¿Mi hijo tiene autismo o este comportamiento es “normal”?
Adam McCrimmon
Criar a un hijo es a menudo uno de los acontecimientos más desafiantes y felices en la vida de una persona. Ver a tu hijo crecer y desarrollarse es una fuente de placer. Sin embargo, algunos padres se preocupan cuando su hijo parece desarrollarse de manera diferente a los demás.
En ocasiones, los padres pueden preocuparse por la posibilidad de un trastorno del espectro autista o TEA.
Como profesor asociado y psicólogo colegiado en la Werklund School of Education de la Universidad de Calgary (Canadá), me especializo en la evaluación diagnóstica del TEA tanto en niños y como en adultos.
Muchas familias me hablan de sus preocupaciones (o de las preocupaciones de los demás) por sus hijos y se preguntan acerca de la posibilidad de un TEA.
Descubrí que informar a los padres sobre los síntomas del TEA puede ayudarlos a decidir si sus preocupaciones están justificadas. Además, muchos padres desconocen cómo se caracteriza actualmente el trastorno y, por lo tanto, les cuesta entender si una evaluación puede beneficiar a su hijo.
Los síntomas individuales son únicos
El TEA es, de acuerdo con la descripción utilizada por la mayoría de los médicos en América del Norte, un “trastorno del neurodesarrollo“, lo que significa que se hace patente durante el desarrollo temprano de un niño y se traduce en dificultades en su funcionamiento personal, social, académico u ocupacional.
Las personas con TEA típicamente muestran síntomas a los dos a tres años de edad. Sin embargo, en muchas habrá signos antes en el desarrollo y el TEA se puede diagnosticar de manera fiable alrededor de los 18 meses de edad.
Los sujetos deben presentar dificultades en dos áreas de funcionamiento: 1) comunicación social y 2) patrones de conducta restringidos y/o repetitivos.
Es importante destacar que las personas con TEA se encuentran en un “espectro”, lo que significa que pueden experimentar una variedad de dificultades dentro de cada área. Esto significa que los síntomas específicos de cada persona serán únicos.
Problemas de comunicación social
En el área de la comunicación social, los niños pueden demostrar un retraso en el desarrollo del habla, ya sea por no usar palabras sueltas a los 18 meses o por la inexistencia de frases de dos a tres palabras a los 33 meses de edad.
Es posible que no dirijan la atención de los demás (p. ej., señalando o mirando a los ojos), que no sigan lo que otro señala o que no respondan a su nombre. A veces carecen de la capacidad, o tienen habilidades limitadas, de jugar a juegos de simulación.
Otros signos pueden incluir poco interés en jugar con los compañeros, no enseñar o llevar objetos a otros para compartir un interés, sonreír con poca frecuencia a los demás o no hacer gestos para expresar sus necesidades, por ejemplo asintiendo o levantando los brazos para que los cojan.
Muchos niños que son diagnosticados de TEA no imitan los comportamientos de los demás. Por ejemplo, es posible que no respondan a alguien que los saluda con la mano. O les cuesta comprender el lenguaje de los demás o muestran un variedad limitada de expresiones faciales.
Algunas veces usan las manos de otros como una herramienta, por ejemplo, usando la mano de un padre para señalar las imágenes de un libro en vez de señalarlas ellos mismos. Y pueden repetir las palabras de los demás en lugar de usar su propio lenguaje para expresar necesidades o deseos.
Patrones de comportamiento repetitivos
Con respecto a los patrones de comportamiento restringido / repetitivo, algunos niños muestran una fuerte preferencia por, o aversión a, estímulos sensoriales. Por ejemplo, un niño puede ansiar el estímulo visual al mirar fijamente a un ventilador durante largos períodos de tiempo. O pueden sentirse muy angustiados por los ruidos típicos de la casa, por cortarse el pelo o por que los toquen.
Los niños a menudo se apegan a objetos específicos, como un bloque [de madera o plástico] o una libreta que deben llevar consigo, pero muestran poco interés por los juguetes. Pueden interesarse intensamente en cosas como los pomos de las puertas o los asientos de los inodoros, o pueden obsesionarse con un personaje de dibujos animados familiar o un juguete.
Pueden agitar los brazos o las manos, mecerse o girar repetitivamente cuando están excitados. Algunos niños repiten acciones una y otra vez, como encender y apagar una luz. Algunos se centran en los componentes pequeños de un objeto (la rueda de un coche de juguete) en lugar de en todo el objeto (el coche).
Otros pueden alinear los objetos con insistencia, como los juguetes o los zapatos de los miembros de la familia, y se angustian si alguien mueve los objetos. Pueden ser agresivos con los demás o pueden lastimarse a sí mismos. A menudo anhelan la previsibilidad y lo pasan mal cuando se rompen sus rutinas.
La identificación temprana es clave
Es importante destacar que ningún síntoma concreto es necesario o suficiente para un diagnóstico. Sin embargo, más síntomas sí aumentan la probabilidad de un diagnóstico.
Además, muchos niños muestran síntomas consistentes con TEA pero crecen hasta eliminarlos de forma natural y no reciben un diagnóstico. Los médicos experimentados toman en cuenta el desarrollo infantil típico al determinar si se justifica un diagnóstico.
Si le preocupa que su hijo pueda tener TEA, un primer paso importante es hablar con su médico o pediatra. Autism Canada [en España, Autismo España] es un recurso excelente que proporciona información sobre las posibilidades de evaluación e intervención.
La evaluación a menudo involucra a equipos de profesionales que trabajan juntos para identificar como se ajusta un niño con los síntomas de TEA y generalmente incluye la observación del niño en diferentes entornos, entrevistas con los padres y la realización de tareas de evaluación para valorar el desarrollo del niño.
La identificación temprana es clave. Este reconocimiento permite a los niños y sus familias acceder a intervenciones y apoyos que tienen su mayor impacto durante la primera infancia.
Sobre el autor:
Adam McCrimmon es profesor asociado de la facultad de educación de la Universidad de Calgary (Canadá)
Texto traducido y adaptado por César Tomé López a partir del original publicado por The Conversation el 8 de enero de 2018 bajo una licencia Creative Commons (CC BY-ND 4.0)
El artículo ¿Mi hijo tiene autismo o este comportamiento es “normal”? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Agua cruda, la nueva moda antiprogreso del primer mundo
En Silicon Valley (California) se encuentran las mayores corporaciones de tecnología del mundo, hasta tal punto que Silicon Valley se ha convertido en el metónimo para el sector de la alta tecnología (a la manera de Hollywood para el cine). Marcan tendencias a escala global: moda, estilo de vida, pensamiento… Incluso alimentación. La última idea feliz que ha triunfado en Silicon Valley es la de beber «agua cruda», agua sin tratar y sin analizar.
Siendo justos, ya existía en el mercado agua sin tratar que se embotella directamente extraída del manantial. Es el agua mineral natural que todos conocemos y que podemos comprar por unos 30 céntimos el litro. Sin embargo, si un agua no se trata, o se trata mínimamente, es porque no lo necesita. Periódicamente se analiza su composición química y biológica para determinar si es segura. Si no se analiza, sencillamente no se puede vender.
En cambio, el «agua cruda» (raw water), aunque también es agua sin tratar como la mineral, no se analiza. Ahí está la diferencia fundamental: no sabes qué estás bebiendo, si es agua segura o no. La comercializan embotellada, a una media de 6 € el litro (20 veces más que el agua mineral natural), empresas como Live Water, en Oregón, y Tourmaline Spring, en Maine. Zero Mass Water, en Arizona, es una empresa que instala en los hogares sistemas para captar agua de la atmósfera y evitar así beber agua del grifo. Liquid Eden, en San Diego, ofrece, entre otras opciones, agua libre de flúor y libre de cloro, según publicaba recientemente The New York Times.
-
Los supuestos beneficios del agua cruda son disparates
Los absurdos motivos que han llevado a que estas empresas generen ingresos comercializando agua cruda son de naturaleza muy diversa. Apuntan a la desconfianza en la calidad del agua que sale del grifo, principalmente por los compuestos de cloro y flúor que se agregan durante el tratamiento, sustancias a las que les atribuyen efectos tóxicos sin parangón e incluso la conspiranoica idea de que esas sustancias sirven para volvernos dóciles y controlarnos. Otros alegan que el agua corriente contiene restos de medicamentos y fitosanitarios capaces de producirnos enfermedades. Algunos creen que durante el filtrado se eliminan minerales beneficiosos y probióticos saludables. Otros hablan de disparates mayores, como que el agua cruda ayuda a los chacras y está impregnada de energías de piedras preciosas.
-
Potabilización del agua: uno de los mayores progresos en salud pública de la historia
En 1997 la revista Life publicó que «la filtración de agua potable y el empleo de cloro es probablemente el avance en salud pública más significativo del milenio».
A lo largo de la historia hemos ido desarrollando métodos cada vez más eficaces para garantizar la seguridad del agua que consumimos. Hay registrados métodos para mejorar el sabor y el olor del agua 4.000 años antes de Cristo. Se han encontrado escritos griegos en los que se hablaba de métodos de tratamiento de aguas por filtración a través de carbón, exposición a los rayos solares y ebullición.
En el antiguo Egipto el agua se decantaba. Se dejaba reposar en vasijas de barro hasta que precipitasen las impurezas, quedándose con la parte superior del agua. También añadían alumbre para favorecer la precipitación de las partículas suspendidas en el agua.
A principios del siglo XIX algunas ciudades ya contaban con sistemas de abastecimiento de aguas y filtrado. Sin embargo, estos métodos eran insuficientes. Algunos agentes patógenos sobrevivían tras estos tratamientos.
En 1854, el médico británico John Snow, descubrió que el cólera era causado por el consumo de aguas contaminadas con materias fecales, al comprobar que los casos de esta enfermedad se agrupaban en las zonas donde el agua consumida estaba contaminada con heces. La OMS publicó un monográfico en el que se contabilizaron seis pandemias de cólera en el siglo XIX que se cobraron la vida de millones de personas en todo el mundo.
En 1908 se emplearon compuestos de cloro por primera vez como desinfectantes primarios del agua potable de New Jersey. La cloración causa alteraciones en la pared celular de las células bacterianas. Las deja indefensas, de modo que disminuyen sus funciones vitales hasta llevarlas a la muerte, por lo que son incapaces de producir enfermedades. Estos compuestos clorados, que bien pueden utilizarse como gas cloro, hipoclorito o dióxido de cloro, son oxidantes. Esto hace que además sean germicidas, eliminando mohos, algas y otros microorganismos además de bacterias.
Antes de la llegada de la cloración para el tratamiento de agua potable la gente se contagiaba fácilmente de enfermedades mortales como el cólera, la fiebre tifoidea, la disentería o la poliomielitis. Actualmente conocemos otros muchos oxidantes con cualidades similares, como los halógenos, el permanganato o el ozono.
Hoy en día, en las estaciones de tratamiento de agua potable (ETAP) se realizan los procesos necesarios para que el agua natural procedente de embalses y otras captaciones se transforme en agua potable. En ellas se llevan a cabo procesos físicos, químicos y biológicos complejos capaces de lograr un agua segura, con buen olor y sabor. Además de tratar el agua, ésta se analiza periódicamente, es decir, se mide su calidad y su composición química y biológica.
Sin lugar a duda, el tratamiento del agua ha sido uno de los mayores avances en salud pública de la historia. Ha salvado una cantidad ingente de vidas. Rechazar el tratamiento del agua es rechazar el progreso. Es rechazar la salud. Incluso es rechazar un derecho humano fundamental.
-
El agua potable es un derecho humano fundamental
El 28 de julio de 2010 la Asamblea General de las Naciones Unidas declaró que el acceso al agua potable segura y limpia y al saneamiento era un derecho humano esencial para el pleno disfrute de la vida y de todos los demás derechos humanos. Además, expresó su profunda preocupación por el hecho de que casi 900 millones de personas en todo el mundo carecen de acceso al agua potable. Esta carencia provoca la muerte de 3,5 millones de personas cada año. El doble de fallecimientos que se producen por accidentes viales y casi el triple de los ocasionados por el VIH.
-
Un problema inventado del primer mundo.
La escasez de agua potable y de saneamiento es la causa principal de enfermedades en el mundo. El 42% de los hogares carece de retretes y una de cada seis personas no tiene acceso a agua potable.
La mortandad en la población infantil es especialmente elevada. Unos 4.500 niños y niñas mueren a diario por carecer de agua potable y de instalaciones básicas de saneamiento. En los países en vías de desarrollo, más del 90% de las muertes por diarrea a causa de agua no potable y la falta de higiene se producen en niños y niñas menores de cinco años. Preguntadles a sus familias qué opinan del agua cruda, si están preocupados por los probióticos, por el control mental por cloración o por los chacras del agua.
La moda de beber agua cruda sólo la pueden seguir aquellos que cuentan con una nevera llena, buena cobertura sanitaria y, sobre todo, agua corriente potable. Ellos son los que lideran el movimiento antiprogreso, los que no tienen nada que temer y con insultante esnobismo, se lo inventan.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo Agua cruda, la nueva moda antiprogreso del primer mundo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Kakalardo bonba-jaurtitzailea
———————————————————————————————————–
Carabidae familiakoak ditugu beren babes kimikorako mekanismoa dela eta izen xelebre hau hartzen duten 500 intsektu-espezietik gorako taldeko kideak. Zerbaitek, normalean apo, inurri edo armiarma edo antzeko harrapariren batek, kalte egingo diela antzematen dutenean, kakalardo hauek narritagarria den esprai kimikoa jaurtitzen diote etsaiari. Babes-modua bera deigarria bada ere, are harrigarriagoa da jaurtitzen duten substantziaren tenperatura 100°C-tik gorakoa izatea; beraz, oso arma indartsua da ia edozein harraparirentzat.Kakalardo bonba-jaurtitzaileak 100ºC-tik gorako esprai kimikoa jaurtitzen du mehatxatuta dagoenean. Iturria: KQED San Francisco telebista publikoa.
Nola ekoizten dute horren kaltegarria izan daitekeen konposatu hori? Eta nola lortu dute eurei kalterik ez eragitea?
Kontua oso konplexua da, eta horrexegatik erabili izan dute adibide modura kreazionismoaren eta diseinu adimendunaren aldekoek, horren konplexua den zerbait hautespen naturalez ezin gara daitekeela azaltzeko. Utz ditzagun funts zientifikorik gabeko kontu hauek alde batera eta azter dezagun eraso kimiko honen oinarrian dagoena.
Kakalardo hauen sabelaren atzealdeko muturrean kokatzen diren guruin berezietan ekoizten da aerosol babesgarria. Espraia jaurtitzen dutenean, laino bat bezala ikus daiteke, eta leherketak hots berezia eta entzuteko modukoa sortzen du.
Bi ganbarek osatzen dituzte sekrezio-guruin berezi hauek: ganbara handienean, barrurago kokatzen dena, animaliaren bi guruin berezitutan ekoitzitako hidrokinona eta hidrogeno peroxidoa nahasten dira; kanporago kokatzen den ganbara txikiagoan, berriz, epitelioko zelulek jariatzen dituzten katalasaz eta peroxidasaz osatutako nahaste entzimatiko bat dago. Hidrokinona intsektu askoren metabolismoaren produktuetako bat da, kitinaren sintesian erabiltzen dena, eta hidrogeno peroxidoa, bestalde, denok ezaguna dugun ur oxigenatua da.
Intsektu hauek mehatxua hautematen dutenean, zenbait muskulu uzkurtuz ganbara handiko likidoa ganbara txikiagoan sarrarazten dute, eta orduan gertatzen da leherketa, hidrogeno peroxidoa bat-batean hidrolizatzen hasten delako eta hidrokinonak oxidatzen, oso erreakzio bortitza eraginez, non bero kantitate handiak askatzen diren. Sortutako gasen presioaren eraginez, alde batetik ganbara handiko balbula itxita mantentzen da, eta horrela babestuta gelditzen, eta bestetik nahaste erasotzailea esprai fin bat bezala kanporatzen da beste balbula batetik. Ateratzen den benzokinona eta lurrunaren nahasteak erre egiten du, uraren irakite-puntuaren tenperaturaren ingurura heltzen baita, eta normalean harrapariak uxatu egiten ditu.
Kakalardoek hainbat aldiz erakuts dezakete babes-erantzun hau eta gainera bonba-jaurtiketa ia edozein noranzkoan zuzendu dezaketela ikusi da, harrapariaren mugimenduen arabera eraso kimikoaren norabidea aldatuz. Afrikako zenbait kakalardo bonba-jaurtitzailek 270 graduko errotazio-ahalmena dute, eta, beraz, guruinaren irekitze-gunea ia edonorantz bideratu dezakete.
Animalia hauek erabiltzen duten lehertze-mekanismoa hain da eraginkorra, ezen 2004 urtean Leeds-eko Unibertsitatean 135.000 liberako finantziazioa jaso zuen proiektu bat abiatu baitzen, animalia hauen konbustio-mekanismoak industria aeronautikoan izan ditzakeen aplikazioak aztertuko dituena. «Learning from controlled explotions in nature: modelling the catalytic explosion device of bombardier beetles» da ikerketa-lanaren izena, eta gero eta gehiago garatzen ari den biomimetikaren arloan sakonduko du.
—————————————————–
Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.
—————————————————–
Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso du.
The post Kakalardo bonba-jaurtitzailea appeared first on Zientzia Kaiera.
Hay más estrellas masivas de lo que se creía y lo que eso implica para la historia del universo
Un equipo internacional de astrónomos ha descubierto que hay muchas más estrellas masivas en una galaxia satélite de la Vía Láctea de las que se pensaba. El descubrimiento, realizado en la gigantesca región de formación estelar 30 Doradus (número de catálogo NGC 2070) en la Gran Nube de Magallanes, tiene consecuencias muy importantes para nuestra comprensión de cómo las estrellas transformaron el Universo primitivo en el que vivimos hoy.
El equipo utilizó el Very Large Telescope del Observatorio Europeo Austral (ESO) para observar cerca de 1,000 estrellas masivas en 30 Doradus, un gigantesco vivero estelar también conocido como la nebulosa de la Tarántula. Realizó análisis detallados de alrededor de 250 estrellas con masas de entre 15 y 200 veces la masa de nuestro Sol para determinar la llamada función de masa inicial (FMI), esto es, una función empírica que describe la distribución de las masas iniciales de una población de estrellas, en este caso, 30 Doradus.
Las estrellas masivas son particularmente importantes para los astrónomos debido a la enorme influencia que ejercen en su entorno. Además, pueden explotar en espectaculares supernovas al final de sus vidas, formando algunos de los objetos más exóticos del Universo, como las estrellas de neutrones y los agujeros negros.
En los resultados se obtiene una sorprendente población actual abundante en estrellas de 200 masas solares; aún es más chocante que también se encuentra una FMI con un alto porcentaje de estrellas supermasivas. Y es chocante porque, hasta hace poco, afirmar la existencia de estrellas de hasta 200 masas solares era algo muy controvertido, y este trabajo ha encontrado que una masa de nacimiento máxima de entre 200 y 300 masas solares no solo es posible, sino probable.
En la mayoría de las zonas del universo estudiadas por los astrónomos hasta la fecha se ha encontrado que cuanto mayor es la masa estelar, menos abundantes son las estrellas. La FMI predice habitualmente que la mayor parte de la masa acumulada en forma de estrellas se encuentra en estrellas de baja masa y que menos del 1% de todas las estrellas nacen con masas que superan diez veces la del Sol.
Medir la proporción de estrellas masivas es extremadamente difícil, debido precisamente a su escasez, y solo hay un puñado de lugares en el universo observable donde se puede hacer. Uno de estos lugares es 30 Doradus, la mayor región local de formación de estrellas, que alberga algunas de las estrellas más masivas que se han encontrado. La gran muestra de estrellas de esta región analizada por los investigadores ha permitido a los astrónomos demostrar que las estrellas masivas son mucho más abundantes de lo que se pensaba. De hecho, estos resultados sugieren que la mayor parte de la masa estelar no está en estrellas de baja masa, sino que una fracción significativa estaría en estrellas muy masivas.
Implicaciones importantísimas para nuestra comprensión de la evolución del universo.
Las estrellas han producido la mayoría de los elementos químicos más pesados que el helio, desde el oxígeno que respiramos todos los días hasta el hierro que está en los glóbulos rojos de nuestra sangre. Durante sus vidas, las estrellas masivas producen cantidades gigantescas de radiación ionizante y de energía cinética en forma de fuertes vientos estelares. La radiación ionizante de las estrellas masivas fue crucial para volver a iluminar el Universo después de la llamada Épocas Oscuras, y su efecto cinético impulsa la evolución de las galaxias. Saber por tanto la proporción y número de estrellas masivas es fundamental.
Con estos resultados en la mano podríamos estar hablando de que habría un 70 % más de supernovas en el universo, de que la producción de elementos químicos pesados podría ser el triple y de que se estaría emitiendo cuatro veces más radiación ionizante de lo que se pensaba. Por si esto no fuese suficiente, la tasa de formación de agujeros negros sería un 180 % mayor, lo que se traduciría directamente en un aumento de las fusiones de agujeros negros binarios como las recientemente detectadas por LIGO en forma de ondas gravitacionales.
Los resultados como vemos tienen una importancia potencial enorme. La cuestión es, ¿son extrapolables al conjunto del universo? Y, si es así, ¿cuáles serían las consecuencias para el actual modelo de evolución de nuestro universo?
Referencia:
F.R.N. Schneider et al (2018) An excess of massive stars in the local 30 Doradus starburst Science doi: 10.1126/science.aan0106
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Hay más estrellas masivas de lo que se creía y lo que eso implica para la historia del universo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Blaise Pascal, Dios y la cicloide
Siempre me ha gustado una anécdota del matemático francés Blaise Pascal (1623-1662) del periodo de su vida en el que abandonó la ciencia y se dedicó por completo a Dios, pero se le cruzaron en el camino un dolor de muelas y la cicloide. En esta entrada del Cuaderno de Cultura Científica me gustaría contaros esta anécdota, junto con otra sobre su precoz talento para las matemáticas, y en particular, para la geometría.
Blaise Pascal nació el 19 de junio de 1623 en Clermont, hoy en día Clermont-Ferrand, (Francia). Su padre fue Etienne Pascal (1588-1651), jurista francés que fue consejero del rey por la Baja Auvernia, vicepresidente de la Cour des aides, una corte suprema encargada de los impuestos y otros temas fiscales, de Clermont y posteriormente, presidente de la Cour des aides de Normandia, quien además hizo sus pinitos en matemáticas, como el estudio de la curva llamada “el caracol de Pascal”. Su madre, Antoinette Begon, murió cuando Blaise tenía tan solo tres años, tras el nacimiento de su hermana Jaqueline. Tenía otra hermana, Gilberte, tres años mayor que Blaise.
Se tiene mucha información sobre la niñez del matemático Blaise Pascal debido a que su hermana Gilberte, de casada Gilberte Périer, escribió una biografía sobre su hermano. Por ejemplo, sabemos que su padre se encargó de la educación de sus tres hijos, y muy especialmente de la de Blaise. Así, Gilberte escribió, como se recoge en el libro Blaise Pascal: la certeza y la duda,
“…al morir mi madre en 1626, cuando mi hermano no tenía más que tres años, mi padre, al quedarse solo, se entregó con mayor dedicación al cuidado de la familia; y como Blaise era su único hijo varón, esta cualidad y las demás que en él observó [las grandes pruebas de inteligencia que observó en él] le llenó hasta tal punto de afecto paternal que decidió no encargar a nadie la tarea de su educación y tomó la resolución de instruirle él mismo, como en efecto hizo, pues mi hermano no tuvo nunca otro maestro que mi padre…”
Más aún, en 1631, Etienne decidió marcharse con sus dos hijas y su hijo, que tenía 8 años, a vivir a París, pensando especialmente en la educación de su hijo varón.
Blaise era un niño enfermizo por lo que su padre decidió darle una educación más clásica, centrada en las lenguas y la filosofía, y alejada completamente de las matemáticas, con el objetivo de mantenerlo en una relativa tranquilidad y no forzar su salud. Más aún, Etienne evitaba hablar de matemáticas en presencia de su hijo, incluso cuando sus amigos (entre ellos estaba, por ejemplo, el matemático Gilles Personne de Roberval o Marin Mersenne) le visitaban en casa. Pero la prohibición de incluir las matemáticas en su educación, solo consiguió despertar en Blaise la curiosidad por las mismas, y terminó preguntándole a su padre, cuando tenía 12 años, sobre la geometría. Etienne le explicó, según narra Gilberte en su bografía, que “… en general, [la geometría] es el medio de construir las figuras exactas y de encontrar las proporciones entre ellas”, pero le prohibió volver a hablar, o pensar, sobre el tema.
Estimulado por la descripción que su padre hizo de la geometría, y a pesar de su prohibición, Blaise empezó a estudiarla a escondidas en su habitación. Descubrió por su cuenta muchas propiedades de figuras geométricas, por ejemplo, que la suma de los ángulos de un triángulo es lo mismo que dos ángulos rectos, es decir, 180º. Según Howard W. Eves, esto fue realizado después mediante algún proceso que consistía en el plegado de un triángulo de papel, del estilo de plegar los vértices del triángulo sobre el centro de una circunferencia inscrita en el triángulo o el plegado de los vértices sobre uno de los lados del triángulo, procesos que se muestran en la siguiente imagen.
Cuenta la hermana mayor de Blaise que como tampoco conocía los términos matemáticos de los objetos geométricos que estudiaba, se fue inventando los nombres de los mismos. Por ejemplo, al círculo le llamó “aro” y a la línea recta “barra”.
Cuando su padre le sorprendió estudiando las figuras geométricas y vio los resultados que había obtenido por su cuenta lloró de alegría al ver la capacidad que tenía su hijo para las matemáticas. Entonces le regaló una copia del gran libro de las matemáticas griegas Los Elementos del matemático Euclides (aprox. 325 – 265 a.c.), un compendio de todo el saber geométrico, aunque también de aritmética y álgebra, de la matemática griega y que fue el libro de texto de matemáticas por antonomasia durante más de dos mil años, que devoró rápidamente con gran placer.
A la edad de 14 años ya empezó a participar, con su padre, en las reuniones de un grupo de matemáticos de París, organizadas por el matemático Marin Mersenne (1588-1648), conocida como la “Academia de Mersenne” y germen de lo que sería la Academia de Ciencias de París, fundada en 1666. Con tan solo 16 años, escribió su Essai pour les coniques –Ensayo sobre las cónicas- (1640), un artículo con una única página que contenía uno de los grandes resultados geométricos de la historia de las matemáticas, hoy en día un resultado clásico de la geometría proyectiva, el conocido como teorema de Pascal o como lo denominó el joven Pascal, el hexagrama místico.
Teorema de Pascal: Sean A, B, C, X, Y, Z seis puntos sobre una cónica Q del plano proyectivo. Si las líneas AY, BZ, CX intersecan a las líneas BX, CY, AZ, respectivamente, entonces los tres puntos de intersección son colineales, es decir, pertenecen a una misma recta (que se suele denominar recta de Pascal).
El resultado también se puede formular de la siguiente forma: si un hexágono (que puede ser estrellado, como en la imagen anterior) está inscrito en una cónica del plano proyectivo, entonces los puntos de corte de las rectas que continúan a los lados opuestos del hexágono son colineales, de ahí el nombre de “hexagrama místico” (de Pascal).
Cuando Pascal tenía 18 o 19 años inventó la primera calculadora mecánica, la pascalina, que funcionaba con ruedas y engranajes. Después de realizar muchos prototipos, la pascalina fue presentada en público en 1645.
Blaise Pascal de interesaría después, hacia 1648, por el estudio de la hidrostática, demostrando la existencia de la presión atmosférica mediante el experimento de Puy-de-Dôme, confirmando la teoría y los ensayos del físico y matemático italiano Evangelista Torricelli (1608-1647) o la ley de Pascal sobre los vasos comunicantes, es decir, el estudio de la presión ejercida por un fluido.
Hacia 1653, el caballero de Méré, amigo de Blaise, le planteó algunas cuestiones como la siguiente. Supongamos que dos jugadores de dados determinan jugarse un cierto dinero a apostar quien saca mejor puntuación después de un número dado de partidas, por ejemplo siete, pero el juego se interrumpe antes de esas siete partidas ¿Cómo debería repartirse el dinero apostado si, por ejemplo, uno ha ganado tres partidas y el otro una? Pascal le escribió al matemático (en realidad jurista) francés Pierre de Fermat (1607-1665) sobre estas cuestiones y la correspondencia entre ambos se considera hoy en día el origen de la teoría de probabilidades.
En 1654 publicaría varias obras estudiando otras cuestiones matemáticas, entre ellas el Traité du triangle arithmétique en la que estudia el famoso triángulo de Pascal, que es la representación de los coeficientes binomiales en forma triangular o el Traité des ordres numériques acerca de los órdenes de los números.
Pero en otoño de 1654 Blaise Pascal sufre una profunda depresión. Su padre había muerto en 1651 y su hermana Jaqueline había ingresado en un convento. Entonces, se produce su conversión religiosa, tras un “accidente de tráfico”.
La noche del 23 de noviembre de 1654 Blaise Pascal iba dando uno de sus habituales paseos en coche de caballos al Pont de Neully. Al entrar en el puente los caballos se espantaron saltando el muro del mismo, pero antes de que estos en su caída arrastraran al carruaje, y a Blaise que estaba dentro, los enganches cedieron, quedando el carruaje, y en consecuencia también su pasajero, sobre el puente. El matemático se salvó de milagro.
Pascal vio este suceso como un mensaje de Dios y experimentó una especie de éxtasis religioso (esa misma noche del 23 de noviembre escribió su pensamiento sobre la experiencia en un texto de una hoja conocido como el Memorial, que está plagado de menciones a Dios), abandonando a partir de ese momento las matemáticas y la ciencia, para dedicarse por entero a la teología.
En ese periodo de tiempo dedicado a la religión escribe sus obras Lettres provinciales –Cartas provinciales- (1656-57) y los Penseés –Pensamientos- (se publicaría póstumamente en 1669), una defensa de la religión cristiana y una reflexión sobre el ser humano.
Pascal había abandonado completamente el estudio de las matemáticas. Pero ocurrió que una noche de 1658 sufría un terrible dolor de muelas, o quizás uno de los primeros dolores de cabeza que serían permanentes en sus últimos años de vida, y para intentar distraerse del dolor que sufría decidió dedicarse al estudio de la curva cicloide. La cicloide es la curva geométrica que describe un punto de una circunferencia que rueda sobre una línea recta.
Mientras trabajaba esa noche en la cicloide, el dolor de muelas cesó, lo cual fue interpretado por Pascal como que el estudio de las matemáticas no desagradaba a Dios y volvió de nuevo a dedicar parte de su tiempo a la investigación científica.
Por desgracia, en 1659 la salud de Blaise Pascal se deterioró mucho, por lo que tuvo que abandonar definitivamente el estudio de las matemáticas. Finalmente, el 19 de agosto de 1662, a la edad de 39 años, murió este gran científico, del que siempre se ha especulado sobre lo mucho que podría haber hecho, dado su gran talento para las matemáticas, si su vida hubiese transcurrido de otra forma. A pesar de ello, a Pascal le debemos grandes contribuciones a las matemáticas y la ciencia en general, y es uno de los grandes personajes de la historia de las matemáticas.
Bibliografía
1.- Howard W. Eves, Mathematical Circles (volume I), MAA, 2003.
2.- Carl B. Boyer, Historia de la matemática, Alianza Universiadad Textos, Alianza, 1992.
3.- Francisco Díez Del Corral, Blaise Pascal: la certeza y la duda, Vision Libros, 2009.
4.- Gilberte Périer, La vie de Monsieur Paschal, escrite par Madame Perier, sa sœur, femme de Monsieur Perier, conseiller de la Cour des Aides de Clermont, 1663. Este libro se puede consultar on line en wikisource
5.- Raúl Ibáñez, Cayley, el origen del álgebra moderna, Genios de las Matemáticas, RBA, 2017.
6.- Página web del artista Michael Schultheis
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Blaise Pascal, Dios y la cicloide se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Kodetu al daiteke Historia? Kliodinamika baiezkoan dago
Historia ezagutu beharra dago, behin egindako akatsak berriro ez errepikatzeko. Mendetan zehar errepikatu izan den mantra da. Ideia horren atzean dagoen filosofia da, nonbait, iragana ezagututa etorkizuna aurreikus daitekeela. Halere, ia hori bezain zaharra da beste galdera bat: zientzia al da Historia?
Ezetz esango dute gehienek, eta arrazoia izango dute, seguruenera. Baina ondorengo galderek erantzun zailagoa dute. Metodo zientifikoa erabil al daiteke Historia lantzerakoan? Humanitateak horrela aztertu ahal dira? Kasu honetan, zalantza gehiago agertzen dira. Bereziki arkeologoek aldarrikatzen dute haien jardunaren balio zientifikoa. Objektuak aztertu, eta sailkatu egiten dituztelako, txukuntasun zientifikoarekin. Halere, jakina da askoz harago doala arkeologia, “trastelogia” izan nahi ez badu bederen. Traste horien interpretazioa egin behar da, eta, askoren ustez, horretan dago diziplina horren funtsa: “Arkeologia antropologia da edo ez da ezer”, Gordon Willey eta Philip Phillips arkeologoen esanetan. Interpretazio horretan, beraz gauzak zaildu egiten dira.
Zientziak aldagaiak kodetzea gustuko du. “Ezaugarritzea” da zientzialarien aitagurean gehien aipatzen den hitzetako bat. Fenomenoak behatzea, ezaugarritzea, sailkatzea, eta aldagaien arteko loturak bilatzea; finean, errealitatea azaltzeko gai den teoria bat osatzeko. Ez edonolako teoria, gainera. Beste edonork, antzeko baldintzatan, errepikatu ahal izango duen teoria bat baizik. Jakinda, gainera, teoria hori kolokan jartzea dela beste zientzialarien beharra. Horrela urratzen baita zientziaren bidezidorra. Baina hau ia ezinezkoa da Historiaren alorrean. Ala agian bai?
Seshat “Historia globalaren datu-basea” izeneko tresnaren atzean dauden ikertzaileek baietz uste dute. Gizarteek dituzten konplexutasunak kodetzeak zaila badirudi ere, egile hauek lanari ekin diote. Planteamendu filosofikoetan murgiltzeari baino, praktikari ekin diote, gizarte desberdinak kodetzen dituen datu-basea sortuz eta elikatuz.
Egiptoko jainkosa baten izena du martxan jarri duten datu-baseak. Liburutegien eta idazketaren jainkosa da Seshat. Egiptoko mitologiaren arabera, iraganean gertatutakoari buruz, eta, era berean, etorkizunean gertatu behar zenari buruz idazten zuen Seshatek. Izen ezin aproposagoa, beraz, Historiari buruzko teoriak garatzea helburu duen tresna baterako.
70 adituk baino gehiagok parte hartu dute historia eta arkeologiari buruzko datuak biltzen dituen tresnaren sorreran. Azken 10.000 urteetan 30 erregiotako informazio historikoa eta arkeologikoa biltzen ditu datu-baseak. 414 gizarte, orotara. Egileen esanetan, orain arte gaiari buruz munduan garatu den datu-baserik osatuena da.
Mundua 10 eremutan bereizi dituzte, eta, horietako eremu bakoitzean hiru lokalizazio hautatu dituzte, “eremu geografiko natural” izenaren pean. Hiru lokalizazio horiek gizarteen garapen mailaren adierazgarri dira: hasierako gizarteak, erdikoak eta, azkenik, zentralizazio politikoa duten gizarteak. “Gure helburua da iraganeko gizarteei buruz dagoen ezagutza biltzea, baita informazioa ziurra ez denean eta adituen arteko desadostasunak daudenean ere”, zehaztu dute PNAS aldizkarian argitaratutako artikulu batean.
Analisirako unitatea gisa “polity”-a ezarri dute (gobernua edo estatua esan nahi du, ingelesez). Unitate horrek maila guztietako batasun independenteak biltzen ditu; berdin maila lokalean aritzen diren komunitate independenteak, zein etnia anitz biltzen dituzten inperio hedakorrak. Eremu geografiko natural bakoitzean, denbora 100 urteko tarteetan banandu dute. Horrela, toki eta une bakoitzean adierazgarria den “polity”-a identifikatu dute, analisia egin ahal izateko (adibidez, hemen, Erresuma Ostrogotikoaren “polity”-aren fitxa).
Konplexutasun sozialaren adierazle desberdinak kontuan hartu ahal izateko, 51 aldagai ezarri dituzte. Aldagai horiek bederatzi multzotan bildu dituzte.
- Populazioa
- Lurraldea
- Hiriburua
- Hierarkia adierazten duten aldagaiak (erabakitze guneak, erlijioa…)
- Gobernua
- Azpiegiturak
- Informazio sistemak
- Literatura
- Garapen ekonomikoa
Aldagai hauek kontuan hartuta, datuen analisi estatistikoa egin dute. Besteak beste, eta horrenbeste aldagaien artean korrelazioak bilatu ahal izateko, osagai nagusien analisia baliatu dute. Hasierako hiru multzoen arteko korrelazioa aurkitzea espero zuten -populazioa, lurraldea, eta hiriburua-, eta hala izan da, baina gainerako aldagaien artean ere harremana aurkitu dute. Diotenez, aldagai batzuk ezagututa, posible da beste aldagaiak aurreikustea. Bereziki populazioaren aldagaia da besteekin harreman gehien omen duena. “Emaitza honek berresten du hipotesietako bat: konplexutasun soziala neurketa bakar baten bitartez adieraz daitekeela”, diote zientzia artikuluan.
Horrez gain, berretsi dute ere kontinente desberdinetan dauden gizarteek bidea ematen dutela konparaketak egiteko. Europarren eta amerikarren arteko talka jarri dute adibidetzat. “PC1an [populazioa azaltzen duen aldagaia] dauden desberdintasunek adierazten dute Ameriketako gizarteak ez zirela Eurasiako gizarteak bezain konplexuak gizarte hauek kontaktuan jarri zirenean. Horrek lagun dezake azaltzen zergatik Europako gizarteak gai izan ziren Amerika inbaditu eta kolonizatzeko”.
Bestalde, zenbait gizarte txikik beste handiagoen ohiturak berenganatzen dituzte gizarte horiekin harremanetan egoteko, baina horrek ez dakarkie aldaketarik beste arloetan. Diruaren eta idazketaren adibidea jarri dute. “Hautapen selektibo horrek ez du esan nahi halabeharrez beste ezaugarri konplexuak garatuko dituztenik”.
Kliodinamika, historia eta matematikaEgileek argudiatu dutenez, iraganeko gizarteei buruz dagoen ezagutza kolektiboa “historialarien garunetan gordeta edota ohar eta argitalpen heterogeneotan sakabanatuta” dago. Era berean egileek diote ezagutza potentzial honi guztiari etekinik ez zaiola atera, eta, hortaz, ezin izan direla erabili garapen politikoaren edota ekonomikoaren inguruko teoriak osatzeko.
Exeterreko Unibertsitateak (Erresuma Batua) zabaldutako prentsa ohar batean, Thomas Currie antropologoak nabarmendu du “azaleko desberdintasunen gainetik, gizarteek duten eboluzionatzeko moduan oinarrizko antzekotasunak” badirela. Gizarte guztiek antzeko egiturak dituztela uste dute ikertzaileek, ez du axola garatu diren espazioa edo garaia zein den.
Ikerketan egile askok parte hartu badute ere, Peter Turchin Connecticuteko Unibertsitateko (AEB) biologoa da egile nagusia. Matematika eta zientzia sozialak uztartzeko egin dituen ahaleginei esker ezaguna da Turchin. Kliodinamika metodoaren sortzailea da. Indikatzaile desberdinak erabilita, gizarteen garapena aztertu nahi du Kliodinamikak, eta, ahal den heinean, garapen hori aurreikusi. (Isaac Asimoven Foundation liburua irakurri dutenei, berehala etorriko zaie burura psikohistoria izeneko diziplina).
2017. urtearen hasieran Turchinen ikerketa batek oihartzun mediatiko handia izan zuen. Bertan babesten zuen munduan eliteak handitzen ari direla, eta gero eta lagun gehiago jasaten ari direla baldintza ekonomikoen txirotze bat. Horrek gero era biolentzia gehiago ekarriko duela proposatu zuen.
Erreferentzia bibliografikoa:
Turchin et alia. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. PNAS 2017:1708800115v1-201708800. DOI: 10.1073/pnas.1708800115
———————————————————————————-
Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.
———————————————————————————-
The post Kodetu al daiteke Historia? Kliodinamika baiezkoan dago appeared first on Zientzia Kaiera.
Sistemas respiratorios: la curva de disociación de un pigmento respiratorio
El oxígeno se combina con la molécula del pigmento respiratorio uniéndose a sus átomos metálicos. En las hemoglobinas, por ejemplo, hay cuatro grupos hemo y en cada uno de ellos, un átomo de hierro, con cada uno de los cuales puede combinarse una molécula de oxígeno, aunque esas proporciones son diferentes en otros pigmentos. El grado de oxigenación del pigmento es una función de la tensión parcial del oxígeno (tO2) en la sangre, hemolinfa o medio respiratorio de que se trate.
La tensión parcial de un gas disuelto en un medio líquido es, por definición, la presión parcial que tiene ese gas en la fase atmosférica con la que ese líquido se encuentra en equilibrio. Eso no quiere decir que para poder referirnos a una determinada tensión parcial el líquido en el que se encuentra disuelto el gas haya de estar en equilibrio con una fase atmosférica, sino que su tensión parcial es la presión parcial que tendría el gas en una atmósfera con la que hipotéticamente se encontrase en equilibrio. Y aunque, para una presión parcial determinada, la concentración de un gas disuelto puede variar en función de la temperatura y de la presencia y concentración de otros solutos, en condiciones fisiológicas normales la tensión parcial de un gas es proporcional a su concentración. Por lo tanto, el grado de oxigenación de un pigmento respiratorio es una función de la concentración de oxígeno disuelto en la sangre. Analizaremos ahora la naturaleza de la dependencia entre el grado de oxigenación del pigmento (magnitud que expresaremos como porcentaje de saturación) y la tensión parcial de oxígeno en el medio circulatorio. En lo sucesivo solo nos referiremos a la hemoglobina (Hb).
La concentración de hemoglobina combinada con el oxígeno [HbO2] es proporcional al producto de la concentración de hemoglobina no combinada [Hb] y de la concentración de oxígeno [O2], de manera que [HbO2] = K [Hb] [O2], siendo K un coeficiente denominado constante de equilibrio.
El porcentaje de saturación (y) es la fracción porcentual de hemoglobina combinada con respecto a la hemoglobina total (la suma de la combinada y la no combinada); o sea,
y = 100 · [HbO2]/{[Hb] + [HbO2]},
por lo que
y = 100 · K [Hb] [O2]/{[Hb] + K [Hb] [O2]};
de donde
y = 100 · K [O2]/{1 + K [O2]},
y dado que como antes se ha dicho, tO2 es proporcional a [O2], tenemos que
y = 100 · K tO2/(1+tO2).
Esa expresión define la denominada curva de disociación (o de saturación) del pigmento; es una función hiperbólica con un valor asintótico de 100. La ecuación nos dice que (1) a bajas tensiones parciales de oxígeno la probabilidad de que una molécula del gas se combine con una molécula de hemoglobina es muy alta, porque la mayor parte de los átomos metálicos de los grupos hemo se encuentran disponibles para ello, pero que (2) conforme aumenta la tensión parcial y las moléculas de hemoglobina van combinándose con las de oxígeno, cada vez quedan menos átomos metálicos disponibles, por lo que es necesario que haya cada vez más moléculas de oxígeno en disolución (mayor tO2) para que siga aumentando la fracción del pigmento combinado. Al tratarse de una curva asintótica, nunca se alcanza el 100%, o sea, nunca se satura el pigmento en su totalidad.
El valor de K refleja la propensión que tiene el pigmento a combinarse con el oxígeno. Cuanto más alto es ese valor con mayor facilidad se combinan ambos y más difícil resulta para el oxígeno desprenderse del pigmento. Por eso, un pigmento cuya curva de disociación tiene un valor alto de K, capta oxígeno con facilidad y lo cede difícilmente. Gráficamente estaría representado por una curva hiperbólica que se aproxima rápidamente al valor de 100.
En pigmentos reales, sin embargo, las cosas son algo más complejas. En multitud de ocasiones se ha comprobado experimentalmente que la curva de disociación, más que hiperbólica, es sigmoidea; o sea, tiene forma de s. Y matemáticamente viene expresada por la denominada ecuación de Hill:
y = 100 x K tO2n/(1+tO2n),
que es similar a la anterior, pero en la que el término independiente (tO2) viene afectado por una potencia, n, que es el coeficiente de sigmoidicidad. Cuando n vale 1, tenemos la curva de disociación anterior. Y si toma valores superiores se trata de curvas sigmoideas; o sea, curvas con una primera fase de elevación relativamente lenta pero creciente para valores bajos de tO2, una segunda de elevación más rápida, y la tercera de aproximación asintótica al valor de 100.
La sigmoidicidad se produce como consecuencia de la existencia de fenómenos de cooperatividad. Al unirse una molécula de O2 a la molécula de hemoglobina, se altera levemente la conformación de esta y facilita, como consecuencia, las subsiguientes combinaciones. Eso explica que a muy bajos valores de tO2 la curva ascienda lentamente, porque la molécula de O2 que se une a la hemoglobina con mayor dificultad es la primera, pero una vez combinada esta, las siguientes lo hacen con facilidad creciente, razón por la cual la curva pasa a elevarse rápidamente a tensiones parciales de oxígeno intermedias, hasta aproximarse a los valores cercanos a 100, en los que el crecimiento es necesariamente lento y decreciente. La potencia n refleja la intensidad de las interacciones que dan lugar a la cooperatividad, de manera que cuanto mayor es, más intensa es esa cooperatividad y la curva de disociación es más sigmoidea.
Una noción clave en el estudio de los pigmentos respiratorios es la de “afinidad” del pigmento por el oxígeno. Nos hemos referido a esta noción de pasada antes, sin nombrarla. La afinidad de un pigmento refleja la intensidad con la que se combina con el oxígeno o, expresado en otros términos, la propensión o facilidad para combinarse. Un pigmento de alta afinidad se combina con el O2 con facilidad y se desprende con dificultad. O sea, capta oxígeno muy fácilmente y le cuesta cederlo. Por ello, a bajas tensiones parciales de oxígeno gran parte del pigmento se encuentra combinado en un gran porcentaje; lo contrario ocurre con un pigmento de baja afinidad. No hay un parámetro que mida directamente esa característica, aunque suele utilizarse el denominado p50, como indicador. El p50 es el valor de tensión parcial de oxígeno al que el pigmento ha alcanzado el 50% de su valor de saturación.
Quien haya llegado hasta aquí quizás piense que lo lógico es que un buen pigmento respiratorio tenga una gran afinidad por el O2. En la próxima anotación podrá comprobar que esa idea es incorrecta.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Sistemas respiratorios: la curva de disociación de un pigmento respiratorio se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La relatividad del tiempo (2)
¿Cuánto más lento parece un reloj que se mueve respecto de un observador? La relación exacta entre el intervalo de tiempo transcurrido registrado por un reloj que está estacionario con respecto al observador (Mónica) y el intervalo de tiempo transcurrido para el mismo fenómeno medido por alguien que observa el reloj en movimiento a una velocidad constante v (Esteban), la relatividad del tiempo, viene dada por una ecuación muy sencilla,
Δte = Δtm /√(1-v2/c2).
Lo que puede hacer que la ecuación para la dilatación del tiempo parezca complicada es el término en la raíz cuadrada, que es el que contiene gran parte de la física. Sin embargo, es muy simple. El símbolo c es la velocidad de la luz en el vacío, y v es la velocidad del reloj que se mueve en relación con el observador que mide el intervalo de tiempo transcurrido Δte. Para los objetos reales, no imaginarios, v es siempre menor que c. Por lo tanto, v/c es siempre menor que uno y, por consiguiente, también lo es v2/c2. Como v2/c2 se resta de 1, el resultado de esta resta siempre es un número positivo menor que 1. La raíz cuadrada de un número positivo menor que 1 es siempre un numero menor que uno [1]. De ahí que podamos afirmar que si Mónica se mueve, esto es, para una velocidad v no nula, Δte será mayor que Δtm. En otras palabras, el tiempo pasa más rápido para Esteban que está estacionario observando cómo Mónica se mueve a velocidad v, o, visto de otra manera, Esteban observa que el reloj en movimiento que acompaña a Mónica se mueve más lentamente. Obviamente, si v = 0 entonces Δte = Δtm, esto es,dos observadores en reposo uno respecto al otro miden el mismo paso del tiempo.
 
¿Qué sucede a velocidades muy altas?
Asumamos que la velocidad del reloj en movimiento (o cualquier proceso repetitivo) es extremadamente alta, digamos 260,000 km/s, relativa a otro marco de referencia inercial. La velocidad de la luz c en el vacío es constante y, redondeando, de 300,000 km/s. Cuando el reloj en movimiento registra un intervalo de tiempo de 1 s en su propio marco inercial (Δtm = 1 s), ¿cuál es el intervalo de tiempo para alguien que mira el reloj pasar a la velocidad de 260,000 km/s? Resolvamos la ecuación Δte = Δtm /√(1-v2/c2) paso a paso:
v/c = 260.000/300000 = 0,867
v2/c2 = [0,867]2 = 0,75
1 – 0,75 = 0,25
√0,25 = 0,5
Por lo tanto, como Δtm = 1 s,
Δte = Δtm/ 0,5 = 1s /0,5 = 2 s
Este resultado dice que un reloj que se mueve a 260,000 km/s y que registra un intervalo de 1 s en su propio marco inercial, a un observador en reposo en relación con el reloj le parece que va muy lento. Mientras la persona que viaja con el reloj registra un intervalo de 1 s, el observador en reposo medirá (con respecto a su propio reloj) el doble de tiempo, 2 s. Recordemos que el reloj no parece ralentizarse en absoluto a la persona que se mueve con el reloj; pero para el observador externo el intervalo de tiempo se dilata considerablemente.
¿Qué sucede a velocidades ordinarias?
Es de señalar que en la situación anterior obtenemos un efecto de dilatación del tiempo de “solo” dos veces con una velocidad relativa de 260,000 km/s, casi el 87% de la velocidad de la luz. Para velocidades mucho más bajas, el efecto disminuye muy rápidamente, hasta que a velocidades ordinarias no es apreciable salvo en experimentos muy delicados.
Por ejemplo, veamos una situación de la vida real, digamos un reloj marcando un intervalo de 1 s dentro de un avión a reacción, volando a la velocidad del sonido de aproximadamente 0.331 km/s. ¿Cuál es el intervalo de tiempo correspondiente observado por una persona en reposo en tierra? Si repetimos la operativa, tenemos:
v/c = 0,331/300000 = 1,10 ·10-6
v2/c2 = [1,10 ·10-6]2 = 1,22 ·10-12
1 – 1,22 ·10-12 = 0,99999999999878
√0,99999999999878 = 0,99999999999938
Por lo tanto, como Δtm = 1 s,
Δte = Δtm/ 0,99999999999938 = 1s /0,99999999999938 = 1,00000000000061 s
Con una cantidad tan increíblemente pequeña de dilatación del tiempo, no es de extrañar que este efecto nunca se hubiese observado antes. Debido a que el efecto es muy pequeño, la física de Newton todavía es útil para el mundo cotidiano de las velocidades normales para el que se construyó. Es falso afirmar (Einstein jamás dijo nada parecido) que la teoría de la invariancia [2] demuestre que la física de Newton deja de ser válida; tan falso como afirmar que los calibres (pies de rey) demuestren que los metros de carpintero no sirven, lo que ocurre es que sirven a determinada escala.
En cualquier caso, la dilatación del tiempo en los relojes en movimiento está ahí, y de hecho fue confirmado en un famoso experimento que involucraba un reloj atómico muy preciso que volaba alrededor del mundo en un avión de pasajeros. Si bien se vuelve significativo solo a velocidades relativas cerca de la velocidad de la luz, que es el caso en experimentos de laboratorio de alta energía y en algunos fenómenos astrofísicos, también es importante en medidas de precisión que toman mucho tiempo. Así, los satélites del sistema GPS se desplazan a 4 km/s, lo que representa una ralentización de 7 microsegundos por día, solo debido al efecto que hemos visto [3]; este efecto debe tenerse en cuenta en el diseño.
Notas:
[1] Estrictamente la raíz cuadrada de un número no es unívoca, no da un solo resultado, sino dos, uno positivo y otro negativo. Así la raíz cuadrada de 4 es tanto +2 como -2, ya que tanto (+2)·(+2) como (-2)·(-2) dan 4. En este caso descartamos la raíz negativa por carecer de sentido físico.
[2] Popularmente, teoría de la relatividad.
[3] Existe también un efecto debido a la relatividad general. Ambos efectos combinados harían que los observadores de la Tierra vieran los relojes de los satélites GPS 38 microsegundos por día más rápidos que los relojes en la Tierra (en el satélite la atracción gravitatoria es menor que en la superficie del planeta y el reloj “corre más” compensando el efecto debido a la velocidad relativa). Las posiciones calculadas por GPS se desviarían rápidamente, acumulándose unos nada despreciables ¡10 kilómetros por día!. Esto se corrige en el diseño del GPS.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo La relatividad del tiempo (2) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Gizakia izarretara bidean
Breakthrough Starshot proiektuan lan egiten dutenen ustean, bai. Horien artean dira Mark Zuckerberg (Facebook-en sortzailea) moduko enpresariak, alde batetik, eta Stephen Hawking moduko zientzialariak, bestetik. Unibertsoaren inguruan garrantzi handiko galderak erantzun nahirik ari diren Breakthrough Initiatives izeneko egitasmoetako bat da Startshot. Gizakia izarretara joan daitekeen ala ez jakin nahi du.
Espazio-agentzia batek izarretara joateko misio bat mahaigaineratu ahal izateko, halako bidaia bat egitea posible dela frogatu behar da lehenengo. Hau da, horretarako gai dela gaur egun dugun teknologia, edo epe laburrean garatu dezakegun teknologia. Hori da Starshoten helburu nagusia, izar batera joan ahal izateko teknologia garatzea.
Alpha Centauri da gertuen dugun izar-sistema. Centaurus konstelazioan kokatua (ikus 2. irudia), gugandik 4,36 argi-urtera edo 41 bilioi kilometrora dago. Egungo espazio-ontzietan ehunka mila urte beharko genituzke bertara iristeko. Gehiegi. Abiadura handiagoa behar da, askoz handiagoa. Argiaren abiaduran (1080 milioi km/h) edo ia abiadura horretan joan beharko genuke urte kopuru ez oso handi batean Alpha Centaurira iristeko.
Halere, espazioaren esplorazioan ohikoa den moduan, gizakia nonbaitera joan aurretik robotak bidaltzen ditugu, espazio-ontziak. Kasu honetan, nano-ontziak. Milaka nano-ontzi.
Gaurko espazio-ontziak handiegiak, edo hobe esanda, pisutsuegiak dira halako abiadura hartzeko. Baina Breakthrough Starshot proiektuko partaideek uste dute potentzia handiko izpi-jaurtigailu batekin nano-ontziak bultzatu eta argiaren abiaduraren %15-20ko abiaduran (gutxi gorabehera 200 milioi km/h) jarri ahalko genituzkeela, gramo gutxi batzuetako espazio-ontziak sortzeko gai bagina. Honela, Alpha Centaurirako bidaia 20 urtera murriztuko litzateke. Hori bai, ezin dugu ahaztu 20 urte horiei beste 4,36 urte gehitu beharko genizkiekeela bertako informazioa (argazki edo datu zientifiko) gugana itzultzeko. Nano-ontziari bidali nahiko geniokeen edozein motatako informazioak bertara heltzeko ere denbora hori beharko luke.
Jaurtiketa2036an jaurti nahi dituzte lehen nano-ontziak, mila nano-ontzi batera. Ontzi handiago baten barnean jaurtiko lirateke Lurretik, eta, ondoren, espazioan direla, banan-banan aterako lirateke ontzi-nagusitik. Bestalde, Lurrean, potentzia handiko izpi-jaurtigailu bat eraikiko litzateke laser multzo handi batez osatuta (ikus animazioa). Jaurtigailu horrek nano-ontzi bakoitzaren bela (“haize”-oihala) jo eta ontzia norabide zuzenean azeleratuko luke.
Erronka handiak dira hauek, ordea. Bai espazio-ontzi hain txikiak egitea, bai izpi-jaurtigailu indartsua egitea.
Nano-ontzi bakoitzak izango duen oihalak, adibidez, 4 metroko zabalera izan beharko du, Lurretik laserrak ondo lerrokatu ahal izateko. Ezin du ordea ia masarik izan, nano-ontziaren osoko masa handiegia ez izateko. Bestalde, nano-ontziek Alpha Centaurira iritsitakoan, zientzia egin behar dute, hau da, irudiren bat hartu, adibidez. Horretarako, gutxienez kamera bat eraman behar dute. Kamera hori hornituko duen energia-iturria ere eraman behar dute. Ondoren, irudi hori Lurrera bueltan bidaltzea nahi dute, eta beraz, telekomunikazio-sistema bat ere eraman behar dute. Eta abar, eta abar. Dena gramo gutxi batzuetan, zentimetro gutxi batzuetan.
Izpi-jaurtigailuak potentzia handia izan beharko du nano-ontziak 200 milioi km/h-ko abiadurara arte azeleratzeko. Hori dela eta, izpiaren uhin-luzera eta fasea oso garrantzitsuak izango dira, ahalik eta erradiazio gehien iris dadin espaziora eta, ondorioz, nano-ontziek jasotako bultzada ahalik eta handien izan dadin. Eta garrantzitsuena, laser guztiak lerrokatuta eta sinkronizatuta egon beharko dira. Izpi-jaurtigailua non eraiki ere ondo pentsatu behar da. Izan ere, alde batetik, atmosferak erradiazio asko xurgatzen du, espaziora iristen den energia gutxiagotzen delarik. Bestetik, atmosferaren turbulentziak izpiaren sekzioa zabal dezake. Beraz, jaurtigailua altuera handitan kokatzea komeni da, izpiak atmosfera gutxiago zeharka dezan.
Alpha CentauriAlpha Centauri izarra aukeratu da Starshot egitasmorako. Izatez, izar-sistema bat da. Alpha Centauri A eta Alpa Centauri B izarrak elkarri lotuta daude grabitate indarragatik. Biek masa-zentro beraren inguruan biratzen dute, 80 urteko orbita eliptikoetan. Lehenengoa Eguzkia baino apur bat handiagoa eta distiratsuagoa da, eta bigarrena Eguzkia baino apur bat txikiagoa eta apalagoa. Baina bada hirugarren izar bat, Proxima Centauri nano gorria, beste bien inguruan biraka egon daitekeena. Hala balitz, bere orbita ehunka urtekoa izango litzateke.
Proxima Centauri izarra da, hain zuzen, gugandik gertuen dagoen izarra. Eta badu beste ezaugarri interesgarri bat gainera, Proxima Centauri b exoplaneta. 2016ko abuztuan aurkitua, Lurra-moduko (Earth-like) exoplaneten artean sailkatzen da. Lurraren masa eta erradio oso antzekoak izan ditzakeela uste da, eta izarrarekiko duen distantzia egokia da exoplanetaren gainazalean ur likidoa egon dadin. Halere, Proxima Centauri izarrak haize bortitzak jaurti ditzakeela uste da, eta horrek zaila egingo luke planetaren inguruan atmosfera bat mantentzea. Beraz, bizia baldin bada Proxima Centauri b-n, gainazalaren azpian izan beharko da.
Izugarrizko suertea da gertuen dugun izarra izar-sistema baten parte izatea eta, gainera, “Earth-like” exoplaneta bat izatea. Ikaragarria litzateke nano-ontzi bakar batek lortuko balu Alpha Centaurira iritsi, bertan argazki bat atera (edota bestelako datu zientifikoren bat hartzea) eta informazio hori Lurrera bidaltzea. Teknologia aldetik sekulako garrantzia luke lorpenak, baina zientzia aldetik ez luke parekorik izango izar-sistema bat eta exoplaneta bat gertutik ikertu ahal izateak.
Antza, gauza bera uste dute Breakthrough Starshot egitasmokoek ere.
—————————————————–
Egileez: Naiara Barrado Izagirre (@naierromo) UPV/EHUko Fisika Aplikatuko irakaslea da eta Zientzia Planetarioen Taldeko kidea. Itziar Garate Lopez (@galoitz) Fisikan doktorea da eta Parisko Meteorologia Dinamikoaren Laborategiko ikertzailea.
—————————————————–
The post Gizakia izarretara bidean appeared first on Zientzia Kaiera.
La verdaderamente divertido es hacer Ciencia
Haydée Valdés González
A menudo tengo la sensación de que buscando acercar la Ciencia a la sociedad y pretendiendo que la ciudadanía “pierda el miedo” a la Ciencia y se sienta más atraído y predispuesto hacia ella, recurrentemente se deja entrever el mensaje de que “la Ciencia es fácil y divertida”.
Sin embargo, este eslogan puede ser un arma de doble filo. Permítanme que me explique.
En lo que a la “facilidad” de la Ciencia se refiere, es necesario hacer hincapié en tres aspectos fundamentales: la asimilación de los contenidos científicos, el ejercicio de la Ciencia y el espíritu investigador.
En primer lugar, en lo que a los contenidos científicos se refiere, es importante aclarar que, ciertamente, el conocimiento científico es comprensible para todo aquella persona que lo desee pero creo que es importante matizar que no es, necesariamente, fácilmente comprensible. Al contrario, suele ser difícilmente comprensible puesto que requiere de mucho esfuerzo y muchas horas de dedicación al estudio para poder asimilarlo correctamente.
Lo que ocurre entonces es que para “hacer fáciles los contenidos científicos” y poder transferir conocimiento a la sociedad muchas veces se ha de recurrir a una simplificación excesiva de dichos contenidos científicos. Esta acción, como todo en la vida, tiene sus ventajas e inconvenientes. En esta ocasión me gustaría centrarme en los inconvenientes.
Presentar la Ciencia a través de conceptos demasiado simples o, bien, presentar la Ciencia a través de conceptos muy complejos de forma simple, probablemente deja al espectador con un dulce sabor de boca pero también con grandes lagunas de conocimiento y posiblemente engañado al creer que, en unos pocos minutos, ha logrado comprender teorías o conceptos científicos que en realidad son muy complejos.
Al permitir que el ciudadano se marche a su casa con la sensación general de que “la Ciencia es fácil”,se corre el gravísimo riesgo de que éste no sepa poner en verdadero valor a la Ciencia y no la perciba como lo que realmente es, un proceso que requiere mucho esfuerzo, dedicación estudio y conocimiento. Esto puede implicar a su vez que dicha persona no sepa apreciar en su justa medida el verdadero valor de los estudios científicos ni distinguirlos del resto de informaciones pseudocientíficas que están a la orden del día.
En segundo lugar, la Ciencia no sólo abarca el conjunto de conocimientos científicos derivados de su ejercicio. La Ciencia es también la actividad ejercitada por los científicos para la obtención de dicho conjunto de conocimientos y llevar a cabo dicho proceso con la seriedad y el rigor que le caracteriza tampoco es necesariamente fácil. Hay que tener en cuenta que la actividad científica es un ejercicio que habitualmente se prolonga bastante en el tiempo, para lo que se requiere mucha constancia y paciencia, y que se ha de ejecutar siempre de una forma organizada, meticulosa y precisa lo que no siempre resulta una tarea fácil.
Y en tercer y último lugar, también es importante matizar que el ejercicio de la Ciencia conlleva una transformación fundamental en el carácter y personalidad del ser humano que lo practica, lo que lógicamente entraña una cierta dificultad. Un buen científico debería poseer un espíritu científico, lo que significa que esa persona debería realizar un importante esfuerzo personal para desarrollar un conjunto de valores, habilidades y aptitudes que no siempre le son innatas. Así por ejemplo, un científico debería poseer apertura mental, ser escéptico o estar libre de prejuicios, capacidades, todas ellas, cuyo desarrollo puede llegar a entrañar una enorme dificultad dado que en muchas ocasiones puede provocar importantes conflictos con los sentimientos, deseos o creencias propias del individuo.
Por otro lado, la afirmación de que “la Ciencia es divertida” también habría que matizarla.
Seguro que todos nosotros conocemos a personas de nuestro entorno cotidiano que son felices haciendo deporte. Cuando les preguntamos por qué continúan practicando deporte a pesar de por ejemplo, las lesiones, el cansancio físico o las condiciones climatológicas, una de las razones que normalmente argumentan es que hacer deporte “les divierte”, en alusión a la diversión derivada de la propia naturaleza del proceso.
Bien, pues con la Ciencia pasa lo mismo.
La actividad científica, la práctica del ejercicio de la Ciencia, es divertida por sí misma. La Ciencia resulta entretenida y apasionante porque su fin último es comprender el mundo que nos rodea, lo que satisface el anhelo de curiosidad que ha acompañado al ser humano a lo largo de toda su existencia.
Ahora bien, no se vayan a creer ustedes que estar en el laboratorio es una fiesta continua. La actividad investigadora, como cualquier otra profesión, también puede ser rutinaria y, en ocasiones, hasta aburrida. Lo que ocurre es que hay personas para las que el proceso de investigación científica y todo lo que éste conlleva, incluidos los aspectos negativos, resulta fascinante y atractivo, de la misma manera que hay personas que disfrutan haciendo ejercicio físico a pesar de, como digo, las lesiones o el cansancio.
Otra cosa bien distinta es que además sea posible disfrutar con el conocimiento científico derivado del ejercicio de la Ciencia asistiendo a eventos de divulgación científica.
Pero resulta evidente que se trata de dos formas de disfrutar completamente diferentes.
Mientras que el espectador de un evento de divulgación científica es un agente pasivo que disfruta de los contenidos científicos sentado en una butaca, el científico es un agente activo que disfruta haciendo Ciencia y generando conocimiento científico (aunque en ocasiones también pueda actuar como espectador de eventos científicos, evidentemente).
En línea con esta afirmación cabría matizar entonces que el principal inconveniente de que a la ciudadanía se le otorgue sistemáticamente el papel de espectador es que, probablemente, acabará por tener una comprensión limitada de lo que es la diversión en la Ciencia ya que nunca experimentará la diversión asociada al trabajo deinvestigación.
En este sentido, resultaría sumamente interesante que se llevaran a cabo más iniciativas que permitiesen a los ciudadanos que así lo desearan (especialmente los niños y los más jóvenes) tomar parte activa en procesos de investigación reales otorgándoles el papel protagonista del ejercicio de la Ciencia y alejándolos por completo del papel de espectador.
Esta iniciativa satisfaría además otras necesidades importantes como son las de desarrollar el espíritu científico de la población, para que puedan aplicarlo en sus vidas y beneficiarse de todo lo que éste implica, y la de permitir a los ciudadanoscomprobar en primera persona el esfuerzo, dificultad, rigor y seriedad que entraña la actividad científica, lo que incuestionablemente influiría en una percepción más positiva y respetuosa de la misma.
Otra deriva de lo que es el concepto de “Ciencia divertida” es el de los espectáculos de Ciencia que en ocasiones tenemos la oportunidad de presenciar.
Los actores de las performances científicas eligen experimentos llamativos a sabiendas de que van a resultar fascinantes y espectaculares, casi mágicos y milagrosos, lo que indiscutiblemente resulta altamente lúdico, entretenido e irresistible pero también considerablemente alejado de la realidad científica.
En estos espectáculos, la Ciencia se equipara al contenido que ha sido cuidadosamente “enlatado” con un formato atrayente para el consumo del gran público a costa de alejarla de su propia esencia como proceso de búsqueda del conocimiento, lo que tiene un efecto devastador al banalizar la Ciencia y convertirla en un producto de consumo más dentro de la oferta del sector de ocio y entretenimiento.
Incuestionablemente,es imprescindible acercar la Ciencia a la sociedad y transferir el conocimiento científico a la ciudadanía por lo que todas las posibles iniciativas tienen cabida, pero es importante recalcar la necesidad de cuidar adecuadamente las formas y el fondo para no desvirtuar a la Ciencia y conseguir así que su verdadero valor e importancia no pasen desapercibidos a la sociedad.
Sobre la autora: Haydée Valdés González es doctora en ciencias químicas.
El artículo La verdaderamente divertido es hacer Ciencia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Más competidores, menos competición
Analizando los resultados de la prueba SAT que se realiza en los Estados Unidos para acceder a los estudios universitarios, S. García (Michigan, EEUU) y A. Tor (Haifa, Israel) han observado que dichos resultados son peores cuanto mayor es el número de personas que realizan la prueba en una misma dependencia. También han observado el mismo fenómeno al analizar los resultados de una prueba analítica muy sencilla, denominada “Cognitive Reflection Test”.
Ese fenómeno podría tener más de una explicación. Podría deberse a que en los sitios con mucha gente hay más ruido y, en general, más distracción, o ser consecuencia del modo en que quienes se examinan reaccionan a la percepción del número de posibles competidores.
Tras esos primeros resultados, hicieron estudios adicionales. Pidieron a un conjunto de estudiantes universitarios que realizaran una prueba sencilla lo más rápido que pudiesen, sin preocuparse demasiado por la corrección de las respuestas y ofrecieron una recompensa económica al 20% que lo hiciesen en menos tiempo. A la mitad de los que iban a hacer la prueba les dijeron que competían contra otros diez y a la otra mitad, que lo hacían contra otros cien. Pues bien, la mitad que pensaban que competían contra diez respondieron al test en 29 s y la otra mitad en algo más de 33 s, una diferencia de más de un 10%. Nótese que el resultado difirió entre los dos grupos por el simple hecho de variar el número de competidores, aunque el porcentaje premiado fuese el mismo en ambos casos, el 20%, como se ha dicho.
En una siguiente prueba pidieron a unos estudiantes que imaginasen que participaban en una carrera de 5 km; unos creían que corrían en un grupo formado por 50 corredores y los otros que el grupo era de 500, y en ambos casos se les dijo que el 10% que obtuviese mejores posiciones se llevaría un premio de 1.000 dólares. Y lo que se les preguntaba era por el esfuerzo que estaban dispuestos a hacer en cada caso. El esfuerzo se expresaba en términos relativos, con un mínimo de 1 (correr algo más rápido que lo normal) y un máximo de 7 (la carrera más rápida de su vida). Resultó que los que creían correr contra 50 estaban dispuestos a realizar un esfuerzo mayor (5’4 en la escala de 1 a 7) que los que creían correr contra 500 (4’9 en esa misma escala).
Los autores del trabajo denominaron efecto “n” (n de número) a la influencia que ejerce la percepción del número de competidores sobre el esfuerzo que se está dispuesto a hacer para obtener unos resultados en un entorno competitivo. Las implicaciones prácticas de estos resultados, de confirmarse, son evidentes, aunque no lo es tanto su significado. Es comprensible que se gradúe el esfuerzo en función de lo fácil o difícil que se perciba obtener recompensa cuando el número de recompensados es fijo, pero carece de sentido que esa misma graduación se haga cuando es un porcentaje el que recibe premio. Aunque en realidad podría ocurrir que, dado el proverbial anumerismo de la mayoría de los miembros de nuestra especie, los sujetos encuestados respondiesen sin una noción clara de esa diferencia y pensando que la existencia de muchos competidores disminuye de suyo las posibilidades de obtener recompensa. De ser así, cabe pensar que la evolución nos ha dotado de una curiosa herramienta mental para economizar esfuerzos, sobre todo cuando pensamos que esos esfuerzos pueden ser baldíos. Pero la confusión número-porcentaje, a la que tan dada es nuestra especie, engaña una vez más.
Fuente: Stephen M. García & Avishalom Tor (2009): The N-Effect-More Competitors, Less Competition. Psychological Science 20 (7): 871-877.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Más competidores, menos competición se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Ohiz kanpoko egonkortasun kimikoa duen materiala
Daniel Vallejo, Garikoitz Beobide eta Oscar Castillo UPV/EHUko Zientzia eta Teknologia Fakultateko irakasleak dira eta baita ere Kimika Ez-organiko Saileko ikertzaileak. Daniel Vallejoren “Coordination compounds of organosulfur ligands as precursors of nanoestructured materials’ (Estekatzaile organosufreztatuekin koordinatzeko konposatuak, material nanoegituratuen aitzindari gisa) doktorego-tesian oinarria duen material metal-organiko porotsu, nano-egituratu, ultrarin eta erdieroale berri bat patentatu dute ikertzaileek eta Poretune enpresa sortu dute materialaren aplikazioak garatzeko.
Material patentatua aerogel metal-organikoa da, eta material mota horretan aldi berean agertu ohi ez diren propietateak ditu: porotsua eta izugarri arina da, egonkortasun termikoa eta mekanikoa du, jokabide plastikoa du, molekula organikoak zein metal astunak harrapatzeko gai da eta erdieroalea da. “Materiala, izan ditzakeen aplikazio ugariak kontuan harturik, etorkizun handiko plataforma teknologikoa da. Alabaina, proiektu honen hasierako fasean, inpaktu ekonomiko handiena izan dezaketen aplikazio esparruak baino ez ditugu jorratu: automozioa eta energia”, azaldu du Oscar Castillo ikertzaileak.
Aerogelak geletan oinarrituta daude; gel horiek sistema koloidalak dira eta jateko gelatinen antzera, euren formari eusteko gai dira, solidoak bezala, baina likidoen antzeko dentsitatearekin. Partikula txiki-txikiek osatzen dituzte aerogelak; partikulok modu aleatorioan gurutzatzen dira elkarren artean, eta hiru dimentsioko eskeleto bat osatzen dute. Material hori prestatzeko erabiltzen den disolbatzailea han geratzen da harrapatuta, eta horrek bolumen osoaren % 95etik gora hartzen du.
“Gela airean edo hutsean lehortzen denean jatorrizko materialak kontrakzioa jasaten du eta material dentso bat sortzen da, zeinak balio gutxi izaten duen. Baina, prozesu jakin batzuk aplikatuz gero, disolbatzailea ezabatu daiteke kontrakzio hori gertatu gabe. Horrela, aerogela lortzen da; solido izugarri arina da (ura baino 50-100 aldiz arinagoa), eta oso porotsua (bolumen osoaren % 90-99 hutsik dauka). Gure kasuan, aerogelak ohiz kanpoko propietateak ditu: egonkortasun kimikoa du, elektrizitatea eroan dezake eta giza ile bat baino 10.000 aldiz meheagoak diren zuntzek osatzen dute. Bada, zuntz horiek elkarrekin gurutzatzen dira, material hau osatzen duen hiru dimentsioko sarea eratzeko”, adierazi du Daniel Vallejok, tesiaren egileak eta Poretune enpresaren sortzaileetako batek.
Iturria: UPV/EHUko prentsa bulegoa: Aerogel metal-organikoak: enpresa bihurtu den doktorego-tesi bat.
The post Ohiz kanpoko egonkortasun kimikoa duen materiala appeared first on Zientzia Kaiera.
I, Mammal. The Story of What Makes Us Mammals
Juan Ignacio Pérez Iglesias, lector
Un balonazo en la diana testicular del autor cuando jugaba como portero de fútbol condujo a este a preguntarse acerca de las razones de la ubicación de las gónadas masculinas de un gran número de especies de mamíferos en el exterior del abdomen (advierto a futuros posibles lectores de que el asunto está lejos de haber sido resuelto y de que es materia de controversia). Y a partir de esa indagación y por culpa de otros avatares de la vida, y más concretamente de su paternidad, llegó a interrogarse acerca de la condición mamífera, esa que compartimos los seres humanos con los miembros de otras muchas especies.
A cualquiera que nos preguntasen acerca de tal condición, responderíamos que los mamíferos nos caracterizamos por ser especies vivíparas, por el modo en que las hembras alimentan a sus crías recién nacidas –con leche que producen ellas mismas-, o por el pelaje que cubre nuestro cuerpo. Sin embargo, ninguna de esas características es común a todas las especies del grupo. Por eso no es fácil responder a la pregunta de qué es lo que nos hace mamíferos.
Para responderla, Liam Drew recorre un buen número de aspectos de la biología de los mamíferos. Una parte muy importante del libro lo dedica a cuestiones que tienen que ver, directa o indirectamente, con nuestra reproducción. De especial importancia son los capítulos dedicados a la lactación -no en balde se trata del rasgo que sirve para denominarnos como grupo- y a la placenta –dispositivo del que disfrutamos la mayoría de especies de mamíferos-. Pero Drew repasa muchos más aspectos de nuestra biología: condición endoterma (íntimamente relacionada con la posesión de pelaje), receptores sensoriales, corteza cerebral y otros.
No obstante, lo más notable de este libro no es el repaso de temas de paleontología, biología del desarrollo, fisiología o neurobiología, sino la aproximación evolutiva que impregna todos los aspectos tratados. El autor expresa en todo momento su interés por desentrañar la razón de ser de los rasgos que nos caracterizan a los mamíferos. Se pregunta acerca de las presiones selectivas que pudieron dar lugar a su aparición y a posteriores modificaciones. Y en ese repaso valora las diferentes interpretaciones que se han ido dando a lo largo del tiempo.
El libro es riguroso, muy completo, ameno e instructivo. Es un gran libro de divulgación. No me extrañaría que lo tradujesen al español, aunque vistos los desmanes que se suelen cometer con las traducciones, recomiendo encarecidamente su lectura en inglés. Se lee con facilidad.
Ficha:
Autor: Liam Drew
Título: I, Mammal. The Story of what Makes Us Mammals
Año: 2017
Editorial: Bloomsbury
En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.
El artículo I, Mammal. The Story of What Makes Us Mammals se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Asteon zientzia begi-bistan #184
Ezezaguna zen orain arte Artizarraren atmosferaren zirkulazioak duen jokaera planetaren gaueko aldean. Nazioarteko ikerketa batek misterioa argitu du eta gaueko aldeko zirkulazioa eta egunekoa nabarmen ezberdinak direla jakin berri du. Hodei mota berriak, morfologia berriak eta dinamika berriak aurkitu dituzte Artizarraren gaueko aldea ikertzerakoan. Zientzia Kaieran hurbildu dizkigute xehetasun guztiak: Gaua Artizarrean.
Benetan bitxia Juanma Gallegok asteon Zientzia Kaiera blogean landu duen gaia. Kazetariak azaldu du onddoek egindako “sukalde lanari” esker garatu ahal izan zirela landareak. Hau da, oxigeno ugariko atmosfera sortzeko orduan onddoek funtsezko rola bete izan zutela. Izan ere, onddoek eboluzioan izan duten rola uste baino garrantzitsuagoa izan daitekeela uste dute ikertzaileek.
Juan Ignacio Pérez eta Miren Bego Urrutia biologoek Taricha generoko arrabioen larruazal pozoitsuari erreparatu diote. Taricha granulosa arrabioa da genero horren kide ezagunenetako bat. Ipar Amerikako ekialdeko kostaldean dauden estatuetan oso ezaguna da arrabio hori, eta mundu guztiak du haren pozoiaren berri, baita ere Thamnophis sirtalis izeneko sugeak, bera baita arrabioaren harrapari bakarra. Sugea eta arrabioaren inguruko istorio osoa Zientzia Kaieran ekarri digute: Arrabio pozoitsuak jan ditzakeen sugea.
FisikaMpemba efektua du izena eta fenomeno bitxi bat deskribatzen du. Izan ere, intuizioaren kontra doan fenomeno fisikoa bat du oinarrian: ur beroa ur hotza baino arinago izozten dela. Aristotelesen garaitik ezaguna da eta antza, filosofoak esaten omen zuen: “Jakina da aire zabalean jartzen badugu likido bat hau izozteko asmoz, arinago leituko da beroa bada”. Azalpen ezagunik ez duen efektu honen zergatira hurbildu berri du Madrilgo Carlos III, Extremadurako eta Sevillako Unibertsitateetako ikertzaileez osatutako talde batek. Efektu interesgarri honen nondik norakoak ederto bildu dituzte Sustatun: Ur beroa lehenago izozten da ur hotza baino (bai, ondo irakurri duzu).
Kultura ZientifikoaJosu Lopez-Gazpio kimikariak azaldu digu mitoak edo uste okerrak oso ohikoak direla egun eta zenbait kasutan, arriskutsuak ere izan daitezkeela. Izatez, egia da zenbaitetan mitoen atzean badela zentzuzko arrazoirik, baina, oro har, zientziak aurrera egin ahala, usteak besterik ez zirela frogatu da. Mito hauei buruzko informazioa: Usteak erdi ustel (I).
NeurozientziaGlia nerbio-sistemako zelula ez-neuronalak dira eta Ben Barres neurozientzialariak frogatu zuen gliako zelulek ere funtzio garrantzitsuak betetzen dituztela, eta aintzat hartu behar zirela garuna ezagutzeko eta harekin erlazionatutako gaitzak ulertzeko. Elhuyar aldizkarian jakinarazi dute Ben Barres ikertzailea 2017ko abenduren 27an hil zela, 63 urterekin, pankrea-minbiziak jota: Ben Barres neurozientzialari iraultzailea hil da.
OsasunaGanteko Unibertsitateak gidatutako ikerketa batek doktoregaiak izan ditu ikerlerro. 3.600 doktoregairen buru-osasunaren 12 adierazle neurtu dituzte. Besteak beste, presiopean sentitzea etengabe, goibel eta deprimituta egotea, loa galtzea, zailtasunak gainditzeko ezintasuna, ez gozatzea eguneroko jarduerekin, konfiantza galtzea, kontzentratzeko arazoak izatea edota erabakiak hartzeko ezindura. Emaitzek erakutsi dutenez, doktoretza egiten ari direnen artean, hirutik batek gaixotasun psikiatriko bat pairatzeko arriskua du. Xehetasun guztiak eskaintzen dizkigu Ana Galarragak Elhuyar aldizkarian: Zaintzaren beharra, ikerketa-munduan ere.
RobotikaTeknologiaren alorrean robotikak hainbat aurrerapauso eman ditu azken urteotan. Duela aste batzuk Juanma Gallego kazetariak Wyss Institutuak garatutako arraia-robotak aurkeztu zizkigun. Asteon, berriz, Sustatun manta-arraia bionikoa aurkeztu digute. EvoLogics enpresa Bionic Observation and Survey System proiektuan lanean ibili da azken 4 urteotan eta aurkeztu berri du lortutako emaitza: BOSS Manta-arraia, itsaspeko ibilgailu autonomoa eta bionikoa.
2017ko zientziaz mintzo130 milioi argi urtera zeuden bi neutroi izarren arteko talka antzeman zuten 2017an. Unibertsoaren taupada hauek biziaren adreiluak izan zitezkeen, geneak editatzeko CRISPR-Cas9 teknikaren aldaera berriak bezala. Biziaren adreilu berri hauez gain energia iturriak berriak ere bideratu ziren iaz, izan ere, Txinatik jakinarazi zutenez, itsaspean gordeta dauden metano hidratoetatik gasa erauztea lortu dutela. Eta itsaspean sekretuak badaude ere, Eguzki Sistematik kanpo ere hamaika gordeleku ditugu, bai, 3.500 exoplaneta inguru ezagutzen diren arren askoz gehiago daude esperoan. Eta Cassini zundak ez ditu antzemango mundu berri hauek, erretiroa hartu baitzuen joan zaigun 2017an. Istorio osoa Berrian Juanma Gallegoren eskutik: Dragoietan emandako urtea eta Sustatun ere zientziak iaz eman ziguna laburtua: 2017ko aurkikuntza zientifiko handienak, 4 minutuko bideoan laburbilduta.
———————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxune Martinez, (@UxuneM) Euskampus Fundazioko Kultura Zientifikoko eta Berrikuntza Unitateko Zabalkunde Zientifikorako arduraduna da eta Zientzia Kaiera blogeko editorea.
———————————————————————–
The post Asteon zientzia begi-bistan #184 appeared first on Zientzia Kaiera.
Naukas Bilbao 2017 – Teresa Valdés-Solís: Limpia, fija y da esplendor
En #Naukas17 nadie tuvo que hacer cola desde el día anterior para poder conseguir asiento. Ni nadie se quedó fuera… 2017 fue el año de la mudanza al gran Auditorium del Palacio Euskalduna, con más de 2000 plazas. Los días 15 y 16 de septiembre la gente lo llenó para un maratón de ciencia y humor.
Si bien el título de esta charla hace referencia al ideal despótico ilustrado de determinada pomposa institución, a todos los efectos prácticos manifiestamente prescindible, en ella Teresa Valdés-Solís repasa algunas aplicaciones insospechadas de los materiales porosos.
Teresa Valdés-Solís: Limpia, fija y da esplendorEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Naukas Bilbao 2017 – Teresa Valdés-Solís: Limpia, fija y da esplendor se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Ezjakintasunaren kartografia #197
Makrofagoak immunitate-sistemaren zelulak dira eta agente arrotzak irensten dituzte. Baina makrofago guztiak ez dira berdinak. Esaterako, bareko makrofagoek odoleko gauza arraroak garbitzen dituzte. Eta, honen kanpoko hegaleko makrofagoek proteina batera lotzen dute beraien funtzionamendua, LXR proteinara. Mapping Ignorance blogean ematen dizkigute xehetasun guztiak: Marginal macrophages and LXR: living on the edge.
Ikerketa batzuk hainbeste zentratzen dira aplikazioetan, oinarrizko zientziaren funtsezko alde bat ahaztu egiten dela. Miguel Gilaren itsaspekoaren berdin antzeko kasuak dira: “kolorez ondo, baina ez da ur gainean irauteko gai”. Adrian Matencio eta Jose Manuel Lopez Nicolas ikertzaileen taldeak adibide harrigarri batekin egin zuen topo eta beraiek azaltzen digute: When we forget basic science. An example concerning solubility.
Plasmoi izeneko kuasipartikulak, fotonikan eta plasmonikan hainbesteko etorkizun eransten zaienei, desagertu egiten dira gutxien komeni zaizunean. Esaterako, grafenoaren kasuan hori gertatzen da ezaugarri interesgarriak ematen dituzten atomoak gehitzen direnean. Orain DIPCko ikertzaileek hau zergatik gertatzen den azaltzen digute: How dopants induce plasmon decay in graphene.
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #197 appeared first on Zientzia Kaiera.
Los efectos climáticos de un calentamiento sin precedentes en el Mediterráneo
Una investigación colaborativa en la que ha participado la UPV/EHU ha descubierto una interacción entre dos fenómenos climáticos que podría ser esencial para la planificación hídrica, agraria y forestal y para evaluar la vulnerabilidad climática de los ecosistemas frente unas condiciones de calentamiento sin precedentes en el Mediterráneo.
¿Cuáles son las causas de las sequías que se sufren periódicamente en la Península Ibérica? ¿Por qué a veces los inviernos son templados y lluviosos y otros son fríos y secos o fríos y húmedos? ¿Influye el cambio climático de origen antropogénico sobre estos procesos? ¿Cómo actúan estos ciclos sobre la productividad de los ecosistemas terrestres? Y finalmente, ¿se pueden predecir estos ciclos y así adecuar la economía a dichos ciclos? El trabajo, publicado esta semana en Nature Communications, liderado por la Universidad de Alcalá de Henares y llevado a cabo en colaboración con la UPV/EHU, la Universidad Ginebra y la Universidad de Castilla-La Mancha, aporta claves importantes para responder a algunas de estas preguntas.
La oscilación del Atlántico Norte (NAO) es una fluctuación a gran escala en la masa atmosférica situada entre la zona de altas presiones subtropicales y la baja polar en la cuenca del Atlántico Norte, y es, en gran parte, responsable de los períodos de sequía en el continente europeo. Estudios anteriores muestran que la NAO tiene un gran efecto potencial sobre diferentes aspectos, desde la fijación de carbono y el crecimiento de los árboles, a la producción de frutos o los ciclos de plagas forestales. Sin embargo, la conexión entre la productividad forestal a largo plazo y la NAO presentaba algunas inconsistencias, como periodos en los que los ciclos climáticos no se correspondían a lo esperado por el valor de la NAO. En su trabajo, los investigadores muestran justamente que estas inconsistencias pueden tener su origen en anomalías periódicas de la temperatura a nivel superficial del Océano Atlántico, conocidas como Oscilación Multidecadal Atlántica (AMO). Se trata de fenómenos oceánicos que aparecen en el norte del Océano Atlántico y por el cual las temperaturas oceánicas siguen un ciclo de una duración total de unos 70 años. Estos cambios de la temperatura del océano afectan a la atmósfera pero no instantáneamente, sino con un cierto retraso.
Datos del siglo XIX analizados con herramientas modernas
El trabajo, en el que ha participado el investigador posdoctoral del grupo de investigación FisioClimaCO2 de la UPV/EHU Asier Herrero, es el resultado de una línea de investigación exhaustiva que comenzó hace más de cinco años y que integra datos de archivos históricos, climatología, modelos estadísticos y ecología forestal. “Ha sido un trabajo fascinante, desempolvar archivos de finales del siglo XIX para tener estimaciones precisas de cómo ha evolucionado la productividad de los bosques en la Península durante el último siglo y analizarlos con herramientas del siglo XXI para comprender las causas de los ciclos climáticos y sus consecuencias sobre la productividad de los ecosistemas”, explican los investigadores.
La investigación integra datos de pinares de varias localidades en Castilla-La Mancha y en Castilla y León. “Estos pinares eran la base del sustento de muchas zonas rurales desde el siglo XIX, por este motivo se llevaba a cabo una cuantificación exhaustiva de los recursos disponibles, madera, pastos, resina etc.”, apuntan. El problema es que muchos de los trabajos anteriores se basaban en proyecciones de modelos y, además, no consideraban la interacción entre ambos modos climáticos, la NAO y AMO. Gracias a la existencia de esta serie temporal, en el estudio se demuestra por primera vez que es la interacción de ambos modos climáticos la que controla en gran medida la productividad de los ecosistemas.
Así, los resultados del trabajo muestran que las fases AMO+ NAO+ y AMO- NAO- ejercen un elevado control sobre la productividad forestal, debido a la disminución de las precipitaciones y temperaturas invernales. La NAO es como una llave que abre y cierra la entrada de las borrascas pero es necesario el control de la AMO (ligada a la temperatura del Atlántico en latitudes extratropicales y a la formación de borrascas), lo que finalmente determina la temperatura y humedad del aire que llega a la Península.
“El seguimiento de los modos climáticos analizados puede ayudar a predecir los periodos de sequía extrema, aunque no será una tarea fácil, favoreciendo así la aplicación de medidas de adaptación en los bosques de una manera más eficaz”, apunta Asier Herrero. En una situación de sequía como la que está azotando el Mediterráneo en los últimos tiempos, estos hallazgos podrían ser esenciales para la planificación hídrica, agraria y forestal, y en particular para evaluar la vulnerabilidad climática de los ecosistemas.
Referencia:
Jaime Madrigal-González, Juan A. Ballesteros-Cánovas, Asier Herrero, Paloma Ruiz-Benito, Markus Stoffel, Manuel E. Lucas-Borja, Enrique Andivia, Cesar Sancho-García & Miguel A. Zavala (2017) Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal oscillations Nature Communications, 2017 doi: 10.1038/s41467-017-02319-0
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Los efectos climáticos de un calentamiento sin precedentes en el Mediterráneo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Cuántos animales se usan en España para experimentación?
Con independencia de que uno esté a favor o en contra del uso de animales para la experimentación estaremos seguramente de acuerdo que algo esencial es saber cuántos animales se destinan cada año a la experimentación en cada país. Para poder opinar es esencial tener la información correcta y actualizada. Es importante conocer las cifras exactas de utilización de animales en experimentación y otros fines científicos, incluyendo la docencia, para poder comprender la dimensión precisa de esta actividad, que sigue siendo esencial en investigación científica, y que está a la par extraordinariamente regulada.
Efectivamente, de acuerdo a la legislación europea (Directiva 2010/63/UE, del Parlamento Europeo y del Consejo, de 22 de septiembre) y española (Real Decreto 53/2013, de 1 de febrero) sobre bienestar animal es obligatorio comunicar a la Comisión Europea y publicar anualmente información estadística sobre la utilización de los animales en procedimientos. En nuestro país esta labor la asume el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (MAPAMA), a través de la Dirección General de Producciones y Mercados Agrarios, quienes publican anualmente los usos de animales en experimentación. Estos datos son aportados inicialmente por los usuarios (centros de investigación, universidades, empresas u otras instituciones) a sus respectivas autoridades competentes (en nuestro país, las Comunidades Autónomas), quienes, a su vez, los remiten al MAPAMA para su contabilización y publicación colectiva. En esta página web del MAPAMA es posible encontrar datos estadísticos de utilización de animales en experimentación desde 2009 hasta el año 2016, último año publicado, a finales de 2017.
A partir de los datos hechos públicos por el MAPAMA he preparado unos gráficos (Figura 1 y siguientes), que ilustran este artículo de divulgación, y que también podéis encontrar en la página web que mantengo sobre la iniciativa de transparencia en experimentación animal en nuestro país. Lo primero que salta a la vista es que el número de animales que se emplearon en 2016 en España para experimentación ha disminuido considerablemente en los últimos ocho años (Figura 1). De los 1.403.290 animales usados en 2009 hemos pasado a 917.896, un 34,6% menos, lo cual representa una reducción significativa (usamos ahora más de un tercio de animales menos que los que usábamos hace 8 años), en la línea de los principios generales de Reemplazo, Reducción y Refinamiento (las comúnmente denominadas 3Rs), que iluminan todas las normativas y recomendaciones actuales en bienestar animal. Por ello es relevante señalar que los usuarios de la experimentación animal en nuestro país han hecho esfuerzos considerables para reducir el número de animales empleados a los estrictamente necesarios, optimizando la gestión de las diferentes colonias de animales y los experimentos llevados a cabo. Es cierto que la cifra fue todavía inferior en 2014 (808.827) y que, desde entonces, parece constatarse un cierto aumento (de un 13% desde 2014), aunque todavía es prematuro analizar estas fluctuaciones menores entre años cercanos y sea más informativo apreciar las variaciones significativas, a la baja, observadas entre 2009 y 2016. De hecho, a la vista de la gráfica, la reducción en el uso de animales empezó en 2011 y desde entonces el número de animales usados en experimentación se ha mantenido en cifras similares, alrededor de 800.000-900.000 usos anuales.
En el cálculo de estos números hay que hacer notar una variación en la forma de contabilizarlos. Hasta 2013 se contaban el número de animales empleados (es decir, el número de individuos). A partir de 2014, a raíz de la actualización legislativa producida por la entrada en vigor de la nueva Directiva Europea y su trasposición a las legislaciones nacionales, se contabilizan el número de usos de animales, que no es exactamente lo mismo (aunque las variaciones sean mínimas). Un animal, en especial los de gran tamaño, como un primate no humano, un perro, una oveja o un cerdo, puede usarse en más de un procedimiento experimental, si el animal ha podido recuperarse adecuadamente de su participación en un procedimiento previo, siempre bajo estricta supervisión veterinaria de las alteraciones de bienestar animal que le supone participar en los mismos. El objetivo es propiciar la reutilización de los animales en experimentación, siempre que sea posible, como una medida adicional en aras de reducir el número global de individuos utilizados en experimentación. Por ejemplo, para 2016, el número anual de usos de animales (917.896) se reparte en 909.475 primeros usos (animales solamente utilizados una vez, un 99,1% del total) y apenas 8.511 reutilizaciones (un 0.9% del total). Como se puede observar en la Figura 1, el impacto de esta nueva manera de contabilizar el uso de animales es todavía muy limitado.
Los datos disponibles en el MAPAMA también permiten preguntar cuál es la finalidad o el destino del uso de animales en experimentación en España. Tal y como podemos comprobar en la segunda gráfica (Figura 2) la gran mayoría de usos de animales en nuestro país se destinan a investigación, en un porcentaje, siempre mayoritario, que oscila alrededor del 80% hasta situarse, en 2016, en el 80,7% del total anual de los usos de animales. Y es lógico que así sea, siendo la investigación científica (en particular todas las disciplinas relacionadas con la biomedicina) la principal demandante de animales para acometer los experimentos necesarios para entender cómo funcionan los seres vivos, para investigar sobre las enfermedades que afectan a humanos y al resto de los animales, sobre sus causas y sobre qué hacer para desarrollar terapias que las alivien o curen. Ya en febrero de 2015, la Confederación de Sociedades Científicas de España (COSCE), publicó un informe sobre el uso de animales en investigación científica que explicaba al conjunto de la sociedad por qué la mayoría de animales que se emplean en experimentación se destinan a la investigación científica, qué se investiga con ellos y por qué es tan relevante y sigue siendo necesario su uso, que todavía no puede ser reemplazado en su totalidad por métodos alternativos.
Las finalidades minoritarias que siguen al uso de animales en investigación corresponden a usos reglamentarios (un 17,1% en 2016, como por ejemplo: producción y control de calidad de productos e instrumentos de medicina, odontología y veterinaria; evaluaciones de seguridad toxicológica), y en la enseñanza (un 1,3% en 2016, en universidades, en facultades de veterinaria, medicina, biología y otras relacionadas) así como otros usos diversos (un 0,9% en 2016).
Otro de los cambios importantes que aportó la nueva Directiva Europea 2010/63/UE, trasladada luego a las legislaciones nacionales, fue la obligación de asignar un grado de severidad a todo procedimiento (a todo experimento) aplicado sobre animales, usando para ello una escala con cuatro categorías posibles: leve, moderado, severo o sin recuperación. Estos datos no están por lo tanto disponibles antes de 2014. Para 2016 se vuelve a constatar que la gran mayoría (87%) de procedimientos en los que se utilizan animales en España corresponden a un grado de severidad leve (481.776, un 53%) o moderado (311.435, un 34%), en los cuales la alteración del bienestar animal es limitada, y que solamente en un porcentaje limitado (74.548 usos de animales, un 8%) el procedimiento que se aplica tiene la connotación de severo, y en un número menor de casos (50.237, un 5%) se trata de procedimientos sin recuperación (Figura 3). Todos quienes usamos animales de experimentación estamos obligados, por la legislación y por las recomendaciones de bienestar animal, a refinar los métodos para reducir el daño o dolor que directa o indirectamente infligimos a los animales debido a las características del procedimiento experimental usado. Por ejemplo, como en cualquier otra intervención quirúrgica en personas, naturalmente todos los animales operados reciben la anestesia y analgesia necesarias para mitigar el dolor durante y después de la misma.
El RD53/2013 ilustra en su Anexo IX ejemplos de procedimientos considerados como leves (p.e. técnicas no invasivas de diagnóstico por imagen; administración de sustancias por vía subcutánea, intramuscular, intraperitoneal, por sonda gástrica e intravenosa a través de los vasos sanguíneos superficiales), moderados (p.e. cirugía bajo anestesia general y analgesia apropiada; irradiación o quimioterapia con una dosis subletal, o con una dosis que de otro modo sería letal, pero con reconstitución del sistema inmunitario, en estudios de trasplante de médula ósea) o severos (p.e. ensayos de toxicidad en los que la muerte sea el punto final; ensayo de potencia de una vacuna caracterizada por la alteración persistente del estado del animal, enfermedad progresiva que causa la muerte, asociada con dolor, angustia o sufrimiento moderado duradero).
Ya sabemos cuántos animales se usan en España, a qué se destinan y el grado de severidad que conlleva la experimentación realizada sobre ellos. Pero ¿qué tipo de animales se usan en España en experimentación? ¿Cuáles son las especies animales más utilizadas en nuestro país? De nuevo los datos del MAPAMA ofrecen una información pormenorizada de las especies o grupos de animales utilizados en España durante 2016 (Figura 4).
Los roedores, principalmente ratones (539.974), en menor medida ratas (54.895), y en mucha menor medida cobayas (7.223), hámsteres (734) y otros roedores (322), siguen siendo el grupo de animales más utilizado en experimentación con un 65,7% del total (603.148 usos de roedores de un total de 917.896 usos). Tras los roedores encontramos a los peces (168.746, un 18,4%), las aves (92.195, un 10,0%), los conejos (28.035, un 3,1%, que no son roedores sino lagomorfos) y los cerdos (9.434, un 1,0%). El resto de especies y grupos animales están a gran distancia y representan, cada uno de ellos, menos del 1% del total. Por ejemplo, durante 2016 se usaron apenas 888 vacas (bóvidos), 269 cabras, 2.695 ovejas, 91 équidos (caballos, burros y sus cruces), 358 gatos, 1.083 perros y 228 primates no humanos, entre otros.
Adicionalmente se incorpora, desde 2014, también debido a los cambios introducidos por la nueva Directiva Europea 2010/63/UE, al único grupo de animales invertebrados que se considera en las normativas de bienestar animal: los cefalópodos (pulpos, sepias, calamares, …), debido al extraordinario desarrollo de su sistema nervioso y a su capacidad de percibir dolor. En 2016 se usaron 8.444 cefalópodos en España para experimentación (un 0.9% del total).
La evolución del número de animales (o usos de animales, desde 2014) utilizados en experimentación en cada una de las especies o grupos de animales desde 2009 a 2016 ofrece muchos datos interesantes a reseñar (Figura 5). Por ejemplo, el número de roedores empleado en experimentación se redujo considerablemente en 2014 (en un 33%, de 782.200 en 2013 a 526.553 en 2014). El número de primates no humanos (esencialmente macacos cangrejeros y Rhesus) también se han reducido considerablemente desde 2014, pasando de 489 a 228 en 2016. El número de peces se ha reducido considerablemente, mientras que el de aves ha aumentado. Otras especies, como conejos, ovejas, cabras, vacas, cerdos, gatos y perros se han mantenido en cifras similares en los últimos ocho años.
La implementación de la Directiva Europea 2010/63/UE ha podido influir en la manera sobre cómo se realizan estos recuentos estadísticos anuales. Por ejemplo, anteriormente (RD1201/2005, ya derogado) la definición de animal, a los efectos de la legislación de protección del bienestar animal, era la de “cualquier ser vivo vertebrado no humano, incluidas las crías de vida propia o las formas de cría en reproducción, excluidas las formas fetales o embrionarias”, mientras que actualmente la definición actualizada de animal es la de “a) vertebrados no humanos vivos, incluidos: i) las larvas autónomas para su alimentación, y ii) los fetos de mamíferos a partir del último tercio de su desarrollo normal; y b) cefalópodos vivos”. También la definición de procedimiento ha cambiado. Anteriormente (RD1201/2005, ya derogado) se entendía por procedimiento “toda utilización de un animal para los fines establecidos en el artículo 2 que pueda causarle dolor, sufrimiento, angustia o daño prolongados, incluida toda actuación que de manera intencionada o casual pueda dar lugar al nacimiento de un animal en las condiciones anteriormente mencionadas”. Actualmente (RD53/2013) se entiende por procedimiento “la utilización, tanto invasiva como no invasiva, de un animal con fines experimentales u otros fines científicos, cuyos resultados sean predecibles o impredecibles, o con fines educativos siempre que dicha utilización pueda causarle al animal un nivel de dolor, sufrimiento, angustia o daño duradero equivalente o superior al causado por la introducción de una aguja conforme a las buenas prácticas veterinarias”.
El número de animales usados en experimentación puede parecernos normal, excesivo o reducido, según como y con qué lo comparemos. Estos números deben de observarse tanto en sus valores absolutos como relativos. En nuestro informe COSCE de Febrero de 2015 sobre el uso de animales en investigación científica ya alertábamos al respecto. Por ejemplo, usando nuevamente datos del ministerio (MAGRAMA en 2013), si nos fijamos en los cerdos utilizados para experimentación en España en 2013 (9.373 cerdos) y los comparamos con el número de cerdos sacrificados para alimentación (más de 41 millones de cerdos) resulta que por cada cerdo que se destinó a experimentación se consumieron más de 4.400 cerdos para alimentación.
Existen especies animales que suscitan una mayor empatía, como los perros o los primates no humanos, y por ello algunos grupos de nuestra sociedad demandan una mayor protección o la prohibición del uso de perros y primates no humanos en experimentación. Sin embargo, se debe constatar que el uso de perros y de primates no humanos es extremadamente reducido en experimentación (en 2016, 1.083 perros y 228 primates no humanos, sobre un total de 917.896 usos de animales) pero también extraordinariamente relevante y necesario. Por ejemplo, los perros han sido un modelo animal muy útil para el desarrollo de estrategias de terapia génica efectivas para el tratamiento de la diabetes de tipo 1 o para curar enfermedades raras como el síndrome de Sanfilippo. Igualmente, los primates no humanos han sido esenciales para el estudio de muchas alteraciones cerebrales, de la conducta, que nos afectan y para el desarrollo y validación de vacunas como la desarrollada frente al virus Ébola.
La experimentación animal sigue siendo necesaria en biología, biomedicina y veterinaria. No podemos prescindir todavía de ella. Todas las normativas actuales de bienestar animal, de protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia, incorporan un párrafo en la parte introductoria que contiene un deseo o fin último de estas normas. Por ejemplo, el RD53/2013 dice en su introducción “Se marca como objetivo último el total reemplazo de los animales en los procedimientos”. Sin embargo, hoy en día no es posible todavía aplicar métodos alternativos (in silico, mediante simulaciones bioinformáticas, o in vitro, en cultivos celulares) para todos y cada uno de los experimentos e investigaciones científicas (p.e. no es posible investigar sobre un órgano tan complejo como el ojo o la función visual asociada si no es utilizando animales), aunque es obligatorio el uso de estos métodos alternativos cuando existen y han sido validados.
En septiembre de 2016 lanzamos en España, desde la COSCE y con la ayuda de EARA (Asociación Europea de Animales de Experimentación), el Acuerdo de transparencia sobre el uso de animales en experimentación científica. En la actualidad más de 100 instituciones españolas se han adherido a esta propuesta que contiene cuatro compromisos: (1) “Hablar con claridad sobre cuándo, cómo y por qué se usan animales en investigación”; (2) “Proporcionar información adecuada a los medios de comunicación y al público en general sobre las condiciones en las que se realiza la investigación que requiere el uso de modelos animales y los resultados que de ella se obtienen”; (3) “Promover iniciativas que generen un mayor conocimiento y comprensión en la sociedad sobre el uso de animales en investigación científica”; y (4) “«Informar anualmente sobre el progreso y compartir experiencias”. Es en cumplimiento también de este acuerdo por la transparencia en experimentación animal que escribo este artículo, compartiendo y analizando los datos de usos de animales en experimentación en nuestro país, a partir de los datos publicados por el MAPAMA.
El MAPAMA también merece ser destacado en su apuesta por la transparencia en experimentación animal. La publicación del informe sobre usos de animales de experimentación y otros fines científicos, incluyendo la docencia en 2016 mejora muchísimo los informes anteriores, al incorporar los datos presentados de una forma mucho más comprensible e ilustrar el informe con diversas gráficas de producción propia que contribuyen a trasladar información veraz y contrastable al ciudadano interesado.
Sin duda la apuesta por la transparencia empieza por compartir la información disponible. Espero igualmente que tras la lectura de este artículo sea más sencillo responder a la pregunta que lo encabeza: ¿Cuántos animales se usan en España para experimentación?
Este post ha sido realizado por Lluis Montoliu (@LluisMontoliu) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo ¿Cuántos animales se usan en España para experimentación? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Maddi Ibarbia: “Parte-hartzaileekin harremana dut, eta hortik ere asko ikasten dut”
Hain zuzen, betitik erakartzen zuen medikuntzak eta giza gorputza ezagutzeak, eta, batxilergoko bigarren mailan zegoela, Ingeniaritza Biomedikoa gradua ezagutzeko ate irekien jardunaldia zegoela ikusi zuen. Gradu berria zen, beraz, ordura arte ez zuen hori ikasteko asmorik izan, baina berehala pentsatu zuen beretzat egokia izan zitekeela. Baita asmatu ere! Hala dio Ibarbiak: “Orain ikasten hasi beharko banu, berriro aukeratuko nuke Ingeniaritza Biomedikoa, inolako zalantzarik gabe”.
Gradua ikasi ondoren, Datu Biomedikoen Analisiaren masterra egin zuen, eta segidan sortu zitzaion BCBLn (Basque Center on Cognition, Brain and Lenguage) tesia egiteko aukera. Orain, tesiaren lehen urtean dago, eta, horraino etenik gabe iritsi bada ere, sumatzen du aldea hasi aurretik egin dituen ikasketen eta oraingo lanaren artean: “Ikasten ari zarela, egiten dituzu praktikak ere, baina horietan dena bideratuta dago. Zuk egin bakarrik egin behar duzu. Aldiz, orain, nik diseinatu behar ditut esperimentuak, egin ere neuk egiten ditut, eta ardura nirea da”.
Ez du damurik, dena den, horixe baitzen nahi zuena. “Gradua ikasten hasi nintzenetik, argi neukan tesia egin nahi nuela; batetik, formazioan sakontzeko, eta, bestetik, lan-mundurako ateak irekitzeko balioko zidala uste nuelako. Eta hala izan da”, baieztatu du Ibarbiak.
Erresonantzia magnetikoko metodo desberdinetatik ahalik eta onura gehien lortzea da Ibarbiaren helburua. Azaldu duenez, datuen analisi estatistikoko metodo berri batekin ari da lanean: “Orain arteko metodoek aldagai bakarra onartzen zuten, eta ni aldagai bat baino gehiago har dezakeen metodo batekin ari naiz lanean. Horri esker, garunaren analisi estatistikoa osotasunean egin dezakegu, garuneko zatitxo bakoitza banan-banan aztertu beharrean”.
Sormena, ikerketa gaiLan guztia, ordea, ez du ordenagailu aurrean eta zenbakiekin egiten; pertsonekin ere aritzen da, aurrez aurre: “Orain, sormen-prozesua aztertzeko esperimentu batean nabil lanean, eta parte-hartzaileak Mugaritz jatetxeko sukaldariak dira. Zehazki, erresonantzia magnetikoan aztertzen ditugu haien garunak, sormen-prozesuaren aurretik eta ondoren, ikusteko aldaketarik ba ote dagoen”.
Horrez gain, chefentzako beste esperimentu bat ere prestatzen ari dira. “Kasu horretan, erresonantzia magnetikoko proba egin bitartean, sormen-ariketa bat egin beharko dute. Horrela, zer eremu aktibatzen diren aztertu nahi dugu”. Eta BCBLko beste ikertzaile batzuei laguntzen ere badabil, memoriari buruzko azterketa batean.
Ibarbiaren esanean, jendearekin zuzeneko harremana izateak asko asetzen du, eta oso gustuko du bere lanaren alderdi hori: “Beste ikerketa zentro batzuetan, zenbakiekin bakarrik egiten dute lana; baina nik hemen aukera dut esperimentua diseinatu eta parte-hartzaileekin harremanetan jartzeko; erresonantzia magnetikoko probak ere hemen bertan egiten dizkiegu. Beste leku askotan, datu-baseetatik ateratzen dituzte datuak, eta haien analisia baino ez dute egiten; nik, berriz, beste gertutasun bat dut parte-hartzaileekin, eta horretatik ere asko ikasten dut”.
Atzerrian egindako egonaldiak ere oso esperientzia baliagarriak izan direla adierazi du Ibarbiak: “Tesiarekin, badut kanpora joateko asmoa. Lehen ere izan naiz, eta oso aberasgarria izan da. Erasmus bekarekin Belgikan izan nintzen, Lovainan, eta masterreko proiektua egiten, berriz, Berlinen”.
Oraingoz ez du etorkizun urrunerako planik, momentuz “nahikoa” du tesiarekin, baina, zailtasunak zailtasun, gustura ari onartu dut: “Zortea dut, benetan gustatzen baitzait egiten ari naizena”.
Fitxa biografikoa:Maddi Ibarbia Garate Orion jaio zen, 1991ean urtean. Nafarroako Unibertsitatean graduatu zen, Ingeniaritza Biomedikoa graduan, eta gero, unibertsitate berean, Ingeniaritza Biomedikoko masterra egin eta datu biomedikoen analisian espezializatu zen. Micro Discovery GmbH enpresan (Berlin) masterreko tesina egin ondoren, BCBLn (Basque Center on Cognition, Brain and Lenguage) doktoretza egiten ari da, MINECO bekarekin.
———————————————————————————-
Egileaz: Ana Galarraga Aiestaran (@Anagalarraga1) zientzia-komunikatzailea da eta Elhuyar Zientzia eta Teknologia aldizkariko erredaktorea.
———————————————————————————-
Elhuyar Zientzia eta Teknologia aldizkariarekin lankidetzan egindako atala.
The post Maddi Ibarbia: “Parte-hartzaileekin harremana dut, eta hortik ere asko ikasten dut” appeared first on Zientzia Kaiera.
El mito de Arquímedes, mención especial del jurado “On zientzia”
“El mito de Arquímedes” de Eneko Amezaga Angulo recibió la mención especial del jurado en la 6ª edición de los premios On zientzia. En el siglo XXI, un Arquímedes moderno muy peculiar revivirá uno de los mitos que hizo pasar a la historia al personaje.
¿Tienes una idea genial para explicar un concepto científico en un vídeo? ¿Quieres ver tu trabajo emitido en televisión? La Fundación Elhuyar y el Donostia International Physics Center (DIPC) han organizado la octava edición de On zientzia, un concurso de divulgación científica y tecnológica enmarcado en el programa Teknopolis, de ETB. Este certamen pretende impulsar la producción de vídeos cortos y originales que ayuden a popularizar el conocimiento científico.
On zientzia tendrá tres categorías. El mejor vídeo de divulgación recibirá un premio de 3.000 euros. Para impulsar la producción de piezas en euskera, existe un premio de 2.000 euros reservado a la mejor propuesta realizada en ese idioma. Por último, con el objetivo de impulsar la participación de los estudiantes de ESO y Bachillerato, hay un premio dotado con 1.000 euros para el mejor vídeo realizado por menores de 18 años.
Los vídeos han de tener una duración inferior a los 5 minutos, se pueden realizar en euskera, castellano o inglés y el tema es libre. Deben ser contenidos originales, no comerciales, que no se hayan emitido por televisión y que no hayan resultado premiados en otros concursos. El jurado valorará la capacidad divulgativa y el interés de los vídeos más que la excelencia técnica.
Las bases las encuentras aquí. Puedes participar desde ya hasta el 25 de abril de 2018.
Edición realizada por César Tomé López
El artículo El mito de Arquímedes, mención especial del jurado “On zientzia” se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: