Subscribe to Cuaderno de Cultura Científica feed
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Updated: 40 min 34 sec ago

Las matemáticas de ‘La vida instrucciones de uso’

Wed, 2016/10/12 - 11:59

la-vida-instrucciones-de-usoLa vida instrucciones de uso es una novela de Georges Perec, uno de los más conocidos componentes del grupo OuLiPo (ver [2]).

Se trata de un texto complejo en el que Perecrelata lo que acontece en cada uno de los espacios de un edificio imaginario de París, en una fecha concreta.

En los noventa y nueve capítulos del libro se recorren sótanos, apartamentos, desvanes, tramos de escalera,… A lo largo de este itinerario se conocen las vidas de los inquilinos –un total de mil cuatrocientos sesenta y siete personajes–, todos ellos relacionados de algún modo con el protagonista, Perceval Bartlebooth, que pasa sus días haciendo y deshaciendo rompecabezas elaborados a partir de fotografías tomadas durante sus viajes.

Perec escribió esta novela entre 1976 y 1978, aunque en el ensayo Especies de espacios(publicado en 1974, ver [5]) el autor ya hablaba sobre lo que en aquel momento era aún un solo un boceto:

La novela –cuyo título es La Vida instrucciones de uso– se limita (si puedo emplear este verbo para un proyecto cuyo desarrollo final alcanzará algo así como cuatrocientas páginas) a describir las habitaciones puestas al descubierto y las actividades que en ellas se desarrollan, todo ello según procesos formales en cuyo detalle no me parece obligado entrar aquí, pero cuyos solos enunciados me parece que tienen algo de seductor: poligrafía del caballero (y lo que es más, adaptada a un damero de 10×10), pseudo-quenina de orden 10, bi-cuadrado latino ortogonal de orden 10 (aquel que dijo Euler que no existía, pero que fue descubierto en 1960 por Bose, Parker y Shrikhande).

Esas tres trabas –ver la definición en [2]– de las que habla Perec aparecen, efectivamente, en su novela; son restricciones matemáticas que el autor se impone para estructurar su texto. Vamos a explicar en que consisten.

PRIMERA TRABA: La poligrafía del caballero

Cada hueco del inmueble –sótanos, apartamentos, desvanes, tramos de escalera, etc.– corresponde a una casilla de un cuadrado 10×10. Cada lector es un visitante que recorre el edificio, leyendo sus capítulos –las casillas del cuadrado 10×10–, pero de manera no convencional. Perec distribuye los capítulos usando como modelo la poligrafía del caballerodel ajedrez. Se trata de un caso particular de camino hamiltoniano: debe recorrerse el tablero 10×10 representando el edificio, pasando una y sólo una vez por cada casilla. Perec encontró por sí mismo este recorrido para su edificio-tablero, ¡con cien casillas en vez de las sesenta y cuatro del ajedrez! El autor introduce un cambio local en la traba, una excepción a la regla: no describe la casilla del desplazamiento 66 –que corresponde a un sótano– sino que salta a la siguiente casilla. Por esta razón el libro tiene noventa y nueve capítulos y no cien.

la-vida-instrucciones-de-uso-2Solución del problema del caballo en la novela. Imagen extraída de Wikipedia.

Una vez fijado el recorrido del edificio, Perec debe decidir qué colocar y dónde hacerlo. Para ello, procede en dos etapas, introduciendo las otras dos trabas aludidas.

SEGUNDA TRABA: El bicuadrado latino ortogonal de orden 10

Como ya hemos comentado, el edificio se representa como un cuadrado 10×10. Perec asigna a cada casilla-capítulo dos números formando un cuadrado latinocada dígito está presente una sola vez en cada línea y en cada columnay ortogonal–los dos números en la misma casilla sólo se emparejan una vez en ese orden–. Usando estos pares de números, el autor llega a un cuaderno de cargas (ver [4]) en el cual, para cada capítulo, se describe una lista de veintiún pares de temas –autores, mobiliario, animales, colores, sentimientos, música, adjetivos, etc.– que deben figurar en él. Es decir, a cada par (a,b) del bicuadrado latino le corresponde el elemento a de la primera lista y el b de la segunda. Perec hace aparecer en cada capítulo los cuarenta y dos términos así obtenidos…

El bicuadrado latino ortogonal usado en la novela. Imagen extraída de Wikipedia.El bicuadrado latino ortogonal usado en la novela. Imagen extraída de Wikipedia.

TERCERA TRABA: La pseudo-quenina de orden 10

Como vimos en [1], no existen queninas –generalización de una sextina–de orden 10. Por ello Perec cambia la permutación propuesta por Raymond Queneau (ver [1]) por otra que denomina pseudo-quenina de orden 10. Este cambio le permite generar de manera no aleatoria bicuadrados latinos diferentes, evitando elegir para cada casilla los términos de la misma lista de los veintiún pares elaborados. Por ejemplo, en el capítulo 23, que corresponde a la casilla (4,8), aparece el par de números (6,5), por lo que debe utilizarse una cita de Verne (sexto autor en la primera lista de autores del cuaderno de cargas) y una de Joyce (quinto autor en la primera lista de autores del cuaderno de cargas), etc.

En el capítulo 23 aparece el par (6,5).En el capítulo 23 aparece el par (6,5).

La lectura de La vida instrucciones de uso no es sencilla… pero, ¿a quién le gustan las cosas sencillas?

Bonus

Las matemáticas no sólo aparecen en la estructura de la novela. El capítulo XV se dedica a Mortimer Smautf, el asistente de Perceval Bartlebooth. En uno de los viajes realizados junto al protagonista, un descubrimiento le convierte en un obsesivo calculador (fragmento extraído de [3]):

… Cuando ya le empezaba a resultar aquello demasiado fácil, le entró un frenesí por las factoriales: 1!=1; 2!=2; 3!=6; 4!=24; 5!=120; 6!=720; 7!=5.040; 8!=40.320; 9!=362.880; 10!=3.628.800; 11!=39.916.800; 12!=479.001.600; […]; 22!=1.124.000.727.777.607.680.000, o sea más de mil millones de veces setecientos diecisiete mil millones.

Smautf anda actualmente por el 76, pero ya no encuentra papel de formato suficientemente grande; y, aunque lo encontrara, no habría mesa bastante larga para extenderlo. Cada vez tiene menos seguridad en sí mismo, por lo que siempre está repitiendo sus cálculos. Morellet intentó desanimarlo años atrás diciéndole que el número […] nueve elevado a nueve elevado a nueve, que es el número mayor que se puede escribir usando sólo tres cifras, tendría, si se escribiera entero, trescientos sesenta y nueve millones de cifras; a razón de una cifra por segundo, se tardaría once años en escribirlo; y, calculando dos cifras por centímetro, tendría mil ochocientos kilómetros de largo. A pesar de lo cual Smautf siguió alineando columnas y más columnas de cifras en dorsos de sobres, márgenes de cuadernos y papeles de envolver carne.

Como bien describe Perec, ‘nueve elevado a nueve elevado a nueve’ es un número enorme: en efecto, 99=387.420.489, así que nueve elevado a nueve elevado a nueve’=9387.420.489…

Referencias

[1] Marta Macho Stadler, Los números de Queneau, Cuaderno de Cultura Científica, Matemoción, 7 agosto 2013

[2] Marta Macho Stadler, OuLiPo: un viaje desde las matemáticas a la literatura, Tropelías. Revista de Teoría de la Literatura y Literatura Comparada 25(2016) 129-146

[3] Georges Perec, La vida instrucciones de uso, Anagrama, 1992

[4] Georges Perec, Le cahier des charges de la Vie mode d’emploi, C.N.R.S. et Zulma, 1993 (esta página web está dedicada al libro)

[5] Georges Perec, Especies de espacios, Montesinos, 2001

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Las matemáticas de ‘La vida instrucciones de uso’ se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cuadrados latinos, matemáticas y arte abstracto
  2. El asesinato de Pitágoras, historia y matemáticas (I)
  3. El asesinato de Pitágoras, historia y matemáticas (y II)
Categories: Zientzia

#Naukas15 Polvo cósmico

Tue, 2016/10/11 - 17:00

vannabonta-2suit-cr

Vamos a lo que vamos: ¿ha habido sexo en las misiones tripuladas al espacio? Iván Rivera responde.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Polvo cósmico se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14 Un buen polvo para un futuro premio Nobel
  2. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  3. #Naukas15 Endosimbiontes
Categories: Zientzia

Cuatro páginas para un nobel

Tue, 2016/10/11 - 11:59

derek-harold-richard-barton-3

Derek Barton, ya setentón, solía levantarse a las 3 de la madrugada pero no para lo que hacen la mayoría de los varones de esa edad. Barton se levantaba a leer. Llevaba al día la lectura de al menos quince revistas científicas, de su especialidad la mayoría, pero también generales. Y las leía de cabo a rabo.

Sin embargo, si alguien le preguntaba, Barton solía decir que su jornada laboral empezaba a las 7 de la mañana (y se extendía hasta las siete de la tarde). Aunque hay rumores de que en ocasiones la interrumpía 20 minutos para almorzar, lo normal para él era comer mientras trabajaba.

Su único hijo, William, viendo la vida que llevaba su padre renunció a estudiar más de lo necesario y terminó montando un pequeño taller mecánico donde fabricaba piezas a medida para vehículos. William anduvo el camino inverso a su padre. Durante dos años tras acabar el instituto Derek trabajó en la carpintería familiar que para él fueron más que suficientes: necesitaba dedicarse a algo que saciara su afán de conocimientos y supusiese un reto.

Debido a esos dos años de carpintero, Derek Barton tenía 20 cuando fue admitido en el Imperial College de Londres para estudiar química en 1938. Su enorme capacidad de trabajo y dedicación le llevaron a graduarse en 2 años, en 1940, en plena Segunda Guerra Mundial y a doctorarse en 1942 en un Londres bombardeado diariamente por la aviación alemana. Nada más terminar pasó a ser investigador del gobierno de su majestad británica. Y lo que hiciese fue secreto. Sí sabemos que en 1945, con el fin de la guerra, reaparece como profesor ayudante en el Imperial College.

En 1949 surgió la oportunidad de sustituir a un profesor de Harvard que se iba a tomar un año sabático y Derek la aprovechó. Allí asistió a una conferencia de Louis Fieser (primero en sintetizar la vitamina k, la cortisona e inventor del napalm durante la guerra). Uno de los ocho libros que Fieser escribiría con su mujer, Mary Peters, trataba sobre la química de los esteroides y sobre ese tema trataba la conferencia. Uno de los temas que trató Fieser en la conferencia fue la lista de problemas sin resolver en lo que respecta a la reactividad de los esteroides.

Los esteroides son una clase de compuestos químicos muy importantes en la actividad biológica: el colesterol es un esteroide y las hormonas sexuales son esteroides también. Desde mediados del siglo XX existe un enorme interés en la síntesis de esteroides para uso médico; un hito importante, por ejemplo, consecuencia de esta búsqueda de rutas de síntesis de esteroides, lo constituyó el desarrollo de la píldora anticonceptiva. Sin embargo, en el momento de la conferencia de Fieser los químicos estaban confundidos por unos comportamientos químicos inexplicados de los esteroides. Esa enciclopedia química ambulante que era Barton, en cuanto oyó la descripción del problema por parte de Fieser lo relacionó con el trabajo de un oscuro profesor noruego de la Universidad de Oslo llamado Odd Hassel, que en los años treinta había estudiado las conformaciones de los anillos de seis átomos de carbono usando cristalografía de rayos X (Hassel publicó solo en alemán y noruego, ojo con Barton). Y Barton se encontró con que podía explicar fácilmente la extraña reactividad de los esteroides.

Conformaciones silla y bote del ciclohexanoConformaciones silla y bote del ciclohexano

Los esteroides están constituidos por anillos (hexágonos realmente) de carbono que se unen por las aristas. Se daba por sentado que los anillos eran planos por lo que todas las posiciones, todos los carbonos, del anillo eran iguales y ninguno se diferenciaba en cuanto a reactividad. Pero si los anillos no eran planos, sino que podían adoptar dos conformaciones distintas, silla y bote (véase imagen), las posiciones dejan de ser equivalentes ya que unas son más accesibles que otras algunos ángulos de ataque son mejores que otros.

Barton demostró que si los esteroides tenían una conformación tipo silla, como Hassel había demostrado que ocurría con el ciclohexano, podía explicarse perfectamente la reactividad observada experimentalmente. Escribió sus conclusiones en un artículo muy breve, cuatro páginas, incluidas imágenes y referencias, que apareció en agosto de 1950 en Experientia. En 1969 este artículo le valió el premio Nobel de química a él y a Hassel.

69069-004-3c4302dc

Cuando terminó en Harvard, Barton buscó y encontró un puesto de profesor en el Birbeck College de la Universidad de Londres, por diferentes razones de las que tuvo Rosalind Franklin*. Birbeck era en la época el único centro universitario que impartía química en clases nocturnas. En palabras de Barton: “Uno puede investigar todo el día y enseñar de 6 de la tarde a 9 de la noche. Este sistema era excelente para la investigación, pero no era muy apreciado por las esposas”. Barton se casó tres veces y solo tuvo un hijo, con su primera mujer.

* “El Birbeck College solo tiene alumnos nocturnos a tiempo parcial y, por tanto, tienen realmente ganas de aprender y trabajar. Y parece que acogen [los administradores de Birbeck] un alto porcentaje de extranjeros en la plantilla lo que es una buena señal. El King’s [se refiere al college donde ella trabaja hasta entonces] no tiene ni extranjeros ni judíos”. Rosalind Franklin era judía.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Cuatro páginas para un nobel se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Electroforesis, premios Nobel y laboratorios de criminalística
  2. #Naukas14 Un buen polvo para un futuro premio Nobel
  3. El Nobel de Química 2013: Bailando con proteínas
Categories: Zientzia

Ciencia, creencias, política y matar al mensajero

Mon, 2016/10/10 - 17:00

Lo sabemos y somos conscientes de ello: vivimos en una sociedad y una cultura con la ciencia y la tecnología como pilares básicos. Y debemos conocer, aunque sea lo fundamental de ambas o, por lo menos, estar dispuestos a confiar en expertos y científicos que nos expliquen lo que significan, sobre todo cuando hay que tomar decisiones. Sin embargo, confiamos más en nuestras creencias que en la ciencia cuando hay que tomar postura y decidir. Por ejemplo, ocurre con las plantas modificadas genéticamente o transgénicas. Son plantas en las que se han introducido uno o varios genes en el laboratorio con un objetivo concreto: resistencia a insectos y otras plagas, producción de algún componente, resistir la escasez de agua,… Pues bien, Brandon McFadden y Jayson Lusk, de las universidades de Florida en Gainesville y Estatal de Oklahoma en Stillwater, han organizado un estudio sobre los conocimientos de los consumidores estadounidenses sobre los transgénicos, en un país donde la polémica sobre su uso como alimento es intensa y continua. Más adelante viajaremos a Europa para conocer la situación en nuestro entorno más cercano.

transgenicos-en-india-negarse-a-aprender-de-los-errores-del-pasado

McFadden y Lusk encuestan a 1004 voluntarios, con el 53% de mujeres, en septiembre de 2015. Las preguntas tratan de los conocimientos sobre transgénicos, sus riesgos como alimento, el número de cromosomas alterados, cuánto se cultivan, si deben llevar un aviso en la etiqueta cuando se comercializan, etc.

Solo el 8% de los encuestados afirma que sabe mucho sobre transgénicos, el 32% sabe algo y el 60% o no sabe o no contesta. El 34% considera que son un peligro como alimento y, en cambio, otro 32% afirma que son seguros. Y el restante 32% no se decide entre ambas opciones. Más o menos la mitad de los encuestados no sabe cuantos genes se alteran en un transgénico (con uno vale), y cerca del 5% afirma que ninguno.

Para no alargarnos vamos a la respuesta más sorprendente. El 84% pide, y es lógico, que en la etiqueta del producto comercializado se avise de que contiene un transgénico pero, es de destacar, que el 80% pide, además, que se indique que contiene ADN, que, como sabemos es un componente básico de los seres vivos, o sea, que todos los productos comercializados deberían incluir esta indicación.

En conclusión, en Estados Unidos los consumidores creen que saben de transgénicos más, bastante más, de lo que realmente conocen de estas plantas y de las técnicas necesarias para conseguirlas. Además, es evidente que deben reciclar sus conocimientos antes de atreverse a tomar decisiones. Excepto si las toman según otros parámetros, quizá por sus creencias más que por sus conocimientos.

Es evidente el consenso científico sobre los transgénicos. En un metaanálisis de lo publicado sobre este tema entre 2002 y 2012, Alessandro Nicolia y sus colegas, de la Universidad de Perugia, en Italia, encuentran 1783 artículos sobre la seguridad de los transgénicos. Estos estudios demuestran el mencionado consenso entre los científicos, su cultivo en todo el mundo y que no se ha detectado ningún riesgo en su utilización. Para los autores, el debate sobre transgénicos y su casi prohibición en la Unión Europea por la enorme cantidad de requisitos a cumplir, se debe a complejos factores sociológicos y psicológicos, a la exageración del cociente entre riesgos y beneficios, a aspectos que tienen que ver con la política, y a la falta de difusión de los conocimientos científicos que lleva, en definitiva, a una gran falta de información entre los ciudadanos.

Es más, en un metaanálisis más reciente y extenso, con trabajos publicados desde 1995, Wilhelm Klumper y Matin Qaim, de la Universidad de Gottingen, en Alemania, revisan 147 estudios elegidos por criterios metodológicos entre más de 25000, y llegan a la conclusión de que la siembra de transgénicos reduce el uso de pesticidas en un 37%, mejora la productividad de los cultivos en un 22% y aumentan los beneficios de los agricultores en un 68%. Además, la productividad y los beneficios son mayores en los países en desarrollo que en los desarrollados.

arroz-dorado

En Europa, y por acuerdo de la Comisión Europea en 2015, cada país decide si se cultivan transgénicos en su territorio y si se permite su uso como alimento. Hace unos meses, a finales de 2015, la mayoría de los países de la Unión Europea habían decidido no permitir su cultivo. Son 19, del total de 28, los estados que plantean restricciones al cultivo de transgénicos, y España no está entre ellos. En realidad, las plantas autorizadas para el cultivo son muy pocas, más bien solo una, el maíz, pero, en cambio, se permite la importación de 58 plantas transgénicas más, entre ellas el algodón, la soja o la colza.

Para profundizar en esta situación tan sorprendente en que un asunto científico, plenamente aceptado por la comunidad científica, levanta tan encendidos debates como hemos visto en Estados Unidos y, ahora, veamos lo que ocurre en Europa, con un ejemplo muy distinto y, además, muy cercano a nosotros. Fue en octubre de 2013 cuando Juan Segovia, militante de Izquierda Unida y miembro de su Comisión por la Ciencia, publicó en Mundo Obrero, revista de la organización, una propuesta sobre transgénicos titulada “Ecologismo y transgénico: una propuesta desde la izquierda”.

En el texto, Juan Segovia argumentaba que no existen pruebas de que los transgénicos sean peligrosos para la salud y el ambiente. Y, en segundo lugar y ante el argumento más utilizado por la izquierda contra los transgénicos que afirma que su producción y comercialización están controladas por multinacionales como Monsanto, indica que no se diferencia mucho del control que ya existe sobre los cultivos tradicionales. Estas multinacionales son quienes mejoran, producen y venden las semillas y los abonos y pesticidas. La solución, desde la izquierda, no puede ser eliminar la agricultura sino luchar por sistemas públicos y abiertos de mejoras, tanto en la agricultura tradicional como con los transgénicos. Ya hay plantas transgénicas procedentes de organizaciones públicas y no de multinacionales, como el arroz dorado con vitamina A o el trigo sin gluten del Instituto de Agricultura Sostenible del CSIC de Córdoba.

Solo unos días después de la publicación del texto de Juan Segovia en Mundo Obrero, y por presiones de Raúl Ariza, dirigente de IU-Aragón, la propuesta desaparece de la revista. Ahora, si se busca este artículo en la revista a través de Google, aparece una pantalla en blanco y en el vértice superior izquierdo y en letra pequeña, se encuentra la palabra “error”. Es evidente que la censura supone siempre un “error”.

Muchos científicos y divulgadores protestaron por esta conducta censora, sobre todo a través de internet y en sus blogs. Incluso un grupo de ellos, entre los que se encontraba Javier Armentia y Oscar Menéndez, enviaron una carta a Gema Delgado, Redactora Jefe de Mundo Obrero, pidiendo conocer en que argumentos se habían apoyado para retirar la propuesta de Juan Segovia. No conozco la respuesta a esta carta.

Es curioso que una organización que apoya la lucha contra el cambio climático como es Izquierda Unida y, ahora, también la coalición Unidos Podemos, esté en contra de los transgénicos. Ambos temas están apoyados por el mismo consenso científico que afirma que el cambio climático está ocurriendo y está provocado por actividades humanas, y que los transgénicos son seguros. Pero en el caso de las plantas transgénicas el debate, en algunos círculos termina con la censura y, si es necesario, matando al mensajero.

Referencias:

Armentia, J. et al. 2013. Carta abierta a Mundo Obrero. Blog de Javier Armentia.

Cook, J. et al. 2016. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters doi: 10.1088/1748-9326/11/4/048002

Klumper, W. & M. Qaim. 2014. A meta-analysis of the impacts of genetically modified crops. PLOS ONE 9: e111629

McFadden, B.R. & J.L. Lusk. 2016. What consumers don’t know about genetically modified food, and how that affects beliefs. FASEB Journal doi: 10.1096/fj.201600598

Nicolia, A. et al. 2014. An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology 34: 77-88.

Segovia, J. 2013. Ecologismo y transgénicos: una propuesta desde la izquierda. Mundo Obrero octubre.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Ciencia, creencias, política y matar al mensajero se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia, ideología y práctica política
  2. Wikipedia y Encyclopaedia Britannica: ciencia y política
  3. El clima, los informes y la política
Categories: Zientzia

Hidrógeno a partir de composites de fibra de carbono

Mon, 2016/10/10 - 11:59

hidrogeno-a-partir-de-composites-de-fibra-de-carbono

Los composites o materiales compuestos de fibra de carbono son muy utilizados hoy en día en la fabricación de aeronaves, palas de aerogeneradores, artículos deportivos y automóviles, entre otros, debido a que presentan unas propiedades mecánicas muy similares a las de muchos metales y al mismo tiempo pesan muy poco. Esto ha producido un aumento muy importante en la utilización de estos materiales en los últimos años (por ejemplo, más del 50% en peso de los dos últimos modelos de Airbus y Boeing es de composite de fibra de carbono). Todos los estudios de mercado prevén un crecimiento casi exponencial en su utilización para los próximos años.

La utilización de estos materiales genera los consiguientes residuos, que pueden ser derivados de la propia fabricación de los componentes de los aviones, aerogeneradores, etc., o pueden ser generados al finalizar su vida útil, por ejemplo, al reciclar las partes de aviones compuestas de fibras de carbono.

“Los composites de fibra de carbono se componen principalmente de filamentos de carbono impregnados y aglomerados con una resina. El reciclado de estos materiales es difícil de realizar por tres motivos fundamentales: 1) la gran mayoría están formados por resinas termoestables, que no se funden por aplicación de calor, luego no se pueden volver a moldear; 2) están compuestos por múltiples ingredientes de naturaleza muy diversa (resina, fibras, aditivos de relleno) etc.); y (3) pueden estar mezclados o llevar incorporados otros materiales (insertos metálicos, film termoplástico protector, pinturas, etc.)”, detalla Isabel de Marco, directora del Grupo de Pirólisis y Gasificación perteneciente al Grupo de Investigación Consolidado Sustainable Process Engineering (SuPrEn), formado por miembros del departamento de Ingeniería Química y del Medio Ambiente de la Escuela de Ingeniería de Bilbao de la UPV/EHU.

La fibra de carbono virgen tiene un precio de mercado muy elevado, por lo que empiezan ya a construirse algunas plantas de recuperación de las fibras, con el objetivo, “aún en vías de investigación”, de reciclarlas en nuevos composites. En estas plantas, se separan las fibras de la resina a través de un proceso térmico (pirólisis) que hace que la resina se descomponga, formando vapores, y las fibras queden libres de la matriz, lo que permite su recuperación. En estas plantas los vapores de la descomposición de la resina son eliminados por incineración, sin aprovechar su valor y con el consiguiente problema de emisiones contaminantes.

La patente publicada por el grupo de investigación de la UPV/EHU define un método para tratar estos vapores de forma que a partir de ellos se pueda obtener un gas valioso con una alta proporción de hidrógeno, lo que permite la separación de este compuesto y su venta. “El hidrógeno está llamado a ser el combustible del futuro por no ser contaminante, ya que en su combustión solo se produce agua. Además, puede utilizarse para síntesis química en múltiples aplicaciones”, explica De Marco.

En consecuencia, este método patentado permite la revalorización de la resina polimérica y no solo de la fibra de carbono, tal y como se hace actualmente. Por tanto, se trata de un método que mejora el estado de la técnica actual y la hace más rentable y sostenible. “Se podría instalar en las plantas actuales de tratamiento de composites residuales, o incorporarlo en nuevos diseños. El balance económico preliminar indica que la combinación del precio de venta del hidrógeno y el de las fibras de carbono recuperadas hace que el proceso sea rentable”, explica Alexander Lopez-Urionabarrenechea, co-director de este trabajo de investigación.

Esta patente puede interesar a las empresas constructoras de elementos fabricados con composites de fibra de carbono, como manera de gestionar sus propios residuos, así como a las empresas gestoras de estos residuos. “Las posibilidades de monetizar la patente pasan por ahondar aún más en la investigación de laboratorio y hacer un estudio del cambio de escala. De hecho el grupo se encuentra ya actualmente en conversaciones con una empresa interesada en el proceso”, precisa Lopez-Urionabarrenechea.

Patente:

Método para el tratamiento de vapores generados en el proceso de recuperación de fibras de carbono de composites por pirolisis.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Hidrógeno a partir de composites de fibra de carbono se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un proceso para la producción eficiente de hidrógeno a partir de madera
  2. Cómo obtener hidrógeno a partir de una placa de circuitos impresos
  3. Cómo incorporar nanotubos de carbono a un plástico de aviación
Categories: Zientzia

#Naukas15 Endosimbiontes

Sun, 2016/10/09 - 11:59

endosymbiosis

Los organismos endosimbiontes llegan a compartir fases de su metabolismo. Lo contó J.J. Gallego es una de las charlas más sorprendentes (para los no biólogos al menos) de esta edición.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Endosimbiontes se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  2. #Naukas15 Odón de Buen
  3. #Naukas15 De publicaciones científicas
Categories: Zientzia

#Naukas15 El año que descubrimos Plutón

Sat, 2016/10/08 - 11:59

nh-pluto-in-true-color_2x_jpeg-edit-frame

Javier Pedreira “Wicho” nos cuenta cómo se descubrió Plutón, entonces y ahora.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 El año que descubrimos Plutón se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas13 10 cosas (+1) que no sabes de la ISS
  2. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  3. #Naukas15 Estoy bien, estoy bien
Categories: Zientzia

Miedo

Fri, 2016/10/07 - 12:00

El miedo nos ha moldeado. Nos ha hecho como somos.

No son pocas las personas que tienen miedo a las alturas. Ese miedo era aquello que nos salvaba de caer de las ramas cuando, siendo unos pequeños primates arborícolas, nos encontrábamos ante un salto que no nos veíamos capaces de superar.

El sonido de un siseo nos hace saltar y ponernos en estado de alerta, y la oscuridad nos recuerda con frecuencia que allí se esconden cosas peligrosas. Es el miedo el que nos previene de ser mordidos por la serpiente o devorados por el león.

El miedo es un salvavidas al que, evolutivamente, nos hemos agarrado. Tan importante es para nosotros que a cada miedo particular incluso le ponemos nombre. Y es que, si bien es cierto que «correr es de cobardes», hay que recordar que «el cementerio está lleno de valientes». Porque el primate que sobrevivía lo suficiente para reproducirse era aquél que nunca era mordido por una serpiente, aquél que no se mataba de una caída, y aquél que se salvaba de ser devorado por un león.

El miedo es una emoción que ha sido clave en nuestra evolución. El miedo nos permitía sobrevivir evitando los peligros o huyendo de ellos. El miedo en ese aspecto, es bueno, es útil. Nos ayuda a sobrevivir.

Pero también el miedo es muy peligroso: nadie está libre de padecerlo, y esto puede volver vulnerable a la población. Y muchos grupos y organizaciones sociales se han aprovechado de ello a lo largo de la historia. Las poblaciones humanas son, para nuestra propia desgracia, muy fáciles de influenciar. Sobre todo de cara al miedo.

 «El Infierno», de Ted LarsonObra: «El Infierno», de Ted Larson

Las religiones nos convencen de que hagamos lo que ellas dicen; si no nos acogemos a unas estrictas normas propias de las poblaciones casi tribales de la edad de bronce; si no aceptamos unos mitos y tomarlos como si fueran verdad; si pretendemos tomar matrimonio sin tener en cuenta la iglesia; si tenemos una orientación sexual distinta de la de la mayoría o toleramos e incluso defendemos a los que la tienen de las injusticias cometidas hacia ellos; si luchamos por la igualdad social y de derechos entre hombres y mujeres y no toleramos que ellos sean considerados superiores a ellas; si rechazamos los viejos dogmas establecidos y aceptamos la evolución biológica tal y como las evidencias empíricas nos muestran que, en realidad, sucede; si hacemos esas cosas, que todo el mundo hace alguna de ellas, somos pecadores. Nos infunden miedo amenazándonos, en tiempos antiguos, con duros castigos físicos y con la muerte, en ocasiones muy violenta y enormemente agónica, y antes y también ahora, con un castigo eterno. Y algo eterno, generalmente, es algo que dura mucho, mucho tiempo.

Encontramos personas que rechazan las vacunas e incluso promulgan la realización de actividades como la «fiesta de la varicela» porque unos pocos intentan asustar a la gente afirmando que sus hijos van a sufrir graves problemas de salud si las recibiesen. Ahí vemos el miedo.

Famosa escena de Los Simpsons en que se trata el tema de las “fiestas de la varicela”.Famosa escena de Los Simpsons en que se trata el tema de las “fiestas de la varicela”.

Nos encontramos con grandes movimientos de personas que rechazan el avance biotecnológico de la transgénesis y demás manipulaciones genéticas provocando el miedo en los demás, y promulgando las maravillas milagrosas de «lo natural», ignorando que en realidad llevamos más de diez mil años modificando los genes de lo que nos comemos, y también que dentro de lo que llamamos «natural» están incluidas cosas como la cicuta, los terremotos, la malaria o algo tan sencillo como la muerte. Miedo. Más miedo.

Y no pocas asociaciones y organismos de diversa índole nos intentan convencer de que las nuevas tecnologías de la comunicación o esas estelas de condensación que se producen tras los aviones son la causa de muchos de los problemas de salud de hoy, y lo hacen mediante diferentes usos del miedo, que incluye desde mentir a la población mediante la simple desinformación hasta las duras amenazas que ciertas personas emiten a las voces racionales discordantes. Por supuesto, no faltan los que se dedican a vender hipotéticos e ineficaces remedios a este tipo de falsos males, siempre aprovechandose del miedo. Más miedo.

Hay quienes te intentan convencer de que la medicina, la de verdad, la que ha demostrado eficacia, no funciona, que los medicamentos causan más problemas de los que solucionan, o que las grandes empresas son las que crean las enfermedades, y así vemos crecer pseudomedicinas como la homeopatía, la acupuntura, el reiki, las flores de Bach, la quiropráctica, la sanación con cristales o la reflexología podal. Todo alrededor del mismo concepto: el miedo.

Nos dicen que los muertos pueden aún tener conciencia, y se lucran con nuestro miedo a una muerte definitiva y absoluta mientras nos venden envuelto en un oscuro papel para regalo una falsa comunicación banal con nuestros seres queridos fallecidos, o se aprovechan del temor a lo desconocido para hablar de nuestro futuro con promesas vacías y ambigüedades vagas, siempre a cambio de un cuantioso donativo que, de negarnos a proporcionar, suele desembocar en maldiciones, males de ojo y ataques psíquicos y espirituales. ¿Eficaces? No, pero que buscan lo mismo: fomentar y aprovecharse del miedo. Más miedo.

Y muchos de ellos aprovechan la ocasión para vendernos remedios de mentira contra esos miedos infundados que ellos mismos promueven, y que en realidad no sirven para nada. Ya sean cachivaches que te convierten las ondas “malas” en ondas “buenas”, pastillas de azúcar para curar el catarro, sesiones de tarot para que nos digan nuestra buenaventura, o sesiones de acupuntura con láser para dejar de fumar.

A mi son ellos los que me dan miedo. Ellos son la serpiente agazapada en la oscuridad.

Crotalus atrox, una de las serpientes que llaman “de cascabel”. Fotografía de Clinton & Charles Robertson from Del Rio, Texas & San Marcos, TX, USA – Western Diamondback Rattlesnake (Cortalus atrox), CC BY 2.0,Crotalus atrox, una de las serpientes que llaman “de cascabel”. Fotografía de Clinton & Charles Robertson from Del Rio, Texas & San Marcos, TX, USA – Western Diamondback Rattlesnake (Cortalus atrox), CC BY 2.0,

Para defendernos de todos esos engaños, de toda esa «cultura del miedo» tenemos una herramienta. Una linterna que arroja luz en la oscuridad, y nos desvela y desenmascara esas serpientes, enseñándonos cómo realmente son. Una herramienta que es, a la vez, la única fuente conocida de explicaciones verificables de la realidad. Se llama método científico.

Gracias al método científico, gracias a la ciencia, hemos llegado donde estamos. Gracias a la ciencia yo estoy escribiendo este artículo y gracias a la ciencia usted lo está leyendo.

Ninguna religión ha hecho que pongamos un pie en la Luna ni ha colocado satélites en órbita —algunas personas que han logrado eso eran religiosas, pero ninguna de ellas lo consiguió empleando como herramienta ninguna religión—.

Buzz Aldrin caminando por la superficie de la luna durante la misión Apolo 11 (NASA).Buzz Aldrin caminando por la superficie de la luna durante la misión Apolo 11 (NASA).

Ningún negacionista de las vacunas ha eliminado la viruela de la faz de la tierra. Las vacunas lo hicieron, y salvan millones de vidas cada año. La ciencia lo hizo.

Ningún homeópata ha conseguido desarrollar un antibiótico, nunca, ni tampoco ningún remedio que resulte eficaz más allá del efecto placebo. La ciencia sí.

Ningún practicante de acupuntura ha conseguido doblar la esperanza de vida en menos de 150 años. Lo ha hecho la medicina. Lo ha hecho la ciencia.

Ningún vidente, echador de cartas del tarot ni astrólogo ha conseguido predecir con éxito y precisión la llegada de tormentas, la próxima visita del cometa Halley ni el próximo eclipse solar. La ciencia lo consigue.

Ningún «anti-transgénicos» ha conseguido una variedad de trigo que pueda ser consumida sin riesgo por personas celíacas ni una variedad de arroz que aporte vitamina A a la dieta, con la posibilidad de prevenir muchos casos de ceguera infantil en países subdesarrollados. Ambos productos se han conseguido gracias a la biotecnología. Gracias a la ciencia.

Y ningún tecnófobo anti-antenas ha conseguido comunicarse con éxito con un robot colocado en la superficie de un distante cometa.

Eso es lo que sucede si nos quedamos sin ciencia. Sin ciencia quedamos a merced de los mercaderes del miedo.

Me parece algo importante para pensar. Y para eso hemos venido aquí, ¿no?

Este post ha sido realizado por Alvaro Bayón (@VaryIngweion) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo Miedo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El paisaje del miedo
  2. Ciencia, arte, religión
  3. Divulgación friki
Categories: Zientzia

#Naukas15 Mosquito tigre

Thu, 2016/10/06 - 17:00

aedes_albopictus

Aitana Oltra habla del mosquito tigre, sí. Pero también de ciencia ciudadana.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Mosquito tigre se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 Mis queridos anillos…de luz sincrotón
  2. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  3. #Naukas15 De elfos, orcos y otros extraterrestres
Categories: Zientzia

¿Eso qué es? Y otras formas de ser curioso

Thu, 2016/10/06 - 11:59

curiosity-_what_are_they_reading

Hace unos días, mi ahijada estuvo visitando la Biblioteca Regional de Murcia con su padre. Mara cumple tres años a finales de diciembre, tardó un poco en empezar a hablar pero llegado ese momento no ha parado su boca. En pocos meses ha desarrollado un vocabulario más propio de una abuela que de una niña. Su maestra dice que es muy madura para su edad, yo le digo que es una vieja.

No para de preguntar por todo lo que no conoce, su pregunta favorita es “¿eso qué es?”. Y eso fue precisamente lo que le dijo a su padre cuando al entrar a la biblioteca se encontraron con una exposición fotográfica sobre Chernóbil. La respuesta rápida fue esa: “una exposición de fotos sobre Chernóbil” y a continuación la conversación siguió así:

  • ¿Pero eso qué es?
  • Pues eso, una exposición de fotos sobre Chernóbil
  • Pero papá, ¿eso qué es?
  • Mara, otra vez, una exposición de fotos sobre Chernóbil
  • Papá, ¿pero eso, Chernóbil?

Y ahí el quiz de la cuestión, ella lo que estaba interesada en saber era qué significaba esa palabra que nunca había oído.

Y a eso se agarró mi primo (el papá de Mara) para contarle no solo la historia de lo que pasó en Chernóbil sino otros datos como: qué es una central nuclear, los distintos tipos de energía, que son los elementos radioactivos, etc. De hecho, siguió preguntando un buen rato y cuando llegaron a casa estuvieron buscando información juntos en Internet.

Ahora le puedes preguntar a Mara qué sabe sobre Chernóbil y ella te da una lección magistral. Porque no pregunta por preguntar sino que realmente le interesa y se aprende las historias. Asimismo te habla de la fundación de Roma, de las obras de Leonardo Da Vinci o de María Antonieta y la toma de la Bastilla.

Claro está que mi ahijada es una niña excepcional (si no lo digo yo no sé quién lo va a decir) pero la clave de todo esto estriba en una capacidad que muchos perdemos con los años: la curiosidad.

A día de hoy la ciencia no ha podido explicar qué es, más allá de saber que se trata de un impulso innato que no solo experimentamos los humanos sino también algunos animales y que nos permite aprender.

Porque es esa curiosidad la que nos lleva a querer saber más, la que ha hecho que se invente la rueda, que se avance en medicina, que se sepa que la Tierra es redonda o que nos encontramos en un universo que se expande, por mencionar algunos ejemplos.

Actualmente existen diferentes equipos de científicos investigando en torno a esta capacidad y, obviamente, los trabajos se centran en el cerebro. Si bien no se trata tanto de descubrir qué es sino de conocer los mecanismos por lo que se produce y para ello se han basado en imágenes tomadas mediante resonancia magnética.

Los resultados muestran que cuando tratas de dar con la respuesta de algo que desconoces, en tu cerebro se activan al menos dos áreas: una ubicada en el estriado ventral, la cual está relacionada con la motivación y la recompensa y otra situada en el hipocampo e implicada en la memoria.

Los científicos creen que la curiosidad es la forma que tiene el cerebro de destacar la información que merece la pena recordar, es decir, que cuando aprendemos algo como fruto de nuestro interés personal, lo recordamos más fácilmente. Es más, se sabe que aprender motivados por el deseo de adquirir nuevos conocimientos provoca que la memoria funcione con mayor precisión, incluso a corto plazo.

Lo que no se sabe todavía es por qué durante la infancia somos más curiosos que de mayores o por qué, a medida que vamos creciendo, unos adultos pierden esa capacidad más que otros, ni si hay algo que se pueda hacer para que no sea así o si esto podría tener alguna repercusión en el cerebro y por tanto en la lucha contra algunas enfermedades neurodegenerativas, entre otras cosas.

De lo que no cabe duda es de que el saber no ocupa lugar y además es importante estar informados para ser capaces de tomar nuestras propias decisiones por lo que hay que ponerse manos a la obra.

Centrándonos en el ámbito científico, que es el que nos ocupa, hay que señalar que la semana pasada numerosos lugares celebraron la Noche Europea de los Investigadores, el próximo mes de noviembre tendrá lugar la Semana de la Ciencia, también en muchas ciudades españolas; los museos, las bibliotecas y otros muchos centros públicos cuentan con una variada oferta de actividades para todas las edades y durante todo el año.

Desde aquí os animo a que acudáis con vuestros hijos, sobrinos, alumnos, o simplemente solos, como adultos pero con curiosidad de niño, a ver qué sucede. Y sobre todo, la próxima vez que alguien os pregunte ‘¿eso qué es?’ no os quedéis en lo evidente, tratad de profundizar y dejaros sorprender por las respuestas.

Ojalá que Mara os sirva a muchos de inspiración, como me ha ocurrido a mi con este post.

Sobre la autora: Maria José Moreno (@mariajo_moreno) es periodista

El artículo ¿Eso qué es? Y otras formas de ser curioso se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El juego de Penney: tirando monedas con curioso resultado
  2. Formas ritmo-espacio
  3. “La saga Curie y las otras investigadoras” por Flora de Pablo
Categories: Zientzia

El entrenamiento mental solo sirve para entretenerse un rato

Wed, 2016/10/05 - 17:00

ndsl-brain_training_korean_version

Cada cierto tiempo revive el interés en juegos, pasatiempos y aplicaciones específicas que se supone que mejoran nuestro rendimiento mental. Según la publicidad que los acompaña jugar y practicar con estos entretenimientos puede mejorar nuestra memoria, nuestra atención y, ¿por qué no?, nuestra inteligencia. ¿Es esto realmente así? El pasado día 3 se publicó una revisión de la literatura científica al respecto y sus resultados no pueden ser más contundentes: no existen pruebas que indiquen que el llamado entrenamiento mental (brain-training) funcione.

Siete científicos coordinados por Daniel J. Simmons, de la Universidad de Illinois en Urbana-Champaign (EE.UU.), revisaron los más de 130 estudios citados por las páginas web y el material promocional de las compañías que comercializan estos productos. Como resultado encontraron pocos indicios de que los juegos de entrenamiento mental mejoren el rendimiento en tareas cognitivas diarias. No solo eso, los revisores encontraron fallos metodológicos en todos y cada uno de los estudios que analizaron.

Los juegos de entrenamiento mental suelen incluir tareas basadas en el tiempo de reacción o en la memoria que se suponen que mejoran estas funciones cognitivas en nuestro día a día. Los autores de la revisión señalan que una idea-fuerza de la publicidad de estos juegos es que la mejora en rendimiento en la tarea que realizas en la pantalla se traduce (transfiere, es el verbo que se usa en la jerga) en una mejora en el rendimiento en situaciones de la vida real similares.

Si bien existen muchos estudios bien realizados que indican que el entrenamiento mental mejora la capacidad de la persona para jugar al juego concreto (una persona que suela hacer crucigramas, se hará mejor haciendo crucigramas; una que haga sudokus, lo será resolviendo sudokus y una que juegue habitualmente al ajedrez será mejor al ajedrez, por nombrar actividades mentales clásicas), no existen sin embargo aquellos que indiquen que existe una transferencia hacia otro tipo de actividad diaria.

Los autores también han considerado las buenas prácticas de investigación, en concreto el establecimiento de grupos de control y las pruebas doble-ciego. De forma muy llamativa encontraron que muy pocos estudios de los analizados se aproximaban al cumplimiento de los estándares mínimos. Ninguno de los estudios estaba libre de fallos.

En este análisis se ha cuidado en extremo la atención a las pruebas objetivas y es un modelo al que cualquier evaluación de las pruebas escéptica pero de mente abierta debería parecerse. Sus conclusiones abundan en las que ya expuso un grupo de científicos en 2014 en una carta abierta y que, como ahora, provocó las reacciones airadas de la industria del entrenamiento mental.

Quizás convenga recordar que el único entrenamiento mental que sepamos con seguridad que tiene transferencia a las situaciones de la vida real es aquel que te dota de una mente crítica y abierta, pero no tanto como para que se te caiga el cerebro.

Referencias:

Simmons, D.J. et al (2016) Do “Brain-Training” Programs Work? Psychological Science in the Public Interest doi: 10.1177/1529100616661983

Yong, E (2016) The Weak Evidence Behind Brain-Training Games The Atlantic

Henry B.A. (2016) Evidence Lacking for Brain-Training Products The Scientist

A Consensus on the Brain Training Industry from the Scientific Community”(2014) Max Planck Institute for Human Development and Stanford Center on Longevity

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo El entrenamiento mental solo sirve para entretenerse un rato se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Para qué sirve la ciencia?
  2. ¿Para qué nos sirve la mente?
  3. ¿La publicidad no sirve para nada?, ¡ja!
Categories: Zientzia

Los huesos de Napier, la multiplicación árabe y tú

Wed, 2016/10/05 - 11:59

En este paseo que hemos iniciado en mis dos anteriores entradas del Cuaderno de Cultura Científica, sobre diferentes métodos de multiplicación que se desarrollaron a lo largo de la historia de la humanidad, y que nos ha llevado de los algoritmos que utilizaron los babilonios y los egipcios a los métodos de multiplicar que hasta recientemente han continuado utilizando los campesinos rusos, ha llegado el momento de hablar de la llamada multiplicación por celosía, o multiplicación árabe, y su relación con nuestro algoritmo de multiplicación moderno.

Quienes no pudieron leer las anteriores entradas, lo pueden hacer aquí:

1) ¿Sueñan los babilonios con multiplicaciones eléctricas?

2) Multiplicar no es difícil: de los egipcios a los campesinos rusos

Pero iniciemos esta nueva jornada del paseo en la sala 28 (dedicada a la edad moderna) del Museo Arqueológico Nacional en Madrid. Esta sala contiene el denominado Ábaco neperiano, que consiste, como se ve en la imagen de abajo, en un pequeño mueble de madera con incrustaciones de hueso con 30 cajones en su interior, en los cuales se guardan las fichas de los dos ábacos que diseñó el matemático escocés John Napier (1550-1617), cuyo nombre latinizado es Johannes Neper y que fue el matemático que inventó los logaritmos, el conocido como huesos de Napier, del que hablaremos en esta entrada, y uno de tarjetas llamado promptuario (este es el único ejemplo conocido de este tipo de ábaco). Sobre este último podéis leer el artículo de Ángel Requena de la bibliografía.

 Estuche de madera que contiene los dos ábacos que diseñó John Napier. Su interior consta de 30 cajones, los de arriba contienen las 60 fichas del ábaco huesos de Napier, y los de abajo las 300 fichas del ábaco promptuario. Foto de Raúl Fernández para el Museo Arqueológico NacionalEstuche de madera que contiene los dos ábacos que diseñó John Napier. Su interior consta de 30 cajones, los de arriba contienen las 60 fichas del ábaco huesos de Napier, y los de abajo las 300 fichas del ábaco promptuario. Foto de Raúl Fernández para el Museo Arqueológico Nacional

Estos dos ábacos fueron descritos por John Napier en su obra Rabdologiae, seu numerationis per virgulas libri duo: cum appendice expeditissimo multiplicationis promptuario, quibus accesit et arithmetica localis liber unus –Rabdología, numeración o varillas a través de los dos libros: apéndice con el repositorio de ejecución multiplicación, que entró un local gratuito y aritmética– (1617).

Portada y dos páginas interiores del texto Rabdologiae (1617) de John NapierPortada y dos páginas interiores del texto Rabdologiae (1617) de John Napier

Los huesos de Napier, también conocidos como varillas o bastones de Napier, fueron desarrollados por el inventor de los logaritmos para realizar multiplicaciones, divisiones y raíces cuadradas. Los huesos de Napier consistían en una versión individualizada y particular de las tablas de multiplicar. Cada varilla contenía la tabla de multiplicar de una de las 10 cifras básicas de nuestro sistema de numeración decimal, 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, donde el resultado de cada multiplicación individual se escribía en un cuadrado con una diagonal que separaba la parte de las decenas, arriba de la diagonal, de la parte de las unidades, debajo de la diagonal (como se puede ver en la imagen de abajo). Así, la varilla del 7, empieza con el 7 (que es 7 x 1), después 14 (que es 7 x 2), con el 1 encima de la diagonal y el 4 debajo, a continuación, 21 (7 x 3), con el 2 encima de la diagonal y el 1 debajo, y así hasta 7 x 9, que es 63.

Versión moderna, en madera, de las 10 varillas de Napier, que contienen las tablas de multiplicarVersión moderna, en madera, de las 10 varillas de Napier, que contienen las tablas de multiplicar

Aunque, en realidad los huesos de Napier (que deben su nombre al material con el que fueron realizados) eran diez prismas cuadrados en los que se utilizaban las cuatro caras del prisma. Cada cara tenía los múltiplos de una cifra básica, es decir, la tabla de multiplicar de ese número, de forma que en caras opuestas estaban los múltiplos de dos números cuya suma fuese 9, por ejemplo, 3 y 6. De esta forma se disponían de varias caras con los múltiplos de un mismo número, lo cual era necesario para las diferentes operaciones aritméticas, por ejemplo, para multiplicar 355 x 7 se necesitaban dos varillas con la tabla del 5.

Detalle de los huesos de Napier, prismas cuadrados de marfil, del mueble denominado Ábaco neperiano que se conserva en el Museo Arqueológico NacionalDetalle de los huesos de Napier, prismas cuadrados de marfil, del mueble denominado Ábaco neperiano que se conserva en el Museo Arqueológico Nacional

Pero veamos cómo se multiplicaba con la ayuda de los bastones de Napier. Para empezar, veamos una multiplicación sencilla, en la que uno de los números, el multiplicador, es de una sola cifra, por ejemplo, 673 x 5. Se disponen, como se muestra en la siguiente imagen, las varillas de las cifras del número que multiplicamos, el multiplicando, en el orden en el que aparecen en este 6, 7 y 3, y puestas a continuación de una varilla fija con los números del 1 al 9. Como vamos a multiplicar el número 673 por 5, consideramos la fila correspondiente al número 5, como se muestra en la imagen, es decir, 3/0, 3/5 y 1/5. Para obtener el resultado de la multiplicación, se empieza por la derecha y se van sumando en diagonal los números que aparecen en la fila del 5. Así, se obtiene el resultado, 673 x 5 = 3.365.

imagen-5

En el siguiente ejemplo consideramos números de más de una cifra. Vemos cómo se realiza la multiplicación con los huesos de Napier de los números 4.392 y 175. Como en el ejemplo anterior se disponen las varillas de las cifras del multiplicando 4.392, en el orden en el que aparecen en el número (como se muestra en la siguiente imagen). Después nos fijamos en las filas de las cifras del multiplicador, 1, 7 y 5, que deben de “considerarse” en el orden en el que aparecen en el número, 175. Finalmente, empezando por la derecha, se suman los números de cada una de las diagonales que aparecen (entendiendo que en la fila del 1, aunque solo aparezcan los números, sería como 0 arriba y la cifra abajo, en este caso, 0/4, 0/3, 0/9 y 0/2). En cada paso nos quedamos con la cifra de las unidades y sumamos a la siguiente diagonal la cifra de las decenas (la “llevada”).

Veamos cómo se obtiene el resultado. En la primera diagonal, que nos dará las unidades del resultado, solo tenemos un 0, luego 0 es la cifra de las unidades. La siguiente diagonal nos dará la cifra de las decenas, que como la suma es 4 + 1 + 5 = 10, la cifra para las decenas es 0, y nos llevamos el 1 a la siguiente diagonal. La suma de la tercera diagonal, junto con la llevada, es 2 + 1 + 3 + 4 + 5 [+1] = 16, luego el 6 está en la posición de las centenas y nos llevamos 1 para la siguiente diagonal. Y así hasta el final. En consecuencia, se obtiene que 4.392 x 175 = 768.600.

imagen-6

La técnica de multiplicar de los bastones de Napier fue utilizada para desarrollar algunos mecanismos de cálculo. Por ejemplo, el médico y escritor Pierre Petit (1617-1687) tomó los bastones de Napier y diseñó un cilindro aritmético, el tambor de Petit, con tiras de papel, que contenían los múltiplos de las varillas de Napier, pegadas sobre el cilindro.

Tambor de Petit, cilindro aritmético basado en los huesos de NapierTambor de Petit, cilindro aritmético basado en los huesos de Napier

Un ejemplo más avanzado es el “reloj calculador”, desarrollado por el matemático alemán Wilhelm Schickard (1592-1635) en 1623. Como se explica en la página del Museo de la Ciencia de la Universidad Pública de Navarrase compone de dos mecanismos diferenciados: un ábaco de Napier de forma cilíndrica en la parte superior y un mecanismo en la inferior tipo pascalina para realizar las sumas parciales de los resultados obtenidos con el aparato de la parte superior. De este modo, se pueden efectuar las cuatro operaciones aritméticas fundamentales de forma manual y mecánica”. Recordemos que la “pascalina” es la primera calculadora mecánica (funcionaba a base de ruedas y engranajes), diseñada en 1642 por el matemático francés Blaise Pascal (1623-1662).

Calculadora Schickard, o “reloj calculador”, del Museo de la Ciencia de la Universidad Pública de NavarraCalculadora Schickard, o “reloj calculador”, del Museo de la Ciencia de la Universidad Pública de Navarra

Sobre otros mecanismos de cálculo que hicieron uso de los huesos de Napier se puede leer en el volumen 3 de las Recreaciones matemáticas de Édouard Lucas.

El sistema de multiplicación de los huesos de Napier está basado en la multiplicación árabe, también llamada multiplicación por celosía. Este nombre se debe a que la cuadrícula, con diagonales, sobre la que se realiza la multiplicación recuerda a los enrejados de madera, hierro u otro material que permitían ver sin ser vistos.

Como podemos leer en el excelente libro Historia universal de las cifras (2002), de Georges Ifrah, este es un procedimiento que inventaron los árabes alrededor del siglo XIII, y que posteriormente fue transmitido a Europa, China o India. Este algoritmo fue descrito por primera vez, que tengamos conocimiento de ello, en el texto Talkhis a’mal al hisab –Exposición sumaria de las operaciones aritméticas– (1299), del matemático marroquí Ibn al-Banna al-Marrakushi al-Azdi (1256-1321). Un comentario de este libro se debe al matemático árabe del Reino nazarí de Granada Al-Qalasadi (1412-1486). Entre las obras originales de aritmética de Al-Qalasadi se encuentra su libro Hadha al-kitab kashf al-asrar fi’ilm al-ghubar –Revelación de los secretos de la ciencia aritmética- (1486), que es una simplificación de una obra anterior más completa, en el cual describe el método de multiplicar que los árabes llamaban “multiplicación en cuadro” (ad darb bi’l jadwal).

//www.hathitrust.org/Página del libro Hadha al-kitab kashf al-asrar fi’ilm al-ghubar –Revelación de los secretos de la ciencia aritmética- (1486), del matemático Al-Qalasadi, que contiene dos multiplicaciones “en cuadro”, arriba 64 por 3 y abajo 534 por 342. Imagen de la Hathi Trust Digital Library

Expliquemos el método de multiplicación empleado por los árabes mediante un sencillo ejemplo, 934 x 314. Las diagonales de la multiplicación pueden tomarse en dos sentidos, pero empezaremos la explicación de este algoritmo considerando el mismo sentido que en el texto árabe de Al-Qalasadi.

Como vamos a realizar la multiplicación de dos números de 3 cifras, se realiza una cuadrícula 3 x 3, en la que se dibujan las diagonales que van de arriba a la izquierda hacia abajo a la derecha. Se escriben los dos números a multiplicar, el multiplicando, 934, escrito arriba (de izquierda a derecha) y el multiplicador, 314, en el lado derecho (escrito de abajo hacia arriba), como se muestra en la imagen.

imagen-10

Entonces se empieza la multiplicación. En cada cuadrado de la cuadrícula 3 x 3 se escribe el producto de las cifras que determinan ese cuadrado, como en el juego de los barcos, con la cifra de las decenas debajo de la diagonal y la cifra de las unidades encima. Por ejemplo, en el cuadrado de arriba a la derecha, que se corresponde con el producto de 9 por 4, que es 36, se colocará 36. Y así con el resto, como se muestra en la imagen.

imagen-11

Por último, de una forma similar a la vista para los huesos de Napier, pero con las diagonales en el sentido opuesto, se van sumando las diagonales de números desde la derecha-arriba a la izquierda-abajo. La primera diagonal, que nos aporta las unidades, solo consta de un número, el 6, que será la cifra de las unidades. La siguiente diagonal nos dará las decenas, y su suma es 2 + 1 + 4 = 7. La tercera diagonal suma 6 + 1 + 3 + 0 + 2 = 12, por lo que la cifra de las centenas es 2, y el 1 se suma a la siguiente diagonal (es la “llevada”), a la de los millares. Y así se continúa con el resto. Estos resultados, 6, 7, 2, etc, que hemos ido obteniendo se van escribiendo cerca del final de la diagonal correspondiente, como se muestra en la imagen. El resultado del producto será el número formado por estas cifras que hemos ido obteniendo, leídas de izquierda a derecha y de abajo a arriba, 293.276.

imagen-12

En la imagen anterior hemos escrito todos los elementos del proceso para que quede más claro, sin embargo, lo único que escribiría sobre la cuadrícula 3 x 3 una persona que tuviese que realizar la multiplicación 934 x 314 es lo siguiente:

imagen-13

Aunque en los textos árabes se suelen escribir las sumas de las diagonales en un segmento inclinado en el vértice superior izquierdo de la cuadrícula 3 x 3, como se muestra la siguiente imagen.

imagen-14

Otra disposición para este método de multiplicar es considerar las diagonales ascendentes, en lugar de descendentes, de forma que en el resultado del producto de dos cifras en la cuadrícula 3 x 3 se coloca la cifra de las decenas encima de la diagonal del cuadrado y la de las unidades debajo, y los dos números a multiplicar se colocan, el multiplicando arriba (de izquierda a derecha) como antes, pero el multiplicador, que va a la derecha, de arriba abajo, como se muestra en la imagen siguiente. Precisamente, es esta disposición la que han heredado los huesos de Napier.

imagen-15

Como ya hemos comentado, este método de multiplicación fue desarrollado por los árabes alrededor del siglo XIII, quienes lo trasmitirían a la parte occidental de Europa, donde recibió el nombre de multiplicación por celosía. En Europa se describió este método, así como algunas variantes del mismo, en un tratado anónimo sobre aritmética publicado en Treviso en 1478, Larte de labbacho (conocido también como Aritmética de Treviso). También se describe en la obra Summa de arithmetica, geometría, proportioni et proportionalita precipitevolissimevolmente (1494) del matemático italiano Luca Pacioli (aprox. 1445-1517). Aunque, como podemos leer en el libro A History of Algorithms: From the Pebble to the Microchip (1999), la primera referencia escrita sería un tratado inglés, escrito en latín alrededor del año 1300, Tractatus de minutis philosophicis et vulgaribus, en el que aparece la multiplicación de 4.569.202 por 502.403.

Multiplicación de 4.569.202 por 502.403, mediante el método por celosía, que aparece en el texto Tractatus de minutis philosophicis et vulgaribus (aprox. 1300), que se encuentra en la Bodleian Library de OxfordMultiplicación de 4.569.202 por 502.403, mediante el método por celosía, que aparece en el texto “Tractatus de minutis philosophicis et vulgaribus” (aprox. 1300), que se encuentra en la Bodleian Library de Oxford

Páginas de la "Aritmética de Treviso" (1478) con diferentes variantes de la multiplicación por celosía, o multiplicación árabePáginas de la “Aritmética de Treviso” (1478) con diferentes variantes de la multiplicación por celosía, o multiplicación árabe

Este método también llegó a China. Según el libro A History of Algorithms: From the Pebble to the Microchip aparece por primera vez explicado en el texto Jiuzhang suanfa bilei daquan –Suma de los métodos de cálculo de los Nueve Capítulos que consisten en problemas resueltos por analogía con problemas tipo- (1540), de Wu Jing.

Sin embargo, aunque también se suele denominar a este algoritmo de multiplicación bajo el nombre de multiplicación hindú, lo cierto es que no hay constancia de su uso en la India hasta mediados del siglo XVII, que aparece explicado en el comentario Ganitamañjari (1658) del matemático indio Ganesha sobre el libro Lilavati (1150) del matemático indio Bhaskara II.

Volviendo a la imagen de las páginas de la Aritmética de Treviso (1478), se encuentra en la misma imagen una variación de la multiplicación por celosía, en la que en lugar de escribir todos los detalles del procedimiento de la multiplicación árabe, se limita a escribir en cada cuadrado de la cuadrícula únicamente las unidades de las multiplicaciones intermedias, por lo que la persona que realiza la operación debe de tener cuidado con las decenas de dichas multiplicaciones, que ahora no se escriben pero que se añaden al resultado del siguiente cuadrado (a la izquierda), las “llevadas”. Esto último se corresponde, en el método de multiplicación árabe, a añadir la “llevada” a la siguiente diagonal.

A continuación, mostramos en diferentes etapas el ejemplo de la multiplicación 934 x 314 mediante este método (las diagonales que se pintan en la siguiente imagen pertenecen a la explicación, pero no aparecían en el desarrollo de la multiplicación).

imagen-18

Esta versión tendría su variante con las diagonales en el sentido contrario y con el multiplicador escrito en el lateral ahora de arriba hacia abajo.

Y la última variante, que también aparece en Larte de labbacho (1478) y que habría empezado a utilizarse a finales del siglo XV, simplifica las anteriores. Para empezar se traza una línea horizontal y sobre ella el multiplicante, después se escribe el multiplicador debajo a la derecha y escrito de abajo hacia arriba (como en el algoritmo árabe o la variante descrita en la anterior imagen), pero siguiendo sus cifras una línea inclinada hacia la derecha. El proceso es similar al anterior, como vemos en la imagen.

imagen-19

Este método, salvo por el hecho de que nosotros colocamos el segundo número debajo del primero, es exactamente el algoritmo que utilizamos para multiplicar. Por lo tanto, nuestro método de multiplicación, el que tú y yo utilizamos, el que nos enseñaron en la escuela, es una variación de la multiplicación árabe que se desarrolló a finales del siglo XV.

 "The end of the multiplication" es un ejemplo de multiplicación moderna perteneciente a un libro de ejercicios para estudiantes de 1814“The end of the multiplication” es un ejemplo de multiplicación moderna perteneciente a un libro de ejercicios para estudiantes de 1814

Bibliografía

1.- Museo Arqueológico Nacional

2.- Frank J. Swetz, Mathematical Treasure: John Napier’s Rabdologiae, Mathematical Association of America

3.- Nelo Alberto Maestre e Inmaculada Conejo (DIVERMATES), Ábaco neperiano, Museo Arqueológico Nacional, octubre 2014.

4.- Ángel Requena Faile, Una joya de la corona: el ábaco neperiano, mateturismo [xxx].

5.- Georges Ifrah, Historia universal de las cifras, Espasa, 2002.

6.- Calculadora Schickard, Museo de la Ciencia de la Universidad Pública de Navarra

7.- Éduoard Lucas, E., Recreaciones matemáticas, vol. 1 – 4, Nivola, 2007 y 2008.

8.- Jean-Luc Chabert, A History of Algorithms, From Pebble to Microchips, Springer, 1999.

9.- A S Saidan, Biography in Dictionary of Scientific Biography (New York 1970-1990).

10.- Mathematical Art: “The End of Simple Multiplication“, 1814, JF Ptak Science Books LLC, Post 982

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Los huesos de Napier, la multiplicación árabe y tú se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Identificando paleococineros por las marcas en los huesos
  2. Exposición en Bilbao: Hezurretan idatzia / Escrito en los huesos
  3. La Sima de los Huesos sería el primer acto funerario conocido de la historia de la Humanidad
Categories: Zientzia

#Naukas15 Bilbao, centro del universo

Tue, 2016/10/04 - 17:00

panoramicabilbao-hd

Manu Arregi, hincha de la Real Sociedad, aparte de afirmar lo obvio, usa la geografía bilbocéntrica para darnos una idea de las escalas del universo.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Bilbao, centro del universo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  2. #Naukas15 Estoy bien, estoy bien
  3. #Naukas15 Odón de Buen
Categories: Zientzia

Secretos

Tue, 2016/10/04 - 11:59

El ideal de la comunicación abierta hizo su aparición con la propia ciencia moderna en los siglos XVI y XVII. Antes, distintos factores filosóficos, sociales y económicos limitaron la circulación libre de los conocimientos acerca de la naturaleza. Con el tiempo, los conflictos bélicos, los intereses económicos y la propia forma de hacer ciencia convertirían grandes parcelas del conocimiento científico en secretos. La ciencia abierta es solo una parte de toda la ciencia, y puede que no la mayor.

zaccaria_in_the_temple_by_dghirlandaio

Solo para iniciados

Las tradiciones pitagórica y aristotélica distinguían el conocimiento esotérico (interno) del público y restringían el acceso al primero, que incluía la filosofía natural, a los discípulos elegidos.

La filosofía hermética que floreció en el Renacimiento y que con tanta intensidad abrazó los aspectos místicos de la alquimia y cualquier otro conocimiento de igual transcendencia reservaba los secretos de la naturaleza para los iniciados.

Pero no todo era filosofía, las consideraciones económicas siempre pesan mucho. Así, el sistema de gremios no fomentaba la diseminación de los conocimientos propios de los distintos oficios más allá del propio taller del maestro artesano y la ausencia de derechos de propiedad intelectual evitaba que ingenieros e inventores publicasen su trabajo; si alguno se animaba a escribir, lo hacía cifrando el texto, de forma que solo los elegidos pudiesen entenderlo. A este respecto, Leonardo da Vinci y su escritura especular (para ser leída usando un espejo) es un ejemplo muy conocido.

academie_des_sciences_1671

Imprenta, patentes y academias

Distintos desarrollos durante la llamada Revolución Científica se combinaron para superar la tendencia a guardar los conocimientos sobre la naturaleza como secretos. Quizás el más importante fue el desarrollo y expansión de la imprenta de tipos móviles, que permitía que las obras tuviesen una difusión muy amplia y muy rápida (en relación al uso de manuscritos), y que fomentó la ética de publicar los resultados de las investigaciones. Este paso culminaría en nuestra situación actual, en la que los científicos deben “publicar o perecer”.

Las ciudades-estado italianas fueron las primeras en implementar leyes de patentes en el siglo XV, que probaron ser tan provechosas que los sistemas legales de protección de patentes se extendieron rápidamente por Europa en el siglo XVI, llegando finalmente a extender los derechos de propiedad a las creaciones intelectuales a través de los derechos de autor (copyright).

Finalmente, las nuevas sociedades científicas, como la Royal Society de Londres o la Académie Royale des Sciences de París, ambas fundadas a mediados del siglo XVII, proporcionaban el cauce práctico adecuado para comunicar públicamente los nuevos descubrimientos mediante conferencias a los miembros y la publicación en sus medios periódicos.

Secretos, secretos

Y, sin embargo, los secretos se perpetuaron en la ciencia moderna en tres formas distintas.

El secreto personal surgía del propio sistema de recompensa de la comunidad científica, que hacía énfasis en la prioridad del descubrimiento individual y animaba a los científicos a mantener en secreto los resultados no publicados; si no lo hacían así un colega podía llegar a tener conocimiento de su trabajo todavía no concluido y adelantarse en la publicación, obteniendo así el reconocimiento y todo lo que él conlleva.

venter1

El secreto industrial se deriva de las recompensas a la prioridad a los derechos de propiedad que da el capitalismo. Si bien el sistema de patentes anima a publicar una vez la patente está asegurada, hasta ese momento el secreto tiene que guardarse celosamente. Este celo lleva a rigidizar el sistema de revisión por pares (los que revisan suelen ser competidores potenciales). El ejemplo más espectacular de lo que esto significa está en cómo se duplicaron los esfuerzos en la investigación genómica a finales del siglo XX y, el más reciente, en la guerra de patentes por el sistema CRISPR/Cas9 que aun se está librando, en ambos casos debido al enorme potencial económico que encierran.

tumblr_ni4b6pfvs11qfkff1o1_1280

Finalmente el secreto también surge de la relevancia de la ciencia para la seguridad nacional. Pero, curiosamente, la historia demuestra el promotor del secretismo no es necesariamente el estado en cuestión. Un ejemplo precoz lo protagonizaron Antoine Lavoisier y sus colaboradores, que trabajaron en un laboratorio secreto de explosivos que montaron ellos mismos durante la Revolución Francesa. La ignorancia excusable de los líderes políticos y militares sobre los últimos avances en investigación, combinado con el habitual conservadurismo de los estamentos militares, llevó a los propios científicos hasta superada la primera mitad del siglo XX a asumir la iniciativa en el desarrollo de nuevas tecnologías militares y a mantenerlas en secreto.

Quizás el ejemplo más conocido e importante por su transcendencia posterior fue la autocensura que se impusieron los físicos e ingenieros británicos y estadounidenses tras el descubrimiento de la fisión nuclear en 1939 con objeto de impedir que sus resultados llegasen a manos de la Alemania nazi. Finalmente científicos norteamericanos y de otros países aliados consintieron en trabajar en secreto en el desarrollo de un arma nuclear en el denominado Proyecto Manhattan.

Durante la Segunda Guerra Mundial se crearon multitud de laboratorios secretos y se desarrolló trabajo en universidades bajo el auspicio de las autoridades militares en condiciones de estricta confidencialidad. Las contribuciones de la ciencia y la tecnología en ambos bandos (criptografía, cohetes, bombas atómicas, motores, gasolina sintética, radar, sonar, por mencionar solo algunos) al desarrollo de la guerra convenció a los gobiernos de la necesidad de mantener en funcionamiento laboratorios secretos, institucionalizando de esta manera el secreto en la ciencia. Esta forma de trabajar sobrevivió al fin de la Guerra Fría, y hoy día el secreto afecta a todas las áreas concebibles del conocimiento: desde la entomología a la exploración espacial, pasando por la neurociencia básica y las matemáticas.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Secretos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Códigos secretos en la primera guerra mundial
  2. De los secretos del Universo a la vida cotidiana: aceleradores de partículas.
  3. Science Wars (2): Las humanidades contraatacan
Categories: Zientzia

Dando valor a los residuos marinos para cuadrar la economía circular

Mon, 2016/10/03 - 11:59

El grupo de investigación Biomat de la Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) valoriza residuos marinos de la costa guipuzcoana (residuos de calamar, pescado, algas…) para la obtención de nuevos materiales. Esta línea de investigación ofrece una nueva visión de los plásticos alineada con los principios de la economía circular, basada en preservar y mejorar el capital natural, controlando las existencias finitas y equilibrando los flujos de los recursos renovables. En este contexto, la investigación del grupo hace especial hincapié en la valorización de subproductos o residuos industriales a través de procesos que minimizan el uso de recursos, tanto materiales como energéticos, para obtener productos competitivos y sostenibles.

“La creciente preocupación sobre la contaminación ambiental-explica Pedro Guerrero, investigador del Departamento de Ingeniería Química y del Medio Ambiente de la Escuela de Ingeniería de Gipuzkoa y miembro de Biomat-debe conducir al desarrollo de nuevos productos basados en materiales renovables con menor impacto ambiental durante su ciclo de vida. La demanda europea de plástico en 2014, según la asociación PlasticsEurope (2015), fue de 47,8 millones de toneladas, de las cuales el 90% procedía de fuentes no renovables. Además, 25,8 millones de toneladas de plásticos terminaron en la basura, de los cuales el 30,8% finalizó su ciclo de vida en vertederos debido a que ésta todavía sigue siendo la primera opción para la gestión de residuos en muchos países de la UE. La alternativa a esta gestión se basa en la economía circular, que a diferencia de la tradicional economía lineal, convierte los recursos en productos, los productos en residuos y los residuos otra vez en recursos. De esta forma, se conseguiría cerrar el ciclo en los ecosistemas industriales y minimizar la cantidad de recursos utilizados, residuos generados y emisiones ambientales. Sin embargo, la investigación e innovación en este campo son esenciales para demostrar a gobiernos y empresas que este planteamiento es factible. Las empresas de bienes de consumo y de envases plásticos y los fabricantes de productos plásticos juegan un papel fundamental en esta iniciativa, porque son las que determinan qué materiales y qué productos se introducen en el mercado”.

economia-circular

En este contexto, el grupo de investigación Biomat de la UPV/EHU valoriza residuos y subproductos industriales de cara a obtener productos biodegradables/compostables con excelentes propiedades en servicio y procesables por las técnicas empleadas actualmente por la industria del plástico, cuantificando las cargas ambientales implicadas en cada uno de los procesos realizados. En relación con las etapas implicadas en la economía circular, Biomat centra sus trabajos de investigación en la mejora de los procesos de extracción, producción y tratamiento del producto tras desecho, con el objetivo de aumentar los rendimientos de estos procesos y reducir costes e impactos ambientales, permitiendo el desarrollo de materiales sostenibles y competitivos. Actualmente el grupo Biomat trabaja en un proyecto financiado por la Diputación Foral de Gipuzkoa en el que utiliza como materia prima residuos de la costa guipuzcoana para la obtención de proteínas y polisacáridos (celulosa y quitina). El campo de aplicación de estos materiales va desde films para embalajes a hidrogeles para apósitos en medicina.

Dentro del campo de los envases, Biomat está inmerso en la obtención de envases activos que alarguen la vida útil del alimento y, al mismo tiempo, contribuyan a reducir la cantidad de alimentos que son desechados. “La finalidad es aportar valor al envase, que pasa de ser un mero contenedor a interactuar con el alimento para conservar su calidad durante más tiempo. Para ello, se están valorizando desechos de la industria pesquera para obtener proteína, quitina y celulosa por medio de procesos sencillos, económicos, medioambientalmente sostenibles y con unos rendimientos cercanos al 95%. A partir de estos materiales, se han obtenido films transparentes para envase alimentario que pueden ser sellados térmicamente y que presentan excelentes propiedades barrera a gases y a productos grasos. Además, estos films se han sometido a procesos de biodegradación con buenos resultados por lo que, además de valorizar subproductos de la industria pesquera, se cierra el ciclo de vida del material”, comenta el investigador Guerrero. Los resultados de este trabajo, en el que se ha determinado el impacto ambiental asociado a cado uno de los procesos implicados, se han publicado recientemente en la revista ACS Sustainable Chemistry and Engineering.

Además de la aplicación en el campo de los envases alimentarios, las proteínas obtenidas se pueden utilizar para la elaboración de materiales biocompatibles. Esta característica abre un campo de aplicación muy amplio como biomateriales en medicina. “Uno de los retos en este campo-continúa el investigador Pedro Guerrero- es la obtención de materiales que puedan ser procesados utilizando la fabricación aditiva, impresión 3D. Las estructuras 3D son creadas depositando el material, capa sobre capa, de forma continua. Para ello, la primera capa debe tener integridad estructural antes de que se deposite la segunda capa, y así sucesivamente. En consecuencia, hay que controlar los parámetros reológicos del material, que debe ser viscoso o viscoelástico inicialmente y convertirse en gel antes de depositar capas adicionales. Por tanto, es fundamental examinar no sólo las características del material para obtener una estructura 3D, sino también la viabilidad del material para ser fabricado utilizando las técnicas industriales de diseño asistido por ordenador”. Los resultados para la obtención del hilo de proteína han sido publicados en la revista European Polymer Journal.

Referencias:

Alaitz Etxabide, Itsaso Leceta, Sara Cabezudo, Pedro Guerrero, Koro de la Caba. Sustainable fish gelatin films: From food processing waste to compost. ACS Sustainable Chemistry and Engineering, 2016; 4, 4626-4634. DOI: 10.1021/acssuschemeng.6b00750

Alaitz Etxabide, Koro de la Caba, Pedro Guerrero. A novel approach to manufacture porous biocomposites using extrusion and injection moulding European Polymer Journal, 2016; 82, 324-333. DOI: 10.1016/j.eurpolymj.2016.04.001

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Dando valor a los residuos marinos para cuadrar la economía circular se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La variedad de residuos madereros y la riqueza ecológica de los hayedos
  2. Turno para los medicamentos biosimilares
  3. Curso de verano “La ciencia de nuestras vidas”: La economía y sus falacias, por José Luis Ferreira
Categories: Zientzia

La historia de la vida

Sun, 2016/10/02 - 11:59

la-historia-de-la-vidaÁrbol de familia de la vida en la Tierra. ¿Te encuentras? (amplia la imagen pulsando sobre ella)

Nuestro planeta se formó hace unos 4.500 millones de años (en adelante m.a.) Las primeras pruebas de la existencia de vida en la Tierra son muy endebles: unas rocas de 3.800 m.a. de antigüedad contienen un grafito en el que los isótopos estables del carbono (variedades cuyos átomos tienen masas ligeramente diferentes: carbono-12 y carbono-13) se hallan en una proporción que refleja alguna forma de actividad biológica. La vida podría haber surgido hace aproximadamente 4.000 m.a., o algo antes incluso, en un mundo acuático, cuando el planeta sufría aún el impacto frecuente de asteroides.

Las primeras células pudieron haberse formado hace unos 3.500 m.a. y los primeros organismos que hacían la fotosíntesis (convertían la energía electromagnética en energía química) quizás surgieron entonces. Pero la producción masiva de oxígeno a cargo de bacterias fotosintéticas ocurrió unos 1.000 m.a. después. Ese oxígeno transformó la atmósfera terrestre, oxidó su superficie y condicionó el desarrollo biológico posterior.

Las primeras células complejas surgieron hace unos 2.000 m.a. o algo más tarde. Los primeros organismos pluricelulares aparecieron hace unos 1.700 m.a. o quizás antes, y 200 m.a. después se produjo, seguramente, la división que dio lugar a las actuales plantas, hongos y animales. Hace 1.200 m.a. ya había organismos pluricelulares con células diferenciadas. Y los primeros animales surgieron hace unos 650 m.a.. Los que tienen simetría bilateral y, por lo tanto, una parte delantera y una trasera, aparecieron hace unos 550 m.a., con la llamada explosión cámbrica, una gran diversificación de esquemas corporales que dio lugar a la aparición de gran variedad de animales, incluidos los primeros vertebrados.

Las primeras plantas terrestres aparecieron hace unos 445 m.a., los primeros anfibios unos 30 m.a. después, y los primeros insectos hace unos 400 m.a. Hasta entonces, todos los vertebrados habían sido peces, aunque quizás alguno de ellos ya había colonizado el medio terrestre. Hace 360 m.a. ya había grandes árboles y hace 320 m.a. surgieron los primeros reptiles. En aquella Tierra abundaban los insectos.

Los primeros amniotas -animales cuyos huevos pueden sobrevivir en ambientes secos- surgieron hace 300 m.a.. Hace 250 m.a. aparecieron los primeros dinosaurios y los primeros mamíferos ovíparos. Hace 200 m.a. surgieron los primeros mamíferos marsupiales y las primeras aves, y hace unos 130 m.a. evolucionaron las primeras plantas con flores, que experimentaron una diversificación enorme hasta hace unos 90 m.a., diversificación paralela a una gran proliferación de insectos polinizadores.

Hace 66 m.a. se extinguieron los dinosaurios, con excepción de las aves, y a partir de ese momento, los mamíferos crecieron de forma espectacular, tanto en tamaño como en número de especies. Los simios se diferenciaron del resto de primates hace unos 25 m.a., y el linaje humano se separó hace un 6 o 7 m.a. del de los chimpancés y bonobos. Hace algo más de dos m.a. surgió el género al que pertenecemos, Homo, y hace unos 250.000 años, nuestra especie.

Como el humano, todos los demás linajes que han llegado hasta hoy hunden sus raíces en el principio de los tiempos de nuestro planeta. Todos los seres vivos procedemos de un mismo organismo primigenio, un antepasado común. Todas las especies han evolucionado bajo la acción de la selección natural, pero la mayoría se han extinguido porque sus individuos no sobrevivieron o porque otras se reprodujeron con mayor éxito. Cada vez sabemos más acerca de los pasos intermedios que han dado lugar a unas formas y a otras. Pero hay algo que todavía no sabemos: desconocemos cómo surgió la vida, que características tenía aquel organismo primigenio del que proceden todos. Es posible, además, que no lleguemos a saberlo nunca.

—————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————————

Este artículo fue publicado en la sección #con_ciencia del diario Deia el 22 de mayo de 2016.

El artículo La historia de la vida se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Vida alienígena inteligente, una historia terráquea
  2. Hitos
  3. La historia del hombre que coge piedras mientras corre
Categories: Zientzia

#Naukas15 Katy Perry, Zooey Deschanel y otros sosias naturales

Sat, 2016/10/01 - 11:59

katy-perry-katy-perry-zooey-deschanel-zooey

Existen personas que se parecen mucho entre sí aunque no tengan rasgos de parentesco. En la naturaleza ocurre lo mismo pero con especies diferentes. Txema Campillo lo explica.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Katy Perry, Zooey Deschanel y otros sosias naturales se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 De elfos, orcos y otros extraterrestres
  2. #Naukas15 Músicos, muleros y otros científicos de éxito
  3. #Naukas13 Cómo hacer España (geográficamente) más grande
Categories: Zientzia

La nebulosa del Bicho* y el anillo no único

Fri, 2016/09/30 - 12:00

¿Cuántas veces en astronomía (y, en general, en el mundo de la ciencia) descubrimos algo que no era el objetivo que nos movía en un principio? Estos descubrimientos “colaterales” a veces son más relevantes que lo que se buscaba originalmente. Otras veces, complementan determinados campos de estudio con sus aportaciones.

De esto sabe algo Miguel Santander (investigador del Grupo de Astrofísica Molecular del Instituto de Ciencia de Materiales de Madrid – CSIC), que en alguna ocasión se ha topado, junto con su equipo, con sorpresas que le han llevado a publicar sus resultados en la revista Nature (pueden ver una de estas historias en su charla de Naukas “Cómo ser una estrella, morir dos veces y hacerlo con estilo”). [1]

Sin embargo, en esta ocasión, no se trata de estrellas, sino de anillos.

Para empezar por donde es debido, debemos explicar qué es una nebulosa planetaria. Pues bien, una nebulosa planetaria es el cadáver de una estrella de masa baja o intermedia (generalmente estrellas que tienen hasta ocho masas solares). Nos llaman la atención porque resulta difícil de explicar cómo un objeto esférico (pues damos por hecho que así son las estrellas, esencialmente esféricas) puede dar lugar, al morir, a formas tan diversas y fantásticas.

imagen-1_11467616406_c615f004b9_k

La estrella, al agotar el hidrógeno de su núcleo, atraviesa varias fases que harán que se hinche, multiplique su tamaño cientos de veces, y acabe liberando su materia al medio, dejando en el centro sus restos en forma de densa estrella enana blanca. A su alrededor, el gas que una vez formó parte de ella se disgrega, condensándose parcialmente en granos de polvo y formando diferentes moléculas. Su destino final será la total desaparición de la nebulosa planetaria tal y como la vemos ahora. Acabará difuminándose en el medio interestelar y, muy probablemente, el ciclo de la vida de las estrellas volverá a dar comienzo cuando el gas y el polvo se reúnan en otro lugar y se condensen lo suficiente como para generar reacciones nucleares. Pero esa es otra historia. Sigamos con la nebulosa planetaria.

Hace un tiempo se dio a conocer el resultado del trabajo de un equipo (liderado por Valentín Bujarrabal, del OAN-IGN) que estudiaba la presencia de discos de material alrededor de estrellas evolucionadas. Se trata de discos muy similares a los que se crean cuando nacen las estrellas, aunque desconocemos muchas de sus características y tampoco sabemos si en esos discos de estrellas moribundas podrían nacer planetas. Con la intención de seguir investigando estos interesantes discos, se obtuvo tiempo de observación con el interferómetro ALMA, un radiotelescopio formado por 66 antenas y situado en el desierto de Atacama (Chile).

Y, al recibir los datos, se llevaron una sorpresa.

Una nebulosa no solo asimétrica

Seguimos con la pregunta. ¿Cómo es posible que objetos esféricos como estrellas den lugar a simetrías tan distintas y, en algunos casos, tan extremas? Es lo que le ocurre a nuestra protagonista, la nebulosa del Bicho (NGC 6302), una nebulosa planetaria relativamente joven y cuya estrella central tiene una temperatura muy alta (en realidad aún no se sabe si en el centro hay una o varias estrellas, pero eso es objeto de otro estudio).

imagen_2_384572main_ero_ngc6302_full_full

La forma es impresionante. Un centro ardiente del que salen despedidos vientos estelares, provocados por la enana blanca, que ionizan todo el medio y dan forma a los chorros bipolares, también conocidos como lóbulos (los que hacen que la nebulosa parezca ser un bicho con alas o tener forma de diábolo). Pero, un momento… No vemos el centro.

Y no lo vemos en esta imagen porque hay un anillo de polvo y gas que lo impide. Ojo, hagamos una distinción clara entre anillo y disco. Buscábamos un tipo de disco mucho más pequeño que este anillo y no lo hemos detectado. Pero ahí está ese anillo y, si nos fijamos bien, en el rango visible de la luz vemos un filamento en forma de arco envuelto en los lóbulos principales.

Aunque no sabemos muy bien de qué se trata… a no ser que observemos en otros rangos de la luz, como el milimétrico y el submilimétrico, los rangos en los que observa ALMA y que logran ofrecernos una información sorprendente.

¿El anillo único?

Algunas nebulosas tienen, alrededor del núcleo, un anillo de gas y polvo muy denso y espeso que, normalmente, se asocia con su simetría extrema y que creemos relacionado con los vientos de la estrella, la presencia de una compañera o los campos magnéticos.

En el caso de la nebulosa del Bicho, el proceso de creación del anillo empezó hace unos 5.000 años y duró aproximadamente unos 2.000. Más tarde, en un espacio de tiempo que iría entre hace 3.600 y 4.700 años, se crearon los lóbulos. Pero la nebulosa planetaria no tiene un único eje de simetría ni un solo chorro bipolar. Hace unos 2.200 años, otro chorro surgió del núcleo, este con una simetría distinta. Es decir, hay un tercer lóbulo, más joven y con un eje diferente al de los lóbulos principales.

Pero eso no es todo.

Paralelamente, en una época similar, se formó otra estructura cuya existencia se desconocía hasta ahora: un segundo anillo, más joven que el primero, que está orientado en otra dirección y que, además, se expande más rápido.

imagen_3_anillos-vistos-por-alma

Aunque no es la primera nebulosa planetaria descubierta con varios anillos con distintos grados de inclinación, sí es la primera vez que se estima que hay bastante diferencia de edad y de masa entre los anillos. Los anillos secundarios de otras nebulosas planetarias son casi tan masivos como los primarios y, en este caso, si el anillo primario tiene 0,1 masas solares, el secundario tiene solo 2,8 masas de Júpiter.

¿Y tú, de quién eres?

Tanto el origen como la orientación de este segundo anillo de la nebulosa del Bicho son un misterio para los investigadores, pero hay varias teorías que especulan sobre su posible formación. Una de ellas plantea el escenario de un sistema triple en el que una de las estrellas habría pasado por la fase de gigante roja, desestabilizando a todo el sistema. Las otras dos estrellas podrían haber originado el nuevo anillo.

Hay otra hipótesis mucho más arriesgada, pero igualmente interesante. Que el anillo sea el resultado de la destrucción de un planeta gigante gaseoso que hubiese estado en una órbita demasiado cercana a la estrella durante su proceso de evolución a gigante roja.

En ambos casos se trata de especulaciones y llegar a alguna conclusión plausible requeriría de datos más precisos de la zona en concreto.

El caso es que no, no se han encontrado los discos que se buscaban en un principio y para lo que se pidió tiempo de observación, pero sí se ha descubierto un nuevo tipo de anillo de forma casual. Sorpresas nos da la ciencia.

Este post ha sido realizado por Natalia Ruiz Zelmanovitch (@Bynzelman) con ayuda de Miguel Santander (@Migusant) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

Notas:

[1] Esta charla está inspirada en los resultados de este artículo científico: “The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2–428”.

Enlaces:

Artículo científico: ALMA high spatial resolution observations of the dense molecular region of NGC 6302

Nota de prensa del CSIC: Descubierto un segundo anillo en la Nebulosa del Insecto

Imágenes:

Imagen 1. Nebulosas planetarias. Crédito: Montaje de Judy Schmidt.

Imagen 2. Nebulosa del Bicho. Crédito: NASA, ESA y el equipo del Hubble SM4 ERO.

Imagen 3. Anillos de la densa región molecular de la nebulosa del Bicho vistos por ALMA. Crédito: M. Santander-García et al./ALMA/HST

Vídeo: Observaciones de ALMA en 12CO y 13CO (isotopólogos de monóxido de carbono) superpuestas a una imagen del Telescopio Espacial Hubble. El número mostrado en la parte inferior corresponde a la velocidad referida al sistema estándar de reposo en km/s (la velocidad del centro de masas del sistema es -30.4 km/s). La emisión traza la estructura y el patrón de velocidades de ambos anillos. La región izquierda (oeste) del anillo interior está asociada con el filamento en forma de arco visible en la imagen de Hubble.

Crédito: M. Santander-García et al./ALMA/HST

* No sé por qué se empeñan en llamar a esta nebulosa planetaria “Nebulosa del Insecto”, cuando la palabra inglesa “bug”, de toda la vida, se ha traducido como bicho. Para la palabra “insecto” está la palabra “insect”. ¿Y cómo se llama la nebulosa? Bug Nebula. ¿Por tanto? Nebulosa del Bicho. Sin duda.

El artículo La nebulosa del Bicho* y el anillo no único se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La descripción pendular de las nebulosas
  2. Guia estelar para morir dos veces y hacerlo con estilo
  3. Hijos de la supernova
Categories: Zientzia

#Naukas15 ¿Es necesario usar animales en investigación?

Thu, 2016/09/29 - 17:00

mzzn6963-1344406314

El uso de animales es un tema controvertido pero en el que la falta de información y los prejuicios campan a sus anchas. Sergio Pérez Acebrón intenta aclarar algunas ideas.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 ¿Es necesario usar animales en investigación? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14 Animales mutantes superpoderosos
  2. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  3. #Naukas15 La insoportable imposibilidad de ser imparcial
Categories: Zientzia

Una colaboración fructífera: The Studio – Jet Propulsion Laboratory

Thu, 2016/09/29 - 11:59

10737

Hace quince días hablábamos en este mismo espacio del perfil ideal que los artistas científicos deberían tener para conseguir que su trabajo fuera fructífero y provechoso para ambas partes y concluíamos pensando si era posible encontrar ese perfil ideal en nuestros días.

Es posible y de hecho existe.

El Jet Propulsion Laboratory (JPL) es un centro de investigación y desarrollo de la NASA (forma parte del Instituto de Tecnología de California que lo gestiona para la agencia espacial estadounidense), responsable de algunas de las misiones más ambiciosas, y también más espectaculares, de la agencia espacial estadounidense. En él trabajan algunos de los mejores ingenieros, astrónomos, astrofísicos y científicos del mundo.

En el año 2003, el director del JPL, Dr. Charles Elachi, realizó una visita guiada para Richard Koshalek, entonces Director del Art Centre de Pasadena y actualmente Director del Smithsonian’s Hirshhorn Museum en Washington. Al terminar el recorrido Koshalek le dijo a Elachi: “deberías contratar un artista para hacer vuestro trabajo accesible a los legos”.

Para Elachi, como para el resto del personal científico del JPL, la idea de necesitar a un artista o un diseñador o a alguien alejado de su mundo para presentar su trabajo era algo si no inconcebible, digamos inesperada. Elachi sin embargo siguió el consejo de Koshalek y contrató a Dan Goods con una condición: tienes un año para hacer que esta contratación tenga sentido, para hacer valer tu trabajo.

11106

Goods comenzó a trabajar y a pasearse por el JPL para ofrecer sus servicios, sus capacidades, a los ingenieros de la NASA. Uno de ellos, Steve Matousek, le pidió ayuda para preparar la presentación a los miembros de la Junta de Gobierno de un proyecto muy ambicioso y en cierta manera imposible: el envío de la sonda Juno a Júpiter. Se trataba de conseguir que un proyecto a 10 años vista fuera presentado con una estética atractiva pero coherente con las propuestas de la misión, ajustada a las posibilidades reales de la ciencia y con modelos que demostraran que los planes eran de hecho realistas.

10917Como todos sabemos, el proyecto salió adelante y este año Juno entró en la órbita de Júpiter y todos hemos podido ver el éxito de esta misión.

Actualmente trabajan en The Studio 8 personas con especialidades dispares: efectos especiales en cine, arquitectura, antropología, publicidad e ilustración. Son contratados independientes, autónomos los llamaríamos en España, y cada uno de ellos gestiona un mínimo de 5 proyectos.

¿Qué ventajas tiene para la ciencia contar con un grupo de no científicos paseando por las instalaciones?

-Preguntan sin miedo. Los integrantes del Studio pueden decirles a los ingenieros cuándo no entienden algo y hacen preguntas que entre iguales, entre científicos, podrían considerarse tontas.

-A través de esas preguntas obligan a los científicos a repensar sus ideas, a enfocarlas de otra manera, a manosearlas y verlas desde fuera para intentar explicarlas.

-Este intercambio permite a los científicos acercarse a su trabajo de manera más libre, diciendo cosas que no dirían en un ambiente más de ciencia, entre iguales.

Este nuevo acercamiento no está reñido con el rigor. El propósito de los trabajos, diseños y visualizaciones de los artistas que trabajan en el Studio del JPL no es hacer la ciencia más fácil, ni más bonita. Su propósito fundamental, y la idea que guía todos los proyectos, es provocar el asombro y el interés tanto de los legos como de los propios científicos que participan en los proyectos, pero sin olvidar que en ellos se invierten millones de dólares y es fundamental mantener el rigor científico.

En los años 50, la fotógrafa Berenice Abbott fue contratada por el MIT para documentar la ciencia y las investigaciones que se estaban llevando a cabo en la prestigiosa institución. Abbott opinaba que

“Para conseguir que la ciencia tenga un amplio apoyo popular, es necesario que haya un intérprete amigable entre la ciencia y el profano. Creo que la fotografía puede ser ese portavoz, mejor que cualquier otra forma de expresión”.

Casi 70 años después la ciencia sigue necesitando ese intérprete amigable del que hablaba Abbott, ese intermediario entre la ciencia y los legos, como le dijo Koshalek a Elachi, para conseguir no solo el apoyo popular que es fundamental sino también, y más importante, que los poderes políticos y económicos comprendan, asuman y arriesguen en los proyectos científicos del futuro.

El Studio del JPL ve, ahora mismo, peligrar su futuro. Elachi, el hombre que lo puso en marcha, que arriesgó al contratar a un artista para que les dijera a sus científicos e ingenieros lo que nadie les había dicho y les hiciera pensar de otra manera, se jubila el año que viene. En un par de meses habrá elecciones presidenciales en Estados Unidos y la NASA y la decisión sobre sus misiones es responsabilidad directa del Presidente; él o ella es quien decide cuál será la prioridad de la agencia espacial americana durante su mandato.

Esperemos que la política no eche por tierra esta exitosa y fructífera colaboración.

Referencias:

Infografías del JPL

La ciencia, pasión, asombro y curiosidad.

Nasa’s secret art studio: how to make rocket science beautiful

Sobre la autora: Ana Ribera (Molinos) es historiadora y cuenta con más de 15 años de experiencia en el mundo de la televisión. Es autora del blog Cosas que (me) pasan y responsable de comunicación de Pint of Science España.

El artículo Una colaboración fructífera: The Studio – Jet Propulsion Laboratory se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un modelo para la colaboración científica abierta, por Ash Jogalekar
  2. 5 beneficios que aporta la divulgación a los científicos
  3. La creatividad científica y el arte: La muerte de Sócrates
Categories: Zientzia

Pages