Poesía retorcida sobre banda de Möbius
Utilizo mucho la banda de Möbius en mis charlas de divulgación: a menudo llevo papel, tijeras y cinta adhesiva para realizar una bella magia, la magia topológica, que es especialmente sorprendente al manipular una cinta de Möbius.
Schrödinger’s cat playing with Möbius band. ©Anastasis.
Incluso cuando hablo de literatura y matemáticas (ver [1]), la banda de Möbius tiene su especial protagonismo. Uno de los ejemplos que suelo mostrar es un poema sobre cinta de Möbius propuesto por el patafísico Luc Étienne en [3]. El autor utiliza dos de las propiedades principales de esta superficie con borde (ver [2]): posee una única cara y es no orientable.
Para escribir este especial poema, Luc Étienne proporciona unas precisas instrucciones (traducido del original francés –página 266 de [3]– intentando conservar el sentido y la rima):
En la primera cara de una tira de papel rectangular (al menos 10 veces más larga que ancha) se escribe la mitad de la poesía:
Trabajar, trabajar sin cesar,
para mi es obligación
no puedo flaquear
pues amo mi profesión…
Imagen extraída de [3].
Se gira esta banda de papel sobre su lado más largo (es esencial), y se escribe la segunda mitad del poema:
Es realmente un tostón
perder el tiempo,
y grande es mi sufrimiento,
cuando estoy de vacación.
Imagen extraída de [3].
Se pega la tira en forma de banda de Möbius (ver [2]). El poema inicialmente escrito sobre las dos caras de una banda de papel aparece ahora escrito en una única cara, que podemos empezar a leer verso a verso. Y, sorprendentemente, la poesía inicial alabando el esfuerzo en el trabajo se ha convierte en un elogio a la holgazanería… ¿será por el carácter no orientable de la cinta de Möbius?
Trabajar, trabajar sin cesar, es realmente un tostón
para mi es obligación perder el tiempo
no puedo flaquear y grande es mi sufrimiento,
pues amo mi profesión… cuando estoy de vacación.
Imagen extraída de [3].
En su blog Simplemente números, Claudio Meyer comentaba otro divertido ejemplo de poema sobre banda de Möbius. Pero empecemos por el principio; por favor, mirad y escuchad la divertida Serenata Mariachi de Les Luthiers.
Bernardo y Porfirio comparten mariachi para cantar a sus amadas. Aproximadamente en el minuto 7 del video, los dos amigos se dan cuenta de que ambos tienen como amada a la misma mujer: María Lucrecia. Y Bernardo comienza su canción:
Siento que me atan a ti
tu sonrisa y esos dientes
el perfil de tu nariz
y tus pechos inocentes.
Porfirio empuja a Bernardo y envía su mensaje de amor a María Lucrecia:
Tus adorados cabellos,
oscuros, desordenados
clara imagen de un anzuelo
que yo mordí fascinado.
Tras las dos intervenciones, Bernardo y Porfirio comienzan a interrumpirse: Bernardo vuelve a recitar su primera estrofa, Porfirio le empuja y canta su primer verso, Bernando le corta y entona su segundo verso, y así sucesivamente. La ‘nueva’ copla para la mujer suena ahora de este modo:
Siento que me atan a ti tus adorados cabellos,
tu sonrisa y esos dientes oscuros, desordenados
el perfil de tu nariz clara imagen de un anzuelo
y tus pechos inocentes que yo mordí fascinado.
¿Y qué tiene que ver esto con la banda de Möbius? Podría haberse conseguido la serenata final del mismo modo que en el poema de Möbius de Luc Étienne. En efecto, escribid en la primera cara de una banda de papel rectangular la canción de Bernardo; girad esta tira sobre su lado más largo, y escribid la romanza de Porfirio. Pegad la tira de papel para obtener una banda de Möbius. Ahora tenemos una serenata sobre una única cara: la banda de Möbius –que es no orientable– ha cambiado dos serenatas de amor por una canción para María Lucrecia bastante descortés…
Referencias
[1] Marta Macho Stadler, Un paseo matemático por la literatura, Sigma 32 (2008) 173-194.
[2] Marta Macho Stadler, Listing, Möbius y su famosa banda, Un Paseo por la Geometría 2008/2009 (2009) 59-78.
[2] Oulipo, La littérature potentielle, Gallimard, 1973
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Poesía retorcida sobre banda de Möbius se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Replay
La música y el lenguaje están así de cerca: la repetición basta. Almudena M. Castro lo ilustra
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Replay se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El lenguaje de la química
Lavoisier juanto a su ayudante (y esposa) Marie-Anne Pierrette Paulze
Hasta mediados del siglo XVIII el nombre de los compuestos y procesos químicos era, siendo generosos, un galimatías ininteligible salvo para los muy iniciados. Esta falta de sistematización y exceso de localismos impedían la comunicación y, con ello, el avance de la química. Una de las mayores aportaciones de Lavoisier a la química fue precisamente organizar a sus colegas para crear una nomenclatura sistemática justo antes del estallido de la Revolución Francesa. La extensión de la Revolución por Europa llevó con ella la adopción de la nueva nomenclatura química, cuyos rudimentos hoy, con las modificaciones y ampliaciones introducidas a lo largo de los siglos XIX y XX, los alumnos de secundaria del XXI se esfuerzan por aprender. Esta es su historia.
La nomenclatura francesa de 1787 fue el trabajo de Louis-Bernard Guyton de Morveau (quien comenzó el proyecto en 1782) junto a Antoine-François de Fourcroy, Claude-Louis Berthollet y Antoine-Laurent de Lavoisier. Si idea básica hoy nos puede parecer muy simple, pero en su momento fue una revolución: identificar un compuesto de forma unívoca usando dos nombres que tuviesen que ver con su composición.
Podemos encontrar precedentes de la idea en un texto de Oswald Croll de 1609, Basilica chymica, y en los esfuerzos en los años setenta del XVIII de Torbern Bergman por sistematizar la mineralogía y la química usando el latín tal y como su compatriota Carl Linnaeus había hecho con la taxonomía de los seres vivos. Por otra parte, en 1746 el Real Colegio de Médicos de Francia publicó un diccionario que influiría mucho en el de química que publicó Pierre-Joseph Macquer en 1766. En este diccionario ya aparece el principio de que el nombre de una sustancia debería reflejar su composición más que su origen geográfico, extractivo o sus características observables.
Lavoisier fue el encargado de proveer una legitimación filosófica al proyecto. La necesidad de una nueva nomenclatura podía justificarse a partir de la filosofía del lenguaje de Étienne B. de Condillac empleando una argumento expresable de forma muy breve: un lenguaje construye una ciencia (“une langue bien faite est une science bien faite”).
La nueva nomenclatura eliminó el flogisto del vocabulario científico y, con ello, de la teoría química. Organizó 33 sustancias simples en 4 categorías y nombró a un compuesto en función de los dos elementos que formaban los “radicales” que se suponía que lo constituían. El sistema subordinaba por tanto los lenguajes seculares de la metalurgia, la farmacia y la elaboración de tejidos a una nueva lógica dualista. El blanco de plomo pasaba a ser “óxido de plomo” y el aire pestilente, “hidrógeno sulfuratado”.
Con todo, el uso de la lógica tuvo sus límites. Así, por ejemplo, el “principio acidificador”, el elemento cuya participación convertía la sustancia en un ácido, y que Lavoisier llamó por ello en su momento “oxígeno”, tendría que haber cambiado de nombre cuando Humphry Davy encontró que existía al menos un ácido, el muriático (HCl), que no contenía oxígeno. Pero el nombre se mantuvo.
Los químicos alemanes aceptaron la idea general, no así algunos nombres demasiado franceses. Para los alemanes el oxígeno siguió siendo, y lo es hoy día, Sauerstoff (la “sustancia” de los ácidos); el hidrógeno, Wasserstoff (la “sustancia” del agua); el carbono Kohlenstoff (la “sustancia” del carbón).
Con el tiempo se retomaron algunas formas de la nomenclatura tradicional. La más significativa era nombrar a los nuevos elementos que se descubrían en función de sus propiedades, su descubridores o su lugar de descubrimiento. Así, por ejemplo, el cloro recibe su nombre del verde (chloros en griego), el bromo de lo mal que huele (bromos, apesta), y los nacionalistas galio (de Francia), germanio (de Alemania), escandio (de Escandinavia) o polonio (de Polonia).
Con el establecimiento de la teoría estructural de la química orgánica en la década de los sesenta del siglo XIX, las cadenas de hidrocarburos sencillas se convirtieron en la base sobre la que nombrar las sustancias orgánicas, con las cadenas de las ramificaciones recibiendo los nombres metil, etil, propil, etc., y prefijos numéricos indicando la posición de los sustituyentes.
von Hoffmann
En 1865 August Wilhelm von Hofmann sugirió el uso de “eno” como sufijo de los hidrocarburos con un doble enlace, “dieno” si tenía dos, e “ino” si tenía un triple enlace. La presencia de grupos funcionales también se solucionaba con sufijos: “ol” para alcoholes, “al” para aldehidos, “ona” para cetonas”, e “ico” (precedido el nombre por la palabra ácido) para ácidos.
En 1892 se celebró en Ginebra la Conferencia Internacional sobre Nomenclatura Química, presidida por Charles Friedel. En esta conferencia se sistematizaron todas estas convenciones en forma de 62 resoluciones. Las resoluciones admitían el uso de términos no sistemáticos usados internacionalmente, como llamar ácido láctico al ácido alfahidroxipropanoico.
IUPAC
Tras la Primera Guerra Mundial, en 1919, se crea la Unión Internacional de Química Pura y Aplicada que se encarga desde entonces de supervisar la nomenclatura química. Los químicos alemanes tenían prohibida la pertenencia, el francés era su único idioma oficial y desde el inicio la influencia de los químicos estadounidenses fue cada vez mayor. Se reorganizó tras la Segunda Guerra Mundial, cuando el inglés pasó a ser su único idioma oficial. Un aspecto este que quizás habría llamado la atención de de Condillac.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo El lenguaje de la química se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Munch y la cagada de pájaro
Dicen que dicen por Noruega que Edvard Munch gustaba de trabajar al aire libre. Esto de echarse a la calle a pintar era algo que se venía haciendo desde unas décadas antes, cuando los impresionistas le dieron un giro al modus operandi del artista y abandonaron los estudios para realizar las obras en el exterior, donde el contacto con la naturaleza fuese una fuente de inspiración. «No es el lenguaje de los pintores el que hay que escuchar, sino el de la naturaleza» que rezaba van Gogh. Este amor por la naturaleza encaja a la perfección con la idiosincrasia de los pueblos nórdicos y es lógico pensar que el más célebre de los pintores noruegos realizase su gran obra, El Grito, al aire libre. ¿Qué mejor manera de captar ese atardecer de color sangre, de dejar grabado para la posteridad el fiordo visto desde el rio Ekeberg1 que teniéndolo delante de los ojos? Además, hay una prueba irrefutable. Una pequeña mancha blanca junto al brazo derecho de la angustiosa (o el angustioso) protagonista de la obra. Me refiero a una cagada de pájaro (Figura 1). Imagínense qué situación: Munch dejando sus característicos trazos sobre una obra de arte que pasaría a la historia de la pintura con mayúsculas2, que decoraría miles de paredes, que un siglo después inspiraría uno de los emoticonos más populares de esa cosa llamada whatsapp, que se convertiría en un referente del expresionismo y… un ave decide arrojar un misil de heces sobre ella. Como si quisiese compartir la gloria y hacer eternos sus excrementos. Gajes del oficio, podríais pensar. O también podríais pensar, al igual que Tine Frøysaker, profesora en la universidad de Oslo, que se trata de una historieta sin fundamento.
Figura 1. El grito (91×73,5 cm) de Munch (1893). Fuente.
La catedrática Frøysaker no se creía la leyenda urbana que se había fraguado en su país. Durante su carrera como conservadora de arte y patrimonio se había familiarizado con los excrementos de ave y se negaba a creer que lo que reposaba sobre la obra de Munch tuviese el origen que le asignaban. Y no lo decía solo por el aspecto, se apoyaba en el hecho de que las heces de pájaros corroen la obra, algo que no se aprecia en El Grito, donde la mancha blanca descansa tranquilamente sobre la pintura sin alterarla. Además, en algunas zonas la mancha está descascarillada, un comportamiento que no encaja con las heces de ave. Su último argumento iba más allá y atacaba incluso la creencia de que el cuadro hubiese sido pintado al aire libre. Munch empleó cartón como soporte, un material realmente frágil y débil ante las inclemencias climáticas. ¿Quién lo usaría para pintar en las calles de Oslo? Frøysaker creía por lo tanto que el trabajo había sido realizado en un taller y de ahí que rechazase que pudiese haber un excremento de ave en él. A menos, claro, que Munch fuese un aficionado a la ornitología y tuviese pajarillos revoloteando mientras trabajaba. Así, la profesora hipotetizó que la dichosa manchita era posiblemente una pintura blanca o tiza que el artista había puesto ahí por accidente. Obviamente estos argumentos no eran suficientes. Las leyendas urbanas sin fundamento suelen tener sólidas raíces y, ¿quién era esta señora para llevar la creencia a todo un pueblo? Se precisaban pruebas. La ciencia debía acudir al rescate.
Aprovechando que un equipo de expertos de Amberes visitaba el museo para realizar un estudio sobre los materiales empleados en tan conocida obra, se investigó el origen de la blanca mácula. Para ello se empleó la fluorescencia de rayos X, una técnica no destructiva que permite estudiar qué elementos químicos hay en una muestra. Sin entrar en más detalles os diré que mediante esta técnica se buscaron los elementos más habituales en los pigmentos blancos, como el plomo, el zinc o el calcio. ¿Resultado? Frøysaker 0 – Leyenda Urbana 1. No había rastro de esos elementos en la mancha blanca y, por lo tanto, no se trataba de pintura o tiza.
Figura 2. Imágenes de fluorescencia de rayos X en busca de compuestos conocidos de color blanco. De izquierda a derecha las imágenes correspondientes al estudio del plomo, zinc y calcio. Ninguno de estos elementos se detectó en el punto en el que se encuentra la mancha blanca.
Tras realizar esos experimentos el origen de la mancha resultaba todavía más intrigante. Para solucionar este interrogante se decidió ir más allá en el estudio científico y realizar un análisis de difracción de rayos X en el Sincrotrón Alemán de Electrones (DESY) empleando el acelerador de partículas PETRA de Hamburgo. La tecnología más avanzada en física de partículas puesta a prueba por un insignificante residuo blanco.
Difracción de rayos X para resolver el misterio
Ya os he hablado unas cuantas veces de las maravillas que los rayos X pueden descubrir en el mundo de arte. La aplicación de este tipo de energía no se limita solo a la obtención de radiografías o al estudio elemental que os acabo de mencionar. También permite estudiar la estructura cristalina de un sólido gracias a la difracción de rayos X. Esta técnica, de gran aplicación en mineralogía, ciencia de materiales o biología molecular, ha demostrado ser de gran utilidad para el estudio de obras de arte. Pero, antes de entrar en harina, permitidme que os exponga los antecedentes y os cuente un poco el funcionamiento de la técnica (aunque la física no sea de vuestro agrado, os pido un poco de paciencia que son tres parrafitos de nada).
Los pioneros en los estudios de difracción de rayos X fueron el alemán Max von Laue (Nobel de física en 1914) y los británicos William Henry Bragg y William Lawrence Bragg (padre e hijo que también ganaron el Nobel en 1915). El hecho de que estos tres señores lograran el más prestigioso premio que un científico puede soñar en años sucesivos nos da una idea de la importancia de sus descubrimientos. William Lawrence formuló la conocida ley de Bragg con tan sólo 22 años y recibiría el galardón tres años después. Si hay algún investigador o investigadora leyendo esto, que no se desanime y rompa a llorar. Consolémonos pensando que eran otros tiempos.
La difracción de rayos X es un fenómeno que se basa en la interacción entre las ondas de rayos X y los átomos que forman una red cristalina. Entre los diferentes tipos de interacciones que pueden existir, la que nos importa es la llamada dispersión elástica, que sucede cuando una onda de rayos X es desviada por un electrón sin perder su energía. Imaginad el cristal como una red de átomos colocados de forma regular (Figura 3). Pongamos que dos ondas interactúan con dos átomos adyacentes y son dispersadas. Estas dos ondas interferirán entre ellas de modo que cuando las dos estén desfasadas, es decir, sus máximos no coincidan, se anularán entre ellas. En cambio, cuando estén en fase (sus máximos coincidan), la señal se amplificará, permitiendo que un detector mida un aumento en la señal. Para que suceda este tipo de interferencia, llamada constructiva, se tienen que cumplir ciertas condiciones tal y como postula la simple y elegante ecuación de la ley de Bragg:
2·d·senθ = n·λ
En ella se incluyen la distancia entre los átomos (d), la longitud de onda de la radiación (λ) y el ángulo de incidencia de la onda (θ). Como se suele decir en estos casos, una imagen vale más que mil palabras, así que, acudid de nuevo a la Figura 3 para una mejor comprensión. Variando el ángulo de incidencia de los rayos X se pueden obtener lo que se conoce como difractogramas, que muestran la intensidad de la radiación en función del citado ángulo. Resulta que la aparición de interferencias constructivas sucede sólo a ciertos valores del ángulo. Esto provocará máximos en la señal que dependen de la estructura del material y, por lo tanto, cada material tendrá un patrón de difracción característico que se podrá comparar con una muestra de referencia o consultar en una base de datos. Antes de apabullaros con más física y, como esto tampoco pretende ser una clase magistral sobre cristalografía, os invito a leer esta serie de artículos en Experientia Docet si queréis aprender algo más sobre este fascinante tema.
Figura 3. Visualización de la difracción de rayos X. A la izquierda se muestra una interferencia constructiva y a la derecha una destructiva. Fuente.
Viajemos ahora hasta Hamburgo, a donde los científicos belgas llevaron la muestra de nuestra desconocida mancha blanca. Empleando el poderoso acelerador PETRA obtuvieron el difractograma de la mancha blanca. Nada más verlo el doctorando que estaba realizando el análisis gritó ¡Eureka! (suelen ser quienes se dan cuenta de estas cosas…). Había visto ese patrón muchas veces, era un material relativamente habitual en pintura, un compuesto de origen animal que la humanidad conoce desde hace siglos, se trataba simplemente de un rastro de… cera. Al compararlo con una referencia de este material la coincidencia fue más que obvia, como podéis ver en la Figura 4. Pero todavía quedaba descartar la teoría del excremento de ave, puesto que quizás también tuviese un difractograma similar. Para ello el líder del proyecto se dio un paseo por la ciudad y, ni corto ni perezoso, recogió algunas muestras que los pajarillos nórdicos habían depositado amablemente en el suelo (esto es lo que se llama labor de campo). Está claro que esas muestras no serían idénticas a las del pájaro que supuestamente le había dejado el regalito a Munch. Al fin y al cabo no se sabe ni a qué especie pertenecía ni la dieta que seguía. De todos modos, el patrón de difracción no mostró absolutamente nada en común con el de la mancha blanca. Así pues, todo indica que la substancia que tanta controversia había desatado no era más que cera, posiblemente proveniente de alguna vela, lo que abre las puertas a la posibilidad de que El Grito fuese elaborado en estudio. Al final Frøysaker había acabado ganando el partido.
Figura 4. Difractogramas de la mancha desconocida encontrada en el cuadro (Scream –white substance), de la cera (Beeswax reference) y de un excremento de pájaro (Bird droppings).
Notas:
1 Munch, tras un paseo junto al río con dos amigos, dejó escrito en su diario: “y entonces sentí el enorme grito infinito de la Naturaleza”. En algún lado he leído que Schopenhauer había dicho unos cuantos años antes: “el potencial expresivo de la pintura estaba limitado por su incapacidad para representar el grito”. Obviamente todavía no había nacido Munch.
2 Munch realizó cuatro versiones de El Grito que podéis observar en la imagen que abre este artículo. En la esquina superior izquierda la versión de 1893 que se encuentra en el Museo Munch de Oslo. En la esquina superior derecha la versión más conocida, realizada también en 1893 y que se encuentra en la Galería Nacional de Oslo. En la esquina inferior izquierda la única obra en manos privadas, realizada en 1895 y vendida en 2012 por 120 millones de dólares (récord en aquel momento). En la esquina inferior derecha la última versión, pintada en 1910, que también se encuentra en el museo Munch.
Para saber más:
Solving a Cold Case: the Bird Droppings Mystery – Universidad de Amberes-
Página web del Deutsches Elektronen-Synchrotron
Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.
El artículo Munch y la cagada de pájaro se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Y si falla el GPS?
Imagen del nuevo prototipo con aguja magnética estándar que contiene un sistema de compensación basado en un plato regulable (parte inferior de la fotografía)
Históricamente las embarcaciones se han guiado por agujas magnéticas para fijar su rumbo de navegación. Sin embargo, estas agujas se ven influenciadas por todas las piezas metálicas que tienen a su alrededor, y no marcan exactamente el norte magnético, por lo que es necesario compensarlas periódicamente. El norte magnético no es el norte geográfico, se trata de una dirección generada por el campo magnético terrestre, que se desplaza continuamente. La compensación de las agujas magnéticas se ha realizado de la misma manera desde el siglo XIX. Esta operación consiste en realizar unos cálculos y determinar en qué posición se deben colocar unos imanes correctores para que la aguja magnética indique siempre el norte magnético. Conocido el norte magnético y corregida la declinación magnética (diferencia entre norte verdadero y magnético), se obtiene siempre el norte verdadero y, con él, la dirección exacta en la que se desplaza la embarcación.
Sin embargo, “aunque en la actualidad la aguja magnética está relegada al olvido, los sistemas de navegación de los que dependemos los marinos precisan de corriente eléctrica, sin la cual todos los posicionamientos que procedan de dichos sistemas se convierten en inútiles —explica el investigador Josu Arribalzaga—. Además, los sistemas GPS pueden llegar a dar una lectura errónea de la señal, por distorsiones ajenas o manipulaciones, intencionadas o no”. Habida cuenta, además, que la Organización Marítima Internacional obliga a todos los buques a portar una aguja magnética con su bitácora, donde se ubican los imanes compensadores, y otra aguja de repuesto para el caso de que los demás sistemas de navegación fallen, Arribalzaga ha propuesto un nuevo sistema de compensación basado en un plato que contiene imanes movibles, mediante el cual se consigue corregir los desvíos de la aguja de una manera más autónoma.
En vez de utilizar la potencia relativa de los imanes correctores como hasta ahora, el investigador ha utilizado el momento magnético de estos imanes para calcular su capacidad correctora y dependiendo de ese momento magnético determinar a qué distancias reales de la aguja se corrige una cuantía determinada de desvío. Asimismo, los investigadores han descubierto inesperadamente que el sistema de compensación utilizado hasta el momento no es correcto debido a una serie de rectificaciones que habría que hacer para conseguir una compensación correcta.
El compás magnético integral para la obtención de desvíos en tiempo real, patentado por la UPV/EHU, calcula automáticamente todos los desvíos de la aguja magnética a todos los rumbos en tiempo real, pero una vez calculado este desvío habría que hacer ajustes para que la aguja magnética llegase a marcar el norte magnético. En ese sentido, el investigador de la Escuela de Ingeniería de Bilbao de la UPV/EHU Arribalzaga ha modernizado el sistema de compensación de la aguja y ha conseguido un sistema totalmente autónomo y que no depende de la electricidad. “He propuesto este modelo con una idea de futuro —explica—, con una idea de llegar a automatizar el sistema de alguna manera”. En vez de insertar los imanes correctores de la aguja en determinados casilleros, como hasta ahora, los ha dispuesto en un plato de manera que éste se puede desplazar hacia arriba o hacia abajo (aproximándose o alejándose de la aguja), y los imanes correctores se pueden girar, efectuando un efecto mayor cuanto más cerca esté el imán de la aguja.
“El plato que he diseñado y probado se puede ajustar al milímetro en cualquier posición vertical y en todo momento —detalla Arribalzaga—. En principio, el prototipo producido se puede manipular manualmente, porque su motorización implicaría un coste adicional importante, y, además, acoplarlos implicaría un sistema mecánico que habría que adaptar a los imanes y al plato”. La investigación realizada es, por tanto, un primer paso para poder llegar a acoplar el compás magnético integral patentado por la UPV/EHU y el plato diseñado, que debería ajustarse a unos sistemas específicos de autoajuste. “Pero esa sería otra fase”, concluye.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo ¿Y si falla el GPS? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Alzhéimer
Durante Naukas15, el editor de este Cuaderno y Javier Burgos dialogaron sobre el alzhéimer y la investiagción más actual sobre el mismo.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Alzhéimer se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 ¿Ictus? no, nosotros no tenemos plantas en casa
Nadie está libre de sufrir un ictus. ¿Cómo reconocer los síntomas de un accidente cerebrovascular y cómo reaccionar ante ellos? El neurólogo Azuquahe Pérez lo explica.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 ¿Ictus? no, nosotros no tenemos plantas en casa se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Ingeniería genética para cambiar la Historia
La ingeniería genética no es aun una ingeniería. Lucas Sánchez nos cuenta qué se está haciendo para conseguirlo.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Ingeniería genética para cambiar la Historia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El miedo se esconde en el cerebro
Se acerca la noche del 31 de octubre y en muchos países se celebrará Halloween, en otros la noche de brujas y en general habrá quien aproveche esa fecha para ver alguna película con la luz apagada o realizar algún otro ritual o tradición relacionada con el miedo.
Esta fiesta moderna, anterior al día de Todos los Santos y muy asentada sobre todo en países anglosajones, tiene su origen en la conmemoración celta del Samhain en la que esa noche servía como celebración del final de la temporada de cosechas y era considerada como el año nuevo.
Los Celtas pensaban que los muertos volvían la noche del Samhain, el señor de la muerte, para comunicarse con ellos y pedirles alimentos. Y si no conseguían su objetivo, maldecían a los habitantes del poblado y les lanzaban conjuros. De ahí que se disfrazaran con pieles para tratar de ahuyentarlos.
Con el paso del tiempo, la fiesta ha ido incorporando otras costumbres y modificando las originales hasta convertirse en un evento relacionado con fantasmas, brujas, calabazas, arañas y bichos varios, así como todo lo asociado a la muerte, espíritus y el terror.
¿Pero por qué sentimos miedo? El miedo es una emoción y provoca diferentes reacciones en el organismo. Se produce cuando nos sentimos en peligro, nos ayuda a estar alerta. Se trata de un modo primario de supervivencia.
Como no podía ser de otro modo, es el cerebro (a través de la información que recibe por los sentidos) el que percibe que algo extraño está ocurriendo y pone en marcha los mecanismos necesarios que nos llevan a actuar.
Localización de la amígdala
Aunque, como digo, el miedo es algo innato y por tanto que ha existido desde que el hombre es hombre; fue hace unos pocos meses cuando por primera vez, un equipo internacional de científicos demostró que la amígdala cerebral humana es capaz de extraer información de manera ultrarrápida sobre posibles amenazas que aparecen en la escena visual.
La amígdala, situada en la parte interna del cerebro, es una estructura clave en el procesamiento de las emociones que forma parte del sistema límbico. Éste es el encargado de regular las respuestas fisiológicas frente a determinados estímulos, es decir, en él se encuentran los instintos humanos.
El análisis de las amígdalas permitió a los científicos obtener la primera prueba directa en seres humanos de que esta área, por sí misma, puede ser capaz de extraer información muy rápido respecto a posibles amenazas o estímulos biológicamente relevantes en la escena visual, antes de recibir la información visual más fina procesada en el neocórtex.
En concreto, lo que descubrieron es que la información gruesa que la amígdala maneja sobre la escena visual –antes de que le llegue la información desde la corteza– la hace sensible a estímulos biológicamente relevantes, como podría ser la expresión de miedo de una persona que se encuentre cerca, que pone en alerta al individuo para buscar dónde está el peligro.
Estos nuevos datos sobre cómo viaja la información entre el circuito visual y el circuito emocional pueden ayudar al tratamiento de trastornos emocionales como la ansiedad, donde la amígdala desempeña un papel fundamental.
Recuerdos
No todos los miedos son innatos sino que se pueden desencadenar a partir de una experiencia desagradable con algún objeto, animal o situación, pero pueden surgir también sin que haya situaciones aversivas previas; de hecho, existen fobias prácticamente a cualquier cosa, desde a las cucarachas hasta a la relación con otras personas.
Y cuando se convierten en algo que impide hacer vida normal se trata de un problema que hay que tratar porque las fobias son un temor irracional y desproporcionado en relación al estímulo que las desencadena y la persona que las sufre no las puede evitar, a pesar de reconocer que pueden ser absurdas.
Los tratamientos que se emplean actualmente para acabar con este tipo de trastornos van desde técnicas de psicoterapia cognitiva conductual como la desensibilización sistemática, hasta tratamientos farmacológicos. De hecho, lo que recomiendan los expertos es ser tratado por psicólogos y psiquiatras al mismo tiempo.
Y dado que se sabe que hay miedos que se pueden aprender, se están desarrollando estudios para averiguar cómo eliminar esos recuerdos para hacer desaparecer los problemas asociados.
De hecho, un equipo de científicos ya ha logrado excitar con luz las neuronas de la amígdala cerebral que juegan un papel crucial en los recuerdos relacionados con el peligro. Según los cuales, la investigación abre la puerta a nuevas dianas terapéuticas en el tratamiento de las fobias, el trastorno obsesivo-compulsivo o el de estrés postraumático.
La técnica, probada en ratones, consistió en estimular mediante un láser un grupo de neuronas de la amígdala cerebral, llamadas Tac2, previamente convertidas en sensibles a la luz. Estas neuronas son necesarias para almacenar en la memoria los recuerdos relacionados con el miedo. Los ratones que recibieron este tratamiento tenían aumentada la memoria a largo plazo, por lo que recordaban más el peligro.
Claro que esto no ha hecho más que empezar por lo que, en futuros trabajos, continuarán profundizando en la comprensión del mecanismo cerebral por el que se aprende a tener miedo.
Un miedo distinto
Por otro lado, cabe señalar que no todos los miedos provocan las mismas reacciones. Curiosamente, uno de los elementos más característicos de Halloween, la sangre, provoca en quienes la temen unos patrones de respuesta que difieren de los que aparecen en otros casos, incluyendo una tendencia al desmayo en algunos pacientes cuando ven heridas o sangre, algo que no ocurre en otras fobias y de lo que se desconoce su origen.
Las personas afectadas de una fobia específica (por ejemplo, las fobias a pequeños animales, como arañas o serpientes) suelen presentar una fuerte respuesta defensiva cuando se exponen a su objeto fóbico (como una fotografía del estímulo que temen). Esta respuesta consiste en un intenso temor o miedo que se acompaña de una conducta de evitación o huida.
Fisiológicamente, dicha respuesta se caracteriza por un aumento de la reactividad simpática, consistente en aumentos de la frecuencia cardiaca, presión arterial y frecuencia respiratoria, vasoconstricción de los vasos periféricos y aumento de la respuesta electrodérmica, así como un incremento de los reflejos defensivos (como la potenciación del parpadeo reflejo de sobresalto).
En cambio, el temor a la sangre constituye una excepción a este tipo de patrón de respuesta. Mientras que subjetivamente los pacientes con fobia a la sangre no se diferencian de otras fobias específicas (sienten miedo cuando ven sangre o heridas, por ejemplo), es en las respuestas fisiológicas donde se producen las mayores diferencias con otras fobias.
Los primeros estudios al respecto ya mostraron que en los fóbicos a la sangre la visión de sangre y heridas no producía una reacción defensiva sostenida en el tiempo (como aceleración cardiaca), sino más bien un patrón cardiaco bifásico compuesto por un aumento inicial de la frecuencia cardiaca y la presión arterial seguido inmediatamente de desaceleración cardiaca y disminución de la presión arterial (hipotensión). En aproximadamente 3 cuartas partes de los pacientes con fobia a la sangre, este descenso brusco puede provocar el desmayo (síncope vasovagal).
Sin embargo, no todos los estudios encuentran este patrón cardiovascular en la fobia a la sangre. Los investigadores han propuesto varias hipótesis acerca del origen de estas respuestas atípicas en la fobia a la sangre, que incluyen una sobrecompensación parasimpática de la aceleración cardiaca inicial, un desequilibrio en la activación simpática y parasimpática, la prevalencia de una respuesta de asco sobre una respuesta de miedo, o una alteración de la regulación emocional ante el estímulo temido.
Y es que el cerebro de alguien que tiene miedo a la sangre no actúa igual que el de otros miedosos. Los estudios mediante neuroimagen funcional muestran que durante la visión de imágenes de sangre, los fóbicos a ésta no presentan un aumento de actividad en la amígdala cerebral, al contrario de lo que sucede en otras fobias específicas.
Además, las imágenes de sangre provocan en los pacientes con fobia a la sangre un aumento de actividad en la región prefrontal (una región que se ha relacionado, entre otras cosas, con la regulación de la emoción), mientras que este aumento de actividad en esta región no se produce en otros casos.
A día de hoy, científicos de todo el mundo trabajan para determinar cuáles son los mecanismos cerebrales y psicofisiológicos que subyacen a esta fobia y por qué son diferentes de los que se observan en otras.
Referencias:
Constantino Méndez-Bértolo, Stephan Moratti, Rafael Toledano, Fernando López-Sosa, Roberto Martínez-Álvarez, Yee H Mah, Patrik Vuilleumier, Antonio Gil-Nagel y Bryan A Strange. “A fast pathway for fear in human amygdala”, Nature Neuroscience,13 de junio de 2016. DOI: 10.1038/nn.4324
Andero R, Daniel S, Guo JD, Bruner RC, Seth S, Marvar PJ, Rainnie D, Ressler KJ. “Amygdala-Dependent Molecular Mechanisms of the Tac2 Pathway in Fear Learning”. Neuropsychopharmacology. 2016 May 26. doi: 10.1038/npp.2016.77.
Sobre la autora: Maria José Moreno (@mariajo_moreno) es periodista
El artículo El miedo se esconde en el cerebro se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El fondo cósmico de microondas y el espejo de feria
Look At Us – We’re Beautiful 2 – Judithcarlin / Wikimedia Commons
Fíjate en el retrato superior, ¿a cuantas personas crees que corresponde en la realidad?¿Dos, tres, quizás cuatro? Si sabemos que el cuadro corresponde a una imagen distorsinada por un espejo de feria, podemos crear un algoritmo que, deshaciendo las deformaciones que provoca el espejo, algunas deducibles de la propia imagen, nos lleve a comprender que estamos en realidad ante una pareja.
Podemos pensar que el fondo cósmico de microondas (FCM) es un cuadro del universo observable. El estudio de los patrones que aparecen en este cuadro nos desvela la historia del universo. Pero las imágenes que vemos están distorsionadas por los efectos gravitatorios que los objetos masivos, como las galaxias, por ejemplo, tienen en el espaciotiempo, lo que se conoce como efecto de lente gravitacional. Un objeto masivo deforma el espacio tiempo convirtiéndolo en una lente que afecta a la trayectoria de los rayos de luz; de hecho, una lente gravitacional potente permite ver los objetos que están detrás de ella según nuestra línea de visión.
Fondo cósmico de microondas según los datos del satélite Planck publicados en 2015
Ahora un nuevo trabajo muestra que, como con el espejo de feria, se pueden eliminar estas distorsiones en el FCM usando la radiación de fondo en frecuencias de infrarrojo. Esta primera demostración de lo que ha dado en llamarse “delensing” (algo así como “deslentización”) podría ser muy útil para búsquedas futuras de señales de ondas gravitacionales en el FCM.
Durante los últimas décadas los cosmólogos han usado los mapas del FCM para determinar la geometría y la distribución de densidad del universo. Estudios posteriores, centrados concretamente en los patrones de polarización en el FCM, podrían suministrar información de las ondas gravitacionales que se cree que se originaron en la rápida expansión del universo tras el Big Bang. Sin embargo, el efecto de las lentes gravitacionales oscurece las señales de polarización.
Anisotropías en el fondo cósmico de infrarrojo.
Los propuestas que existían hasta ahora para esta deslentización recurrían a características del propio FCM para identificar los lugares donde existía un efecto de lente gravitacional. El equipo encabezado por Patricia Larsen, del Instituto de Astronomía y del Instituto Kavli de Cosmología (Reino Unido), ha desarrollado y comprobado un método de deslentización que se basa en algo externo al FCM, el llamado fondo cósmico infrarrojo (FCI), que es una luz difusa que proviene fundamentalmente de galaxias ricas en polvo donde se están formando estrellas. Los puntos brillantes en el FCI se corresponden a regiones de alta concentración de galaxias que deberían producir un efecto de lente gravitacional muy importante.
Los investigadores han usado un mapa del FCI suministrado por el satélite Planck para crear una plantilla de deslentización que después han aplicado al mejor mapa completo del FCM que existe (también de Planck). El mapa del FCM librado de los efectos de lente gravitacional muestra picos más definidos en el espectro de fluctuaciones de temperaturas, y esta mayor definición se corresponde con los modelos teóricos de lentes gravitacionales.
Referencia:
P. Larsen et al (2016) Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background Phys Rev. Lett. doi: 10.1103/PhysRevLett.117.151102
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo El fondo cósmico de microondas y el espejo de feria se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Metros o millas… Houston, tenemos un problema!
El 23 de septiembre de 1999, tras más de nueve meses de viaje entre la Tierra y Marte, la sonda espacial Mars Climate Orbiter se desintegró al entrar en contacto con la atmósfera del planeta rojo. La Mars Climate Orbiter, que tenía un coste de 125 millones de dólares y formaba parte de un programa espacial con un presupuesto de más de 300 millones de dólares, tenía como objetivo estudiar el clima y las condiciones atmosféricas del planeta Marte, así como servir de apoyo para la transmisión de datos de la Mars Polar Lander, ambas parte de la misión espacial Mars Surveyor’98.
Imagen artística, de la página de la NASA, de la Mars Climate Orbiter
Como puede leerse en el informe de la investigación que se realizó sobre el accidente de la Mars Climate Orbiter en noviembre de 1999 –Mars Climate Orbiter Mishap Investigation Board, Phase I Report– el accidente tuvo lugar por el uso de datos en el sistema imperial de medidas cuando se tenían que haber utilizado los datos en el sistema métrico decimal.
Desde la NASA se estaban realizando los cálculos para el impulso que debían de producir los motores, cada vez que se encendían para corregir la trayectoria del viaje a Marte de la Mars Climate Orbiter, en libras de fuerza multiplicado por segundos (lbr.sg), es decir, en el sistema inglés de medidas, mientras que el software de los ordenadores de la sonda operaban en Newtons segundo (Nw.sg), es decir, en el Sistema Internacional de Medidas. Así, cada vez que se encendían los motores para ir corrigiendo la trayectoria se iba acumulando un error en la misma, debido a esa discrepancia en los datos.
Al llegar a Marte, la sonda debía estar a una altura de 226 km sobre la superficie del planeta rojo, a partir de ese momento se realizaría una maniobra de aproximación hasta quedar estacionada en una órbita alrededor del planeta, sin embargo, la sonda pasó a tan solo 57 kilómetros de altura, destruyéndose por el contacto con la atmósfera.
Diagrama, basado en el que aparece en el informe de la investigación, comparando la trayectoria que debía haber llevado la Mars Climate Orbiter y la que realmente describió. Fuente: Commons wikimedia
Pero veamos de qué magnitud fue el fallo que se cometió al mezclar ambos sistemas de medidas. Imaginemos que el cálculo realizado por la NASA en Tierra ofrecía la información de que el impulso que debía darse al motor de la sonda espacial era de 10.000.000 libras (de fuerza) segundo, pero el ordenador de la sonda interpretaba ante esta información, puesto que su software trabaja en el sistema internacional de medidas, que eran 10.000.000 Newtons segundo. Teniendo en cuenta que 1 libra (de fuerza) son 4,5 Newtons, se tendría que
10.000.000 Newtons·segundo = 10.000.000 x (1/4,5) = 2.222.222 libras·segundo,
Es decir, se habría producido un déficit en el impulso de más de 7 millones de libras (de fuerza) segundo. Solo un 22% del impulso que se tenía que haber generado.
Este es solo uno de los ejemplos de los errores que se han producido en las últimas décadas por el uso simultáneo de dos sistemas de medidas distintos, el sistema internacional y el sistema imperial de medidas.
Primeras páginas del libro “Travels during the years 1787, 1788, & 1789: undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France” (1792), del escritor inglés Arthur Young
Antes de la revolución francesa, 1789, la situación de los sistemas de medidas era caótica. Cada país, pero lo que es peor aún, cada región dentro de un mismo país, tenía sus propios sistemas de medidas, pero incluso en ocasiones compartían el mismo nombre, lo que convertía en un problema una simple compra y venta de alimentos, utensilios o ganado en una feria comarcal, y en general, dificultaba las transacciones comerciales, la investigación científica y todo tipo de comunicación.
El escritor inglés Arthur Young (1741-1820) en la versión extendida, de cuatro volúmenes, de sus viajes por Francia, Travels during the years 1787, 1788, & 1789: undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France (W. Richardson,1792), comenta “en Francia, la infinita perplejidad que causa la profusión de medidas excede toda comprensión. No solo difieren en cada provincia, sino en cada distrito, y casi en cualquier población”.
En el libro La medida de todas las cosas (2003), su autor Ken Alder escribe que “algunos contemporáneos calculaban que, bajo la cobertura de unos ochocientos nombres, el Antiguo Régimen de Francia utilizaba la asombrosa cifra de unas doscientas cincuenta mil unidades diferentes de pesos y medidas”.
O en el libro Outlines of the evolution of weights and measures and the metric system (Macmillan, 1906), de William Hallock y Herbert T. Wade, los autores indican que “A finales del siglo pasado (dieciocho), en diferentes partes del mundo, la palabra “libra” se aplicaba a 391 unidades diferentes de peso y la palabra “pie” a 282 unidades diferentes de longitud”.
Como es lógico, en la antigüedad cada región había desarrollado sus propios sistemas de medida, en muchas ocasiones basados en el cuerpo humano (por lo que la medida dependía del tamaño medio de los habitantes de esa región) o en cuestiones culturales específicas de la región donde se establecían, pero el mundo, su cultura, su ciencia y su economía, cada vez se hizo más global y las diferentes medidas empezaron a chocar unas con otras.
Como hemos visto, la situación antes de la revolución francesa de las unidades de medida en Europa, y en el mundo, era un auténtico desastre. Como decía el matemático y filósofo Nicolás de Condorcet (1743-1794) en sus Observaciones sobre el Libro XXIX del “Espíritu de las Leyes” de Montesquieu (1793), “la uniformidad de los pesos y medidas solo pueden desagradar a los empleados de los tribunales de justicia que teman ver disminuido el número de pleitos, y a aquellos comerciantes a los que la disminución de beneficios va a afectar, en cuanto a que contribuye a convertir las transacciones comerciales fáciles y simples”.
Grabado en madera, de 1800, mostrando las nuevas unidades decimales que fueron las legales en Francia desde el 4 de noviembre de 1800. Grabador, L. F. Kabrousse; editor, J. P. Delion. Fuente: Gallica
Aunque ya habían existido intentos anteriores, tras la Revolución Francesa se ponen las bases para crear un sistema de medidas universal. En palabras de Condorcet “para todos los pueblos, para siempre”. Para tal fin, en 1790, se crea la Comisión de Pesos y Medidas, constituida por los científicos Jean-Charles Borda (1733-1799), Joseph-Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827), Gaspard Monge (1746-1818) y Nicolás Condorcet. Para alcanzar la universalidad, el sistema de medidas debía ser decimal (aunque inicialmente también se valoró la posibilidad del sistema duodecimal), sus valores derivados de la naturaleza (por ejemplo, el metro tomaría el valor de “una diezmillonésima parte de la circunferencia de la Tierra”), las unidades de medida derivadas deberían basarse en potencias de las unidades básicas y se debían utilizar prefijos para designar los múltiplos y submúltiplos de las unidades.
La historia del sistema métrico decimal es apasiónate y empieza con la aventura de la medición del meridiano que pasa por París para definir determinar el valor del metro, aunque este no es el objetivo de esta entrada. Sobre este tema existen buenos libros, como El metro del mundo (Anagrama, 2003) de Denis Guedj o el mencionado La medida de todas las cosas (2003), de Ken Alder.
Tras la instauración en Francia, no sin problemas, del Sistema Métrico Decimal, muchos otros países del entorno, así como de Latinoamérica, empezaron a adoptar a lo largo del siglo XIX este sistema de medidas universal, Países Bajos, España, Alemania, Italia, Portugal, Noruega, Suecia, el Imperio Austro-Húngaro, Finlandia, Perú, México, Venezuela, entre muchos otros.
Mapa del mundo mostrando el momento de la adopción del sistema métrico decimal, o su derivado el Sistema Internacional de Medidas, por parte de los diferentes países
En 1875, diecisiete países firmaron la Convención del metro, “anhelando la uniformidad y la precisión internacionales en los estándares de pesos y medidas”, y se crearon las organizaciones internacionales para velar por la uniformidad de los pesos y medidas a lo largo de todo el mundo, la Oficina Internacional de Pesas y Medidas, el Comité Internacional de Pesas y Medidas y la Conferencia General de Pesos y Medidas. Poco a poco los diferentes países del mundo se fueron sumando a estas organizaciones y adoptando el sistema métrico decimal.
En la Conferencia General de Pesos y Medidas de 1960 se estableció finalmente el Sistema Internacional de Unidades. Las unidades básicas del Sistema Internacional (SI) son siete, el metro (longitud), el kilogramo (masa), el segundo (tiempo), el amperio (corriente eléctrica), el kelvin (temperatura termodinámica), el mol (cantidad de sustancia) y la candela (intensidad lumínica). Y de estas unidades básicas se derivan las otras unidades, como por ejemplo, el hercio (frecuencia), el Newton (fuerza), el pascal (presión), el julio (trabajo), etc.
Como se muestra en el mapa anterior, en la actualidad solamente hay tres países que no se han sumado al Sistema Internacional de Unidades, que son Estados Unidos, Liberia y Birmania (Myanmar), aunque estos dos últimos están en el proceso de adopción del Sistema Internacional. Por otra parte, países que han adoptado recientemente el SI, como Gran Bretaña o Canadá, siguen utilizando su viejo sistema de medidas en muchos ámbitos de su vida, el sistema imperial (o inglés) de medidas, que es el que continúa utilizando Estados Unidos en la actualidad.
Entre las décadas de los años 1970 y 1980 hubo un intento fallido de adopción del sistema internacional de medidas en EE.UU, motivo por el cual existen algunas señales de tráfico con medidas en el sistema métrico decimal, como las señales de distancia de la interestatal 19 entre Tucson y Nogales
Entre las unidades del Sistema Imperial de Medidas están las yardas (en longitud), los acres (en área), los galones (en volumen), las libras (en masa), entre otras.
A continuación, veremos otros ejemplos de errores y catástrofes producidos por la confusión en el uso de estos dos sistemas de medidas, el Sistema Internacional y el Sistema Imperial. Estos ejemplos aparecen, entre otros sitios, referenciados en la página web de una asociación que existe en EE.UU. para la promoción del Sistema Internacional de Medidas fundada en 1916, la U. S. Metric Association.
Antigua pesa para báscula de 1 kilogramo
El primer ejemplo que traemos a esta entrada, aparte del inicial sobre la Mars Climate Orbiter, es un ejemplo sencillo de confusión entre kilogramos y libras de los que seguramente se habrán producido muchos, pero que no suelen ser recogidos en los medios de comunicación, a diferencia de este.
En 2001, se publicó en el San Francisco Business Times la noticia “Fabricantes, los exportadores piensan en métrico”. En ella se contaba la historia de un empresario norteamericano, Carlos Zambello, que había vendido un cargamento de arroz salvaje a un cliente japonés y como en la transacción había habido una cierta confusión, causándoles cierto bochorno, por no hablar de las pérdidas económicas.
Trigo salvaje
En concreto, a la compradora japonesa se le ofreció el arroz salvaje a un precio de 39 centavos… el problema es que ella estaba entendiendo que la oferta era de 39 centavos el kilogramo, mientras que el vendedor se estaba refiriendo a 39 centavos la libra. La cuestión es que como 1 kilogramo equivale a 2,2 libras, el coste del trigo salvaje era realmente de 85,8 centavos el kilogramo, mucho más de lo que pensaba la compradora, 39 centavos el kilogramo.
Una vez que se dieron cuenta del malentendido, el gerente general de la compañía The Wild Rice Exchange, Carlos Zambello, acabó aceptando que el precio del arroz salvaje vendido fuera su precio de coste, puesto que en el otro lado tenían a un buen cliente desde hacía muchos años, sin obtener ningún beneficio en la transacción, mientras que el comprador japonés, aunque pagó menos de lo que era su precio real, acabó aceptando pagar el precio de coste, más de lo que había pensado que era su precio de compra.
Otra historia con un malentendido entre kilogramos y libras se recogió en el periódico Los Angeles Times, en febrero de 2001. Bajo el titular “Mismeasure for measure” (que podríamos traducir como “Incorrecta medida para medir”) se contaba como el Zoológico de Los Ángeles había prestado su vieja tortuga galápago Clarence, de 75 años de edad, al Exotic Animal Training and Management Program de la Universidad de Moorpark (Moorpark College). Pero, durante la primera noche de la vieja tortuga en su nuevo hogar, esta se había escapado echando abajo uno de los postes de la cerca en la que se encontraba.
Clarence, la tortuga galápago de 75 años, que se escapó de su cerca de la Universidad de Moorpark, California. Fuente: Moorpark College
El Zoológico de Los Ángeles había avisado que la tortuga galápago era grande y que se necesitaba una cerca para un animal de un peso de 250, que es lo que construyó la Universidad de Moorpark. El problema estaba en que desde la institución universitaria habían interpretado que se estaba hablando de 250 libras, cuando realmente hablaban de 250 kilogramos, o lo que es lo mismo, unas 550 libras.
Nuestro siguiente ejemplo, nos lleva a uno de los últimos países en adoptar el Sistema Internacional de Medidas, Canadá, cuyo proceso de metrización empezó en la década de los años 1970, aunque no ha sido desarrollado completamente.
En julio de 1983 el avión Boeing 767-200 del vuelo 143 de Air Canadian se quedó sin combustible a mitad de su vuelo entre Montreal y Edmonton, debido a que la tripulación calculó mal el fuel que necesitaban para el viaje (junto con una serie de fallos en el sistema indicador de la cantidad de combustible del avión). Por suerte, se pudo realizar un aterrizaje de emergencia en una antigua base militar.
Posición en la que quedó el avión del vuelo 143 de Air Canada, en julio de 1983, tras realizar un aterrizaje de emergencia por haberse quedado sin fuel a mitad de su vuelo entre Montreal y Edmonton
El error en el cálculo de la carga de combustible necesaria se produjo debido a que el personal no tenía una formación adecuada en el sistema métrico decimal que se acababa de adoptar en Canadá, sustituyendo al sistema imperial.
La tripulación sabía que se necesitaban 22.300 kilogramos de fuel para realizar el viaje entre Montreal y Edmonton. Pero el avión ya tenía 7.682 litros en sus tanques, por lo que había que calcular cuánto fuel extra era necesario cargar en los tanques para realizar el viaje.
Teniendo en cuenta que el peso de 1 litro de fuel es de 0,803 kilogramos, entonces el peso del fuel que tenía ya el avión era de 7.682 litros x 0,803 kg/litro = 6.169 kg.
Por lo tanto, el avión necesitaba que se le añadieran a sus tanques 22.300 – 6.169 = 16.131 kg.
Luego, ¿cuántos litros de fuel debían de cargarse en el avión? Teniendo en cuenta de nuevo, que cada litro pesa 0,803 kilogramos, la cantidad de fuel necesario era de 16.131 kg x (1 litro /0,803 kg) = 20.088 litros.
La tripulación, sin embargo, tuvo en cuenta el factor de conversión de 1,77 (en lugar de 0,803), que era el que habían estado utilizando hasta entonces ya que 1 litro de fuel pesa 1,77 libras (tengamos en cuenta que 1 kilogramo son 2,205 libras, luego 0,803 kilogramos son 1,77 libras).
Por lo tanto, esta fue la cuenta que realizaron…
1.- el peso del fuel que aún quedaba en los tanques del avión era…
7.682 x 1,77 = 13.587 “kilogramos” (en realidad eran libras)
2.- el peso del fuel que había que añadir era…
22.3000 – 13.587 = 8.713 “kilogramos”
3.- luego, ¿cuántos litros calcularon que había que cargar en los tanques?
8.713 kg x (1 / 1,77) = 4.923 litros (el factor a utilizar debía de ser litros/kilogramo, aunque el dato que utilizaban de nuevo era litros/libra, 1/1,77)
En conclusión, cargaron solamente 4.923 litros de los 20.088 litros que realmente eran los necesarios.
Avión McDonnell Douglas MC-11F que realizaba el vuelo 6316 de Korean Air Cargo de Shanghai a Seoul en la década de los años 1990
En abril de 1999 el avión McDonnell Douglas MC-11F en su vuelo 6316 de Korean Air Cargo de Shanghai a Seoul se estrelló, muriendo las tres personas de la tripulación y otras 5 personas en tierra, así mismo, hubo 37 heridos en tierra.
Después del despegue el avión debía subir a una altura de 1.500 metros (que son 4.900 pies, puesto que 1 metro equivale a 3,28 pies). Cuando el avión subió a 4.500 pies (casi a 1.400 metros), el primer oficial informó al capitán de que la altura del avión debía ser de 1.500 pies (confundiéndose con los 1.500 metros que realmente debía de tener), pensando por lo tanto que el avión estaba 3.000 pies más arriba de lo que debía. Como consecuencia el capitán puso bruscamente el avión en descenso para intentar poner al avión a una altura de 1.500 pies (que son unos 460 metros), como consecuencia de esta maniobra el avión se volvió incontrolable y terminaría estrellándose en una zona industrial a 10 kilómetros del aeropuerto.
Los deportistas norteamericanos suelen sufrir su aislamiento del Sistema Internacional de Medidas en las competiciones deportivas, en particular, en los Juegos Olímpicos. Un ejemplo de este problema fue el no reconocimiento mundial de un record en atletismo. La atleta Carol Lewis realizó un salto de longitud que parecía ser un record mundial en los campeonatos NCAA Men’s and Women’s Indoor Track Championship celebrados en Pontiac, Michigan, en 1983. Sin embargo, su marca no fue reconocida como un record oficial, puesto que para que se considere un record oficial las medidas deben tomarse en el sistema internacional, es decir, en el sistema métrico decimal.
La atleta Carol Lewis en 1991
En Diciembre de 2003, el tren de la montaña rusa Space Mountain que se encuentra en el parque temático Tokyo Disneyland descarriló cuando llegaba a la estación. El descarrilamiento se produjo debido a la ruptura de un eje del tren. Por suerte, no hubo que lamentar ninguna desgracia y todo quedó en un susto.
Como resultado de la correspondiente investigación para aclarar los motivos del accidente, se descubrió que el eje se había construido con un diámetro más pequeño que las especificaciones de los planos del diseño. En el año 1995 se habían cambiado las medidas de los planes maestros para la construcción de la Space Mountain, del sistema imperial al sistema internacional de medidas. Cuando se fue a construir la Space Mountain de Tokyo en 2002, se tomaron los valores de las medidas de los planos del diseño anteriores a 1995.
Imágenes de la Space Mountain de Tokyo Disneyland. Fuente: Tokyo Disney Resort
Según el informe, mientras que en los planos del diseño se especifica que el espacio entre el eje y su cojinete debía de ser de 0,2 mm, realmente era de alrededor de 1 mm, lo cual creó una mayor vibración que hizo que se rompiera el eje. Recordemos que 1 pulgada son 2,54 centímetros, o recíprocamente, 1 cm equivale a 0,3937 pulgadas.
Y para terminar, un ejemplo relacionado con el volumen. En 2004 a un niño se le estuvo dando 5 veces la dosis prescrita por el médico de Zantac Syrup, un medicamento para reducir la producción del ácido estomacal, hasta que un mes más tarde el médico descubrió la confusión. Afortunadamente, el error no tuvo ninguna consecuencia grave para el bebé.
El médico había prescrito una dosis de 0,75 mililitros, dos veces al día, pero el farmacéutico escribió en el bote del medicamento “administrar 3/4 de cucharadita (teaspoon) dos veces al día”. Teniendo en cuenta que esta medida de Estados Unidos, 1 “cucharadita” (u.s. teaspoon), tiene la equivalencia en el sistema métrico decimal de 4,9 mililitros, se le estuvieron suministrando 3,675 mililitros, dos veces al día, es decir, casi 5 veces la dosis prescrita.
Humor gráfico aparecido en la revista “Industry Week” en 1981
Bibliografía
2.- Mars Climate Orbiter Mishap Investigation Board, Phase I Report, November 10, 1999
3.- Some Famous Unit Conversion Errors, Space Math, NASA
4.- Arthur Young, Travels during the years 1787, 1788, & 1789: undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France, W. Richardson,1792.
5.- Ken Alder, La medida de todas las cosas, Taurus/Santillana, 2003.
6.- William Hallock y Herbert T. Wade, Outlines of the evolution of weights and measures and the metric system, Macmillan, 1906.
7.- Nicolás de Condorcet, Observaciones sobre el Libro XXIX del “Espíritu de las Leyes” de Montesquieu, 1793.
8.- Denis Guedj, El metro del mundo, Anagrama, 2003.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Metros o millas… Houston, tenemos un problema! se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Vacunaos, por Jenner
Clara Grima no habla de vacunas, pero sí de algo muy relacionado: este mundo es muy pequeño, está muy conectado y eso lleva a paradojas.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Vacunaos, por Jenner se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El nylon lo creó un contable
A finales de los años veinte del siglo pasado la compañía estadounidense DuPont contrataba a un químico llamado Wallace Hume Carothers para dirigir la investigación fundamental en polímeros. El objetivo último de DuPont era intentar conseguir una forma barata y eficiente de sustituir la seda proveniente de Asia, donde el militarismo rampante de Japón estaba limitando cada vez más el suministro a Occidente.
Carothers contabilizando una reacción
Si bien el primer título de Carothers fue en contabilidad y administración, y a pesar de que se matriculase en Inglés (lo que llamaríamos lengua y literatura inglesas) en el Tarkio College, terminó doctorándose en química por la Universidad de Illinois. Su primer objetivo en DuPont era comprender la naturaleza de polímeros naturales como el caucho, la celulosa y la seda y, a partir de ahí, intentar imitarlos. El objetivo no declarado era conseguir el polímero sintético más grande conocido.
Carothers empleó reacciones orgánicas bien establecidas pero las aplicó al estudio de moléculas con dos centros reactivos, uno a cada extremo, que formasen los eslabones de una cadena, porque eso son los polímeros, cadenas de moléculas. Carothers y su grupo aprendieron muchas cosas interesantes acerca de los polímeros pero no consiguieron producir nada parecido a la seda. Bueno, no lo consiguieron hasta que alguien se puso a hacer el tonto en el laboratorio.
Julian Hill en 1930 externamente no parecía un niño precisamente.
Un día uno de los ayudantes de Carothers, Julian Hill, estaba jugando con una masa pastosa de poliéster que había en el fondo de un vaso de precipitados cuando se dio cuenta de que si cogía una porción de la masa con una varilla de vidrio y se dedicaba a estirarla todo lo posible (recordemos que estaba, literalmente, jugando) conseguía unos hilos que recordaban a la seda. Ahí quedó la cosa.
Días más tarde, aprovechando que el jefe había tenido que ir a una gestión a la ciudad, los ayudantes de Carothers decidieron averiguar cuánto podía estirarse aquello (la versión oficiosa dice que fue una competición a ver quien conseguía el hilo más largo): y para ello no tuvieron mejor ocurrencia que correr escaleras abajo portando varitas de vidrio con un pegote de poliéster en la punta (las caras de los que se cruzasen por el camino tuvieron que ser dignas de ver). La cuestión es que terminaron con hilos “muy sedosos”, que hoy sabemos se deben a la orientación (el ordenamiento en una dirección) de las moléculas de polímero.
Eran juguetones, pero eran químicos. Pensaron que si esos hilos sedosos tuviesen que emplearse para confeccionar un tejido no sería muy útil, ya que el poliéster tiene un punto de fusión demasiado bajo (nada de tenerlo mucho rato al sol, ni cerca de un fuego) y una solubilidad en agua demasiado alta (nada de usarlo un día de lluvia). Aunque estos dos problemas del poliéster se solucionarían más tarde, los ayudantes de Carothers subieron de nuevo las escaleras y decidieron volver a bajarlas corriendo, esta vez llevando una poliamida que tenían en la estantería en la punta de sus varitas, a ver si conseguía el mismo efecto. Funcionó.
Nylon 6-6, en lila resaltados los enlaces de hidrógeno que unen las distintas moléculas de polímero orientadas en una dirección
Cuando el jefe volvió se encontró a la gente de su departamento sorprendentemente sudorosa y muy excitada. El grupo de Carothers necesitaría 10 años para transformar la idea tras aquellos hilos sedosos de poliamida en un producto comercializable parecido a la seda: había nacido el nylon. Su fecha de nacimiento oficial como polímero fue el 28 de febrero de 1935 cuando Gerard Berchet, bajo la dirección de Carothers, consiguió obtener poliamida 6-6 a partir de hexametilendiamina y ácido adípico.
El nuevo material, presentado en la Feria Mundial de Nueva York de 1939, fue un éxito inmediato. Aunque se comercializó por primera vez en cepillos de dientes, su gran éxito vino cuando se vendieron más de cuatro millones de pares de medias en unas pocas horas en la primera gran venta masiva que se hizo en la ciudad de Nueva York en 1940. Sin embargo, todo este éxito comercial de cara al público se vería eclipsado cuando casi inmediatamente el acceso al material tuvo que ser restringido por las demandas del mismo en la fabricación de paracaídas.
Ríete tú de las colas para comprar la nueva iCosa.
Carothers, que ya había advertido a los representantes de DuPont cuando fueron a contratarle a Harvard en 1928 que tenía momentos depresivos, no vivió para ver su éxito. Se había suicidado (como químico orgánico que era, usando cianuro de potasio disuelto en zumo de limón) en 1937.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo El nylon lo creó un contable se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Depuración conjunta de dioxinas y NOx en incineradoras de basura
La alta generación de residuos y las limitaciones legislativas medioambientales obligan a diseñar programas de prevención, reutilización y reciclado para gestionar la basura. Sin embargo, los residuos sólidos urbanos (RSU) que no entran en estos programas son incinerados, y así pueden generar compuestos perjudiciales —óxidos de nitrógeno y dioxinas, entre otros— que se deben tratar antes de ser liberados a la atmósfera.
La doctora de la UPV/EHU Miren Gallastegi ha investigado las posibilidades de la tecnología catalítica en las plantas incineradoras de residuos sólidos urbanos, para reducir las emisiones de estos contaminantes de manera más eficiente, realizando su depuración a temperatura más reducida y, en consecuencia, de forma más amigable.
El grupo de investigación Tecnologías Químicas para la Sostenibilidad Medioambiental (TQSA) del Departamento de Ingeniería Química de la UPV/EHU investiga las tecnologías catalíticas con el fin de ofrecer alternativas más sostenibles frente a los modelos tradicionales. Hasta ahora se había observado, pero no estudiado científicamente, que es posible eliminar los óxidos de nitrógeno y destruir las dioxinas de forma independiente en dispositivos diferentes y bajo diferentes condiciones. Sin embargo, no se había constatado mediante una investigación científica en qué condiciones y cómo se pueden producir los dos procesos simultáneamente, lo que se denomina “intensificación de procesos”, con el consiguiente ahorro energético.
Miren Gallastegi ha analizado el proceso conjunto, es decir, la manera de depurar de forma simultánea los óxidos de nitrógeno (NOx) y las dioxinas. Estas últimas partículas son especialmente tóxicas a bajos niveles y se generan en la combustión de residuos que llevan cloro en su composición como, por ejemplo, algunos plásticos (polímeros) que quedan fuera de la cadena de reciclaje y reutilización. En su investigación, ha sintetizado y utilizado catalizadores, tanto convencionales (basados en óxidos de vanadio, wolframio y titanio) como nuevas formulaciones alternativas (basadas en óxido de manganeso). Ha conseguido acelerar las reacciones químicas deseadas de eliminación de óxidos de nitrógeno y destrucción de dioxinas a menor temperatura y de forma más eficiente.
Tras analizar los diferentes procesos químicos que ocurren sobre el catalizador, Gallastegi ha constatado es posible por un lado reducir los óxidos de nitrógeno a nitrógeno y, por otro, destruir las dioxinas, transformándolas en compuestos gaseosos inertes. Es decir, a pesar de la distinta naturaleza química y reactividad de ambas moléculas, un mismo catalizador del tipo de los desarrollados, puede realizar al mismo tiempo los dos procesos tan distintos. Es un sistema combinado bautizado con el nombre dDiNOx (depuración conjunta de dioxinas y NOx).
En estos momentos, diez incineradoras del estado están utilizando tecnología catalítica para la transformación de los óxidos de nitrógeno en nitrógeno. Sin embargo, atrapan las dioxinas sobre filtros de carbón activo que, con posterioridad requieren gestión, tratamiento y control adicional. “La introducción de los nuevos catalizadores que hemos desarrollado y la optimización de las variables de proceso, permitiría la utilización de la infraestructura de las actuales plantas de incineración (con escasas modificaciones) para la eliminación simultánea de los contaminantes. Esta nueva disposición presenta la gran ventaja de destruir las dioxinas en lugar de su absorción y posterior gestión de los actuales filtros, que podrían eliminarse. Es una opción muy beneficiosa para el medio ambiente, que requiere escasa inversión en instalación y conlleva un importante ahorro energético”, explica Miren Gallastegi.
Referencia:
M. Gallastegi-Villa, A. Aranzabal, Z. Boukha, J.A. González-Marcos, J.R. González-Velasco, M.V. Martínez-Huerta, M.A. Bañares (2015) Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas Catalysis Today doi: 10.1016/j.cattod.2015.02.029
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Depuración conjunta de dioxinas y NOx en incineradoras de basura se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Superbacterias
El mes de noviembre del pasado año se descubrió en China que un gen bacteriano denominado mcr-1 confiere resistencia a la colistina. Dicho así puede parecer banal. Pero es todo lo contrario: fue un descubrimiento preocupante. La colistina es un antibiótico de último recurso que sólo se administra cuando todos los demás antibióticos no consiguen acabar con una infección. Es, por lo tanto, una de las últimas líneas de defensa frente a las bacterias denominadas multirresistentes, esto es, bacterias que han desarrollado resistencia a muchos antibióticos.
El gen mcr-1 no forma parte del cromosoma bacteriano, sino que se encuentra en un plásmido. Los plásmidos son pequeños fragmentos de ADN independientes del cromosoma, y son capaces de moverse de una bacteria a otra con facilidad -lo que se denomina transferencia horizontal-, expandiendo la resistencia a los antibióticos entre diferentes cepas y especies bacterianas. A partir de su descubrimiento en China, otros países se pusieron manos a la obra en busca de bacterias que contuviesen el mcr-1, y ya ha sido hallado en África, Europa, Norteamérica y Sudamérica.
La resistencia a los antibióticos es un fenómeno lógico a la luz de la selección natural. Cuando se utiliza uno de ellos para combatir una infección bacteriana se está ejerciendo sobre las bacterias una “presión selectiva”. Bajo esas circunstancias, si alguna de las bacterias tiene un gen que confiere resistencia a ese antibiótico, esa bacteria sobrevivirá, se multiplicará, y legará esa resistencia a las bacterias de las siguientes generaciones. La probabilidad de que ocurra tal cosa es muy baja, pero por baja que sea, si un antibiótico es utilizado en un número suficientemente alto de ocasiones, antes o después alguna de las bacterias atacadas resultará ser resistente al mismo. Y entonces esa bacteria se multiplicará, hasta ser combatida mediante otro antibiótico. El problema es que el uso masivo de antibióticos de amplio espectro –que atacan a bacterias de muy diferentes variedades- ha hecho que cada vez sea menor el tiempo que transcurre desde que se empiezan a utilizar hasta que surge alguna cepa resistente. Y así van apareciendo cepas resistentes a más y más antibióticos: son las llamadas bacterias multirresistentes o superbacterias.
Antes se descubrían nuevos antibióticos a un ritmo suficientemente alto como para ir compensando la aparición progresiva de nuevas resistencias. Pero eso ha cambiado. Cada vez aparecen más rápidamente porque cada vez se utilizan los antibióticos de forma más masiva, no solamente para combatir infecciones bacterianas en seres humanos, sino –erróneamente- también para atacar infecciones víricas y, de modo preventivo, en algunos países para tratar al ganado, porque de esa forma engorda más rápidamente.
Hay quien opina que nos dirigimos a un mundo en el que los antibióticos dejarán de ser eficaces. Nos hemos acostumbrado a vivir con ellos. Descartamos casi completamente que las infecciones bacterianas puedan llegar a ser una amenaza real en nuestras sociedades. Y sin embargo, hay motivos para la alarma. Se desarrollarán nuevos antibióticos, por supuesto. Y quizás también se desarrollen nuevas terapias o se recuperen terapias antiguas que han demostrado ser eficaces, como el tratamiento con bacteriófagos –virus que atacan bacterias- como se llegó a hacer en el pasado con éxito en la antigua URSS. Pero la perspectiva de un mundo sin antibióticos eficaces es una perspectiva aterradora en la que la enfermedad, el sufrimiento y la desdicha estarán mucho más presentes entre nosotros que en la actualidad. Para evitar que esos malos augurios lleguen a cumplirse sólo hay dos caminos: hacer un uso más moderado y racional de los antibióticos, e investigar más para desarrollar terapias eficaces, sea con antibióticos o de cualquier otro modo.
—————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————————
Este artículo fue publicado en la sección #con_ciencia del diario Deia el 5 de junio de 2016.
El artículo Superbacterias se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 ¿Esto es una bomba? Esto es una bomba
En la carrera por construir formas eficientes de destrucción nada gana a la imaginación de un físico teórico. Mario Herrero lo ilustra.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 ¿Esto es una bomba? Esto es una bomba se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Proyecto Mohole, un fracaso que no hacía falta
El objetivo del proyecto era simplemente hacer un agujero en el fondo del mar. Pero no un agujero cualquiera, sino el más profundo que jamás hubiese hecho la humanidad. Se llamó proyecto Mohole y comenzó en 1957; en 1966 el Congreso de los Estados Unidos decidió que ya estaba bien de gastar dinero y fue cancelado. Su objetivo: alcanzar la discontinuidad de Mohorovičić, la interfaz entre la corteza terrestre y el manto.
La discontinuidad de Mohorovičić está marcada con el número 2
Esta discontinuidad fue descubierta por el sismólogo croata Andrija Mohorovičić en 1909, quien se dio cuenta de que las ondas sísmicas que volvían de las profundidades indicaban que debía existir una zona a varios kilómetros de profundidad en la que se producía un cambio brusco en la velocidad de estas ondas sísmicas. Esta zona define la base de la corteza terrestre y marca un cambio de composición: la superficie de separación entre los materiales rocosos menos densos de la corteza, formada fundamentalmente por silicatos de aluminio, calcio, sodio y potasio, y los materiales rocosos más densos del manto, constituido por silicatos de hierro y magnesio. La profundidad de Moho (que es como se llama menos formalmente la discontinuidad) varía entre los 25-40 km en los continentes y los 5-10 km bajo el suelo oceánico, y su espesor máximo es de unaos 500 m.
Profundidad de la discontinuidad de Mohorovičić
Antes de seguir conviene señalar que, tras la aceptación universal de la tectónica de placas, los geólogos llegaron a la conclusión que más importantes que los cambios en la composición son los cambios en la manera de deformarse a la hora de entender la estructura de la Tierra. Por eso actualmente dividen la parte más externa del planeta en litosfera (rígida), que incluye la corteza y la parte superior del manto, que cubre la mucho más deformable astenosfera.
El proyecto Mohole (de Moho y “hole”, agujero en inglés) fue una ocurrencia de un grupo, informal, de científicos asociados a la marina de los Estados Unidos y que se creó en los años cincuenta. El grupo lo lideraba Gordon Lill de la Oficina de Investigación Naval y se dedicaba a recopilar ideas y proyectos de investigación de los científicos de la armada que no encajaban en ninguna parte, de ahí el nombre del grupo: Sociedad Miscelánea Americana (AMSOC, por sus siglas en inglés). Para ser aceptado en el grupo solo era necesario que dos o más miembros estuviesen juntos.
Funafuti
Antes del Mohole, todas las perforaciones que se hacían en la corteza terrestre tenían como objetivo encontrar petróleo o gas y se habían limitado a tierra firme y a aguas poco profundas. Perforar con fines científicos era mucho menos común. Este tipo de perforaciones habían comenzado con la idea de determinar la estructura, composición e historia de las islas coralinas. En 1877 la Royal Society de Londres financió una perforación que llegó a los 350 m en Funafuti, el atolón en el que está la capital de Tuvalu, en el Pacífico Sur. En 1947, antes de los ensayos nucleares en Bikini, una perforación llegó en este atolón a los 780 m. Finalmente, en 1952 una prospección en Enewetak consiguió llegar a la corteza basáltica debajo de la roca coralina a una profundidad de 1200 m, aún muy lejos de Moho. A lo largo de los años cincuenta algunos países, notablemente Canadá y la Unión Soviética, anunciaron públicamente proyectos de perforaciones en la corteza terrestre; no se conoce que se llevaran a cabo.
El proyecto Mohole presentado por la AMSOC consiguió financiación pública para la idea de hacer la perforación en el fondo oceánico, todo un reto tecnológico para la época. El proyecto era perforar a una profundidad de agua de miles de metros, algo nunca hecho hasta entonces.
Si bien el proyecto consiguió dos perforaciones notables, primero a una profundidad marina de 950 m y después otra a 3560 m, no llegó ni a aproximarse a Moho. El proyecto Mohole, probablemente uno de los grandes proyectos públicos de gran ciencia (el primero fue secreto y fue el proyecto Manhattan, que creó la bomba atómica) terminó cuando se quedó sin dinero en 1966 siendo considerado un fracaso. Dos años antes AMSOC se había disuelto.
CUSS I
Con todo, el proyecto demostró que la perforación en el suelo oceánico usando barcos era posible (el CUSS I empleado en el proyecto, fue uno de los primeros barcos del mundo capaz de perforar en profundidades de agua de hasta 3.600 m, mientras mantenía la posición en un radio de 180 m) y dio pie, además, al Proyecto de Perforación en Mares Profundos de 1968, que se dedicó a investigar las capas de sedimentos del fondo oceánico.
El principal logro del proyecto Mohole fue convertir la investigación del suelo marino en una empresa multinacional, ya sean prospecciones científicas o llevadas a cabo por compañías transnacionales. En los 50 años transcurridos desde la finalización del proyecto Mohole, sin embargo, ningún proyecto ha llegado a Moho perforando el fondo del mar. Lo soviéticos fueron los que estuvieron más cerca, con una perforación de 12,262 m en tierra firme, en la península de Kola, en 1989.
Según cuentan las crónicas, el proyecto Mohole fracasó por falta de financiación suficiente y porque estuvo mal gestionado. De hecho, puede que la informalidad de AMSOC fuese en parte responsable de iniciar un proyecto que era tecnológicamente interesante pero cuyo objetivo científico era dudoso.
Chert
¿Por qué era dudoso? A finales del siglo XIX varios científicos europeos se habían dado cuenta de que la corteza oceánica afloraba en los Alpes en forma de capas de chert (sedimentos del suelo marino hechos roca, litificados) superpuestas a capas basálticas (que corresponderían con la corteza oceánica), superpuestas a su vez a capas ultramáficas (rocas de alta densidad ricas en hierro y magnesio); esta estructura se conoce como trinidad de Steinmann, en honor de Gustav Steinmann. En general, estas asociaciones de rocas se llaman ofiolitas y la transición de la capa basáltica a la ultramáfica no sería otra cosa que la discontinuidad de Mohorovičić, ahí, a simple vista.
¿Moho a la vista? Ofiolita de Terranova
Para saber más:
El proyecto Mohole – Wikipedia
Project Mohole – National Academies
Este post ha sido realizado por César Tomé López (@EDocet) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo Proyecto Mohole, un fracaso que no hacía falta se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Si Pitágoras fuese nutricionista
El amor de Pitágoras por los triángulos supondría un riesgo para tu salud. Aitor Sánchez sobre las falacias alimentarias.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Si Pitágoras fuese nutricionista se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Realidad conexa, porque todo está conectado.
Llevamos varias semanas hablando de artistas científicos, de colaboraciones interdisciplinares exitosas y de la necesidad de encontrar caminos transversales entre ciencia y arte.
A veces, para un espectador poco acostumbrado a este enfoque interdisciplinar, esta búsqueda de caminos confluyentes, esas interrelaciones, puede parecer forzada, artificial, pero no lo es. Sencillamente, lo que nos ocurre es que no sabemos verlas, que no nos hemos parado a buscarlas.
Realidad Conexa es una nueva iniciativa del programa Mestizajes, del Donostia International Physics Center (DIPC), destinada a mostrarnos de manera visual, dinámica y accesible para todo tipo de público esas conexiones, esos encuentros que no sabemos ver.
La premisa con la que Gustavo Ariel Schwartz, fundador y director del Programa Mestizajes, y Ana Montserrat Rosel, guionista y directora de TV, se enfrentaron al proyecto es que “todo, absolutamente todo, está conectado”. Se trata de exponer de manera sencilla, visual y comprensible que el conocimiento humano no está formado por compartimentos estancos independientes unos de otros, sino por puntos que se conectan unos con otros a través de líneas que están ahí, a nuestro alcance, y que solo tenemos que aprender a ver. Los caminos para llegar al conocimiento no son únicos, desde distintos puntos de salida se puede llegar a la misma meta, se llega de hecho al mismo punto, y esas rutas distintas son todas igualmente válidas y enriquecedoras.
El proyecto, en esta primera entrega (esperamos que sean muchas más), consta de 8 cápsulas de dos minutos de duración que dejan en el espectador diferentes sensaciones. Primero cierta desconfianza ¿qué van a contarme?, segundo sorpresa ¿en serio, cómo no sabía esto?, tercero asombro, cuarto y último curiosidad por saber más. Esta última reacción es la que Realidad Conexa busca, encender la chispa de la curiosidad es un poderoso acicate para mover hacia el conocimiento.
Hasta ahora se han publicado cuatro cápsulas, la presentación y tres episodios más, en las que con un lenguaje claro, preciso e identificable se nos muestran diferentes conexiones para abordar nuestra realidad.
En Borges y la memoria, la primera frase ya nos deja con ganas de saber qué van a contarnos porque apela a algo que todos conocemos: “Pensar es olvidar. Olvidar para recordar”. Con este gancho la voz en off nos lleva a conocer la historia de la increíble coincidencia entre un personaje de Borges, Funes El Memorioso, y Salomón Shereshesky, el hombre que recordaba todo. Ficción y realidad coincidentes en el tiempo pero no en el espacio, una historia que nos sorprende, nos asombra y, después, nos deja pensando ¿cuánto recuerdo yo?, ¿qué hago con mi memoria?, ¿cómo la utilizo?, ¿recuerdo u olvido?
En Arte, Literatura y Ciencia, el gancho para atraer nuestra atención es la frase que, a mi juicio, es la esencia del enfoque de todo el proyecto: “El pintor comprende la realidad, el escritor controla la historia y el científico describe verdades”. Esta cápsula ilustra una idea que en el Cuaderno de Cultura Científica se ha tratado muchas veces: cómo el conocimiento se abordaba de una manera global en la Antigüedad y el Renacimiento y cómo el siglo XX constituye una ruptura de ese acercamiento.
En Magia y neurociencia, el enfoque de la conexión está centrado en cómo algo tan poco científico como la magia y los trucos puede ayudar a los neurocientíficos a conocer cómo decide nuestro cerebro lo que percibimos y lo que no. ¿Prestamos atención a lo que queremos o creemos prestar atención mientras en realidad nuestro cerebro nos engaña?
El resto de las cápsulas irán publicándose en las próximas semanas en el Canal Mestizajes del DIPC y tratarán temas tan interesantes como la relación entre el poema Eureka de Poe y la infinitud del Universo, la colaboración inesperada entre las proteínas y los videojuegos, o la conexión entre nuestra preferencia al girar la cabeza para besar, los retratos de Rembrandt y el cerebro. También aprenderemos cómo el placer que las grandes obras de la literatura o el desagrado de los peores textos escritos responden a patrones matemáticos o cómo Cezanne intuyó mucho antes que la ciencia que lo que creemos ver no es lo que hay sino una construcción de nuestro cerebro.
Me gustaría señalar, por último, que el aspecto formal de las cápsulas es fabuloso y está muy cuidado. En una época de bombardeo visual una buena idea, como es Realidad Conexa, no puede confiarse en la excelencia de su planteamiento intelectual y debe cuidar su presentación para hacerse atractiva, interesante y tener una imagen característica. Para esto, el lenguaje visual, los grafismos, la música y la locución deben tener una marcada personalidad que les dé continuidad y que sirva para que el espectador, a pesar de estar inmerso en el visionado de una cápsula en concreto, sepa identificar de un solo vistazo cualquier otra.
Realidad conexa es una iniciativa original, atractiva, y esperemos que exitosa, que busca provocar asombro y curiosidad, y que el espectador se plantee preguntas sobre sí mismo, preguntas qué pueden parecer “tontas” pero qué son el camino para querer saber más: ¿hacia qué lado beso? ¿Por qué me gustan más los libros con grandes exposiciones que los que tienen mucho diálogo? ¿Lo que veo es lo que hay?
Otro objetivo del proyecto es buscar que las distintas disciplinas aprendan a mirarse y sobre todo aprendan a verse, que sean capaces de visualizar esas líneas de puntos que los conectan para recorrer esas conexiones y llevar a cabo colaboraciones fructíferas y provechosas para ellos y para todos.
Realidad conexa. No dejéis de verla, os sorprenderá.
Sobre la autora: Ana Ribera (Molinos) es historiadora y cuenta con más de 15 años de experiencia en el mundo de la televisión. Es autora del blog Cosas que (me) pasan y responsable de comunicación de Pint of Science España.
El artículo Realidad conexa, porque todo está conectado. se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Inflación caliente à la Higgs
Casi seguro que has oído hablar del Big Bang, ese acontecimiento, por llamarlo de alguna manera, que marca el comienzo de nuestro universo. Lo que es posible que no sea tan seguro es que estés familiarizado con el concepto de inflación cósmica.
La inflación cósmica es una teoría que afirma que muy poco tiempo después de esa singularidad que es el Big Bang, y por poco tiempo queremos decir 10-36s, y durante solo un momento, porque terminó a los 10-32s del Big Bang, el universo (el espacio) sufrió un crecimiento exponencial enorme. Tras este periodo inflacionario el universo siguió, y sigue, expandiéndose pero a un ritmo muchísimo menor.
La inflación cósmica surgió para explicar el origen de la estructura a gran escala del universo. Muchos físicos creen también que explica por qué es igual en todas direcciones (isótropo), por qué el fondo cósmico de microondas, el rastro más cercano al Big Bang que podemos observar, se distribuye de forma homogénea en el cielo, por qué el universo es plano y por qué no se han observado los monopolos magnéticos (los equivalentes a las cargas eléctricas positivas y negativas que se pueden encontrar por separado).
Pero los científicos no cesan de investigar posibilidades hasta que una de ellas demuestra que es el modelo que mejor describe la realidad. Así, esta descripción que hemos dado se corresponde a la versión “fría” de la inflación cósmica. Pero existe otra versión, la “caliente”. Y estos días se ha publicado un resultado que podría afianzarla como competidora.
Si la inflación fría data de los años ochenta del siglo XX, la versión caliente es de mediados de los noventa. Sin embargo, en veinte años esta versión no ha avanzado tanto como para ser considerada una teoría completa. Ello se debe a que, en este caso, los investigadores no han sido capaces de construir un modelo sencillo de la inflación caliente a partir de primeros principios. De hecho esto se consideraba poco menos que imposible. Hasta ahora.
En un trabajo encabezado por Mar Bastero-Gil, de la Universidad de Granada, y en el que es coautor el padre de la idea de la inflación caliente, Arjun Barera, de la Universidad de Edimburgo (Reino Unido), los autores toman prestado un concepto de las teorías de física de partículas para derivar exactamente eso, un modelo a partir de primeros principios.
En la inflación estándar cualquier radiación preexistente se estira y dispersa durante esta breve fase expansiva y no se produce nueva radiación. La temperatura del universo, por tanto, cae vertiginosamente y es en un periodo posterior en el que el universo recupera su temperatura y se llena de nuevo de radiación (termalización). La inflación caliente es más sencilla. Se produce constantemente nueva radiación por un fenómeno llamado desintegración del campo inflatón (es este campo el que da lugar a la inflación); la temperatura no baja drásticamente, sino que se mantiene alta (de ahí lo de inflación caliente) y no hace falta introducir una fase de recalentamiento. A pesar de ser una idea más sencilla, irónicamente, la inflación cósmica necesitaba echar mano de, literalmente, miles de campos adicionales acoplados al de inflación para justificar su masa.
Lo que Bastero-Gil y sus colaboradores han hecho ha sido utilizar el mecanismo que estabiliza la masa del bosón de Higgs en las teorías de física de partículas, reduciendo de esta manera el número de campos necesario a un muy manejable cuatro y sin tener que introducir correcciones de masa. A este recurso lo llaman “pequeño Higgs”.
La comparación que los autores hacen entre las predicciones observacionales de su modelo con los límites a la inflación que se deducen de las observaciones del satélite Planck del fondo cósmico de microondas indican que encajan bastante bien.
En la teoría inflacionaría todo encajaba salvo algunos flecos. Ahora esto se pone interesante.
Referencia:
Mar Bastero-Gil, Arjun Berera, Rudnei O. Ramos, and João G. Rosa (2016) Warm Little Inflaton Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.151301
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Inflación caliente à la Higgs se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: