Suscribirse a canal de noticias Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Actualizado: hace 44 mins 25 segs

Soy un computador HAL de la serie 9000…

Jue, 2024/12/12 - 11:59

…me pusieron en funcionamiento en la fábrica H A L de Urbana, Ilinois, el 12 de enero de 1992. Mi instructor fue el señor Langley; me enseñó una canción, si usted quisiera, podría cantársela. Se llama Daisy.

Así es la sobrecogedora despedida de HAL 9000 en 2001: Una odisea del espacio; seguramente, una de las inteligencias artificiales más… ¿queridas? del mundo del cine —HAL tiene sus cositas de psicópata, pero creo que, en el fondo, todos le tenemos cariño—. A medida que Dave Bowman va desconectándole módulos de memoria, el computador, ya en esta escena más humano que los propios humanos de la película, va perdiendo facultades, su voz se ralentiza, se vuelve más grave y se va apagando al son de una canción que, en principio, parece no tener ningún sentido:1

Daisy, Daisy, give me, give me your answer do

I’m half crazy all for the love of you

It won’t be a stylish marriage

I can’t afford a carriage

But you’ll look sweet upon the seat

Of a bicycle built for two.

Pero lo tiene, y mucho. Años antes de la grabación de 2001, en 1961, Daisy Bell le había puesto banda sonora a uno de los grandes hitos de la historia de la computación.

daisyEl astronauta Dave Bowman desconectando a HAL 9000 en 2001: Una odisea del espacio. Las últimas palabras de computador son unos versos de la canción Daisy Bell. Fuente: Metro-Goldwyn Mayer / Fair use

Esta canción tan naíf, en la que un joven le declara el amor a su dama, se remonta a 1892 y también tiene su propia historia. En un viaje a Estados Unidos, a Harry Dacre, el autor, se le ocurrió llevar consigo una bicicleta y, al tratar de pasarla por la aduana, se encontró con la sorpresa de que le cobraron aranceles. Cuando se lo comentó a otro compositor y amigo suyo, William Jerome, este le comentó que menos mal que no era «una bicicleta hecha para dos» (a bicycle built for two) o le habrían cobrado el doble. Parece que la frase llamó la atención de Dacre, que se propuso utilizarla en una canción: esa canción fue Daisy Bell.

daisyPortada australiana de la partitura de Daisy Bell. Fuente: Dominio público.

Fue precisamente lo sencillo de la letra y de la melodía, además de que, en aquel momento, ya no estuviera protegida por derechos de autor, lo que llevó al ingeniero eléctrico —y violinista— Max Mathews y a los programadores John L. Kelly y Carol Lochbaum a elegirla para el proyecto que estaban llevando a cabo en los Laboratorios Bell en Murray Hill (Nueva Jersey): querían que un ordenador cantara o, en otras palabras, querían digitalizar el sonido.

En los Bell Labs se llevaba trabajando en el análisis y codificación de la voz desde los años treinta; el objetivo que el ingeniero Homer Dudney tenía en mente cuando creó el vocoder en 1938 era desarrollar un dispositivo capaz de analizar y modificar señales habladas, con el fin de mejorar las transmisiones de voz. Lo hizo prácticamente a la par que otro dispositivo, el voder, uno de los primeros sintetizadores del habla —el resultado, a decir verdad, fue un tanto siniestro—. Ambos inventos serían fundamentales para el desarrollo de la codificación de música por ordenador.

Demostración del voder de Homer Dudney en la Feria Universal de Nueva York de 1939. Fuente: Dominio público

Kelly conocía bien los entresijos del vocoder, con el que había trabajado durante mucho tiempo. Por su parte, Mathews había creado en 1957 el primer programa para generar música por ordenador: MUSIC. En el proyecto de conseguir hacer cantar a una máquina, Kelly y Lochbaum se encargaron de la parte de la voz, mientras Mathews se encargaría de sintetizar el acompañamiento musical con su software. El intérprete fue un flamante IBM 704 de válvulas de vacío que funcionaba con tarjetas perforadas, y sonaba así:

Max Mathews, John L Kelly y Carol Lochbaum programaron un IBM 704 para que cantara Daisy Bell.

¡Y ahora es cuando llega el crossover! El interés de Max Mathews por la música por ordenador no surgió por generación espontánea, sino que fue idea de su jefe, con el que mantenía una magnífica relación y con el que solía ir a conciertos de vez en cuando. En 1957, en uno de esos conciertos, este le sugirió a Mathews que siguiera esa línea de trabajo. Este jefe, como él mismo se definió a sí mismo una vez, era «un oscuro personaje» llamado John R. Pierce que, casualmente, también era escritor de ciencia ficción y un habitual de revistas como Astounding Science Fiction, donde solía aparecer bajo el pseudónimo de J. J. Coupling —guiño, guiño a los físicos —. Como escritor de ciencia ficción era, por supuesto, amigo de otros escritores de ciencia ficción, entre ellos, Arthur C. Clarke.

En uno de los viajes que Clarke hizo a Estados Unidos a principios de los sesenta, Pierce lo invitó a visitar los Bell Labs. Una de las atracciones estrella de aquellos tours que se les hacía a los visitantes era, por supuesto, escuchar al IBM 704 cantando Daisy Bell… Y el resto es historia del cine.

Impresionado por lo que había presenciado, Clarke incluyó la canción en el guion de 2001. De esta manera, en la escena en que el ordenador pierde facultades mientras Dave lo desconecta, HAL no solo vuelve a su infancia, sino a la infancia de la historia de la computación y la inteligencia artificial.

Bibliografía

Clarke, A. C. (1980). The lost worlds of 2001. New American Library.

Hass, J. (s. f.) Introduction to computer music. Universidad de Indiana. 

O’Dell, C. (2009). «Daisy Bell (Bicycle Built for Two)»—Max Mathews, John L. Kelly, Jr., and Carol Lochbaum (1961). Library of Congress.

Nota:

1 La traducción un poco libre al español fue: «Daisy, Daisy, tú eres mi ilusión. / Dulce sueño, por ti yo loco estoy. / Por un beso tuyo diera feliz la vida entera»… y se volvía a repetir desde el principio.

.
Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo Soy un computador HAL de la serie 9000… se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Puntos reticulares sobre circunferencias

Mié, 2024/12/11 - 11:59

Leyendo sobre sucesiones fractales, tema al que he dedicado algunas entradas del Cuaderno de Cultura Científica, como Sucesiones fractales, La sucesión fractal de Thue-Morse y la partida infinita de ajedrez, Sucesiones fractales: del número a la nota musical o La sucesión del infinito del compositor Per Nørgård, llamó mi atención una sucesión que se definía como el “número de puntos reticulares sobre las circunferencias de radio n centradas en el origen (0,0)”.

reticularesPortada del disco Per Nørgård: Iris/Voyage into the Golden Screen (1973), de la Danish National Symphony Orchestra, dirigida por Herbert Blomstedt y Tamás Vetö, en cuya imagen podemos observar la sucesión del infinito en formato musical y dibujada en espiralPuntos reticulares

Empecemos explicando los conceptos relacionados con la generación de esta sucesión de números, en particular, qué son los puntos reticulares.

Aunque podemos trabajar con una retícula infinita cualquiera, es decir, un conjunto infinito de líneas verticales y horizontales equidistantes cada una con la siguiente y con la anterior, lo mejor es trabajar con el plano coordenado y la retícula formada por las rectas paralelas a los ejes de coordenadas (verticales y horizontales) que pasan por los puntos de la forma (n,0), las primeras, y de la forma (0,m), las segundas, para n y m números enteros (como en la siguiente imagen).

El plano coordenado y el retículo de líneas verticales y horizontales

 

Los puntos reticulares, o puntos de la retícula, son aquellos puntos que son intersección de las líneas horizontales y las verticales de la retícula. En el caso de la retícula del plano coordenado los puntos reticulares son aquellos puntos de la forma (n, m), donde n y m son números enteros (como los puntos (3,4), (5,1), (4,–3), (–2,–2) y (–4,2) de la anterior imagen).

No es la primera vez que se habla en el Cuaderno de Cultura Científica sobre puntos reticulares, ya lo hicimos en la entrada Calcular el área contando puntos, dedicada al conocido teorema de Pick, que permite calcular el área de la región encerrada por un polígono reticular (un polígono trazado sobre una retícula y cuyos vértices son puntos reticulares) contando puntos, en concreto, mediante la expresión Área = I + B/2 – 1, donde I es el número de puntos del retículo que están en el interior del polígono y B la cantidad de los puntos del retículo que están en la frontera, es decir, en el polígono.

Aplicando el teorema de Pick, el área encerrada por este polígono reticular es igual a A = I + B/2 – 1 = 29 + 13/2 – 1 = 34,5 u.c.

 

Aprovechemos que tenemos ante nosotros el teorema de Pick para mencionar a un artista que lo utiliza en una de sus obras, el estadounidense Nelson Saiers, quien después de doctorarse en matemáticas estuvo trabajando en el mundo de las finanzas hasta 2014, año en el que decide dedicarse al arte, en concreto, realiza obras de arte basadas en las matemáticas. Una de sus obras más conocidas es la instalación Acortando: hacer racional lo irracional (2017), en la cárcel de Alcatraz (San francisco, California).

La obra de Nelson Saiers relacionada con el teorema de Pick es Genocide is Evil (2014). En la misma, Saiers escribe en Braille la frase que da título a la obra “Genocide is Evil”, dando color a cada uno de los puntos, que luego conecta formando un polígono reticular. Debajo, a la derecha, aparece la fórmula de Pick que permite calcular el área de esa región contando puntos. La elección del teorema de Pick no es casual, ya que Georg Alexander Pick (1859-1942) fue un matemático austriaco judío que murió en el “campo de concentración-ghetto” de Theresienstadt (Terezín, República Checa).

reticularesGenocide is Evil (2014), del artista estadounidense Nelson SaiersNúmero de puntos reticulares sobre circunferencias

Conocido el concepto de punto reticular, estamos en condiciones de introducir esta sucesión de números que consiste en la cantidad de puntos reticulares sobre las circunferencias de radio n centradas en el origen (0,0), para n números enteros no negativos.

Recordemos que una circunferencia de centro un punto c = (a,b) y radio r está formado por todos los puntos del plano que están a distancia r de dicho centro c, es decir, aquellos puntos (x,y) del plano que satisfacen que (x – a)2 + (y – b)2 = r2.

En la siguiente imagen tenemos la construcción geométrica de los primeros términos, es decir, para n = 0, 1, 2, 3, 4 y 5, es decir, circunferencias centradas en el origen de radio 0 (un punto), 1, 2, 3, 4 y 5.

reticularesPrimeros términos de la sucesión de las cantidades de puntos reticulares sobre las circunferencias de radio n centradas en el origen (0,0), para n = 0, 1, 2, 3, 4, 5

El caso extremo de una circunferencia de radio 0, centrada en el origen (0,0), se entiende que está formada solo por el punto (0,0), luego la cantidad es de 1 punto reticular; para los radios iguales a n = 1, 2, 3 y 4, solo hay 4 puntos reticulares, a saber, (n,n), (n,–n), (–n,–n) y (–n,n), los que están en los ejes de coordenadas. En el caso de n = 5, la circunferencia de radio 5, no solo existen los cuatro puntos reticulares similares a los anteriores, los que están en los ejes, (5,5), (5,–5), (–5, –5) y (–5,5), sino que además hay otros 8 puntos reticulares más, que son (3,4) y (4,3), en el primer cuatrimestre, más los otros seis simétricos a estos. En conclusión, los primeros miembros de esta sucesión son 1, 4, 4, 4, 4, 12.

Analicemos brevemente el caso particular de los 8 puntos nuevos, que no son los cuatro de los ejes coordenados, que aparecen en el caso del radio n = 5. Estos se corresponden con el triple pitagórico (3, 4, 5), es decir, 32 + 42 = 52 (sobre triples pitagóricos pueden leerse las entradas El teorema de Pitágoras y los números congruentes [https://culturacientifica.com/2022/02/23/el-teorema-de-pitagoras-y-los-numeros-congruentes/] y Construir un triángulo pitagórico doblando papel [https://culturacientifica.com/2021/11/17/construir-un-triangulo-pitagorico-doblando-papel/]). Por lo tanto, la expresión 32 + 42 = 52 significa, en particular, que los puntos (3,4) y (4,3) están a una distancia 5 del origen (0,0), es decir, están sobre la circunferencia centrada en el origen y de radio 5. Por lo tanto, la construcción de esta sucesión está relacionada con los triples pitagóricos, aunque hoy no vamos a profundizar en esta cuestión.

El óleo Pythagoraisches dreieck im quadrat II / Triángulo pitagórico en un cuadrado II (1974-1980), del artista concreto suizo Max Bill, en el que aparece un triángulo pitagórico de lados 3, 4 y 5

Para los siguientes radios n = 6, 7, 8 y 9, solamente hay 4 puntos reticulares en las correspondientes circunferencias, que son los que se encuentran en los ejes coordenados. De nuevo, surgen más puntos para n = 10, ya que tenemos el triple pitagórico (6, 8, 10), que se obtiene multiplicando el triple (3, 4, 5) por 2, es decir, para n = 10 hay 12 puntos reticulares. Para n = 11 y 12, se vuelve a los cuatro puntos de la retícula están en los ejes. Sin embargo, para n = 13 se obtiene otro triple pitagórico (5, 12, 13), ya que 52 + 122 = 132, luego para n = 13 hay de nuevo 12 puntos reticulares (los cuatro de los ejes, más (5,12) y (12,5), junto con sus simétricos).

Por lo tanto, la sucesión de la cantidad de puntos reticulares sobre las circunferencias de radio n centradas en el origen (0,0), para los números enteros no negativos, que empezaba por 1, 4, 4, 4, 4, 12, se continua con 4, 4, 4, 4, 12, 4, 4, 12. Después de estos siguen los términos 4, 12, 4, 12, 4, 4, 12, 4, 4, 4, 4, para n entre 14 y 24. En todos esos casos están los cuatro puntos reticulares de los ejes coordenados, pero para n = 15, 17 y 20 volvemos a tener triples pitagóricos, (9, 12, 15), (8, 15, 17) y (12, 16, 20).

Para n = 25, tenemos otro pequeño salto, ya que ahora disponemos de dos triples pitagóricos, que son (15, 20, 25) y (7, 24, 25). Por lo tanto, en este caso hay 20 puntos reticulares (4 + 8 + 8) sobre la circunferencia de radio 25, centrada en el origen, que se muestran en la siguiente imagen.

reticularesLos 20 puntos reticulares sobre las circunferencias de radio 25 centrada en el origen (0,0)

 

Y así podríamos continuar con los demás miembros de la sucesión del número de puntos reticulares sobre las circunferencias de radio números enteros no negativos centradas en el origen (0,0), que es la sucesión A046109 de la Enciclopedia on-line de Sucesiones de Números Enteros – OEIS, y cuyos primeros términos son

1, 4, 4, 4, 4, 12, 4, 4, 4, 4, 12, 4, 4, 12, 4, 12, 4, 12, 4, 4, 12, 4, 4, 4, 4, 20, 12, 4, 4, 12, 12, 4, 4, 4, 12, 12, 4, 12, 4, 12, 12, 12, 4, 4, 4, 12, 4, 4, 4, 4, 20, 12, 12, 12, 4, 12, 4, 4, 12, 4, 12, 12, 4, 4, 4, 36, 4, 4, 12, 4, 12, 4, 4, 12, 12, 20, 4, 4, 12, 4, 12, 4, 12, 4, 4, 36, …

La sucesión A046109 es una sucesión fractal

Para empezar, recordemos que una sucesión infinita de números enteros es una sucesión fractal, también llamada sucesión autosemejante, si una parte de la sucesión es igual a toda la sucesión, es decir, si se eliminan algunos miembros de la sucesión los miembros de la sucesión que quedan siguen siendo toda la sucesión. Además, se dice que una sucesión es una sucesión fractal de razón d si el subconjunto de términos de la sucesión que no se eliminan son los que van apareciendo cada d posiciones.

La sucesión A046109 (en la OEIS) de la cantidad de puntos reticulares sobre las circunferencias de radio números enteros no negativos centradas en el origen (0,0), es una sucesión autosemejante de razón 3, como puede observarse, ya que si se empieza en el 1, luego se eliminan los dos siguientes términos y se mantiene el tercero, y así se continúa de forma infinita, se eliminan dos seguidos y se mantiene el tercero, la sucesión infinita de los términos que quedan sigue siendo la sucesión original, la sucesión A046109:

1, 4, 4, 4, 4, 12, 4, 4, 4, 4, 12, 4, 4, 12, 4, 12, 4, 12, 4, 4, 12, 4, 4, 4, 4, 20, 12, 4, 4, 12, 12, 4, 4, 4, 12, 12, 4, 12, 4, 12, 12, 12, 4, 4, 4, 12, 4, 4, 4, 4, 20, 12, 12, 12, 4, 12, 4, 4, 12, 4, 12, 12, 4, 4, 4, 36, 4, 4, 12, 4, 12, 4, 4, 12, 12, 20, 4, 4, 12, 4, 12, 4, 12, 4, 4, 36, …

El teorema de Schinzel

En relación con la construcción de la anterior sucesión infinita de números, la búsqueda de los puntos reticulares que están sobre ciertas circunferencias, el matemático polaco Andrzej Schinzel (1937-2021) demostró el siguiente resultado.

Teorema de Schinzel: Para todo número entero positivo n, existe una circunferencia sobre el plano coordenado que pasa exactamente por n puntos reticulares.

Veamos qué ocurre para los primeros casos.

Circunferencias sobre el plano coordenado que pasan por 1, 2, 3, 4, 5 y 6 puntos de la retícula

 

La demostración que realizó Schinzel de este resultado, publicada en el artículo Sur l’existence d’un cercle passant par un nombre donné de points aux coordonnées entières (L’Enseignement Math. Ser. 2, n. 4, 71-72, 1958), consistía en la contrucción de circunferencias concretas en función de si n era par o impar. En concreto, si n era par, de la forma n = 2k, entonces consideró la circunferencia de centro (1/2,0) y radio 5(k – 1)/2/2, cuya ecuación es

construida para tener exactamente 2k puntos reticulares, mientras que, si n era impar, de la forma n = 2k + 1, entonces consideró la circunferencia de centro (1/3,0) y radio 5k/3, cuya ecuación es

construida para tener exactamente 2k + 1 puntos reticulares.

La construcción de las circunferencias de la demostración de Schinzel proporciona circunferencias con la cantidad deseada n de puntos reticulares, aunque no son las circunferencias de radio más pequeño que cumplen que tienen n puntos de la retícula. Por ejemplo, el matemático recreacional Ed Pegg Jr en la página de Wolfram Demonstrations Project construye algunas circunferencias minimales con n puntos reticulares, siendo n = 4, 5, …, 12 (puede verse aquí).

Dibujo sin papel 76/1 (1976), de la artista venezolana Gego, Gertrud Goldschmidt (1912-1994)

Bibliografía

1.- Clifford A. Pickover, El prodigio de los números. Desafíos, paradojas y curiosidades matemáticas, Ma Non Troppo (ediciones Robinbook), 2002.

2.- Ron Honsberger, Mathematical Gems I, MAA, 1973.

 

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Puntos reticulares sobre circunferencias se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Los fotones entrelazados que tienen distinta velocidad

Mar, 2024/12/10 - 11:59

En óptica cuántica los científicos suelen crear fotones entrelazados mediante la llamada conversión descendente paramétrica espontánea. En este proceso los fotones individuales se convierten en pares de fotones entrelazados cuando se proyecta luz sobre un cristal diseñado específicamente para ello. Ahora, Guillaume Thekkadath, del Consejo Nacional de Investigación de Canadá, y sus colegas han identificado un retraso entre los tiempos de detección de cada fotón entrelazado que depende de la intensidad de la luz que incide sobre el cristal. Este hallazgo podría afectar al diseño de ordenadores y sensores cuánticos porque estas tecnologías a menudo requieren fotones sincronizados con precisión.

fotones entrelazadosEl proceso de conversión descendente paramétrica espontánea

Los investigadores descubrieron que podía existir una diferencia temporal en la detección de forma teórica primero. Analizaron la conversión descendente paramétrica espontánea utilizando la teoría de perturbaciones más allá del primer orden, que es el que se considera habitualmente. A continuación, desarrollaron un modelo numérico del proceso de generación de fotones que han puesto a disposición pública para otros científicos. Para comprobar experimentalmente el modelo teórico construyeron un sistema en el que los tiempos de detección se pueden medir con precisión empleando interferometría.

fotones entrelazadosUn esquema del dispositivo experimental

El equipo descubrió que, en el caso de una luz de entrada de baja intensidad, el fotón inicial recorre la mitad del cristal, en promedio, antes de convertirse en un par entrelazado. Debido a sus diferentes longitudes de onda y polarizaciones, cada fotón de este par se propaga a diferentes velocidades por el resto del cristal, lo que genera una diferencia relativamente grande entre sus tiempos de detección.

En comparación, en el caso de una luz de entrada de alta intensidad, el fotón inicial suele penetrar hasta cerca del extremo del cristal. Los fotones de cada par tienen que recorrer una distancia menor a través del cristal, lo que da como resultado un retraso más corto.

Los investigadores dicen que, aunque este retraso se puede compensar en configuraciones ópticas a gran escala, plantea complicaciones para la fabricación de sistemas en chip, esto es, integrar todos o gran parte de los módulos que componen un ordenador o cualquier otro sistema informático o electrónico en un único circuito integrado.

Referencias:

Guillaume Thekkadath, Martin Houde, Duncan England, Philip Bustard, Frédéric Bouchard, Nicolás Quesada, & Ben Sussman (2024) Gain-Induced Group Delay in Spontaneous Parametric Down-Conversion Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.203601

Ryan Wilkinson (2024) Delay Detected in Photon Generation Physics 17, s130

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Los fotones entrelazados que tienen distinta velocidad se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Una nueva perspectiva sobre el origen de los satélites de Marte

Lun, 2024/12/09 - 11:59

Los minúsculos satélites de Marte -Fobos y Deimos- han sido un verdadero quebradero de cabeza para los científicos, especialmente cuando han intentado resolver cual fue su origen, un tema que ya tratamos aquí en “El misterio de Fobos y Deimos”. A fecha de hoy todavía no tenemos muy clara la respuesta, pero aspira a ser uno de esos interrogantes que, si no se resuelven en la próxima década, sí se podrán acotar mucho las posibilidades.

A lo largo del tiempo se han propuesto distintas teorías para poder explicar su formación: Un par de asteroides capturados, la destrucción de un antiguo satélite en órbita y posterior formación de los dos nuevos satélites a partir de sus restos, material expulsado de la superficie del planeta por un gran impacto que acaba coalesciendo en órbita… pero lo cierto es que ninguna termina de convencer por completo a la comunidad científica. Y es que el hecho de que sus propiedades espectrales sean muy similares a la de algunos asteroides, junto con su forma irregular y una densidad relativamente baja los harían candidatos excepcionales para simplemente ser un par de cuerpos capturados.

satélites de MarteFobos observado por la cámara HRSC de la sonda europea Mars Express. Cortesía de ESA/DLR/FU Berlin (G. Neukum).

Respecto a este último punto hay una pieza del puzle que nunca ha terminado de encajar: las órbitas casi circulares y ecuatoriales son algo muy difícil de explicar si suponemos que los asteroides se acercan al planeta desde direcciones aleatorias y que su captura tendría que, en los escenarios más probables, haber dado lugar a órbitas con distinta inclinación y una forma elíptica.

Pero, ¿y si realmente procediesen de un asteroide? Un nuevo estudio publicado por Kegerreis et al. (2024) propone un escenario a caballo entre la captura de un asteroide y el ensamblaje de los nuevos satélites a partir de los restos de este… ¿Cómo puede ocurrir tal cosa? Te lo explico.

Imaginemos un asteroide que se aproxima a Marte, pasando tan cerca que la gravedad del planeta es capaz de romper su cohesión, fragmentándolo. Ojo, en este punto es importante recordar que los asteroides no tienen que ser monolíticos, sino que pueden estar compuestos por fragmentos que viajan unidos por efecto de la gravedad.

Estas piezas desgajadas del asteroide podrían entonces dispersarse formando un disco de materiales que orbitase a Marte y, parte de este material, quedar “atrapado” en órbitas estables alrededor del planeta. Con el paso del tiempo, un porcentaje de estos fragmentos podrían colisionar entre ellos y dar lugar a protosatélites que, posteriormente, darían lugar a los satélites que conocemos hoy a partir de sucesivas colisiones.

satélites de MarteDeimos, el satélite más pequeño de Marte, observado con la cámara HiRISE que viaja a bordo de la Mars Reconaissance Orbiter. Cortesía de NASA/JPL-Caltech/University of Arizona.

Las simulaciones realizadas en este estudio del que hoy hablamos, muestran que un porcentaje significativo (hasta varias decenas porcentuales de la masa original del asteroide) podrían ser capturadas por la gravedad de Marte y alrededor de un uno por ciento de su masa podría acabar en órbitas circulares.

Y volvemos al mismo problema: las órbitas circulares. ¿Cómo es posible que los fragmentos del asteroide acabasen en órbitas casi circulares cuando al principio mencionábamos que esto es muy difícil? Pues probablemente el mecanismo más eficiente para lograr estas órbitas fuesen las propias colisiones entre los fragmentos, que no solo serían capaces de crear nuevos fragmentos, sino también de alterar sus velocidades y progresivamente logrando formar un disco de materia estable a partir del que se formarían los satélites.

satélites de MarteDetalle de la superficie de Fobos donde se puede apreciar un elevado número de cráteres y sistemas de surcos que cruzan su superficie. Cortesía de ESA/DLR/FU Berlin.

Este modelo serviría también para explicar por qué la composición de los satélites, es compatible con la de los asteroides de tipo C que, por cierto, son los más abundantes de todos los existentes en nuestro Sistema Solar y otros aspectos, como las cadenas de cráteres y los sistemas de “surcos”, que podrían haberse formado durante el propio proceso de acreción que dio lugar a los satélites.

Si todo va bien, en 2026 despegará la misión Mars Moons eXploration (MMX) de la JAXA, que gracias a sus instrumentos y al retorno de muestras de Fobos -aunque solo sea una pequeña cantidad en el entorno de los 10 gramos ya será un gran hito científico- podrá traernos nueva información sobre estos satélites y quien sabe si cerrar definitivamente la historia sobre su origen.

Referencia:

Kegerreis, Jacob A. et ál (2024) “Origin of Mars’s Moons by Disruptive Partial Capture of an Asteroid.” Icarus, Oct. 2024, p. 116337 doi:  10.1016/j.icarus.2024.116337.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo Una nueva perspectiva sobre el origen de los satélites de Marte se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

No tiene que ser nuevo para estrenarlo

Dom, 2024/12/08 - 11:59
The Golden Book Gown / El vestido del libro de oro de Ryan Jude Novelline. Confeccionado a partir de libros infantiles reciclados. Fuente: Ryan Jude Novelline / Wikimedia Commons

A la protagonista de esta historia le tocó ser la cuarta hija de una familia de cuatro. Sus hermanas se llevan uno o un año y medio entre ellas. Después llegó ella, pero después de seis años. Así que como coloquialmente se dice, fue un pilón.

La madre traía a las hermanas mayores vestidas iguales. Todas bonitas y bien peinadas, vistiendo el mismo vestido o el mismo traje de pantalones cortos y blusas coloridas. Eso sí, cada una vestía un color diferente. Eso dejó en casa varias prendas en tres diferentes tallas y colores. Obviamente, como la última en casa, le tocaba estrenar el mismo modelo en tres diferentes ocasiones. Había talla 5, talla 7 y talla 8. Por lo tanto, cuando usó esas tallas, portaba el mismo modelito, pero en diferentes colores.

En su mente hay un recuerdo sobre una prenda a la cual le tenía un particular cariño. Un hermoso conjunto de pantalones cortos, o shorts como se dice en el Norte de México. Eran de lino y la blusa se abotonaba por la parte de atrás con unos botones forrados de la misma tela. Al frente tenían un gracioso pulpo con la cabeza rellena y unos ojos saltones, lo que lo hacía muy divertido. Los tentáculos estaban por toda la parte de enfrente y también estaban rellenos, aunque no tanto como la cabezota del pulpo.

Nuestra protagonista estrenó su traje de pulpo cabezón en color morado a los cinco años, el color verde a los siete y el color azul a los ocho. En ese momento no estaba ni de broma en la cabeza de nadie aquello de “moda sustentable”, pero ella tenía muy claro que estaba estrenando, aun cuando no fuera nuevo. La práctica de pasar la ropa de los hermanos mayores a los más pequeños se mantiene hasta ahora. Incluso cambiar ropa con las amigas podría decirse que es común, especialmente en la adolescencia, tiempos en que se quiere más a las amigas que a la propia familia. Sin embargo, comprar ropa de segunda mano en bazares o tiendas especializadas, por todo tipo de personas, es decir, sin distinguir clases sociales, no había sido tan común hasta hace solamente un par de años.

Como se mencionaba en el párrafo anterior, los bazares de segunda mano son actualmente mucho más comunes de lo que se puede pensar. Las nuevas generaciones tienen claro que se necesita cuidar al planeta y son conscientes de varios conceptos que generaciones atrás no tenía ni idea. Aquí algunos de esos conceptos que no estaban comúnmente incluidos en los cursos de nivel básico ni medio superior a los que asistió la protagonista.

Regla de las tres erres (3R)

Regla para cuidar el medio ambiente, específicamente para reducir el volumen de residuos o basura generada. Se espera que cualquier empresa socialmente responsable deba considerarla.

Reducir Reciclar y Reutilizar. Tres verbos importantes que, si se siguen, ayudan a ser un consumidor responsable además de generar menos basura y ahorrar dinero. Aquí las definiciones, de acuerdo a Editorial RSyS, una plataforma de comunicación y difusión que ofrece servicios de asesoría y consultoría en temas afines para el sector social, educativo y empresarial [1].

Reducir. Disminuir o simplificar el consumo de los productos directos.

Reutilizar. Volver a utilizar las cosas y darles la mayor utilidad posible antes de que llegue la hora de deshacernos de ellas. Esto disminuye directamente el volumen de la basura.

Reciclar. Someter los materiales a un proceso en el cual se puedan volver a utilizar, evitando la necesidad de utilizar nuevos materiales.

Calentamiento global

De acuerdo con la Organización de las Naciones Unidas (ONU), el cambio climático se refiere a los cambios a largo plazo de las temperaturas y los patrones climáticos. Estos cambios pueden ser naturales, por ejemplo, a través de las variaciones del ciclo solar. Pero desde el siglo XIX, las actividades humanas han sido el principal motor del cambio climático, debido principalmente a la quema de combustibles fósiles [2]. La principal causa del cambio climático es el calentamiento global y tiene múltiples consecuencias negativas en los sistemas físicos, biológicos y humanos.

La temperatura media del planeta aumente al verse afectada por la emisión de gases de efecto invernadero a la atmósfera ya que retiene más calor del que se disipa al exterior. Estos gases emitidos aumentan como consecuencia de las actividades del ser humano. En la Figura 1 se muestra la temperatura del planeta en diferentes años de nuestra era [3]. Según los últimos informes de la ONU, miles de científicos y revisores gubernamentales coincidieron en que limitar el aumento de la temperatura global a no más de 1.5 °C ayudaría a evitar los peores impactos climáticos y a mantener un clima habitable. Sin embargo, las políticas actuales apuntan a un aumento de la temperatura de 2.8 °C para finales de siglo [2].

Figura 1. Cambio en las temperaturas globales entre 1973 y 2023. Fuente: NASA’s Scientific Visualization Studio /Wikimedia Commons

Existe otro término con relación a la industria del vestido, tema principal de este escrito: Moda sustentable. Se puede encontrar en una página del gobierno y la verdad es reconfortante saber que es un tema que se aborda en páginas oficiales. Eso indica que ya lo consideran en las agendas políticas.

Moda sustentable o sostenible

Es aquella que aboga por la reducción de los recursos necesarios para la producción y la reutilización de los mismos en prendas de vestir y complementos que cumplan criterios de respeto por el medio ambiente y con materiales naturales u orgánicos. [4]

Existe a la fecha un amplio catálogo de tiendas de moda sustentable y bazares que se dedican a reunir a estas emprendedoras que creen en la moda sustentable. Es un fenómeno a nivel mundial. En la Figura 2 se muestra una de estas tiendas.

Una tienda de ropa de segunda mano. Fuente: Rex Roof / Wikimedia Commons

La industria textil es un sector que utiliza grandes cantidades de agua y es una de las que genera mayor contaminación. Esta industria genera el 20% del total de las aguas residuales del planeta. Además, genera una gran cantidad de basura, ya que un alto porcentaje de las fibras son incineradas y, tristemente, arrojadas a vertederos.

Las sociedades del mundo siempre han producido residuos, pero es ahora, en la sociedad de consumo, cuando el volumen de las basuras ha crecido de forma desorbitada. Además, se ha incrementado su toxicidad hasta convertirse en un gravísimo problema.

La llamada “fast fashion” ha incrementado este problema ya que existen algunas marcas que lanzan una enorme cantidad de colecciones anualmente. Estas colecciones y prendas de “precios bajos” son producto de la necesidad creciente entre los consumidores, quienes tienen que estrenar lo último de los aparadores de estas marcas. De acuerdo con Bloomberg, en Estados Unidos, cada ciudadano desecha al año una cantidad de ropa equivalente a 70 pares de pantalones. Suena a un enorme desperdicio, pero también señala que uno de cada tres británicos considera que una prenda está vieja después de usarla solo una o dos veces.

Lo importante es que al menos ya se conoce lo que está pasando. ¿Cuántos años se tardó la humanidad en aceptar que quemar combustibles fósiles estaba contribuyendo al cambio climático? Como dicen, aceptar el problema es lo primero, ahora hay que buscarle solución. Reciclar la ropa es un buen inicio. Existen personas de varias generaciones que se preocupan por el futuro. Acostumbran a reciclar, guardan y llevar a los contenedores aquellos residuos que posteriormente pueden convertirse en nuevos productos y utilizarse de nuevo. Con esto contribuyen al desuso de materiales y reducen los consumos de agua y energía que se usarían en fabricarlos.

La esperanza está puesta en estas nuevas generaciones que tienen conciencia sobre lo que se le ha hecho al planeta Tierra y quieren evitar continuar con los malos hábitos para buscar mejorar el medio ambiente en el futuro. Algunas personas están en la transición. Ya juntan algunos materiales para llevarlos a contenedores especiales como lo es el PET, (polietilentereftalato para los conocedores). El PET es un polímero o plástico producido a grandes escalas para diferentes usos, pero el principal y más conocido es en la industria alimentaria para contener algunos productos, principalmente refrescos y agua embotellada. Este material es reciclable y existen muchas industrias que se dedican a este proceso. Así que no lo tiren a la basura. Es mejor llevarlo a un punto de recolección al igual que los botes de aluminio, el papel y cartón. Si se empieza hoy mismo en casa en una familia, los hijos verán esto como una acción cotidiana y para los hijos de los hijos, serán actividades regulares.

Además, cada vez más personas compran su vestimenta en los bazares de ropa de segunda mano. Esperemos que cada vez existan menos prejuicios para comprar en estos lugares y que se haga habitual intercambiar la ropa con las amigas y familiares no solamente porque se ha heredado, sino por el deseo de cuidar al planeta. ¿Y ustedes? Después de leer esto, ¿van a empezar a reciclar en casa y a comprar ropa de segunda mano? Ojalá que sí.

Referencias:

[1] Responsabilidad Social Empresarial y Sostenibilidad

[2] Naciones Unidas – Acción por el clima

[3] Acciona – Canbio climático

[4] Gobierno de México – Moda sostenible

 

Sobre la autora: Norma Flores-Holguín es investigadora en el Departamento de Medio Ambiente y Energía del CIMAV (CONAHCYT, México)

El artículo No tiene que ser nuevo para estrenarlo se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Naukas Pro 2024: Euskadi punta de lanza en energías renovables marinas

Sáb, 2024/12/07 - 11:59

energías renovables marinas

Los últimos avances en el ámbito de las energías renovables marinas o la proliferación de los microplásticos fueron algunos de los temas que componen la última edición de NAUKAS PRO. Una cita en la que el personal investigador se sube al escenario del Euskalduna Bilbao para hablar de las investigaciones más destacadas del momento en un ámbito concreto.

En esta ocasión el personal investigador de la Universidad del País Vasco, de la Estación Marina de Plentzia (PiE-UPV/EHU), AZTI, Tecnalia o el CSIC acercaron las últimas investigaciones relacionadas en el ámbito marítimo.

La conferencia Euskadi punta de lanza en energías renovables marinas corre a cargo de Eider Robles Sestafe, investigadora del Centro de Investigación Aplicada y Desarrollo Tecnológico TECNALIA.



Si no ve correctamente el vídeo, use este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Pro 2024: Euskadi punta de lanza en energías renovables marinas se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Las discordancias entre las diferentes etiquetas nutricionales

Vie, 2024/12/06 - 11:59

El grupo de investigación en Enfermería y Promoción de la Salud de la Universidad del País Vasco ha comparado siete sistemas de etiquetado nutricional de Europa, Oceanía y América del Sur y ha determinado que apenas coinciden a la hora de definir si los alimentos cocinados son saludables. Las investigadoras concluyen que hace falta desarrollar un nuevo sistema para evaluar la calidad alimentaria de los platos preparados.

etiquetas nutricionalesFuente: Tamorlan / Wikimedia Commons

En respuesta a la creciente preocupación por los hábitos alimentarios de la población, gobiernos de todo el mundo han implementado diferentes sistemas de etiquetado nutricional para ayudar a los y las consumidoras a elegir productos saludables cuando hacen la compra. El grupo de investigación en Enfermería y Promoción de la Salud de la UPV/EHU se ha propuesto dar un paso más. En vista de que cada vez comemos más fuera de casa, plantea la posibilidad de que los restaurantes también incluyan en sus cartas información sobre si los platos son sanos o no: “De la misma manera que marcan si las recetas contienen alérgenos o si son aptas para veganos, creemos que estaría bien indicar si son saludables. En este contexto, queríamos saber si alguno de los sistemas de etiquetado nutricional que ya se emplean a nivel global para evaluar productos procesados podrían ser válidos para evaluar platos cocinados. Para ello hemos comparado siete métodos diferentes y hemos encontrado tan poca coherencia entre ellos que consideramos que ninguno es adecuado para nuestro objetivo”, explica Leyre Gravina, la investigadora principal del trabajo.

Discordancias entre etiquetas nutricionales

La investigación es novedosa dado que hasta ahora no se había comparado la reproducibilidad y la concordancia de las etiquetas a nivel global con relación a comida cocinada. Para realizar la comparación han seleccionado 178 platos mediterráneos que se sirven en la Escuela de Hostelería de Leioa y los han examinado empleando los siguientes sistemas de etiquetado: Nutri-Score, los semáforos del Reino Unido y Ecuador, el método Mazocco, el sistema HSR de Australia y las etiquetas de advertencia de Uruguay y Chile. Los resultados muestran discordancias entre todas las herramientas. En algunos casos las diferencias son más acentuadas, pero en general, el nivel de acuerdo es reducido. Por ejemplo, en lo que se refiere al número de platos no saludables detectados, los sistemas que más discrepan son Nutri-Score y el de Ecuador. El primero es el método que más recetas califica como insanas (el 38 %), mientras que el segundo es el más laxo, ya que no califica ninguna como tal.

El equipo de la Universidad del País Vasco reconoce que esperaban diferencias porque los sistemas no emplean las mismas metodologías y consideran variables dispares, pero se han sorprendido con el nivel de incoherencia encontrado: “Las herramientas de Uruguay o Ecuador solo tienen en cuenta el contenido de componentes perjudiciales para la salud como el exceso de azúcares o grasas saturadas. Y otros contemplan también nutrientes saludables como las legumbres o las fibras. Por lo tanto, intuíamos que los análisis podían dar resultados diferentes, pero resulta que el desacuerdo es significativo incluso entre los sistemas que valoran componentes similares”, detalla Gravina.

Por ejemplo, Nutri-Score analiza 13 nutrientes y 9 de ellos son todos los que contempla el sistema HSR de Australia: calorías, azúcares, ácidos grasos saturados, fibras, frutas, verduras, frutos secos y proteínas. Sin embargo, aun coincidiendo en muchos de los componentes a analizar, la investigación revela que el acuerdo entre ambas herramientas de evaluación solo es moderado. Una muestra de ello son los resultados del análisis de los postres: Nutri-Score considera que el 6 % son sanos; el sistema australiano, el 25 %.

Las herramientas globales no sirven

Según las autoras del trabajo, la baja coincidencia entre las diferentes etiquetas nutricionales indica que es necesario desarrollar estrategias más complejas para evaluar la calidad alimentaria de platos preparados. Ante la falta de consenso a la hora de definir lo que es saludable, Gravina propone crear un método que se adapte al contexto geográfico: “De momento no parece que un sistema universal pueda ser efectivo. Sería conveniente empezar por herramientas de etiquetado que tengan en cuenta los alimentos de cada lugar y la realidad culinaria y sociocultural de cada país o región”.

Referencia:

Julia Fernandez-Alonso, María del Mar Lamas-Mendoza, Stuart D. R. Galloway and Leyre Gravina (2024) Assessing the Validity of Front-of-Pack Nutrition Labels for Evaluating the Healthiness of Mediterranean Food Choices: A Global Comparison Nutrients doi: 10.3390/nu16172925

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Las discordancias entre las diferentes etiquetas nutricionales se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

La rebelión de las cianobacterias

Jue, 2024/12/05 - 11:59

En los últimos días, ciertos sectores de la sociedad parece que quieren iniciar un retroceso en el conocimiento científico sobre el origen de nuestro planeta y de la vida que habita el mismo, poniendo de nuevo al ser humano en el centro de todo. Cada vez que escucho comentarios de esta índole, recuerdo las palabras que solía decir una profesora ya jubilada del Departamento de Geología de la Universidad del País Vasco (UPV/EHU): “los seres humanos nos creemos el ombligo del mundo y que podemos alterar todo lo que nos rodea. Pues para revolución de verdad, la que montaron unos organismos microscópicos hace más de 2000 millones de años”. Esta sentencia hacía que te sintieses como una pequeña mota de polvo dentro de la historia de nuestro planeta. Pero, ¿qué pudieron hacer estos microorganismos para liarla tan parda?

Para responder a esta pregunta debemos viajar hasta los orígenes de nuestro propio planeta. Se estima que, hace unos 4500 millones de años, la Tierra podría tener una atmósfera primitiva reductora, conformada por gases como dióxido de carbono (CO2), hidrógeno (H2) y agua (H2O), muy inestable y débil, ya que esos gases escaparían al espacio. Pero, cuando nuestro nacimiento planetario se tranquilizó, hace entre 4400 y 3500 millones de años, gracias a procesos como la diferenciación de la corteza y el núcleo, el bombardeo de cuerpos extraterrestres y la aparición de océanos de agua líquida sobre la superficie, la Tierra contaría con una atmósfera secundaria estable. Esta capa atmosférica sería débilmente reductora y estaría compuesta por monóxido y dióxido de carbono (CO y CO2), hidrógeno (H2), agua (H2O), amoniaco (NH3) y metano (CH4).

cianobacteriasImagen de microscopio de cianobacterias del género Lyngbya encontradas en Baja California (México). Fuente:  NASA / Wikimedia CommonsLas cianobacterias y el Gran Evento Oxidativo

Bajo esta atmósfera primitiva, en la Tierra ocurrió uno de los eventos que nos diferencia de nuestros vecinos planetarios más cercanos, la aparición de la vida. Al principio, se trataba de células simples, unas bacterias primitivas sin núcleo diferenciado, que vivían en medios con salinidades y temperaturas extremas alimentándose de metano o compuestos metálicos. Pero rápidamente se les ocurrió la brillante idea de combinarse entre sí para convertirse en organismos más complejos, dando lugar a las cianobacterias. Aparecidas hace entre 3700 y 3400 millones de años, la principal característica de las cianobacterias es que son los primeros organismos fotosintéticos de la historia, por lo que fueron capaces de liberar moléculas de oxígeno (O2) gaseoso a la atmósfera.

Esta actividad bacteriana favoreció que tanto la atmósfera como las capas más superficiales de las aguas oceánicas pasasen a convertirse en débilmente oxidantes. Pero a las cianobacterias no les pareció suficiente. En los siguientes millones de años decidieron proliferar por todo el mundo, convirtiéndose en la forma de vida dominante de nuestro planeta. Esto provocó la liberación de cantidades cada vez mayores de oxígeno a la atmósfera hasta que, hace unos 2400 millones de años, generaron esa revolución de la que os hablaba al principio de este artículo: el Gran Evento Oxidativo, o GOE por sus siglas en inglés (Great Oxidation Event).

cianobacteriasA) Estromatolitos actuales creciendo en las aguas poco profundas de la Hamelin Pool Marine Nature Reserve de Shark Bay (Australia). B) Estromatolitos fósiles en corte longitudinal, donde se observan las capas superpuestas de sedimento, encontrados en Québec (Canadá). Fuentes: A) Paul Harrison / Wikimedia Commons; B) André P. Drapeau / Wikimedia Commons

El GOE, ocurrido hace entre 2400 y 2100 millones de años, supuso un cambio radical de todo lo conocido hasta ese momento, así como el comienzo de todo lo que vino después. La atmósfera pasó de ser reductora o ligeramente oxidativa a completamente oxidativa, llegando a tener porcentajes de oxígeno incluso superiores a los de nuestra atmósfera actual; las aguas oceánicas también se convirtieron en oxidativas, tanto las masas más superficiales como las que circulaban por los fondos marinos; el oxígeno gaseoso reaccionó con el metano atmosférico, reduciendo la cantidad de este gas de efecto invernadero y, por tanto, disminuyendo la temperatura de nuestro planeta; y, debido a la disociación de las moléculas de oxígeno producida por la luz solar, se empezaron a combinar tres moléculas de oxígeno para generar la capa de ozono (O3) que recubre nuestro planeta y que lo protege de la radiación solar, efecto que favoreció la colonización de tierra firme, primero por las plantas y después por los animales, millones de años después.

Estas cianobacterias siguen pululando por nuestro planeta, aunque ya no son tan dominantes como en el pasado. Uno de los lugares donde se pueden encontrar en la actualidad son los mares cálidos y poco profundos de Australia, donde forman unas estructuras sedimentarias conocidas como estromatolitos. Precisamente, la presencia de fósiles de estromatolitos de hace casi 3700 millones de años nos aportan una de las evidencias de la aparición de las cianobacterias en la Tierra. Sin embargo, el registro fósil del GOE que a mí más me gusta son las Formaciones de Hierro Bandeado o BIF por sus siglas en inglés (Banded Iron Formations). Se trata de depósitos sedimentarios en los que se alternan capas de minerales de hierro oxidado, como el hematites (Fe2O3), de colores rojizos, con capas de silicio (SiO2) de colores grises y negros, que se formaron hace entre 2500 y 1800 millones de años. En este caso, la existencia de ese hierro oxidado, implica que las masas de agua que atravesaron estas partículas minerales antes de depositarse en los fondos oceánicos eran ya oxidativas y no reductoras.

cianobacteriasDepósito de una Formación de Hierro Bandeado (BIF) generado hace unos 2100 millones de años encontrado en Norteamérica. Fuente: André Karwath / Wikimedia Commons

Como os decía al principio, volver la vista atrás en nuestra historia y comprobar que unos simples organismos microscópicos provocaron un cambio tan grande en todo el planeta, hace que se nos bajen mucho los humos. Si no se hubiesen puesto a liberar oxígeno a la atmósfera como si no hubiese un mañana, los seres humanos no estaríamos hoy en día sobre la Tierra, porque la evolución biótica de nuestro planeta es una historia maravillosa repleta de fantásticas casualidades que no debemos dejar que nos arrebaten.

Agradecimientos:

Quiero darle las gracias a Estíbaliz Apellaniz, profesora jubilada de Paleontología del Departamento de Geología de la Universidad del País Vasco (UPV/EHU), tanto por repetir continuamente la frase con la que abro este artículo, como por despertarnos la curiosidad por conocer nuestros verdaderos orígenes a generaciones de estudiantes que pasamos por sus manos.

Para saber más:

J. Pla-García y C. Menor-Salván (2017). La composición química de la atmósfera primitiva del planeta Tierra. Anales de Química 113 (1), 16-26

 

 

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

 

El artículo La rebelión de las cianobacterias se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Maddalena y Teresa Manfredi, calculadoras astronómicas

Mié, 2024/12/04 - 11:59

La bella Hipatia escribió varios tratados: profesaba la astronomía en Alejandría cuando fue asesinada por el clero, fue en 415. Maria Cunitz, hija de un médico de Silesia, publicó en 1650 unas tablas astronómicas. Marie-Claire Eimmart Muller, hija y esposa de astrónomos conocidos, también fue astrónoma. Jeanne Dumée presentó en 1680 unas entrevistas sobre el sistema de Copérnico. La esposa de Hevelius realizaba obvervaciones junto a él. Las hermanas de Manfredi calculaban las efemérides de Bolonia; las tres hermanas de Kirch calcularon durante mucho tiempo las efemérides de Berlín; su esposa, nacida Winkelmann, presentó en 1712 una obra de astronomía. La Marquesa de Châtelet ha proporcionado una traducción de Newton. La condesa de Puzynina ha fundado un observatorio en Polonia […]. Madame Lepaute, fallecida en 1788, ha calculado durante más de diez años efemérides de la Academia, y la viuda de Edwards trabaja en Inglaterra en el «Nautical almanac«. Madame du Piery ha realizado numerosos cálculos de eclipses para comprender mejor el movimiento de la Luna; fue la primera que ejerció la astronomía en París. Miss Caroline Herschel trabaja con su hermano. Ya ha descubierto cinco cometas. La Señora Duquesa de Gotha ha realizado gran cantidad de cálculos, pero no desea ser citada. Mi sobrina, Le Français de Lalande, ayuda a su marido en sus observaciones y obtiene conclusiones de ellas mediante cálculos; ha reducido diez mil estrellas, ha preparado trescientas páginas de tablas horarias para la marina, un trabajo inmenso para su edad y sexo. Están en mi “Abrégé de Navigation”.

Joseph-Jérôme Le Français de Lalande, Astronomie des dames (1785): 5-7.

Portada de Ephemerides motuum coelestium de Eustachio Manfredi. Fuente: Google Books.

 

Las hermanas Maddalena y Teresa Manfredi nacieron en 1673 y 1679, respectivamente. Su madre, Anna Maria Fiorini, y su padre, el notario Alfonso Manfredi, no dieron a sus hijas (eran tres, la tercera se llamaba Agnese) la oportunidad de estudiar en la universidad, a diferencia de sus hijos (Eustachio, Gabriele, Eraclito y Emilio). Las hermanas Manfredi recibieron una educación primaria tradicional en un convento de monjas terciarias.

Una familia ilustrada

Gracias a los conocimientos de sus hermanos y a las amistades que frecuentaban la casa familiar, Maddalena y Teresa pudieron mejorar la escasa formación que habían recibido. En particular, tenían buenos conocimientos de astronomía, matemáticas y latín.

Su hermano Eustachio (1674-1739) fundó la Accademia degli Inquieti (Academia de la Inquietud) en Bolonia alrededor de 1690; buscaba un lugar en el que se pudieran discutir temas científicos. Se dedicó a la observación astronómica; entre sus numerosos trabajos científicos se encuentra Ephemerides motuum coelestium (1715-1725), que completó con la ayuda de sus hermanas Maddalena y Teresa.

Gabriele (1681-1761) y Eraclito (1682-1759), también hermanos de Maddalena y Teresa, estudiaron medicina. Gabriele abandonó esta materia para centrarse en las matemáticas, dedicándose fundamentalmente al cálculo infinitesimal. En su obra De constructionae aequationum differentiationium primi gradu (1707) expuso sus resultados sobre la resolución de problemas relacionados con ecuaciones diferenciales y fundamentos del cálculo. Emilio (1679-1742) se convirtió en sacerdote jesuita. De Agnese no hay datos disponibles.

A pesar de su influencia en la vida cultural de Bolonia, los hermanos Manfredi tenían puestos mal remunerados. Debido a estas limitaciones económicas, la familia se mantuvo muy cohesionada, involucrando a hermanos y hermanas en la creación de una empresa cultural destinada a mejorar el presupuesto familiar.

Así, Maddalena y Teresa, además de ocuparse de las labores domésticas, se dedicaron también a la administración del negocio familiar, a la colaboración científica en la obra de sus hermanos y a la producción de obras literarias para el mercado de la burguesía boloñesa.

En 1701 toda la familia Manfredi se trasladó al palacio del conde Luigi Ferdinando Marsili que deseaba de crear una academia en Bolonia siguiendo el modelo de la Académie des Sciences de París y la Royal Society de Londres; Eustachio ayudó a Marsili a crear la Academia de Ciencias de Bolonia. En 1711, Eustachio fue nombrado astrónomo de la Academia, sus hermanas lo acompañaron a su nuevo destino.

El trabajo de Maddalena y Teresa

La familia Manfredi comenzó a realizar observaciones de las posiciones de los objetos astronómicos en una cúpula astronómica preparada en su casa para crear efemérides. Maddalena y Teresa se encargaron del trabajo computacional; sus avances en las técnicas de cálculo ayudaron a que algunos de ellos pudieran ser realizados por personas no especialistas. Por ello, probablemente, su hermana Agnese también podría haber colaborado en el trabajo.

En 1715, Eustachio publicó Ephemerides motuum coelestium, una referencia ampliamente utilizada por otros astrónomos europeos. Atribuyó a sus hermanas la ayuda con las efemérides desde 1712 y, en particular, a Maddalena el cálculo de la tabla de latitudes y longitudes incluida en la publicación.

Eustachio también contó con la colaboración de sus hermanas para realizar investigaciones bibliográficas para la redacción de su Compendiosa Informazione di facto sopra el confines del Ferrara community di Ariano con il Stato Veneto (1735). 

Con el paso de los años, a pesar de permanecer a la sombra de sus hermanos, Maddalena y Teresa adquirieron cierta popularidad. La familia Manfredi cultivó la pasión por la poesía y la literatura dialectal. Como producto adicional de la empresa cultural familiar, publicaron obras literarias para público general, como la traducción de cuentos napolitanos al dialecto boloñés. Aunque los nombres de los traductores no aparecían en la portada, era de conocimiento general que las traducciones de Bertoldo y de Chiaqlira eran obra de Teresa y Maddalena, apoyadas por las hermanas Teresa Maria y Angiola Anna Maria Zanotti, hijas del pintor Giampietro Zanotti (1675-1765).

Maddalena falleció el 11 de marzo de 1744 a la edad de 72 años; Teresa murió 23 años después, el 8 de octubre de 1767.

El asteroide 13225 Manfredi fue nombrado en honor a Eustachio, Gabriele y Eraclito. A pesar de su colaboración en el trabajo de sus hermanos, esta dedicatoria no incluía a Maddalena y Teresa…

Referencias

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y editora de Mujeres con Ciencia

El artículo Maddalena y Teresa Manfredi, calculadoras astronómicas se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

En el mundo cuántico hasta los marcos de referencia son inciertos

Mar, 2024/12/03 - 11:59

Los marcos de referencia desde los cuales los observadores ven los eventos cuánticos pueden tener múltiples ubicaciones posibles a la vez, un descubrimiento con importantes ramificaciones.

Un artículo de Anil Ananthaswamy. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

marcos de referenciaLa naturaleza cuántica de los marcos de referencia puede incluso afectar el orden percibido de los acontecimientos. Ilustración: Michele Sclafani para Quanta Magazine

Imagínate que estás de pie en un andén viendo pasar un tranvía. A una chica que está en el tranvía se le cae una pelota roja brillante. Para ella, la pelota cae directamente hacia abajo. Pero desde el andén ves que la pelota describe un arco antes de tocar el suelo del tranvía. Los dos observáis el mismo evento, pero desde diferentes marcos de referencia: uno anclado al tranvía y el otro al andén.

La idea de los marcos de referencia tiene una larga historia en la física clásica: Isaac Newton, Galileo y Albert Einstein se basaron en ellos para sus estudios sobre el movimiento. Un marco de referencia es, en esencia, un sistema de coordenadas (una forma de especificar posiciones y tiempos relativos a un punto cero u “origen”) que puede él mismo estar en movimiento. Einstein utilizó marcos de referencia para desarrollar sus teorías de la relatividad, que revelaron que el espacio y el tiempo no son telones de fondo fijos del universo, sino entidades elásticas que pueden estirarse, contraerse y deformarse.

Pero la física cuántica ha ignorado en gran medida los marcos de referencia. Alice y Bob, los observadores ficticios en muchos experimentos de física cuántica, suelen tener diferentes ubicaciones físicas, pero se supone que tienen un marco de referencia común. Esto está cambiando ahora. Los físicos cuánticos se están dando cuenta de que no pueden ignorar el hecho de que el marco de referencia al que está anclada Alice (similar al tranvía o el andén) puede tener múltiples ubicaciones posibles a la vez. O que el reloj que Bob usa para medir el tiempo puede estar sujeto a la incertidumbre cuántica.

“En el mundo cuántico, los marcos de referencia deberían [también] describirse mediante el formalismo de la teoría cuántica”, explica Renato Renner, físico teórico del Instituto Federal Suizo de Tecnología de Zúrich.

En un artículo publicado este año, el físico Časlav Brukner, del Instituto de Óptica Cuántica e Información Cuántica de la Universidad de Viena, y sus colegas demostraron que los marcos de referencia cuánticos ofrecen una nueva perspectiva a fenómenos cuánticos largamente estudiados, como la superposición y el entrelazamiento. Los hallazgos llevaron a Renner a sospechar que los marcos de referencia cuánticos podrían ayudar a resolver algunas de las extrañas paradojas que surgen en los experimentos mentales cuánticos.

marcos de referenciaČaslav Brukner, físico de la Universidad de Viena y director del Instituto de Óptica Cuántica e Información Cuántica, ha explorado los marcos de referencia cuánticos en una serie de artículos recientes. Foto cortesía de Magdalena Zych

Más ambiciosos aun, Brukner y sus colegas esperan que pensar en la lógica de los marcos de referencia cuánticos pueda producir nuevos conocimientos sobre la gravedad cuántica, un programa de investigación que intenta colocar la gravedad en el mismo ámbito teórico que las otras fuerzas fundamentales.

Con esta nueva incursión en los marcos de referencia cuánticos, afirma Renner, “estamos solo en el comienzo de algo muy grande”.

Ubicaciones difusas

La noción de marcos de referencia cuánticos se introdujo por primera vez en 1984, pero varios grupos retomaron la idea alrededor de 2019, lo que ha desencadenado la oleada de estudios recientes. Los argumentos nos desafían a cambiar nuestra forma de pensar sobre dos propiedades cuánticas por excelencia: la superposición, donde un objeto puede estar simultáneamente en múltiples estados posibles, y el entrelazamiento, donde partículas distintas comparten un único estado cuántico, de modo que la medición de una de ellas determina instantáneamente el estado de la otra, independientemente de la distancia entre ellas.

marcos de referenciaDe izquierda a derecha: Luca Apadula, Anne-Catherine de la Hamette y Viktoria Kabel del Instituto de Óptica Cuántica e Información Cuántica y la Universidad de Viena dirigieron conjuntamente un estudio que muestra que la elección del marco de referencia afecta a los sistemas que parecen estar entrelazados o en superposición. Foto: Andrea Di Biagio

Para ver cómo, consideremos dos sistemas de referencia; los llamaremos A y B. Digamos que el origen de A está anclado a un objeto cuántico que tiene probabilidades de encontrarse en varias ubicaciones. Desde la perspectiva de B, la ubicación de A está difuminada sobre alguna región. Pero desde la perspectiva de A, la distancia a B está difuminada. Parece como si B fuera el que está en una superposición.

La cosa mejora. ¿Y si B también está anclado a un objeto cuántico que se encuentra en una superposición de dos posiciones? Entonces, el estado cuántico de A se difumina de dos maneras diferentes, dependiendo de las posibles posiciones de B. Como la determinación del estado cuántico de B determina el estado de A, A y B ahora están entrelazados.

marcos de referenciaRenato Renner, físico del Instituto Federal Suizo de Tecnología de Zúrich, cree que un análisis cuidadoso de los marcos de referencia cuánticos resolverá las paradojas en nuestra comprensión del mundo cuántico. Foto: Giulia Marthaler

En el ejemplo anterior, dos propiedades esenciales de los sistemas cuánticos (la superposición y el entrelazamiento) resultan depender del marco de referencia. “El mensaje principal es que muchas de las propiedades que consideramos muy importantes y, en cierto modo, absolutas, son relacionales” o relativas, explica Anne-Catherine de la Hamette, coautora del artículo reciente.

Incluso el orden de los acontecimientos sucumbe a los rigores de los marcos de referencia cuánticos. Por ejemplo, desde un marco de referencia, podríamos observar el clic de un detector que se produce en un momento determinado, pero desde un marco de referencia diferente, el clic podría acabar en una superposición de ocurrir antes y después de algún otro evento. El hecho de que observemos el clic como si se produjera en un momento determinado o como si se tratara de una superposición de diferentes órdenes de acontecimientos depende de la elección del marco de referencia.

Un paso hacia la gravedad

Los investigadores esperan utilizar estas diferentes perspectivas cuánticas para dar sentido a la desconcertante naturaleza de la gravedad. La relatividad general de Einstein, que es una teoría clásica de la gravedad, dice que la gravedad es la deformación del tejido del espacio-tiempo por un objeto masivo. Pero, ¿cómo se deformará el espacio-tiempo si el propio objeto está en una superposición de dos ubicaciones? «Es muy difícil responder a esa pregunta con la física cuántica y la gravedad habituales», afirma Viktoria Kabel, investigadora del grupo de Brukner y coautora del nuevo artículo.

Sin embargo, si cambiamos a un sistema de referencia cuyo origen se encuentra en una superposición, el objeto masivo puede terminar en una ubicación definida. Ahora es posible calcular su campo gravitatorio. “Al encontrar un sistema de referencia cuántico conveniente, podemos tomar un problema que no podemos resolver [y convertirlo] en un problema para el cual podemos usar la física estándar conocida”, explica Kabel.

Estos cambios de perspectiva deberían ser útiles para analizar futuros experimentos cuyo objetivo sea colocar masas extremadamente pequeñas en superposiciones. Por ejemplo, los físicos Chiara Marletto y Vlatko Vedral, de la Universidad de Oxford, han propuesto colocar dos masas cada una en una superposición de dos posiciones y luego estudiar cómo esto afecta a sus campos gravitatorios. Los crecientes intentos de describir formalmente los marcos de referencia cuánticos podrían ayudar a dar sentido a estas investigaciones sobre la interacción entre la gravedad y la teoría cuántica, un paso esencial hacia una teoría de la gravedad cuántica.

Renner cree que los marcos de referencia cuánticos también pueden ser fundamentales para dilucidar los fundamentos de la física cuántica. Hace unos años, él y su colega Daniela Frauchiger diseñaron un experimento mental cuántico que crea una contradicción lógica. La paradoja resultante parece implicar que los físicos deben renunciar a al menos una de las muchas nociones aceptadas sobre nuestro mundo, por ejemplo, que la teoría cuántica es universal y que se aplica tanto a los seres humanos como a los átomos.

Sin embargo, Renner ahora sospecha que la paradoja surge simplemente porque los físicos no han tenido en cuenta cuidadosamente los marcos de referencia. Nadie ha descubierto aún cómo reescribir este u otros experimentos mentales utilizando marcos de referencia cuánticos, pero hacerlo “es muy probable que nos lleve a la solución de las paradojas”, afirma.

No va a ser fácil, porque los sistemas de referencia cuánticos traen consigo muchos problemas sin resolver. Por ejemplo, con los sistemas de referencia clásicos, si cambias tu punto de vista de un sistema a otro, esta transformación es reversible: puedes volver a tu punto de vista original. No está claro que esto sea posible en la actualidad de forma universal con los sistemas de referencia cuánticos.

Además, en este momento no hay una forma estándar de definir y cambiar entre sistemas de referencia cuánticos. Diferentes grupos de físicos tienen diferentes enfoques. “Todos parecen razonables a primera vista, pero no son equivalentes entre sí”, apunta Renner.

Con el tiempo, sin embargo, los marcos de referencia cuánticos podrían resultar esenciales para dar sentido al mundo cuántico.

 

El artículo original, In the Quantum World, Even Points of View Are Uncertain, se publicó el 22 de noviembre de 2024 en Quanta Magazine.

Traducido por César Tomé López

El artículo En el mundo cuántico hasta los marcos de referencia son inciertos se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Dormir para reparar el corazón

Lun, 2024/12/02 - 11:59

En 1971, los Bee Gees alcanzaron por primera vez al número 1 en EE. UU. con su canción How Can you Mend a Broken Heart (“Cómo puedes reparar un corazón roto”). Más de medio siglo después tenemos una respuesta que jamás hubieran imaginado los hermanos Gibb: durmiendo. Pero no se trata de hacer un esfuerzo para dormir más. Se acaba de descubrir que el daño cardiaco provoca una inducción de sueño profundo que favorece la reparación de dicho daño. Resulta difícil de creer, así que lo vamos a explicar detenidamente.

El sueño sigue siendo un fenómeno misterioso en muchos aspectos. Sabemos que el sueño es indispensable para la salud, aunque muchas conexiones entre sueño y salud se nos escapan. Un grupo de investigadores estadounidenses acaba de publicar en Nature una conexión que ha resultado ser tan inesperada como sorprendente.

Figura 1. Esquema de los resultados obtenidos por Huynh et al., (2024). Un infarto de miocardio provocado por la ligadura de la arteria coronaria descendente anterior (ACDA) genera señales circulantes que hacen que la microglía del tálamo atraiga monocitos desde el plexo coroideo. Los monocitos invasores secretan factor de necrosis tumoral (TNF) que induce una prolongación de la fase de sueño de ondas lentas. De esta forma se mejora el proceso de reparación del corazón. Si se interrumpe el sueño, se alarga el proceso inflamatorio en el corazón, perjudicando la reparación. Imágenes: Wikimedia Commons, Medical gallery of Blausen y generadas con Microsoft Bing

Es posible provocar un infarto de miocardio en los ratones ligando, con microcirugía, la arteria coronaria descendente anterior. Como control de los experimentos se utilizan ratones sometidos al mismo procedimiento de anestesia y toracotomía, pero sin ligar la arteria. Pues bien, los ratones con infarto de miocardio (en adelante ratones-IM) experimentan periodos más largos de sueño de ondas lentas, un tipo de sueño profundo diferente al sueño REM. Esta prolongación del sueño de ondas lentas se mantiene durante siete días tras el infarto.

¿Cómo se induce un mayor periodo de sueño de ondas lentas tras el infarto? La microglía1 de los ratones-IM envía señales que provocan el reclutamiento de monocitos, un tipo de células inmunitarias. Estos monocitos abandonan la circulación en el plexo coroideo e invaden una región del tálamo. La invasión puede ser también inducida inyectando en el líquido cefalorraquídeo de ratones sanos plasma de ratones-IM, lo que indica que se debe a factores circulantes. De hecho, si se inhiben farmacológica o genéticamente ciertos receptores de señales de los monocitos, estos no invaden el tálamo y desaparece el efecto del infarto sobre el sueño.

¿Qué sucede si se inyectan directamente monocitos en el líquido cefalorraquídeo de un ratón normal? Pues si estos proceden de un ratón-IM, se induce la prolongación del sueño de ondas lentas, pero esto no ocurre si los monocitos vienen de ratones control. Por tanto, los monocitos de ratones-IM hacen algo en el tálamo para inducir cambios en el sueño.

Comparando el transcriptoma (conjunto de genes expresados) de monocitos aislados del tálamo de ratones-IM con el de ratones control, se observó en los primeros un aumento en la secreción del factor de necrosis tumoral (TNF), una citoquina2 implicada en procesos de inflamación, entre otros muchos. Todo indicaba que TNF era el elemento inductor del sueño. El sueño de ondas lentas no se prolongaba en ratones-IM si se inyectaban anticuerpos anti-TNF en el líquido cefalorraquídeo. Tampoco si los monocitos procedían de ratones mutantes sin expresión de TNF, o si los ratones-IM carecían de receptores para el TNF.

Resumiendo hasta ahora, un infarto provoca la invasión de monocitos circulantes en el tálamo, estos producen TNF, provocando un aumento del sueño de ondas lentas. Ahora viene lo importante, ese aumento del sueño profundo ¿realmente contribuye a reparar el corazón?

Pues así es. Si se producían interrupciones en el sueño aumentaba la cantidad de troponina3 en sangre pasadas 1-3 semanas desde el infarto. También disminuía la función cardiaca. Me estoy refiriendo ahora solo a ratones hembras, que son los que se utilizaron principalmente en el experimento. Los ratones machos soportan peor la ligadura coronaria y sobreviven menos. Eso sí, la interrupción del sueño en ratones-IM machos resultaba fatal. El 68% de los que habían dormido sin problemas sobrevivían una semana después del infarto. En cambio, solo sobrevivió el 18% de los que habían visto su sueño interrumpido.

Sueño y reparación del corazón

El estudio aventura una hipótesis sobre la relación entre sueño y reparación cardiaca. Los ratones-IM con sueño interrumpido mostraban en sus corazones más células del sistema inmune que los controles. La idea es que el sueño de ondas lentas disminuye la actividad del sistema simpático sobre el corazón, una actividad que contribuye a mantener la inflamación cardiaca post-infarto perjudicando la capacidad reparadora.

Un punto crucial: ¿Este descubrimiento tiene alguna relación con lo que sucede en humanos? Los investigadores realizaron un estudio preliminar sobre 78 pacientes que se habían recuperado de un infarto. Los dividieron en dos grupos atendiendo a indicadores de la calidad del sueño. Dos años después del infarto, los que habían dormido bien tenían una mejor función cardiaca que los que tenían peor calidad de sueño. Estos últimos sufrieron una mayor mortalidad a lo largo de estos dos años y el doble de eventos cardiovasculares adversos que los pacientes “bien dormidos”. Aunque es imprescindible contar con más estudios, esto sugiere que dormir bien contribuye a la recuperación tras un infarto de miocardio.

Los resultados son sorprendentes y contraintuitivos, porque sugieren que un proceso inflamatorio cerebral (invasión de monocitos, secreción de TNF) induce sueño profundo, disminuyendo la inflamación cardiaca. Pero también son estimulantes, ya que proporcionan nuevas vías para el tratamiento del infarto de miocardio y subrayan la importancia de una correcta higiene del sueño en dicho tratamiento.

Referencias

Huynh, P., Hoffmann, J.D., Gerhardt, T., et al. (2024) Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature. doi: 10.1038/s41586-024-08100-w.

Notas:

1 Células del sistema inmune presentes en el cerebro.

2 Proteína señalizadora producida por células inmunitarias.

3 Un marcador circulante que indica la existencia de daño cardiaco

&nbsp
&nbsp
Sobre el autor: Ramón Muñoz-Chápuli Oriol es Catedrático de Biología Animal (jubilado) de la Universidad de Málaga

El artículo Dormir para reparar el corazón se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Cómo la química de nuestro cerebro hace que las drogas tomen el control

Dom, 2024/12/01 - 11:59

Las drogas forman parte de nuestra sociedad, con todas sus formas y aplicaciones. Desde el tabaco al alcohol, pasando por los opiáceos, siempre han estado de moda. En los medios vemos constantemente noticias relacionadas con la crisis del fentanilo, la legalización del cannabis y los efectos antioxidantes del consumo de vino. Pero ¿cuál es la base química que hace que estas sustancias sean tan populares y peligrosas?

drogasImagen: vat loai / PixabayUna vieja costumbre

La historia del consumo de drogas es prácticamente tan antigua como la de la humanidad. Ya en la Edad Antigua, numerosas drogas como el opio recorrieron ampliamente las civilizaciones de la cuenca mediterránea, principalmente aplicadas como remedios medicinales. Pese al aviso de pensadores como Diágoras de Melos (“es mejor sufrir dolor que volverse dependiente del opio”, siglo V a. e. c.), su aplicación recreativa no tardó en llegar.

Otro ejemplo de droga popular desde la Antigüedad es el alcohol. Persas, griegos, chinos, egipcios, mayas, romanos… Por todos los rincones del mundo la elaboración y el consumo de bebidas alcohólicas formaba parte de la vida social, espiritual y cultural de cada civilización. Hoy en día la situación se mantiene: el consumo moderado de alcohol en la cultura occidental está normalizado, legalizado y extendido a gran parte de la población. En ocasiones, el cine, la televisión y la música incluso glorifican su ingesta, enfatizando sus efectos eufóricos.

¿Cuál es el secreto de estas sustancias? ¿Cómo es posible que afecten a nuestra química cerebral hasta el punto de influir en el devenir de las civilizaciones?

La respuesta se encuentra en un conjunto de áreas interconectadas de nuestro cerebro conocido como sistema mesocorticolímbico.

¿Me está engañando mi dopamina?

Para hacernos saber que un estímulo es beneficioso para la supervivencia, nuestro cerebro se encarga de que este nos guste. Ejemplo de ello son las sensaciones de placer que experimentamos a través de una comida calórica, el sexo y la interacción social.

Acompañando a esa sensación, nuestro cerebro también señaliza ese estímulo y hace que aprendamos que nos ha gustado: así es más probable que repitamos esa actividad positiva. De hecho, gracias a este sistema tendremos además una gran motivación, necesaria para poner en marcha nuestro cuerpo y así obtener esos estímulos.

¿Son siempre importantes para la supervivencia las conductas que se ven reforzadas? La respuesta es que no.

Al sistema mesocorticolímbico encargado de la recompensa se le puede hackear.

A nivel celular, las dos regiones más relevantes de este sistema son el área tegmental ventral y el núcleo accumbens. Las neuronas de la primera región conectan con las de la segunda y envían una molécula neurotransmisora llamada dopamina. Esta cumple un rol esencial en la recompensa: cuando se aumenta el nivel de dopamina que se libera se inician una serie de procesos. El resultado final es que aprendemos que ese estímulo es importante para la supervivencia y provoca que estemos más motivados para volver a buscarlo en el futuro.

Este sistema requiere regulación. De esto se encargan unas proteínas en la superficie celular llamadas receptores opioides. Es aquí donde entran en juego las drogas y el hackeo del sistema: este tipo de receptores pueden ser activados tanto por estímulos naturales como por las drogas. Al hacerlo, se intensifica la liberación de dopamina.

El resultado es que a nuestro cerebro le gustan estas drogas, aprende que son estímulos importantes y nos motiva a volver a conseguirlas. Aunque no aporten ventajas para la supervivencia.

De este modo se explican parcialmente los efectos eufóricos y reforzantes del consumo agudo de estas sustancias. Sin embargo, también es la base de su cara más oscura: la adicción. ¿Qué pasa cuando el uso de drogas se cronifica?

La delgada línea entre la euforia y el dolor

Si bien el consumo moderado de drogas se normaliza y hasta celebra en contextos sociales, este puede desencadenar problemas graves. El consumo prolongado de alcohol y de otras sustancias no solo afecta a nuestras percepciones y comportamientos, sino que también deja su huella en nuestro cerebro de una manera que puede ser difícil de revertir.

Recordemos que nuestro sistema mesocorticolímbico es un sistema de recompensa, diseñado para hacernos sentir bien cuando realizamos acciones beneficiosas. No obstante, el consumo repetido de estas sustancias puede hacer que su funcionamiento cambie y que aquello que solía producir placer ya no lo haga en la misma medida.

Estos cambios en las capacidades reforzantes del alcohol y los opioides se deben, entre otras cosas, a reducciones en la liberación de dopamina. Pero ¿quién es responsable de estas alteraciones?

Igual que hay receptores opioides –receptor Mu opioide– que provocan un incremento en la liberación de dopamina y son responsables del refuerzo positivo, existen otros –receptor Kappa opioide– que actúan de forma opuesta. Es decir, su actividad hace que disminuya la liberación del neurotransmisor y da lugar a efectos opuestos: disforia, aversión y pérdida de motivación.

Durante el consumo repetitivo de sustancias como alcohol y opioides tienen lugar cambios en la expresión de estos receptores. Mientras que los Mu están cada vez menos activos, los Kappa lo están cada vez más.

La disminución de la capacidad de las drogas para generar sensaciones placenteras hace que estas se vuelvan menos gratificantes con el tiempo. Este hecho, junto a los estados disfóricos que se manifiestan en ausencia de la sustancia, conducen a escaladas en el consumo con la finalidad de autotratar dicho malestar.

Es tan importante este mecanismo en la adicción que hasta se ha acuñado un nuevo término: hyperkatifeia, del griego katifeia, que significa “abatimiento” o “estado emocional negativo”. Curiosamente, estas alteraciones en los receptores opioides son similares a las que ocurren en situaciones de dolor crónico y pueden desencadenar estados negativos como falta de motivación, ansiedad y depresión.

La conclusión es que el consumo continuado de ciertas sustancias puede tener consecuencias físicas, mentales y sociales graves, y alterar la manera en que nuestro cerebro experimenta el placer y el dolor. No es de extrañar que la adicción a las drogas haga tocar fondo. Aunque se disfracen como aliadas para sobrellevar los problemas, acaban convirtiéndose en el mayor de ellos.The Conversation

Sobre las autoras: María Ros Ramírez de Arellano, Doctorando en Neurociencias, Lucía Hipólito Cubedo, Profesora en el área de Farmacia y Tecnología Farmacéutica y Víctor Ferrís Vilar, Doctorando en Neurociencias. Los tres de la Universitat de València.

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Cómo la química de nuestro cerebro hace que las drogas tomen el control se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Cómo viajar en el tiempo sin destruir el universo

Jue, 2024/11/28 - 11:59

Dijo una vez Ursula K. Le Guin que no somos nosotros los que viajamos en el tiempo, sino que es el tiempo el que viaja a través de nosotros, y tal vez ese sea el el motivo por el que todo lo relacionado con él nos fascina tanto: no lo controlamos, nos controla y lo hace, además, sin que podamos evitarlo y sin que, desde un aspecto puramente científico, tengamos todavía muy claro qué es. Sabemos que el tiempo, o la dirección en la que casi siempre lo vemos transcurrir, se manifiesta a través de los procesos irreversibles de la naturaleza, ya sean termodinámicos, cuánticos, cosmológicos… El universo que nos rodea parece tener claro hacia dónde va; resta averiguar por qué.

Más allá de la física, el tiempo determina prácticamente todos los aspectos de la experiencia humana, de ahí que haya sido un tema omnipresente en nuestras narraciones desde hace miles de años. Primero, en los mitos y leyendas, después, en la ciencia ficción. En el Mahabharata, texto hindú de alrededor del siglo III a. C, el rey Kakudmi experimenta los «efectos relativistas» de abandonar por un momento la Tierra para visitar a Brahma, el creador, y encontrarse al volver que han transcurrido varias generaciones desde su partida; algo similar a lo que le pasa a Urashima, el pescador protagonista de una leyenda japonesa del siglo XV, quien, cuando regresa a su aldea tras estar tres años en el palacio del dios dragón en el fondo del mar, se da cuenta de que, en realidad, han pasado casi trescientos cincuenta. Quedarse dormido y despertarse varios siglos en el futuro también es una forma muy típica de viajar en el tiempo en muchas historias fantásticas, o a través de la ingesta de algún tipo de sustancia con poderes milagrosos. Pero ¿en qué momento esos relatos de viajes dejaron la fantasía a un lado para intentar convertirse en ciencia? ¿Es que acaso la física permitiría algo así? ¿Existe alguna teoría que respalde la posibilidad de viajar en el tiempo, no solo hacia el futuro y más allá de la dilatación relativista? En otras palabras: ¿es posible viajar en el tiempo de alguna forma «no sobrenatural» o este tipo de historias están condenadas a existir en el ámbito de la fantaciencia para siempre?

Ha habido innumerables intentos de justificar de una manera racional la existencia de viajeros temporales en la literatura de ciencia ficción. Enrique Gaspar y Rimbau identificó el tiempo con algún tipo de fluido manipulable —algo similar al éter, aunque no exactamente eso—, en El anacronópete (1887) cuando trató de despojarlo de su halo místico. H. G. Wells, por su parte, habló de una cuarta dimensión en La máquina del tiempo (1895) —algo muy similar a lo que ya había hecho en «Los ojos del señor Davidson» (1894) con el espacio para conectar dos lugares muy alejados entre sí utilizando una especie de agujero de gusano—. Sorprendentemente, ambos vislumbraron de alguna manera el camino por el que luego iría la teoría de la relatividad general y algunas de las soluciones a las ecuaciones de Einstein. Y, así, podríamos seguir enumerando relatos y novelas hasta llegar a 1958, cuando Robert A. Heinlein escribió el que, al menos para mí, es uno de los relatos más verosímiles de viajes en el tiempo o, al menos, uno que no escandalizaría a la ciencia tanto como otros: «All you zombies—», publicado en The Magazine of Fantasy and Science Fiction en marzo del año siguiente y adaptado a la gran pantalla por Michael y Peter Spierig en 2014 con el título de Predestination.

tiempoPrimera página de «All you zombies—», de Robert Heinlein. publicada por primera vez en The Magazine of Fantasy and Science Fiction. Se adaptó al cine con el título de Predestination en 2014.

Al que no haya leído el relato o visto la película y no le gusten los spoilers —y este es uno de esos casos en los que un mínimo destripe puede echar a perder toda la experiencia— le recomiendo que lo haga, y que vuelva más adelante a este artículo. No voy a entrar en los detalles fundamentales de la trama, pero, entre solución y solución relativista, sí es posible que haya suficientes pistas como para que alguien pueda ser capaz de desvelar el truco del prestidigitador.

Dicho esto, convirtamos la ciencia ficción en ciencia.

Entre todas estas historias de viajes temporales al pasado, al futuro, con máquina, sin máquina, de paradojas y quebraderos de cabeza con el libre albedrío hay unas de un tipo concreto que, en principio, la física no prohíbe: las de bucles temporales o, en lenguaje científico, las curvas cerradas de tipo tiempo.

En la teoría de la relatividad de Einstein, cualquier objeto que se mueve a través del espacio-tiempo tetradimensional sigue una trayectoria denominada «línea de universo». Ese espacio-tiempo normalmente lo representamos de forma geométrica con el conocido cono de luz, que, además, describe la estructura causal de determinado evento. Esto es: sus posibles pasados —causas—, su momento presente y sus posibles futuros —consecuencias—.

tiempoEl cono de luz describe las relaciones causales de cualquier evento, tanto hacia el pasado como hacia el futuro. La propia superficie viene determinada por la velocidad de la luz. Como nada puede ir más rápido según la teoría de la relatividad, todo lo que sucede en el universo se encuentra dentro de sus límites. Créditos: CC BY-SA 3.0/Stib, K. Aainsqatsu e Ignacio Icke.

Existen, además, varios tipos de líneas de universo en función de la posición que ocupen respecto al cono de luz:

  • De tipo tiempo: siempre están dentro del cono, lo que significa que describen las trayectorias de partículas que viajan a menor velocidad que la de la luz o que tienen masa.

  • De tipo nulo o tipo luz: se encuentran sobre la superficie del cono y describen las trayectorias de partículas sin masa, como los fotones, que viajan a la velocidad de la luz.

  • De tipo espacio: estarían fuera del cono de luz; representarían eventos desconectados causalmente o, por decirlo de otra manera, completamente «incomunicados» entre sí.

Lo que sucede en nuestro mundo se encuentra, por tanto, dentro del cono de luz y, en principio, todo tiene un punto de inicio y un punto final. Pero ¿es esa la única opción posible? Según la teoría de la relatividad general, no. Matemáticamente no hay inconveniente en que existan líneas de universo «cerradas» o bucles que empiecen y acaben en el mismo punto y se retroalimenten a sí mismos. Eso son las curvas cerradas de tipo tiempo que mencionamos antes. Y es cierto que podrían provocar algunos problemas causales, pero no siempre. En la práctica, como es obvio, este tipo de soluciones son bastante impracticables, pero ¿cuándo los límites de la realidad supusieron algún problema para un físico teórico?

Este tipo de soluciones de las ecuaciones de Einstein fueron, de hecho, de las primeras en aparecer. El físico holandés Willem Jacob van Stockum las encontró en 1937 al tratar de describir cómo sería el campo gravitacional generado por un cilindro infinito compuesto por un fluido —Gaspar y Rimbau no iba tan desencaminado— que gira alrededor de un eje. La contraposición entre fuerzas gravitacionales y centrífugas haría que, en zonas de curvatura intensa, los conos de luz se inclinaran en la dirección de rotación y… Voilà! Las líneas de universo se cerraran sobre sí mismas. Kurt Gödel encontró una solución muy similar en 1949, pero él puso a girar todo el universo, tejido del espacio-tiempo incluido, en lugar de solo una región, como Van Stockum. De nuevo, la rotación permitía la inclinación de los conos de luz y la existencia de curvas cerradas de tipo tiempo. En 1963, llegarían los agujeros negros rotatorios de Kerr, que también permitirían la existencia de bucles temporales en sus inmediaciones; en 1974, el cilindro rotatorio de Tipler…

Para entender un poco mejor qué es lo que estaría pasando en este tipo de geometrías y universos —estos últimos nada tienen que ver con el nuestro, por cierto— basta pensar en cómo los campos gravitatorios intensos afectan al tiempo dentro del marco de la relatividad general: a mayor curvatura, más lento pasa el tiempo, como ya nos enseñó la película Interstellar. Si, además, los ponemos a rotar, se produce una distorsión adicional que provoca un efecto llamado «arrastre de marcos de referencia», que como si nos lleváramos por delante el propio espacio-tiempo, pudiendo poner patas arriba su estructura causal.

tiempoEste remolino de tela sería lo más parecido a cómo se verían las zonas que podrían albergar curvas cerradas de tipo tiempo en geometrías rotatorias. Si la tela fuera plana, imaginemos los conos de luz cosidos a ella verticalmente. Al poner la tela a girar a grandísimas velocidades, los conos, con las arrugas, se inclinarían y las líneas de universo que contienen, se acabarían cerrando sobre sí mismas.
Créditos: Pixabay/Mohamed_hassan

No son conceptos fáciles de visualizar, ni siquiera para un físico teórico y ni siquiera con las ecuaciones y los diagramas delante, por no mencionar los quebraderos de cabeza que podría dar que se demostrara que existiera algo así. Imaginemos, simplemente, un sistema cuántico atrapado en uno de esos bucles temporales, ¿dónde quedarían su naturaleza estadística y el principio de indeterminación si, para no violar la causalidad, estuviera condenado a encontrarse siempre en el mismo estado al pasar por determinado punto?

Por si acaso, y para curarse en salud, Stephen Hawking planteó, en 1992, su conjetura de protección cronológica, que dice, básicamente, que el universo se protege a sí mismo de inconsistencias. No elimina la posibilidad de la existencia de curvas cerradas de tiempo tiempo, pero sí de aquellas que puedan provocar «¡…una paradoja temporal, lo que produciría una reacción en cadena que seguramente desarticularía el continuo espacio-tiempo y destruiría todo el universo!», como explicaría el doctor Emmett Brown en Regreso al futuro II. ¿Vas a intentar viajar al pasado para matar a tu abuelo? No pasa nada, se te encasquillará el revólver; te resbalarás con una cáscara de plátano al intentarlo, frustrando el homicidio, o descubrirás, al no desaparecer de la existencia, que hubo una infidelidad marital, pero el universo siempre evitará que se produzca una paradoja.

En junio de 2009, Stephen Hawking organizó una fiesta para viajeros del tiempo… pero envió las invitaciones después. Como no fue nadie, dio por demostrado que viajar en el tiempo es imposible. Pero ¿demostró con esta maniobra la conjetura de protección cronológica? Créditos: Discovery Communications

Está claro que los físicos se han comido bastante la cabeza para, en primer lugar, buscar maneras de que los viajes en el tiempo sean algo loquísmo, pero no tanto como podría parecer de primeras. Y, en segundo, buscarse las mañas para que esa posibilidad no provoque paradojas que destruyan el universo. ¿Sabéis quién lo hizo también? Robert A. Heinlein.

Bibliografía

Gaspar y Rimbau, E. (1887). El anacronópete. Daniel Cortezo. Biblioteca «Arte y letras».

Gödel, K. (1949). An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Reviews of Modern Physics, 21(3), 447–450

Hawking, S. W. (1992). The Chronology Protection Conjecture. Physical Review D, 46(2), 603-611.

Hawking, S., y Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge University Press.

Heinlein, R. A. (marzo de 1959). All you zombies—. The Magazine of Fantasy and Science Fiction.

Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11(5), 237–238

Le Guin, U. K (2021 [1995]). Ether, OR. En Lo irreal y lo real. Minotauro.

Thorne, K. (1992). Closed timelike curves. Proceddings of the 13th International Conference on General Relativity and Gravitation.

Tipler, F. J. (1974). Rotating cylinders and the possibility of global causality violation. Physical Review D, 9(8), 2203–2206

Stockum, W. J. van (1937). The gravitational field of a distribution of particles rotating around an axis of symmetry. Proceedings of the Royal Society of Edinburgh, 57, 135.

Wells, H. G. (1895). La máquina del tiempo. William Heinemann.

.
Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo Cómo viajar en el tiempo sin destruir el universo se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

El rompecabezas IQ-Block

Mié, 2024/11/27 - 11:59

En el libro El prodigio de los números, del divulgador científico estadounidense Clifford A. Pickover (1957) se muestra un rompecabezas geométrico, conocido con el nombre de IQ-Block, que está formado por piezas geométricas pertenecientes a la versátil familia de los poliominós. Vamos a dedicar esta entrada del Cuaderno de Cultura Científica a este juego geométrico.

IQ-BlockCaja y piezas del rompecabezas geométrico conocido con el nombre de IQ-Block

 

El juego fue fabricado y comercializado por la empresa británica Hercules, aunque manufacturado en Hong-Kong, hacia la década de 1980.

Los poliominós, juntando cuadrados

Los poliominós son unos curiosos objetos geométricos que fueron introducidos formalmente por el matemático e ingeniero estadounidense Solomon W. Golomb (1932-2016) en una conferencia en el Harvard Mathematics Club en 1953, y en su posterior artículo Checkers Boards and Polyominoes publicado en la revista American Mathematical Monthly, revista matemática de la MAA (Asociación Matemática de América) dirigida a un amplio público dentro de las matemáticas, desde estudiantes de grado hasta investigadores punteros, que se ha convertido en la revista matemática más leída del mundo. Pero serían descubiertos para el público general por el gran divulgador de las matemáticas Martin Gardner (1914-2010), en su columna de juegos matemáticos de Scientific American (1957). Poco después, en 1965, Golomb publicaría un extenso libro que analizaba en profundidad estos objetos geométricos, con el sencillo título Polyominoes (Poliominós). Al introducir los poliominós, el matemático abrió un fructífero campo para las matemáticas, las ciencias de la computación y la creación de juegos. Están relacionados con conceptos matemáticos como las teselaciones (o embaldosados), los patrones geométricos, los empaquetamientos o la medida (área), y de ellos han surgido infinidad de juegos de ingenio y rompecabezas geométricos, como el juego de los pentominós y sus derivados (véase la entrada Tetris, embaldosados y demostraciones), el Tetris o el Vee-21 (véase la entrada Embaldosando con L-triominós (Un ejemplo de demostración por inducción)), por citar algunos.

IQ-BlockKatamino es el nombre comercial de la empresa francesa Gigamic para el juego de los pentominós

 

Un poliominó es una figura geométrica plana formada conectando dos o más cuadrados por alguno de sus lados. Los cuadrados se conectan lado con lado, pero no se pueden conectar ni por sus vértices, ni juntando solo parte de un lado de un cuadrado con parte de un lado de otro. Si unimos dos cuadrados se obtiene un dominó, si se juntan tres cuadrados se construye un triominó, o trominó, con cuatro cuadrados se tiene un tetraminó, con cinco un pentominó, y así se puede continuar para cualquier número de cuadrados, hexaminó, heptaminó, octominó. etcétera. Podemos considerar que un único cuadrado es también un poliominó, que denominamos monominó.

IQ-BlockTodos los poliominós formados por 1, 2, 3, 4 o 5 cuadrados

 

Como podemos ver en la anterior imagen, existen un monominó, un dominó, dos triominós, cinco tetraminós y doce pentominós. Si pasamos al orden seis, la familia de los poliominós se extiende con 35 hexominós, poliominós formados con seis cuadrados.

Antes de seguir adelante con el rompecabezas, una pequeña aclaración sobre estas piezas. Como estamos trabajando con piezas geométricas que vamos a poder manipular, se considera que podemos darles la vuelta, luego poliominós como los de la imagen (que son dos tetraminós) se consideran iguales, ya que dando la vuelta a uno se obtiene el otro (que es su imagen especular). Si estuviésemos trabajando con juegos o cuestiones simplemente planas, con en el Tetris, serían poliominós distintos, en cuyo caso podríamos hablar de “poliominós planos” o “poliominós de una cara”, como los denomina Golomb. Por ejemplo, hay 5 tetraminós (poliominós construidos con cinco cuadrados), como se muestra en la imagen de arriba, pero existen siete si hablamos de poliominós de una cara.

Dos tetraminós que son iguales como poliominós, ya que podemos pasar de uno a otro dándole la vuelta (uno es la imagen especular del otro), pero diferentes como poliominós de una cara (planos)

 

Aunque para lo que nos ocupa en esta entrada del Cuaderno de Cultura Científica seguiremos con los poliominós normales, los que se pueden voltear.

Las piezas del rompecabezas IQ-Block

Este rompecabezas geométrico está formado por diez piezas, diez poliominós, en concreto, un tetraminó, dos pentominós, dos hexominós, dos heptominós y tres octominós, una de ellas con forma de rectángulo, otra con forma de Z y las demás con formas que son, más o menos, una L, como aparece en la siguiente imagen.

Las diez piezas del juego IQ-Block

 

El número total de cuadrados implicados en las diez piezas del juego son 64 (1 x 4 + 2 x 5 + 2 x 6 + 2 x 7 + 3 x 8), luego, a priori, se podría, y se puede, formar un cuadrado de lado 8, como se muestra en la siguiente imagen.

Con las diez piezas del juego IQ-Block puede formarse un cuadrado grande de lado igual a 8 cuadrados, luego cuya superficie es de 64 cuadrados

 

Este es esencialmente el objetivo de este rompecabezas, construir un cuadrado grande 8 x 8, un cuadrado de lado 8, es decir, formado por 64 cuadrados, con las diez piezas del juego. Tengamos en cuenta que las piezas del rompecabezas se pueden rotar y dar la vuelta.

Antes de seguir adelante, mi recomendación es construirse uno mismo las piezas de este rompecabezas, ya sea con papel, cartulina, papel maché, madera o piezas de algún juego de construcción, como he hecho yo, que he utilizado piezas cuadradas del LiveCube, para poder disfrutar jugando con las mismas, tanto mientras se lee esta entrada, como después.

Las diez piezas del rompecabezas IQ-Block construidas con las piezas cuadradas del LiveCube

 

El rompecabezas IQ-Block

Como acabamos de comentar, el objetivo de este rompecabezas es formar un cuadrado grande 8 x 8 con las diez piezas que acabamos de describir, un tetraminó, dos pentominós, dos hexominós, dos heptominós y tres octominós.

Aunque, en el juego comercializado por la empresa Hercules las reglas del rompecabezas estaban escritas de la siguiente forma.

Primero debes elegir una de las piezas del juego, la que desees, que es la que va a estar colocada en la esquina superior izquierda (véase imagen inferior). Después, coloca las otras nueve piezas para que formen un cuadrado 8 x 8, sin mover de la esquina superior izquierda la pieza elegida.

Como vemos el objetivo del juego es formar un cuadrado grande de tamaño 8 x 8, con las diez fichas del juego, aunque en las reglas del juego comercial se plantea que se obtenga al menos una solución para cada una de las fichas colocada en la esquina superior izquierda. Por una parte, se amplia el reto a encontrar al menos diez soluciones, una por cada una de las diez fichas colocadas en la esquina. Pero además si se tiene en cuenta que cada ficha elegida para la posición de la esquina superior izquierda puede ser colocada de varias maneras distintas, se puede buscar al menos una solución para cada ficha y para cada una de sus posiciones posibles en la esquina superior izquierda. Quizás, este es el motivo por el cual en las reglas se menciona que hay bastantes soluciones distintas, en concreto:

Existen más de sesenta soluciones distintas que puedes encontrar. Se muestran dos soluciones a modo de ejemplo.

Las dos soluciones mostradas en las reglas del juego comercial son las siguientes.

Dos soluciones del rompecabezas IQ-Block mostradas en las reglas del juego

 

Es cierto que, al plantearse en las reglas del rompecabezas IQ-Block obtener soluciones para cada ficha, y para cada una de sus posiciones posibles, colocada en la esquina superior izquierda, esto nos anima a obtener muchas más soluciones, que solamente una, pero también a clasificarlas a la hora de encontrarlas, según cual sea la ficha y la posición de esa esquina.

Y la parte de las reglas del juego termina con la siguiente frase.

Trata de encontrar la mayor cantidad de soluciones posibles. Únete a nosotros para desafiar a tu I. Q. (Intelligence Quotient / Cociente intelectual).

Las soluciones del IQ-Block

Una pregunta lógica, tanto de quien idea y construye el rompecabezas, como de quien pretende solucionarlo, es cuántas soluciones distintas existen. En las reglas del juego afirman que existen más de 60 soluciones, pero no sabemos, al leer eso, cuántas más hay, es decir, cuántas son realmente todas las soluciones del rompecabezas.

Antes de seguir con esta cuestión observemos las dos soluciones que nos ofrecen como ejemplos en las reglas del juego. La primera de ellas es exactamente la misma que la que se había mostrado antes, pero girada 90 grados en el sentido de las agujas del reloj. Desde el punto de vista de las soluciones estas dos se consideran “esencialmente” la misma, al igual que las obtenidas si seguimos girando 90 grados, e incluso si diésemos la vuelta a la solución, luego todas ellas cuentan como una en el cómputo de soluciones.

Una solución del rompecabezas, la primera de los dos ejemplos de las reglas, y la solución obtenida al dar la vuelta a esta (que es su imagen especular), y que se considera que son “esencialmente” la misma solución

 

El matemático estadounidense Charles Ashbacher, que fue co-editor de la revista Journal of Recreational Mathematics, revista en la cual Pickover había publicado un par de artículos sobre el rompecabezas IQ-Block, escribió un programa de ordenador que rápidamente obtuvo mil soluciones distintas del rompecabezas. Sin embargo, hay más soluciones aún. El alemán Hartmut Blessing, miembro de MENSA e INTERTEL, sociedades de personas con alto cociente intelectual, afirma que existen 12.724 soluciones, lo cual ha sido comprobado con el programa PolySolver, que es un programa de Jaap Scherphuis que resuelve una gran variedad de rompecabezas geométricos.

Algunos retos con las piezas del IQ-Block

El autor de libros como El prodigio de los números (2000), La maravilla de los números (2001), Las matemáticas de Oz (2002), La banda de Moebius (2006), El libro de las matemáticas, de Pitágoras a la 57ª dimensión (2009) o Inteligencia artificial (2019), entre muchos otros, planteaba en su libro El prodigio de los números algunos retos relacionados con este rompecabezas.

Pregunta 1: ¿Puede construirse una estructura cuadrada eliminando una pieza y utilizando todas las restantes?

La respuesta a esta cuestión es sencilla. Al eliminar una pieza, que tendrá 5, 6, 7 u 8 cuadrados, nos quedarán nueve piezas que sumarán entre todas entre 56 y 59 cuadrados, lejos del siguiente número cuadrado más bajo 49 (que correspondería con un cuadrado 7 x 7), luego la respuesta es negativa.

Pero podemos ir un poco más allá, analizando caso por caso. Si se elimina la pieza con 5 cuadrados (pentominó) quedarían nueve piezas con 64 – 5 = 59 cuadrados, pero 59 es un número primo, luego es imposible formar una estructura rectangular, no solo cuadrada, con las nueve piezas restantes. Si se quita una de las dos piezas con 6 cuadrados (hexaminós) las otras nueve piezas sumarían 64 – 6 = 58, que es igual a 2 x 29, luego a priori podría formarse un rectángulo de tamaño 2 x 29, lo cual es imposible en este caso ya que hay varias piezas cuya anchura mínima es tres, luego imposible colocarlas para formar un cuadrado de anchura 2. Si se elimina una pieza de 7 cuadrados (heptominós), quedarían nueve piezas con 64 – 7 = 57, que es igual a 3 x 19, luego se podría construir un rectángulo de tamaño 3 x 19, lo cual es posible como he podido comprobar por mí mismo (si tenéis construidas las piezas del rompecabezas podéis buscar alguna distribución posible). Finalmente, si se deja fuera una pieza de 8 cuadrados quedan nueve piezas con 56 cuadrados en total, pero como 56 = 7 x 8, se podría formar un rectángulo de tamaño 7 x 8, lo cual es posible, como se muestra en la siguiente imagen.

Estructura rectangular de tamaño 7 x 8 obtenida por todas las piezas del IQ-Block menos el octominó que aparece a la derecha

 

En este último caso, si se elimina una pieza de 8 cuadrados, ya hemos explicado que quedan nueve piezas con 56 cuadrados entre todas y se puede construir un rectángulo de tamaño 7 x 8, pero pensemos … ¿también se podría construir de tamaño 14 x 4? La respuesta a esta cuestión también la dejo para que la penséis quienes estáis leyendo esta entrada.

La cuestión anterior puede ampliarse a dos piezas (o más).

Pregunta 2: ¿Puede construirse una estructura cuadrada eliminando dos piezas y utilizando todas las restantes?

Como el siguiente número cuadrado, más pequeño que 64, es 49, como hemos comentado arriba, y la diferencia entre ambos es 64 – 49 = 15, hay que eliminar una pieza con 7 cuadrados y otra con 8, solo para esta opción podría ser posible construir una estructura cuadrada con el resto de piezas. Teniendo en cuenta esta información podéis buscar vosotros mismos dichas estructuras.

Si hasta ahora la diversión consistía en construir un cuadrado 8 x 8 (o más pequeños si se eliminan piezas), ahora vamos a darle la vuelta a la tortilla, ahora se tratará de formar, con las diez piezas del IQ-Block, el perímetro alrededor de un cuadrado 8 x 8, o si se elimina una pieza, un cuadrado 7 x 7.

Pregunta 3: ¿Puede construirse el perímetro de una estructura cuadrada vacía de tamaño 8 x 8 con todas las piezas del rompecabezas? ¿Y si se elimina una pieza puede construirse el perímetro de una estructura cuadrada vacía de tamaño 7 x 7?

Veamos una posible solución a la primera cuestión.

Dejo para diversión de las personas que estáis leyendo esta entrada la búsqueda de soluciones, que las hay, para el caso en el que se quita una de las piezas del rompecabezas y se utilizan las otras nueve piezas.

Otro de los formatos comercializados del IQ-Block

 

Bibliografía

1.- Raúl Ibáñez, Del ajedrez a los grafos, la seriedad matemática de los juegos, El mundo es matemático, RBA, 2015.

2.- Solomon W. Golomb, Polyominoes: Puzzles, Patterns, Problems, and Packings, Princeton University Press, 1994.

3.- Clifford A. Pickover, El prodigio de los números. Desafíos, paradojas y curiosidades matemáticas, Ma Non Troppo (ediciones Robinbook), 2002.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo El rompecabezas IQ-Block se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

El agua tiene un punto crítico líquido-líquido

Mar, 2024/11/26 - 11:59

El agua, una molécula esencial para la vida, presenta unas propiedades inusuales —conocidas como anomalías— que definen su comportamiento. Sin embargo, todavía hay muchas incógnitas sobre los mecanismos moleculares que explicarían las anomalías que hacen única a la molécula de agua. Descifrar y reproducir este comportamiento particular del agua en diferentes rangos de temperaturas es todavía un gran desafío para la comunidad científica. Ahora, un estudio presenta un nuevo modelo teórico capaz de superar las limitaciones de metodologías anteriores para entender cómo es el comportamiento del agua en condiciones extremas.

La investigación no solo amplía nuestra comprensión de la física del agua, sino que tiene implicaciones en el ámbito de la tecnología, la biología y la biomedicina, en especial para abordar el tratamiento de enfermedades neurodegenerativas y el desarrollo de biotecnologías avanzadas.

Un punto crítico entre dos formas líquidas de agua

punto crítico

La investigación, que deriva de la tesis doctoral que Luis E. Coronas presentó en 2023 en la Facultat de Física de la UB, muestra un nuevo modelo teórico que responde a las siglas CVF (las iniciales de los apellidos de los investigadores Luis E. Coronas, Oriol Vilanova y Giancarlo Franzese). El nuevo modelo CVF se caracteriza por ser fiable, eficiente, escalable y transferible, e incorpora cálculos cuánticos ab initio que reproducen con precisión las propiedades termodinámicas del agua bajo diferentes condiciones.

Mediante la aplicación del nuevo marco teórico, el estudio revela que «existe un punto crítico entre dos formas líquidas de agua, y este punto crítico es el origen de las anomalías que hacen que el agua sea única y esencial para la vida, así como para muchas aplicaciones tecnológicas», detalla el profesor Giancarlo Franzese, de la Sección de Física Estadística del Departamento de Física de la Materia Condensada.

«Aunque esta conclusión ya se había alcanzado en otros modelos de agua, ninguno de ellos tiene las características específicas del modelo que hemos desarrollado en este estudio», detalla Franzese.

El modelo CVF

Algunos de los modelos actuales para explicar las anomalías del agua no son capaces de reproducir adecuadamente las propiedades termodinámicas del agua, como, por ejemplo, su compresibilidad y capacidad calorífica. «Sin embargo, el modelo CVF lo consigue porque incorpora resultados de cálculos cuánticos ab initio sobre interacciones entre moléculas. Estas interacciones, conocidas como interacciones de muchos cuerpos, van más allá de la física clásica y se deben a que las moléculas de agua comparten electrones de una manera difícil de medir experimentalmente», detalla Franzese.

Según el estudio, «las fluctuaciones de densidad, energía y entropía del agua están reguladas por estas interacciones cuánticas, con efectos que van desde la escala nanométrica hasta la macroscópica», detalla el investigador Luis E. Coronas.

«Por ejemplo —continúa Coronas— el agua regula el intercambio de energía y moléculas, así como el estado de agregación de proteínas y ácidos nucleicos en las células. Se sospecha que defectos en estos procesos pueden causar enfermedades graves como el alzhéimer, el párkinson y la esclerosis lateral amiotrófica. Por lo tanto, entender cómo las fluctuaciones del agua contribuyen a estos procesos podría ser clave para encontrar tratamientos contra estas patologías».

Nuevas biotecnologías

El modelo CVF también ofrece nuevas ventajas que permiten realizar cálculos donde otros modelos fallan, debido a que son computacionalmente muy pesados o bien porque se desvían significativamente de los resultados experimentales.

En el ámbito del desarrollo tecnológico, algunos laboratorios están desarrollando biotecnologías para reemplazar músculos (actuadores mecánicos) que aprovechan las interacciones cuánticas del agua; memorias a base de agua (water-based memristors) para crear dispositivos de memoria (con una capacidad millones de veces mayor que las actuales), o bien la aplicación de esponjas de grafeno que separan el agua de impurezas gracias a las fluctuaciones de densidad del agua en nanoporos.

También existen implicaciones en la comprensión de la física del agua. «Este modelo puede reproducir las propiedades del agua líquida en prácticamente todas las temperaturas y presiones que se encuentran en nuestro planeta, aunque se desvía en condiciones extremas alcanzadas en laboratorios», detallan los expertos. «Esto demuestra que los efectos no incluidos en el modelo —los efectos cuánticos nucleares— también son importantes a estas presiones y temperaturas extremas. Así, las limitaciones del modelo nos guían hacia dónde mejorar para llegar a una formulación definitiva del mismo», concluyen.

Referencia:

Luis Enrique Coronas, Giancarlo Franzese (2024) Phase behavior of metastable water from large-scale simulations of a quantitatively accurate model near ambient conditions: The liquid–liquid critical point. J. Chem. Phys. doi: 10.1063/5.0219313

Edición realizada por César Tomé López a partir de materiales suministrados por la Universitat de Barcelona

El artículo El agua tiene un punto crítico líquido-líquido se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

El colapso atmosférico y los periodos húmedos de Marte

Lun, 2024/11/25 - 11:59

Marte es uno de esos lugares de nuestro sistema solar que al mismo tiempo nos resulta aterradoramente parecido a la Tierra, pero, por otro, nos parece totalmente diferente. Lo que hoy es un desierto helado y yermo dominado por una ubicua capa de polvo rojo, hace miles de millones de años era un planeta vivo -en el sentido geológico de la palabra, no me malinterpreten- donde los volcanes todavía entraban en erupción con cierta regularidad y el agua en estado líquido esculpía su superficie.

Todavía hoy seguimos discutiendo las causas y los procesos que transformaron de una manera tan radical al planeta. ¿Fue un cambio gradual o acaso cambió de manera brusca? ¿O quizás la historia de Marte ha sido mayoritariamente fría, pero con periodos cálidos donde la existencia de una atmósfera más densa permitía que el agua líquida fuese estable en su superficie? Todavía nos quedan muchos detalles -y límites temporales- que marcar en Marte para poder responder a estas preguntas.

colapso¿Tuvo Marte en algún momento de su historia este aspecto? Es una de las preguntas que esperamos responder en el futuro, cuando dispongamos de más datos sobre la geología del planeta rojo. Cortesía de ESO/M. Kornmesser.

Por estudios más recientes -como el publicado por Thomas et al. (2023)- el rango de composición y densidad atmosférico hace unos 3800 millones de años indican una atmósfera mayoritariamente compuesta por dióxido de carbono (0.3-1.5 bares de presión) y nitrógeno (0.2-0.4 bares), composición que quizás no era tan diferente a la segunda atmósfera de nuestro planeta, antes de la aparición de la fotosíntesis -al menos en las proporciones de los gases- y que probablemente tuvo su origen principal en la degasificación del magma fruto de importante actividad volcánica que tendría el planeta al principio de su historia.

Pero bueno, ¿por qué dejar la geología hoy para hablar del agua? Lo cierto es que podemos considerar al agua como un recurso geológico, pero también es un importante agente de modelado del relieve, así como de transporte de sedimentos tanto en su fase líquida como en la de hielo, y de ahí que desde el punto de vista de la geología también sea extremadamente interesante y fundamental para explicar Marte tal y como lo entendemos hoy día.

Un nuevo artículo publicado por Buhler (2024) propone un interesante mecanismo para generar periodos “húmedos” en Marte. Para ello tenemos que viajar en el tiempo a la transición entre el periodo Noeico y el Hespérico, hace aproximadamente 3600 millones de años. Probablemente en este momento prácticamente toda el agua superficial de Marte se encontraría congelada en distintas reservas: suelos, casquetes glaciares, escarcha…

Sería este momento cuando, según esta nueva investigación, comienza a producirse una serie de eventos de manera periódica: los colapsos atmosféricos. Este proceso ocurriría cuando la inclinación del eje del planeta cruzase cierto umbral, de tal manera que el dióxido de carbono de la atmósfera, debido a las bajas temperaturas, se condensaría y congelaría sobre los polos, cubriendo estos con un gran casquete de hielo de dióxido de carbono. Este proceso, como hemos dicho más arriba, sería periódico y ocurriría durante millones de años.

colapsoDetalle de los depósitos de hielo y polvo presentes en el polo norte de Marte, donde se puede apreciar cierta alternancia y distintos ciclos donde ha habido más depósito de hielo y, en otros, de polvo. Cortesía de NASA/JPL-Caltech/UArizona.

En el punto álgido de este ciclo de colapsos, la mayor parte del agua de la superficie de Marte se encontraba congelada, pero en concreto, en el hemisferio sur, formando grandes casquetes de hielo o glaciares. Sobre estos habría “nevado” una gran parte del dióxido de carbono congelado desde la atmósfera durante los procesos de colapso atmosférico.

¿Qué efecto tendría este hielo de dióxido carbono depositado sobre el hielo de agua? Pues actuaría como una manta térmica que no dejaría escapar el calor… pero, ¿de qué calor hablamos? El autor sugiere que el calor geotérmico -el que sale del interior del planeta- sería suficiente como para comenzar la fusión de los hielos en la interfaz entre la corteza y el hielo, o lo que es lo mismo, en la base de los casquetes glaciares.

Esto habría provocado una gigantesca cantidad de agua líquida, suficiente para alimentar ríos de cientos de kilómetros que llegarían a la cuenca de Argyre, una enorme depresión que se transformaría en un lago del tamaño del mar Mediterráneo y que, en ocasiones, acabaría desbordándose con la gran cantidad de agua que llegaba hasta él.

colapsoImagen de uno de los extremos de la cuenca de Argyre, en Marte, tomada por la sonda Europea Mars Express. Se aprecian unas zonas de terreno caótico que podrían haberse formado por la fusión del hielo a gran escala. Cortesía de ESA/DLR/FU Berlin.

Pero no todo acaba aquí, porque nos estamos saltando una parte muy importante y de la que debemos hablar para comprender mejor este fenómeno: el ciclo del agua. Hace 3600 millones de años, no solo hacía más frío en Marte, sino que la atmósfera era, probablemente, mucho más tenue, haciendo difícil la presencia de masas de agua estable -a escala geológica- en su superficie.

Pues bien, el agua se iba moviendo -principalmente por las redes fluviales- desde el polo sur hasta el ecuador, pero durante este tránsito, los procesos de sublimación del hielo y evaporación del agua devolverían parte de esta a la atmósfera y de ahí, de nuevo, a los polos. Este ciclo podría haberse repetido entre 100.000 años y 10 millones de años y ocurrido varias veces a lo largo de una ventana temporal de 100 millones de años.

Esta nueva interpretación desafía a esa imagen que tenemos del clima de Marte que es necesario para la presencia de masas de agua y redes fluviales en el planeta y que normalmente asociamos a periodos cálidos, pero también podrían haberse dado en periodos fríos, rompiendo de algún modo esa paradoja que existía a la hora de interpretar las formas de modelado del relieve creadas por el agua en la transición entre el Noeico y el Hespérico, cuando la atmósfera de Marte era más tenue y el planeta más frío.

Y una cosa más: esta presencia de agua líquida en la superficie podría también tener repercusiones a nivel astrobiológico y haber extendido la ventana de habitabilidad en el planeta no solo en la propia superficie de este, sino en los posibles lagos y ríos subglaciales que se habrían formado durante la fusión de los hielo y que estarían menos expuestos a las condiciones más extremas de radiación… ¿Fue la superficie de Marte, quizás, un lugar habitable durante más tiempo del que pensamos?.

Referencias:

Thomas, Trent B, et al (2023) Constraints on the Size and Composition of the Ancient Martian Atmosphere from Coupled CO2–N2–Ar Isotopic Evolution Models The Planetary Science Journal, vol. 4, no. 3, 1 Mar. 2023, pp. 41–41 doi: 10.3847/psj/acb924

Buhler, P B.  (2024) Massive Ice Sheet Basal Melting Triggered by Atmospheric Collapse on Mars, Leading to Formation of an Overtopped, Ice‐Covered Argyre Basin Paleolake Fed by 1,000‐Km Rivers Journal of Geophysical Research Planets, vol. 129, no. 11, 1 Nov. 2024 doi:  10.1029/2024je008608

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo El colapso atmosférico y los periodos húmedos de Marte se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

La música y el entorno natural

Dom, 2024/11/24 - 11:59

José Manuel González Gamarro

La música y la naturaleza es un binomio estudiado desde casi los primeros tratados sobre música. La poética subyacente de la observación del medio ambiente puede casar perfectamente con las emociones que logra provocar la escucha musical. También ha habido múltiples ejemplos de compositores, teóricos e investigadores que han intentado plasmar o transcribir los sonidos de la naturaleza, como el caso paradigmático de Oliver Messiaen con el canto de los pájaros u otros anteriores como fueron Athanasius Kircher o William Gardiner.

entornoFoto: Erica Li / Unsplash

Sin embargo, existen otro tipo de investigaciones que no intentan fijar en una partitura aquello que se escucha en el entorno natural, sino más bien averiguar cómo puede influir la música que se escucha en nuestra percepción de ese entorno. Las personas escuchan cada vez más música con auriculares al aire libre, en la naturaleza, mientras pasean o practican algún deporte, así que estudiar las interacciones audiovisuales entre la música y el entorno es significativo tanto para la psicología musical como para la investigación del paisaje sonoro. Es por esto que investigadores como Marek Franěk y Jan Petružálek han profundizado en la influencia que tiene la música que se escucha en la percepción de los entornos naturales1. Tal y como indican estos investigadores, el objetivo de profundizar en esta relación es averiguar si la música que ellos denominan feliz puede aumentar la preferencia ambiental y los sentimientos agradables al ver entornos en comparación con la observación bajo música triste o simplemente sin música.

Para ello se plantearon un experimento donde personas visualizaban diferentes tipos de entornos bajo música feliz, música triste y sin música. Los entornos los clasificaron mediante cuatro tipologías: ambientes atractivos abiertos, ambientes atractivos cerrados, ambientes poco atractivos abiertos y ambientes poco atractivos cerrados.

entornoIlustración 1. Estímulos visuales utilizados en el estudio: entornos abiertos atractivos, entornos cerrados atractivos, entornos abiertos poco atractivos y entornos cerrados poco atractivos. Fuente: Franěk, M., & Petružálek, J. (2024)

La música feliz estuvo representada por One Fine Day mientras que para la música triste fue usada la canción Mad World de Michael Andrews  Estos dos ejemplos salen de una selección de otro estudio anterior donde se pidió a los participantes que seleccionaran y enviaran dos archivos de diferentes tipos de música que les gustaban. Para evaluar en qué medida influía el tipo de música (o la no música) en la visualización y preferencia de los ambientes se usó, por un lado, una autoevaluación con escala tipo Likert para evaluar el gusto por el medio ambiente y los sentimientos al visualizar las imágenes. Por otro lado, se midieron las expresiones faciales mediante grabaciones en vídeo y el posterior análisis con un software capaz de determinar siete emociones básicas (alegría, ira, sorpresa, miedo, desprecio, tristeza y disgusto).

La paradoja de la tristeza agradable

Los resultados sacaron a la luz algo nada sorprendente en cuanto a la música feliz, puesto que escuchar música que es agradable y gustada generalmente resulta en respuestas emocionales positivas. El emparejamiento de música alegre con imágenes naturales resultó en un aumento significativo en la preferencia ambiental y sentimientos agradables en todos los entornos. Sin embargo, la música triste no redujo la preferencia ambiental o los sentimientos agradables en comparación con el grupo control al que no se le expuso a música alguna. La explicación más probable a esto es la paradoja de la «tristeza agradable»2, ya que la tristeza evocada por la música puede ser placentera cuando se percibe como no amenazante, es estéticamente agradable o produce beneficios psicológicos como la regulación del estado de ánimo y sentimientos empáticos causados, por ejemplo, por el recuerdo y la reflexión sobre eventos pasados. La música tampoco tuvo el poder de cambiar las preferencias ambientales de los participantes, por lo que la música feliz aumentó las calificaciones de todos los entornos, pero no suprimió las características ambientales. En cualquier caso, la música sí que intensificó la experiencia emocional de la visualización de los entornos.

¿Que ocurriría en un entorno real?

Además del debate que puede suscitar la fiabilidad de los métodos de análisis de las expresiones faciales mediante software o la subjetividad del autoinforme, no hay que olvidar que esto es un experimento de laboratorio donde el entorno real no es la imagen que se visualiza. A estímulos visuales se le añaden estímulos sonoros, pero la experiencia en un entorno natural es multisensorial, además de que la música también lo es o puede serlo3. Este tipo de investigación puede ser muy útil para la realización de vídeos relajantes o realidad virtual donde se combinan el entorno natural con la música. Sin embargo, la realidad es bastante más compleja, donde analizar y controlar todas las variables es una tarea muy difícil. La visualización de diferentes entornos naturales no influyó en las preferencias musicales, lo cual en la realidad del entorno podría no ser así. El entorno acústico medioambiental es determinante en muchas cuestiones evolutivas musicales, hasta el punto de haber podido influir en el desarrollo del lenguaje4, por lo que reducir a una visualización la precepción del medio ambiente es un primer paso necesario para la investigación de la interacción de música y entorno natural. Un primer paso que nos adentra en el océano de un nuevo conocimiento en el que, sin embargo, nos hallamos todavía en la orilla.

Referencias:

1 Franěk, M., & Petružálek, J. (2024). Audio-Visual Interactions Between Music and the Natural Environment: Self-Reported Assessments and Measures of Facial Expressions. Music & Science, 7. doi: 10.1177/20592043241291757

&nbsp

2 Sachs, M. E., Damasio, A., & Habibi, A. (2015). The pleasures of sad music: a systematic review. Frontiers in human neuroscience, 9, 404. doi:  10.3389/fnhum.2015.00404

&nbsp

3 Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory–motor interactions in music perception and production. Nature reviews neuroscience, 8(7), 547-558.doi:  10.1038/nrn2152

&nbsp

4 Gannon, C., Hill, R. A., & Lameira, A. R. (2023). Open plains are not a level playing field for hominid consonant-like versus vowel-like calls. Scientific Reports, 13(1), 21138. doi: 10.1038/s41598-023-48165-7

&nbsp
Sobre el autor: José Manuel González Gamarro es profesor de guitarra e investigador para la Asociación para el Estudio de la Guitarra del Real Conservatorio Superior de Música “Victoria Eugenia” de Granada.

El artículo La música y el entorno natural se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Naukas pro 2024: SAREUS: Red de Varamientos de cetáceos y pinnípedos de Euskadi

Sáb, 2024/11/23 - 11:59

Varamientos

Los últimos avances en el ámbito de las energías renovables marinas o la proliferación de los microplásticos fueron algunos de los temas que componen la última edición de NAUKAS PRO. Una cita en la que el personal investigador se sube al escenario del Euskalduna Bilbao para hablar de las investigaciones más destacadas del momento en un ámbito concreto.

En esta ocasión el personal investigador de la Universidad del País Vasco, de la Estación Marina de Plentzia (PiE-UPV/EHU), AZTI, Tecnalia o el CSIC acercaron las últimas investigaciones relacionadas en el ámbito marítimo.

La conferencia SAREUS: Red de Varamientos de cetáceos y pinnípedos de Euskadi corre a cargo de Denis Benito Fernández, investigador de la Estación Marina de Plentzia-Plentziako Itsas Estazioa.



Si no ve correctamente el vídeo, use este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas pro 2024: SAREUS: Red de Varamientos de cetáceos y pinnípedos de Euskadi se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Aceite de palma: ¿aliado tecnológico o enemigo de la salud?

Vie, 2024/11/22 - 11:59

Es probable que haya escuchado hablar sobre el aceite de palma en más de una ocasión, casi siempre acompañado de una connotación negativa. Sin embargo, ¿es tan perjudicial como se dice, o parte de su mala reputación proviene de mitos y/o desinformación?

Foto de Marcelo Verfe / PexelsAceite de palma “hasta en la sopa»…

El principal problema del aceite de palma es que se encuentra como ingrediente en muchos alimentos procesados. Estos van destinados tanto a la población general (sopas instantáneas, helados, galletas y pan de molde) como a colectivos específicos (fórmulas infantiles).

Esta popularidad se debe a que el aceite de palma tiene una composición de ácidos grasos que lo hace estable y semisólido a temperatura ambiente. Además, cuenta con un punto de fusión elevado (temperatura a la que se derrite) y un sabor neutro.

Dichas características lo convierten en un ingrediente ideal para la elaboración de productos de panadería, confitería y aperitivos, donde es frecuente su uso como sustituto de grasas sólidas de mayor valor económico (mantequilla, manteca de cacao) o menos saludables, como las grasas parcialmente hidrogenadas (margarina). La industria alimentaria puede incluso emplearlo como medio de fritura de alimentos que, en principio, no lo contienen.

Todo ello explicaría la omnipresencia del aceite de palma en una gran variedad de alimentos de consumo más o menos habitual.

Pero ¿qué es y de dónde viene el aceite de palma?

El aceite de palma es el aceite vegetal más utilizado a nivel mundial y se obtiene a partir del fruto de diferentes ejemplares de plantas del género Elaeis (E. guineensis, E. oleífera o el híbrido entre ambas). Todas ellas son comúnmente conocidas como palma de aceite o palma aceitera. Son originarias de África Occidental, pero en la actualidad los mayores productores a nivel mundial son Indonesia y Malasia.

Aunque solemos hablar de «aceite de palma” de forma general, en realidad se pueden obtener dos tipos diferentes de aceite según la parte del fruto que se utilice.

  1. El aceite de almendra de palma o aceite de palmiste, que se obtiene de la semilla del fruto.
  2. El aceite de palma propiamente dicho, que se extrae del mesocarpio (de la pulpa del fruto).

Estos aceites no solo difieren en su procedencia, sino también en su composición lipídica. Así, el aceite de palmiste es rico en ácidos grasos saturados (entre un 72 y un 98 % del total), principalmente ácidos láurico, mirístico y palmítico. En cambio, el aceite de palma presenta una composición mucho más equilibrada de ácidos grasos: casi la mitad de ellos son saturados y la otra mitad son insaturados. Entre los saturados destaca el palmítico (entre un 32 y un 47 %) y entre los insaturados destaca el oleico (ácido monoinsaturado, entre un 40 y un 52 %).

Aparte de su perfil de ácidos grasos, tanto el aceite de palmiste como el de palma contienen elevadas cantidades de componentes lipídicos minoritarios con propiedades antioxidantes, como la vitamina E (especialmente tocotrienoles) y carotenoides precursores de la vitamina A, que le confieren su característico color anaranjado.

Su contenido en estos compuestos lo ha posicionado como alternativa para paliar las deficiencias de vitamina E y A en poblaciones de Asia y África. Sin embargo, el proceso de refinamiento previo a su comercialización provoca que estos componentes bioactivos se pierdan casi en su totalidad, por lo que esta aparente ventaja nutricional en realidad no lo es tanto.

¿Por qué se dice que el aceite de palma es malo?

En los últimos años el uso y consumo de aceites y grasas derivados de la planta de la palma de aceite ha causado gran controversia, dado que su alto contenido en ácidos grasos saturados (especialmente ácido palmítico) lo hace difícilmente recomendable desde un punto de vista nutricional.

La capacidad del ácido palmítico para aumentar los niveles circulantes de colesterol LDL (lipoproteína de baja densidad, popularmente conocido como “colesterol malo”) es bien sabida. Dada la relación existente entre niveles aumentados de colesterol LDL y el riesgo de padecer enfermedades cardiovasculares, las recomendaciones dietéticas sugieren reducir o limitar la ingesta de ácidos grasos de la dieta, incluido el ácido palmítico.

También es necesario recalcar la detección de glicidol, 3-monocloropropano-1,2-diol (3-MCPD) y sus ésteres en el aceite de palma refinado, compuestos que resultan tóxicos y para los cuales las autoridades ya han implantado medidas con el fin de reducir su contenido. Cabe recordar que estos compuestos se pueden generar durante el proceso de refinado de cualquier aceite vegetal a temperaturas excesivas (no solo en el procesado del aceite de palma).

No compensa

En conclusión, parece que a día de hoy las ventajas que puede aportar el aceite de palma por sus propiedades tecnológicas no son suficientes para contrarrestar los efectos que puede tener sobre la salud. Por ello, es necesario recalcar la importancia y suerte que tienen países mediterráneos como España de contar con el aceite de oliva virgen extra, que representa una opción mucho más interesante a nivel nutricional por ser rico en ácido oleico y en compuestos fenólicos únicos. Estos son potentes agentes bioactivos antioxidantes que no están presentes en otros aceites y grasas, cuyo consumo se ha relacionado con numerosos beneficios para la salud.The Conversation

Sobre las autoras: Laura Isabel Arellano García, Investigadora predoctoral del Grupo Nutrición y Obesidad del Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CiberObn), Universidad del País Vasco / Euskal Herriko Unibertsitatea; Alfredo Fernández-Quintela, Profesor de Nutrición e Investigador del CiberObn; Bárbara Nieva Echevarría, Profesora Ayudante Doctora en el área de Tecnología de Alimentos, UPV/EHU; Encarnación Goicoechea Osés, Profesora Titular de Tecnología de los Alimentos, UPV/EHU; Iñaki Milton Laskibar, Profesor Investigador del CiberObn y del Instituto de Investigación Sanitaria Bioaraba, UPV/EHU, y María Puy Portillo, Catedrática de Nutrición, CIBERobn.

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Aceite de palma: ¿aliado tecnológico o enemigo de la salud? se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

¿Y si cae un meteorito?

Jue, 2024/11/21 - 11:59

Los meteoritos son fragmentos de cometas y asteroides que consiguen atravesar la atmósfera terrestre sin destruirse y caen en la superficie de nuestro planeta. Este proceso es mucho más común de lo que nos imaginamos, ya que se ha estimado que miles de estos visitantes extraterrestres llegan a la Tierra cada año, la mayoría de ellos de muy pequeño tamaño, lo que hace que ni nos enteremos de su presencia, aunque alguno consigue alcanzar un tamaño considerable pudiendo provocar ciertos daños materiales al caer en zonas pobladas.

meteoritosMeteorito de Hoba, encontrado en Namibia. Foto: Patrick Giraud / Wikimedia Commons

Sin embargo, cuando oímos la palabra meteorito, lo que nos viene a la cabeza es un enemigo gigantesco e implacable acercándose a la Tierra para sembrar caos y destrucción. Esta imagen se nos ha quedado marcada debido a los eventos desencadenados por el impacto meteorítico más famoso de la historia, el acontecido hace unos 66 millones de años, cuando un cuerpo extraterrestre de más de 10 km de diámetro cayó en el actual Golfo de México y provocó la última gran extinción masiva de la historia de la Tierra, en la que desaparecieron el 75% de las especies del planeta, incluidos los dinosaurios no avianos. Y este miedo a que se repita la misma historia ha llegado a formar parte de la cultura popular en forma de numerosas películas de ciencia ficción, como “Deep Impact”, o novelas de terror como “El color surgido del espacio”, de H. P. Lovecraft.

Pero, si echamos un vistazo a la historia geológica de la Tierra, los impactos meteoríticos no han sido siempre tan catastróficos, más bien todo lo contrario. Y para comprobarlo viajaremos a nuestros orígenes… como planeta.

La Tierra se formó hace unos 4567 millones de años gracias a lo que se conoce como acreción de planetesimales. Este proceso consistió en la colisión de varios objetos sólidos con diámetros kilométricos (los planetesimales) que estaban dispersos en una nube de polvo y gases que orbitaba alrededor de una protoestrella que acabó convirtiéndose en nuestro Sol. Tras unos cuantos millones de años de impactos de planetesimales, hace unos 4538 millones de años tuvimos ya formada la Proto-Tierra, una gran bola semisólida cubierta por un océano de lava fruto del enorme calor generado por las colisiones.

meteoritosRecreación del aspecto de la Tierra primitiva, hace unos 4000 millones de años, mostrando la caída de meteoritos sobre una superficie parcialmente fundida. Ilustración: Simone Marchi & Dan Durda / Southwest Research Institute

Mientras nuestro joven planeta recién formado empezaba a enfriarse y parecerse más a lo que vemos hoy en día a nuestro alrededor, no estuvo a salvo de la caída de más meteoritos. En concreto, sufrió un auténtico ataque indiscriminado de proyectiles extraterrestres en dos fases temporales muy concretas: hace entre unos 4400 y 4100 millones de años, en lo que se conoce como Gran Bombardeo Temprano, y hace entre 4100 y 3900 millones de años, durante el Gran Bombardeo Tardío.

Los meteoritos que bombardearon esa Tierra primitiva eran de diferentes tipos: aerolitos o condritas, sideritos, litosideritos y fragmentos de asteroides carbonáceos. Y son los culpables de que, hoy en día, nuestro planeta sea un vergel de vida, ya que aportaron los componentes principales que la caracterizan, elementos químicos como hierro (Fe), níquel (Ni), silicio (Si), oxígeno (O), carbono (C) o hidrógeno (H), algunos de cuales se combinaron para generar moléculas tan importantes como dióxido de carbono (CO2), agua (H2O) y ozono (O3). Sin los cuales, la evolución geológica de nuestro planeta no se habría producido de la manera que lo hizo, propiciando que ahora mismo yo esté escribiendo este texto que estáis cómodamente leyendo.

Si todavía no os he convencido de que los impactos meteoríticos acontecidos en la historia geológica de nuestro planeta han sido más beneficiosos que perjudiciales para el ser humano, quiero que sepáis que, si no se hubiese producido esa extinción de los dinosaurios hace 66 millones de años, los mamíferos no habrían evolucionado hasta dar lugar al ser humano, millones de años después. Así que, ese grandullón surgido del espacio, nos hizo un enorme favor. Además, los meteoritos no dejan de ser fragmentos de cuerpos extraterrestres que nos permiten conocer de primera mano cómo debió ser la Tierra primigenia, aparte de que tener un siderito en las manos, formado principalmente por hierro y níquel, es lo más parecido a poder tocar el propio núcleo de nuestro planeta.

La próxima vez que miréis al cielo en una noche estrellada y veáis una estrella fugaz no quiero que penséis un deseo, sino que os acordéis de que fueron los meteoritos los que pusieron los primeros ladrillos tanto de nuestro planeta como de la vida tal y como la conocemos. Y sí, es posible que, algún día, vuelva a caernos uno lo suficientemente grande como para que la era del ser humano llegue a su fin, pero de eso no tenemos tanta certeza.

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo ¿Y si cae un meteorito? se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Páginas