Dozena erdi ariketa 2019ko udarako (2): Zifren bila
Gogoan izan ahalegina bera –bidea bilatzea– badela ariketa. Horrez gain, tontorra (emaitza) lortzen baduzu, poz handiagoa. Ahalegina egin eta emaitza gurekin partekatzera gonbidatzen zaitugu. Ariketaren emaitza –eta jarraitu duzun ebazpidea, nahi baduzu– idatzi iruzkinen atalean (artikuluaren behealdean daukazu) eta irailean emaitza zuzenaren berri emango dizugu.
Hona hemen gure bigarren ariketa: Zifen bila.———————————————————————————-
Ariketak “Calendrier Mathématique 2019. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
———————————————————————————-
The post Dozena erdi ariketa 2019ko udarako (2): Zifren bila appeared first on Zientzia Kaiera.
Evolución [Para creyentes y otros escépticos]
Ignacio López-Goñi, lector
No todas las religiones, ni todos los cristianos, abominan de la evolución
Todavía hoy en día siempre que se trata el tema de la evolución, muchos creyentes muestran cierta reticencia a asumir el hecho de la evolución de la vida y del ser humano con todas sus consecuencias. Piensan que hay ciertos momentos de la historia del cosmos que la evolución supuestamente no puede explicar, y recurren a esos “huecos” para “meter” la acción de Dios en el mundo. Para algunos Dios no es más que un gran mago capaz de sacar cualquier truco de su chistera, ocupado en insuflar vida, o “almas”, en ciertos momentos de la historia natural, o en arreglar algo que se le había ido de las manos. Ese es el Dios del creacionismo o de eso que se llama diseño inteligente, un Dios que sólo puede actuar como lo haría un ingeniero: diseñando, construyendo y ensamblando piezas. Pero creación y creacionismo no son lo mismo. El creacionismo, popular e incluso beligerante en el mundo anglosajón entre los movimientos cristianos protestantes, mantiene una interpretación literal de los relatos bíblicos, que es claramente contraria con la evidencia científica. En el extremo opuesto se sitúa el pensamiento materialista, para el que la evolución del cosmos es suficiente para explicar el origen del mundo que nos rodea, sin necesidad de un Dios que le dé sentido. Pero, ¿pueden ser compatibles ambas posturas, afirmar que la vida ha surgido como consecuencia de mecanismos puramente naturales y la existencia de un Dios creador?

Javier Novo, es Catedrático de Genética en la Universidad de Navarra y trabaja en la evolución de las secuencias genéticas que controlan el desarrollo del cerebro humano, y acaba de publicar un libro titulado “Evolución para creyentes y otros escépticos”. En él explica de manera muy asequible para un público general cómo funciona la evolución, y argumenta que esa cadena de casualidades que ocurren en la evolución del cosmos se puede ajustar muy bien con la idea de un Dios que da sentido a todo, y no de un Dios artesano, como tantos cristianos e incluso escépticos piensan.
La evolución no es progresar sino explorar
En los primeros capítulos, Novo explica con multitud de ejemplos sencillos y de forma muy didáctica, cómo funciona realmente la evolución, que resumo aquí esquemáticamente en ocho puntos:
1. Evolución no significa que todos los individuos de una especie deban estar constantemente transformándose para alcanzar el “siguiente” estado evolutivo, transformarse de golpe en otra especie. Es mucho mejor hablar de “poblaciones” de individuos que de especies. La evolución ocurre dentro de una gran población, cuando un pequeño número de individuos sufren algún cambio que les permite adaptarse mejor a las condiciones ambientales en las que viven. Se seleccionan las variaciones que ya estaban presentes en la población antes de que se diese ninguna necesidad de poseerlas, antes de que fuesen útiles. La selección natural no “crea” nada, simplemente escoge entre las variantes existentes.
2. La selección natural explica muy bien cambios sencillos. Pero es un error pensar que la evolución siempre funciona de manera gradual, a base de pequeñitos cambios que gradualmente van llevando una población de seres vivos hacia su óptimo, siempre adaptándose mejor y mejor; y que es precisamente la acumulación sucesiva de muchos de estos cambios infinitesimales lo que explica los grandes cambios macroevolutivos (la conversión de un ala en brazo o de un mono a un ser humano).
3. La evolución no es una línea única, no es un gran tronco lineal en el que las especies se van sucediendo una tras otra, hasta llegar a la penúltima y por fin al ser humano. En un árbol en el que las especies que existen en la actualidad son los brotes más externos, un árbol lleno de nudos y ramillas que se han quedado en el camino y nunca han llegado a formar parte de la copa.
4. La selección natural no lo es todo. No es correcto presentar la evolución como un lento e imparable proceso de optimización que siempre alcanza la solución mejor. A veces existen situaciones de aislamiento más o menos brusco que hace que las poblaciones sigan derroteros diferentes. Estos cambios bruscos son tanto más drásticos cuanto menor es el número de individuos que han quedado aislados. Este fenómeno (deriva genética) ha sido más la regla que la excepción en la historia de la Tierra. La colonización del planeta se ha hecho a base de ocupar nuevos nichos, en un proceso repleto además por varias extinciones masivas. Colonización y extinción constituyen dos poderosas fuerzas evolutivas.
5. La evolución a veces es “sucia” y un tanto chapucera. La deriva genética no solo introduce cierta impredictibilidad, sino que explica la existencia de diseños “malos”: en la naturaleza abundan las estructuras que analizadas en detalle responden a un diseño bastante deficiente. La evolución no conoce otra forma de arriesgar que generando lo inesperado; y lo inesperado a menudo es lo no perfecto. Lo verdaderamente sorprendente es que esas imperfecciones constituyan la base para lograr auténticos avances, nuevos modos de sobrevivir y prosperar en las innumerables oportunidades que ofrece nuestro planeta.
6. La evolución no es un proceso uniforme, gradual, que se produce a una velocidad constante (habitualmente lenta), siempre en la misma dirección. No, la evolución puede dar saltos. A veces, un cambio ecológico sencillo puede provocar una transición evolutiva notable. Fue lo que ocurrió en la denominada explosión del Cámbrico, un breve lapso de tiempo (cuarenta millones de años) en los que se originaron la mayor parte de los planes corporales de los animales.
7. Evolución y desarrollo embrionario tienen mucho que ver. Los genes implicados en el control del desarrollo embrionario son esencialmente los mismos en la mayoría de los seres vivos. Muchos cambios que parecen grandes saltos evolutivos pueden explicarse por un recableado o reconfiguración de determinadas redes genéticas que controlan el desarrollo embrionario, son pequeñas modificaciones en esa maraña de conexiones genéticas que pueden tener como resultado trayectorias evolutivas separadas. Se pueden modificar así estructuras biológicas enteras a partir de cambios relativamente sencillos. No hace falta una mutación para cambiar el brazo, seguida de otra para la mano, otra después para cada dedo … No, cuando cambia la red genética que controla el desarrollo del miembro superior, todo el miembro se reconfigurará; pequeños cambios en los sistemas genéticos que determinan la forma de la cabeza ayudarán a entender cómo puede crecer el cráneo y cambiar la cara a la vez. Cuando hablamos de redes complejas como éstas, cambios ligeros en el input pueden dar como resultado modificaciones relativamente drásticas y difíciles de predecir.
8. La evolución a veces retrocede. En realidad simplemente selecciona de entre lo que tiene a su disposición, que a su vez es el resultado de selecciones anteriores. Por eso, evolucionar no es progresar, sino explorar. Muchas veces genes que ya estaban en organismos más sencillos haciendo determinadas cosas, son después “reutilizados” para nuevas funciones en otros organismo más adelante. La evolución se comporta como un amante del bricolaje que toma cosas viejas, ya usadas, y las combina de modos nuevos (la idea es del Premio Nobel François Jacob). Por eso, a veces, la evolución “crea” estructuras que parecen mal diseñadas, no son las “mejores” pero son lo suficientemente buenas como para permitir que la vida siga adelante en ese nicho ecológico concreto. La evolución nunca construye un órgano partiendo de cero, no planifica el funcionamiento del sistema circulatorio como lo haría un experto en hidráulica, no conecta las neuronas como lo haría un ingeniero electrónico. Al contrario, está limitada por las imperfecciones y los fallos del pasado, y con esas herramientas tiene que salir adelante. El resultado final de esa exploración a tientas es el famoso árbol de la vida: unas ramas se habrán quedado secas a mitad de camino, de los nudos interiores han salido otras que hoy forman la copa.
El “problema” de la mente y el ser humano
Hasta aquí la lectura del libro de Novo nos habrá permitido entender un poco mejor cómo funciona la evolución, con la intención de prepararnos para la pregunta esencial: el origen del ser humano. Novo comienza a abordar este tema hablando de la evolución de la mente, ese conjunto de fenómenos cognitivos y emocionales que da lugar a una experiencia subjetiva, a ese “yo” que vive en primera persona sensaciones sublimes que resulta tan difícil explicar con palabras.
En el fondo, el tema de la evolución humana se reduce al problema de la aparición de la mente humana, esa dimensión espiritual que algunos designan con la palabra “alma”. ¿Cómo han aparecido todos esos fenómenos que describimos como mente humana? ¿Ha sido un proceso puramente natural? ¿Ha intervenido Dios de algún modo? Esta es, sin duda alguna, la principal piedra de tropiezo para el creyente que se enfrenta con el hecho evolutivo. La enseñanza católica en este punto es algo difusa, pero suele resumirse con la afirmación de que Dios ha “infundido el alma”, ha insuflado el aliento de vida mediante el cual los seres humanos adquieren esa dimensión espiritual.
Con demasiada frecuencia se ha acudido a la “solución” un tanto ingenua de decir que “la evolución crea el cuerpo y Dios crea el alma”. Pero no podemos pensar que nuestra mente, espíritu, consciencia o alma es una cosa, una especie de “nubecilla”, una sustancia separada que hizo su aparición súbitamente sobre la superficie de la tierra con la aparición de los primeros seres humanos. Hoy en día, es innegable que los sustratos neurológicos sobre los que se asienta la consciencia están presentes en el reino animal y por tanto tienen una historia muy antigua. Lo cual tiene mucho sentido si recordamos que la evolución es exploración, búsqueda incansable de nuevas soluciones. En este contexto, no tiene nada de extraño que todas las habilidades cognitivas necesarias para la vida social, la cooperación, la empatía, la equidad, la planificación, el viaje mental, la fabricación de herramientas o la comunicación simbólica hayan sido “probadas” o “intentadas” repetidas veces a lo largo de la historia evolutiva.
Determinar con certeza quienes fueron los primeros humanos quizá sea imposible. Así, explorando a tientas, el hombre llegó al mundo sin hacer ruido, silenciosamente. Teilhard de Chardin fue el primero en utilizar el término hominización para este largo proceso, y tuvo también la magnífica intuición de compararlo con la infancia. Hablamos a menudo del uso de razón que alcanzan los niños en torno a los seis o siete años. Parece que antes de esa edad aún no son totalmente racionales, y por eso no les exigimos responsabilidades; pero llega un momento en su vida en que adquieren esa racionalidad y comienzan a construir su propia historia. De modo que un niño, se hace mayor y se convierte en un ser capaz de tomar decisiones libres. Algo ha cambiado en esa mente, en los procesos cognitivos que la sustentan, pero el cambio ha ido fraguándose durante años y ha llegado silenciosamente.
De modo semejante, los últimos dos millones de años de evolución humana han sido esa infancia que preparaba el momento de nuestra irrupción final en la historia del cosmos. Es inútil buscar un instante preciso, y es muy probable que nunca lleguemos a saber los detalles exactos de lo que sucedió. La pregunta de quién fue realmente el primer humano resulta irrelevante, como irrelevante es intentar precisar el momento en el que un niño pierde la inocencia y se hace mayor; porque cuando tenemos la seguridad de que el cambio se ha producido, ya es tarde. Cuando vemos los rastros de un comportamiento adulto en nuestro deambular evolutivo, ya han transcurrido miles de años de infancia.
Dios y evolución
Notables escépticos como el premio Nobel de Física Steven Weinberg aluden al hecho de que la ciencia muestra la ausencia de propósito o sentido en las leyes que gobiernan el universo: “cuanto más estudiamos el universo, menos sentido encontramos”. En efecto, el conocimiento de los mecanismos evolutivos nunca nos dirá nada acerca del sentido o significado que tienen; se trata de una cuestión totalmente ajena a la propia metodología científica, ¿por qué debería la ciencia encontrar sentido? Sencillamente, no es el objeto de la ciencia experimental encontrar el sentido, propósito o significado que puedan tener los procesos naturales.
Resulta absurdo pensar que Dios se ha dedicado a ensamblar unas moléculas orgánicas para formar la primera célula, o a toquitear un circuito neuronal en el cerebro de un homínido para que pudiera ponerse a hablar. Dios no es un gran ingeniero ataviado con el ropaje blanco de Gandalf. Por eso, resulta inútil buscar las “huellas” de su actuar en determinados cambios físicos o biológicos que la ciencia no puede todavía explicar adecuadamente. A Dios no se le encuentra en los lugares oscuros a los que no ha llegado aún la luz de la explicación científica; de hecho, probablemente esos sean los peores sitios donde buscarle. Si Dios es verdaderamente real, está dando sentido, significado y propósito a todo lo que ha sido, es y será. La fe en la creación no nos dice cuál es el sentido del mundo, sino simplemente que el mundo tiene sentido.
Llegados a este punto, Novo utiliza el ejemplo del tapiz para explicar el papel de Dios en el mundo. Cuando observamos por detrás uno de esos magníficos tapices antiguos que cuelgan de palacios reales, lo que vemos es un montón de pequeños nudos. Los hilos que componen el tapiz han sido trenzados y anudados con gran habilidad; pero si miramos esta parte -el lado malo- no vemos escena alguna. Es más, para alguien que no haya visto nunca el otro lado del tapiz, o que no haya visto jamás un tapiz, resultará muy difícil aceptar que realmente hay una escena por el otro lado, que todos esos nudos tienen en realidad algún sentido, que no están ahí sin más, al azar. Para aceptar eso hay que dar un salto en el vacío, hay que hacer un acto de fe.
El gran descubrimiento de la ciencia es, precisamente, que esos hilos tienen la increíble propiedad de que se atan solos, por sí mismos. La evolución biológica, a tientas, con un explorar errático, mediante fuerzas puramente naturales (selección natural, deriva genética, ecología, re-estructuración de programas de desarrollo embrionario, …) ha conseguido dar paso a un tipo de cognición, una mente, capaz de generar un sistema no-genético, no-biológico, de rápido progreso cultural: el ser humano. Si los nudos realmente se atan por sí mismos, entonces quizás no haya nadie al otro lado; es más, quizás ni siquiera haya escena alguna que contemplar.
Sin embargo, es perfectamente posible sostener que las cuerdas del tapiz son realmente autónomas en su modo de operar y tener al mismo tiempo la convicción de que al otro lado está apareciendo una escena cada vez más fantástica. Diferenciar bien estos dos planos es crucial. Pensar que Dios existe porque ha anudado directamente alguno de esos nudos, por bien hecho que esté, supone que también ha causado los otros nudos contrahechos y feos que dan a este lado del tapiz la apariencia de un gran océano de sinsentido.
Llegados a este punto, cada uno debe decidir si esto significa que al otro lado del tapiz hay algo que dé sentido a todo esto. Es el punto en que el creyente ha de soltar el último asidero y dar el salto definitivo de fe. El escéptico se contentará con contemplar este lado e intentar darle algún significado, tarea ardua y necesariamente infructuosa. Lo importante es que a esa decisión se llega por caminos diversos, pero no tiene nada que ver con la ciencia; y mucho menos con la evolución.
Ficha:
Autor: Javier Novo
Título: Evolución [Para creyentes y otros escépticos]
Año: 2019
Editorial: Rialp
Sobre el autor de la reseña: Ignacio López-Goñi (@microbioblog) es biólogo y catedrático de Microbiología en la Universidad de Navarra.
En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.
El artículo Evolución [Para creyentes y otros escépticos] se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Coloquios escépticos: ¿hijos de dios?, con Francisco Mora
- Los primeros pasos de la evolución darwiniana y sesgos cognitivos y evolución (Día de Darwin 2018)
- Escépticos y dogmáticos
Ciencia de datos y fútbol: predicción del riesgo de lesiones en el deporte profesional
El fútbol es el deporte alrededor del cual orbitan, además de los miles de fieles seguidores, sectores como la hostelería, el periodismo, la publicidad o la moda. Pero, ¿hay lugar para la ciencia?
Aunque resulte difícil imaginar la relación que pueda existir entre disciplinas científicas como la física, las matemáticas o la antropología y el fútbol, cada vez son más las ocasiones en las que, sorprendentemente, la ciencia puede explicar muchos de los acontecimientos que suceden en un campo de fútbol e incidir en aspectos como la mejora del rendimiento de los jugadores y, en consecuencia, de los resultados.
La relación entre estas dos disciplinas fue el hilo conductor de un ciclo de conferencias organizado por la Cátedra de Cultura Científica con el apoyo de la Diputación Foral de Bizkaia y la colaboración de Fundación Española para la Ciencia y la Tecnología (FECYT) – Ministerio de Ciencia, Innovación y Universidades”, que tuvo lugar en el Bizkaia Aretoa de la UPV/EHU de Bilbao los meses de octubre y noviembre de 2018. Enmarcado en el ciclo de conferencias “Zientziateka”, que contó con cinco conferencias impartidas por especialistas de diversos campos en las que se ilustró la conexión que existe entre diferentes disciplinas científicas y el fútbol.
Dae-Jin Lee, doctor en Ingeniería Matemática e investigador del Centro Vasco de Matemática Aplicada (BCAM), presenta en esta charla el campo emergente de la bioestadística deportiva y su relevancia para la prevención de lesiones en el deporte profesional. A lo largo de ella aborda la ciencia detrás de la prevención de lesiones deportivas (principalmente en el fútbol de élite) basada en la analítica avanzada de datos. El objetivo final del ponente es dar valor a la necesidad de perfiles multidisciplinares que incorporen la bioestadística, las matemáticas, la computación, la epidemiología y la salud pública en el deporte profesional.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Ciencia de datos y fútbol: predicción del riesgo de lesiones en el deporte profesional se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Fútbol, periódicos y estadísticas
- La trama vasco-rusa que eliminó a España del Mundial 2018
- Ciencia y valores en la sociedad del riesgo
50 años modificando genes (en animales)
La Facultad de Ciencias de Bilbao comenzó su andadura en el curso 1968/69. 50 años después la Facultad de Ciencia y Tecnología de la UPV/EHU celebra dicho acontecimiento dando a conocer el impacto que la Facultad ha tenido en nuestra sociedad. Publicamos en el Cuaderno de Cultura Científica y en Zientzia Kaiera una serie de artículos que narran algunas de las contribuciones más significativas realizadas a lo largo de estas cinco décadas.
Transgénesis en mamíferos
En un artículo previo hemos tratado el tema de la tecnología del DNA recombinante (rDNA) y la transgénesis en bacterias. Continuando con esta temática, en este artículo nos centramos en la transgénesis en animales y, especialmente, en la transgénesis en mamíferos.
Un animal transgénico es aquél al que se le ha transferido un DNA exógeno (en muchas ocasiones de otra especie), el cual ha quedado integrado en el genoma de sus células germinales. Las células germinales son las que dan lugar a óvulos o espermatozoides, por lo que un animal transgénico puede transmitir el DNA exógeno a sus descendientes, a través de la reproducción sexual.
Inicialmente, los mamíferos transgénicos se crearon inyectando directamente un DNA exógeno en el núcleo de un óvulo fertilizado in vitro y manteniendo en cultivo el embrión resultante durante las primeras divisiones celulares, hasta implantarlo en una madre subrogada (Figura 1). Los primeros mamíferos transgénicos se produjeron en 1981, cuando científicos de la Universidad de Ohio introdujeron en ratones el gen de la hemoglobina de conejo.

A partir de ese momento comenzaron a mejorarse las técnicas de fertilización in vitro y de inyección de genes en embriones de diferentes especies, para incrementar la eficacia de la generación de animales transgénicos.
Los motivos para crear este tipo de animales son diversos. En ocasiones se trata de conseguir aplicaciones de interés biomédico, como producir en la leche una molécula de utilidad terapéutica (anticuerpos monoclonales, interleukina-2, eritropoyetina, hormona de crecimiento humana, son algunos ejemplos de proteínas así obtenidas). Para este tipo de aplicación se suelen generar cabras, conejos, ovejas o vacas transgénicos. Otras aplicaciones están relacionadas con el uso de animales como donantes de tejidos u órganos; en este caso, los cerdos suelen ser la especie de elección y la transgenia pretende mejorar la compatibilidad del xenotransplante. También algunos animales se generan por interés comercial de la industria alimentaria, que busca generar animales resistentes a enfermedades, con una tasa de crecimiento más elevada, o con propiedades nutricionales modificadas y acordes a los intereses del mercado.
Además, existe un gran interés en la generación de animales transgénicos en el ámbito científico, donde se emplean para avanzar en el conocimiento molecular de las enfermedades, en la función de los genes o en el efecto de mutaciones concretas. Los modelos de animales transgénicos para enfermedades humanas están permitiendo no solo descubrir los aspectos moleculares responsables de las patologías, sino también disponer de herramientas para investigar la progresión de una enfermedad, o para evaluar estrategias terapéuticas de forma previa a su aplicación en humanos, entre otras aplicaciones. Sin ninguna duda, la especie preferida para este tipo de estudios es el ratón, debido a su bajo coste de mantenimiento, a su reducido período de gestación, a la relativamente estrecha relación evolutiva que existe entre su genoma y el genoma humano, y a la disponibilidad de cepas de ratones genéticamente puras con las que iniciar el procedimiento. Además, como se detalla a continuación, las tecnologías para la generación de organismos transgénicos están particularmente bien desarrolladas para la introducción de modificaciones genéticas en el ratón. Todo ello ha conducido a que el uso de ratones transgénicos sea una herramienta ampliamente utilizada en el ámbito de la investigación biomédica.
Transgénesis dirigida en ratones
A pesar de sus numerosas aplicaciones, la transgénesis mediante inyección nuclear descrita en la sección anterior presenta el inconveniente de que la integración de los transgenes exógenos en el genoma hospedante se realiza de manera aleatoria, lo cual puede generar efectos variables no deseados. En ratones, este inconveniente se solventó en 1988, cuando se consiguió generar un ratón mediante una metodología compleja que se ha denominado transgénesis dirigida porque permite introducir los transgenes en lugares específicos del genoma hospedante. El desarrollo de esta tecnología llevó a sus creadores, los Dres. Capecchi, Smithies y Evans a obtener el premio Nobel en 2007.
Para llevar a cabo la transgénesis dirigida se utilizan células madre embrionarias (ES, del inglés embryonic stem), un tipo de células que pueden mantenerse indefinidamente in vitro en un estado no diferenciado pero que, cuando se inyectan en un embrión, contribuyen a la formación de todos los tejidos del ratón en desarrollo. Las células ES en cultivo, se someten a un tipo de modificación genética, denominada recombinación homóloga, mediante la cual el transgén de interés se integra en un punto concreto de su genoma. A pesar de que la recombinación homóloga es poco eficaz, las células ES en las que el proceso ha sucedido correctamente pueden seleccionarse e incrementar su número mediante su cultivo in vitro (Figura 2A).
Posteriormente, las células ES seleccionadas que contienen el transgén correctamente insertado, se inyectan en un embrión de ratón en etapa muy temprana de su desarrollo (blastocisto), dando lugar a un ratón quimérico que contiene células no modificadas y células ES modificadas genéticamente. Si este ratón quimérico porta la modificación genética en su línea germinal (óvulos o espermatozoides) la podrá transmitir a su descendencia, generándose así, en la siguiente generación, ratones con todas sus células modificadas. (Figura 2B).

Esta tecnología se utiliza frecuentemente para producir mutantes nulos, también llamados «knockouts» (KO), es decir, ratones que presentan un gen anulado y que no producen una determinada proteína. El objetivo de esta estrategia es identificar la función de un gen, observando el efecto que se obtiene cuando se elimina. Nuestro grupo de investigación ha venido participando activamente en la generación y caracterización de ratones knockout para genes implicados en el control del ciclo celular (genes E2f1 y E2f2). Los resultados de estas investigaciones han permitido demostrar que los genes E2f desempeñan un papel esencial en la homeostasis del animal, al prevenir el desarrollo tumoral (E2f1), la autoinmunidad (E2f2) o la degeneración glandular (E2f1 y E2f2).
Actualmente, no existe una cifra exacta del número de ratones modificados genéticamente que se han generado hasta la fecha, aunque a buen seguro se trata de varios miles. La mayoría de ellos están siendo empleados como modelos de estudio para un mejor conocimiento de la fisiología y patología humanas y para analizar el efecto molecular de alteraciones que han sido descritas como responsables de numerosas enfermedades humanas
Edición de genes mediante CRISPR
En el año 2012, las investigadoras Jennifer Doudna y Emmanuelle Charpentier comunicaron el desarrollo de una poderosa y nueva metodología, llamada edición génica (o genómica), basada en conocimientos básicos previos, aportados fundamentalmente por el investigador español Francisco Martínez Mojica, sobre un sistema de defensa que poseen la mayoría de las bacterias y de las arqueas denominado CRISPR (del inglés, clustered, regularly interspersed palindromic repeats).
La metodología CRISPR, que permite modificar genes de manera más precisa y rápida que la mayoría de los métodos anteriores, incluye el uso de varias moléculas que deben ser administradas a las células que se quieren editar, así como la intervención de los sistemas de reparación que existen en las propias células.
El proceso consiste básicamente en utilizar una proteína que corta el DNA, denominada Cas9, y un RNA guía, complementario a la región del genoma que se quiere modificar (Figura 3). Con estos elementos, se consigue cortar el genoma de las células en los lugares deseados. La reparación de la rotura por parte de las propias células genera con frecuencia deleciones o inserciones de 1-2 nucleótidos que conducen a la inactivación del gen en el que se ha producido esa rotura. Por otra parte, si junto con la enzima Cas9 y el RNA guía se aportan moléculas de DNA con secuencias diseñadas específicamente para un objetivo determinado (por ejemplo, la introducción de una mutación puntual), se puede conseguir la sustitución de la secuencia original por la secuencia diseñada.

La técnica CRISPR está suponiendo una verdadera revolución: en el año 2018, solo seis años después de la primera publicación, ya eran más de 17.000 los artículos publicados. Los motivos de esta rápida expansión en el uso de esta tecnología tienen que ver con que constituye un método directo, rápido y tremendamente eficiente para generar animales transgénicos: se trata de una técnica mucho más precisa que todas las utilizadas hasta ahora (aunque no lo es al 100%), más eficaz (un porcentaje elevado de las células tratadas pueden ser editadas), más rápida y más barata. Todo ello ha contribuido a “democratizar” su uso y a que una gran proporción de los laboratorios que trabajan en Biología Molecular la utilicen para sus investigaciones, tanto a nivel celular como para la generación de animales modelo, entre otras aplicaciones. Nuestro equipo de investigación también se ha sumado al uso de esta tecnología, habiendo generado ya varias líneas celulares que portan mutaciones específicas en los genes E2F para su empleo en estudios del ciclo celular y cáncer.
Además, la técnica CRISPR tienen ventajas adicionales, por ejemplo, permite modificar varios genes simultáneamente. El investigador Rudolph Jaenisch fue el primero en mostrar el poder de CRISPR para generar knockouts de ratón. En un artículo de 2013 su equipo publicaba la generación de un ratón al que le habían anulado cinco genes simultáneamente, mediante el empleo de esta técnica. Y lo que es aún más importante, demostraron que podían hacerlo sin necesidad de utilizar las células ES, eliminando directa y simultáneamente los cinco genes en zigotos unicelulares o en óvulos fertilizados de ratón. Se estima que diseñar un ratón mediante CRISPR es un 30% más barato que con células ES, lo que hace que su costo promedio actual sea de alrededor de 10.000€.
A pesar de su enorme utilidad, la técnica de CRISPR no está exenta de potenciales problemas, que incluyen la modificación accidental de regiones no específicas del genoma o la aparición de reacciones inmunológicas. Actualmente se está trabajando de forma muy activa para solventar estos inconvenientes, a fin de que la técnica CRISPR sea más precisa, segura y barata para la generación de animales transgénicos y para otras aplicaciones experimentales, pero sobre todo, para que su aplicación a los seres humanos pueda realizarse con las mayores garantías posibles. El siguiente artículo de esta serie trata, justamente, sobre la utilización de la tecnología del rDNA y de CRISPR en humanos.
¿Plantea problemas éticos la transgénesis?
La transgénesis en animales, y especialmente en mamíferos, tiene importantes implicaciones éticas relacionadas fundamentalmente con el bienestar de los animales transgénicos que se generan. Esta cuestión es especialmente importante cuando se busca conseguir un animal modelo para una patología humana que conlleva severos problemas de salud también para el animal. Por ejemplo, investigadores de la Academia China de Ciencias en Shanghai han obtenido recientemente 5 macacos transgénicos a partir de un ejemplar editado mediante CRISPR, para portar una versión alterada de un gen implicado en la regulación del ciclo circadiano (los ritmos biológicos asociados a los cambios de luz y de temperatura). En humanos, los trastornos del ciclo circadiano se asocian a alteraciones del sueño, depresión, diabetes mellitus, cáncer y enfermedades neurodegenerativas como Alzheimer. Los macacos obtenidos tras la modificación y posterior clonación, presentan alteraciones del sueño, ansiedad, depresión y conductas similares a la esquizofrenia. Como modelo para el estudio de este trastorno, estos monos pueden resultar muy útiles, pero es evidente que su bienestar se encuentra comprometido.
Parece claro que, a medida que la tecnología avance, las posibilidades para generar nuevas aplicaciones que afecten al bienestar de los animales también van a aumentar, así que urge adoptar medidas consensuadas por la sociedad, que permitan la toma de decisiones éticas sobre qué aplicaciones son asumibles y cuáles no.
Sobre los autores: Ana I. Aguirre, José Antonio Rodríguez y Ana M. Zubiaga son profesores del departamento de Genética, Antropología Física y Fisiología Animal de la Facultad de Ciencia y Tecnología, e investigadores del grupo de investigación consolidado del Gobierno Vasco Biología Molecular del Cáncer.
El artículo 50 años modificando genes (en animales) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- 50 años modificando genes (en bacterias)
- 50 años de secretos: la era de la criptografía moderna
- Animales eurihalinos
Konposatu fenolikoak eta osasuna

Irudia: Landare jatorriko elikagaietan (barazki, ortuari, fruta, fruitu lehor, ardo…) topa daitezke nagusiki konposatu fenolikoak.
Konposatu fenolikoak gure gorputzean sartzen direnetik (elikagaien bidez hartzen ditugunetik), hestean xurgatuak diren arte (digestio ondoren) hainbat eraldaketa jasaten dituzte. Horren ondorioz, odolera eta ehunetara iristen den konposatu fenoliko kantitatea oso txikia izan ohi da; horregatik, konposatu hauek bioerabilgarritasun txikia dutela esaten da. Hala ere, kontuan izan behar da digestioan zehar polifenolen metabolitoak sortzen direla (glukuronatuak eta sulfuratuak nagusiki), eta metabolito hauek ere efektu onuragarriak sortzen dituztela. Gure gorputzak xurgatzen ez dituen polifenol eta metabolitoak berriz, gernu eta gorotz bidez kanporatzen dira.
Polifenolek oxidazioaren aurka jarduteko ahalmena erakutsi dute, eta ondorioz, asko ikertu da efektu honek gure osasunean izan ditzakeen aplikazioen inguruan. Zenbait ikerketek proposatu dute estres oxidatiboarekin erlazioa duten gaixotasunen prebentzioan, edota garapena ekiditen, erabilgarriak izan daitezkeela. Besteak beste ikusi da gaixotasun kardiobaskularretan lagungarriak direla, efektu basozabaltzailea dutelako (oxido nitrosoaren ekoizpena sustatuz) eta baita profil lipidikoa hobetzen dutelako ere (HDL kolesterola igo eta LDL kolesterola jaitsi). Ondorioz, aterioesklerosiaren garapena ekiditen lagundu dezakete. Zenbait minbiziren kasuan (urdailekoa, heste gorrikoa, birikakoa, ahokoa, faringekoa, endometriokoa, pankreakoa eta kolonekoa), konposatu fenolikoetan aberatsak diren elikagaietan (barazkiak eta frutak batez ere) oinarritutako dietak, minbizi hauen agerpen baxuagoarekin erlazionatu dira.
Bestalde, lehen aipatutako oxidazioaren aurkako jarduera dela eta, konposatu fenolikoak neuroendekapenezko zenbait gaixotasunen (Alzheimerra, zahartzaroko dementzia eta Parkinsona) aurkako babes-faktore bezala proposatu dira. Obesitatearen tratamendu eta prebentziorako ere konposatu fenolikoak erabilgarriak izan daitezkeela iradokitzen dute laborategiko modelu esperimentaletan (zelulak eta karraskariak) lortu diren emaitzek. Gainera, obesitatean eragiteaz gain, honekin erlazioa duten osasun asaldaduretan (intsulinarekiko erresistentzia eta diabetesa) ere efektu desiragarriak sortzen dituztela ikusi da.
Ikusten denez, osasunerako onuragarriak diren hainbat funtzio bideratzeko ahalmena egotzi zaie konposatu fenolikoei. Hala ere, nahiz eta lortutako emaitzak oso interesgarriak diren, azpimarratu behar da gaurdaino lortu den informazio gehiena zelula eta animaliekin egindako ikerketetatik lortu dela. Beraz, ikusteke dago oraindik ea konposatu hauek animalietan sortzen dituzten efektuak gizakietan ere ematen diren. Horretaz gain, konposatu hauek osasunean dituzten efektu onuragarriak bideratzen dituzten mekanismoetako asko oraindik ez dira guztiz ezagutzen. Hori dela eta, gaur egun dakiguna kontuan izanda, gomendagarriena konposatu hauetan aberatsak diren orotariko elikagaiak dituen dieta bat jarraitzea da. Izan ere, modu honetan, konposatu hauek banaka dituzten efektu onuragarriez gain, efektu sinergikoak (banakako efektuen gehiketa baino handiagoak) ere sor litezke, osasunean onura handiagoak eraginez.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: Ekaia 33
- Artikuluaren izena: Konposatu fenolikoak eta osasuna.
- Laburpena: Konposatu fenolikoak, egitura kimikoaren arabera sailkatu daitezkeen zenbait sustantziaz osatutako talde zabal bat dira. Landareek ekoizten dituzte bigarren mailako metabolito gisa, erantzun modura erradiazio ultramorea, patogenoak, kalte oxidatiboa eta ingurumen baldintza zailak bezalako erasoei aurre egiteko. Hori dela eta, modu naturalean daude landare jatorriko elikagaietan, hala nola frutetan, barazkietan, fruitu lehorretan, olioetan, tean eta ardoan. Konposatu fenoliko gehienak ester, glukosido edo polimero gisa aurkitzen dira elikagaietan, eta ondorioz hestean hidrolizatu behar dira xurgatuak izan baino lehen. Gibelean eta heste meharrean konposatu fenolikoak metabolizatzen dira II faseko entzimen eraginez. Gibelean eratzen diren metabolitoen zati bat, heste meharrera jariatuko da behazun bideetatik, eta bertan berriro xurgatuak izateko dekonjugatu egingo dira, edota kolonerako bidea jarraituko dute. Behin heste lodian, hesteko mikrobiotak konposatu fenolikoak metabolizatuko ditu. Prozesu hauen ondorioz, konposatu fenolikoen bioerabilgarritasuna txikia da. Konposatu fenolikoen eta beren metabolitoen iraizpena, gernu bidez gertatzen da nagusiki. Antioxidazio-ahalmen handia duten konposatu bioaktiboak dira. Azken urteetan, eragiten dituzten antioxidazio efektuengatik, eta beste mekanismo batzuengatik, hainbat gaixotasunen garapenaren aurkako efektu onuragarriak egotzi zaizkie: minbizia, gaixotasun kardiobaskularrak eta neuroendekapenezko gaixotasunak.
- Egileak: Iñaki Milton-Laskibar, Alfredo Fernández-Quintela, María Puy Portillo
- Argitaletxea: UPV/EHUko argitalpen zerbitzua.
- ISSN: 0214-9001
- Orrialdeak: 55-66
- DOI: 10.1387/ekaia.17818
————————————————–
Egileez:
Iñaki Milton-Laskibar, Alfredo Fernández-Quintela, María Puy Portillo UPV/EHUko Farmazia Fakultateko Farmazia eta Elikagaien Zientziak sailean dabiltza.
————————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Konposatu fenolikoak eta osasuna appeared first on Zientzia Kaiera.
El mural de la cantera: arquitectura, ciencia y arte contra el calentamiento global

El sonido de la porcelana es más agudo que el del yeso. La porcelana también es más fría. A simple vista el yeso, tratado con la debida pulcritud, puede confundirse con porcelana. El tacto revela que la porcelana es cristalina y que el yeso es amorfo. La porcelana rompe en fragmentos dentados, el yeso se desmenuza. Si uno de estos materiales se encuentra en la ficha técnica de una escultura, inmediatamente recreamos su sonido y su temperatura.
Las propiedades físicas de los materiales se emplean en el arte como cualidades estéticas. Es un discurso plástico que a menudo resulta difícil de expresar de otra manera. En gran medida es un uso sinestético de los materiales en el que la percepción de unos sentidos es resuelta por otros: la temperatura de un color, el tacto de un sonido.
En ocasiones, las cualidades estéticas de los materiales de las que se sirven los artistas revelan unas propiedades físicas que resultan útiles. Así, un material cálido efectivamente interacciona con la radiación de forma diferente que un material frío. Este conocimiento es muy valioso para la arquitectura, por ejemplo. Y si hablamos de materiales y temperatura, esto también resulta de gran utilidad científica para un tema de importancia capital: el calentamiento global.
Si mezclamos todos los conocimientos sobre materiales que nos brinda el arte, la arquitectura, el diseño, la química, podemos enfrentarnos a ciertos problemas medioambientales y estéticos de hoy en día. Una suerte de Bauhaus que desdibuja las fronteras entre conocimientos que nunca debieron parcelarse.

La obra Mural da canteira, del artista gallego Leopoldo Nóvoa, tapiza uno de los muros del Parque de Santa Margarita de A Coruña desde 1989. Se trata de un mural de 700 m2 construido con materiales de obra desechados. Puede recordar a una casa deconstruida, como una suerte de ruina moderna aplastada contra un muro. También puede enmarcarse en el arte povera por el uso de materiales pobres y recuperados.
En esta obra se entremezclan materiales blancos —cerámica refractaria y cuarzo—, grises —cemento y vigas de hormigón—, cenizas —antracita, pizarra y carbón de coque— y ocres —ladrillo calcinado, tuberías cerámicas—. El mural está completamente expuesto hacia el Este en una de las vías principales de A Coruña, lo que permite que la luz solar incida sobre estos materiales desde el amanecer hasta el mediodía. Uno de los códigos que emplea el artista es precisamente ese, el aspecto cambiante del mural según cómo incide la luz.
El mural originalmente iba a ocupar más del doble de lo que finalmente ha ocupado. Diferentes avatares políticos impidieron la total ejecución de la obra. Para más inri, la construcción de una pasarela de entrada al parque, además de ensombrecer parte del mural a ciertas horas del día y por tanto alterar dramáticamente la incidencia de la luz, también supuso la destrucción de parte del mural. En 2015, tres años después del fallecimiento del artista, el arquitecto Pablo Gallego se encargó de la restauración del mural y la parcial recuperación de las zonas destruidas.
Los materiales del Mural da canteira juegan con el relieve original del muro. Crean el espejismo de oquedades y depresiones semiesféricas, como las del centro del mural. De todos modos, el muro no fue tratado por Nóvoa como si fuese un lienzo maltrecho, sino que lo atravesó con vigas para enfatizar la tridimensionalidad de la obra. Podemos interpretar que esas vigas perforan y se adentran en la materia o, por el contrario, interpretar que brotan de ella.

También hay partes del muro que dejan al descubierto la cantera original. De esta forma, Nóvoa evidencia la permeabilidad entre la superficie y el fondo, otorgando protagonismo localizado a la propia naturaleza, en bruto, con sus texturas y rugosidades propias. Para Nóvoa el concepto rugosidad, propio del tacto, es tratado como un concepto visual y sonoro.
Para el escritor Paco Yáñez, la Avenida de Arteixo desde la que se puede contemplar el mural, «conforma una holgada butaca urbana en la que el pintor pasó horas y horas observando el crecimiento de su mural, percibiendo la incidencia de la luz, los juegos de sombras sobre los volúmenes y la textura de los materiales para conocer las calidades de su rugosidad».
La rugosidad del mural de Nóvoa se va revelando según cómo la luz incide sobre él. El conocimiento de los materiales que lo componen nos da una idea de su temperatura. Algo que podemos percibir gracias al sentido de la vista, a través de la lente de la radiación visible, también podemos observarla a través de la lente de la radiación térmica.
De igual manera que una cámara óptica puede captar los distintos colores de esta obra de arte, una cámara térmica puede captar el calor (la radiación infrarroja) que emiten los distintos materiales empleados debido a la irradiación de la luz sobre ellos, presentándonos un patrón térmico de temperaturas diferentes.
Bajo la misma iluminación estos materiales se van a calentar en mayor o menor medida y van a alcanzar distintas temperaturas en función de su naturaleza. Por ejemplo, los materiales con colores más claros como el cuarzo o la cerámica blanca absorberán menos luz y, por tanto, se calentarán menos que los materiales más oscuros como la pizarra o la antracita. Además, la superficie pulida del cuarzo permite reflejar mayor cantidad de luz, calentándose aún menos que la cerámica blanca. Por otro lado, también es importante tener en cuenta factores como el calor específico (cantidad de energía necesaria para incrementar la temperatura del material) y la conductividad térmica (capacidad de conducir o transferir el calor). De este modo, cuanto mayor sea el calor específico de un material y menor sea su conductividad térmica, este mantendrá su calor y temperatura durante mayor tiempo. Mientras que un material con bajo calor específico y alta conductividad térmica, en seguida transferirá el calor al aire que lo rodea, bajando más rápidamente su temperatura.

Estos patrones térmicos no solo nos revelan una dimensión oculta de la obra de Nóvoa que nos permite apreciarla desde un nuevo espectro de luz; sino que también nos recuerda que podemos controlar el calor y la temperatura de las edificaciones mediante una selección eficiente de sus materiales de construcción, lo que nos brinda herramientas arquitectónicas para combatir el calentamiento global.
En los últimos años, prestigiosos centros de investigación, como Berkeley Lab (California), han demostrado que la selección de materiales de construcción “blancos” resulta muy eficaz para contrarrestar el calentamiento. Estos materiales, como si de un espejo se tratase, maximizan la reflexión de la luz solar, minimizando la absorción de calor y redirigiendo dicha radiación de vuelta al espacio exterior. Aunque puede parecer una idea vaga, la eficiencia de este método de construcción sostenible ya ha sido demostrada en vehículos de transporte, tejados y fachadas de edificios, así como en pavimentos de carretera. Por ejemplo, el uso de pavimentos “blancos”, también denominados “fríos”, disminuye la absorción de luz solar de un 95 % a un 50 %, mostrando diferencias de temperatura de hasta 17 oC con respecto a los pavimentos tradicionales.

En Montevideo, Uruguay, hay otra obra de Leopoldo Nóvoa, Mural del Cerro, en la que el artista ya investigaba sobre el mismo campo de problemas que en la de A Coruña. Sobre esa obra dijo algo que bien podría aplicarse al Mural da canteira: «Desde los albores del día hasta la puesta del sol, el muro va cambiando abruptamente de apariencia, la luz le arranca nuevos destellos, las sombras no dejan de crear movimientos…».
El Mural da canteira de Nóvoa, intelectualmente nunca ha sido un muro. Coincidiendo con su construcción en A Coruña en 1989 con el derribo del muro más emblemático de nuestro tiempo: el muro de Berlín; el mural de Nóvoa establece puentes entre la arquitectura y el arte. La ruina de unos se emplea como materia prima de otros.
Las apreciaciones estéticas de los materiales, como su sonido o su temperatura, fueron recogidas inicialmente por esa pulsión funcional de la escuela de arquitectura de la Bauhaus. Y estas fueron traducidas a propiedades físicas a través de la ciencia de materiales. Hoy en día sabemos, sabemos porque hemos medido, que en esas propiedades estéticas y funcionales de los materiales de construcción, reside uno de los frentes desde los que lidiar con el calentamiento global.
La reflexión de nuestros días sobre el Mural da canteira, revisitado bajo una luz para la que no fue concebido, nos recuerda que las fricciones entre las fronteras del saber revelan excelsas formas de conocimiento.
Sobre los autores: Déborah García Bello es química y divulgadora científica y Juan Manuel Bermúdez García (@thermogramer) es investigador postdoctoral en la Universidad de A Coruña y en la Universidad de Cambridge (UK).
Nota de los autores: Agradecemos a Enric Stern-Taulats de la Universidad de Cambridge y a Lorena Alonso Marañón de la Queen Mary University of London la ayuda que nos han brindado para escribir este artículo.
El artículo El mural de la cantera: arquitectura, ciencia y arte contra el calentamiento global se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El calentamiento global y el aceite de oliva
- La ciencia contra lo obvio
- Arte & Ciencia: Analogías entre el arte y la ciencia como formas de conocimiento
Buscando las soluciones del cubo de Anda
Algunas de las actividades que suelen definir mi periodo de vacaciones estivales, aunque realmente formen parte de mi vida durante todo el año, son la lectura de novelas, la visita a exposiciones de arte y disfrutar de la resolución de algunos juegos de ingenio, acompañado todo ello de largos paseos.
Este mes de agosto he empezado a tope con la lectura de novelas, una de las pasiones que comparto con el matemático inglés Arthur Cayley (1821-1895), uno de los matemáticos a los que admiro y cuya biografía tuve el placer de escribir hace un par de años, Cayley, el origen del álgebra moderna (RBA, 2017). He terminado la novela que tenía entre manos, Los lobos de Praga, de Benjamin Black (Alfaguara, 2019), he disfrutado de las últimas aventuras del particular detective Touré, No digas nada (Erein, 2019), de Jon Arretxe, he devorado una de las sorpresas que me ha deparado el verano, Rialto 11 (Libros del Asteroide, 2019), de Belén Rubiano, que me recomendó Javier Cámara, de la Librería Cámara en Bilbao, y ahora estoy con uno de los muchos libros que tengo pendientes, La playa de los ahogados (Siruela, 2009), de Domingo Villar.
Con las exposiciones voy un poco retrasado este año. He visitado de nuevo la maravillosa exposición LANTEGI, José Ramón Anda en la sala Kubo Kutxa de Donostia-San Sebastián, así como dos de las exposiciones del Museo Guggenheim (Bilbao), la impactante exposición Lucio Fontana. En el umbral y la interesante videoinstalación Este espectáculo innombrable – This nameless spectacle (2011), de Jesper Just. Espero que mis siguientes visitas sean la exposición Calder Stories, en el Centro Botín (Santander) y el Museo Wurth en La Rioja.

Respecto a los juegos, siempre tengo alguno a mano, que mis amigos Iñaki y Zuriñe, de la Juguetería Pinocchio (Bilbao), me recomiendan. Y este año no ha sido una excepción. Sin embargo, con motivo de la anterior entrada que había escrito para el Cuaderno de Cultura Científica, titulada La geometría poética del cubo (2), la segunda parte de la serie sobre la investigación artística de la figura geométrica del cubo realizada por el escultor navarro José Ramón Anda, yo había realizado un par de reproducciones, con las piezas del material LiveCube, de su escultura Zazpiak bat [Las siete, una] (1976). Como ya expliqué en dicha entrada, la obra Zazpiak bat está formada por una descomposición del cubo en siete policubos, por lo que podemos considerar que esta escultura propone además al espectador un “juego geométrico”.
Las siete piezas, policubos, que componen la escultura de José Ramón Anda, Zazpiak bat [Las siete, una] (1976), realizadas con las piezas del material Live CubeEl juego geométrico básico del “cubo de Anda”, Zazpiak bat, consiste en rehacer el cubo 3 x 3 x 3, a partir de las siete piezas que lo componen. Aunque el “juego” artístico y geométrico va más allá, ya que se trata de utilizar las siete piezas para realizar diferentes formas a partir de las mismas, al igual que en la obra Descomposición del cubo (1973), que analizamos en la entrada La geometría poética del cubo, aunque ahora con más posibilidades, fruto del mayor número de piezas de la obra.
Desde el momento que realicé la reproducción de Zazpiak bat, me entretenía deshaciendo el cubo y volviéndolo a montar. Era tanto un momento de relax, mientras estaba liado con algún tema del trabajo, como una pequeña diversión mientras estaba tranquilamente en casa. La cuestión es que, con el inicio de las vacaciones estivales, empecé a dedicarle tiempo a buscar diferentes soluciones al cubo de Anda. Y entonces decidí realizar una búsqueda un poco más sistemática y ordenada de las diferentes maneras de colocar las siete piezas para formar el cubo.

Por lo tanto, el reto planteado era buscar cuántas soluciones distintas existían al cubo de Anda, Zazpiak bat, es decir, de cuántas formas distintas (salvo rotaciones del cubo, esto es, si una solución es una rotación de otra, entonces son la misma solución, o dicho de otra forma, si tenemos una solución y la rotamos, sigue siendo la misma solución) se pueden colocar las siete piezas para conformar el cubo 3 x 3 x 3.
Problema: ¿Cuántas soluciones distintas existen del cubo de Anda, Zazpiak bat?
Después de un pequeño análisis de las diferentes posibilidades, que explicaremos más adelante, obtuve la siguiente solución.
Solución del problema: Existen más de cien soluciones distintas, de hecho, 131, del cubo de Anda.
Aunque, quizás debería ser un poco más cauto y decir que “existen, al menos, 131 soluciones distintas del cubo de Anda”, ya que quizás se me haya pasado alguna en mi análisis.
Para obtener las distintas soluciones del cubo de Anda, procedí de forma similar a como lo habían hecho los matemáticos ingleses John H. Conway y Richard K. Guy para resolver el cubo soma, como expliqué en la entrada El cubo soma: diseño, arte y matemáticas.
Vayamos por partes. Primero, las piezas que componen Zazpiak bat. Como ya hemos mencionado son siete policubos (esto es, figuras geométricas tridimensionales que se forman al unir dos o más cubos por alguna de sus caras), formadas por 1, 2, 4, 4, 5, 5 y 6 cubos pequeños, pero todas ellas piezas distintas entre sí, como puede verse en la imagen de arriba. Para realizar el análisis, nombré cada pieza con una letra: 1) a la pieza blanca en la imagen anterior, con 6 cubos pequeños, la llamé P, ya que era como una U con una punta; 2) a la pieza azul, con 5 cubos pequeños, la llamé, por motivos obvios, U; 3) a la pieza amarilla, con 5 cubos pequeños, la llamé R, ya que estaba retorcida; 4) a la pieza roja, con 4 cubos, la llamé E, ya que era como una esquina; 5) a la pieza verde, con 4 cubos, la llamé L; 6) a la pieza bicolor, rojo y azul, de dos cubitos, la llamé D, por el número dos; 7) y llamé I, la unidad, a la pieza con un único cubo pequeño, negra en la imagen.
Después clasifiqué, como se había hecho con el cubo soma, los diferentes tipos de cubos pequeños dentro del cubo 3 x 3 x 3, que era el objeto que había que formar con las siete piezas, en función de su posición en el mismo. El cubo grande 3 x 3 x 3 tiene 27 cubos pequeños, de los cuales 8 son cubos vértice (para los que hemos utilizado cubos rojos en la siguiente imagen), 12 cubos lado (verdes en la imagen), 6 cubos cara (en blanco) y un cubo central (que no se ve en la imagen, ya que está en el interior).

A raíz de esta clasificación de las posiciones de los cubos pequeños, nos podemos plantear la siguiente cuestión, que nos ayudará en la futura búsqueda de las soluciones, que es: ¿cuántos vértices puede ocupar cada una de las siete piezas? La respuesta está en el siguiente cuadro.

Por lo tanto, a la hora de buscar las soluciones del cubo de Anda nos podíamos apoyar en la anterior información, ya que hay que buscar las diferentes combinaciones de las piezas que sumen 8 vértices. Por ejemplo, utilizando las cuatro piezas P, U, R y L, cada una tocando dos vértices, ya tenemos los 8 vértices del cubo. De hecho, la solución mostrada más arriba es una solución de este tipo, con las cuatro piezas P, U, R y L ocupando los 8 vértices.
La siguiente información relevante en la búsqueda de las soluciones de este puzle geométrico fue la siguiente. Si tomamos el cubo 3 x 3 x 3 y lo coloreamos, en blanco y negro, de forma ajedrezada, como se muestra en la siguiente imagen, habrá 14 cubos pequeños blancos (los 8 cubos vértice y los 6 cubos cara) y 13 cubos pequeños negros (los 12 cubos lado y el cubo central).

Entonces, nos podemos plantear cuántos cubos blancos y negros, de la anterior coloración del cubo grande, puede tener cada una de las siete piezas, una vez que las hemos montado para formar el cubo grande 3 x 3 x 3. La respuesta está en el siguiente cuadro.

Como vemos, el número máximo de cubos pequeños blancos que se puede ocupar con las siete piezas es 16 (= 3 + 3 + 3 + 2 + 3 + 1 + 1), por lo que, teniendo en cuenta que el cubo grande tiene 14 cubos blancos, solamente se pueden ahorrar 2 cubos blancos entre las siete piezas. Por ejemplo, si la pieza E está colocada en una posición, en el cubo grande, tal que contiene 1 cubo blanco y 3 negros, en la bicoloración ajedrezada, lo cual ocurriría por ejemplo si estuviese colocada en una esquina, entonces todas las demás piezas deberán tener su máximo de cubos blancos, para poder sumar 14.
Ya tenemos toda la información necesaria para abordar el análisis de las soluciones del cubo de José Ramón Anda. Para realizar una búsqueda ordenada de las soluciones podemos ir analizando las diferentes formas de ocupar los 8 vértices con las siete piezas: 1) P + U + R + L; 2) P + U + R + E + D; 3) P + U + R + E + I; 4) P + U + R + D + I; etcétera, y ver cuántas soluciones hay en cada una de estas categorías.
Aunque esto fue lo que hice en un principio, luego reduje el número de categorías considerando otro punto de vista. Estas son las categorías que he considerado para mi análisis:
A) P + U + R + L = 8 vértices;
B) la pieza L no tiene ninguno de los 8 cubos vértices (así, esta categoría incluye las combinaciones siguientes de las piezas que sí tocarían los 8 vértices: P + U + R + E + D, P + U + R + E + I, P + U + R + D + I, P + U + R + E + D + I, donde en esta última la pieza R solo tocaría un vértice);
C) la pieza R no tiene ninguno de los 8 cubos vértices;
D) la pieza U no tiene ninguno de los 8 cubos vértices;
E) la pieza P no tiene ninguno de los 8 cubos vértices.
F) P + U + R (1 vértice) + L + otra, es decir, la pieza R tiene un solo vértice del cubo, las piezas P, U y L tienen dos vértices, y el último vértice corresponde a una de las piezas E, D o I.
A continuación, expliquemos los resultados de cada categoría.
Categoría A: P + U + R + L = 8 vértices.
Antes de empezar a buscar las soluciones de esta categoría, podemos sacar algunas conclusiones en relación a los cubos pequeños que tocarían las siete piezas en las soluciones de esta categoría, al tener en cuenta las piezas que tocan los vértices, que son blancos. Podemos resumirlo en la siguiente expresión, donde cada sumando nos indica los cubos blancos de cada pieza y con los corchetes indicamos cuando hay dos posibilidades, cuales son estas.
La primera conclusión que sacamos es que en el quinto sumando, relativo a la pieza E, no puede tomar el valor 1, ya que entonces es imposible sumar 14, luego la pieza E no puede tener un cubo blanco y tres negros, en particular, no podrá ser una esquina del cubo.
Otra conclusión es que, para sumar 14, si en el segundo sumando fuese un 3 (es decir, la pieza U tiene tres cubos blancos, luego son los cuernos de la U los que tocan dos esquinas), entonces el séptimo sumando sería un 0 (luego la pieza I sería un cubo negro). Y al revés, si el segundo sumatorio fuese un 2 (la pieza U tendría 2 blancos y las esquinas de la U serían dos vértices del cubo), el séptimo sería un 1 (la pieza I sería blanca).
La importancia de estas dos informaciones está en que nos permiten eliminar algunas de las posibilidades, posiciones de las piezas, que nos aparecen en el análisis de las soluciones de esta categoría.
Pero vayamos con el resumen de los resultados de esta categoría. Las soluciones del cubo de Anda para las cuales las piezas P (blanca), U (azul), R (amarilla) y L (verde), cada una de ellas tiene dos de los vértices del cubo 3 x 3 x 3, son:
18 soluciones, en 16 de las cuales la pieza unidad I ocupa un cubo cara y en 2 de ellas ocupa un cubo lado.
Veamos dos de estas soluciones. La primera con la pieza I en una posición de cubo cara, luego se corresponde con un cubo blanco. En consecuencia, la pieza U con dos cubos blancos, los vértices, y tres cubos negros.
Y la segunda solución con la pieza I en una posición de cubo lado, luego de color negro en la bicoloración ajedrezada en blanco y negro. Y, en consecuencia, la pieza U con tres cubos blancos, dos de ellos los vértices, y dos negros.
Categoría B: la pieza L no tiene ninguno de los 8 cubos vértices.
Como la pieza L no tiene ninguno de los 8 cubos vértices, entonces tiene que estar colocada en alguno de los tres planos del cubo que pasan por el cubo centro.
Por otra parte, como la pieza P tiene que tocar necesariamente dos vértices, la he tomado como referencia para ordenar la colocación de la pieza L en esos seis planos.
En resumen, el número de soluciones del cubo de Anda en esta categoría es
23 soluciones, en 8 de las cuales la pieza unidad I ocupa un cubo cara, en 4 de ellas un cubo lado y en 11 un cubo vértice.
Las soluciones en las que el cubo I ocupa posiciones de caras o lados, se corresponden con el hecho de que las piezas que tocan los vértices son P, U, R, E y D, como en la siguiente (cuya pieza I está en la cara de abajo).
Mientras que las 11 soluciones en las que la pieza I ocupa un vértice, se corresponden con el hecho de que las piezas que tocan los vértices son P, U, R, E e I, como la siguiente.
Sin embargo, no hay soluciones en las que los vértices sean para las piezas P, U, R, D e I, o P, U, R, E, D e I (en esta última, R con un solo vértice).
Y al igual que en la categoría anterior, no existen soluciones en las cuales E sea una esquina, de hecho, 1 cubo blanco y tres negros. Aunque en este caso, si pudiesen dar los números (en la suma total de cubos blancos) en el último de los casos anteriores, es decir, P, U, R, E, D e I (en esta última, R con un solo vértice), siendo 3 + 3 + 3 + 2 + 1 + 1 +1 = 14, la suma de la cantidad de cubos blancos de cada pieza en este caso.
Categoría C: la pieza R no tiene ninguno de los 8 cubos vértices.
Para empezar, si buscamos soluciones del cubo de Anda en las cuales la pieza R no tiene ninguno de los vértices del cubo, entonces en esas soluciones el eje de la pieza R (los tres cubos pequeños colocados en línea de la pieza) solo puede coincidir con uno de los tres ejes del cubo, es decir, un conjunto de tres cubos pequeños colocados uno a continuación del otro, en línea, y cuyo cubo central es el centro del cubo. En tal caso, para las soluciones en las cuales la pieza R esté colocada en uno de los ejes del cubo, la pieza R tendrá 3 cubos negros y 2 cubos blancos.
En conclusión, las posibilidades de suma de los cubos blancos de cada pieza, en esta categoría, se resumen en la misma expresión de antes:
Y, por tanto, las consecuencias son las mismas. En particular, no existen soluciones en las que la pieza E sea una esquina, de hecho, que tenga un cubo blanco y tres negros.
El número de soluciones del cubo Zazpiak bat en esta categoría es
23 soluciones, en 9 de las cuales la pieza unidad I ocupa un cubo cara, en 2 de ellas un cubo lado y en 12 un cubo vértice.
En la imagen siguiente vemos indicadas tres soluciones de esta categoría. La pieza R está en el eje vertical y alrededor tiene las piezas P, U y E. Además, hay tres formas de colocar las piezas L, D e I, obteniendo tres soluciones, dos de ellas con la pieza I en una posición de cara y la otra en un vértice.
Categoría D: la pieza U no tiene ninguno de los 8 cubos vértices.
El hecho de que la pieza U no tenga ninguno de los 8 vértices del cubo, nos dice que necesariamente estará colocada en uno de los tres planos que pasan por el centro.
De nuevo, en el análisis he utilizado la pieza P como auxiliar, para ayudarme en la búsqueda de soluciones. En esta categoría hay
16 soluciones, con 5 caras, 2 lados y 9 vértices.
A continuación, mostramos una de estas soluciones, en las cuales la pieza U (azul) no tiene ningún vértice del cubo y está en uno de los planos que pasan por el centro del mismo. En ella la pieza I está en una posición de cubo lado.
Y una vez más, para ninguna de las posiciones la pieza E es esquina, ni ocupa tres cubos negros y uno blanco.
Categoría E: la pieza P no tiene ninguno de los 8 cubos vértices.
Una vez más, como la pieza P no toca ninguno de los vértices del cubo, entonces la parte principal de la misma, con forma de U, estará en alguno de los tres planos del cubo que pasan por el centro.
Existen
26 soluciones, en esta categoría, en dos de ellas la pieza I está en el centro del cubo, en 9 en un cubo cara, en 1 en un lado y en 14 en un vértice. En ninguna de ellas la pieza E ocupa tres posiciones de cubos negros y uno blanco, luego tampoco es esquina.
La solución de esta categoría que aparece en la siguiente imagen tiene la pieza I (negra) en el centro del cubo.
Categoría F: P + U + R (1 vértice) + L + otra (E, D o I) = 8 vértices.
Esta categoría contiene
25 soluciones, de las cuales, una es una solución en la que la pieza unitaria I está en el centro, dos son soluciones con la pieza I en una cara, 21 tienen a la pieza I en un lado y 1 en el vértice.
En esta categoría nos encontramos las dos únicas soluciones en las cuales la pieza E tiene un cubo en una posición blanca y tres en posiciones negras, aunque no es una esquina. Una de esas dos soluciones es la siguiente.
En resumen, el número de soluciones del cubo de Anda, Zazpiak bat [Las siete, una], es (al menos) 18 + 23 + 23 + 16 + 26 + 25, es decir,
131 soluciones distintas.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Buscando las soluciones del cubo de Anda se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El cubo soma: diseño, arte y matemáticas
- La geometría poética del cubo (2)
- La geometría poética del cubo
Literaturako hainbat pasarte biologo baten begiekin
Literaturan baldin bada animalia ikonikorik, balea da; zehazki, Moby Dick. Zeroia zen Moby Dick, bale horzdun handiena. Euskal kostaldean garrantzia handia izan dute baleek. Baina, pentsa daitekeenaren kontra, ez dira ehizatu haragiagaik, olioagatik baizik. Ugaztunak eta endotermoak dira baleak. Beroa gorde behar dute tenperaturari eusteko eta ura oso medio gogorra da horretarako. Bero galerari aurka egiteko baleek duten modu bakarra olio geruza da. Olio hori ustiatzeko ehizatzen ziren baleak.
Herman Melvilleren “Moby Dick” liburuan irakur daiteke: “Zeroiak bere denboraren zazpiren batean zehar bakarrik hartzen du arnasa edo, bestela esanda, igandean bakarrika hartzen du arnasa”.Hau ez da egia. 90 minutu egon daitezke urpean baleak, arnasa hartzeko azalera igo gabe. Horretaz gain, zeroiak eta baleak urperatzen direnean airea bota egiten dute, hartu baino. Urpera doazenean, beraz, ez dute birikak airez betetzen, husten, baizik.
Aurretik hartutako airearekin mioglobina oxigenoz bete egin dute eta horrekin egiten dute urpealdia. Mioglobina kantitateari esker egin dezakete hau, izan ere, gizakiok kilogramo bakoitzeko 6g. mioglobina baldin badugu, zeroiak 76g. ditu. Horri esker uperatu daiteke 1.500-2.000 metroraino. Non txibia erraldoiak topatu daitezkeen.

(Irudia: A. Twidle. Wellcome Library).
Julio Verneren “Hogei mila legoako bidaia itsaspetik” liburuan topatu daitezkeenak bezala. Eta beti galdera bera sortzen da halako txibia ikustean: jan daiteke? Ba, ez. Oso gogorra delako eta, batez ere, amoniako eduki altua duelako.
Txibia erraldoiek euren barne fluidoetan amonio asko daukate, flotagarritasuna aldatzeko erabiltzen dutena. Ez da duten berezitasun bakarra, baina. Naturaren begirik handiena dute: 25cm baino gehiagoko diametrokoa. Tamaina handiaren arrazoia ez omen da bizi diren sakontasunean argi gutxi dagoela. Zabaldutako hipotesiaren arabera, zeroiek txibiak erasotzean sortzen duten presio uhinek luminiszenteak diren izakietan luminiszentzia aktibatzea eragiten dute eta horrela zeroiaren soslaia ikus daiteke. Bereziki horretarako moldatuta omen dago txibiaren begia.
Itsasotik elurrera…Itsasoaren eremu ilunetik elurrera Jack Londonen “The Call Of The Wild” liburuaren eskutik. Bertan irakur daiteke erresistentzia fisiko aparta duten animaliei buruz: lera txakurrak. Oso animalia bereziak dira: artifizialki aukeratuak dira, neurri batean behintzat, eta horri dagokio erresitentzia fisiko aparta, ziur aski. Oso muskulatura berezia dute, muskulatura nekagaitza, zuntz nekagaitzen dentsitate handia dute hanketan. Nekagaitz esatean, literalki esan nahi da, fisiologikoki ez dira nekatzen: aerobikoa da muskulu hau eta erabiltzen dituen substratuak, batez ere, lipidoak dira.
Gizakiok ere baditugu horrelako zuntzak eta gutako askok, erresistentzia korrikalariak, esaterako, asko dituzte. Muskulu nekaezinak oso ondo odoleztatuak eta oxigenatuak daude. Hain dira eraginkorrak lera txakurren muskulu nekaezinak, ezen nahikoa energia emari badago, lasterketan parte hartzen dutenean egunero 14 ordu jarraian korrika ibil daitezkeela. Gelditzen badira musherrak gelditzen dituztelako da.
Muskuluez gain, bihotza ere oso indartsua dute lera txakurrek. 40/60taupada minutuko dute pausoan, baina korrikan 300 taupada/minutura igotzen da. Konparatzeko, lera txakurrak gizakien tamainakoak balira 220-230 taupada minutuko frekuentzian ibiliko lirateke korrika egitean. Gizakiok 180 taupada/minututik gora atari anaerobikoa gaindituko genuke, energetikoki batere eraginkorra ez dena. Txakurrak, baina, haien metabolismoaren gorenaren erdian daude, tarte zabala dute oraindik ahalegintzeko eta korrika abiadura handitzeko.
Gastatzen duten energia lasterketa egun batean 47.000 kilojuliokoa da, egun normal batean 10.500 kilojuliokoa dela. Artikoan dagoen soldadu batek 30.000 kilojulio gastatzen ditu egun batean eta tourra egiten duen txirrindulariak 33.000 kilojulio. Tourreko txirrindulariak txakurraren tamaina balu, 15.000 kilojulio gastatuko lituzke. Tourrean lasterketan dabilen txirrindulari batek gastatzen duena hiru aldiz gastatzen du txakurrak, hortaz.
Eta zeruraH. D. Thoreau autorearen liburuak zerura begira jarri eta kolibriak eta erreginatxo marradunak jarri ditu arreta puntuan. Oso hegazti txikiak dira kolibriak eta hain txiki izateagatik oso interesgarriak, bereziak. Dagoen kolibririk txikiena erletxoria da, Kuban aurki daitekeena: haren habiak 3 cm baino gutxiago ditu eta bere masa 2 gramo baino gutxiagokoa da. Hegalak 12-90 astintze/segundoko abiaduran astintzen dituzte, 50km/h- ko abiadurara hel daitezke eta atzera egin dezakete hegan, beste hegaztirik ez dago atzera hegan egin dezakeenik.
Lore batetik bestera doaz kolibriak nektarra jateko. Homeotermoen artean metabolismo tasarik handiena dute: gizakiena bider hamar. 1.500 lore bisitatzen dituzte egunero eta hau egiteko ez dute 5 ordu baino gehiago behar. Gauean lozorroan sartzen dira, duten tasa metaboliko handia dela eta energia aurreztu behar dutelako. Duten masaren baliokidea jaten dute masa lehorran, hau da, bere masa azukre puruan. Hartzen duten uraren %80 nektarraren bidez xurgatzen dutenez, arazoa dute ura kanporatzeko, hau izan daiteke planetan duten banaketaren arrazoia, leku beroetan baino ez daude. Toki hotzetan bizi ahal izateko gehiago jan beharko lukete, ur gehiago hartuko lukete eta gehiago kanporatu beharko lukete,
Erreginatxo marradunak, bere aldetik, elikadura ohitura bitxia du. Udazkena heltzen denean, urrian, hegoalderako migrazioa hasi baino lehen askoz gehiago jaten du, normalean baino lau bider gehiago. Fotoperiodoaren arabera, heltzen da eguna noiz hegoalderantz alde egiten duten. Bidaia hiru egunetan egiten dute gelditu gabe eta 3.000km egiten dute.
Hegoalderanzko bidaiari aurre egin ahal izateko oso gauza bitxia egiten dute erreginatxo marradunek: disgestio-aparatua desegiten dute. Digestio aparatua oso garestia da eta energia aurrezteko eta hegaldian erabiltzeko, digestio aparatua atrofiatu egiten dute.
Thoureauk erreginatxo marradunari egiten dion erreferentziari esker, jakin zuen Juan Ignacio Pérez Iglesias biologoak iparralderanzko bidaia egiterakoan erreginatxo marradunak oso ezberdin egiten duela: jan egiten du bidaian zehar. Hala, behean ikus daitekeen hitzaldian dioen bezala:
Batzutan, biologo baten begiekin ikus daitezke bestela ikusi ezin daitekzkeen gauzak, baina beste batzutan idazle baten begiekin biologo batek ere gauzak ikas ditzake.
The post Literaturako hainbat pasarte biologo baten begiekin appeared first on Zientzia Kaiera.
Los espectros de emisión de los gases

Una de las primeras pistas verdaderamente importantes que llevaron a desentrañar la estructura atómica implicaba el estudio de la emisión y absorción de luz por los átomos de diferentes elementos. Los físicos sabían por la teoría de Maxwell que la luz es emitida y absorbida solo por cargas aceleradas. Esto sugería que el átomo podría contener cargas en movimiento. Podía esperarse por tanto que los patrones y las regularidades en las propiedades de la luz emitida proporcionasen indicios sobre la naturaleza precisa de los movimientos de estas cargas. Los resultados de este estudio fueron tan importantes para desentrañar la estructura atómica que necesitaremos revisar su desarrollo aquí con cierto detalle [1]. Empezamos con los espectros de emisión.
Se sabía desde hacía mucho tiempo que se emite luz por gases o vapores cuando se excitan en una de las siguientes formas:
(1) calentando el gas a una temperatura alta, como cuando una sustancia volátil se pone en una llama;
(2) por una descarga eléctrica a través del gas en el espacio entre los terminales de un arco eléctrico; o
(3) por una corriente eléctrica continua en un gas a baja presión, como en los letreros de neón.
El físico Thomas Melvill realizó los primeros experimentos sobre la luz emitida por varios gases excitados en 1752 [2]. Puso una sustancia tras otra en una llama, «después de haber colocado un cartón con un agujero circular entre mi ojo y la llama […], examiné la constitución de estas diferentes luces con un prisma ”. Melvill descubrió que el espectro de luz visible de un gas caliente de un solo elemento era diferente del conocido espectro arcoiris de un sólido o líquido calientes. El espectro de Melvill no era un continuo ininterrumpido de colores del violeta al rojo. Por el contrario, consistía en trozos aislados, cada uno con el color de esa parte del espectro continuo en el que se localizaba. Había espacios oscuros o, dicho de otra forma, faltaban colores entre los trozos.
Más tarde, se generalizó el uso de una ranura estrecha a través de la cual se dejaba pasar la luz. Los trozos de color de Melvill se convirtieron en líneas [3]. Estos espectros muestran que la luz emitida por un gas es una mezcla de solo unos pocos colores definidos o, en general, de subconjuntos de longitudes de onda muy restringidos. Estos tipos de espectros se denominan espectros de emisión y su estudio se conoce como espectroscopia.

Melvill también señaló que los colores y las ubicaciones de las líneas [3] eran diferentes cuando se ponían diferentes sustancias en la llama. Por ejemplo, con la sal de mesa común en la llama, el color dominante era «amarillo brillante» (ahora se sabe que es característico del elemento sodio). De hecho, el espectro de emisión es muy diferente para cada gas químicamente disitnto porque cada elemento químico emite su propio conjunto característico de longitudes de onda. [4]

Algunos gases tienen espectros de emisión relativamente simples. Así, la parte más prominente del espectro visible del vapor de sodio es un par de líneas amarillas brillantes. Esta es la razón por la cual, por ejemplo, la llama en una estufa de gas se vuelve amarilla cuando la sopa, o cualquier líquido que contenga sal, cae sobre ella al hervir. Algunos gases o vapores tienen espectros muy complejos. El vapor de hierro, por ejemplo, tiene unas 6000 líneas brillantes solo en el rango visible.
En 1823, el astrónomo John Herschel sugirió que cada gas podría identificarse por su espectro de emisión característico. A principios de la década de 1860, el físico Gustav R. Kirchhoff y el químico Robert W. Bunsen habían descubierto conjuntamente dos elementos nuevos (rubidio y cesio) al observar líneas de emisión no reportadas previamente en el espectro del vapor de un agua mineral. Este fue el primero de una serie de descubrimientos basados en espectros de emisión. Con él comenzó el desarrollo de una técnica para el análisis químico rápido de pequeñas cantidades de materiales mediante espectroscopía.
Notas:
[1] Para ello, a lo largo de entradas sucesivas seá necesario que aparezcan algunas ecuaciones matemáticas. Como siempre en nuestras series serán muy simples y solo utilizarán poco más que las cuatro reglas de la aritmética más elemental. Merecerá la pena el esfuerzo extra.
[2] No, no es una errata. A mediados del siglo XVIII, exactamente el mismo año en el que Benjamin Franklin llevaba a cabo en una colonia británica llamada Pennsylvania un experimento con cometas, llaves y rayos.
[3] Estas líneas brillantes son, de hecho, imágenes a color de la ranura. Cuando se habla de líneas del espectro estamos asumiendo que hay una rajita en alguna cosa opaca por la que se deja pasar la luz. Dicho de otra forma, las líneas espectrales son líneas porque los instrumentos usan ranuras, no porque se emitan como líneas.
[4] Al mirar una fuente gaseosa sin la ayuda de un prisma o una rejilla, nuestro encéfalo combina los colores separados. Percibe la mezcla como rojiza para el neón, azul pálido para el nitrógeno, amarillo para el vapor de sodio (aun el de muchas de las farolas de muchas ciudades españolas), y así sucesivamente.
[5] La «prueba de llama» suele ser hoy día una práctica de laboratorio muy simple en los primeros cursos de introdución a la química.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Los espectros de emisión de los gases se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Computación cognitiva de espectros infrarrojos
- El hidrógeno en el Universo (I): La emisión del hidrógeno neutro a 21 cm.
- Patrón de interferencia en ondas periódicas
Los dragones de Komodo son unos comodones venenosos

Son tan hipnóticos como peligrosos. Bautizados con el nombre de un animal legendario como el dragón, los dragones de Komodo tienen poco que envidiar a sus equivalentes de cuento: son grandes, fuertes y tienen la habilidad de cazar presas mucho más grandes que ellos con un solo mordisco.
Esta semana sabemos un poco más sobre cómo los dragones de cómodo han llegado a ser como son gracias a que se ha publicado por primera vez una secuenciación de su genoma en la revista Nature Ecology & Evolution, algo muy útil si tenemos en cuenta algunas de sus peculiares habilidades y características, como un potente sentido del olfato para ser reptiles o un metabolismo inusualmente rápido que les permite extraer energía de la comida durante un tiempo más prolongado de lo habitual en otros reptiles
Para entender y descodificar ese genoma, los autores del estudio han dedicado 8 años a recopilar datos y secuenciar genomas de cuatro dragones que viven en cuatro zoológicos diferentes y los compararon con otros 15 reptiles de la familia Varanidae, a la que pertenecen los dragones de Komodo, tres aves y cuatro mamíferos.
Para celebrar este hito, que permitirá conocer mejor a estos imponentes animales, así como favorecer su preservación y la de sus hábitats, aquí van algunas cosas que hemos ido aprendiendo sobre ellos.
1. Un veneno que hace que la presa se desangre
Los dragones de Komodo son capaces de matar presas bastante más grandes y fuertes que ellos con un solo mordisco. A menudo aprovechan el factor sorpresa para pegar la dentellada y luego se retiran a una distancia prudencial hasta que el desdichado bicho muere desangrado. Juega a su favor el potente veneno que se encuentra en su saliva.
Durante mucho tiempo se pensó que la presencia de bacterias en su boca causaba una rápida sepsis (infección de la sangre) que era lo que acababa con sus presas, pero ahora parece claro que ese no es el único efecto de su mordida: su saliva contiene también compuestos que impiden la coagulación de la sangre y causan hipertensión, de forma que el animal mordido se desangra rápidamente y muere al poco rato.
2. Pero que a ellos mismos no les afecta
Las peleas entre dragones de Komodo pueden ser temibles, pero este reciente trabado de decodificación de su propio genoma ha ayudado también a entender cómo su cuerpo es inmune al veneno de las mordidas de otros individuos de su misma especie.
En concreto, los investigadores han hallado una serie de genes que codifican proteínas que intervienen en los procesos de hemostasis, el conjunto de mecanismos que tiene un cuerpo para detener las hemorragias y retener la sangre dentro del organismo. El trabajo de los científicos permite entender como la presión evolutiva ha favorecido esos genes en los dragones de Komodo de forma que lo que les sirve para cazar o defenderse de otras especies no les haga matarse entre ellos con tanta facilidad.
3. Un veneno convertido en tratamiento
No es raro que médicos y científicos busquen en los venenos de la naturaleza remedios para los males humanos, y la saliva del dragón de Komodo no es una excepción. Después de todo, los problemas de coagulación son una enfermedad que afecta seriamente a la vida de las personas que la padecen, ¿no podrían las propiedades de esta sustancia intervenir en su tratamiento.
En 2017, científicos de la Universidad de Queensland, en Australia, publicaban en la revista Toxins una investigación en la que analizaban la composición del veneno de varios tipos de lagartos, entre ellos del dragón de Komodo, para tratar de aislar y aprovechar sus compuestos anticoagulantes en el tratamiento de enfermedades relacionadas con la trombosis y otros problemas cardiovasculares.

4. Los dragones de Komodo son bastante comodones
Pido perdón por el terrible juego de palabras, no me he podido resistir. Pero tiene algo de cierto: resulta que los dragones de Komodo podían haberse expandido más allá de sus hábitats actuales, pero por alguna razón simplemente prefirieron no hacerlo. Esa era la principal conclusión de una investigación publicada en la revista Proceedings of the Royan Society B el año pasado.
Para estudiar este asunto, los investigadores desplazaron 7 dragones adultos a cierta distancia de su territorio: algunos a unos 25 kilómetros dentro de la misma isla mientras que otros fueron transportados a islas vecinas a menos de medio kilómetro de distancia. En menos de cuatro meses los lagartos desplazados por tierra habían vuelto a su territorio mientras que los que estaban en otra isla, mucho más cerca y a pesar de ser perfectamente capaces de nadar esa distancia, ni siquiera lo intentaron.
Esta reticencia a moverse tiene sus inconvenientes, pero también sus ventajas. Por un lado, les hace vulnerables a problemas de escasez de alimentos y a terminar debilitándose a causa de la consanguineidad a la hora de reproducirse. Por otro, arriesgarse a explorar islas desconocidas puede suponer un riesgo demasiado alto si en ella no hay alimento suficiente o no consiguen aparearse con ningún otro individuo en esa nueva isla. Por eso quizá volver por tierra a casa puede ser una opción atractiva aunque la distancia sea relativamente grande, pero cruzar las aguas, por breves que sean, no merezca la pena.
Referencias:
Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms – Toxins
Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards – Nature Ecology and Evolution
Exploring mechanisms and origins of reduced dispersal in island Komodo dragons – Proceedings of the Royal Society B
Sangre de Dragón – Cuaderno de Cultura Científica
Sobre la autora: Rocío Pérez Benavente (@galatea128) es periodista
El artículo Los dragones de Komodo son unos comodones venenosos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Sangre de dragón
- El organismo humano es una estufa de unos pocos vatios
- Rediles para ganado de unos 5.000 años de antigüedad en Álava
Dozena erdi ariketa 2019ko udarako (1): Karta-jokoa
Gogoan izan ahalegina bera –bidea bilatzea– badela ariketa. Horrez gain, tontorra (emaitza) lortzen baduzu, poz handiagoa. Ahalegina egin eta emaitza gurekin partekatzera gonbidatzen zaitugu. Ariketaren emaitza –eta jarraitu duzun ebazpidea, nahi baduzu– idatzi iruzkinen atalean (artikuluaren behealdean daukazu) eta irailean emaitza zuzenaren berri emango dizugu.
Hona hemen gure lehen ariketa: Karta-jokoa.———————————————————————————-
Ariketak “Calendrier Mathématique 2019. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki daiteke.
———————————————————————————-
The post Dozena erdi ariketa 2019ko udarako (1): Karta-jokoa appeared first on Zientzia Kaiera.
Sociedades miniatura experimentales

En 2015 Amazon desarrolló un software para contratar a miles de personas para hacer pequeñas tareas para mejorar su web. Más tarde alquiló ese mismo software a otras empresas para que pudiesen hacer lo propio. Desde entonces, más de medio millón de personas han sido contratadas para trabajar en el sistema. Ese software y otros similares han resultado ser muy útiles también para hacer experimentos en campos en los que no había sido posible antes. El laboratorio dirigido por el sociólogo (y también médico) Nicholas Christakis, de la Universidad de Yale, es uno de los que ha recurrido a esos servicios para hacer experimentos sociales a gran escala. Mediante un programa desarrollado en su laboratorio han creado sociedades en miniatura cuyos integrantes son trabajadores del servicio de Amazon. Los investigadores relacionan a unos individuos con otros dentro de esas minisociedades, y manipulan variables tales como la estructura de las interacciones o su naturaleza.
En un primer experimento, a 785 personas distribuidas en 4 minisociedades se les asignaron entre una y seis relaciones sociales, de manera que cada participante tenía un esquema diferente de conexiones. En el experimento pretendían emular las condiciones para la producción de bienes públicos. Para ello, a los participantes se les daba una cantidad de dinero; y podían quedarse con todo o entregar una parte a las personas con las que estaban conectados. En este segundo caso los experimentadores entregaban al receptor una cantidad igual a la donada, de manera que este obtenía el doble. Al ejecutar rondas sucesivas del “juego”, se generaban condiciones que propiciaban reciprocidad. Esto es, cuando alguien no donaba, lo normal es que en la siguiente ronda los otros tampoco le diesen nada a esa persona. Podía ocurrir, por ello, que al cabo de varias rondas todo un grupo llegase a dejar de hacer donaciones, o lo contrario. Cuando a los participantes no se les permitía cambiar sus relaciones, lo normal es que cesase la cooperación. Pero si se les dejaba una cierta capacidad para elegir a sus “amigos”, se acababan configurando grupos formados por colaboradores, marginando a quienes no lo hacían.
En otro experimento con 1.529 personas distribuidas en 90 grupos, estudiaron cómo cambiaba el grado de cooperación en función del grado de fluidez social. Y observaron que la cooperación era mínima en las sociedades con una estructura rígida, porque en ellas no se puede evitar interactuar con individuos egoístas; pero una vez alcanzado un nivel máximo de cooperación, los grados más altos de fluidez tampoco son beneficiosos; al parecer, un cambio demasiado frecuente en las relaciones interpersonales desincentiva la cooperación.
En un tercer experimento con 1.163 individuos distribuidos en 48 sociedades, midieron la medida en qué el beneficio debía exceder al coste de la cooperación para que esta fuese posible. Hallaron que, como norma, la relación coste beneficio debía ser superior al número de relaciones de cada individuo. En otras palabras, cuantos más individuos interactúan mayor ha de ser el beneficio relativo, seguramente porque al aumentar el número de personas implicadas, también aumenta la dificultad de la cooperación. Y por último, comprobaron también que las desigualdades económicas entre los participantes no influían en el grado de cooperación, salvo que tales desigualdades fuesen visibles.
Aunque se trata de experimentos y, por lo tanto, no reflejan con total fidelidad las condiciones de la vida social real, los resultados de estos “juegos” ayudan a entender lo que ocurre en situaciones reales. Hay quien critica estos experimentos porque simplifican mucho el funcionamiento de las sociedades. Es cierto; tan cierto como que los experimentos en ciencias naturales también simplifican mucho los sistemas naturales.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Sociedades miniatura experimentales se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Matemáticas experimentales
- Comprobaciones experimentales de la relatividad general (1)
- Comprobaciones experimentales de la relatividad general (y 2)
Fútbol, periódicos y estadísticas
El fútbol es el deporte alrededor del cual orbitan, además de los miles de fieles seguidores, sectores como la hostelería, el periodismo, la publicidad o la moda. Pero, ¿hay lugar para la ciencia?
Aunque resulte difícil imaginar la relación que pueda existir entre disciplinas científicas como la física, las matemáticas o la antropología y el fútbol, cada vez son más las ocasiones en las que, sorprendentemente, la ciencia puede explicar muchos de los acontecimientos que suceden en un campo de fútbol e incidir en aspectos como la mejora del rendimiento de los jugadores y, en consecuencia, de los resultados.
La relación entre estas dos disciplinas fue el hilo conductor de un ciclo de conferencias organizado por la Cátedra de Cultura Científica con el apoyo de la Diputación Foral de Bizkaia y la colaboración de Fundación Española para la Ciencia y la Tecnología (FECYT) – Ministerio de Ciencia, Innovación y Universidades”, que tuvo lugar en el Bizkaia Aretoa de la UPV/EHU de Bilbao los meses de octubre y noviembre de 2018. Enmarcado en el ciclo de conferencias “Zientziateka”, que contó con cinco conferencias impartidas por especialistas de diversos campos en las que se ilustró la conexión que existe entre diferentes disciplinas científicas y el fútbol.
Kiko Llaneras es doctor en Sistemas de Automática Industrial y consultor de visualización y ciencia de datos y habla en esta interesantísima charla, tomando como eje su experiencia personal en el diario El País escribiendo sobre fútbol y estadística, sobre si es apropiado o no hablar de predicciones y probabilidades sujetas al azar en los periódicos.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Fútbol, periódicos y estadísticas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La trama vasco-rusa que eliminó a España del Mundial 2018
- Fórmulas matemáticas y números: cómo ayuda la economía al fútbol
- Ciencia, arte y cultura callejera: física y música
Ezjakintasunaren kartografia #273
Kanibalismo egintza izan zen gure galaxiaren sorrera. Tomás Ruiz-Larak aurkikuntzan hartu duen ikertzaileetako bat da: The origin of our Galaxy.
Bada kafea egiten duenik. Eta badira kafe-kafea eginten dutenak. Eredu berria dakarte BCAMetik dastatu baino lehen zer zapore duen aurreikusten duena, kafea egiteko moduagatik. Horra matematiken erabilgarritasuna A model for the perfect espresso coffee
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #273 appeared first on Zientzia Kaiera.
50 años modificando genes (en bacterias)
La Facultad de Ciencias de Bilbao comenzó su andadura en el curso 1968/69. 50 años después la Facultad de Ciencia y Tecnología de la UPV/EHU celebra dicho acontecimiento dando a conocer el impacto que la Facultad ha tenido en nuestra sociedad. Publicamos en el Cuaderno de Cultura Científica y en Zientzia Kaiera una serie de artículos que narran algunas de las contribuciones más significativas realizadas a lo largo de estas cinco décadas.
Desde la expansión de la agricultura y la ganadería, que se inició en el neolítico, los humanos hemos intentado modificar la información genética de animales y plantas, en nuestro propio interés. Así lo atestiguan algunos bajorrelieves de 850 años AC, donde se aprecian dioses asirios polinizando artificialmente palmeras datileras. Hasta hace poco menos de 50 años, estas modificaciones solo podían realizarse de forma indirecta, mediante cruzamientos entre organismos de la misma especie, o de especies muy relacionadas, y la selección de aquellos descendientes que presentan los caracteres de interés (por ejemplo, un mayor tamaño, frutos más dulces, animales más dóciles, …), para realizar con ellos nuevos cruces y así, progresivamente, ir modificando la composición genética de las poblaciones, de acuerdo a nuestros intereses.
Sin embargo, en las últimas 5 décadas, se han desarrollado herramientas moleculares que permiten realizar modificaciones genéticas de manera directa. Varios grupos de investigación de la Facultad de Ciencia y Tecnología de la UPV/EHU hemos seguido muy de cerca estos avances y hemos participado activamente en algunas de sus aplicaciones. En este artículo y en los dos que le sucederán, presentamos brevemente algunos de los desarrollos más importantes en este ámbito, destacando sus aplicaciones en el campo biomédico y mencionando algunos de los debates científicos y sociales que su uso propició o que sigue generando hoy día.
El término «ingeniería genética» se acuñó a principios de los años 40 del siglo pasado. Curiosamente, los avances científicos que la hicieron posible no sucedieron hasta unos cuantos años más tarde, primero con el descubrimiento de la estructura del DNA, por Franklin,Watson y Crick en1953, y luego con el descubrimiento de la tecnología del DNA recombinante, por Cohen y Boyer en 1973 (Figura 1). La tecnología del DNA recombinante implica la unión de fragmentos de DNA, procedentes de una misma especie o de especies diferentes, para crear moléculas de DNA “híbridas” que pueden posteriormente introducirse en una célula hospedante.

En los primeros años de la tecnología del DNA recombinante, su uso generó mucha suspicacia y preocupación, por tratarse de una manipulación de la esencia misma de la vida (recordemos que el DNA se consideró la “molécula de la vida”). Se temía que estos genes híbridos llevaran consigo capacidades incontrolables para dañar a los seres humanos. Tal es así que en 1974 los propios científicos se auto-impusieron una moratoria en sus investigaciones hasta que se celebró una reunión internacional (la Conferencia de Asilomar en 1975) para debatir si la experimentación con DNA recombinante planteaba algún peligro plausible para la salud pública. En esta reunión unos 150 científicos discutieron durante días sobre los riesgos potenciales de la nueva tecnología y sobre su regulación, y elaboraron directrices voluntarias para garantizar la seguridad de la tecnología del DNA recombinante (Figura 2). Acordaron, por ejemplo, que fuera una bacteria específica (E. coli cepa K12) la utilizada en experimentos de DNA recombinante. Se trata de una cepa no patógena, genéticamente modificada para que no pueda colonizar el tracto digestivo humano ni sobrevivir fuera del laboratorio y, tras más de 40 años trabajando con ella, podemos decir que estas medidas fueron totalmente efectivas.
Los participantes en la Conferencia de Asilomar también se esforzaron por llevar la ciencia al dominio público. Según los organizadores Paul Berg y Maxine Singer, la conferencia “marcó el comienzo de una era excepcional, tanto para la ciencia como para la discusión pública de las políticas científicas”, y cumplió el importante propósito de poner fin a muchos temores sociales con respecto a los usos responsables de las metodologías del DNA recombinante.

Las pautas establecidas en la conferencia, permitieron realizar experimentos con la tecnología del DNA recombinante de una manera más regulada y con un conocimiento más profundo del proceso, e hicieron posible que, en pocos años, esta tecnología fuera considerada ya madura. En 1980, la Corte Suprema de EEUU dictaminó que los microorganismos genéticamente modificados podían ser patentados. Esto generó un entorno favorable en el ámbito industrial y académico para aprovechar la nueva capacidad científica de reorganizar la información genética creando nuevos tipos de moléculas de DNA en un tubo de ensayo.
Una de las aplicaciones de la ingeniería genética que mayor desarrollo ha experimentado es la transgénesis o creación de organismos transgénicos. La transgénesis consiste en introducir un determinado gen (denominado transgén) en un organismo de otra especie. Dado que el código genético es universal para todos los seres vivos, el organismo transgénico resultante puede expresar el gen ajeno.
La transgénesis puede usarse, por ejemplo, para producir en bacterias proteínas humanas de valor terapéutico. Para ello, el gen humano de interés debe ser insertado primeramente en un vector (típicamente una molécula circular de DNA llamada plásmido) mediante la tecnología de DNA recombinante. El plásmido recombinante que porta el gen humano, se transfiere a las bacterias, las cuales lo copian en cada división celular y lo utilizan para producir la proteína de interés. De este modo es posible obtener en muy poco tiempo un número enorme de copias del gen, y, también una gran cantidad de la proteína expresada por ese gen.
La insulina, una hormona pancreática que regula los niveles de azúcar en la sangre, fue la primera proteína humana producida en bacterias mediante técnicas de ingeniería genética (1978). Hasta ese momento, las personas diabéticas que no producían niveles adecuados de insulina debían ser tratadas con insulina aislada de cerdos. Se calcula que la empresa fabricante Eli Lilly, solo en los EEUU, necesitaba cerca de 56 millones de animales por año para satisfacer la demanda de este producto. Además del coste de producción de la insulina porcina, había otros problemas relacionados con el riesgo de infecciones y con la aparición de reacciones inmunitarias de rechazo. Todo ello promovió el desarrollo de otras formas de obtención de la insulina para uso terapéutico como, por ejemplo, obtenerla a partir de la expresión en bacterias del gen humano de la insulina.

La insulina humana está formada por dos cadenas peptídicas, A y B, unidas entre sí por enlaces químicos llamados puentes disulfuro. Por ello, hubo que generar 2 moléculas de DNA recombinante (una para cada cadena). Cada una se transfirió a cultivos de bacterias independientes, se expresó y purificó cada cadena y, después, ambas se combinaron para formar la molécula de insulina completa, idéntica a la producida por el páncreas humano (Figura 3). Sin necesidad de depender de los animales, los investigadores podían ahora producir insulina recombinante en cantidades ilimitadas, libre de contaminantes y de agentes infecciosos animales. En 1982, la Insulina Humana Biosintética (BHI), desarrollada conjuntamente por Genentech y Eli Lilly se convirtió en el primer producto farmacéutico comercial sintetizado mediante tecnología del DNA recombinante, aprobado por la Administración de Alimentos y Medicamentos de los Estados Unidos (FDA). Actualmente, más del 95% de los usuarios de insulina a nivel mundial utilizan alguna forma de insulina recombinante.
Tras este éxito, rápidamente se aprobaron diversos medicamentos sintetizados en bacterias mediante la tecnología del DNA recombinante, incluidas la hormona de crecimiento humano (en 1985), la vacuna para la hepatitis B (en 1986), el interferón (un medicamento contra el cáncer, en 1986), o la glucocerebrosidasa, (un enzima para tratar la enfermedad de Gaucher, en 1991).
La producción y comercialización de proteínas de interés terapéutico liderada por la industria biotecnológica, no es la única aplicación de la tecnología del DNA recombinante en bacterias. Esta tecnología se utiliza de forma rutinaria en investigación experimental en la mayoría de los laboratorios de biología molecular del mundo, incluidos los de nuestra Facultad. De hecho, nuestros estudiantes de los Grados de Biociencias realizan prácticas experimentales durante su formación universitaria, en las que aprenden a utilizar estas metodologías en diferentes entornos formativos y como ejemplo de sus diversas aplicaciones.
La posibilidad de generar bacterias transgénicas inició una carrera que ha llevado al desarrollo de otros organismos transgénicos, incluyendo muchas especies de animales y plantas. En próximas reseñas trataremos algunas de ellas, como la generación, uso y aplicaciones de los animales mamíferos transgénicos generados para usos científicos y/o biomédicos, y la aplicación de la tecnología del DNA recombinante en terapia humana.
Sobre los autores: Ana I. Aguirre, José Antonio Rodríguez y Ana M. Zubiaga son profesores del departamento de Genética, Antropología Física y Fisiología Animal de la Facultad de Ciencia y Tecnología, e investigadores del grupo de investigación consolidado del Gobierno Vasco Biología Molecular del Cáncer.
El artículo 50 años modificando genes (en bacterias) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- 50 años de secretos: la era de la criptografía moderna
- Bacterias contra bacterias
- La historia de la insulina, 90 años salvando vidas
Ariketa fisikoa hezur-dentsitate mineralaren suspertzaile

Irudia: Ariketa fisikoaren eraginei hobeto erantzuten diete hezurrek gaztaroan zehar.
Ariketa fisikoak bizitza osoan zehar hezur-indarraren hobekuntzan eta hezur-mineralaren metaketa eta mantentzean eragiten du. Hezurrak ariketa fisikoaren eraginei hobeto erantzuten die gaztaroan zehar, helduaroan edota zahartzaroan baino. Karga mekanikoetarako egokitzapena gaztetatik lantzeak bizitzan zehar izango den hezur-geometrian, mikro-arkitekturan eta indarrean eragin onuragarriak ditu. Horregatik, nerabezaroa igaro arte egindako ariketa fisikoak, adinari lotutako desmineralizazio prozesuaren kalteak orekatuz eta hezur-dentsitate mineralaren maila maximoa hobetuz, bizitzan zehar hausturak izateko arriskua murriztu eta osteoporosiaren garapena atzera ditzake.
Hezurra ehun dinamikoa denez gero, jasan behar dituen karga desberdinei aurre egin ahal izateko moldaketak egiteko gaitasuna du. Hala ere, ariketa mota guztiek ez dute modu berean eragiten hezur-osasunean. Intentsitate altuan praktikatutako talkadun ariketa fisikoek eta pisua jasan beharreko ariketa mota desberdinak dira hezur-trabekularen orientazioa eta dentsitatea aldatzen dituztenak. Inpaktu eta erresistentzia progresiboan oinarritutako entrenamenduek, hezurren transdukzio mekanikoen bitartez, osteozito eta osteoklastoak aktibatu eta hezur birxurgapena eta galera murrizten dute. Edonola ere, talkadun ariketa luzaroan eta maiztasun eta atsedenaldiak kontuan izan gabe egitean, transdukzio mekanikoa desentsibilizatu egiten da hezurrean duen eragina etenez.
Kontuan izatekoa da ere, emakumeek ez dituztela normalean ariketa fisiko kementsua modu egoki eta osasuntsuan egiteko nahitaezkoak diren beharrizan energetiko eta nutrizionalak bermatzen. Ondorioz, intentsitate altuko ariketetan jarduten duten emakumeek gorputz-gantzaren gehiegizko galera izateko joera eta, aldi berean, kolesteroletik eratorria den estrogeno hormonaren maila baxua izateko arriskua dute. Estrogenoak kaltzioaren xurgapenean eta hezur eraketa eta birmoldaketan eragina dute. Hori dela eta, emakume kirolariaren triadan deskribatzen den bezala, estrogeno-maila baxuak hezur-dentsitatea murriztu eta hezurraren hauskortasuna handitu egiten ditu.
Giharrak eta hezurrak, seinale mekaniko eta molekularren bidez, modu sinergikoan elkarri eragiten dioten ehunak dira. Bi ehun hauen arteko elkarrekiko loturan suertatzen diren interakzio parakrinoek garrantzi handiko eragina dute euren artean ematen den seinaleztapen gurutzatuan. Estres-egoera bat jasan ondoren, karga mekanikoko ariketek sortutako estimuluekin giharra hipertrofiatu eta hezurraren anabolismoa sustatu egiten da. Aldi berean, giharrek erantzun katabolikoaren modulatzaile bezala eragiten duten hezur hazkuntza-faktore lokalak jariatzen dituzte. Beste aldetik, osteozito, osteoblasto eta hezur periostio ondoko zuntzek, miogenesi-prozesuan eragina duten eta gihar hipertrofiaren menpe dauden hazkuntza faktoreak jariatzen dituzte.
Gaur egun arte, tratamendu farmakologikoek ez dituzte hezur hausturak eta gihar distrofia era berean ekiditen. Ariketa fisikoak eragindako estimuluek, ordea, seinaleztapen gurutzatuari esker, modu sinergikoan eragiten dute bi ehunetan. Horregatik, berebiziko garrantzia dauka gaztetatik inpaktu altuko ariketak modu progresiboan karga-maila ezberdinetara lantzeak. Gihar-masa, -indarra eta –funtzionaltasuna bermatuz eta hezur-mineralaren metaketa eta mantentzea suspertuz.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: Ekaia 33
- Artikuluaren izena: Ariketa fisikoa hezur-dentsitate mineralaren suspertzaile.
- Laburpena: Osteoporosia osasun-publikoan garrantzi nabarmena duen gaixotasuna da. Gero eta gehiago dira gaixotasun hau pairatzen duten pertsonak, eta gaur egun arte egindako esku-hartzeak ez dira guztiz eraginkorrak. Ariketa fisikoa hezur-dentsitatea metatzeko eta mantentzeko prozesuetarako funtsezkoa den bizi-ohitura da. Gainera, hezurraren eta giharraren arteko lotura dela eta, egindako ariketa fisikoak, hezurrean gain, giharrean ere badu eragina. Kontuan hartu beharrekoa da gaztaroan hezur-dentsitate mineralean lortutako maila maximoa erabakigarria dela bizitza osoan zehar izango den hezur-osasunean. Lan honetan, ariketa fisikoaren bitartez hezur mineralaren metaketa nola sustatu eta mantendu azaltzen da; giharraren eta hezurraren arteko seinaleztapen gurutzatuak eta adinak, osteoporosiaren oinarrizko prebentzioan, zer eragin duten kontuan hartuz.
- Egileak: Gotzone Hervás, Fátima Ruiz-Litago, Amaia Caballero, Jon Irazusta, Idoia Zarrazquin.
- Argitaletxea: UPV/EHUko argitalpen zerbitzua.
- ISSN: 0214-9001
- Orrialdeak: 67-80
- DOI: 10.1387/ekaia.17840
————————————————–
Egileez:
Gotzone Hervás, Fátima Ruiz-Litago eta Jon Irazusta UPV/EHUko Medikuntza eta Erizaintza Fakultateko Fisiologia sailean dabiltza, Amaia Caballero, Zientzia eta Teknologia Fakultateko Bioteknologiako graduko ikaslea da eta Idoia Zarrazquin Medikuntza eta Erizaintza Fakultateko Erizaintza I sailean dabil.
————————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Ariketa fisikoa hezur-dentsitate mineralaren suspertzaile appeared first on Zientzia Kaiera.
Los orígenes de la visualización de datos
Hoy en día, vivimos inmersos en gráficas, mapas e infografías de toda índole. En la era de la información, la visualización de datos se percibe como un lenguaje familiar que, además, gracias a las computadoras, resulta muy accesible. Pero no siempre fue ni tan obvio ni tan sencillo, sino que se lo debemos a unos pocos pioneros que, a base de papel y tinta, tuvieron la visión y la destreza de combinar arte y estadística para revolucionar nuestra manera de estudiar los datos.
Como resultado, las gráficas son una parte vital de la comunicación en ciencia y tecnología, además de otros muchos ámbitos como economía, educación y medios de comunicación. No es de extrañar pues que el nacimiento de las gráficas estadísticas coincidiese en el tiempo con esa nueva manera metódica de observar el mundo de los primeros científicos, también llamados filósofos naturales. Y tampoco es casualidad que los primeros gráficos se desarrollasen con el objetivo de analizar datos de tipo histórico y económico.
Hace poco más de 250 años, el filósofo natural y teólogo Joseph Priestley (1733-1804) publicaba en su obra A New Chart of History los primeros cronogramas que se conocen. Aparte de su buena reputación como científico gracias a sus escritos sobre electricidad, sus trabajos con gases (fue capaz de aislar el oxígeno e inventó la soda), Priestley era un gran pedagogo en materias muy diversas como la gramática o la historia, cuyo estudio era para él un imperativo moral. Y fue precisamente para sus clases de historia para las que diseñó un tipo de gráfica donde diferentes barras sobre una línea temporal representaban en contexto y permitían comparar diferentes períodos de tiempo, como vidas de personas o duraciones de imperios. Los cronogramas de Priestley causaron gran sensación, y su obra fue reeditada docenas de veces.

Dos décadas después, inspirado por Priestley, William Playfair (1759-1823), ingeniero y economista político escocés, fue un precursor del uso de gráficos para explorar, entender y comunicar datos al inventar diversos tipos de diagramas. Concretamente en 1786 publicó su Commercial and Political Atlas, considerada la primera obra de importancia con gráficas estadísticas.

En 43 maravillosas gráficas, Playfair utiliza líneas para representar la evolución a lo largo de los años de importaciones y exportaciones entre diversos países. Incidentalmente, la ausencia de datos históricos para Escocia, que le impedía reproducir ese mismo análisis, lo llevó a una segunda innovación: la gráfica de barras. Dado que disponía de datos para un único año, decidió disponer las exportaciones e importaciones en 17 pares de barras, uno por cada país con el que Escocia tenía relaciones económicas.

Curiosamente, esta es la primera gráfica que se conoce que no tiene una dimensión espacial (como un mapa) o temporal (como los cronogramas de Priestley). Por primera vez en la historia, se da solución gráfica a un problema de comparación pura de datos cuantitativos. Y por si fuera poco, además de considerarse el padre de las gráficas de líneas, áreas y barras, Playfair también tiene el dudoso honor de ser el inventor de la gráfica de tarta, en su obra Statistical Breviary de 1801.

No en vano, fue esta gráfica de tarta, diseñada para comparar proporciones de una manera compacta, la que inspiró a la siguiente protagonista: Florence Nightingale (1820-1910). Nightingale fue una enfermera, escritora y estadística británica, considerada la fundadora de la enfermería moderna y primera mujer en ser elegida miembro de la Royal Statistical Society en 1859. Fue un mito viviente de la Inglaterra victoriana por su importante labor durante la Guerra de Crimea (1853-1856). En el hospital militar en el que se encontraba destinada, se dedicó a llevar una contabilidad minuciosa de las causas de muerte de los soldados, y utilizó el denominado diagrama de la rosa para comunicar los resultados de su estudio.

Se trata de un histograma circular que da cuenta de la estacionalidad de las diversas causas de muerte y de su impacto, destacando las muertes por enfermedades infecciosas. Gracias a esta visualización, logró convencer al parlamento británico de la necesidad de realizar una reforma drástica de las medidas de higiene en centros hospitalarios.
Por supuesto, no se puede hablar de historia de la visualización de datos sin mencionar hitos como el mapa del cólera de John Snow, el revolucionario mapa de flujo de Charles Joseph Minard sobre las pérdidas del ejército de Napoleón en la campaña de Rusia, los mapas de datos jerárquicos de Charles Louis de Fourcroy, o las primeras gráficas en 3D de Luigi Perozzo.

Estos y otros pioneros han hecho de las gráficas una parte fundamental del análisis estadístico de datos, y sus innovaciones siguen estando vigentes, además de servir de excelentes modelos de claridad en la representación.
Sobre el autor: Iñaki Úcar es doctor en telemática por la Universidad Carlos III de Madrid e investigador postdoctoral del UC3M-Santander Big Data Institute.
El artículo Los orígenes de la visualización de datos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Datos que entran por los ojos
- Gráficas para la ciencia y ciencia para las gráficas
- Doce reglas para una mala gráfica
El grafo de Marion (Gray)
Hace casi dos años hablamos en este Cuaderno de Cultura Científica del teorema de Marion (Walter), un bonito enunciado de geometría afín, nombrado en honor a la matemática Marion Walter –que justamente ayer cumplió 91 años–.
Hoy traemos un objeto matemático, el grafo de Marion. En este caso, la matemática que da nombre a este grafo es otra Marion, Marion Gray.

Marion Gray nació en Escocia en 1902. Se interesó fundamentalmente por las matemáticas y la física. Estudió en la Universidad de Edimburgo y, tras graduarse, trabajó durante dos años como estudiante de postgrado bajo la supervisión del conocido matemático Edmund Taylor Whittaker.
En 1924 viajó a los Estados Unidos para estudiar en el Bryn Mawr College (Pensilvania). Allí aprendió matemáticas con Anna Johnson Pell Wheeler, David Vernon Widder y Marguerite Lehr. Defendió su tesis doctoral –The theory of singular ordinary differential equations of the second order– en 1926 bajo la supervisión de Anna Johnson Pell Wheeler.
Regresó a Edimburgo, donde trabajó como profesora asistente durante un año. De allí se trasladó a Londres donde trabajó como profesora asistente de matemáticas en el Imperial College durante tres años.
En 1930 regresó a los Estados Unidos y fue contratada como ingeniera asistente en el Departamento de Desarrollo e Investigación de la American Telephone and Telegraph Company de Nueva York.
En 1932, buscando “redes completamente simétricas”, descubrió el grafo que lleva su nombre, un grafo cúbico con 54 vértices y 81 aristas.

Aunque Marion no publicó nada sobre este grafo –pensaba que se trataba de un resultado teórico sin aplicaciones–, el matemático Izak Zurk Bouwer lo citó en su artículo An edge but not vertex transitive cubic graph [Canad. Math. Bull.11 (1968) 533-535], en el que lo describía –fundamentalmente sus propiedades de simetría– y comentaba en una nota a pie de página:
El grafo descrito en esta nota fue descubierto por la Dra. Marion C. Gray en 1932. El autor lo ha redescubierto de manera independiente y cree que aquí aparece publicado por primera vez.
En junio de 1969, Bouwer escribió a Gray para comentarle su aprecio por el hecho de que, en un momento en que la teoría de grafos era prácticamente inexistente, ella ya había encontrado este grafo con unas propiedades tan interesantes.
¿Y cuáles son esas propiedades tan interesantes? Además de las comentadas antes, el diámetro del grafo de Gray –la distancia maximal entre dos vértices– es 6, y la longitud de su ciclo más corto es 8. Es un grafo conexo, y para desconectarlo, es preciso eliminar como mínimo tres vértices o tres aristas.
Este grafo de Gray es además semi-simétrico –fue Bouwer quien lo probó en su artículo de 1968–, es decir, es arista-transitivo –existe un automorfismo del grafo que lleva cualquier arista en otra–, regular –todos los vértices tienen el mismo grado–, y no es vértice-transitivo –no existe ningún automorfismo del grafo que lleve cualquier vértice en otro–.
Además es el menor grafo cúbico semi-simétrico, como demostraron Aleksander Malnič, Dragan Marušič, Primož Potočnika y ChangqunWang en 2002 [An infinite family of cubic edge- but not vertex-transitive graphs, Discr. Math. 280, 133-148].
Por cierto, Marion se equivocó: este grafo –y otros similares– es fundamental en teoría de redes.
¿Y qué fue de nuestra protagonista? En 1934, se unió al personal técnico de los Bell Telephone Laboratories, donde pasó más trabajando de 30 años hasta su jubilación. Durante ese tiempo publicó varios artículos de investigación y realizó cientos de revisiones de trabajos de otros. También formó parte del comité que preparó el famoso Handbook of Mathematical Functions editado por Milton Abramowitz e Irene Stegun (1964).
Después de su jubilación, en 1967, Gray regresó a Edimburgo, donde falleció en 1979.
Referencias
-
Marion Cameron Gray, MacTutor History of Mathematics, University of St. Andrews
-
Judy Green and Jeanne Laduke, Supplementary material for pioneering women in American Mathematics: the pre-1940 Phd’s, pp. 218-220, AMS, 2009
-
Catherine Booth, Celebrating Scottish women of science: Marion Gray (1902–1979), Discover NLS 23 (2013) 20–21
-
Marta Macho Stadler, El grafo de Gray, de Marion Gray, ZTFNews, 16 septiembre 2014
-
Gray Graph, Wolfram MathWorld
-
Marion Cameron Gray, Wikipedia (consultado el 28 julio 2019)
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo El grafo de Marion (Gray) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El teorema de Marion (Walter)
- Un grafo no planar bipartito completo… para un sexteto amoroso
- El teorema de los cuatro colores (3): Tras más de un siglo de aventura… ¿un ordenador resuelve el problema?
Urrundik etorritako eztanda izugarrien atzetik

1. irudia: Irrati teleskopio arruntak erabiltzen dira FRB seinaleak ikertzeko, baina CHIME bezalako behatokiak bereziki egokiak dira seinale horiek ezaugarritzeko. (Argazkia: CHIME)
Espaziotik datozen seinaleen artean, badira bereziki astrofisikarien arreta erakartzen dutenak, haien jatorria zein den erabateko misterioa delako oraindik. FRB seinaleak dira, ingelesezko fast radio burst izendapenean oinarrituta, hau da, irrati eztanda azkarrak. Halako seinale gehienak behin baino ez dira suertatzen, eta, zientzialariak adi egon arren, ez dira berriro errepikatzen. Hori dela eta, arras zaila izaten da fenomenoaren ikerketa.
Izenak dioen moduan, izugarri arinak dira. Milisegundo eskasetan jasotzen diren irrati-seinaleak dira, zeharo ahulak, baina ustezko ahultasun hori begitazio bat besterik ez da, zientzialariek jakin badakitelako horien atzean energia itzela duen zerbait badagoela. Hain urrun egoteagatik ahul atzematen dira, hain zuzen. Momentuz, horien atzean zer dagoen argitzeko dago, eta horrelako fenomeno iheskorrekin gertatu ohi den moduan, teoria ugari baina ziurtasun gutxi dago gaur egun. 2007an detektatu zen aurrenekoz halako seinale bat, eta dagoeneko dozenaka jaso dira.
Mugarri bat FRB 121102 izenekoa izan zen: horren jatorria zehaztasun dezenterekin ezagutzen da. Seinale hori berezia da ere, orain arte errepikatu diren seinale bakarrenetakoa delako, eta hori izan da, hain zuzen, seinalearen jatorria argitzea ahalbidetu duena. Astrofisikariek ikusi ahal izan dute 1.600 milioi argi-urtera dagoen galaxia txiki batean sortu zela seinale hori, eta bertan izar berri asko jaiotzen ari direla. 2016an aurrenekoz aurkitu zuten errepikapen hori, eta handik hasita bi inguru hilabetez berriro lau aldiz jaso zuten seinalea. Aurkikuntza garrantzitsua izan zen: toki berdinetik datozen seinaleak ikusten badira, horrek esan nahi du haien jatorria ezin daitekeela izan gertaera katastrofiko bat. Izan ere, balizko eztanda itzel horrek energia iturriaren igorlea bera txikituko lukeelako, eta baita inguruan egon litezkeen bestelako objektu kosmikoak ere.
Bigarren mugarria joan den ekainean ezagutarazi zuten, Science aldizkarian, aurrenekoz aurkitu zutelako errepikatu ez den halako seinale baten jatorria. FRB 180924 seinalea 3.600 milioi argi-urtera dagoen galaxia baten kanpoko aldean kokatu dute. Baina garrantzitsuena da kasu honetan Esne Bidearen antzeko tamaina duela. Hortaz, ez dirudi FRB seinaleak izarren jaiotzarekin zerikusia dutenik, eta ikerketan sakontzeko beste aztarna bat uzten du: galaxia espektro zabal bati lotutako fenomenoa da.

2. irudia: Oso ahulak diren arren, eta duela gutxi aurkitu direla kontuan izanda, irrati eztanda azkarren ikerketaren bitartez ondorio interesgarriak ateratzen ari dira pixkanaka. Irudian, FRB 150807 izeneko seinalea. (Irudia: Vikram Ravi-Caltech/Ryan Shannon-ICRAR-Curtin-CSIRO)
Baina oraindik ez dago argi seinale guztiak errepikakor ote diren, eta aukera bat da espektro elektromagnetikoan antzeko emaitza duten bi fenomeno desberdin izatea. Eztabaida honetan, CalTech Institutuko (AEB) Vikram Ravi ikertzaileak egin du azken ekarpena. Datuei eta matematikari heldu die kalkulu bat egiteko: orain arte errepikatu ez direnen gertueneko FRB seinaleei erreparatu die, eta emaitzak alderatu ditu gertuko unibertsoan izaten diren gertaera katastrofikoekin. Egiaztatu ahal izan du FRB seinaleen maiztasuna ezagutzen ditugun beste hondamendi moten maitasuna baino handiagoa dela.
Ikertzaileak ondorio logikoa ateratzen du kalkulu horretatik: eztanda edo talka mota bakar batek ezin ditu azaldu FRB seinale guztiak. Hau azaltzeko, egileak proposatu du agian iturri horiek guztiak errepikatzen direla, baina agian ez daukagula ahalmen nahikoa horiek atzemateko.
Zentzu honetan, gogoratu beharra dago zer gertatu zaion CHIME (Canadian Hydrogen Intensity Mapping Experiment, edo Hidrogenoaren Intentsitatea Neurtzeko Esperimentu Kanadarra) izeneko proiektuari. Joan den otsailean ezagutarazi zituzten 13 seinale berri aurkitu zituztela, horietako bat, errepikakorra. Seinale horiek guztiak behatokiaren funtzionamenduaren lehen hilabeteotan detektatu zituzten, 2018ko udan, artean behatokia guztiz prestatu gabe zegoenean. Hortaz, beste asko eta asko egon daitezke bidean, zientzia aldizkarietan argitaratzeko zain. Baina harrigarriena izan zen 13 seinale horietatik zazpi 400 megahertzeko frekuentzian atzeman zituztela, normalean FRB seinaleek 1.400 megahertzekoan daudenean. Kanadako behatokia 400-800 megahertzeko tartean ikusteko diseinatuta dagoenez, litekeena da 400 megahertz baino ahulagoak diren seinaleak egotea, eta horrek Ravik egindako azken proposamen hori babestuko luke: agian baliteke horietako asko errepikakor izatea, baina ahulagoak.
Grabitazio uhinekin gertatzen den modu berdinean, astrofisikariek espero dute etorkizunean, fenomenoa hobeto ezaugarritzen duten heinean, seinale hauek erabili ahal izango dituztela ondorioztatzeko unibertsoan zehar egin duten bidaia itzela, bidean aurkitu dituzten elektroien edota eremu magnetikoen inguruko informazioa eskuratuta. Modu horretan, besteak beste, materia ilunari buruzko informazio gehiago jasotzea espero dute. Osterantzean, hori argitu baino lehen seinale horien jatorria ere argitu beharko da. Paradoxa bitxia izango litzateke seinale horiek tresna modura erabiltzea, tresna beraren jatorria zein den jakin barik.
Erreferentzia bibliografikoa:
Vikram Ravi. “The prevalence of repeating fast radio bursts”. Nature Astronomy (2019) DOI: https://doi.org/10.1038/s41550-019-0831-y
———————————————————————————-
Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.
———————————————————————————-
The post Urrundik etorritako eztanda izugarrien atzetik appeared first on Zientzia Kaiera.
El impacto científico, médico y comercial de los rayos X

El descubrimiento de Röntgen de los rayos X entusiasmó a los científicos de todo el mundo. Sus experimentos se repitieron y ampliaron de inmediato en muchos laboratorios de Europa y América. Las revistas científicas durante el año 1896 estaban llenas de cartas y artículos que describían nuevos experimentos o confirmaban los resultados de experimentos anteriores. El paso de la electricidad a través de los gases había sido un tema popular de estudio para los físicos; esto hizo que la experimentación generalizada fuera mucho más fácil durante los años posteriores al descubrimiento de Röntgen, porque muchos laboratorios de física tenían tubos de rayos catódicos y, por lo tanto, podían producir rayos X fácilmente.
Su utilidad en medicina generó un enorme interés en los rayos X más allá de los laboratorios de física. En los 3 meses posteriores al descubrimiento de Röntgen, el uso de los rayos X se convirtió en habitual en las intervenciones quirúrgicas de un hospital de Viena. Un uso que se extendió rápidamente. Desde la época de Röntgen, los rayos X han revolucionado algunas fases de la práctica médica, especialmente el diagnóstico de algunas enfermedades y el tratamiento de algunas formas de cáncer (porque los rayos X también pueden destruir el tejido maligno).
Los rayos X también encontraron aplicación rápidamente en otros campos de la ciencia. Entre estas aplicaciones destaca el estudio de la estructura cristalina de los materiales, incluidos los biológicos, como el ADN; el «diagnóstico industrial», la búsqueda de posibles defectos en materiales y estructuras de ingeniería; o su uso en historia del arte y restauración, donde permiten ver qué hay detrás de la superficie ópticamente visible de pinturas y esculturas; y muchos otras.
La reacción pública al descubrimiento de los rayos X también fue sensacional. Muchas personas se apresuraron a irradiar sus cuerpos con los nuevos rayos, pensando que tenían propiedades milagrosas, mientras que otros se preocuparon por el deterioro moral si la modestia tan característica del XIX daba paso a la pervertida «visión de rayos X».
Del aparato utilizado en el descubrimiento original de Röntgen, surgieron dos vías de desarrollo para la tecnología médica. Una se concentró en el fluoroscopio, la otra en mejorar la radiografía; Thomas Edison fue crucial en ambas.
¿Qué ves en esta imagen de fluoroscopio? [6]Fue la familiaridad de Edison con el tubo Crookes, en muchos aspectos similar muy similar a su bombilla de filamento de carbono de 1879 [1], lo que le permitió hacer una de las primeras mejoras en la tecnología de rayos X. Al construir un tubo con un vidrio más delgado, Edison descubrió que podían escapar más rayos X. Edison también dirigió la investigación que encontró que el tungstenato de calcio [2] podría producir una imagen más clara en la pantalla fluorescente que el platino-cianuro de bario utilizado anteriormente. Edison lo usó para la fabricación de un «fluoroscopio», un dispositivo que permitía a una persona mirar a través de una caja en una pantalla cubierta con tungstato de calcio, y ver una imagen en movimiento del interior del cuerpo de otra persona.

Un amigo de Edison, Michael Pupin [3], tomó esta mejora en la pantalla fluorescente y la combinó con una placa fotográfica, creando la radiografía, que reducía el tiempo de exposición del paciente de 1 hora a solo unos minutos, al tiempo que aumentaba la claridad de la imagen. Esto redujo en gran medida el peligro de daño a los tejidos. [4]
Uno de los aspectos más problemáticos de la tecnología de rayos X durante las dos primeras décadas fue la poca fiabilidad de los tubos de vidrio, que a menudo se agrietaban al calentarse. La alta incidencia de grietas se eliminó en 1913 cuando William Coolidge, mientras trabajaba para General Electric [5], inventó el tubo de rayos X de alto vacío, cátodo caliente y objetivo de tungsteno. Como parte de su investigación sobre filamentos de bombillas eléctricas, Coolidge descubrió que debido a que el tungsteno se vaporizaba menos que cualquier otro metal, podría reducir la acumulación de residuos de gas. Aplicando este conocimiento Coolidge reemplazó el platino con tungsteno en el tubo de rayos catódicos. Cuando estos «tubos Coolidge» salieron al mercado en 1913, arrasaron: podían producir duplicaciones más claras de imágenes anteriores, ajustarse con mucha más precisión y, debido a su mayor flexibilidad, podían organizarse para pasar instantáneamente de alta a baja penetración.
La Primera Guerra Mundial (1914-1918) consolidaría el uso generalizado de los rayos X en medicina y establecería la investigación sobre ellos como una prioridad médica, científica y comercial.
Notas:
[1] Con el señor Edison, cuyo mérito no discute nadie, siempre es necesario matizar cosas. Edison fue, ante todo, lo que hoy se llama un emprendedor, lo que de toda la vida ha sido un empresario. Eso no le desmerece en absoluto, pero sí es necesario tenerlo en cuenta para entender su forma de actuar, siempre con ánimo de lucro y en términos de competencia en un mercado limitado. Un equivalente más contemporáneo sería Steve Jobs, de Apple. Edison creaba, mejoraba lo que hacían otros y sobre todo, y por encima de todo, ponía en el mercado magistralmente productos revolucionarios. Todo lo anterior es para mencionar que la primera bombilla de filamento de carbono la creó Joseph Swan en febrero de 1879 (la de Edison es de octubre de ese año), quien también fue el primero en suministrarlas para un uso comercial, en concreto para iluminar el Hotel Savoy de Londres en 1881.
[2] También llamado wolframato de calcio en los ambientes. En esta casa seguimos las leyes de la termodinámica y la terminología IUPAC. El tungstenato de calcio es el mineral scheelita.
[3] Un personaje impresionante, a la altura del propio Edison, solo que con menos éxito comercial. Su vida fue tan rocambolesca y él la contó tan bien que su autobiografía ganó el premio Pulitzer en 1924.
[4] Daño que experimentaron en sus carnes los colaboradores y el propio Edison.
[5] Nombre original de la compañía Edison General Electric Company que quedó en General Electric tras la fusión en 1892 con Thomson-Houston Electric Company. Edison fundó 14 empresas. Véase Nota 1.
[6] En la imagen se ve una persona ingiriendo una papilla de bario.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo El impacto científico, médico y comercial de los rayos X se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: