algo apasionante y divertido, con constantes cambios en la información que tenemos sobre las especies extintas, muchas veces se convierte en un arma de doble filo dando pie a bulos e ideas fantásticas entre la población. Sobre todo, si existen películas con más ficción que ciencia que puedan ser tomadas como base para la especulación.

megalodonDiente fósil de Otodus megalodon del Mioceno, encontrado en el desierto de Atacama, Chile. Imagen:   Lonfat / Wikimedia CommonsExtinto, el megalodón está extinto

Así, mucha gente cree que este enorme tiburón puede seguir vivo en los fondos oceánicos, a miles de metros de profundidad, aludiendo a que aún no conocemos todos los organismos que habitan es estas zonas abisales. Y, aunque esta última aseveración es cierta, en el caso del gran escualo es algo totalmente imposible. Como hemos visto, el megalodón no podría soportar la presión de la columna de agua, no habitaba en aguas tan frías como las que encontramos en zonas tan profundas y, además, tendría que acercarse al litoral para reproducirse y alimentarse, además de que no hay restos de su existencia en el registro fósil más moderno de hace unos 3,6 millones de años. ¿De verdad creéis que, si un tiburón de más de 18 m de largo y 50 toneladas de peso llegara a áreas costeras para devorar enormes ballenas u orcas por todo el mundo, no lo habíamos detectado ya? Vivimos en la era digital, con multitud de satélites, boyas oceánicas, barcos navegando continuamente por el mar y todo el mundo con un teléfono móvil en el bolsillo. Si un tiburón de este tamaño estuviera por ahí fuera, tendríamos miles de evidencias circulando por las redes sociales.

En estos casos, hay que tener espíritu crítico y sentido común. Las películas, junto con la novela en la que se basan, son mera ficción que buscan nuestro divertimento, en ningún momento pueden ser tomadas como un documento científico. Al igual que no nos creemos la existencia de un gigantesco tiburón mecanizado capaz de comerse un avión durante su vuelo, tampoco podemos creernos la existencia de un tiburón extinto oculto durante millones de años en las aguas abisales que, de repente, decide comportarse como lo hizo mientras vivió y acercarse a una zona costera a devorar bañistas como si no hubiese un mañana. Por mucho que nos gustase ver, mejor de lejos que de cerca, a estas enormes criaturas extintas, debemos recordar que están, pues eso, extintas.

Agradecimientos:

Quiero dar las gracias a mi colega Jone Mendicoa por aportarme la idea para escribir este artículo y a la iniciativa “Cazabulos”, del Consejo Superior de Investigaciones Científicas (CSIC), por darme la oportunidad de crear un pequeño vídeo sobre este tema.

Referencias:

Cooper, J.A., Hutchinson, J.R., Bernvi, D.C., Cliff, G., Wilson, R.P., Dicken, M.L., Menzel, J., Wroe, S., Pirlo, J., Pimiento, C. (2022) The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling. Science Advances  doi: 10.1126/sciadv.abm9424

Ferrón, H. (2019) Megalodón, un tiburón extinto de sangre caliente. ¡Fundamental! 32, 1-46.

Sternes, P.C., Jambura, P.L., Türtscher, J., Kriwet, J., Siversson, M., Feichtinger, I., Naylor, G.J.P., Summers, A.P., Maisey, J.G., Tomita, T., Moyer, J.K., Higham, T.E., da Silva, J.P.C.B., Bornatowski, H., Long, D.J., Perez, V.J., Collareta, A., Underwood, C., Ward, D.J., Vullo, R., González-Barba, G., Maisch, H.M. IV, Griffiths, M.L., Becker, M.A., Wood, J.J., Shimada, K. (2024) White shark comparison reveals a slender body for the extinct megatooth shark, Otodus megalodon (Lamniformes: Otodontidae) Palaeontologia Electronica doi: 10.26879/1345

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo Megalodón, el tiburón extinto que alimenta nuestra imaginación se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Paul Bunyan frente la cinta transportadora

Wed, 2024/04/24 - 11:59

El título de este artículo corresponde al cuento corto Paul Bunyan versus the conveyor belt del escritor norteamericano William Hazlett Upson (1891-1975). Vamos a reproducirlo al completo, analizando las propiedades de las sucesivas transformaciones de la cinta transportadora a la que se refiere el título.

cinta transportadoraUna cinta transportadora minera. Foto: Peter Herrmann / Unsplash

 

Esta cinta transportadora es una banda de Möbius

Uno de los éxitos más brillantes de Paul Bunyan no se debió a un pensamiento brillante, sino a su cautela y cuidado. Fue el famoso asunto de la cinta transportadora.

Paul y su mecánico, Ford Fordsen, habían empezado a trabajar en una mina de uranio en Colorado. El mineral se extraía a través de una cinta sin fin que recorría media milla entrando en la mina y otra media milla saliendo, lo que daba una longitud total de una milla. Tenía cuatro pies de ancho. Se movía sobre una serie de rodillos y era impulsada por una polea montada en la transmisión del gran camión azul de Paul, «Babe». Los fabricantes de la correa la habían hecho de una sola pieza, sin empalmes ni cordones, y habían puesto una media vuelta en la parte de retorno para que el desgaste fuera el mismo en ambos lados.

Por la descripción de esta cinta transportadora, vemos que se trata de una cinta de Möbius. Esta denominación de “cinta sin fin” es la que el artista suizo Max Bill (1908-1994) utilizó para nombrar sus magníficas esculturas en forma de banda de Möbius: “Unendliche Schleife”.

Aunque se alude a que “el desgaste fuera el mismo en ambos lados”, recordemos que una banda de Möbius solo posee una cara. La ventaja de la cinta transportadora del cuento es que duraría más (el doble) que una cilíndrica de la misma longitud y anchura. En efecto, el lado interior de una cinta cilíndrica no se usaría, y por lo tanto no se desgastaría.

Tras varios meses de funcionamiento, la galería de la mina era el doble de larga, pero la cantidad de material que salía era menor. Paul decidió que necesitaba una cinta el doble de larga y la mitad de ancha. Le dijo a Ford Fordsen que cogiera su motosierra y cortara la cinta en dos a lo largo.

Así tendremos dos correas”, dijo Ford Fordsen. “Tendremos que cortarlas en dos transversalmente y unirlas. Eso significa que tendré que ir a la ciudad a comprar los materiales para dos empalmes”.

No”, dijo Paul. Esta cinta tiene una media torsión, lo que en geometría se conoce como banda de Möbius«.

¿Qué más da?», preguntó Ford Fordsen.

Una banda de Möbius, dijo Paul Bunyan, sólo tiene un lado y un borde, y si la cortamos en dos longitudinalmente, seguirá siendo de una sola pieza. Tendremos una cinta el doble de larga y la mitad de ancha”.

¿Cómo se puede cortar algo en dos y que siga siendo de una pieza?», preguntó Ford Fordsen.

Paul era modesto. Nunca fue obstinado. “Vamos a probarlo», dijo.

Entraron en el despacho de Paul. Paul cogió una tira de papel engomado de unas dos pulgadas de ancho y una yarda de largo. La colocó sobre el escritorio con el lado engomado hacia arriba. Levantó los dos extremos y los juntó delante de él con los lados engomados hacia abajo. Luego dio la vuelta a uno de los extremos, lo lamió, lo deslizó bajo el otro extremo y pegó los dos lados engomados. Se había hecho una cinta de papel sin fin con una media vuelta, igual que la cinta grande del transportador.

Esto», dijo Paul, «es una banda de Möbius. Funcionará tal y como he dicho, eso espero».

Paul cogió unas tijeras, clavó la punta en el centro del papel y cortó la tira en dos a lo largo. Cuando terminó, tenía una tira el doble de larga, la mitad de ancha y con una doble torsión.

cinta transportadoraCortando una cinta de Möbius por la mitad.

 

En efecto, cuando se corta una cinta de Möbius longitudinalmente por la mitad, se obtiene una nueva cinta, pero no es de Möbius sino cilíndrica; basta con comprobar que posee dos caras. Como indica Upson, posee una doble torsión que corresponde a la suma de las dos “medias vueltas” de la mitad superior y la mitad inferior de la cinta original.

De este modo, Paul consigue una cinta el doble de larga para llegar al material más alejado de la mina. Pero posee dos caras, así que uno de los lados quedará inutilizado… No es la solución óptima.

Dos apuestas ruinosas

Ford Fordsen quedó convencido. Salió y empezó a cortar la cinta grande en dos. Y, en ese momento, llegó un hombre llamado Loud Mouth Johnson para ver cómo iba la empresa de Paul, y para ofrecer cualquier crítica destructiva que se le ocurriera. Loud Mouth Johnson, que era el fanfarrón público número uno, encontró muchos motivos de queja.

Si cortas esa cinta en dos a lo largo, tendrás dos cintas, cada una de la misma longitud que la cinta original, pero sólo la mitad de ancha».

No», dijo Ford Fordsen, «ésta es una cinta muy especial conocida como banda de Möbius. Si la corto en dos longitudinalmente, obtendré una cinta el doble de larga y la mitad de ancha».

¿Quieres apostar?», dijo Loud Mouth Johnson. “Claro», dijo Ford Fordsen.

Apostaron mil dólares. Y, por supuesto, ganó Ford Fordsen. Loud Mouth Johnson quedó tan asombrado que se escabulló y permaneció alejado durante seis meses.

Al cabo de algún tiempo, la mina se hizo más profunda y no quedó más remedio que volver a cortar la cinta transportadora…

Cuando finalmente regresó, encontró a Paul Bunyan empezando a cortar el cinturón en dos a lo largo por segunda vez.

¿Cuál es la idea?», preguntó Loud Mouth Johnson.

Paul Bunyan respondió: «El túnel ha avanzado mucho más y el material que sale no es tan voluminoso como antes. Así que estoy alargando de nuevo la cinta y haciéndola más estrecha”.

¿Dónde está Ford Fordsen?

Paul Bunyan dijo: «Le he enviado a la ciudad a por materiales para empalmar la cinta. Cuando termine de cortarla en dos a lo largo, tendré dos cinturones de la misma longitud, pero sólo la mitad de ancho que éste. Así que tendré que hacer algunos empalmes».

Loud Mouth Johnson apenas podía creer lo que oía. Aquí tenía la oportunidad de recuperar sus mil dólares y dejar en evidencia a Paul Bunyan como un bobo más. Escucha, dijo Loud Mouth Johnson, cuando acabes sólo te quedará una cinta el doble de larga y la mitad de ancha».

¿Quieres apostar?

Claro.

Así que apostaron mil dólares y, por supuesto, Loud Mouth Johnson volvió a perder. No es que Paul Bunyan fuera brillante. Es que era metódico. Lo había probado con aquella tira de papel engomado, y sabía que la segunda vez que cortas una banda de Möbius obtienes dos piezas, unidas entre sí como una cadena de reloj antigua.

Recordemos que, tras el primer corte, la cinta era cilíndrica, y al dividir un cilindro en dos longitudinalmente, se obtienen dos cilindros. En este caso, esos cilindros están enlazados porque la cinta posee (en este momento) dos semigiros. Para comprobarlo, lo mejor es repetir el experimento de Paul y contar cuantas caras tiene cada una de estas piezas.

En realidad, Paul no ha usado la mejor estrategia posible. En ambas ocasiones debería haber cortado la cinta transversalmente para obtener un rectángulo, después debería haber cortado este rectángulo longitudinalmente por la mitad y, finalmente, debería haber soldado los dos lados más cortos tras aplicar en uno de ellos una semivuelta. Así, habrían conseguido una cinta el doble de larga y que seguiría siendo de Möbius. Es decir, su única cara serviría para transportar el material de la mina, y duraría más…

Nota final

Las cintas transportadoras de Möbius se utilizan realmente. En 1957, James O. Trinkle, obtuvo la patente estadounidense 2,784,834 por una transportadora para material caliente. Trinkle trabajaba en la empresa BF Goodrich e inventó esta cinta de Möbius para transportar cenizas o arena de fundición… y se construyó.

cinta transportadoraPatente de “Conveyor for hot material”.

 

Referencias

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Paul Bunyan frente la cinta transportadora se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Los insectos y otros animales tienen consciencia

Tue, 2024/04/23 - 11:59

Un grupo de destacados biólogos y filósofos ha anunciado anunció un nuevo consenso: existe “una posibilidad realista” de que insectos, pulpos, crustáceos, peces y otros animales pasados por alto experimenten consciencia.

Un artículo de Dan Falk. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

¿Qué pasa por la mente de una abeja? Existe «una posibilidad realista» de consciencia, según una nueva declaración. Foto: Dmitry Grigoriev / Unsplash

En 2022, investigadores del Laboratorio de Ecología Sensorial y del Comportamiento de las Abejas de la Universidad Queen Mary de Londres observaron que los abejorros hacían algo notable: las diminutas y peludas criaturas participaban en una actividad que solo podía describirse como juego. Cuando les daban pequeñas bolas de madera las abejas las empujaban de un lado a otro y las hacían girar. El comportamiento no tenía una conexión obvia con el apareamiento o la supervivencia, ni era recompensado por los científicos. Al parecer, era sólo por diversión.

El estudio sobre las abejas juguetonas es parte de un conjunto de investigaciones que un grupo de destacados estudiosos de las mentes animales ha citado, apuntalando una nueva declaración que extiende el apoyo científico a la existencia de la consciencia a un conjunto más amplio de animales del que se había reconocido formalmente antes. Durante décadas, ha habido un amplio acuerdo entre los científicos en que los animales similares a nosotros (los grandes simios, por ejemplo) tienen experiencia consciente, incluso si su consciencia difiere de la nuestra. Sin embargo, en los últimos años, los investigadores han comenzado a reconocer que la consciencia también puede estar muy extendida entre animales que son muy diferentes a nosotros, incluidos los invertebrados con sistemas nerviosos completamente diferentes y mucho más simples.

La nueva declaración, firmada por biólogos y filósofos, adopta formalmente ese punto de vista. Dice, en parte: «La evidencia empírica indica al menos una posibilidad realista de experiencia consciente en todos los vertebrados (incluidos todos los reptiles, anfibios y peces) y muchos invertebrados (incluidos, como mínimo, moluscos cefalópodos, crustáceos decápodos e insectos)». Inspirado en hallazgos de investigaciones recientes que describen comportamientos cognitivos complejos en estos y otros animales, el documento representa un nuevo consenso y sugiere que los investigadores pueden haber sobreestimado el grado de complejidad neuronal necesaria para la consciencia.

La Declaración de Nueva York sobre la Conciencia Animal de cuatro párrafos se dio a conocer el 19 de abril en una conferencia de un día llamada “La ciencia emergente de la conciencia animal” que se ha celebrado en la Universidad de Nueva York. Encabezada por la filósofa y científica cognitiva Kristin Andrews de la Universidad de York en Ontario, el filósofo y científico medioambiental Jeff Sebo de la Universidad de Nueva York y el filósofo Jonathan Birch de la Escuela de Economía y Ciencias Políticas de Londres, la declaración ha sido firmada hasta ahora por 39 investigadores, entre ellos los psicólogos Nicola Clayton e Irene Pepperberg, los neurocientíficos Anil Seth y Christof Koch, el zoólogo Lars Chittka y los filósofos David Chalmers y Peter Godfrey-Smith.

La declaración se centra en el tipo más básico de consciencia, conocida como consciencia fenoménica. En términos generales, si una criatura tiene una conciencia fenoménica, entonces ser esa criatura es “como algo”, una idea enunciada por el filósofo Thomas Nagel en su influyente ensayo de 1974, “¿Cómo es ser un murciélago?” Incluso si una criatura es muy diferente de nosotros, escribió Nagel, “fundamentalmente un organismo tiene estados mentales conscientes si y solo si hay algo que se asemeja a ser ese organismo. … Podemos llamar a esto el carácter subjetivo de la experiencia”. Si una criatura es fenoménicamente consciente tiene la capacidad de experimentar sentimientos como dolor, placer o hambre, pero no necesariamente estados mentales más complejos como la autoconsciencia.

«Espero que la declaración [consiga que se preste] mayor atención a las cuestiones de la consciencia no humana y a los desafíos éticos que acompañan a la posibilidad de experiencias conscientes mucho más allá de lo humano», escribe Seth, neurocientífico de la Universidad de Sussex, en un correo electrónico. «Espero que genere debate, informe las políticas y prácticas en materia de bienestar animal y genere una comprensión y apreciación de que tenemos mucho más en común con otros animales que con cosas como ChatGPT».

Una consciencia creciente

La declaración comenzó a tomar forma el otoño pasado, como consecuencia de conversaciones entre Sebo, Andrews y Birch. «Los tres estábamos hablando de todo lo que ha sucedido en los últimos 10 años, en los últimos 15 años, en la ciencia de la consciencia animal», recuerda Sebo. Ahora sabemos, por ejemplo, que los pulpos sienten dolor y las sepias recuerdan detalles de acontecimientos pasados específicos. Estudios en peces han encontrado que los lábridos limpiadores parecen pasar una versión de la “prueba del espejo”, que indica un grado de autorreconocimiento, y que el pez cebra muestra signos de curiosidad. En el mundo de los insectos, las abejas muestran un aparente comportamiento de juego, mientras que las moscas de la fruta Drosophila tienen distintos patrones de sueño influenciados por su entorno social. Mientras tanto, los cangrejos de río muestran estados similares a los de la ansiedad, y esos estados pueden alterarse con medicamentos ansiolíticos.

Después de reflexionar sobre investigaciones recientes sobre diversas mentes animales, Jeff Sebo, Kristin Andrews y Jonathan Birch (de izquierda a derecha) decidieron organizar a científicos y filósofos para firmar una declaración que extienda la consciencia a más animales. Fotos, de izquierda a derecha: Kate Reeder; Ben Wulf; María Moore/LSE

Estos y otros signos de estados conscientes en animales que durante mucho tiempo habían sido considerados menos que conscientes entusiasmaron y desafiaron a biólogos, científicos cognitivos y filósofos de la mente. «Mucha gente acepta desde hace tiempo que, por ejemplo, los mamíferos y las aves son conscientes o es muy probable que lo sean, pero se ha prestado menos atención a otros taxones de vertebrados y especialmente de invertebrados», explica Sebo. En conversaciones y reuniones, los expertos coincidían en gran medida en que estos animales deben tener consciencia. Sin embargo, este consenso recién formado no se comunicaba al público en general, incluidos otros científicos y formuladores de políticas. Así que los tres investigadores decidieron redactar una declaración clara y concisa y hacerla circular entre sus colegas para que la aprobaran. La declaración no pretende ser exhaustiva sino más bien “señalar dónde creemos que está el campo ahora y hacia dónde se dirige”, afirma Sebo.

La nueva declaración actualiza el esfuerzo más reciente para establecer un consenso científico sobre la consciencia animal. En 2012, los investigadores publicaron la Declaración de Cambridge sobre la Consciencia, que decía que una variedad de animales no humanos, incluidos, entre otros, mamíferos y aves, tienen «la capacidad de exhibir comportamientos intencionales» y que «los humanos no son los únicos en poseer los sustratos neurológicos que generan consciencia”.

La nueva declaración amplía el alcance de su predecesora y también está redactada de forma más cuidadosa, escribe Seth. «No intenta hacer ciencia por dictado, sino que enfatiza lo que debemos tomar en serio con respecto a la consciencia animal y la ética relevante dada la evidencia y las teorías que tenemos». Escribe que “no está a favor de avalanchas de cartas abiertas y cosas por el estilo”, pero que finalmente “llegó a la conclusión de que esta declaración merecía mucho ser apoyada”.

Godfrey-Smith, filósofo de la ciencia de la Universidad de Sydney que ha trabajado extensamente con pulpos, cree que los comportamientos complejos que exhiben estas criaturas (incluida la resolución de problemas, el uso de herramientas y el comportamiento de juego) solo pueden interpretarse como indicadores de consciencia. «Tienen esta conexión atenta con las cosas, con nosotros y con objetos novedosos que hace que sea muy difícil no pensar que están sucediendo muchas cosas dentro de ellos», dice. Señala que artículos recientes que analizan el dolor y los estados oníricos en pulpos y sepias «apuntan en la misma dirección… hacia que la experiencia sea una parte real de sus vidas».

Si bien muchos de los animales mencionados en la declaración tienen encéfalos y sistemas nerviosos muy diferentes a los de los humanos, los investigadores dicen que esto no tiene por qué ser una barrera para la consciencia. Por ejemplo, el cerebro de una abeja contiene solo alrededor de un millón de neuronas, en comparación con unos 86 mil millones en el caso de los humanos. Pero cada una de esas neuronas de abeja puede ser tan compleja estructuralmente como un roble. La red de conexiones que forman también es increíblemente densa, y cada neurona contacta quizás con otras 10.000 o 100.000. El sistema nervioso de un pulpo, por el contrario, es complejo en otros aspectos. Su organización está muy distribuida más que centralizada; un brazo cortado puede exhibir muchos de los comportamientos del animal intacto.

Investigaciones recientes sobre las mentes de los animales (incluidas las de cangrejos de río, pulpos, serpientes y peces) sugieren que la conciencia “puede existir en una arquitectura [neural] que parece completamente ajena” a la nuestra, afirma Peter Godfrey-Smith. Fotos, en el sentido de las agujas del reloj desde arriba a la izquierda: Svetlana123/iStock; Colin Marshal/Biosphoto/Science Source; MATTHIASRABBIONE/iStock; Jim Maley/iStockEl resultado, dice Andrews, es que «quizás no necesitemos tanto equipo como pensábamos» para alcanzar la consciencia. Señala, por ejemplo, que incluso una corteza cerebral (la capa externa del cerebro de los mamíferos, que se cree que desempeña un papel en la atención, la percepción, la memoria y otros aspectos clave de la consciencia) puede no ser necesaria para la consciencia fenoménica más simple a la que se refiere la declaración.

«Hubo un gran debate sobre si los peces son conscientes, y buena parte de él tuvo que ver con que carecían de las estructuras encefálicas que vemos en los mamíferos», explica. “Pero cuando nos fijamos en las aves, los reptiles y los anfibios, vemos que tienen estructuras encefálicas muy diferentes y diferentes presiones evolutivas y, sin embargo, estamos descubriendo que algunas de esas estructuras encefálicas realizan el mismo tipo de trabajo que realiza la corteza cerebral en los humanos.”

Godfrey-Smith está de acuerdo y señala que comportamientos indicativos de consciencia «pueden existir en una arquitectura que parece completamente ajena a la arquitectura de los vertebrados o humana».

Relaciones conscientes

Si bien la declaración tiene implicaciones para el tratamiento de los animales, y especialmente para la prevención del sufrimiento animal, Sebo señala que la atención debe ir más allá del dolor. No es suficiente que las personas eviten que los animales en cautiverio experimenten dolor e incomodidad corporal, afrima. «También tenemos que brindarles el tipo de enriquecimiento y oportunidades que les permitan expresar sus instintos y explorar sus entornos y participar en sistemas sociales y, por lo demás, ser el tipo de agentes complejos que son».

Pero las consecuencias de otorgar la etiqueta de “conscientes” a una gama más amplia de animales –particularmente animales cuyos intereses no estamos acostumbrados a considerar– no son sencillas. Por ejemplo, nuestra relación con los insectos puede ser «inevitablemente algo antagónica», dice Godfrey-Smith. Algunas plagas comen cultivos y los mosquitos pueden transmitir enfermedades. «La idea de que podríamos hacer las paces con los mosquitos es una idea muy diferente a la idea de que podríamos hacer las paces con los peces y los pulpos», afirma.

Del mismo modo, se presta poca atención al bienestar de insectos como Drosophila, que se utilizan ampliamente en la investigación biológica. «En la investigación pensamos en el bienestar del ganado y de los ratones, pero nunca pensamos en el bienestar de los insectos», dice Matilda Gibbons, que investiga las bases neuronales de la consciencia en la Universidad de Pensilvania y es firmante de la declaración.

Si bien los organismos científicos han creado algunos estándares para el tratamiento de ratones de laboratorio, no está claro si la nueva declaración conducirá a nuevos estándares para el tratamiento de los insectos. Pero los nuevos hallazgos científicos a veces desencadenan nuevas políticas. El Reino Unido, por ejemplo, ha promulgado una ley para aumentar la protección de los pulpos, cangrejos y langostas después de que un informe de la London School of Economics indicara que esos animales pueden experimentar dolor, angustia o daño.

Si bien la declaración no menciona la inteligencia artificial, la cuestión de la posible consciencia de la IA ha estado en la mente de los investigadores de la consciencia animal. «Es muy poco probable que los sistemas de inteligencia artificial actuales sean conscientes», afirma Sebo. Sin embargo, lo que ha aprendido sobre las mentes animales «me hace reflexionar y me hace querer abordar el tema con precaución y humildad».

Andrews espera que la declaración impulse más investigaciones sobre animales que a menudo se han pasado por alto, una medida que tiene el potencial de ampliar aún más nuestra concienciación sobre el alcance de la consciencia en el mundo animal. «Todos estos gusanos nematodos y moscas de la fruta que se encuentran en casi todas las universidades, estudiad la consciencia en ellos», exhorta. “Ya los tienes. Alguien en tu laboratorio necesitará un proyecto. Haz de ese proyecto un proyecto sobre la consciencia. ¡Imagina eso!»

 

El artículo original, Insects and Other Animals Have Consciousness, Experts Declare, se publicó el 19 de abril de 2024 en Quanta Magazine.

Traducido por César Tomé López

El artículo Los insectos y otros animales tienen consciencia se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

El origen de la cresta neural

Mon, 2024/04/22 - 11:59

Es posible que muchas personas no hayan oído hablar de la cresta neural. Si es así, no pueden imaginarse lo mucho que le deben. Una parte sustancial de nuestro cuerpo se forma a partir de la cresta neural, como ahora veremos. Sucede lo mismo en todos los animales vertebrados, y lo curioso de esta cuestión es que no se conocía nada remotamente parecido en nuestros antepasados invertebrados. Por eso, el origen de la importantísima cresta neural era un enigma. Hasta ahora.

cresta neuralFigura 1. Formación del tubo nervioso embrionario que da lugar al sistema nervioso central de los vertebrados (encéfalo y médula espinal). Los márgenes de la placa neural dan lugar a la cresta neural, un conjunto de células móviles con múltiples destinos. Ilustración:  NikNaks / Wikimedia Commons.

Empecemos por el principio. La cresta neural está formada por células que intervienen en el desarrollo embrionario de todos los vertebrados (Figura 1). Se forman en los márgenes de la placa neural, el conjunto de células superficiales que se va a hundir en el embrión y va a dar lugar a nuestro sistema nervioso central (encéfalo y médula espinal). La cresta neural migra por todo el cuerpo y da lugar a muchos y muy variados derivados. Por ejemplo, todas las neuronas exteriores a dicho sistema nervioso central (sistemas nerviosos simpático y parasimpático) incluyendo las células de Schwann que las protegen. También tejidos endocrinos, como la médula adrenal o las células C de la tiroides. Más sorprendente es su contribución a buena parte de los huesos craneales, la dentina, los huesecillos del oído medio, el músculo liso de grandes arterias o el tabique cardiaco que separa la salida aórtica de la pulmonar. Y por si fuera poco, los melanocitos que dan color a nuestra piel también proceden de la cresta neural.

La importancia de la cresta neural en nuestro desarrollo queda subrayada por la existencia de neurocristopatías. Este término fue creado hace medio siglo para designar a las patologías debidas a anomalías en el desarrollo de la cresta neural. A causa de los múltiples destinos de la cresta neural, sus alteraciones pueden afectar a muchos sistemas orgánicos. Hasta la fecha se han identificado 66 neurocristopatías, que van desde malformaciones craneofaciales o defectos cardíacos hasta alteraciones pigmentarias o tumores como el feocromocitoma. Por citar algunos ejemplos, la enfermedad de Hirschprung produce obstrucciones intestinales graves en 1 de cada 5000-10000 recién nacidos. La prevalencia del síndrome de DiGeorge es mayor (1 de cada 4000 bebés). En estos pacientes, la pérdida de un fragmento del cromosoma 22 produce alteraciones en la migración de la cresta neural, y da lugar a un espectro de patologías, incluyendo infecciones, hipocalcemia, defectos cardíacos y paladar hendido. Más infrecuente es el piebaldismo, extensas alteraciones pigmentarias por defectos en la migración de los melanocitos, derivados como hemos dicho de la cresta neural.

Esta capacidad de originar componentes tan diversos de nuestro cuerpo ha fascinado desde siempre a los biólogos del desarrollo. Pero lo que planteaba más interrogantes era el propio origen evolutivo de la cresta neural. Los invertebrados más emparentados con nosotros, los anfioxos y urocordados (ascidias y salpas) forman un tubo nervioso como el nuestro, pero no desarrollan una cresta neural. En el embrión de las ascidias se habían identificado algunas células de la placa neural que migran para dar células sensoriales y pigmentarias. Pero estas células no dan lugar a derivados esqueléticos o musculares, como sí lo hace la cresta neural.

cresta neuralFigura 2. Se muestran en rojo las células de la gástrula de ascidia propuestas por los investigadores japoneses como precursoras de la cresta neural y los progenitores neuromesodérmicos de vertebrados. Estas células originan neuronas y músculo en la cola de la larva nadadora de la ascidia, una cola que se pierde tras la metamorfosis. Imagen de la ascidia realizada por Eric A. Lazo-Wasem, dominio público, CC0 1.0.

Una investigación realizada por dos biólogos de la universidad de Kyoto sobre la ascidia Ciona intestinalis acaba de mostrar que dos pares de células de su gástrula tienen características que sugieren una relación con la cresta neural de vertebrados. Se localizan en los márgenes de la placa neural, cuando la gástrula cuenta con poco más de un centenar de células (Figura 2). La investigación también sugiere una relación de estas células con los precursores neuromesodérmicos, unos progenitores que contribuyen al tubo nervioso y el mesodermo posterior del embrión de vertebrados.

El linaje de estas cuatro células de las ascidias expresa genes típicos de la cresta neural de vertebrados. Dicho linaje origina tanto neuronas del tubo nervioso más posterior como células musculares de la cola de la larva. El sistema genético que controla la diferenciación hacia neuronas o músculo es el mismo que el que utilizan los precursores neuromesodérmicos de vertebrados. Como evidencia adicional, una comparación del transcriptoma (el conjunto de genes expresados) de las células candidatas de las ascidias con el transcriptoma de un vertebrado (el pez cebra) las relaciona claramente con los precursores neuromesodérmicos.

Los investigadores japoneses concluyen que estas pocas células del embrión de ascidia constituyen el origen evolutivo tanto de la cresta neural como de los precursores neuromesodérmicos del embrión de vertebrados. Lo que hicimos los vertebrados desde el principio fue explotar a fondo la plasticidad de estas células para conducirlas a desempeñar funciones muy variadas, incrementando la complejidad de nuestra organización corporal.

Referencia:

Ishida, T., Satou, Y. (2024)  Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nat Ecol Evol doi: 10.1038/s41559-024-02387-8

Sobre el autor: Ramón Muñoz-Chápuli Oriol es Catedrático de Biología Animal (jubilado) de la Universidad de Málaga

El artículo El origen de la cresta neural se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Matando los dragones del dogma y la ignorancia

Sun, 2024/04/21 - 11:59

Se han publicado muchos libros de historia de la ciencia o, en términos más generales, del conocimiento. Cada libro aporta una visión y en conjunto ofrecen una panorámica bastante completa de la evolución de una parte sustancial del patrimonio intelectual de la humanidad. El libro que revisaré en estas líneas es, desde ese punto de vista, uno más. Un libro más para enriquecer la visión que tenemos del conocimiento de la naturaleza y de la forma en que se ha obtenido ese conocimiento.

Empecé a leerlo con esa idea en mente. Sin embargo, ya desde las primeras páginas reparé en que este era algo diferente. Para empezar, sus autores no se han propuesto hacer un repaso exhaustivo de los diferentes saberes. Han abordado un aspecto en particular del progreso científico y, en virtud de ese objetivo, concentrado su esfuerzo en ciertos temas o campos del saber, sin ánimo de ofrecer una visión general de las ciencias de la naturaleza.

El objeto del libro queda reflejado de forma metafórica en su subtítulo: Slaying the Dragons of Dogma and Ignorance («Matando los dragones del dogma y la ignorancia«, el libro aún no ha sido traducido al castellano). Al título principal me referiré más adelante. El subtítulo hace referencia a la leyenda que aparece en el Globo de Hunt-Lenox (1503-1507), HC SVNT DRACONES (hic sunt dracones, ‘aquí hay dragones’), siguiendo la tradición medieval de mencionar la presencia de criaturas míticas en la periferia del mundo conocido, como forma de expresar el desconocimiento acerca de esas zonas marginales y los peligros –reales o imaginados– que aguardaban a quienes osasen aventurarse por ellos.

Source: World ScientificAquí hay dragones

Los autores recurren a la metáfora de los dragones, seres imaginarios, para referirse a entidades cuya existencia se ha postulado a lo largo de la historia del conocimiento, para ofrecer una explicación satisfactoria del mundo real que, andando el tiempo, se han demostrado innecesarias, falsas o erróneas. A ello obedece la voluntad expresada en el subtítulo de “matar” esas criaturas. Siguiendo la metáfora, el avance de la ciencia habría ido eliminando esas entidades para ser sustituidas por explicaciones más satisfactorias.

El primer dragón al que hacen referencia los autores es el éter luminífero, esa sustancia invisible a la que se atribuía la propiedad de transmitir la luz y cuya existencia no pudieron probar Michelson y Morley en uno de los experimentos más importantes en la historia de la física. A ese le siguen unos cuantos dragones más en el libro, aunque no todos los temas que se tratan hacen referencia a alguna entidad imaginaria. Lo que sí tienen en común todos los temas es una descripción del curso de los descubrimientos, las propuestas, las controversias y, en algunos casos, hasta las miserias (humanas) que han jalonado el avance del conocimiento.

La mayor parte de los capítulos tratan de astronomía, cosmología y física, lo que parece lógico dada la adscripción disciplinar de los autores. Pero también se ocupan de asuntos propios de otras disciplinas, como la deriva continental y tectónica de placas (geología), el homúnculo que, hipotética, pero erróneamente, fue considerado portador de la herencia genética, o la extinción de los dinosaurios y el papel que en ese episodio de la historia de la vida jugó –o no– el impacto de un asteroide. Los autores cuentan el modo en que se han eliminado errores y falsas creencias (dragones) de nuestro empeño por comprender la naturaleza.

Con confianza

He leído con especial interés el capítulo en el que se ocupan de la materia oscura y de la energía oscura. Al respecto, los autores expresan su confianza en que llegaremos a saber en qué consiste la materia no bariónica, pero dicen no tener la misma confianza en lo que se refiere a la energía oscura. Siempre me ha sorprendido la extraordinaria confianza que muestran la mayoría de los físicos que conozco en sus modelos. Son ciertamente optimistas, hasta el punto de que me resulta entrañable la seguridad con la que se expresan acerca de lo que saben. Por eso me ha sorprendido gratamente el apunte acerca de la energía oscura, una entidad cuya existencia se ha postulado porque es necesaria para entender la realidad. Podría, en efecto, acabar siendo uno de esos dragones que nos acechan en los límites de lo conocido.

Me ha gustado esta obra. Es de esos libros que llevan al lector; no requieren un esfuerzo especial para seguir los hilos que entreteje. Por la forma en que está escrito, atrapa desde las primeras líneas. No es fácil dejar de leerlo y deseas volver a sus páginas cuando lo has dejado. Está muy bien escrito.

Los episodios que narra están llenos de información acerca de multitud de aspectos. Pero esa exposición, lejos de resultar aburrida, añaden atractivo al texto. Es, en ese sentido, un magnífico muestrario de la forma en que se ha construido el edificio conceptual de las ciencias. Lo que no sabemos —y eso es algo que señalan los propios autores en el último capítulo— es si se seguirá haciendo como hasta ahora o si la irrupción de la inteligencia artificial cambiará radicalmente la forma en que adquiriremos nuevo conocimiento en adelante.

Al comienzo de la reseña he dejado dicho que haría referencia al título principal del libro más adelante. Ha llegado el momento, pero para señalar que no me corresponde a mí explicarlo aquí. Son los autores quienes deben explicarlo, pero para eso, querido lector, ha de leer el libro. Hay una idea muy poderosa en sus razones.

Título: The Reinvention of Science: Slaying the Dragons of Dogma and Ignorance

Autores: Bernard J. T. Jones, Vicent J. Martínez, Virginia L. Trimble

Ed.: World Scientific, 2024.

 

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

Una versión de este texto de Juan Ignacio Pérez Iglesias apareció anteriormente en Lecturas y Conjeturas (Substack).

El artículo Matando los dragones del dogma y la ignorancia se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Naukas Bilbao 2023 – Lo que sabemos que no sabemos de LK-99

Sat, 2024/04/20 - 11:59

El gran evento de divulgación organizado por Naukas y la Cátedra de Cultura Científica volvió a Bilbao para celebrar su decimotercera edición en el gran Palacio Euskalduna los pasados 15 y 16 de septiembre de 2023.

LK-99

 

En ciencia aparecen periódicamente culebrones increíbles, que ya quisieran haber creado los guionistas de los televisivos. Habitualmente giran en torno a una afirmación extraordinaria que tiene un enorme impacto mediático y que después desaparece cuando la comunidad científica encuentra fallos, cuando no directamente fraudes. El culebrón del 2023 se llamó LK-99, un presunto superconductor a temperatura ambiente, el santo grial de la tecnología energética. Francisco Villatoro nos cuenta en esta charla el estado de la cuestión a mediados de septiembre de 2023. la cosa continuó después y Francis siguió contándolo en su blog, por ejemplo, aquí. Esta charla consigue condensar en 10 minutos una cantidad ingente de información, y presupone unos conocimientos técnicos mínimos. En este sentido, es una obra maestra del compendio.

Francisco R. Villatoro es ingeniero informático, licenciado en físicas y doctor en matemáticas. Profesor de la Universidad de Málaga, Francis es un conocidísimo divulgador de la ciencia en general y de la física en particular. Es el autor del blog La ciencia de la mula Francis.



Si no ves correctamente el vídeo, usa este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Bilbao 2023 – Lo que sabemos que no sabemos de LK-99 se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

El aprendizaje como ejercicio político

Fri, 2024/04/19 - 11:59
Foto: Jason Goodman / Unsplash

El aprendizaje y la formación se han convertido en un importante nicho de un mercado en el que las universidades compiten a escala planetaria. Una competencia por el alumnado que se acrecienta con las posibilidades formativas no presenciales.

En este contexto, el aprendizaje se sitúa en el centro del debate. El valor añadido de las universidades va a estar en su capacidad de avanzar en un modelo que haga imprescindible la labor docente. Desplegar buenas e innovadoras prácticas de aprendizaje es una necesidad estratégica de las universidades a escala mundial.

Por ello, es una buena noticia el que el sistema universitario español avance hacia un mayor reconocimiento de la docencia en la trayectoria académica. La actual legislación establece que, en el acceso a las figuras docentes, sea obligatorio acreditar la calidad docente.

Trasmitir conocimiento, pero ¿cómo?

Las metodologías cooperativas se asientan sobre el compromiso y la motivación del alumnado, transitando de la pasividad de un alumnado que escucha y absorbe la información y la memoriza a la experimentación con los contenidos. Estas metodologías superan una adquisición individual de competencias, apostando por el trabajo grupal. Activando un espíritu cooperativo, buscan convertir el aprendizaje un proceso colectivo.

La práctica cooperativa se asienta en cinco principios:

  1. La interdependencia positiva: el éxito está en la participación y aportación de todas las personas en clave de suma positiva.
  2. La exigencia individual: cada persona debe rendir cuentas ante los componentes del grupo.
  3. La interacción cara a cara: obliga a facilitar tiempo para el trabajo grupal.
  4. Las habilidades interpersonales y de trabajo en grupo: con herramientas para vertebrar y organizar.
  5. La reflexión: facilitando una constante evaluación del grupo, de la dinámica, de los contenidos y del docente.

Los dos primeros principios buscan que cada persona sea corresponsable, no solo de su propio avance sino de los resultados del resto. De la misma forma, crean una lógica por la que si alguien falla, todo el grupo se ve perjudicado.

Los tres últimos buscan maximizar las potencialidades individuales y grupales, limitando las amenazas (fallos en el compromiso, delegacionismo, dirigismo) y obligando a identificar mecanismos de resolución de conflictos.

Una experiencia en Ciencia Política

La asignatura Fundamentos de Análisis Político del grado de Ciencia Política de la UPV/EHU sigue esta lógica. Se apoya en el aprendizaje basado en proyectos. En concreto, en nuestra asignatura, el alumnado se organiza en grupos de entre cuatro y seis personas. Durante el curso deben analizar un conflicto político.

Para garantizar la interdependencia, la tarea se inicia elaborando un contrato de grupo. Allí identifican las fortalezas y debilidades individuales y grupales. También delimitan sus compromisos, mecanismos de resolución de conflicto y motivos de expulsión.

A continuación, deben leer y resumir individualmente cinco recursos documentales sobre el caso escogido. Deben compartirlos para elaborar un primer informe. En este documento identifican las causas estructurales del conflicto y los actores presentes.

Después, deben redactar un segundo informe en el que analizan el componente identitario e ideológico de este fenómeno. Para ello, de forma previa, han de elaborar un marco teórico describiendo las características de las identidades y las ideologías.

Acaban con un tercer informe en el que reordenan todos los hallazgos y aplican los contenidos impartidos por el docente. Estos contenidos se trabajan individualmente y grupalmente a través de prácticas reflexivas. Para ello se realizan ejercicios aplicando los conocimientos a vídeos, obras de arte o puzzles conceptuales.

Ejercicio de trabajo en grupo. Foto: Igor Ahedo Gurrutxaga, CC BY-SAEvaluación continua y análisis atento

Las claves de este modelo son la autonomía, la autorregulación y la autodirección del alumnado. Por ello, el papel docente se transforma. No solo se trata de transmitir conocimientos. Se deben aportar herramientas de gestión como por ejemplo el contrato de grupo.

Se deben diseñar dinámicas de escalonamiento del aprendizaje. De ahí el andamiaje en tres informes que permite avanzar sobre los conocimientos previos. Y se deben implementar estrategias de autorregulación. Así, el modelo necesita de la evaluación continua. Es clave un atento análisis de los posibles errores en la adquisición autónoma de los conocimientos.

Mayor interés del alumnado

Los datos evidencian que esta metodología incrementa el interés del alumnado en casi 40 puntos más que la media del grado (el interés final alto y muy alto que los alumnos evalúan se sitúa en torno al 70 %-80 %).

Además, los testimonios evidencian que este interés se traduce en motivación y compromiso. Reconocen que en esta asignatura asisten más a clase (a pesar de no controlarse la asistencia) y trabajan más.

Esta metodología despierta un interés creciente, como podemos ver en las jornadas celebradas por el Ministerio de Universidades español recientemente y en que se hace referencia a ellas en el modelo de la ANECA o en Universidades como la del País Vasco.

Su utilidad está apoyada en estudios recientes y además es combinable con el modelo SoTL (Scholarship of Teaching of Learning) que considera el análisis científico del aprendizaje como parte de la labor docente.

Protagonizar el propio aprendizaje

Al sentirse sujeto activo del aprendizaje, el alumnado encuentra mayor motivación, interés y compromiso. El trabajo autónomo, la capacidad de autodirigirse y la libertad en la elección del tema de trabajo evidencian esta autonomía y agencia, que se autorregula a través del andamiaje en informes y la evaluación continua. Sobre esta agencia se sostiene el compromiso que está en la base del aprendizaje individual.

Sin embargo, la interdependencia en la que se asienta el proyecto hace que el aprendizaje se viva como un proceso colectivo. Ello, en definitiva, convierte el aprendizaje en un proceso político asentado en la colaboración y el éxito grupal.The Conversation

Sobre el autor: Igor Ahedo Gurrutxaga es Profesor de Ciencia Política – Investigador Principal de Parte Hartuz – Director del programa de doctorado Sociedad, Política y Cultura de la Universidad del País Vasco / Euskal Herriko Unibertsitatea

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo El aprendizaje como ejercicio político se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Gravedad artificial

Thu, 2024/04/18 - 11:59

Es complicado saber en qué momento exacto el ser humano pasó de la mera observación de las estrellas a tratar de alcanzarlas. ¿Encendieron la chispa las visiones de Giordano Bruno y su cosmos abierto a la posibilidad de nuevas formas de vida? ¿O tal vez fue Kepler, con sus tres leyes y su Somniun, quien bajó la luna desde la morada inalcanzable de los dioses a los dominios terrenales de la ciencia? ¿Fueron los viajes extraordinarios de Julio Verne, que inspiraron a varias generaciones de científicos e ingenieros? ¿O los visionarios como Konstantín Tsiolkovski o Hermann Oberth, que se tomaron en serio sus historias?

Antes de que una idea se convierta en realidad, puede permanecer hasta generaciones en el imaginario de la humanidad, alimentando sus sueños científicos. Descifrar el cielo para, tal vez, alcanzarlo algún día siempre fue uno de ellos, o al menos lo fue para algunas de las mentes más osadas de cada época.

Gravedad artificialJohannes Kepler convirtió la Luna en un lugar real en su Somnium; Julio Verne la hizo alcanzable a través del milagro de la ciencia y la ingeniería. Fuente: Dominio público/Henri de Montaut

Desde que Yuri Gagarin se convirtiera en el primer ser humano en observar la Tierra desde su órbita el 12 de abril de 1961 ―acaba de hacer sesenta y tres años de eso― hemos tratado de imaginar maneras de llegar aún más lejos, sin embargo, el espacio siempre ha sido un entorno extremadamente hostil para nosotros. Los seres humanos evolucionamos en la Tierra, y nuestra fisiología está optimizada para vivir en las condiciones que tenemos aquí: bajo una atmósfera con una presión de 101 325 Pa y un 21 % de oxígeno, temperaturas medias de alrededor de 22 ºC, bajos niveles de radiación y una gravedad de 9,81 m/s². Si queremos adentrarnos en el vacío interestelar con alguna garantía o, tal vez, colonizar otro planeta, deberemos encontrar la manera de comprimir nuestro hogar en una especie de cápsula y llevárnoslo con nosotros.

Eso es la ISS, al fin y al cabo, salvo por un aspecto: la gravedad. Pero lo cierto es que justo eso es lo menos nos interesa reproducir allí, ya que conocer los efectos de la microgravedad ―o incluso de la ausencia total de gravedad― en nuestro organismo supone, indudablemente, el primer paso para poder algún día, quién sabe cuándo, construir naves espaciales o colonias que puedan llevarnos mucho más lejos.

Gravedad artificialLa Estación Espacial Internacional, un trocito de nuestra Tierra en el espacio. Fuente: NASA

El ser humano está fisiológicamente adaptado, como es obvio, a la gravedad del planeta en el que ha evolucionado, y eso afecta a muchos de nuestros procesos vitales. Ante cualquier cambio, nuestro organismo trata de adaptarse, pero a veces lo hace en formas que pueden poner en riesgo la salud tanto en el espacio como al regresar a la Tierra. En el caso de la microgravedad o de la ausencia de gravedad, que serían los que nos conciernen, hay efectos que empañan la experiencia de lo que, desde fuera, se percibe como casi un spa en el que uno flota y se relaja plácidamente.

Por un lado, entre la mitad y dos tercios de los astronautas experimenta lo que se denomina síndrome de adaptación espacial al llegar a la órbita: naúseas, mareos, vómitos, pérdida de apetito, dolor de cabeza, malestar, sudoración, palidez… Estos efectos suelen empezar en los primeros minutos u horas y durar hasta varios días, pero son transitorios y no son los verdaderamente preocupantes si lo que queremos es iniciar un largo viaje interestelar o vivir en el espacio. Otro de los efectos de la microgravedad es que la sangre se redistribuye hacia los miembros superiores, provocando congestión nasal, dolores de cabeza y también cierta deshidratación, debido a que el cuerpo elimina los fluidos que percibe como «sobrantes» en la parte superior y reduce el volumen sanguíneo. Esto no es un problema mientras se permanezca en el espacio, pero sí al regresar a la Tierra, porque puede provocar una caída de la tensión arterial y llevar incluso a la pérdida del conocimiento. Normalmente se toman precauciones en ese sentido cuando un astronauta ha pasado demasiado tiempo en la órbita.

Otros de los problemas que surgen son los relacionados con el sistema musculoesquelético. Además de «crecer» entre 3 y 6 cm por la descompresión de la columna vertebral, la pérdida de masa muscular y densidad ósea en el espacio puede ser muy significativa, sobre todo si se permanece en condiciones de ingravidez durante periodos largos. No en vano hasta un 60 % de nuestros músculos ejercen la función de compensar la gravedad. De ahí que los astronautas suelan seguir un estricto programa de ejercicios tanto antes como durante y después de una misión al espacio, u otros métodos para evitar daños significativos en este sentido. Y la cosa no acaba aquí: también pueden surgir problemas con la visión, que pueden manifestarse incluso a largo plazo; gastrointestinales; genitourinarios y endocrinos, en los que la función renal puede verse afectada; pulmonares… en definitiva, en mayor o menor medida, todas las funciones de nuestro cuerpo se ven afectadas en condiciones de ingravidez.

La astronauta Sandra Magnus haciendo ejercicio en la ISSm lo que ayuda a paliar los efectos de la microgravedad en el organismo. Fuente: NASA

¿Esto hace imposible, entonces, el viaje interestelar? No, pero hay que encontrar la manera de paliar las posibles consecuencias, al menos mientras no contemos con ingeniería genética que nos permita adaptar nuestra fisiología a diferentes ambientes a la carta o algo similar. Así que si nuestra fisiología no se adapta… tendremos que buscar maneras de adaptar el ambiente a nuestra fisiología, como hemos hecho hasta ahora.

Para resolver la cuestión de la gravedad en el espacio, la ciencia ficción siempre se ha puesto bastante creativa. En algunas ocasiones ha optado por ignorarla directamente ―¿para qué complicarse la vida?―, otras veces ha introducido algún tipo de aparato generador de gravedad de aspecto científico pero de fondo imaginario y, en otras, ha ofrecido soluciones que no serían inviables desde el punto de vista de la física aunque, de momento, el de la ingeniería se resiste.

Dejando de lado la posibilidad ―y capacidad― de llevar grandes cantidades de masa en una nave, que es la forma más elemental que conocemos de crear gravedad, la respuesta viene en forma del principio de equivalencia de la relatividad general de Einstein: encontrarse inmerso en un campo gravitatorio es equivalente a encontrarse en un sistema de referencia acelerado. Esto es: si podemos general aceleración, podemos generar gravedad.

La manera más fácil, por lo tanto, sería «pisar el pedal del acelerador» de nuestra nave y sentir el empuje hacia el lado contrario respecto al que nos estemos desplazando. Bastaría con construirla con el «suelo» en el lugar adecuado, como la Rocinante, de la serie The Expanse. Este método solo tendría un problema, y es la cantidad de combustible que haría falta para mantener esa aceleración constante. Lo que hacemos normalmente con las sondas que enviamos al espacio es darles un impulso inicial y dejar que se muevan por inercia a través del vacío, sin un uso continuo de combustible.

Una manera más eficiente de crear una aceleración que haga las veces de gravedad sería construir una estructura rotatoria o una centrifugadora, y esto ya lo planteó el propio Konstantín Tsiolkovsky ―luego le seguirían Herman Potočnik y Wernher von Braun―, así que la idea es casi tan antigua como la aeronáutica espacial, pero con el tiempo llegarían muchísimos más diseños. Mantener una centrifugadora o estructura equivalente girando a velocidad constante requiere mucha menos energía que acelerar una nave continuemente de forma lineal, y será el propio movimiento de giro el que provoque una aceleración centrípeta hacia afuera que se podría aprovechar como gravedad. Es el principio que utiliza la Estación Espacial V, de 2001: una odisea del espacio o la Endurance, de Interstellar. La diferencia entre ambas es que a la segunda se nos haría más difícil adaptarnos. Veamos por qué.

Gravedad artificialEl toro de Stanford es uno de los diseños de hábitats espaciales rotatorios más populares. Lo propuso la Universidad de Stanford en 1975. Estaba pensado para albergar a 10 000 personas, tenía forma de donut de 1,8 km de diámetro y una velocidad de rotación de 1 rpm. Fuente: NASA/Donald Davis

Crear gravedad artificial con una centrifugadora es una buena solución, pero no para todos nuestros problemas, porque en un sistema rotatorio como los que hemos mencionado, se generan fuerzas de Coriolis que producen algunos efectos «extraños» que podrían incluir, por ejemplo, cambios en la magnitud de la gravedad que sentimos ―si caminamos de forma paralela al eje giro, ya sea hacia un sentido u otro―, desviaciones en las trayectorias de cualquier objeto que lancemos o que sintamos la diferencia de gravedad a diferentes alturas respecto al eje del sistema ―incluso entre nuestra cabeza y nuestros pies―. La gravedad de estos efectos físicos dependerá de la velocidad de giro de la estación o la nave, de su tamaño… Y bueno, puede que esto no fuera gran cosa y nos pudiéramos acabar adaptando relativamente bien a ese extraños mundo, pero nuestro oído interno no opina lo mismo, porque también percibiría esos cambios, sobre todo cuando moviéramos la cabeza, provocándonos mareos o desorientación. De nuevo, nuestra fisiología determinaría el diseño.

Se ha estimado en diversos estudios que la máxima velocidad de rotación que los seres humanos toleramos y a la que nos podemos adaptar con relativa facilidad es de alrededor 2 rpm, a partir de unas 3 rpm ya necesitaríamos periodos de adaptación más largos y, por encima de 5 rpm o así, la cosa se complicaría bastante. ¿Qué significa esto? Que el diseño de la Estación Espacial V es mejor, en principio, el de la Endurance.

Para conseguir una nave o hábitat que genere una gravedad similar a la de la Tierra, pero no supere una velocidad de rotación confortable necesitaríamos estructuras bastante grandes. La Estación Espacial V tiene un diámetro de 300 m, lo que haría posible que se ajustara a estas magnitudes ―en la película, su rotación es de 1 rpm, lo que hace que su gravedad, con ese tamaño sea más similar a la de la Luna―. La Endurante, por su parte, tiene un diámetro de 64 m y rota a aproximadamente 5,5 rpm, con lo que consigue una gravedad artificial similar a la de la Tierra, pero necesita de una tripulación con cierto tiempo de entrenamiento en ese tipo de sistemas. Otra opción, por supuesto, sería construir estructuras más sencillas que, aunque no consiguieran la gravedad que buscamos, al menos aportaran un porcentaje, aunque sea pequeño, de la que tenemos en la Tierra, algo que ya supondría una ayuda para nuestros astronautas. ¿Lo llevaremos pronto a cabo?

Bibliografía

Graybiel, A.; Clark, B., y Zarriello, J. J. (1960). Observations on human subjects living in a «slow rotation room» for periods of two days Archives of Neurology, 3(1), 55-73.

Johnson, R. D.; Holbrow, C. (1977) Space settlements: a desing study National Aeronautics and Space Administration.

Stratmann, H. G. (2016). Using medicine in science fiction. Springer.

Clément, G.; Bukley, A. (2007). Artificial gravity. Springer.

Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo Gravedad artificial se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

La aritmética lunar, o como sumar y multiplicar de forma sencilla

Wed, 2024/04/17 - 11:59

Uno de los problemas más frecuentes cuando los niños y las niñas de educación primaria empiezan a aprender las operaciones aritméticas y, más concretamente, los algoritmos para realizarlas, es entender y aplicar bien las denominadas “llevadas” que aparecen en dichos algoritmos. Veamos un ejemplo de suma y multiplicación con llevadas.

Ejemplos de suma y multiplicación con llevadas

 

Definiendo una nueva aritmética

En 2003, al ingeniero estadounidense Marc Lebrun se le ocurrió definir una suma y una multiplicación especiales de números enteros no negativos, es decir, el cero y los números naturales, para las cuales no hacían falta las llevadas y bautizó a esta aritmética (suma y multiplicación) con el nombre de “dismal arithmetic” (que podría traducirse como aritmética deprimente o sombría) y que posteriormente sería rebautizada con el nombre, menos deprimente, de aritmética lunar, en contraposición a la aritmética natural, que podría considerarse que es la aritmética terrestre.

Para definir la suma y la multiplicación lunares, primero se definen las sumas y multiplicaciones entre las cifras básicas (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y luego se extienden mediante los mismos algoritmos de suma y multiplicación normales pero cambiando las operaciones entre las cifras básicas por las nuevas operaciones, las lunares.

Vayamos con las cifras básicas. La suma lunar de dos cifras básicas es igual a la mayor de las dos cifras, así 3 + 7 = 7, 9 + 4 = 9 y 1 + 1 = 1, mientras que la multiplicación lunar de dos cifras básicas es la mínima de las dos, así 3 x 7 = 3, 9 x 4 = 4 y 1 x 1 = 1. Dicho de otra forma, sobre las cifras básicas la suma y multiplicación lunares son las operaciones máximo y mínimo de dos números, respectivamente.

Ejemplos de suma y multiplicación lunares con cifras básicas

 

El siguiente paso, como se comentaba, es sumar y multiplicar (en la aritmética lunar) números con más de un dígito utilizando los algoritmos habituales de la suma y la multiplicación, pero utilizando las sumas y multiplicaciones lunares definidas para las cifras básicas. Veámoslo con dos ejemplos. En concreto, las mismas suma y multiplicación anteriores (7.296 + 6.345 y 7.296 x 6.345), pero con la aritmética lunar.

Suma lunar de los números 7.296 y 6.345

 

Como vemos, empezando por la derecha: 6 + 5 = 6, 9 + 4 = 9, 2 + 3 = 3 y 7 + 6 = 7, luego la suma nos da 7.396. Como no hay llevadas, y encima es simplemente considerar la operación máximo de los dígitos, es muy fácil de realizar.

Multiplicación lunar de los números 7.296 y 6.345

 

Ahora, en la multiplicación vemos que la estructura es la misma, primero los productos parciales de los dígitos que componen los números (así, la primera fila es el resultado de multiplicar 5 por 7.296, la siguiente con 4, luego 3 y en la última fila se multiplica 6 por 7.296, para terminar sumando, con la suma lunar, esas 4 filas). El resultado es 6.366.455. Y de nuevo, es muy sencilla, ya que no hay llevadas.

Propiedades aritméticas de la suma y la multiplicación lunares

Lo siguiente que nos podríamos plantear, una vez definidas las operaciones aritméticas de la suma y la multiplicación lunares, es si satisfacen alguna de las propiedades de la suma y el producto normales. Recordemos cuales son dichas propiedades y veamos si se cumplen.

Dado un conjunto, llamémosle G (en nuestro caso, los números enteros no negativos), con una operación * (en nuestro caso la suma o la multiplicación lunares), de modo que a partir de dos elementos a y b del conjunto G, nos da un nuevo elemento, a * b, del conjunto G, las propiedades aritméticas habituales son las siguientes:

A. Propiedad conmutativa: a * b = b * a, para cualesquiera elementos a y b de G. Esta es una propiedad que cumplen la suma y multiplicación terrestres.

¿Qué ocurre con la suma lunar? Claramente es conmutativa para las cifras básicas, ya que a + b y b + a es simplemente tomar la mayor de las cifras entre a y b a + b = b + a = max {a, b}. Y para los números con más de un dígito también va a ser conmutativa, ya que la suma lunar es la suma lunar en cada una de las posiciones de los dígitos del número (unidades, decenas, centenas, unidades de millar, etc).

Si pensamos en la multiplicación lunar, para las cifras básicas también se cumple la propiedad conmutativa, ya que el producto es simplemente el mínimo de las cifras, esto es, a x b = b x a = min {a, b}. Y puede demostrarse que también se satisface para números de más de un dígito.

B. Propiedad asociativa: a * (b * c) = (a * b) * c, para todos los elementos a, b y c de G. De nuevo, es una propiedad que satisfacen las operaciones terrestres.

Respecto a las operaciones lunares, va a pasar algo similar a lo que ocurre con la propiedad conmutativa. Simplemente, comentemos que, para las cifras básicas, a + (b + c) = (a + b) + c = max {a, b, c}, y a x (b x c) = (a x b) x c = min {a, b, c}.

C. Elemento identidad, existe un elemento e de G tal que a * e = a = e * a. Para la suma normal el elemento identidad es el 0, mientras que para la multiplicación normal es el 1.

Para la suma lunar, el elemento identidad es el 0, ya que para cualquier número natural N, tenemos que N + 0 = N, puesto que en cualquier posición el dígito 0 nunca es el máximo, salvo que el otro sea el propio 0. Mientras que para la multiplicación lunar el elemento identidad es el 9, ya que N x 9 = N, en este caso porque 9 nunca es el mínimo de dos dígitos, salvo que el otro sea el propio 9.

D. Elemento inverso, para cada elemento a de G, existe un elemento b (llamado inverso, y que suele denotarse como a1) tal que a * b = e = b * a. Para la suma terrestre el elemento inverso de un número a es el opuesto – a, luego existe el inverso si se consideran también los números negativos; mientras que el inverso de un número a es 1/a, luego tienen que considerarse los números racionales para que exista inverso.

Para la suma lunar no existe ningún número natural, es decir, no nulo, que tenga inverso. Y para la multiplicación lunar no existe ningún número, salvo 9, que tenga inverso.

aritmética

Para terminar este apartado comentemos simplemente que la suma y multiplicación lunares nada tienen que ver con la idea intuitiva de la suma y multiplicación terrestres, ya que n + n no es dos veces n, esto es, es distinto de 2 x n, puesto que n + n = n y, en general, 2 x n no es n, por ejemplo, 2 x 3 = 2, 2 x 4 = 2 o 2 x 13 = 12. De la misma forma, n + n + n es distinto, en general, de 3 x n, y así para los demás casos.

Las tablas de la suma y multiplicación lunares

Para entender un poco mejor la suma y la multiplicación lunares podemos dar sus tablas de sumar/multiplicar asociadas. Empecemos con la suma. En la siguiente imagen se muestra la tabla de la suma lunar hasta el número 20 y he utilizado colores para entender mejor la operación. En concreto, cada uno de los diez colores determina la terminación de los números, es decir, la cifra de las unidades (por ejemplo, los números terminados en 3 son amarillos, 3, 13 y 23 en la imagen).

La tabla de la suma lunar

 

Por otra parte, en la siguiente imagen se muestra la tabla de la multiplicación lunar hasta el número 20 y, de nuevo, he utilizado colores para entender mejor la operación, de la misma manera que en la imagen anterior.

aritmética

Algunas curiosas sucesiones de números

Para terminar esta entrada dedicada a la aritmética lunar, vamos a mostrar algunos ejemplos de sencillas sucesiones de números relacionadas con las operaciones lunares, como son la sucesión de los números pares lunares, es decir, los múltiplos lunares de 2; la sucesión de los números cuadrados lunares; la sucesión de los números triangulares lunares; o la sucesión de factoriales lunares, que aparecen mencionadas en el artículo Dismal Arithmetic, de David Applegate, Marc LeBrun y N. J. A. Sloane.

A. Los números pares lunares. Como ya se ha comentado más arriba, en la aritmética lunar no se cumple que 2 x n = n + n. Si vamos multiplicando los números enteros no negativos por 2 podemos observar que los primeros términos de esta sucesión (sucesión A171818 de la Enciclopedia On-line de Sucesiones de Números Enteros – OEIS) son los siguientes:

0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110. 111, 112, 120, 121, 122, 1.000, 1.001, 1.002, 1.010, 1.011, 1.012, 1.020, 1.021, 1.022, …

Aunque, a diferencia de los números pares terrestres, ahora los números pares pueden obtenerse como diferentes productos de 2 por otro número natural. Un par de ejemplos se muestran en la siguiente imagen.

B. Los números cuadrados lunares. La siguiente sucesión está formada por los cuadrados de los números enteros no negativos, es decir, para cada n (= 0, 1, 2, 3, …), se toma n x n. Los primeros términos de esta sucesión (sucesión A087019 de la Enciclopedia On-line de Sucesiones de Números Enteros – OEIS) son

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 111, 112, 113, 114, 115, 116, 117, 118, 119, 200, 211, 222, 223, 224, 225, 226, 227, 228, 229, 300, 311, 322, 333, 334, 335, 336, 337, 338, 339, 400, 411, 422, 433, 444, 445, 446, 447, 448, 449, 500, 511, 522, 533, 544, 555, 556, 557, 558, 559, 600, …

C. Los números triangulares lunares. Recordemos que los números triangulares (puede verse la entrada El asesinato de Pitágoras, historia y matemáticas (y II), o para más información el libro La gran familia de los números) son de la forma 1 + 2 + 3 + … + n, para n = 1, 2, 3, 4, etc. Los primeros términos de esta sucesión (sucesión A087052 de la Enciclopedia On-line de Sucesiones de Números Enteros – OEIS) son

1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, …

Observemos, por ejemplo, que los números triangulares formados por la suma desde 1 hasta alguno de los siguientes números, 10, 11, 12, 13, 14, 15, 16, 17, 18 y 19, son todos iguales a 19, como se muestra en la siguiente imagen.

D. Los números factoriales lunares. En primer lugar, recordemos que los números factoriales (para el concepto de factorial de un número, véase la entrada Buscando lagunas de números no primos [https://culturacientifica.com/2018/06/27/buscando-lagunas-de-numeros-no-primos/]) son de la forma 1 x 2 x 3 x … x n, para n = 1, 2, 3, 4 etc. Por lo tanto, la sucesión de números factoriales lunares (sucesión A189788 de la Enciclopedia On-line de Sucesiones de Números Enteros – OEIS) empieza por los números

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 110, 1110, 11110, 111110, 1111110, 11111110, 111111110, 1111111110, 11111111110, 111111111100, 1111111111100, 11111111111100, 111111111111100, 1111111111111100, 11111111111111100, 111111111111111100, 1111111111111111100, 11111111111111111100, 111111111111111111100, 1111111111111111111000, …

Como podemos observar todos están formados por una serie de unos (1) consecutivos, seguidos de una serie de ceros (0) consecutivos. Podemos ver el cálculo de los primeros en la siguiente imagen.

aritmética

En esta entrada del Cuaderno de Cultura Científica hemos introducido la suma y la multiplicación lunares, hemos estudiado sus propiedades básicas y considerado algunas sucesiones de números relacionadas con esta aritmética lunar, pero se podrían seguir trabajando más cuestiones numéricas, por ejemplo, qué son los números primos lunares o si hay infinitos, pero de estas cuestiones ya hablaremos en alguna futura entrada.

Bibliografía

1.- David Applegate, Marc LeBrun, N. J. A. Sloane, Dismal Arithmetic, Journal of Integer Sequences 14, 2011.

2.- Raúl Ibáñez, Los secretos de la multiplicación, de los babilonios a los ordenadores, de la colección Miradas Matemáticas, Catarata, ICMAT, FESPM, 2019.

3.- Raúl Ibáñez, La gran familia de los números, Libros de la Catarata – ICMAT – FESPM, 2021.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo La aritmética lunar, o como sumar y multiplicar de forma sencilla se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

La inteligencia artificial entra en la antropología dental

Tue, 2024/04/16 - 11:59

Un equipo de investigadores acaba de demostrar que pueden emplearse redes neuronales artificiales para reconstruir el número de perikymata, es decir las líneas de crecimiento en el esmalte, que están ausentes en dientes desgastados. Esto tiene aplicaciones paleobiológicas y forenses.

dental

Los dientes son una fuente casi inagotable de información, tanto desde el punto de vista biológico como taxonómico. Debido a su modo de crecimiento, se pueden contar directamente sus líneas y estimar los días de formación. Sin embargo, contar los perikymata presenta dificultades derivadas del estado del diente, porque si el diente está desgastado por el uso normal, parte de los perikymata se habrán perdido como consecuencia de la pérdida de esmalte.

“Resolver este problema es de vital importancia, ya que nos permitiría aumentar el número de dientes adecuados para llevar a cabo estudios evolutivos y, con ello, llegar a conclusiones más fiables”, afirma Mario Modesto Mata, investigador del Grupo de Antropología dental del Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) y que colabora en el proyecto europeo Tied2Teeth, liderado por la investigadora Leslea Hlusko.

Según los resultados de este trabajo, conociendo la disminución del esmalte del diente, medido como el porcentaje de la altura de la corona desaparecida, se pueden aplicar técnicas de inteligencia artificial para predecir el número de perikymata perdidos en cualquier diente de humanos modernos. En concreto, se han desarrollado redes neuronales artificiales para predecir el número de perikymata cuando un diente ha perdido hasta un 30 % de la altura de la corona. El resultado de la validación de las redes neuronales indica que cuando falta el 30 % del esmalte, en un 86 % de las ocasiones, el error máximo es de solo 3 perikymata en total.

“Son datos tan precisos sobre las líneas de crecimiento que nos permitiría predecir el tiempo de formación completa del esmalte de un modo muy próximo a la realidad, indicándonos que las redes neuronales podrían ser usadas para investigar aspectos relacionados con la paleobiología”, comenta Mata.

De cara a maximizar el uso y aplicación de estas redes neuronales, los autores del trabajo han desarrollado un software a modo de paquete de R llamado teethR, (de “teeth aRe wonderful”) de libre distribución e instalación. Su uso no requiere formación sobre inteligencia artificial, sino simplemente un conocimiento muy básico de R. A partir de una función desarrollada en el paquete, se pueden hacer predicciones de un modo muy rápido.

Referencia:

Modesto‐Mata, M., de la Fuente Valentín, L., Hlusko, L.J., Martínez de Pinillos, M., Towle, I., García‐Campos, C., Martinón‐Torres, M., & Bermúdez de Castro, J.M. (2024) Artificial neural networks reconstruct missing perikymata in worn teeth The Anatomical Record  doi: 10.1002/ar.25416

Edición realizada por César Tomé López a partir de materiales suministrados por el CENIEH

El artículo La inteligencia artificial entra en la antropología dental se ha escrito en Cuaderno de Cultura Científica.

Categories: Zientzia

Pages