Geneen sekretua argitzeko, 42 geruzatako mapa

Zientzia Kaiera - Mié, 2017/10/25 - 09:00
Juanma Gallego Giza geneak gorputzeko ehun desberdinetan nola espresatzen diren marrazten duen atlasa argitaratu dute zientzialariek. Tresna berria hainbat gaixotasunen jatorri genetikoa hobeto ulertzeko bidea emango duela espero dute adituek.

Ezagutzaren zuhaitzera hurbiltzeagatik Jainkoak gizateria paradisutik bota zuenetik, gizakiak ikasi du bere gorputzaren barrenean daudela argitu beharreko sekretuak. Horretan ari dira genetistak, zeluletan ezkutatuta dauden kodeak deszifratu nahian, batez ere gaixotasunei hobeto aurre egin ahal izateko.

Berriki, norabide horretan beste aurrerapauso garrantzitsua izan da. Nazioarteko ikerketa talde batek giza gorputzeko geneen erregulazioa azaltzen duen atlasa sortu du; orain arte argitaratu den katalogorik osatuena da. Datuen katalogoa Interneten argitaratu dute, nahi duen orok kontsultatzeko moduan. Era horretan, mundu osoko ikertzaileek tresna hobeagoa eskura izan dezakete, gaitzen atzean egon daitezkeen zio genetikoak hobeto ulertzeko. Datu horietan oinarritzen diren lehen artikulu zientifikoak ere argitaratu ditu Nature aldizkariak.

Funtsean, gorputzeko organoetan gene bakoitzaren jarduera nola arautzen den azaltzen du atlasak. Zelula guztiek komuneko genoma badute ere, ehun bakoitzean gene desberdinak espresatzen dira. Espresio horri esker, hain zuzen, geneek proteinak sortzeko ahalmena dute, eta horietan oinarritzen dira gure biologiaren aldamio guztia.

1. irudia: Geneek proteinak sortzeko ahalmena dute, eta horietan oinarritzen dira gure biologiaren aldamio guztia (Argazkia: James J. Caras/National Science Foundation)

Guztira, 449 emaileren 7.000 laginak hartu dituzte zientzialariek, gorputzeko 42 ehunetan sailkatuta; lagin horietan gene bakoitzak sortzen duen RNA kopurua neurtu dute. Horrela, gene bakoitzak proteinak sortzeko duen gaitasuna jakiteko modua izan dute ikertzaileek. Izan ere, RNAk mezulari edo bitartekari lanak egiten ditu: horri esker, geneetan dagoen informazioa proteinak sortzeko erabil daiteke.

GTEx izeneko partzuergoaren bitartez ehunetako gene guztien jarduera normalaren argazki erraldoi hau lortu da. “Normaltasuna” zein den jakinda, egoera horretatik aldentzen diren egoera guztiak errazago atzemango dira hemendik aurrera. 201oean hasi zen GTEx proiektua. NHI Osasunerako Institutu Nazionalen eta 11 herrialdetako beste hainbat erakunderen elkarlanean abiatuta.

Aldaera arraroak

Naturen argitaratutako lehen ikerketa artikuluan, zientzialariek datu-base hori erabili dute bertatik ondorio garrantzitsua erauzteko. Aldaera genetikoak ia gene guztien espresioan eragiten duela argitu dute. Gainera, aldaera horiek kilobase jakin batzuetan kokatuta daudela ikusi dute.

Beste artikulu batean egileak saiatu dira oso ohikoak ez diren aldaeren eta gene espresioaren arteko lotura argitzen. Gaixotasunak aztertzean normalean kontuan hartzen ez diren gene aldaerak dira horiek, baina egileek uste dute horiek ezagutzea garrantzitsua izan daitekeela medikuntzan. Hori landu ahal izateko tresna estatistikoa aurkeztu dute.

Azkenik, beste bi artikulutan, datu horiek guztiek RNA editatzeko prozesuan eta X kromosomaren desaktibazioan izan dezaketen rola aztertu dute. Azken fenomeno honi esker, emeek bikoiztuta duten X kromosometako bat “bertan-behera” gelditzen dute, bakarrarekin aski dutelako.

RNA editatzeko prozesuari buruz kaleratu diren datu horiek, gainera, garrantzi berezia izan dezakete, zientzialariek CRISPR teknikaren bitartez RNA manipulatzeko bidea aurkitu dutelako.

Egileek diotenez, proteinak kodetzen dituzten geneetan ez ezik, proteinak kodetzen ez diren genomaren eremuetan ere gizabanakoen arteko aldeak zehazteko ahalmena duten geneak daude. Eremu horietan geneak nola eta noiz espresatu behar duten erabakitzen da.

2. irudia: Gorputzeko 42 ehunetan geneak nola espresatzen diren argitu dute zientzialariek (Irudia: Nature)

Emaitzak aurkezteko ikerketa horiekin batera argitaratutako iruzkin batean, Michelle C. Ward eta Yoav Gilad ikertzaileek nabarmendu dute azken bi hamarkadetan aurrerapauso handiak egin direla. “Gizabanakoen artean dauden alde genetikoek bereizgarri zehatzetan eragiten dute, besteak beste, gaixotasunak garatzeko joeretan. Horiek ulertu eta aurreikustea erronka nabarmena da”.

Mundu osoko ikertzaileek tresna hobeagoa izango dute eskura hemendik aurrera. Biodonostia Institutuko Koldo Garcia ikertzaileak azaldu duenez, orain atera dutena aurreko lan baten eguneraketa handi bat izan da. 2015ean lehen datuak argitaratu bazituzten ere, orain askoz ere lagin gehiago aurkeztu dituzte, eta horrek tresna indartsua bilakatu du datu-base hau. Bestetik, aldaera arraroak hobeto ezagutzeko izango duen garrantzia ere azpimarratu du. “Geneen espresioa aztertu ostean, aldaera genetikoekin harremanetan jarri dute. Ez soilik, gainera, lagun gehienek dituzten aldaerekin, lagun gutxi batzuetan agertzen diren aldaerekin ere alderatu dituzte”. Garciaren ustez, hori da ikerketa honek dakarren berrikuntzarik handiena.

Adituak azaldu duenez, tresna honek asko erraztuko die jarduna gaixotasunen inguruko ikerketak egiten ari direnei. “Normalean aldaera genetikoak eta gaixotasun zehatz bat lotzen dugu, baina ez goaz hori baino aurrerago. Baina hemendik aurrera errazago izango dugu aldaera zehatz bat ikusi eta une bakoitzean zein generi eragiten dion ikusteko. Horrek sakontasun handiagoa emango die ikerketei, bai irekita daudenei zein etorkizunean burutuko direnei. Emaitzak hobeto interpretatzeko aukera izango dugu”.

Hau guztiagatik, Garciak “mugarritzat” jo du GTExek kaleratutako tresna. Bere baliagarritasuna irudikatzeko, Google Maps-en adibidea ekarri du gogora. “Demagun mapa digital hori aurrean dugula, bizpahiru geruzez osatuta. Hemendik aurrera, ikerlariok 42 geruza dituen mapa bat izango dugu eskura, geruza bat ehun bakoitzeko, hain zuzen”.

Erreferentzia bibliografikoa:

The GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017). DOI:10.1038/nature24277

———————————————————————————-

Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.

———————————————————————————-

The post Geneen sekretua argitzeko, 42 geruzatako mapa appeared first on Zientzia Kaiera.

Categorías: Zientzia

Sistemas respiratorios: los pulmones de reptiles y aves

Cuaderno de Cultura Científica - Mar, 2017/10/24 - 17:00

Saurópsidos al sol

Esta anotación debería quizás llevar el nombre “saurópsidos1” en el título, pero entonces pocos habrían sabido de qué se trata. Por eso he optado por referirme a reptiles y aves. Hay gran variedad de pulmones en los saurópsidos. Los más sencillos son sacos simples en los que prácticamente no hay compartimentos. De hecho, se podría decir de un pulmón así que es como un único gran alveolo. También hay pulmones más complejos, con numerosos septos o paredes que se proyectan desde la superficie pulmonar hacia la luz. Los septos delimitan unos cubículos, unidades espaciales denominadas edículas. El intercambio de gases tiene lugar, principalmente, en los septos, aunque no están tan vascularizados como los alveolos de mamíferos. En otros casos los pulmones son multicamerales; están constituidos por diferentes cámaras dispuestas en paralelo. En estos, un bronquio intrapulmonar principal se va ramificando en bronquios secundarios que conectan el bronquio principal con cada cámara o saco aéreo.

Pulmones de algunos reptiles. Filogenia de “Diapsida“.

En la gran mayoría de reptiles estudiados, la ventilación es mareal: se produce por flujo y reflujo del aire respirado, como si fuese impulsado por un fuelle. Una parte importante de muchos pulmones de reptiles no se dedica al intercambio respiratorio, sino que su función principal es ayudar a ventilar las porciones bien vascularizadas. Los mecanismos que participan en la impulsión del aire que entra y sale de los pulmones de los reptiles son variados, pero en general corren a cargo de la musculatura del tronco; como, en ocasiones, esa musculatura también participa en los movimientos de desplazamiento, ello puede representar una limitación. Quizás por esa razón algunos, como los varanos y otros lagartos, también utilizan la boca como bomba de impulsión del aire, como hacen las ranas. Otros reptiles poseen un diafragma o protodiafragma, cuyos desplazamientos arrastran el hígado hacia atrás y hacia adelante, dando lugar a la expansión y contracción de los pulmones en función del espacio que deja aquel.

Algunos reptiles, como es sabido, tienen un modo de vida acuático. Entre estos, unas especies han retenido la condición de respiradores aéreos, como los cocodrilos, algunas tortugas y las serpientes de mar, a pesar de lo cual pueden hacer inmersiones prolongadas. Hay serpientes de agua dulce capaces permanecer sumergidas hasta media hora; la tortuga verde marina llega a estar bajo el agua 50 minutos; y las serpientes marinas aguantan sin respirar una hora. Estas tienen un pulmón muy largo, que se extiende a lo largo de casi todo su cuerpo, por lo que es capaz de almacenar mucho oxígeno; además, reducen de forma considerable su metabolismo durante la inmersión. Y hay especies que tienen la capacidad, al sumergirse, de recurrir a vías metabólicas anaerobias para obtener ATP.

Otros reptiles son capaces de incorporar oxígeno del medio acuático de forma directa, como algunas culebras y tortugas. Las serpientes lo hacen a través de su superficie corporal, mientras que las tortugas recurren en mayor medida a captar O2 a través de las cavidades bucal y faríngea, e incluso, a través de la cloaca, que ha sufrido modificaciones que facilitan el intercambio de gases respiratorios. Ninguna de esas superficies es demasiado extensa, de manera que el intercambio gaseoso a su través es muy limitado, pero parece ser suficiente para cubrir las necesidades metabólicas de esos animales. Al fin y al cabo, dado que se trata de animales ectotermos, su metabolismo es relativamente bajo.

Los pulmones de las aves, aunque relativamente pequeños, son los más complejos. En cada pulmón, el bronquio principal se ramifica en varios bronquios secundarios, y estos están conectados entre sí por numerosos bronquios terciarios o parabronquios. Los parabronquios son cilíndricos y discurren en paralelo unos con otros. Los bronquios secundarios y los parabronquios forman una unidad integrada que permite que el aire circule a su través siempre en la misma dirección; el aire pasa de los llamados dorsobronquios a los ventrobronquios (denominaciones relativas a la posición que ocupan en el pulmón) a través de los parabronquios. La corriente inhalante entra por los dorsobronquios y la exhalante sale por los ventrobronquios. Al pasar por los parabronquios, el aire penetra en los capilares aéreos, un conjunto de canalículos interconectados que forman una tupida red y que aumentan de forma muy considerable la superficie para el intercambio gaseoso. Los capilares aéreos están a su vez íntimamente entrelazados con capilares sanguíneos en una disposición denominada de corriente cruzada (cross current), de manera que la sangre circula en una dirección que mantiene un ángulo de unos 90º, aproximadamente, con la dirección que sigue el aire respirado. Esa disposición permite una transferencia de O2 de altísima eficiencia.

Los pulmones de las aves están conectados con un conjunto de sacos aéreos, unos en disposición anterior y otros, posterior. Los sacos posteriores reciben el aire recién inhalado, de allí pasa a los pulmones y de estos, a los sacos anteriores, de donde es expulsado al exterior. Los sacos están dispuestos de manera que el aire inhalado no se mezcla con el que ya ha pasado por los parabronquios, por lo que todo el aire que llega al pulmón es aire fresco. El aire circula a través de ese sistema gracias, principalmente, a la contracción de los músculos de las costillas en asociación con el esternón.

Las pulmones de aves son, sin duda, los órganos respiratorios más eficaces de entre los metazoos. Ello se debe, como se ha señalado ya, a la circulación unidireccional de la corriente respiratoria y a la disposición en corriente cruzada de los parabronquios y los capilares sanguíneos. En esos rasgos las aves se diferencian de forma clara de la mayor parte del resto de saurópsidos. Sin embargo, es importante destacar que hay, al menos, tres especies de saurópsidos no aviares (un cocodrilo, un varano y una iguana) en cuyos pulmones hay flujo de aire unidireccional. Y es muy posible que otras especies también cuenten con esa ventaja, o que otras ya extinguidas también la tuviesen. Así pues, aunque el pulmón de las aves tiene características muy sofisticadas, todo hace indicar que hubo versiones previas, aunque quizás no fuesen tan eficaces.

Nota:

1 El clado Sauropsidae comprende todos los denominados reptiles, salvo los extinguidos “reptiles mamiferoides” (supuestos antecesores de los mamíferos) y las aves. La razón por la que quizás debería haber optado por ese nombre en el título es que los pulmones de las aves tienen seguramente antecedentes en otros saurópsidos.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Sistemas respiratorios: los pulmones de reptiles y aves se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sistemas respiratorios: peces capaces de respirar en aire y anfibios
  2. Sistemas respiratorios: invertebrados terrestres
  3. Sistemas respiratorios: los límites a la difusión de los gases
Categorías: Zientzia

El demonio de Maxwell

Cuaderno de Cultura Científica - Mar, 2017/10/24 - 11:59

Maxwell exploró los límites de una concepción estadística de la segunda ley mediante un “experimento mental” interesante. Supongamos que un recipiente de gas se divide por una membrana delgada en dos partes, el gas en una parte está más caliente que en la otra. “Ahora concibe un ser finito”, sugirió Maxwell, “que conoce las trayectorias y las velocidades de todas las moléculas, pero que no puede hacer otro trabajo que no sea abrir y cerrar un agujero en el diafragma”. Este “ser finito”, ahora conocido como El “demonio de Maxwell” puede calentar el gas caliente y enfriar el gas frío, permitiendo que las moléculas rápidas se muevan en una sola dirección a través del orificio (y las moléculas lentas en la otra), como se muestra en el diagrama, en el que, convencionalmente, el rojo representa moléculas de alta velocidad (y energía) y las azules de baja velocidad (y energía).

Por supuesto, no existe un demonio tan fantasioso (ni siquiera en forma de máquina) que pueda observar y seguir todas y cada una de las moléculas en un gas; por lo tanto, no existe ningún procedimiento como este para violar la segunda ley que puede realizarse en la práctica. De hecho, si de alguna manera se pudiera construir un “demonio”, podríamos encontrar que la propia entropía del demonio (que sería en sí mismo un sistema) se ve afectada por sus acciones. Así, su entropía podría aumentar lo suficiente como para compensar la disminución de la entropía del gas, con lo que la entropía neta aumenta, como dicta la segunda ley.

Esto es exactamente lo que sucede en otros sistemas donde se crea orden local, como en una bandeja de agua que se congela en cubos de hielo en un congelador; la entropía debe aumentar en algún otro lugar del universo, como en la habitación en la que está el congelador, donde se disipa el calor residual del motor del congelador.

Hay quien han sugerido que ciertas moléculas grandes, como las enzimas, pueden funcionar como “demonios de Maxwell”. Las moléculas grandes pueden influir en los movimientos de las moléculas más pequeñas para construir las estructuras ordenadas de los sistemas vivos. Esto es algo que no ocurre en los objetos inanimados y sería una aparente violación de la segunda ley de la termodinámica. Esta sugerencia, sin embargo, lo que demuestra es que no se ha entendido un aspecto fundamental de la segunda ley.

Efectivamente, la segunda ley no dice que el orden no pueda aumentar nunca en un sistema. Hace esa afirmación solo para sistemas aislados. Cualquier sistema “no aislado”, que pueda intercambiar energía con su entorno, puede aumentar su propio orden sin violar la segunda ley, ya que la entropía del entorno aumentará, compensando la disminución en el sistema abierto y aumentando la entropía del universo. Exactamente igual que un congelador, que es un sistema cerrado pero no aislado.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo El demonio de Maxwell se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La distribución de velocidades moleculares de Maxwell
  2. La teoría cinética y la segunda ley de la termodinámica
  3. La segunda ley de la termodinámica
Categorías: Zientzia

Superkontinenteen sorrera eta apurketa

Zientzia Kaiera - Mar, 2017/10/24 - 09:00
Arturo Apraiz Baieztatu da Lurreko eboluzioaren zati handi batean behintzat, superkontinenteak hainbat aldiz sortu direla. Oso ondo aztertuta daude orain dela 300 ma garatutako Pangea superkontinentearen elkarketa- eta apurketa-prozesuak. 800 ma inguru duen Rodinia superkontinentearen frogak ere aurkitu dira eta datu fidagarriak daude bere garapenari buruz, Pangea bezain beste ezagutzen ez bada ere.

Zenbat eta denboran atzerago egin, argi dago zailagoa dela bilakaera geologikoaren aztarna adierazgarriak bilatzea; hala ere, ikertzaileek uste dute Lurraren historian beste bi superkontinente garatu direla gutxienez: Columbia edo Nuna (1.4 Ga inguru) eta Kenorland (2.3 Ga inguru) izenekoak.

Aldiz, zalantza ugari daude 2.5 Ga baino superkontinente zaharragoen agerpenari buruz ez dagoelako argi plaka-tektonikaren eredua orduko baldintzetan balizkoa izango ote zen ere. Bestalde, plaka-tektonikak etorkizunean garatuko duen superkontinenteari buruz zalantza gutxi daude; izan ere, nola sortuko den aurreikusita dago eta izena ere jarri zaio jada, Amasia (Amerika eta Asiaren arteko batura adierazteko) (1. irudia).

Kontinenteen batzea eta aldentzea, “superkontinenteen zikloa” (Condie, 2001) bezala da ezaguna, eta badirudi gertaera honek berebiziko garrantzia izan dezakeela Lurreko bilakaera geologiko, klimatiko eta biogeokimikoan. Aitzitik, zalantza ugari daude superkontinenteen elkarketa-moduari eta apurketen arrazoiei buruz. Superkontinenteen sorrerari dagokionez, Wilsonen (1966) hasierako oinarrizko proposamenean ozeano bakarraren zabaltzea eta ixtea baizik ez zen aipatzen (“Wilsonen zikloa”), baina beranduago baieztatu da eredua nabarmen konplexuagoa dela eta iradoki da harreman zuzena egon daitekeela mantuko konbekzio-ereduaren eta superkontinenteen zikloaren artean. Bestetik, superkontinenteen apurketa eta sakabanaketarako hainbat eredu iradoki izan dira, baina gaur egun nagusiak dira oraindik luma gorakorrak erabiltzen dituzten ereduak.

1. irudia: Yale unibertsitateko ikertzaileek iradokitako etorkizunerako superkontinentearen geometria eta kokapena.

Superkontinenteen sorrera-prozesuaren arabera bi superkontinente mota bereiz daitezke: alde batetik, aurreko superkontinentearen apurketan zehar sortutako “barne-ozeanoen” ixtearen ondorioz garatutako superkontinenteak eta, bestetik, superkontinentea inguratzen duen “kanpo-ozeanoaren” ixtearen ondorioz garatutako superkontinenteak. Lehenengo prozesurako introbertsio terminoa erabiltzen da eta bigarrenerako extrobertsio terminoa (Murphy eta Nance, 2003). Hasiera batean, eredu gehienek extrobertsio bidez sortutako superkontinenteak hobesten zituzten, baina introbertsioz sortua da gehien ezagutzen den Pangea superkontinentea, Iapetus eta Rheic “barne-ozeanoen” ixtearen ondorioa. Azken ikerketek iradokitzen dute superkontinenteen sorrerarako bi ereduak balizkoak izan daitezkeela eta baliteke, bata eta bestea txandakatuak izatea. Jakin badakigu Rodinia extrobertsio bidez sortu zela, eta Pangea introbertsio bidez; eredu hedatuenaren arabera, Amasia extrobertsio bidez sortuko da.

Bi multzotan sailka daitezke superkontinenteen apurketa-prozesua azaltzeko garatu izan diren ereduak: luma gorakorrik erabiltzen ez dutenak (plaken eredua) eta luma gorakorrak erabiltzen dituztenak (lumen eredua).

Lehenengokoek esaten dute superkontinentearen azpiko mantua, subdukzio-eremuetatik urrun dagoenez, termikoki isolatuta gelditzen dela, subdukzio-eremuek eragiten duten hozketatik salbu. Eta baldintza horietan bertan pilatutako elementu erradioaktiboen bero erradiogenikoa nahiko izan litekeela goi-mantuaren fusioa eragiteko eta ondorioz superkontinenteen apurketa abiarazteko (2a irudia).

2. irudia: Superkontinenteen apurketa eragiteko iradoki diren zenbait eredu: a) elementu erradiogenikoen eta superkontinenteak eragindako isolamendu termikoaren ondorioz mantuaren berotzea eta superkontinentearen apurketa gertatzen dira; b) superkontinentearen apurketa nukleo eta mantuaren arteko mugatik abiatutako superluma edo LLSVPren ondorioa da; c) superkontinentearen apurketa eragiten duen luma gorakorra mantuko trantsizio-eremuan garatzen da, subdukzioak bertan sortutako kutsaduraren ondorioz. (Pirajno eta Santosh, 2015)

Azken ikerketei esker, aldiz, baieztatu dute luma gorakorren eta superkontinenteen apurketaren arteko harremana (Ernst, 2014). Nukleo eta manturen arteko mugaraino hondoratutako ozeano-litosferaren ezpalek, superlumen garapena baldintzatuko lukete, eta mantuaren trantsizio-eremura iritsita, bigarren mailako luma gorakorrak gara litezke, superkontinenteen apurketa eragin dezaketenak (2b irudia). Tomografia sismiko eta eredu numerikoei egiaztatu ahal izan da benetakoak direla nukleo eta mantuaren arteko mugan sortutako superluma termokimikoen (edo LLVSP) agerpena eta mantuko trantsizio-eremuan abiatzen diren eskala txikiagoko lumak (ikus nukleo eta mantuaren arteko mugari buruzko lana).

Beste eredu batek iradokitzen du mantuko trantsizio-eremuan sortutako luma gorakorrek eragiten dutela superkontinenteen apurketa, baina luma gorakorrak superlumen ondorio izan beharrean subdukzio-prozesuekin lotzen ditu (Kawai et al., 2013). Horrela, kontinente-lurrazaleko zein ozeano-litosferako konposizio desberdineko materialez kutsatuko lukete inguru osoa subdukzio-eremuetan mantuan barneratu eta trantsizio-eremuan pilatutako litosfera-ezpalek. Konposizio-heterogeneotasuna eta elementu erradiogenikoen pilaketa tenperaturaren gehikuntza, fusio partziala eta luma gorakorren sorrera eragiteko baldintza nahiko izan litezke (2c irudia). Eredua balizkoa litzateke superluma edo LLSVPtik urrun gerta daitezkeen kontinenteen barneko riftak eta eskala txikiko kontinenteen apurketak azaltzeko, gaur egun baieztatuta baitago LLSVPren (superluma termokimikoak) eta luma gorakorren arteko harremana.

Superkontinenteek mantuko konbekzio-ereduan aldaketak eragiteko gaitasuna dute, baina nola gerta daitezke? Superkontinentea sortu ondoren subdukzio-eremu aktibo bakarrak superkontinentearen inguruan baino ezin dira kokatu. Baieztatu den bezala, behe-mantuan konposizio eta dentsitate desberdineko eremuren bat badago (LLSVP), hondoratutako ozeano-ezpalen bultzada eta desplazamendua jasango du, alde batetik, superkontinentearen azpira eta, bestetik, ozeano bakarraren azpira, bi LLSVP berri sortuz (3. irudia). Superkontinentearen zabalera beti ozeano bakarrarena baino mugatuagoa denez, azpitik pilatutako LLSVPa eremu estuagoan garatuko da, eta konbekzio-korronte indartsuagoen eraginpean sortutako luma gorakorrak superkontinentearen apurketa eta bereizketa ahalbidetuko dute. Beraz, Pangea sortu zenean superkontinentearen azpian garatutako LLSVPa gaur egun Afrikaren azpian dagoena litzateke eta Panthalassaren azpian sortutakoa ozeano Pazifikoaren azpian dagoena litzateke. Pangeatik datozen kontinenteak zabaldu ahala Afrikako LLSVPk gero eta hedapen zabalagoa izango du, eraginkortasuna galduz, eta Ozeano Barean dagoenak, aldiz, gero eta mugatuagoa (3. irudia).

Beraz, superkontinenteen zikloak harreman zuzena du luma gorakorrekin. Superkontinenteak konbekzio korronte beherakorren gainetik pilatzen dira eta nukleo eta mantuaren arteko mugaraino hondoratutako ozeano-litosferaren ezpalek baldintzatu egiten dituzte LLSVPko kokapenak. Superkontinentearen azpian pilatutako LLSVPa mugatuagoa denez, konbekzio-korronte indartsuagoen eraginpean mantuan gorago igotzeko ahalmena izango du, superkontinentearen apurketa abiaraziko duen anomalia termikoa areagotuz. Luma gorakorrak litosferaren azpira heltzen direnean, lurralde igneo erraldoien garapena, kontinente-litosferaren gorakada, rift-sistema erraldoien sorrera eta kontinente-blokeen bereizketa eragiten dute.

3. irudia: Azkeneko 200 ma-etan mantuan gertatutako aldaketen zergatia azaltzen duen eredua.

Era berean, iradoki da jatorri magmatikoko edo hidrotermaleko superkontinenteen zikloak harreman zuzena izan lezakeela sistema-mineralekin. Horrela, luma gorakorren ondorio diren kontinente-rift sistema erraldoiak, ozeano baten sorrera eragin edo ez, hobi-mineralen fabrikatzat jotzen dira; ondorioz, leku aproposenenak dira oraindik ezagutzen ez diren hobi mineralak aurkitzeko. Ikuspegi biogeokimikotik iradoki da ere, Neoproterozoikoaren amaierako Rodinia superkontinentearen apurketan zehar gertatutako kontinente-lurrazalaren gorakadari esker, honek bultzatutako rifting prozesuari eta orduko subdukzio-eremuekin lotutako nutriente-sistemei esker, gure planetako bizitza modernoaren sorrera eragin zezakeen baldintzak lortu zitezkeela (Santosh et al., 2014).

Erreferentzia bibliografikoak:

  • Condie, K.C. (2011): Mantle plumes and their record in Earth history. Cambridge University Press, 306 or.
  • Ernst, R.E. (2014): Large Igneous Provinces. Cambridge University Press, 653 or.
  • Kawai, K., Yamamoto, S., Tsuchuya, T. eta Maruyama, S. (2013): The second continent: existence of granitic continental material around the bottom of the mantle transition zone. Geoscience Frontiers, 4: 1-6.
  • Murphy, J. B. eta Nance, R.D. (2003): Do supercontinents introvert or extrovert?: Sm-Nd isotopic evidence. Geology, 31, 873-876.
  • Santosh, M., Maruyama, S., Sawaki, Y. eta Meert, J.G. (2014): The Cambrian explosion: plume-driven birth of the second ecosystem on Earth. Gondwana Research, 25: 945-965.
  • Pirajno, F. eta Santosh, M. (2015): Mantle plumes, supercontinents, intracontinental rifting and mineral systems. Precambrian Research, 259: 243-261.
  • Wilson, J.T. (1966): Did the Atlantic close and then reopen? Nature, 211: 676-681.

———————————————————————————-

Egileaz: Arturo Apraiz UPV/EHUko Geodinamika saileko irakaslea eta ikertzailea da.

———————————————————————————-

The post Superkontinenteen sorrera eta apurketa appeared first on Zientzia Kaiera.

Categorías: Zientzia

¿Es el universo un holograma?, y otras grandes preguntas de la ciencia actual

Cuaderno de Cultura Científica - Lun, 2017/10/23 - 17:00

Javier Echeverría, lector y colaborador

Este libro ofrece un variado paisaje de la ciencia contemporánea, compuesto por 33 personas, algunas de las cuales son líderes mundiales de la ciencia y la tecnología actuales. Por orden alfabético: Hal Abelson, Ricardo Baeza-Yates, John Perry Barlow, Javier Benedicto, José Bernabéu, Michail Bletsas, Jose M. Carmena, David Casacuberta, Yung Ho Chang, Ignacio Cirac, Gianluigi Colalucci, Avelino Corma, Bernardo Cuenca Grau, Javier Echeverria, José Hernández-Orallo, Hiroshi Ishii, Pablo Jarillo-Herrero, Henry Jenkins, Anne Margulies, Mario J. Molina, Tim O’Reilly, John Ochsendorf, Paul Osterman, Alvaro Pascual-Leone, Rosalind W. Picard, Howard Rheingold, Alejandro W. Rodriguez, Israel Ruiz, Sara Seager, Richard Stallman, Antonio Torralba, Bebo White y José María Yturralde.

El libro ha sido escrito por Adolfo Plasencia, un veterano escritor valenciano, experto en la comunicación y difusión de la ciencia. El contenido del libro se fue originando a partir de la experiencia que co-fundó con Douglas Morgenstern el MITUPV Exchange, una iniciativa conjunta del MIT y la Universidad Politécnica de Valencia, que se extendió a lo largo de 12 años (1999-2011), gracias a la cual Plasencia pudo realizar y filmar diálogos con diversos investigadores y creadores de dicha universidad norteamericana y de otras muy destacadas. Posteriormente amplió el panorama a expertos de diversos países de todo el mundo. Esta es la razón por la que ocho de los colaboradores en el libro sean valencianos y, de manera todavía más notable, 17 de ellos sean hispano-parlantes, aunque el libro lo publique en inglés MIT Press. En conjunto, ofrece una excelente panorámica de los grandes desafíos que afronta la investigación científico-tecnológica de vanguardia, con la singularidad de vincular además las dos culturas, la científica y la humanística. Entre las numerosas preguntas que sustentan los diálogos persona a persona que Plasencia mantuvo con los participantes recién mencionados, algunas de las preguntas más humanísticas fueron dirigidas a los científicos, y viceversa.

El libro muestra perfectamente hasta qué punto la tecnociencia contemporánea es ciencia, es cultura y, además, es humanidades. El proyecto de Plasencia asume y desarrolla una hipótesis muy clara: “cualquier observador curioso cuya capacidad de asombro goce de buena salud, sabe que la evolución, tanto de ciencia básica como aplicada en sus vanguardias; la evolución tecnológica y los nuevos descubrimientos, están siendo acaparados por disciplinas hibridas.”

Lo notable es que una editorial tan prestigiosa como MIT Press, cuya difusión es mundial, se haya animado a publicar un libro así, que ha debido incluir tanto en sus apartados de “Ciencia”, como de “Interés General”. Esa decisión la tomó la propia Directora Editorial de MIT Press, -y editora del libro-, Gita Devi Manaktala, quien tras su primer encuentro personal le dijo a Plasencia: “Nunca nos había presentado nadie algo así. Nos interesa. Lo vamos a estudiar”. Ella misma fue quien, de acuerdo con el autor, organizó cuatro secciones en el libro (El Mundo Físico; Información; Inteligencia y Epílogo), y aprobó los títulos de los diálogos presentados, (algunos ciertamente heterodoxos, p.ej.:”MIT Collaborative Innovation: It Takes >2 to Tango”), que Plasencia también consensuó con cada participante en la obra.

En suma: se trata de un libro atípico, incluido su título, elegido por la propia editorial. Dada la pregunta que aparece como título en portada, podría pensarse que estamos ante un libro de astrofísica. No es así. El ‘holograma’, de haberlo, radica en los treinta y tres diálogos, muchos de los cuales tienen puntos de convergencia que apuntan a algunas de las grandes preguntas de la ciencia actual. Quien quiera tener un panorama amplio y variado de la ciencia en 2017, lo obtendrá, y con múltiples puertas y ventanas, con sólo asomarse al listado de cincuenta y cinco preguntas que abre el libro, -con los nombres de qué participantes tratan en cada una de ellas-, que ilustran las cuestiones que en él se tratan. Esta lista la encabeza la frase de Pablo Picasso: “Los ordenadores no sirven para nada. Solo te pueden dar respuestas”, indicadora de que el volumen es un libro mucho más de preguntas que de respuestas. Aunque también hay respuestas, por supuesto. Pero lo importante son las preguntas, como el autor y varios de los participantes subrayan en sus respectivos textos.

No es posible resumir en pocas palabras el contenido del libro. Por eso, a título puramente informativo, terminaré esta nota enumerando algunas de esas preguntas, indicativas de la diversidad y relevancia de las múltiples cuestiones abordadas.

• ¿Qué es la inteligencia, cómo funciona, dónde radica y cómo se mide?

• ¿Habrá inteligencia no-biológica, (no basada en el homo sapiens)?

• ¿Qué va a pasar con el cambio climático?

• ¿Dónde radica la conciencia y como emerge? ¿Cómo funciona en realidad el cerebro?

• ¿Es en realidad el Universo un holograma? ¿Qué pasa con la materia oscura?

• ¿Qué origina la conducta en los humanos? ¿Y en los robots?

• ¿Qué va a pasar con el aprendizaje y las universidades, y su papel en la sociedad?

• ¿Vamos a convertirnos en biónicos? ¿Hasta qué grado?

• Nuestra relación con la tecnología, ¿está cambiando los ‘settings’ de nuestros sentidos?

• ¿Puede la ética combinada con el conocimiento abierto crear una economía de las ideas sostenible?

• ¿Veremos como parte de nuestras vidas al ordenador cuántico?

• ¿Habrá alguna vez “fin del trabajo”?

• ¿Por qué existe la masa? ¿Qué hay más allá del Bosón de Higgs?

• ¿Es posible gobernar la incertidumbre y convivir con sus efectos estocásticos? ¿Podemos planear lo imposible?

• ¿Es el paradigma del Software Libre y la Ética Hacker la solución?

• ¿Por qué la naturaleza es ‘cuántica’ y nuestra lógica normal no lo acepta?

• Las tecnologías de búsqueda, ¿nos permiten ahora recordar el futuro?

• ¿Es la expresión “Computación Afectiva” un oxímoron?

• ¿Es el “derecho a encriptar” un derecho humano?

• ¿Es cierta la ecuación: Belleza ≠ verdad? ¿Podemos contradecir a John Keats?

• ¿Cómo va a evolucionar representación del conocimiento en Internet?

• ¿En el arte, podemos ir al pasado y cambiarlo?

• ¿Es posible pintar el vacío?

Ficha:

Is the Universe a Hologram? Scientists Answer the most Provocative Questions (by Adolfo Plasencia, foreword by Tim O’Reilly). MIT Press 2017, 432 pp. ISBN: 9780262036016.

Más información:

A Dialogue about Dialogues: Adolfo Plasencia on Speaking with Scientists. (English). La entrevista, en español

Página del libro en MIT Press

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

El artículo ¿Es el universo un holograma?, y otras grandes preguntas de la ciencia actual se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La cara más emocionante, humana y filosófica de la ciencia
  2. Libros para enamorarse
  3. El arte de innovar, de Javier Echeverría
Categorías: Zientzia

La menopausia… ¿para qué sirve? Seguimos sin respuesta

Cuaderno de Cultura Científica - Lun, 2017/10/23 - 11:59

Hay una pregunta un poco extraña, quizá un poco fuera de lugar, pero que los biólogos evolutivos se hacen de vez en cuando y para la que nadie tiene respuesta todavía. Es la siguiente: la menopausia… ¿para qué sirve?

Me explico. Se supone que todos los caracteres de cualquier especie de ser vivo están de alguna forma orientados a aumentar las probabilidades de que los genes de un individuo pasen a la siguiente generación. La evolución consiste en sobrevivir, sino en reproducirse. Ese es el objetivo último de la evolución y la adaptación de las especies.

Por eso la existencia de la menopausia resulta intrigante: que las mujeres hayan desarrollado un mecanismo por el que llegado un determinado momento su sistema reproductor se apaga cuando aun les quedan años, incluso décadas, de vida es en principio contradictorio con el principio de favorecer el traspaso de los genes de generación en generación. Los hombres son fértiles prácticamente toda su vida, pero las mujeres viven hasta un tercio de ella sin poderse reproducir.

Puesto que es una cosa inevitable como la vida misma, muchos nunca se habrán parado a pensar en ello. Pero solo hay que mirar al resto de los mamíferos para darse cuenta de que la menopausia es, de hecho, una rareza: solo en un puñado de especies de cetáceos, por ejemplo las orcas, las hembras la tienen. En las demás, hembras y machos son capaces de reproducirse prácticamente hasta el final de sus vidas.

La hipótesis de la abuela

Esto hace que volvamos a la pregunta inicial: ¿para qué sirve la menopausia? ¿Qué sentido evolutivo? Pues creíamos tener las respuesta al alcance de la mano, pero de momento todo son teorías.

La más comúnmente aceptada es la hipótesis de la abuela. Esta hipótesis plantea que, puesto que a medida que la edad aumenta sacar adelante a las crías requiere más energía y conlleva un mayor riesgo, las hembras dejan de reproducirse y pasan a ayudar a sus hijas y sus crías, es decir, sus nietas. Esto supone una ventaja para todas: las crías están mejor cuidadas, las madres reciben una apreciada ayuda y las abuelas hacen aumentar la probabilidad de que sus genes salgan adelante a través de las siguientes generaciones.

En teoría tiene sentido, ¿no es verdad? Además se corresponde con la idea que todos tenemos de nuestras abuelas: mujeres amorosas que ayudaron a nuestros padres a criarnos (y a malcriarnos). Bien, ya tenemos explicación, ¿no? Pues no. Pero ahora llegamos a eso.

Otras teorías: la de la diferencia de edad y la de la conservación de la energía

La de la abuela es la única hipótesis. Otra, planteada en 2007, venía a complementarla bajo la premisa de que en el análisis de los cambios evolutivos de una especie no se podía tener en cuenta solo a uno de sus sexos. Según esta nueva teoría, la diferencia de edad en una pareja es beneficiosa en términos de fecundidad, y esta se da habitualmente entre mujeres jóvenes, que son más fértiles, y hombres mayores, que ya han demostrado su capacidad de engendrar hijos. Esto sería otra explicación añadida al hecho de que las mujeres tengan la menopausia cuando aun les quedan años de vida mientras que los hombres siguen siendo capaces de reproducirse prácticamente hasta su muerte.

Una tercera hipótesis plantea que, en las mujeres y en las hembras de otras especies de mamíferos, la expansión de la esperanza de vida y la expansión de la capacidad reproductiva ocurren a ritmos diferentes, ritmos determinados para maximizar la capacidad reproductiva y de supervivencia al principio de la vida adulta. Extender la capacidad de reproducción a partir de cierto momento, llegada la madurez, tiene un alto coste. Por eso, una vez que el número de ovocitos baja de cierto límite, eso desencadenaría el final de los ciclos menstruales normales, y con ello la llegada de la menopausia.

Sería por tanto, en resumen, una forma de asegurar que en los primeros años de vida adulta el cuerpo está en la situación óptima para sobrevivir y reproducirse, y que una vez pasado ese momento, la inversión de energía que requiere mantener el sistema funcionando ya no merece la pena, así que el cuerpo decide que ha llegado la hora de echar ese cierre.

Un estudio que ni confirma ni desmiente

Decíamos de todas formas que seguimos sin una explicación porque estas teorías son de difíciles de demostrar, ya que no hay una forma de que la evolución haya favorecido directamente caracteres que aparecen después de la reproducción, como ocurre con la menopausia. Un reciente intento por conseguirlo ha resultado en tablas: ni confirmo ni desmiento. No hay evidencias lo suficientemente sólidas para demostrar o descartar ninguna hipótesis sobre el modo en que la evolución favorece la esperanza de vida más allá de la época reproductiva en las mujeres.

Jacob A. Moorad y Craig A. Walling son investigadores del Instituto de Biología Evolutiva de la Universidad de Edimburgo y el suyo es el primer intento por comprobar empíricamente cómo la menopausia se correspondería efectivamente con el aumento de la esperanza de vida en una población humana. Sus resultados se han publicado en la revista Nature Ecology&Evolution.

Para hacer esa comprobación, utilizaron los datos del censo de población de Utah a finales delo siglo XIX. Gracias la importancia que la fe mormona da a los registros genealógicos, los datos eran todo lo que un biólogo evolutivo podía desear.

A partir de ahí, realizaron un análisis detallado de todas los caminos genéticos que podrían haber tomado esos supuestos beneficios de la menopausia. No encontraron evidencias que sostuviesen ninguna de las tres teorías. El gozo de los investigadores en un pozo.

Las flechas entre fenotipos y “Fitness” con gradientes de selección. Las flechas entre genes y fenotipos son variaciones genéticas. Las flechas entre distintos genes son correlaciones genéticas. Puesto que la esperanza de vida postreproductiva de las mujeres no puede afectar directamente a un estado físico óptimo (“fitness”), la selección que influye en ello tiene que hacerlo de forma indirecta por otras vías. Estas vías se muestran aquí en los colores, de las que se han elegido tres: el rojo para la hipótesis de la abuela; el verde para la hipótesis de las diferencias de edad entre sexos; el amarillo para las diferencias de edad dentro del mismo sexo. En el mapa se muestra el Territorio de Utah tal y como era en 1851

¿Por qué? Para empezar, podría ser que no tengamos ni idea del asunto y ninguna de las hipótesis planteadas sea válida, aunque observaciones indirectas sugieren que alguna idea sí que tenemos.

Quizá ocurrieron, pero los movimientos migratorios entraron en escena

Los investigadores creen que una o más de estas hipótesis debió ser cierta en el pasado, pero se ha visto discontinuada por cambios en el ecosistema. Especialmente, y puesto que los datos se refieren al territorio de Utah a finales del siglo XIX, por la convulsión demográfica que supuso la migración masiva hacia el oeste americano, lo que conllevó en muchos casos la pérdida de apoyo y parentesco cuando los familiares se quedaron en sus lugares de origen, así como un alto índice de natalidad por la presión de poblar el territorio.

Esta explicación parece altamente probable, y a su vez es un ejemplo de por qué es tan difícil poner a prueba estas teorías. Existen grandes variaciones dentro de las distintas poblaciones de cada especie, y parece poco realista pensar que una foto fija de una población determinada pueda darnos una respuesta sobre cómo la selección natural ha favorecido o eliminado determinados rasgos de una especie.

Eso quiere decir, como explica Alan A. Cohen en su comentario sobre el estudio de Moorad y Walling, que probablemente si los autores hubiesen podido confirmar con sus resultados alguna de las tres hipótesis, esta hubiese sido cierta en el corto plazo, pero no hubiese sido del todo precisa para entender cómo la selección dio forma a la menopausia tal y cómo la conocemos.

Sobre la autora: Rocío Pérez Benavente (@galatea128) es periodista

El artículo La menopausia… ¿para qué sirve? Seguimos sin respuesta se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿La publicidad no sirve para nada?, ¡ja!
  2. El entrenamiento mental solo sirve para entretenerse un rato
  3. El flujo sanguíneo se reorganiza en respuesta a las necesidades
Categorías: Zientzia

Energia «fluxuaren kontra» ibilarazten eskala kuantikoan

Zientzia Kaiera - Lun, 2017/10/23 - 09:00
Energia edo partikula fluxu bat behatzeak fluxuaren noranzkoa alda dezakeela frogatu du UPV/EHUko ikerketa batek.

Gorputz beroenetik hotzenera joaten da bero-korrontea eta potentzial handienetik txikienera elektrizitatea sistema termodinamiko klasikoetan. Sistema kuantikoetan ere berdin gertatzen da, kasu honetan, baina, egoera aldatu daiteke eta energia eta partikula fluxua alderantzikatu behatzaile kuantiko bat sartuta. Hala frogatu du ikerketak.

Hasiera batean, akats bat zela pentsatu zuten ikertzaileek. Aldaketak aurkitzea espero zuten, baita garraioa eten zitekeela pentsatu, baina ez zuten uste fluxua erabat aldatuko zenik. Korrontearen noranzko aldaketak modu kontrolatuan egin daitezke. Behatzailea sistemaren zein lekutan sartzen den, fluxua aldatzea lortzen da. Gailuaren eremu jakin batzuetan, hala ere, noranzkoa ez da aldatzen behatzailea sartuta ere.

Objektu makroskopikoetan (ur-korrontea, esaterako) korrontea behatzeak ez dio uraren fluxuari inola ere eragiten eta termodinamika klasikoaren legeei jarraiki, alderik garaienetik baxuenera joango da. Gauza bera gertatzen da tenperatura-fluxuekin, gorputz beroenetik hotzenera ibiltzen da. Baita sistema elektrikoetan ere, potentzial handienetik txikienera joango da fluxua. Gailu kuantikoetan, alabaina, behatze-prozesuak, begiratzeak, sistemaren egoera aldatzen du eta korrontea noranzko batean ala bestean mugiarazteko joera handiagoa izan dezan eragin.

Sisteman behatzaile bat sartzeak oztopo egiten duela da gakoa, ura daraman hoditeria batean erretena ixtea bezala. Karga pilatzen hasten da eta, azkenean, beste noranzkoan joango da ura. Behatzaile kuantikoak sistemaren egoera aldatzen du eta, egoeraren arabera, korrontea edo energia kontrako noranzkoetan transmiti ditzake sistemak. Fisikaren funtsezko teoremarik ez da urratzen, beraz, ezta ezerezetik energiarik sortu ere.

Esperimentalki, zaila

Termoelektrizitatean, espintronikan, fotonikan eta detekzioan, besteak beste, erabilgarriak izan daitezkeen korronte injekzioaren noranzkoa kontrolatzeko aukera ematen duten garraio gailu kuantikoak diseinatzeko bidea eman dezake beroa eta partikulen korrontea kontrolatu ahal izateak. Urrun ikusten ditu aplikazio horiek Ángel Rubio ikertzaileak.

Ikuspuntu teorikoan oinarrituta egin dute ikerketa hau, non eredu xaloa proposatu eta teoria erraz frogatu daitekeen, energia eta entropia fluxu guztiak kontserbatzen baitira. Prozesua esperimentalki egitea, ordea, beste kontua da. Behatzaileak diseinatzeko mugak daude. Diseinatu beharko litzatekeen gailu mota egon badago eta egingarria litzateke, baina gaur egun ez dago modu kontrolatuan egiterik.

Egoera horretan, antzeko ideiak arakatzen dabiltza ikertzaileak, esperimentalki inplementatzeko aukera errealistak dituen beste mekanismo batzuen bila, behatzaile kuantikoen ordez erabili eta antzeko efektua lortzeko.

Iturria: UPV/EHUko prentsa bulegoa: Energia «fluxuaren kontra» ibilarazi dute eskala kuantikoan, fisikaren legeekin kontraesanean erori gabe.

Erreferentzia bibliografikoa: R. Biele, C. A. Rodríguez-Rosario, T. Frauenheim, A. Rubio. Controlling heat and particle currents in nanodevices by quantum observation. npj Quantum Materials 2, article number: 38 (2017). doi:10.1038/s41535-017-0043-6

The post Energia «fluxuaren kontra» ibilarazten eskala kuantikoan appeared first on Zientzia Kaiera.

Categorías: Zientzia

Árbol sagrado, árbol maldito

Cuaderno de Cultura Científica - Dom, 2017/10/22 - 11:59

Los seres humanos hemos comido higos desde el origen de los tiempos. Quizás por ello aparece la higuera en varios relatos míticos de creación. En algunas religiones es sagrada y maldita en otras. El mismísimo Jesús de Nazaret, incluso, debió de maldecir una por no tener frutos: “¡Que nunca jamás coma nadie fruto de ti!” (Marcos 11: 12-14).

Ficus es el nombre en latín de la higuera y también del higo que, aunque lo parezca, no es un fruto sino un receptáculo de flores empaquetadas, una inflorescencia. Ficus es también el nombre científico del género -que agrupa a cerca de 800 especies- al que pertenece Ficus carica, nuestra higuera común. La mayor parte de sus especies comparten una característica: cada una de ellas ha coevolucionado con una especie de avispa de la familia Agaonidae. En virtud de la asociación -que comenzó hace al menos ochenta millones de años- entre la higuera y su correspondiente avispa, ésta poliniza las flores de la higuera a la vez que el higo proporciona a las avispas el cobijo en que reproducirse.

Una minúscula hembra de avispa (de unos dos milímetros de longitud) que va cargada de polen y transporta centenares de huevos fecundados, sale del higo en que ha nacido a través de una pequeña abertura llamada ostiolo. La hembra dispone de unas 48 horas para encontrar otra higuera de la misma especie que puede encontrarse a decenas de kilómetros de distancia, aunque –todo hay que decirlo- la higuera le facilita a la avispa la tarea, ya que emite un cóctel de sustancias químicas a la atmósfera cuyo rastro sigue aquélla con facilidad. Una vez alcanza el nuevo higo, penetra en su interior y avanza hasta la cavidad central distribuyendo el polen que lleva adherido. También deposita los huevos, uno en cada pequeña flor femenina; si la avispa es diligente puede llegar a poner más de doscientos huevos. Y después muere exhausta.

Los huevos fecundados crecen y completan su desarrollo alimentándose de las semillas. Los machos se desarrollan antes y perforan el higo en su interior en busca de las hembras para aparearse. Están dotados de fuertes mandíbulas, no tienen alas y son virtualmente ciegos. Tras fecundar a las hembras, mueren. Los pocos que llegan a salir del higo tienen una corta y miserable vida. Las hembras vuelan libres, presurosas, en busca de una nueva higuera donde todo volverá a empezar.

Los higos, una vez han sido abandonados por las avispas, aumentan de tamaño, adquieren un color rojizo y se llenan de azúcar. Se convierten así en un alimento atractivo. Dependiendo de la especie de Ficus, se alimentarán de ellos murciélagos, aves, monos u otros animales y después, al defecar, esparcirán las semillas, que podrán germinar y producir nuevas higueras.

En las zonas templadas las higueras dan dos o tres cosechas al año dependiendo del sexo de la planta. Pero en los trópicos hay higos “maduros” de manera permanente y sirven de alimento a más de un millar de especies de aves y mamíferos, a más que ninguna fruta. Juegan un papel ecológico crucial, pues sin higos muchas especies de animales se verían privadas de una importante fuente de alimento y podrían, incluso, llegar a desaparecer. Como consecuencia de ello, muchas otras plantas, cuyos frutos son también consumidos por esos animales, verían también disminuir sus posibilidades de dispersar las semillas.

La higuera es una rara planta, con un extraño -por falso- fruto. Pero ha proporcionado mucho alimento a los seres humanos y a una gran diversidad de otros animales. Por eso, sin higueras, muchas cosas en el Mundo serían diferentes.

—————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————

Una versión anterior de este artículo fue publicada en el diario Deia el 18 de junio de 2017.

El artículo Árbol sagrado, árbol maldito se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Historias de la malaria: El árbol de la quina
  2. El paisaje del miedo
  3. Legumbres
Categorías: Zientzia

Asteon zientzia begi-bistan #173

Zientzia Kaiera - Dom, 2017/10/22 - 09:00
Uxue Razkin

Astrofisika

Neutroi izarren talka batek sortutako grabitazio uhinak eta argia batera neurtu dituzte lehenengoz Ameriketako Estatu Batuetako LIGO eta Italiako Virgo grabitazio uhinen behatokietan. 130 milioi argi urtera dagoen NGC 4993 izeneko galaxian gertatu da. Lehenengo aldia da grabitazio uhinen bidez atzemandako gertaera bat teleskopioaren bitartez berresten dutena. Aurkikuntza honek astrofisika arloa aro berri bat ireki duela diote adituek.

Elhuyarrek ere eman du informazio honen berri. Guztira lau aldiz behatu dituzte eta beti zulo beltzen talken ondorioz sortutakoak izan dira. Oraingo seinalea, ordea, uhin elektromagnetikoekin batera iritsi da, eta, beraz, ezin zen zulo beltzek sortutakoa izan, zulo beltzek ez baitute erradiazio elektromagnetikorik igortzen. Jasotako seinalea aurrekoetatik desberdina zen.

Biologia

AEBtako ekologoek egindako ikerketa batek dio itsasoetako babes guneen kudeaketa egokia eginez gero arrantzaleak ere garaile aterako direla. Ikerketa horren bitartez, ondorioztatu dute babes guneetan arrainak hobeto hazten direla. Horrez gain, arrainak zein planktona babes gune horietatik kanpora ateratzen direla ere, arrantzaleen onurako. Adituen aburuz, gakoa da arreta ekosistemetan jarri behar dela eta ez espezie zehatzetan, egin ohi den bezala.

Animaliak

Komodoko herensugea ez da egiazko herensugea, musker bat baizik. Hiru metroko luzera izan dezake eta 80 kg-ko pisua (zenbait iturriren arabera, 140 kg-tara hel daiteke). Desagertzeko arriskuan omen dago. Harraparia da; kosk egitean zauritu egiten du eta, harrapakinak alde egin arren, denbora laburrera hiltzen da. Orduan, aztarnak jarraituz, ia beti aurkitzen du harrapakinaren gorpua. Horretaz gain, oso hortz zorrotzak ditu baina ez omen du indar askorik egiten masailezurrekin. Odola ez gatzatzeko entzimak eta bakterio toxikoen multzo bat txertatzen dizkio harrapakinari kosk egiterakoan. Bakterioen eragina bat-batekoa ez denez, denbora igaro behar da infekzioa hedatu eta, ondorioz, heriotza gertatu arte.

Legenda eta zientzia uztartu ditu autoreak testu honetan. Diomedes heroi greziarra eta albatrostak dira kontakizun honen protagonistak. Hegaztien Diomedeidae familian, albatrosak daude. Albatros izen arrunta portugesezko alcatraz izenetik dator. Diomedes izan zen Ulisesekin batera Aquilesen bila joan eta bueltan ekarri zutena. Ulises eta Diomedes bihotzezko harremana izango zuten eta elkarri emango zioten laguntza gertaera guztietan. Sinbiosia zuten, albatrostek beste animaliekin duten antzera. Beste datu bitxi bat: albatrosak monogamoak dira bizitza osoan. Bietako bat hiltzen bada, bestea urteak luza daiteke beste bikote bat osatu eta ugaltzeko.

Emakumeak zientzian

Nobel Sariekin bueltaka, Argia aldizkariak kalkulu azkar bat egin du: 1901ean banatzen hasi zirenetik, ia 50 emakumek jaso dute Nobel saria. Guztira 900 saritu inguru izan dira eta horrek esan nahi du emakumeen portzentajea %6 ingurukoa dela. Marie Curie izan zen lehena eta bi aldiz lortu zuen gainera. Horren ondotik, sari gehienak literaturan, bakean eta medikuntzan jaso dituzte emakumeek, eta 2009a izan zen haientzat urterik “onena”: lehenengoz emakumezkoa izan zen ekonomian saritua, Elinor Ostrom, eta guztira bost emakume –eta zortzi gizon– zeuden sarituen zerrendan. Azken bi urteetan, ordea, ez da emakumerik ageri palmaresean.

Jennifer Doudna eta Emmanuel Charpentier izan ditugu aste honetako protagonistak. Ez dute Nobel Saririk lortu baina garatutako erramintak merezi zuen dudarik gabe. Zertaz ari garen? CRISPR/Cas9 teknikaz, hain zuzen. Modu eraginkor eta azkar batean genoma editatzeko aukera eskaintzen du aurkikuntza horrek, “bisturi molekular” bat bailitzan. 2015ean Zientzia eta Teknologiako Asturiasko Printzesa Saria lortu zuten bi zientzialariek teknika berritzaile hori garatzeagatik. Edizio genomiko honek aplikazio ugari ekarri ditu gainera. Zeluletan dauden geneen funtzioa ezagutzeko balio du, adibidez. Horretaz gain, geneen sekuentzia berrantolatzeko, gaixotasun larriek eragindako mutazio genetikoak zuzentzeko edota farmakologia alorrean aplikatzeko balio du.

Genetika

Giza geneen erregulazioaren atlasa sortu dute. Ehunez ehun, gene bakoitzaren espresio-maila aztertu dute (20.000 gene ingururena). Ehunetik ehunera dauden desberdintasunez gain, pertsonatik pertsonara daudenak ere aztertu dituzte. Gainera, geneen espresioan eragina duten DNA-zatiak ere identifikatu eta jaso dituzte atlasean. Geneen espresio-ereduak ehunez ehun ezagutzeak patologiak identifikatzeko balioko duela aurreikusi dute ikertzaileek.

Ingurumena

Bero uhartearen fenomenoari aurre egiteko neurriak hartzen ari dira zenbait hiri: material islatzaileak erabiltzea, zuhaitzak landatzea, garraioari lotutako moldaketak… Euskal Herrian halako efekturik ez dagoen arren, adituek ezinbestekotzat dute estrategiak globalki lantzea. Los Angelesen (AEB), adibidez, hainbat kaletako zoru beltzak zuri-grisaxkaz margotzen ari dira. Teknika berriarekin, hogei urtean batez besteko tenperatura bi gradu gutxitu nahi du bertako alkateak. Bero uhartearen fenomenoa ez da berria, baina, neurririk hartu ezean, 2100. urtean hirietako tenperaturak 7-8 gradu beroagoak izan daitezke.

Medikuntza eta osasuna

Azti ikerketa zentroak egin duen ikerketa baten arabera, kimioterapia jaso duten 151 lagunetatik %76k gustuan nahasmenduren bat jasan du, %63k aho lehortasuna du, %40k metal zaporea hartzen dio janariari, eta %35ek hotzarekiko sentiberatasun berezia du. Eta horrek guztiak eragin zuzena du apetituan, alegia, apetitu faltan. Gauzak horrela, egitasmo bat abiatu dute pazienteen “zentzumen nahasmendu” horiek antzemateko. Hortaz, minbizia dutenen “nutrizio desfasea” zehaztuko dute eta, ze motatako elikagaiak garatzea komeni den landu ere.

Mahatsetan eta ahabietan aurki daitezkeen konposatu fenolikoak dira resveratrola eta pterostilbenoa eta gorputzeko gantz-metaketa prebenitu dezakete. Ana Gracia Jadraqueren tesi ikerketa honek aztertu du de novo lipogenesian (dietarekin hartzen diren karbohidratoak gantz-azido bihurtzeko bide metabolikoa) esku hartzen duten entzimetako batean metilazio-mailan aldaketak eragiten ditu pterostilbenoak. Resveratrolak ez du de novo lipogenesiaren asaldura hori sortzen, baina gantz ehun zurian hainbat mikroRNAen erregulazioan aldaketak eragiten ditu.

———————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Asteon zientzia begi-bistan #173 appeared first on Zientzia Kaiera.

Categorías: Zientzia

Naukas Pro 2017: Javier Burgos y el alzhéimer

Cuaderno de Cultura Científica - Sáb, 2017/10/21 - 11:59

El pasado 14 de septiembre de 2017 se celebró la primera edición de Naukas Pro, en el que Centros de Investigación, Laboratorios, científicos de renombre o equipos de trabajo contaron con 20 minutos para explicar a un público general en qué consiste su trabajo.

3ª Conferencia: Javier Burgos, director gerente de la Fundación de Investigación Biomédica de Andalucía Oriental (FIBAO)

Javier Burgos habla sobre el alzheimer

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Pro 2017: Javier Burgos y el alzhéimer se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Naukas Pro, en directo
  2. Naukas Pro 2017: Carlos Briones y el origen de la vida
  3. Naukas Pro 2017: Leni Bascones y los superconductores
Categorías: Zientzia

Ezjakintasunaren kartografia #187

Zientzia Kaiera - Sáb, 2017/10/21 - 09:00

Zelai lursaguek orain arte gizakiek bakarrik zituztela uste zen zenbait jarrera sozial dituzte. Liluragarria izateaz gain, guri buruz gehiago ikasteko eredu bihurtzen ditu honek. Isabel Pérez Castro Voles and the chemistry of love artikuluan.

Influentzia genetikoaren adibiderik harrigarrienak erakusten dute Nancy Segalek biki berdinekin egindako ikerketek. Ignacio Amigok elkarrizketatzen du Between science and fascination: An interview with Dr. Nancy Segal artikuluan.

Fotoi bakar batek molekula andanaren erreakzioa eragin dezan modua bada. Bai, Stark-Einsteinen legearen aurka doa, baina halakoa da DIPCko jendea. Polaritonic chemistry: One photon to rule them all.

–—–

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #187 appeared first on Zientzia Kaiera.

Categorías: Zientzia

La luz polarizada de la estrella más brillante de Leo

Cuaderno de Cultura Científica - Vie, 2017/10/20 - 12:00

La estrella Régulo (α Leonis) es un sistema estelar cuádruple: Régulo A es una estrella blanco-azulada con una enana blanca como compañera, cuyo periodo orbital es de 40,11 días; les acompañan Régulo B, una enana naranja, y Régulo C, una enana roja. Régulo A es una estrella de la secuencia principal, como el Sol, pero rota sobre sí misma con un período de solo 15,9 horas —el Sol emplea más de 25,6 días—. Al rotar tan rápido, su forma está achatada en sus polos (figura 1, izquierda); en 1968 Harrington y Collins predijeron que su atmósfera tenía que emitir luz polarizada (figura 2, derecha). Se acaba de publicar en Nature Astronomy la confirmación de esta predicción [1].

Forma y brillo superficial de Régulo A determinado mediante interferometría (izquierda) y modelo teórico de la emisión polarizada de su atmósfera estelar con una longitud de onda de 400 nm (derecha). Fuente: Nature Astronomy [2].

Los electrones en la atmósfera de una estrella dispersan la radiación y la polarizan (igual que ocurre con el fondo cósmico de microondas) tanto de forma perpendicular como de forma paralela a la dirección radial (hacia a su centro), una predicción realizada por el genial físico Chandrasekhar en 1946. En una estrella (casi) esférica la emisión total no está polarizada porque se promedian en su disco ambas direcciones de polarización y resulta un valor casi nulo debido a su simetría (casi) esférica; la única forma de observar este fenómeno es con sistemas binarios donde se rompe la simetría. Esta idea podría permitir la búsqueda de exoplanetas de tipo Júpiter caliente; durante un tránsito estelar la estrella aparenta tener una forma achatada y se produciría una señal en el mapa de polarización. Sin embargo, este método de detección de exoplanetas todavía sin éxito requiere medidas de la polarización de las estrellas más allá de la precisión alcanzable en la actualidad.

Hay otro caso en el que una estrella emite radiación polarizada, cuando realiza una rotación muy rápida; en dicho caso su superficie se achata y aparece un gradiente de temperatura entre los polos y el ecuador que rompe la simetría esférica, permitiendo una emisión polarizada cuya intensidad cambia con la longitud de onda. Harrington y Collins [4] predijeron este efecto en 1968. La razón por la que no ha sido observado hasta ahora (casi 50 años más tarde) es porque la intensidad de esta señal es demasiado débil para ser detectada salvo con polarímetros de alta precisión y en estrellas en rotación muy rápida. La estrella Régulo A en la constelación de Leo es ideal para este estudio.

Diagrama Q/U para la polarización de Régulo A. Fuente: Nature Astronomy [1].

Daniel V. Cotton, de la Universidad de Nueva Gales del Sur, Sidney, Australia, y varios colegas han usado dos polarímetros de alta precisión, PlanetPol, instalado en el Telescopio William Herschel de 4,2 metros en La Palma, Islas Canarias, España —PlanetPol ya está fuera de servicio—, y HIPPI (siglas de High Precision Polarimetric Instrument, o Polarímetro de Alta Precisión), instalado en el Telescopio Angloaustraliano de 3,9 metros. La precisión de HIPPI alcanza las cuatro partes por millón (4 ppm) para estrellas brillantes. La polarización es una magnitud vectorial con dos componentes que se suelen describir mediante los parámetros de Stokes Q/I y U/I en el llamado diagrama Q/U.

La figura 2 muestra el diagrama Q/U para la estrella Régulo A determinado para cinco longitudes de onda (el valor más impreciso —con la cruz en rojo más grande— es el de PlanetPol y los otros cuatro son de HIPPI). Se observa cómo la polarización cambia de forma casi lineal con la longitud de onda desde +42 ppm a 741 nm (color rojo) hasta −22 ppm a 395 nm (color azul), como muestra la figura 2; este cambio de signo conforme se pasa del rojo al azul se ha observado por primera vez, ya que medidas previas de la polarización solo se realizaron a una única longitud de onda. El cambio de signo está asociado al giro en la dirección del vector de polarización de noventa grados, confirmando el modelo de Harrington y Collins de 1968.

La polarización observada indica que Régulo A está rotando sobre sí misma el 96,5% de su velocidad angular máxima; esta velocidad angular crítica (también llamada de rotura) corresponde a la velocidad angular en el ecuador de la estrella tal que los módulos de la fuerza centrífuga y de la atracción gravitacional sean iguales. Más allá de esta velocidad la estrella se volvería inestable y se rompería en pedazos.

Por supuesto, confirmar una predicción teórica que estaba libre de controversias no parece una gran noticia. Sin embargo, considero todo un hito que se haya podido observar en varias frecuencias la polarización de una estrella; en los próximos años se logrará con muchas otras y quizás también se anuncie la primera detección de un exoplaneta de tipo Júpiter caliente con este método. Sin lugar a dudas la astronomía estelar basada en la polarización tiene un futuro muy prometedor.

Este post ha sido realizado por Francis Villatoro (@Emulenews) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

Referencias

[1] Daniel V. Cotton, Jeremy Bailey, …, J. H. Hough, “Polarization due to rotational distortion in the bright star Regulus,” Nature Astronomy (18 Sep 2017), doi: 10.1038/s41550-017-0238-6.

[2] J. Patrick Harrington, “Polarization from a spinning star,” Nature Astronomy (18 Sep 2017), doi: 10.1038/s41550-017-0267-1.

[3] S. Chandrasekhar, “On the radiative equilibrium of a stellar atmosphere. X,” Astrophysical Journal 103: 351–370 (1946), doi: 10.1086/144816.

[4] J. P. Harrington and G. W. Collins, “Intrinsic polarization of rapidly rotating early-type stars,” Astrophysical Journal 151: 1051–1056 (1968), doi: 10.1086/149504.

El artículo La luz polarizada de la estrella más brillante de Leo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. HR, la estrella de los diagramas en astrofísica
  2. #Naukas15 Fantasía en la divulgación: una estrella para Cervantes
  3. La cafeína y su renacimiento como ingrediente estrella de los productos funcionales
Categorías: Zientzia

Jennifer Doudna eta Emmanuel Charpentier: DNA editatzeko guraizeen sortzaileak

Zientzia Kaiera - Vie, 2017/10/20 - 09:00
Uxue Razkin Duela bi aste Nobel Sarien irabazleen berri izan genuen. Zerrenda horretan ez ziren ageri Jennifer Doudna ezta Emmanuel Charpentier ere. Biokimikari hauek ez dute Nobela irabazi aurten baina merezi zuten, ezbairik gabe. Euren aurkikuntzak ingeniaritza molekularra hankaz gora utzi du; garatutako teknologia berriak ate handi bat ireki du alor horretan. CRISPR/Cas9 teknikaz ari gara, jakina. 2015ean Zientzia eta Teknologiako Asturiasko Printzesa Saria lortu zuten bi zientzialariek teknika berritzaile hori garatzeagatik. Izan ere, modu eraginkor eta azkar batean genoma editatzeko aukera eskaintzen du aurkikuntza horrek, “bisturi molekular” bat bailitzan.

Irudia: Emmanuelle Charpentier eta Jennifer Doudna ikertzaileak. (Aragazkia: ©FPA)

Bada, nondik datorkio izena sistema horri? Bi zientzialariak mikroorganismo jakin batzuk (zenbait bakteriok adibidez) agente genetiko arrotzen erasoei aurre egiteko erabiltzen dituzten mekanismoak ezagutzeko lanean ari ziren. Hori dela eta, bakterioen erresistentzia sistemaren mekanismo molekularrak izan zituzten aztergai. Ikusi zuten mikroorganismo jakin batzuek (arkeobakterioak eta bakterio batzuk) bakteriofagoengandik (bakterioak infektatzen dituzten birusak dira; bakterioen zelula egituran sartu eta erreplikatzeko erabiltzen dute) babesteko sistema bat erabiltzen zutela. Prozesu horretan, birusaren DNA zati bat txertatzen da bakterioan eta hori horrela, sortzen zen hurrengo bakterio belaunaldia gai da birus horri aurre egiteko. Hau da, sistema horrek nolabaiteko erresistentzia moduko bat ematen ziola bakterioari. Hala, bakterio horien jokabidea aztertzean, ikertzaileak ohartu ziren horrek erabilera anitzak ekar zitzakeela ingeniaritza molekularrean aplikatuz gero.

Horrela jaio zen erreminta hori, CRISPR (Clustered Regularlly Interspaced Short Palindormic Repeats-Errepikapen Palindromiko Labur Elkartuak eta Erregularki Tartekatuak)/Cas9 teknika gisa izendatutakoa. Bi biokimikariak, elkarlanean, ohartu ziren Cas izeneko proteinak gai zirela DNAren zati txiki bat hartzeko, eraldatzeko eta CRISPR sekuentzian txertatzeko. Hau da, Cas hori gai da mozketak egiteko genoma baten edozein sekuentzian. Garatutako metodoan, “patroi” moduko bat erabiltzen dute; aldaketa ez delako ausazkoa. Horretarako, RNA gidariak daude. Esan moduan, Cas proteina batek DNAren zati bat moztu eta aldatzen duenean, “patroiari” egingo dio so, proteinaren ondoan bidaiatzen duen RNA gidariari (sortzen erraza dena), hain zuzen. Moztu, aldatu eta itsasi.

Mundu berri bat

Edizio genomiko honek aplikazio ugari ekarri ditu. Doudnak eta Charpentierrek elkarrizketa batean azaldu zuten moduan, zeluletan dauden geneen funtzioa ezagutzeko balio du, adibidez. Horretaz gain, geneen sekuentzia berrantolatzeko, gaixotasun larriek eragindako mutazio genetikoak zuzentzeko edota farmakologia alorrean aplikatzeko balio du. Teknologia berri honek dakarren oztopoei dagokienez, Charpentierrek zioen erremintaren zehaztasunean dagoela gakoa. Ikerketa honekin hasi zirenean, kontatzen du, adibidez, aldatu beharreko DNAren zatiaz gain, genomaren DNA aldatzen zuela teknika horrek. Halere, horren harira, azaldu zuen sistema jakin horrek moldaketa batzuk jasan dituela ikertzen hasi zenetik eta doitasun hori hobetuz joan dela.

Etika da teknika horrek dakarren beste oztopoetako bat. Izan ere, jakin badakigu herentziazko gaixotasunak neutralizatu daitezkeela edizio genomiko hori erabiliz eta mutazio horiek zuzenduz. Baina, modu berean, posiblea da teknika hori erabiltzea gizakien genoma aldatzeko, ezaugarri jakin batzuk garatze aldera. Arrisku horren aurrean argi mintzatu zen Charpentier. Garatutako erremintak baditu helburu jakin batzuk: ebakuntza prebentiboak edo terapeutikoak biomedikuntza alorrean garatzea eta, horretaz gain, pazienteak tratatu eta estrategia berriak topatu medikamentu berriak sortzeko. “Teknika hori ez da beste gauza baterako”, gehitu zuen ikertzaileak.

Laburrean

Jennifer Doudna (Washington DC, 1964) aitzindaria da zientzia alorrean. Harvard Medical Schoolen egin zuen doktoretza, Jack Szostak irakaslearen –Medikuntzako Nobela lortu zuen 2009an– zuzendaritzapean. Tesian, erribozimen ikasketan murgildu zen. Azken hauek erreakzio biokimiko batzuk azeleratzeko gai diren molekulak dira. Gau gaurkoz, Californiako Unibertsitatean dabil ikerlari gisa. Beste aldetik, Emmanuel Charpentier (Juvisy-sur-Orge, Frantzia; 1968) dugu, Pierre eta Marie Curie Unibertsitatean (UPMC) ikasi zituen biokimika, mikrobiologia eta genetika. 1995ean doktoretza egin zuen Pasteur Institutuan. Ameriketako Estatu Batuetara joan zen horren ondotik. Bertan, unibertsitate eta ospitale anitzetan lan egin zuen. Bost urte han igarota, Europara itzuli zen, Vienara, lehendabizi, eta ondoren Suediara, non ikerketa-zuzendariaren kargua lortu zuen Molecular Infection Medicine Sweden-en (MIMS). 2015ean, Berlinen dagoen Infekzioaren Biologia Max Planck Institutua zuzentzeko eskaintza onartu zuen.

Sariei dagokienez, Jennifer Doudnarekin batera jaso dituenak anitzak dira, hala nola Ikerketa Biomedikoko Dr. Paul Janssen Saria (2014), Genetikako Gruber Saria (2015), Teknologia Transgenikoen Nazioarteko Elkarteko Saria (2015), eta duela gutxi jaso zuen Ezagutzaren Mugak BBVA Fundazioa Saria, biomedikuntza kategorian, Doudna eta Francisco M. Mojicarekin batera (2016). Horiek dira, beste askoren artean, aipagarrienak.

Informazio gehiago:

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Jennifer Doudna eta Emmanuel Charpentier: DNA editatzeko guraizeen sortzaileak appeared first on Zientzia Kaiera.

Categorías: Zientzia

Prohibir los herbicidas con glifosato es anteponer la ideología a la evidencia científica

Cuaderno de Cultura Científica - Jue, 2017/10/19 - 11:59

El glifosato fue sintetizado por primera vez en los años 50. En 1970, el químico John E. Franz, descubrió sus efectos herbicidas. Empezó a comercializarse por la compañía Monsanto en 1974 bajo el nombre de Roundup.

El éxito de Roundup llegó en los años noventa. Se utilizaba en cultivos de plantas genéticamente modificadas inmunes al efecto del glifosato. Esto permitía utilizar intensivamente el herbicida para eliminar las malas hierbas sin afectar al cultivo principal. La patente comercial de Monsanto acabó en el año 2000, con lo que desde entonces el glifosato comenzó a utilizarse libremente en herbicidas genéricos, popularizándose todavía más. Es barato y muy eficaz.

Hasta ese momento se usaban herbicidas específicos para cada planta. En cambio, el glifosato no es selectivo. Su aplicación es sencilla. Se pulveriza sobre las hojas y tallos, éste penetra en la planta y así la molécula comienza a circular por sus tejidos. El glifosato inhibe la ruta de biosíntesis de algunos aminoácidos esenciales para la vida de la planta. Esta ruta no existe en seres humanos y demás animales. Al ser una ruta exclusiva de las plantas, no tiene toxicidad apreciable en animales. Sustancias de uso común como la cafeína o el paracetamol tienen índices de toxicidad mayores que el glifosato.

Otra característica importante es que tiene una vida media muy corta, de tan solo 22 días antes de biodegradarse. Esto hace difícil que sus efectos acumulativos tengan un impacto significativo.

El glifosato nunca se ha llegado a prohibir. Durante años se ha estado cuestionando su seguridad, enfrentando a diferentes organismos. Algunos líderes de opinión y grupos ecologistas lo tienen en el punto de mira, convencidos de su supuesta acción cancerígena. Lo han convertido en un enemigo a combatir, emprendiendo campañas para su prohibición. Varias ciudades de España se han declarado libres de glifosato bajo lemas como «ciudad libre de herbicidas tóxicos», empleando en su lugar alternativas «naturales», como herbicidas que denominan «vinagre». Como el glifosato es un herbicida de uso legal, puede utilizarse en terrenos privados como explotaciones agrícolas. La medida sólo afecta a jardines, parques y vías públicas.

Al menos hasta diciembre de 2017 —fecha hasta la que se ha prorrogado la autorización—, el uso de glifosato en la Unión Europea está permitido, como lo ha estado siempre. Sin embargo, en 2015 se desató el conflicto. La Agencia Internacional para la Investigación del Cáncer (IARC) que depende de la OMS y la Autoridad Europea de Seguridad Alimentaria (EFSA) parecían haber llegado a conclusiones diferentes. Esta confrontación mediática ha hecho dudar de la independencia de los estudios presentados por ambas partes y de los supuestos intereses de unos y otros.

La EFSA publicó un metaestudio —un estudio que valoró las publicaciones científicas sobre el tema hasta la fecha— en el que se han tenido en cuenta más de 1500 estudios científicos sobre el glifosato. La conclusión del metaestudio es contundente: no hay evidencia científica de que el glifosato sea tóxico o potencialmente cancerígeno

Por su parte, la IARC incluyó el pesticida en el controvertido grupo 2A, es decir como «probable cancerígeno». Un dato que tener en cuenta es que esta lista del IARC se elabora según el nivel de evidencia que existe y no sobre los efectos o riesgos que tienen las sustancias. En esa misma categoría figura por ejemplo trabajar en una peluquería, en una freiduría, el consumo de hierba mate caliente o de carne roja. Ninguna de estas actividades se ha prohibido, precisamente porque no suponen un riesgo potencial. Realmente las conclusiones de la IARC y la EFSA no son tan diferentes como algunos se esfuerzan en mostrar.

A pesar de la evidencia científica, varias ciudades siguen en sus trece de prohibir el uso de glifosato. En su lugar dicen emplear «vinagre». Lo que emplean es una disolución de ácido acético —el vinagre contiene un 5% de esta sustancia—. El efecto del acético sobre las plantas es de quemadura. Si la planta es adulta las raíces pueden quedar intactas y la planta puede rebrotar, especialmente si es perenne. Por eso en un principio puede parecer que el acético funciona para eliminar las plantas no deseadas, pero normalmente es sólo en apariencia. También hay que tener en cuenta que las disoluciones de acético, además de resultar hediondas, por encima del 20% son irritantes para las personas y otros animales. Alteran el pH de la tierra y, en exceso, modifican la estructura del suelo. Es decir, llamarlo «vinagre» no lo convierte en la panacea de los herbicidas urbanos, responde a una cuestión estratégica: generar una falsa confianza atendiendo a un argumento de bajo calado intelectual, el que relaciona lo natural con lo bueno y lo sintético con lo malo.

Para algunos, Monsanto es algo así como el gran villano de la industria agrícola y cualquier invento suyo tiene, de serie, un halo de maldad. Ese fue el detonante de la farsa ecologista contra el glifosato que algunas ciudades lideran con ridículo orgullo. De ahí el título de este artículo. Prohibir los herbicidas con glifosato es anteponer la ideología a la evidencia científica, llevando las emociones por bandera. Eso tiene nombre.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo Prohibir los herbicidas con glifosato es anteponer la ideología a la evidencia científica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia, ideología y práctica política
  2. Azúcar moreno, ¿mejor que el azúcar blanco?
  3. Con los edulcorantes artificiales (casi) todo son ventajas
Categorías: Zientzia

Komodoko herensugearen ehizatzeko modua

Zientzia Kaiera - Jue, 2017/10/19 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Janaria

———————————————————————————————————–

Animalia mitikoa da Komodoko herensugea (Varanus komodoensis). Ez da egiazko herensugea, Varanidae familiako muskerra baino, den muskerrik handiena. Hiru metroko luzera izan dezake eta 80 kg-ko pisua (zenbait iturriren arabera, 140 kg-tara hel daiteke). Desagertzeko arriskuan omen dago eta Indonesiako lau uharte hauetan bizi da: Komodo, Rinca, Gili Motang eta Flores[1].

Irudia: Komodoko herensugeak (Varanus komodoensis) 3 metroko luzera izan dezake eta 80 kg-ko pisua (140 kg-tara hel daiteke).

Animalia sarraskijalea da, baina harraparia ere izan daiteke. Hala ere, Komodoko herensugeak ez du ohiko harrapariek bezala egiten; beste era batera jokatzen du. Izan ere, «eseri-eta-itxaron» harraparien jokabidea du, eta horrela jokatzean, ez du harrapakina kosk egitean hiltzen. Kosk egitean zauritu egiten du eta, harrapakinak alde egin arren, denbora laburrera hiltzen da. Orduan Komodoko herensugeak harrapakinaren aztarnari jarraitu behar dio, eta ia beti aurkitzen du harrapakinaren gorpua.

Naturari buruzko dokumentaletan askotan ateratzen dute Komodoko herensugea, eta hau da hari buruz ematen duten azalpena: Varanus komodoensisek hortz zorrotzak ditu, oso zorrotzak, baina ez du indar handiegirik egiten masailezurrekin. Horregatik alde egiten dute harrapakinek hasieran, herensugearen indarra ez omen baita harrapakina geldiarazteko nahikoa. Dokumental horien arabera, odola ez gatzatzeko entzimak eta bakterio toxikoen multzo bat txertatzen dizkio harrapakinari kosk egiterakoan. Bakterioen eragina bat-batekoa ez denez, denbora igaro behar da infekzioa hedatu eta, ondorioz, heriotza gertatu arte. Horrelaxe aurkezten dute dokumentalek Komodoko herensugearen elikatze-jokabidea, eta ezaugarri horiei egotzi diete haren ehizatze-estrategiaren arrakasta.

Gauzak, baina, ez omen dira horrela gertatzen. 2009ko maiatzean jakitera eman den ikerketa baten arabera, arruntagoak dira; izan ere, pozoia da, eta ez bakterio toxikoen multzoa, harrapakina hiltzen duena.

Lana egin duten ikertzaileek hildako banako baten burezurraren anatomia aztertu zuten, eta orduan ikusi pozoi-guruinak zituela. Gero, gainera, pozoi-guruinak kendu zizkioten hiltzear zegoen beste banako bati, eta horrela pozoiaren ezaugarriak aztertu ahal izan zituzten. Beraz, Komodoko herensugea animalia mitikoa da, bai, baina ez da uste zen bezain misteriotsua, ehizatzeko moduari dagokionez behintzat narrasti arrunta baita.

Oharra:

[1] Flores-eko gizakiaren uharte bera.

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso du.

The post Komodoko herensugearen ehizatzeko modua appeared first on Zientzia Kaiera.

Categorías: Zientzia

Cómo conseguir que la superhidrofobia dure

Cuaderno de Cultura Científica - Mié, 2017/10/18 - 17:00

El CMA CGM Jules Verne puede transportar 16,000 contenedores

Los barcos, y no los automóviles y camiones, son los grandes contaminantes de nuestro planeta en lo que se refiere a transporte. Un solo barco de los grandes arroja tantas sustancias carcinogénicas a la atmósfera como 50 millones (sí has leído bien, millones) de coches. El transporte marítimo es responsable de hasta el 30 % de los óxidos de nitrógeno que los humanos emitimos.

Para cambiar eso en los laboratorios se buscan soluciones. Unas van en la dirección de cambiar el tipo de combustible que usan y otras en disminuir el consumo de combustible, sea este el que sea. Una de las vías para esto último es reducir la resistencia que el mar opone al avance del buque.

Recubrir el casco de un barco con un material fuertemente repelente al agua podría reducir la resistencia que al desplazamiento del barco ejerce el agua. Una forma conocida de este tipo de material superhidrofóbico funciona porque tiene una superficie áspera que atrapa un cojín de aire que hace de lubricante. Pero este tipo de material aún no se ha utilizado en los buques, ni tiene visos de que lo vaya a ser próximamente, ya que la capa de aire tiende a degradarse con el tiempo hasta desaparecer.

Ahora, investigadores de la Universidad de Peking (China) han identificado ciertas condiciones en el fluido que, de cumplirse, conducirían a una capa de aire más duradera. Aunque las condiciones podrían ser muy difíciles de cumplir para los buques, no dejan de tener mucho interés para otro tipo de aplicaciones.

Hoja de loto

La corta vida de la capa de aire es una dificultad muy conocida a la hora de encontrar uso comercial para los materiales superhidrofóbicos. Por ejemplo, cuando una hoja de loto, lo más de lo más en la superhidrofobia, se sumerge por debajo de 5 m de agua, la capa de aire se difunde y desaparece en menos de 2 min.

Los investigadores consideraron una superficie superhidrofóbica con un modelo termodinámico que explica la difusión del gas entre la capa de aire atrapado y el agua circundante. Encontraron que existe un estado de equilibrio en el que la cantidad total de aire en la capa no cambia, siempre que haya una cantidad suficiente de gas disuelto en el agua.

Controlar directamente la cantidad de gas disuelto en una masa de agua es complicado en el laboratorio, no digamos ya en el mar. Pero los experimentos del equipo con hojas de loto y superficies superhidrofóbicas artificiales muestran que este control se puede lograr indirectamente en sistemas sellados ajustando la presión del agua que actúa sobre la superficie. El equipo probó su idea en una hoja de loto, demostrando que podían extender la vida útil de la capa de aire a al menos cuatro horas, la duración máxima de sus experimentos.

Estos resultados indican que en la utilización de materiales hidrofóbicos habrá que tener muy presentes la presión del agua y las condiciones de flujo.

Referencia:

Yaolei Xiang et al (2017) Ultimate Stable Underwater Superhydrophobic State Phys Rev. Lett doi: 10.1103/PhysRevLett.119.134501

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Cómo conseguir que la superhidrofobia dure se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cómo fabricar hielo extraterrestre y verlo molécula a molécula
  2. La fusión nuclear como fuente de neutrones eficiente
  3. Cómo sintetizar casi cualquier biomaterial usando ADN
Categorías: Zientzia

El problema de la plantación de árboles en filas

Cuaderno de Cultura Científica - Mié, 2017/10/18 - 11:59

Existen dos matemáticos por los que siento cierta admiración y de los que hemos hablado en varias ocasiones en la sección Matemoción del Cuaderno de Cultura Científica, son los ingleses Arthur Cayley (1821-1895) y James J. Sylvester (1814-1897), que además tuvieron una profunda relación científica y de amistad.

El matemático británico James J. Sylvester (1814-1897)

Sobre el primero acabo de terminar una biografía, “Cayley, el origen del álgebra moderna” para la colección Genios de las matemáticas de la editorial RBA, con cuya escritura he aprendido y disfrutado mucho. Sin embargo, en esta entrada no vamos a hablar de Arthur Cayley, sino de su colega y amigo James J. Sylvester, y de un problema que formuló en 1893, en la revista Educational Times.

Problema 11851: Demostrar que no es posible colocar cualquier número finito de puntos (en el plano) de forma que cada recta que pase por dos de ellos también pase por un tercero, salvo que todos los puntos estén contenidos en la misma recta.

Este problema, conocido en ocasiones como el problema de la línea de Sylvester o simplemente el problema de Sylvester, estaba relacionado con un problema más general, que suele recibir diferentes nombres, entre ellos, el problema de la plantación de árboles en filas, el problema del huerto o el problema de los puntos y las líneas, sobre el que estuvo trabajando Sylvester desde la década de 1860 hasta su muerte. En su versión general el problema se puede plantear así.

Problema: ¿Cómo pueden distribuirse n puntos en el plano (o quizás, n árboles en un huerto) formando filas, cada una de las cuales contiene exactamente k puntos (respectivamente, árboles), con el objetivo de obtener el mayor número de filas posibles? ¿Y cuál ese mayor número de filas posibles para cada n y k?

Sylvester había trabajado en la versión clásica en la cual las filas estaban formadas por tres árboles, es decir, el caso k = 3, como podemos observar en los problemas que planteó en Educational Times, en los años 1867 y 1886. Por ejemplo, en el problema 2473 (1867), que podéis ver en la imagen de abajo, planteó dos cuestiones: i) ¿Cómo plantar 81 árboles para que formen 800 filas con 3 árboles en cada fila?; ii) ¿Cómo plantar 10 árboles para que formen 10 filas con 3 árboles en cada fila?

“Problem 2473”, propuesto por J. J. Sylvester, en “Educational Times”, en 1867, con sus soluciones

Pero este era un problema que interesaba a más personas. Por ejemplo, como se menciona al final del problema 2473, el actuario inglés Wesley Woolhouse (1809-1893), editor de la famosa revista de matemática recreativa The Lady’s and Gentleman’s Diary, había publicado en la revista de problemas matemáticos The Mathematician que 15 puntos (árboles) podían ser colocados formando 26 filas, con 3 puntos (árboles) en cada fila.

Aunque la primera publicación en la que se mencionan problemas de plantación de árboles en filas fue el libro Rational Amusement for Winter Evenings (1821), de John Jackson, en el que se dedica todo un “capítulo” precisamente a estos problemas, “árboles plantados en filas”.

Página del libro “Rational Amusement for Winter Evenings” (1821), de John Jackson, con algunos problemas de “árboles plantados en filas”

Pero volvamos al problema de la línea de Sylvester (problema 11851 de Educational Times). Ni Sylvester, ni sus contemporáneos, consiguieron demostrar que no es posible colocar cualquier número finito de puntos en el plano de forma que cada recta que pase por dos de ellos también pase por un tercero, salvo que todos los puntos estén contenidos en la misma recta.

Cuarenta años después de la formulación del problema en Educational Times, aunque sin ser consciente de la existencia del mismo, el matemático húngaro Paul Erdös (1913-1996) conjeturó que el resultado era cierto, y lo publicó después en forma de problema en la revista American Mathematical Monthly (1943), formulado de la siguiente forma.

Problema de la línea de Sylvester (versión Erdös): Demostrar que si un conjunto finito de puntos del plano no están todos sobre la misma recta, entonces existe una recta con exactamente dos de los puntos.

La solución llegó rápidamente. En 1944 se publicaron dos demostraciones en la revista American Mathematical Monthly. Una de ellas, la del colega y amigo de Erdös, el matemático húngaro Tibor Grünwald, que posteriormente se cambiaría el nombre a Tibor Gallai, (1912-1992). Aunque no fue la primera en publicarse, parece ser que era previa a la publicación del enunciado del problema en la revista por parte de Erdös. La otra prueba era del matemático Robert Steinberg (1922-2014), por aquel entonces estudiante en la Universidad de Toronto (Canada). De esos años debía de ser también la demostración del matemático estadounidense Leroy M. Kelly (1914-2002), que es la que vamos a mostrar en esta entrada.

La demostración de Leroy M. Kelly del problema de Sylvester aparece recogida en El Libro de las demostraciones (Nivola, 2005), de los matemáticos Martin Aigner y Günter M. Ziegler, y de la que escriben que puede considerarse “simplemente la mejor”.

Recordemos que el matemático Paul Erdös solía hablar de EL LIBRO en el que Dios había escrito las demostraciones más bellas de entre todos los teoremas. Esta idea llevó a los matemáticos Martin Aigner y Günter M. Ziegler a escribir El libro de las demostraciones (Proofs from the BOOK) con el objetivo de incluir algunas de esas bellas demostraciones de las que hablaba Paul Erdös.

Dos entradas del Cuaderno de Cultura Científica en la que se recogen otras demostraciones de El libro de las demostraciones son:

A. Teorema de la galería de arte

B. Una bella demostración del Libro

Pero vayamos con la demostración de Kelly del problema de la línea de Sylvester. Es decir, vamos a demostrar que si un conjunto finito de puntos del plano no están todos sobre la misma recta, entonces existe una recta con exactamente dos de los puntos.

Demostración: Llamemos Ω al conjunto finito de los puntos del plano dados y Σ al conjunto de todas las rectas que pasan por al menos dos puntos de Ω. A continuación, consideramos todos los pares (P, r), donde P es un punto de Ω que no está en la recta r, de Σ, y todas las distancias de los puntos P a las rectas r, d(P, r), de todos esos pares. Y consideramos el par (Q, s) que nos da la distancia más pequeña de todas ellas. Ahora, llamemos R a la proyección ortogonal de Q sobre s, es decir, al punto de s más cercano a Q.

Vamos a demostrar que la recta s es la que verifica el resultado, es decir, que tiene exactamente dos puntos de Ω.

Supongamos que no es así y que la recta s tiene al menos tres puntos de Ω. Entonces existirán dos puntos P1 y P2 que están en el mismo lado de la recta s respecto de R y supongamos que P1 es el que está más cerca de R (como se muestra en la imagen), incluido el caso en el que P1 sea el propio R.

En tal caso, vamos a demostrar que la distancia del punto P1 a la recta r (que es la recta de Σ que pasa por Q y P2) es menor que la distancia de Q a s. Fijémonos en el triángulo QP1P2. Podemos afirmar que:

1. d(P1, P2) &lt d(Q, P2), ya que el ángulo que tiene como vértice P1 es obtuso (o recto);

2. calculando el área del triángulo desde dos puntos de vista distintos, obtenemos que

En consecuencia, de 1. y 2. se deduce que d(Q, s) = d(Q, R) > d(P1, r), como habíamos afirmado.

Que la distancia del punto P1, que pertenece a Ω, a la recta r, que pertenece a Σ, sea menor que la distancia de Q a s, es una contradicción con respecto a la elección del par (Q, s). En consecuencia, en la recta s no puede haber nada más que un punto de Ω a cada lado del punto R, es decir, hay dos puntos de Ω en total, como queríamos demostrar. QED

En una siguiente entrega de la sección Matemoción del Cuaderno de Cultura Científica abordaremos la historia de la solución del problema de la plantación de árboles en filas.

Pero vamos a terminar esta entrada con un par de problemas de ingenio del experto inglés en matemática recreativa Henry E. Dudeney (1857-1930). En sus libros, en particular, en Amusements in mathematics (1917), que fue publicado en castellano en tres partes, con el nombre conjunto de Diversiones Matemáticas (El acertijo del mandarín, Los gatos del hechicero y El misterio del muelle), también incluyó problemas de plantaciones de árboles en fila, que él llamó problemas de puntos y líneas.

En Diversiones matemáticas menciona un rompecabezas de este tipo atribuido al matemático inglés Sir Isaac Newton (1643-1727).

Rompecabezas de Newton: plantar 9 árboles de forma que formen 10 filas con 3 árboles en cada fila.

Y el segundo problema de este estilo, que incluimos aquí, lo planteó Dudeney como un problema militar, con una narrativa del problema no muy acertada en mi opinión. Es el problema Turcos y rusos (problema 213 de Amusement in Mathematics), que trasladamos aquí en la versión más simplificada de N. J. A. Sloane, que se recoge en el libro Viajes en el tiempo y otras perplejidades matemáticas, de Martin Gardner.

Turcos y rusos (versión de N. J. A. Sloane): Durante una batalla de la Primera Guerra Mundial, 11 soldados turcos fueron rodeados por 16 soldados rusos. Cada ruso disparó una vez y cada bala pasó exactamente por la cabeza de tres turcos. ¿Cómo estaban colocados los soldados turcos?

Martin Gardner (1914-2010), uno de los más grandes divulgadores de las matemáticas

Bibliografía

1.- Miodrag S. Petkovic, Famous puzzles of Great Mathematicians, AMS, 2009.

2.- James J. Sylvester, Problem 2473, Mathematical Questions from Educational Times 8, 1867, 106-107.

3.- James J. Sylvester, Problem 2572, Mathematical Questions from Educational Times 45, 1886, 133-134.

4.- James J. Sylvester, Problem 3019, Mathematical Questions from Educational Times 45, 1886, 134.

5.- James J. Sylvester, Problem 11851, Mathematical Questions from Educational Times 59, 1893, 98-99.

6.- John Jackson, Rational Amusement for Winter Evenings, Longman, Hurst, Rees, Orme and Brown, 1821.

7.- H. S. M.Coxeter, A Problem of Collinear Points, The American Mathematical Monthly, Vol. 55, No. 1, 1948, 26-28.

8.- L. M. Kelly, W. O. J. Moser, On the Number of ordinary lines determined by n points, Canad. J. Math. 10, 1958, 210-219.

9.- Martin Aigner, Günter M. Ziegler, El libro de las demostraciones, Nivola, 2005.

10.- Jiri Herman, Radan Kucera, Jaromir Simsa, Counting and Configurations, Canadian Mathematical Society, Springer, 2003.

11.- Henry E. Dudeney, El misterio del muelle (Diversiones matemáticas III), Biblioteca Desafíos Matemáticos, RBA, 2008.

12.- Martin Gardner, Viajes en el tiempo y otras perplejidades matemáticas, Biblioteca Desafíos Matemáticos, RBA, 2007.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo El problema de la plantación de árboles en filas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El problema de Malfatti
  2. El problema de las estudiantes de Kirkman
  3. El problema de los McNuggets de pollo
Categorías: Zientzia

Itsasoetako babes guneak arrantza ziurtatzeko gakoak

Zientzia Kaiera - Mié, 2017/10/18 - 09:00
Juanma Gallego AEBtako ekologoek egindako ikerketa batek dio itsasoetako babes guneen kudeaketa egokia eginez gero arrantzaleak ere garaile aterako direla. Espezie zehatzak babestea baino, ekosistemak babestuko dituzten eremuetan dago koska.

Ameriketako Estatu Batuen presidentetza uzteko hilabete batzuk baino falta ez zirenean, bat-batean, Barack Obama presidente zenak ezusteko mugimendua egin zuen. 2016ko abuztuan, Hawaiiko Papahanaumokuakea Monumentu Nazionala izeneko itsas babes gunearen zabalera nabarmenki handitu zuen: eremua 360.000 km karratu izatetik 1.510.000 km karratu izatera igaro zen; munduko handienetakoa, hain zuzen, Antartikan dagoen Ross itsasoarekin batera.

Halako erabakiak, ordea, ez dira beti ongi etorriak sektore guztietan. Kasu horretan, Hawaiiko arrantzaleak kexu azaldu ziren, erabakiak haien interesen kontra jotzen zuelakoan. Aspalditik errepikatzen den prozesua da, kontserbazioaren eta ustiapen ekonomikoaren arteko oreka mantentzea inoiz ez baita erraza.

Ekologo talde batek egindako eredu teoriko baten arabera, ordea, babes gune hauen kudeaketa egokia eginez gero, arrantzaleek ere onura gehiago eskuratuko lituzkete. Ekologian erabiltzen diren eredu matematikoak baliatu dituzte arrainen kopurua, mugimenduak, jaiotze-tasak eta bestelako adierazleak kalkulatzeko. Besteak beste, ondorioztatu dute babes guneetan arrainak hobeto hazten direla. Horrez gain, arrainak zein planktona babes gune horietatik kanpora ateratzen direla ere, arrantzaleen onurako. Arazoari ekiteko eredu hau, arrantzaren kudeaketan erabiltzen diren beste ereduak baino egokiagoak omen dira. Abuztuan argitaratu dute ikerketa, PNAS aldizkarian.

1. irudia: Ekologoek diote babes eremuak eraginkorrak direla onura ekonomikoak eta ekologikoak aldi berean eskuratzeko. (Argazkia: Matt Alaniz/Unsplash)

Artikuluan zehaztu dutenez, orain arte arrantzaren kudeaketan “lorpenak eta akatsak” tartekatu dira. Akatsei dagokienean, “zientziaren, politikaren eta kudeaketaren mugak” agerian gelditu direla diote. Adituen aburuz, arreta gehiegi jarri ohi da espezie zehatzetan, ekosistemetan jarri beharrean. Ekologoek arreta berezia jarri dute arrain bazterkinen arazoan, “arrantzaren kudeaketak aurrean duen erronkarik handienetakoa”, zehaztu dutenez.

Arrantzaleek eskuratzen dituzten arrain guztiak ez dira portuetara heltzen, sareetan harrapatutakoaren zati bat ez delako kontsumorako egokia. Fenomeno horri arrain bazterkina deitzen zaio. FAO Nazio Batuen Elikadura eta Nekazaritza Erakundearen estimazioen arabera, arrantzan harrapatutako biomasaren %8 betiko galtzen da.

Hamarretik bat, alferrik

Batez bestean, FAOk kalkulatu du 7,3 milioi tona galtzen direla urtero. Beste balioespen batzuek zifra handiagoak kalkulatzen dituzte, eta baztertutako biomasa ia 10 milioi tona direla diote. Kopuru handia izanda ere, duela hainbat hamarkada askoz handiagoa zen. 1989an puntu gorenera heldu zen. Urte horretan, arrantzaleek 18,8 milioi tona arrain kareletik behera bota zituzten.

Bazterkinen erdia inguru izkiren eta, oro har, itsas ondoan bizi diren arrainen arrantzan gertatzen da. Kasu hauetan, orokortuta dago arraste arrantza. Ekologistek askotan kritikatu dute arrantza mota hau, itsas hondoan dagoen guztia akabatzen duela argudiatuz.

2. irudia: Gobernuek kuotak erabili ohi dituzte arrantza arautzeko eta espezieak babesteko. (CC BY-3.0-ES 2012 / EJ-GV / Irekia-Eusko Jaurlaritza/Mikel Arrazola)

Arazo honi aurre egiteko, gobernuek kupoen politika martxan jarri ohi dute. Horren bitartez, orotara arrantzaleek eskuratu ahal dituzten arrainen kopurua gutxitu egiten da, egoera onean zein egoera kaxkarrean dauden espezieak bereizi gabe. Ondorioz, egoera onean dauden espezieen harrapaketak ere gutxitzen dira, eta horrek arrantzaleei kalte ekonomikoa eragiten die.

Ekologoek 2000ko hamarkadaren hasieran AEBtako mendebaldeko kostan gertatutakoa ekarri dute gogora. Orduan, itsas hondoko arrantza ahitu zen, eta arrantzaleek beren harrapaketak asko gutxitu behar izan zituzten, gehiegi ustiatutako espezieek berreskuratzeko aukera izan zezaten.

Ondo diseinatutako babesguneak, espezie ahulen aterpea

Egoera honen aurrean aterabide bat proposatu dute: itsas eremuak erabiltzea espezierik ahulenak babesteko. “Eredu honen arabera, denak garaile ateratzen dira”, laburbildu du Alan Hastings ekologoak, artikuluaren egile nagusia. UC Davis Unibertsitateko (AEB) aditu honen esanetan, era honetan aukera egongo litzateke arrantzaleek eskuratu nahi dituzten espezieak jasotzeko eta, aldi berean “populazio ahulenak babesteko”.

Arrantza tasa altuegiak nozitu behar dituzten espezie asko bizi iraupen luzea dute, eta ugaltzeko denbora dezente behar dute. Hau, batez ere, garrantzitsua da itsas hondoan bizi diren espezieen kasuan. Egileek ondorioztatu dute itsas eremu babestuetan espezie guztiak, bai ahulak zein indartsuak, askoz hobeto hazten direla, eta, ondorioz, biomasa gehiago sortzen dela.

Ikerketan hainbat espezie hartu dituzte eredutzat. Batetik, arrantzaleek kopuru handitan ustiatzen duten mihi-arraina (Microstomus pacificus), egoera onean dagoen espezie gisa. Bestetik, egoera ez hain onean dauden beste espezieak ikertu dituzte. Hauei gehiegizko arrantzak kalte egin diete: Sebastes alutus, Sebastes crameri, Sebastes paucispinis eta Sebastes ruberrimus espezieak. Guztiak itsas hondoetan bizi diren arrainak dira.

Adituek diote babestutako eremuek laguntzen dutela mihi-arrainaren arrantza mantentzen eta, aldi berean, ahulagoak diren espezien berreskurapena ahalbidetzen. Horrela, babes eremuen kudeaketa egokia eginez, onura ekonomiko eta ekologikoak bateratzeko bidea zabaltzen dela diote: “orokorrean, eta espezie asko tartean dauden inguruetan, ikusi dugu ondo diseinatutako babes eremuen erabilerarekin eta horietatik kanpo arrantzaren kudeaketa arretatsuarekin onura ekologikoak eta ekonomikoak lortzen direla“, laburbildu dute artikuluan.

Erreferentzia bibliografikoa:

Alan Hastings, Steven D. Gaines, and Christopher Costello. Marine reserves solve an important bycatch problem in fisheries. PNAS 2017 114 (34) 8927-8934; published ahead of print August 9, 2017, DOI:10.1073/pnas.1705169114

———————————————————————————-

Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.

———————————————————————————-

The post Itsasoetako babes guneak arrantza ziurtatzeko gakoak appeared first on Zientzia Kaiera.

Categorías: Zientzia

Sistemas respiratorios: peces capaces de respirar en aire y anfibios

Cuaderno de Cultura Científica - Mar, 2017/10/17 - 17:00

Pulmón izquierdo (“Left Lung”) de un ejemplar diseccionado de Protopterus dolloi, un sarcopterigio dipnoo (véase el texto)

Numerosos vertebrados respiran en aire. Lo hacen aves y mamíferos, la mayor parte de los reptiles y buen número de anfibios. La gran mayoría de los peces respiran en agua, si bien unos cuantos son también capaces de hacerlo en aire y unos pocos, como algunos dipnoos, solo pueden respirar en aire. Precisamente, los primeros vertebrados que respiraron en aire fueron peces, y se cree que esa capacidad la desarrollaron especies cuyos ejemplares colonizaron masas de agua que experimentaban una intensa evaporación estacional. Bajo esas circunstancias, la gran evaporación conllevaba una fuerte reducción de la concentración de oxígeno, dando lugar a condiciones de hipoxia o, directamente, a la pérdida total de la masa de agua por desecación. Tanto en condiciones de hipoxia como en ausencia de agua, la respiración a través de branquias resulta insuficiente para proveer los volúmenes de oxígeno necesarios para sostener el metabolismo mediante las vías aerobias.

Los peces que desarrollaron la capacidad para respirar en aire eran seguramente bimodales, no perdieron la respiración acuática. En la actualidad hay varias especies con respiración bimodal. Algunas anguilas, por ejemplo, son capaces de respirar en aire a través del tegumento; eso les permite, además, transitar entre cauces de agua reptando por el suelo, si este se encuentra húmedo, para desplazarse. Los cláridos tienen branquias modificadas, dotadas de una estructura -el órgano laberinto- que surge de unos arcos branquiales reforzados de manera que evitan su colapso cuando se encuentran expuestos al aire; los llamados bagres andarines son capaces de realizar cortos desplazamientos en tierra gracias a esa modificación branquial. Otras especies recurren al intercambio gaseoso a través de ciertas partes del aparato digestivo, como la pared de la boca, la faringe o el estómago. Y otras, finalmente, presentan sacos aéreos independientes, o sea, verdaderos pulmones, como los de los dipnoos.

Las especies de la familia Chaniidae están obligadas a respirar en aire, y lo hacen a través de un órgano laberinto primitivo. Y lo mismo ocurre con algunos dipnoos, aunque estos respiran a través de pulmones.

Los primeros pulmones surgieron en los peces a partir de la faringe. En algunos el saco aéreo original se duplicó y los dos pulmones adoptaron una disposición ventral. Ese es el origen de los pulmones de anfibios, reptiles, aves y mamíferos. Los anfibios fueron la primera clase de vertebrados que surgió de peces pulmonados, en concreto de peces sarcopterigios. En los anfibios se combinan de formas diversas la respiración a través de la piel, las branquias y los pulmones. La salamandra Siren lacertina, por ejemplo, combina las tres modalidades, y si se considera el ciclo de vida completo, casi todos los anfibios también lo hacen: en la fase larvaria respiran a través de las branquias y tras sufrir la metamorfosis pasan a combinar la respiración cutánea y la pulmonar.

No obstante, hay excepciones. El ajolote retiene las branquias propias de la fase larvaria durante toda su vida y respira a través de ellas. Otras salamandras, sin embargo, carecen de branquias y de pulmones; respiran solo por la piel gracias a que se encuentra muy vascularizada y a que viven en cauces de agua muy oxigenada. No son los únicos anfibios con respiración exclusivamente cutánea: la rana del lago Titicaca y la rana de cabeza aplanada también son acuáticas y solo respiran por la piel. Hay también unas salamandras terrestres de muy pequeño tamaño que carecen de pulmones y solo respiran a través de la piel.

Sin embargo, como ya se ha señalado, la mayor parte de los anfibios respiran a través de las branquias durante la fase larvaria acuática y tras la metamorfosis pasan a respirar a través de los pulmones y de la piel. Los pulmones de los anfibios son muy primitivos. Comparados con los de los amniotas (reptiles, aves y mamíferos) tienen pocos septos y grandes alveolos, por lo que cuentan con una superficie para el intercambio de gases relativamente pequeña. La tasa difusión es, por ello, baja. La excepción la constituyen las cecilias, un grupo de anfibios tropicales que viven dentro del suelo o de la hojarasca y cuyas especies carecen de extremidades. Tienen un único pulmón muy largo (recorre el 70% de la longitud corporal) con un alto grado de compartimentación y, por lo tanto, con numerosos alveolos.

En la mayoría de las especies con respiración pulmonar la ventilación se realiza bombeando aire desde la boca a los pulmones. El animal inspira el aire a través de los orificios nasales y lo alberga en su cavidad bucal, a continuación cierra los orificios nasales, abre la glotis y eleva el suelo de la boca, impulsando el aire hacia los pulmones; debe repetir esta operación varias veces para llenar los pulmones. Y a continuación expulsa en aire contrayendo los músculos de la pared corporal próximos a los pulmones de manera que el volumen de estos se reduce. Normalmente el aire utilizado es expulsado de una sola vez.

Como hemos podido ver aquí, la ocupación parcial del medio terrestre por parte de ciertos grupos de peces, así como la diversidad de situaciones en que se pueden encontrar los anfibios ha propiciado una variedad de dispositivos y comportamientos respiratorios en estos grupos. No son muchas especies, pero su anatomía y fisiología respiratoria reviste interés por tratarse de los grupos de vertebrados que protagonizaron la colonización del medio terrestre y por ello, la adaptación a un nuevo medio respiratorio.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Sistemas respiratorios: peces capaces de respirar en aire y anfibios se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sistemas respiratorios: animales que respiran en agua
  2. Sistemas respiratorios: invertebrados terrestres
  3. Sistemas respiratorios: los límites a la difusión de los gases
Categorías: Zientzia

La naturaleza estadística de la segunda ley de la termodinámica

Cuaderno de Cultura Científica - Mar, 2017/10/17 - 11:59

Si te preguntas qué pinta aquí un encéfalo en la mitad del espacio interestelar, lee el artículo completo y la nota final.

El físico austríaco Ludwig Boltzmann, dándole vueltas al concepto de fenómeno “irreversible”, detectó una escapatoria a la imagen fatalista de un Universo que se agota a medida que aumenta la entropía. Concluyó que la tendencia hacia la disipación de la energía no es una ley absoluta de la física que aplique en cualquier situación. Por el contrario, cuando se refiere al comportamiento de muchas partículas, es solo una ley estadística. Esta idea, que le apartaba del determinismo newtoniano, le costó hacerse muchos enemigos.

Piensa en un globo lleno de aire que contiene billones de moléculas. Boltzmann diría que, de todos las disposiciones concebibles de las moléculas de gas en un instante dado, su movimiento casi siempre estaría completamente “desordenado”, en el sentido que definíamos anteriormente. Sin embargo, es igualmente concebible que en algún momento ocurra que la mayoría de las moléculas, por casualidad, se muevan en la misma dirección. En cualquier disposición al azar habrá fluctuaciones del desorden completo o, dicho de otra manera, si llamamos homogeneidad a este desorden completo, habrá momentos en los que existan heterogeneidades. Pero cuanto mayor es la fluctuación hacia el orden, menos probable es que ocurra. Para colecciones de partículas tan grandes como el número de Avogadro, la posibilidad de que una fluctuación sea lo suficientemente grande como para ser mensurable es extremadamente pequeña, pero no nula.

Con el mismo argumento, es por tanto concebible que una olla con agua fría se caliente por sí sola después de que la golpeen solo las moléculas más energéticas del aire circundante. También es concebible que, por un breve momento, las moléculas de aire “se agrupen” y golpeen solo un lado de una piedra, empujándola cuesta arriba. Estos acontecimientos son concebibles, técnicamente no imposibles pero absolutamente improbables.

Para pequeñas colecciones de partículas, sin embargo, es una historia diferente. Así como es bastante probable que la altura promedio de las personas en un autobús en concreto sea considerablemente mayor (si viaja la selección absoluta de baloncesto) o menor (si lleva de excursión a niños de primaria) que el promedio del país, es probable de la misma manera que más moléculas golpeen un lado que otro de una partícula microscópica. Eso es precisamente lo que causa el movimiento browniano observable de partículas microscópicas en un gas o líquido. Las fluctuaciones, prácticamente indetectables para cualquier colección de moléculas grandes que nos encontramos diariamente en nuestra vida cotidiana, como ollas o piedras, son un aspecto importante del mundo de las partículas muy pequeñas.

Una consecuencia de estas consideraciones es que la segunda ley de la termodinámica tiene un carácter diferente a todas las otras leyes fundamentales de la física conocidas a finales del siglo XIX. La diferencia estriba en que trata con probabilidades, no con certezas. Por ejemplo, dice que es muy probable que cuando se mete un cubito de hielo en agua caliente, la estructura ordenada del cubito se rompa y se derrita, formando agua. Pero esta ley no descarta la posibilidad extremadamente improbable de que las moléculas más lentas de agua caliente se unan por un instante para formar un cubo de hielo*. Una cosa así o se ha observado nunca, y probablemente nunca lo será, pero en principio es posible.

La segunda ley es, por lo tanto, una ley estadística, que da el resultado estadístico de un gran número de eventos individuales (colisiones de moléculas).

Nota:

*O, ya puestos, que surja en medio del espacio un ente autoconsciente. Esto se conoce como paradoja del cerebro de Boltzmann.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La naturaleza estadística de la segunda ley de la termodinámica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La teoría cinética y la segunda ley de la termodinámica
  2. El estatus de la segunda ley de la termodinámica
  3. La segunda ley de la termodinámica
Categorías: Zientzia

Páginas