Natacha Aguilar: Planeta orekan egon dadin, itsasoa orekatu behar dugu

Zientzia Kaiera - mar, 2017/10/03 - 09:00
Iraide Olalde Irla Kanariarretan Ziphiidade familiako kide asko, hau da zifio asko gelditzen ziren hondartzan mugitu ezinik, herrialde horretan ur azpiko sonar militarrak erabiltzen zirelako. Sakonera handitan urpekoak detektatzeko erabiltzen da teknika hau, soinuak uretan zehar hedatzen den neurrian.

2003.ean, Palmako Unibertsitateak ikerketa bat egin zuen. Bertan egiaztatu zen zetazeoen heriotza eta sonarren arteko lotura, eta 2004.ean, Gobernu Espainiarrak moratoria bat ezarri zion sonarren erabilerari: 12 mila nautiko Kanaria inguruan, zifioak hobeto kontserbatzeko. Ordutik hona, ez da hainbeste zifio hilik aurkitu.

Natacha Aguilarrek ondo daki kontserbazio-biologia zeinen garrantzitsua den, eta zehazki zifioen kontuak zein garrantzi daukan. Zetazeoetan eta itsas akustikan aditua da BIOECOMAC ikerketa taldean, La Lagunako (Tenerife) Unibertsitatean.

1. irudia: Natacha Aguilar itsas biologoa da, eta zetazeoetan eta itsas bioakustikan ikertzen ari da La Lagunako (Tenerife) Unibertsitatean.

Zifioek zetazeo familia bat osatzen dute. Sakonera handiko uretan bizi dira ozeanoetan. Aguilarrek Naukasen bigarren jardunaldian azaldu zigun nekez ikusten direla zifioak ur-azalean, eta animalia misteriotsuak direla. Tamaina ertaineko itsas ugaztunak dira eta urpeko igeriketa benetan izugarriak egiten dituzte. Katxaloteak baino miresgarriagoak, zeren eta nahiko dute ur-azalean bi minutu egotea, gero ur azpian bi ordu egon ahal izateko beste oxigenoa hartzeko.

Behin uretan murgilduta, gutxi gorabehera 500 m-ra daudelarik, ekolokalizazio-klaskak egiten hasten dira. Izan ere, sonar hori saguzarren eta zetazeoen eboluzio-ildoetan garatu da bata bestearekiko beregain. Berari esker, harrapakin egokia lokalizatzen dute. Behin lokalizatuta, klaskak azkar igortzen hasten dira bere harrapakariari gertutik jarraitzeko, eta azkenean harrapatzeko.

2. irudia: Zifioa (Argazkia: Circe)

Sakonera handikoak diren urpeko igeriketa horien artean, zifioek buzeo laburragoak egiten dituzte errekuperatzeko, 400 m-raino 10-20 minutuan. Horrelakoen artean, bi minutu besterik ez dute ematen ur-azalean. Tarte hauetan jartzen dute Natacha eta laguntzaileek sakelako telefonoen antzeko gailu bat zifioen bizkarrean bentosa baten bidez: DTAG gailua.

DTAG gailuak zetazeoen mugimenduen eta portaeraren datu zehatzak lortzen ditu. Datuen artean, urpeko igeriketaren sakonera, iraupena edo buztanaren mugimenduen maiztasuna, estimuluek eragindako erreakzioak, komunikazio akustikoa edota tasa metabolikoa bezalako datu fisiologikoak biltzen ditu gailuak. “ Egun St Andrews (Eskozia), Aarhus (Danimarka) eta Moss Landing Instituterekin (EEBB) lanean dihardugu zifioen frekuentzia kardiakoa antzemateko lanean”, dio Natachak.

Zifioak, gainontzeko zetazeoen antzera, kontserbazio neurriak behar dituzten babestutako espezieak dira. Bizitza luzeko animaliak dira, “K” estrategia dutenak, hau da, ugalketa erritmo baxua dute eta izaten duten kume apurren zaintzaz arduratzen dira. “Animalia bat galtzen den uneak garrantzia du”, eta “itsasoko misterioekin asko disfrutatzen dugu, beraz, hauek zaintzea beharrezkoa dugu. Espezie bakoitza bakarra da eta ezinezkoa izango du haren burua mantentzea itsasoko habitata hondatzen badugu gure jarduerarekin”, baieztatzen du Natachak.

Espezie guztiak giza jardueraren eraginetik babestearen garrantzia azpimarratu zuen Natacha Aguilera ikertzaileak. Horrez gain, kontserbazio-biologiaren garrantzia azpimarratu zuen ikertzaileak Naukas zientzia-dibulgazio ekitaldian. Gainontzeko zetazeoen antzera, zifioek plastikoak itsasoan eragin duen kutsadura pairatzen dute. Izan ere, duela gutxi Norvegian urdailean plastikozko 30 poltsa zituen zifio bat hilik aurkitu zuten. Honek mobilizazio soziala eta SKY TVko dokumentala ekarri zituen. Dokumentalean ULLko talde batek lan egin zuen.

Horretxegatik da hain garrantzitsua kontserbazio-biologia izeneko hori. Diziplina arteko zientzia honetan kontuan hartzen dira bioaniztasunaren eta habitataren ezaugarriak, bai eta gizakiaren eta beste animalien arteko harremanen ezaugarriak ere.

Funtsean, planetako bioaniztasun hori babestea du helburu zientzia honek, eta Natachak dio horretarako behar-beharrezkoa dela giza jarduerak eta fauna eta floraren beharrak elkarrekin batera aztertzea. “Planeta bakarra dugu, eta gero gizaki gehiago gaude bertan. Erantzukizun handia daukagu beste animaliekiko eta ondo egin behar ditugu gauzak”.

3. irudia: Zifioen urpeko igeriketaren perfila.

Kontserbazio-biologiaren esku, ingurumen esparruan hainbat neurri hartu dira, giza jarduerek ahalik eta gutxien eragin diezaioten bioaniztasunari. Horrela, ildo horretako teknologiak garatu dira, ondar gutxiago sortzeko, energia gutxiago kontsumitzeko, eta oro har ahalik eta eraginkorren jokatzeko.

Oso adibide garrantzitsua da Zeelanda Berria edo Nigeria bezalako herrialdeena. Bertako itsas hondo sakonetako meatzaritzari murriztapenak ezartzen ari dira, zeren eta nodulu ferromagnetikoak eta mineral anitzeko zarakarrak ateratzen direlarik, deuseztatu egiten dira zenbait bizidun-komunitate, milaka urtean garatu direnak.

Natachak ondo daki kontserbazio-biologia funtsezkoa dela eta hala berretsi zuen Naukasen bigarren jardunaldiak egin zitzaion elkarrizketan. “Giza jarduerek gero eta gehiago eragiten diete ozeanoen eta itsasoen hondo sakonei, eta neurri zorrotzak ezarri behar ditugu hondo horiek babesteko. Alegia, erantzukizuneko animaliak gara. Planeta orekan egon dadin, itsasoa orekatu behar dugu”, berresten du adituak.

———————————————————————————-

Egileaz: Iraide Olalde kazetaria da GUK komunikazio-agentzian, eta parte hartzen du UPV/EHUko Kultura Zientifikoko Katedran.

———————————————————————————-

—————————————————–

Hizkuntza-begiralea: Juan Carlos Odriozola

——————————————–

The post Natacha Aguilar: Planeta orekan egon dadin, itsasoa orekatu behar dugu appeared first on Zientzia Kaiera.

Catégories: Zientzia

Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”

Cuaderno de Cultura Científica - lun, 2017/10/02 - 17:00

Las Islas Canarias fueron uno de los lugares del mundo donde más zifios quedaban varados por el uso de sónares militares antisubmarinos, una técnica que se emplea para detectar naves en profundidad utilizando la propagación del sonido bajo el agua.

En el año 2003, un estudio liderado por la Universidad de Las Palmas de Gran Canaria estableció una relación entre la utilización de los sónares con la muerte de estos cetáceos y en 2004, el Gobierno español estableció una moratoria al uso de sónares a 12 millas náuticas alrededor de Canarias para mejorar la conservación de los zifios. Desde entonces, no se han vuelto a registrar varamientos masivos anómalos en aguas canarias.

Nadie mejor para hablarnos de los zifios y de la importancia de la biología de la conservación que Natacha Aguilar de Soto, responsable de investigación en cetáceos y bioacústica marina del grupo de investigación BIOECOMAC de la Universidad de La Laguna (Tenerife).

Natacha Aguilar es bióloga marina y responsable de investigación en Cetáceos y Bioacústica Marina del Grupo de Investigación BIOECOMAC (ULL)

Los zifios son una familia de cetáceos que habitan aguas profundas de los océanos. Según explicó Aguilar de Soto en su participación en la segunda jornada de Naukas en Bilbao, el zifio es “un animal misterioso” que raramente vemos en superficie, por lo que para muchos es aún un desconocido. Estos mamíferos marinos de mediano tamaño realizan proezas de buceo que igualan e incluso superan las del titánico cachalote: los zifios pueden aguantar hasta dos horas bajo el agua y llegar a tres kilómetros de profundidad, después de permanecer durante cinco minutos en la superficie para almacenar en sus músculos el oxígeno necesario para su inmersión.

Una vez bajo el agua, aproximadamente a 500 metros de la superficie, comienzan a emitir chasquidos de ecolocalización (un bio-sonar que ha evolucionado separadamente en murciélagos y cetáceos), para buscar y localizar a la presa idónea. Ya seleccionada, los cetáceos emiten zumbidos, que son una serie de chasquidos producidos muy rápidamente que les permiten seguir a su presa con mayor precisión para finalmente cazarla.

Zifio. (Autor: Circe)

Entre los buceos profundos, los zifios realizan periodos de recuperación, de alrededor de 1 a 1,5 horas, en los que realizan buceos más someros de hasta 400 metros de profundidad y 10-20 minutos de duración, separados por tan solo 2 minutos en la superficie marina entre buceos consecutivos. Son precisamente estos momentos los que Natacha y su equipo aprovechan para colocar con ventosa un dispositivo similar a un teléfono móvil en el lomo de los cetáceos, la DTAG.

Este dispositivo permite a los investigadores obtener información precisa y detallada del comportamiento y movimientos de los cetáceos, desde la profundidad y duración de los buceos hasta detalles de la frecuencia de coleteo, las reacciones ante estímulos del medio, comunicación acústica e incluso datos fisiológicos, como la tasa de respiración de la que se extrae la tasa metabólica. “Ahora estamos trabajando para detectar la frecuencia cardíaca de los zifios, en colaboración con las universidades de St Andrews (Escocia), Aarhus (Dinamarca) y el Moss Landing Institute (EEUU)”, explica Natacha.

Los zifios, como el resto de cetáceos, son especies protegidas que requieren medidas para su conservación; son animales longevos con una estrategia de la “K”, que significa que tienen un ritmo reproductivo bajo y se involucran en los cuidados de sus pocas crías. “Cada vez que se extrae un animal importa”, asegura Natacha. “Si disfrutamos tanto de los misterios de la mar, necesitamos conservarlos. Cada especie es única, y no se va a cuidar sola si seguimos la inercia de alterar su hábitat marino con nuestras actividades humanas”, continúa.

En este sentido, la investigadora recalcó en Naukas la importancia de la Biología de la Conservación y la necesidad de proteger todas las especies del impacto de la actividad humana. Al igual que muchos cetáceos, los zifios también han sufrido la contaminación de los plásticos en el mar; recientemente apareció en Noruega un zifio muerto con el estómago colapsado por 30 bolsas de plástico. Esto originó una amplia movilización social y un documental de SKY TV en el que participó en equipo de la ULL en sus trabajos de investigación de zifios en El Hierro.

Perfil de buceo de los zifios.

Por eso es tan necesaria la biología de la conservación, una ciencia multidisciplinar que requiere de conocimientos científicos de la biodiversidad y del hábitat, además de conocimientos sociales sobre las interrelaciones entre las especies y el ser humano.

El objetivo principal de esta ciencia es precisamente mantener la biodiversidad del planeta. Para ello, y según explica Natacha, es necesario armonizar los usos humanos con las necesidades de la fauna y la flora. “Solo tenemos un planeta y cada vez somos más seres humanos; tenemos que organizarnos bien y tener responsabilidad hacia los otros seres vivos con los que compartimos este barco planetario”, asegura.

Gracias a la biología de la conservación, se aplican en el medio ambiente diversas medidas de corrección para que las actividades humanas tengan el menor impacto posible sobre la biodiversidad, promoviendo desarrollos tecnológicos que permitan que estas acciones generen menos residuos, consuman menos energía y sean lo más eficientes posible.

Una medida ejemplar de esta ciencia es la prohibición que en algunos lugares del mundo, como Nueva Zelanda o Nigeria, se está haciendo de la minería de fondos marinos profundos, que consiste en la extracción de nódulos ferromagnéticos y costras de poliminerales que existen en los fondos marinos; una actividad que moviliza tóxicos y destruye comunidades biológicas que han tardado miles de años en desarrollarse.

Natacha lo tiene claro; la biología de la conservación es vital y así lo constató en la entrevista que protagonizó en la segunda jornada de Naukas. “Las actividades humanas alcanzan cada vez más los fondos profundos de los océanos y mares, y es necesario que tomemos una posición activa para protegerlos; es decir, ser animales responsables”, explica Natacha. “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”, corrobora la bióloga.

Sobre la autora: Iraide Olalde, es periodista en la agencia de comunicación GUK y colaboradora de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté” se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Matemáticas del Planeta Tierra (MPE2013), en Bilbao
  2. Conferencias plenarias #Quantum13 también en Bilbao
  3. Equilibrio tautomérico en un sistema modelo de gran interés biológico
Catégories: Zientzia

Memoria de forma en polímeros

Cuaderno de Cultura Científica - lun, 2017/10/02 - 11:59

(a) Se produce un daño en la superficie a 22.9ºC, (b) estado tras aumentar la temperatura a 36ºC, (c) a 43ºC, (d) a 46ºC, (e) a 51ºC, (f) enfriamiento (superficie recuperada)

En un mundo cada vez más automatizado, la ciencia juega un papel muy importante en la investigación y desarrollo de sistemas capaces de actuar por sí mismos. Cada vez es más habitual el estudio y desarrollo de materiales inteligentes, que modifican alguna de sus propiedades al ser sometidos a un estímulo concreto. Ejemplo de ello son los polímeros con memoria de forma, capaces de cambiar de forma bajo la acción de un estímulo, como, por ejemplo, la temperatura.

Partiendo de anteriores investigaciones llevadas a cabo en el Departamento de Química Física de la Facultad de Ciencia y Tecnología de la UPV/EHU relacionadas con el policicloocteno —un polímero semicristalino comercial—, la investigadora del departamento Nuria García Huete ha desarrollado diferentes sistemas poliméricos que han dado como resultado materiales versátiles que podrían tener múltiples aplicaciones en diversos campos.

Los investigadores del equipo sabían que el policicloocteno presenta memoria de forma cuando se encuentra entrecruzado. La investigadora hace un símil para explicar su estructura: “Podríamos imaginar un polímero como un plato de espaguetis, donde cada espagueti sería una cadena individual del polímero. El entrecruzamiento consiste en una serie de uniones entre cadenas, lo que equivaldría a nudos entre nuestros espaguetis, de forma que no sería posible tomar un solo espagueti del plato, ya que se encuentra unido a otros tantos sin poderlos separar”. Este polímero entrecruzado utilizando peróxido de dicumilo recupera su estructura original, una vez deformado, aplicándole calor.

García-Huete ha comprobado que esta propiedad se puede aprovechar para restaurar un objeto que ha sido dañado de manera superficial (dañado, pero sin llegar a romper) con sólo aplicarle calor. Asimismo, demostraron que construyendo una estructura superficial, basada en micropilares, la recuperación de forma se conservaba y se conseguía cambiar el ángulo de contacto de la superficie. Para ello, utilizaron una gota de agua y constataron que el agua adoptaba diferentes ángulos con la superficie, en función de la deformación de la muestra.

Debido a que los peróxidos acaban degradándose, la investigadora ha encontrado una alternativa para conseguir el entrecruzamiento, utilizando radiación gamma, y de esta forma ha obtenido materiales no citotóxicos que podrían tratar de emplearse en un futuro para aplicaciones biomédicas. Tras caracterizar las propiedades mecánicas y térmicas, ha analizado el comportamiento de memoria de forma y, en colaboración con otros expertos, han conseguido relacionar la memoria de forma con el volumen libre (espacio libre intermolecular) del polímero.

En busca de nuevos horizontes, los investigadores han querido saber cómo obtener materiales que además de tener memoria de forma, que permite recuperar deformaciones, puedan autorrepararse (es decir, reparar rupturas en el propio material). En colaboración con la Universidad Tecnológica de Delft (Países Bajos) consiguieron mezclas de policicloocteno con otro tipo de polímeros, llamados ionómeros, con las que obtuvieron materiales que conservan el efecto de memoria de forma y que además poseen capacidad de autorreparación con sólo calentarlos, lo que favorece la prolongación de la vida útil de los materiales.

El conjunto de los estudios realizados y los resultados obtenidos abren la posibilidad de aplicación de estos polímeros en diversos campos científico-tecnológicos, con el objetivo de satisfacer las exigencias y comodidades del día a día. La investigadora ve la posibilidad de trasladar estos resultados a la escala industrial, “porque desde un inicio toda la investigación se ha enfocado precisamente en poder llevarlo a nivel industrial, desde el polímero empleado hasta la elección de las investigaciones, pasando por el tamaño de las muestras realizadas y las técnicas escogidas”. Mientras tanto, la investigación sigue su curso, ya que ha quedado probado que “partiendo de un mismo polímero se pueden obtener diferentes propiedades”, concluye García-Huete.

Referencias:

García-Huete, N., Laza, J.M., Cuevas, J.M. et al. (2014) Shape memory effect for recovering surface damages on polymer substrates J Polym Res 21: 481. doi: 10.1007/s10965-014-0481-9

García-Huete N, Laza JM, Cuevas JM, Vilas JL, Bilbao E, León LM (2014) Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties. Radiat Phys Chem 102:108–16. doi: 10.1016/j.radphyschem.2014.04.027

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Memoria de forma en polímeros se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El deterioro de la memoria con la edad es selectivo
  2. Un nexo cannabinoide entre mitocondrias y memoria
  3. Polímeros conductores, el futuro del camuflaje
Catégories: Zientzia

Trikuharrian ala leizean, non lurperatu?

Zientzia Kaiera - lun, 2017/10/02 - 09:00
Arabako Errioxan Neolitoaren bukaeran eta Eneolitoaren hasieran zer gizarte egitura eta nolako gizartea zeuden jakiteko trikuharri eta leizeetan lurperatutako hezurren isotopo egonkorrak neurtu dira, haien dieta zein zen zehazteko.

Irudia: UPV/EHUk eta Oxford Unibertsitateak egindako ikerlan batek duela 5.000 urteko desberdintasun sozialak erakutsi ditu.

Karbono eta nitrogeno isotopo egonkorrak neurtu dituzte duela 5.000 urteko hezur kolagenoaren gainean. Iraganeko dieta berreraikitzeko dira baliagarriak isotopoak, pertsona bakoitzaren bizitzaren azken hamar bat urteetan jaten denak zehazten baitu giza hezurren osaera.

Emaitzek erakutsi dute C3 motako landareetan (zerealak, adibidez, ordurako ereiten baitziren) oinarritutako elikadura zutela eta animalia lurtarrak ere jaten zituztela, etxekotuak gehienbat (ahuntzak, ardiak, behiak). Badirudi hori dela bi hobi-motetakoen dieta orokorra. Alde handiak ikusi dira, hala ere, leize eta megalitoetako hezurren karbono isotopoen balioetan.

Bi interpretazio planteatzen dira karbono isotopoen balioen ezberdintasuna azaltzeko:

  1. Komunitate ezberdinak izatea. Hobiratze erritu eta bizirauteko ekonomia ezberdinak zituzten komunitateak izatea. Ustiapen eremu beraezituak erabiltzen zituzten: haitzuloen kasuan, Toloñoko mendilerroaren magala eta, trikuharrien kasuan, haraneko eremurik zabalenak.
  2. Maila ekonomiko ezberdinak zituen komunitate bakar batean sortuak izatea. Espezializazio ekonomikoak zituen talde bakar bateko kideak izatea. Populazioaren parte bat mendian artzaintzan aritzea eta beste parte bat haraneko nekazaritzan, edo eremurik emankorrenetara edo jaki jakin batzuetara lehentasunezko sarbidea ematen zuten ezberdintasun sozioekonomikoak egotea. Baliteke haitzuloetan hobiratuek estatus baxuagoa izatea, eta, ondorioz, nekazaritzarako lurrik onenetarako sarbide mugatuagoa izatea, eta megalitoetan hobiratuek, berriz, lur hobeetarako sarbidea izatea.

Ezberdintasun demografikoak aurkitu zituen dolmenetan eta leizeetan lurperatutako pertsonen artean Teresa Fernández-Crespok, azterketa honen egile nagusiak, aurrez egindako lan batean. Dolmenetan gizonezko helduak ziren nagusi eta leizeetan, berriz, ohikoagoak ziren umeak eta emakumezkoak. Hobiratze-aldagai hau europar kontinente osoan aurkitzen da.

Hobiratze mota ezberdinek izan dezaketen esanahia jakin nahia izan da ikerketaren zergatia, megalitoetan eta leizeetan hobiratutakoen dieten artean ezberdintasunik zegoen konprobatzea. Dieta ez da behar fisiologiko bati erantzuteko modu hutsa, portaera kultural eta sozial bat ere bada, zenbait parametrok baldintzatzen dutena.

Arabar Errioxako hondakinak hartu dira kontuan azterketan. Leizeak eta trikuharriak elkarrengandik oso hurbil daude, batez beste 10 kmtara. Datazioei esker, dolmenetan Neolito bukaerako eta Eneolito hasierako hondakinak bereizi ahal izan dira, leizeetan aurkitutako garai bereko sekuentziekin alderatu ahal izateko.

Ikerketa bide berriak

Zein hipotesiren alde egin behar den jakiteko ikerketa bide berriak planteatzen dira. Estrontzio eta oxigeno isotopoen azterketa, esaterako. Azterketa hauek populazio horien mugikortasuna aztertzeko dira erabilgarri. Neolitoaren amaieran eta Eneolitoaren hasieran lurralde horretan populazio dentsitate handia zegoela uste dute zenbait egilek, kanpoko jendea iritsi zelako, agian. Hala, baliteke ehorzleku mota batean edo bestean daudenak kanpotik etorritakoak izatea.

Bestalde, hortzetako dentinaren gaineko karbono eta nitrogeno isotopoen analisi sekuentzialetan oinarritutako ikerketa bati ekin diote. Hezurrek indibiduoen bizitzaren azken hamar urteetako informazioa baino ez dute ematen, hortzetan, ordea, finkatuta geratzen da sortu ziren uneko karbono eta nitrogeno seinale isotopikoak.

Dolmenetan eta leizeetan lurperatutako pertsonen arteko aldeak jaiotzatik datozen edo denborarekin sortzen diren, eta, beraz, indibiduo bakoitzak lortutako estatusarekin lotura handiagoa duten argitu dezake hortzetako isotopoen azterketak.

Erreferentzia bibliografikoa:

Fernández-Crespo T, Schulting R. 2017. Living different lives: early social differentiation identified through linking mortuary and isotopic variability in Late Neolithic/ Early Chalcolithic north-central Spain. Plos One.

Iturria:

UPV/EHUko komunikazio bulegoa: Trikuharrietan eta leizeetan hobiratuen arteko desberdintasun sozialak hezurretan ikusgai.

The post Trikuharrian ala leizean, non lurperatu? appeared first on Zientzia Kaiera.

Catégories: Zientzia

El ingenio de los pájaros, de Jennifer Ackermann

Cuaderno de Cultura Científica - dim, 2017/10/01 - 11:59

Juan Ignacio Pérez Iglesias, lector

Jennifer Ackermann ha escrito un muy buen libro de divulgación científica. Trata, como su título indica, de pájaros. Es un repaso muy completo de los comportamientos de las aves que dan cuenta de las capacidades cognitivas de estos animales. La otra palabra del título, genio, está muy bien escogida. Porque no cabe hablar de inteligencia. Si ya es difícil a veces saber de qué hablamos cuando nos referimos a la inteligencia humana, mucho más lo es si de lo que se trata es de otras especies, aves en este caso. Genio es una buena palabra para reflejar el contenido del libro.

Por el libro de Ackermann pasan todo tipo de comportamientos. Se ocupa de la capacidad de aprendizaje de las aves y de su posible relación con el tamaño encefálico. Comenta, por ejemplo, que en su evolución el cuerpo se redujo mucho más que el encéfalo, por comparación con los dinosaurios de los que proceden. De manera que los pájaros, en contra de la creencia popular, tienen un encéfalo de tamaño relativo bastante grande. Hay aves que fabrican instrumentos, aves que juegan, otras son capaces de posponer la gratificación a una tarea bien completada en espera de una mejora, cuervos que reconocen personas y las recuerdan durante mucho tiempo.

La autora hace un repaso de las extraordinarias capacidades vocálicas de algunas especies. Y también se ocupa del canto, una habilidad que en algunos pájaros resulta, por su ejecución, casi increíble. Repasa la relación que hay entre la actividad y capacidad canora y el desarrollo del alto centro vocal (HVC), un área encefálica implicada en el aprendizaje y la generación del canto. Es impresionante el caso de una especie cuyos machos han de aprender un canto nuevo en cada época de apareamiento; pues bien, el tamaño de esa región aumenta en la primavera y se encoge al final del verano, y eso ocurre porque varía el número de neuronas en los circuitos del canto. También se ocupa de los pergoleros, esas aves cuyos machos fabrican en medio de la selva australiana unas pérgolas de gran complejidad estructural y cromática, y que forman parte de su técnica para poder aparearse.

Las migraciones y la cuestión de los mecanismos implicados en la orientación ocupan una parte importante del libro. Valora las diferentes hipótesis que se han barajado para explicar la enorme capacidad de orientación que tienen algunas especies. Magnetismo terrestre, claves visuales, olores, o la combinación de inputs de diferente naturaleza podrían estar en la base de su capacidad de navegación. Ackermann, en los compases finales del libro, manifiesta su preocupación por el riesgo de desaparición en que se encuentran muchas especies debido al efecto de la acción humana sobre los ecosistemas y, concretamente, por la subida de temperaturas que ya está desplazando a algunas especies hacia el norte, hacia la cumbre de las montañas o modificando peligrosamente sus calendarios de cría.

Al finalizarlo uno no puede dejar de pensar que la razón por la que nos resulta tan difícil entender a otros animales, entender las bases y alcance de sus capacidades cognitivas, es porque buscamos en ellos habilidades humanas, sin reparar en el hecho de que esas otras especies tienen una diferente configuración encefálica y estructura mental por la sencilla razón de que han evolucionado bajo presiones selectivas diferentes y han de hacer frente a problemas diferentes.

El libro está muy bien documentado. La autora no solo ha consultado a numerosos especialistas. También presenta una extensa bibliografía. En algún momento puede dar la impresión de un cierto desorden, pero creo que esa sensación proviene de la dificultad, también para el lector, de gestionar mentalmente tanta y tan interesante información como ha manejado Ackermann. El texto tiene el ritmo y las dimensiones adecuadas. Y las anécdotas que narra dejan al lector boquiabierto.

Este libro solo tiene, a mi juicio, un pero: la traducción es mala, algo a lo que, desgraciadamente, ya nos tienen acostumbrados la mayoría de editoriales españolas. Para muestra, un botón: traduce ecologist (ecólogo) como ecologista. He cotejado las dos versiones (inglés en formato electrónico y castellano en papel) y el resultado ha sido penoso. Recomiendo vivamente su lectura en inglés. Es una delicia.

Ficha:

Autora: Jennifer Ackermann

En español:

Título: El ingenio de los pájaros

Editorial: Ariel (Planeta)

Año: 2017

En inglés:

Título: The Genius of Birds

Editorial: Penguin Random House LLC, Nueva York

Año: 2016

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

El artículo El ingenio de los pájaros, de Jennifer Ackermann se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Libros para enamorarse
  2. La cara más emocionante, humana y filosófica de la ciencia
  3. El caso de “Los Pájaros”
Catégories: Zientzia

Asteon zientzia begi bistan #170

Zientzia Kaiera - dim, 2017/10/01 - 09:00
Uxue Razkin

Mikrobiologia

Eraikin historikoen kontserbazioa hobetzeko metodologia berria garatu dute Granadako Unibertsitateko ikertzaileek. Kutsadura atmosferikoak eta harrian pilatzen diren gatzek eragiten dituzten narriadura fisikoaren eta kimikoaren ondorioak ekiditeko asmoz abiatu dute ikerketa. Juanma Gallegok azaltzen digu zertan datzan erabilitako metodologia. Bakterioen transplantean oinarritzen da. Eta hori nola egiten da? Azalpena testuan ageri da: eraikinaren harrietan dauden bakterio komunitate bat hartu, laborategian hazi eta jatorrizko eraikinera itzuli dituzte ondoren. Bakterio karbonatogenikoak izan dira funtsa. Izan ere, bakterio hauek gai dira kaltzio karbonatoa sortzeko, eta horrek eraikinetako harria babesten eta trinkotzen du. Oso interesgarria kazetariak ekarri digun gaia!

Ignacio López-Goñi mikrobiologoak Euskalduna Jauregiko Auditorioan eman zuen ‘Bakterioek ere txertoak hartzen dituzte’ hitzaldiaren nondik norakoak bildu dituzte artikulu honetan. Hark kontatu zuen birus batek bakterio bat infektatzen duenean, bakterioa gauza dela birusaren DNA zati bat bere genoma propioan txertatzeko. Hala azaldu zuen: “Hurrengoan, bakterioak ezagutu egingo du birus hori, eta hil egingo du. Horrelakoak dira bakterioek birusen aurka hartzen dituzten txertoak”.

Biologia

Bare “hiltzaile” baten berri eman digute artikulu honen bidez. Badirudi 2006an aurkitu zutela lehenengo banakoa, baina 2008ra arte ez dute sailkatu: Selenochlamys ysbryda da jarri dioten izena. Zuria da –mamu-barea deitu diote Bill Symondson eta Ben Rowson zoologoek–, eta litekeena da kobazuloetan eboluzionaturiko espezie bat izatea. Hortz bakarra du, baina zeregin bera betetzen duten hortz moduko beste zenbait aho-atal ditu eta oso zorrotzak dira. Haragijalea eta ehiztaria da; lurrean bizi da eta zizareak eta beste bareak ehizatzen ditu. Hauek dira ezagutzen diren bare haragijale gutxietako bi, horregatik dira hain bitxiak.

Pandak ez daude arriskuz kanpo oraindik. Animalia hauen populazioak gora egin den arren, ikerketa batek aditzera eman du haien habitataren egoera okerrera doala. Zehazki, Txinako eta AEBko ikertzaile batzuek satelite-bidez hartutako datuekin egin duten ikerketan ondorioztatu dute panden habitata egoera txarragoan dagoela, 1888an panda arriskuan dauden espezieen zerrendan sartu zutenean baino. Badirudi, errepideek eragindako zatiketa dela arazoa. Halere, ikertzaileek esan zuten Txinako gobernuak esfortzu handia egin duela afera honetan.

Paleontologia

Neolito garaiko hilobiratze-ohiturak hobeto ezagutzeko ikerketa egin dute UPV/EHUko eta Oxfordeko Unibertsitateko ikertzaileek Arabar Errioxako hainbat txokotan. Galdera bati erantzuteko abiatu zuten ikerketa: zergatik hilobiratzen ziren pertsona batzuk trikuharrietan eta beste batzuk kobazuloetan? Lan honek erakutsi du Neolitoan jada pertsonen arteko desberdintasun sozioekonomikoak egon zitezkeela, eta horiek izan zitezkeela hilobiratze desberdinen arrazoia.

Astrofisika

Saturno nebulosa edo NGC 7009 aztertu du MUSE estreskopioak. Nebulosaren erdian dagoen izarra inguratzen duen hautsaren mapa egin du, eta horri esker ikusi dute egitura oso konplexua duela. Elhuyarrek bildu du informazio guztia: “Burbuila eliptiko bat du barrualdean, beste bat kanpoan, eta halo bat. Halaber, bi korrontek zeharkatzen dute horizontalean, eta, gune batean, hautsez osatutako uhin bat ere detektatu dute. Gainera, barruko burbuilaren ertzetako hautsa desagertu egiten dela baieztatu dute, baina oraindik ez dakite zergatik”.

Emakumeak zientzian

Marthe Vogten ekarria oso garrantzitsua izan zen neurozientzia arloan. Frogatu zuen “sinpatina” (noranedralina) modu heterogeneoan banatzen zela garunetik eta ondorioztatu zuen ere sustantzia horrek transmisore gisa jokatzen zuela garuneko zelulen artean. Baina bere ibilbide zientifikoa ez zen erraza izan. Izan ere, Hitler boterera iritsi eta Ingalaterrara ihes egitea erabaki zuen. Utzi zuen Berlin, bere jaioterria, eta Ingalaterran hasi zen lanean. Halere, Britania Handiko inteligentzia-zerbitzuek ikusi zutenean Deutsche Arbeitsfront sindikatu nazionalsozialistaren (alemaniarraz DAF) kidea zela eta –behartu zuten erakunde horretan izena ematera–, A mailako atzerritar arerio gisa sailkatu zuten. Atxilotu, epaitu eta kartzela-zigorra ezarri zioten zientzialari alemaniarrari. Kartzelatik atera eta jarraitu zuen ikertzen. Artikulu osoa irakurtzea gomendatzen dizuegu!

Ana Payo ozeanologoa eta anbientologoa da. Itsas hegaztien ekologia ikertzen du eta monologoen bitartez, zientzia hedatzen du. Emakume zientzialarien ikusgarritasuna lortzeko proiektu batean dabil: Howard Bound. Hark azaltzen du: “Genero berdintasuna, aldaketa klimatikoa eta lidergoa batzen dituen egitasmo bat da. Emakume zientzialariaren rola nabarmentzea du helburu, ikusezintasuna askotan oztopo bat delako gure ibilbidean”. Proiektu horrekin espedizio bat egingo dute Antartikara.

Genetika

Aste honetan laguntzaile fina izan dugu eta udan genetikari buruz publikatu diren berriak bildu ditu Koldo Garciak bere blogean. Autoreak dio berririk garrantzitsuena edizio genomikoan izan dugun aurrerapausoa izan dela. Nabarmentzen duen bigarrenak minbiziarekin du zerikusia. Metastasien oinarri genetikoak aztertu dituzte, egileak azaltzen duen moduan, “tumoreek gorputzetik bidaiatzeko gaitasunaren geneak zeintzuk diren aurkitu; eta besteek tumoreetan aktibo dauden geneen arabera tratamenduek izango duten arrakasta aurreikusi eta, hortaz, minbiziaren tratamendua egokitu”. Frikiak diren albisteak ere bildu ditu. Esaterako, Txinako Unibertsitate batek argitu du elikaduran hartutako landareen mikroRNAk eragiten duela erleak langile bilakatzea.

Kimika

Poliziklooktenoarekin (polimero erdikristalino komertzial bat) lehendik egindako ikerketak oinarri hartuta, zenbait sistema polimeriko garatu ditu Nuria García Huete ikertzaileak. Polimero kateak elkarrekin gurutzatuta daudenean forma memoria duen materiala da poliziklooktenoa. Polimeroak gurutzatzeko dikumilo peroxidoa erabiltzen da eta deformatu ondoren bere jatorrizko egitura berreskuratzen du beroaren eraginpean jarrita. Azaletik hondatutako objektu bat (hondatua, baina apurtzera iritsi gabe) berotuz konpontzeko balia daiteke ezaugarri hau. Polimeroa gurutzatzeko alternatiba lortu du ikertzaileak: gamma erradiazioa. Irakurri osorik artikulua!

———————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Asteon zientzia begi bistan #170 appeared first on Zientzia Kaiera.

Catégories: Zientzia

Ciencia a presión: Evolución de la imagen de la ciencia en la prensa española

Cuaderno de Cultura Científica - sam, 2017/09/30 - 11:59

La expresión publish or perish (publica o perece) es de sobra conocida en el ámbito científico. Quiere expresar la importancia que tienen las publicaciones en los currículos del personal investigador. En ciencia no basta con hacer observaciones, obtener unos resultados y derivar conclusiones. Hay, además, que hacerlo público y, a poder ser, en medios de la máxima difusión internacional. La ciencia que no se da a conocer, que no se publica, no existe. El problema es que de eso, precisamente, depende el éxito profesional de los investigadores, sus posibilidades de estabilización y de promoción. De ahí la conocida expresión del principio.

El mundo de la comunicación tiene también sus normas. En comunicación se trata de que lo que se publica sea consumido. De la misma forma que la ciencia que no se publica no existe, en comunicación tampoco existen los contenidos que no se consumen: o sea, no existen los artículos que no se leen, los programas de radio que no se oyen, los de televisión que no se ven o los sitios web que no se visitan. En comunicación valdría decir “sé visto, oído o leído, o perece”.

Ambas esferas tienen ahí un interesante punto en común. Y por supuesto, en comunicación o difusión científica el ámbito de confluencia se aprecia en mayor medida aún. Confluyen aquí ambas necesidades, la de hacer públicos los resultados de investigación y, además, conseguir que lleguen a cuantas más personas mejor.

El problema es que la presión por publicar y por tener impacto comunicativo puede conducir tanto a unos como a otros profesionales, a adoptar comportamientos deshonestos, contrarios a la ética profesional e, incluso, a desvirtuar completamente el fin de la ciencia y de su traslación al conjunto del cuerpo social. Y también puede conducir, y de hecho ha conducido, a que se haya configurado un sistema de publicaciones científicas con patologías.

De todo esto se trató el pasado 31 de marzo en “Producir o perecer: ciencia a presión”, el seminario que organizarono conjuntamente la Asociación Española de Comunicación Científica y la Cátedra de Cultura Científica de la UPV/EHU.

6ª Conferencia. Ana Victoria Pérez Rodríguez, directora de la Agencia DiCYT: Evolución de la imagen de la ciencia en la prensa española

Evolución de la imagen de la ciencia en la prensa española

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Ciencia a presión: Evolución de la imagen de la ciencia en la prensa española se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia a presión: Ciencia abierta vs. ciencia cerrada
  2. Ciencia a presión: Ciencia patológica y patología editorial
  3. Ciencia a presión: Científicos que avalan patrañas
Catégories: Zientzia

Ezjakintasunaren kartografia #184

Zientzia Kaiera - sam, 2017/09/30 - 09:00

Nonahi daude online kurtsoak. Graduak, masterrak eta orotariko formakuntza aktibitateak ordenagailuaren bidez egin daitezke bere osotasunean ala partzialki. Zein puntura arte, baina, dira kurtso presentzialen baliokide? José Luis Ferreirak horren inguruko ikerketak dakarzkigu: Online vs. in-person courses. Which ones are better?

Minbizia ez da existitzen. Minbiziak existitzen dira. Zehazki, gaixo bezainbeste minbizi. Sistema inmune propioan egon daiteke minbizi bakoitzaren irtenbidea? Sergio Laínezek aztertzen du Will your own immune system be the cure to your own cancer?

Nobel Saria jaso zuen Einsteinek 1921ean efektu fotoelektrikoaren azalpenagatik, batez ere. Ia ehun urte geroago ere DIPCkoek teoria fintzen dihardute: A new benchmark for any future models of solid-state photoemission

Mexikoko lurpean zerbait mugitzen dabilela iradokitzen dute herri hartako lurrikarek. Zer, zehazki? Lekuan bertan lan egindako Daniel Garcíak kontatzen digu What’s going on beneath Mexico?

Kimikariek estreoisomesoen errezamatoen erresoluzioa izenez ezagutzen dutena, bata bestearen irudi espekularra diren bi molekula banatzeko gai izatea, ez da erraza. Interes praktiko, eta baita ekonomiko, izugarria du. Molekulak enkapsulatzen lortzen duenik bada, Adrián Matencio Novel methods of chiral separation artikuluan.

Minibrain, minigaruna, ama zelulez osatutako neurona egitura esferikoa da eta hainbat erabilera ditu. Zer zerikusi du hortzen maitagarriak (Perez sagutxoaren baliokidea) honekin? JR Alonsok Minibrains: a present from the tooth fairy

Ia ziur gaude materiaren egoera bat badela, baina detekzio metodoa, eszitoien kondentsatua, ez dago guztiz findurik. Validating the existence of a new phase of matter, the exciton condensate artikuluan eszitoia zer demontre den azaltzeaz gain, haien kondentsatua detektatzeko metodoa ere proposatzen dute DIPCkoek.

Diabetesa eta Parkinsona aldi berean tratatzen dituen farmakoa posiblea da? Rosa García-Verdugok kontatzen digu Potential 2×1 drug for Parkinson’s and Diabetes artikuluan.

–—–

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #184 appeared first on Zientzia Kaiera.

Catégories: Zientzia

Las herramientas de edición genética CRISPR y los ratones avatar

Cuaderno de Cultura Científica - ven, 2017/09/29 - 12:00

CRISPR y los ratones avatar

Quiero dedicar este primer artículo que publico en la web de la cátedra de cultura científica de la UPC/EHU a un concepto nuevo y, creo, interesante, que nos ha cambiado la vida en nuestro laboratorio y en muchos otros laboratorios internacionales de biomedicina. Me refiero a los ratones avatar, a los nuevos modelos animales para investigar enfermedades raras de base genética que podemos ahora generar fácilmente gracias a las herramientas CRISPR de edición genética. Ellos fueron también los protagonistas de mi primera incursión divulgadora en la última reunión Naukas17, patrocinada por esta cátedra, celebrada en Bilbao hace pocos días.

En mi laboratorio del Centro Nacional de Biotecnología, en Madrid, y también gracias a nuestra participación en el Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) nos dedicamos a investigar sobre la genética de las enfermedades raras. ¿Qué mutaciones y en qué genes son los causantes de estas enfermedades raras? Y, naturalmente, también investigamos sobre qué podemos hacer para aliviar o resolver estas condiciones genéticas de baja prevalencia en la población. Las enfermedades raras son aquellas que afectan a menos de 5 de cada 10,000 personas (o menos de 1 de cada 2,000). Conocemos más de 7,000 enfermedades raras. Cada una de ellas afecta a un reducido número de personas, aunque globalmente suponen una parte importante de la población (3 millones de personas en nuestro país, según estimaciones recientes).

En concreto nosotros investigamos sobre una de estas condiciones genéticas raras: el albinismo, causado por mutaciones en alguno de los 20 genes asociados, que dan lugar a otros tantos tipos de albinismo. En el albinismo lo que se ve (pérdida de pigmentación) no es lo más relevante (déficit visual). La discapacidad visual severa (con una agudeza visual inferior al 10%, es decir, con ceguera legal) es pues lo más característico de las personas con albinismo. El albinismo afecta aproximadamente a 1 de cada 17,000 personas, unas 3,000 personas en nuestro país. Hasta el momento habíamos podido aproximarnos a esta condición genética a través de modelos animales utilizando alguna de las técnicas de modificación genética, que conocemos desde hace más de 30 años. Son tecnologías muy poderosas pero no exentas de limitaciones y, generalmente, sofisticadas y muy caras de aplicar. Sin embargo, como no conocíamos otras técnicas, nos parecían estupendas y ello nos ha permitido, a nosotros y a muchos otros laboratorios en todo el mundo, generar numerosos modelos animales para el estudio de enfermedades raras, como el albinismo.

Todo cambió en 2013. En enero de ese año descubrimos la existencia de unas nuevas herramientas para la edición genética de los genomas, denominadas CRISPR (acrónimo en inglés de secuencias repetidas, palindrómicas, regularmente intercaladas y agrupadas), descritas muchos años antes por microbiólogos en bacterias. A principios de la década de los años 90 Francisco Juan Martínez Mojica (Francis Mojica), microbiólogo de la Universidad de Alicante, se dio de bruces con ellas al secuenciar el genoma de unas arqueas (otro grupo de microorganismos procariotas, similares pero no idénticos a las bacterias) que habitaban en las salinas de Santa Pola (Alicante). Publicó sus resultados en 1993.

No fue el primero en descubrirlas en bacterias, pero si fue el primero en percatarse de su relevancia y en decidir dedicar su carrera profesional a entenderlas. Lo consiguió unos 10 años más tarde, al percatarse de que se trataba de una estrategia innovadora de defensa, un verdadero sistema inmune adaptativo, que usaban las bacterias para zafarse de las infecciones de los virus que les acechaban. A diferencia de nuestro sistema inmune, las bacterias son capaces de transmitir su inmunidad frente a determinados patógenos a su descendencia, porque aquella tiene una base genética. Algo insólito e inesperado que le costó casi tres años publicarlo, hasta conseguir que lo aceptarán en una revista científica modesta, en 2005. Y precisamente ese artículo pionero es el que ha le ha permitido, años más tarde, ser premiado por diversas instituciones (Jaime I, Fundación BBVA-Fronteras del Conocimiento, Lilly, Albany, etc…) y es muy probable que le asegure plaza en una terna del premio Nobel de Medicina (o de Química), caso de que en Estocolmo decidan próximamente premiar el descubrimiento de las CRISPR y/o sus aplicaciones de edición genética, las que constituyen una verdadera revolución en biología.

Los descubrimientos básicos de Francis Mojica, y de los investigadores que le siguieron, permitieron describir cómo funcionaba el sistema CRISPR en bacterias y definir sus componentes. Esencialmente una molécula de ARN guía y una enzima capaz de cortar las dos cadenas del ADN (una nucleasa). Estas tijeras moleculares de alta precisión atacan el genoma del virus invasor en las bacterias inmunes a ese patógeno, y, a su vez, en células animales, pueden realizar una función similar, cortando el gen que nosotros le indiquemos al sistema, según la guía utilizada. Estos cortes en el genoma deben repararse de inmediato, para que las células sobrevivan y no pierdan material genético, que podría tener consecuencias fatales. Los sistemas de reparación los tenemos ya en todas nuestras células y son de dos tipos. El sistema reparador que actúa por defecto progresa añadiendo y eliminando letras (bases del genoma, A, G, C ó T) hasta que logra generar una cierta complementariedad (la G siempre se aparea con la C, y la T con la A) que finalmente es sellada y resuelta la cicatriz en el genoma. La inserción y eliminación de bases en el genoma normalmente conlleva la inactivación del gen cortado. Nunca antes había sido tan fácil inactivar un gen. Sencillamente dirigimos una herramienta CRISPR específica contra el gen que deseamos silenciar, el sistema CRISPR corta el ADN en el gen, y el sistema de reparación lo inactiva durante el proceso reparador.

Existe otro sistema de reparación, más sofisticado, que puede reparar el corte en el ADN a partir de secuencias molde externas, con ciertas similitudes a ambos lados del corte, pero con secuencias nuevas internas. Es decir, podemos inducir la introducción de secuencias previamente no existentes, lo cual permite tanto incorporar mutaciones específicas como corregirlas. Sorprendente y muy versátil. A este proceso le llamamos edición genética, aprovechando la similitud con la edición de textos realizada con un programa de ordenador, que permite localizar la palabra equivocada y corregirla, substituirla o eliminarla.

Mediante el uso de las herramientas CRISPR de edición genética es ahora posible inducir la incorporación de mutaciones específicas en genes determinados, a voluntad del investigador. Tanto en células en cultivo como en modelo animales, como son los ratones, los peces cebra o las moscas de la fruta (Drosophila). En ratones, desde principios de los 80, hemos generado miles de mutantes específicos de muchos de los más de 20,000 genes que tenemos tanto los roedores como nosotros, los primates.

Sin embargo, estas mutaciones generadas usando las técnicas clásicas eran relativamente groseras. Por ejemplo, la mayoría de ratones mutantes específicos de cada gen portan la eliminación de una parte importante del gen, frecuentemente el primero de los exones (las partes en las que se subdivide la zona de un gen que codifica información genética. Esta modificación genética tan relevante asegura prácticamente la inactivación de un gen. Sin embargo, tiene un problema. Al diagnosticar que tipo de mutaciones genéticas aparecen en la población humana nos damos cuenta que apenas existen este tipo de mutaciones entre los pacientes. Es decir, no hay apenas personas a quienes les falte el primero de los exones de un gen. Por el contrario, lo que encontramos al diagnosticar genéticamente a los pacientes afectados por alguna enfermedad congénita son pequeñas substituciones, eliminaciones o duplicaciones, a veces de hasta una sola base, de una sola letra. Son cambios mucho más sutiles que no obstante pueden tener consecuencias severas para la persona portadora de tales cambios en su genoma. Hasta hace poco, con los métodos disponibles, no era nada sencillo (y generalmente era imposible) reproducir estos diminutos cambios en el gen para investigar la enfermedad en células o animales modelo.

Las herramientas CRISPR han solventado la limitación que teníamos. Ahora es posible usar reactivos CRISPR para inducir, específicamente, el cambio, substitución, eliminación o duplicación de una o pocas bases en células o animales. Es pues ahora relativamente sencillo generar ratones portadores, exactamente, de la misma mutación que previamente hemos diagnosticado en pacientes. Estos ratones que llevan la misma modificación genética que los pacientes son los denominados ratones avatar. Cada uno de esos ratones reproduce los efectos de la mutación de la persona de la que derivan. De la misma manera que en la famosa película de ciencia ficción de James Cameron las criaturas azules están conectadas a las personas también aquí estos ratones avatar están asociado a la persona de la que portan la misma mutación.

Los ratones avatar representan un cambio conceptual en la generación de modelos animales para el estudio de enfermedades humanas. En medicina se dice que no hay enfermedades, sino enfermos, teniendo en cuenta que cada enfermo presenta síntomas ligeramente distintos y no siempre los mismos ni con la misma intensidad, lo que ha dado pie a la medicina personalizada. De la misma manera ahora, gracias a las herramientas CRISPR de edición genética, podemos generar los ratones avatar que representan modelos animales personalizados, específicos, que sin duda nos ayudarán a entender mejor cómo se establecen y desarrollan las enfermedades (y qué podemos hacer para detener o corregir la aparición de los síntomas de las mismas). Estos modelos animales avatar podrán ahora ser usados para validar propuestas terapéuticas innovadoras, y así poder asegurar los parámetros de seguridad y eficacia antes de saltar al ámbito clínico, antes de trasladar los posibles tratamientos a los pacientes. Esta es, sin duda, una de las aplicaciones más espectaculares de las herramientas CRISPR, que ni tan siquiera hubiéramos podido soñar hace apenas cuatro años. Felicitémonos y aprovechemos estos adelantos tecnológicos para mejorar el desarrollo de terapias avanzadas. El futuro ya está aquí.

Este post ha sido realizado por Lluis Montoliu (@LluisMontoliu) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo Las herramientas de edición genética CRISPR y los ratones avatar se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La inminente revolución de la ingeniería genética basada en el sistema CRISPR/Cas
  2. Ratones, peces y moscas, un modelo a seguir
  3. Sobre la predisposición genética a padecer enfermedades (II)
Catégories: Zientzia

Marthe Louise Vogt (1903-2003): Garuneko mezularien atzetik

Zientzia Kaiera - ven, 2017/09/29 - 09:00
Uxue Razkin Mein Kampf irakurri zuenean ikaratu egin zen. Horregatik egin zuen ihes Alemaniatik eta utzi zuen bere jaioterria, Berlin. Ordurako ibilbide oparoa eraikitzen hasia zen Marthe Vogtek neurozientzia alorrean, baina Bigarren Mundu Gerrak zeharo aldatu zituen bere planak. Ingalaterrara ihes egitea lortu zuen, bai. Baina Britania Handiko inteligentzia-zerbitzuek ikusi zutenean Deutsche Arbeitsfront sindikatu nazionalsozialistaren (alemaniarraz DAF) kidea zela eta –behartu zuten erakunde horretan izena ematera–, A mailako atzerritar arerio gisa sailkatu zuten. Atxilotu, epaitu eta kartzela-zigorra ezarri zioten zientzialari alemaniarrari.

1. irudia: Marthe Louise Vogt neurozientzialaria. (Argazkiaren iturria: Mujeres con Ciencia)

Bada, komunitate zientifikoak emandako babesaren kariaz, kartzelatik atera zuten. Ez zen bere ibilbide zientifikoaren amaiera izan beraz, Vogteren lanik garrantzitsuena etortzekoa zen oraindik. Izan ere, hark egindako ikerketa batek frogatu zuen “sinpatina” (noranedralina) modu heterogeneoan banatzen zela garunetik eta ondorioztatu zuen ere sustantzia horrek transmisore gisa jokatzen zuela garuneko zelulen artean.

Etxean ikusia, umeek ikasia

Bere etxeko giroa zuen zientzia-libururik oinarrizkoena. Cécile Vogt-Mugnier eta Oskar Vogt, bere gurasoak, garai hartan, neurologo ospetsuak ziren. Anekdota gisa, Vogt-Vogt sindromeari –haurtzaroan gertatzen den atetosiaren asaldura– esparru horretan bere gurasoek egindako lan eta ikerketengatik jarri zioten izen hori. Bada, haiek ez ziren izan inspirazio-iturri bakarrak Marthe gaztearentzat; bere ahizpa, Marguerite Vogt, genetista ezaguna izan zen ere.

2. irudia: Cécile Vogt-Mugnier (1875-1962) eta Oskar Vogt (1870-1959) neurologoak, Marthe Louise Vogt eta Marguerite Vogt zientzialarien gurasoak.

Kimikan, fisikan eta matematiketan bikaina zen Marthe eta horregatik eman zuen izena Berlineko Unibertsitatean, Medikuntza eta Kimika ikasteko irrikaz zegoen. 1927an lizentziatu zen eta horren ondotik, ospitale batean hasi zen praktiketan, abiatu zuen Medikuntza masterraren baitan. Doktorego-tesia ere gauzatu zuen Kaiser Wilhelm Society-n; kimika organikoa ikasi zuen eta karbohidratoen metabolismoaren inguruan lan egin zuen, Carl Neubergen zuzendaritzapean. Horren ondotik, Paul Tredelenbergekin batera hasi zen lanean Berlineko Unibertsitatean, Farmakologia departamentuan, hain zuzen. Bertan, endokrinologia jorratu eta teknika farmakologiko esperimentalak garatu zituen. 1931. urtean bere aitak gidatzen zuen Kaiser-Wilhelm-Institut für Hirnforschung-ean Kimika-saileko arduraduna izatera iritsi zen. Bertan, garuneko ikerketa elektrofisiologikoak egin zituen eta ikasi zuen nola barreiatzen ziren farmakoak nerbio-sistema zentralean.

Ihesaldia eta aurkikuntza esanguratsuak

Aurretik aipatu bezala, Ingalaterrara ihes egiteko aukera ez zuen galdu nazismoa gorenean zegoenean. Rockefeller Travelling Fellowshiperi esker erdietsi zuen hori. Han zegoela berehala hasi zen lanean. Lehenik, Sir Henry Daleren laborategian. Han ikasi zuen, Wilhem Feldbergerekin batera, azetilkolinaren eta nerbio-sistemaren transmisore kimikoen askapena, esaterako. 1937an, Cambridgen, hipertentsioari buruzko ikerketak gauzatu zituen Ernest Basil Verneyrekin elkarlanean.

Britania Handiko Farmazia Elkarteko Farmakologia-laborategietara iritsi zen atxiloketaren ondotik, 1941. urtean. Marthek giltzurrun gaineko guruina eta era berean, estresaren eta adrenalinaren arteko harremana izan zituen ikergai bertan. Jarraian, Edinburgoko Farmakologia Sailera egin zuen jauzi. Hark egindako lanik esanguratsuena bertan idatzi zuen, alegia: Sinpatinaren kontzentrazioa nerbio-sistemaren hainbat tokietan egoera normaletan eta botiken administrazioaren ondoren.

Ikerketa honek frogatu zuen sustantzia hori modu heterogeneoan banatzen zela garunetik eta ondorioztatu zuen ere transmisore gisa jokatzen zuela garuneko zelulen artean. Horretaz gain, epinefrina, serotonina eta reserpina izeneko neurotransmisoreen jokabidea aztertu zuen. Egun, depresioaren edo gaixotasun mentalen aurkako tratamendu gehienen oinarrian dago horien jokabidea ezagutzea. Hortaz, garrantzitsua izan zen Vogtek garai hartan abiatu zituen ikerketak.

Cambridgera itzuli zenean, Agricultural Research Councilleko farmakologia departamentuko zuzendari izendatu zuten.

Neurotransmisoreen inguruko ikerketak egiten jarraitu zuen. 1968an erretiroa hartu bazuen ere, 1980ra arte jarraitu zuen lanean. Orobat, egindako lan guztiagatik komunitate zientifikoaren esker ona jaso zuen. Royal Societyren kide izendatu zuten 1952an –kargu hori lortzen bederatzigarren emakumea izan zen– eta 1981ean Royal Medal delakoa eman zioten. Azkenik, Arteen eta Zientzien Ameriketako Estatu Batuetako Akademiako ohorezko kide egin zuten. 2003. urtean zendu zen, 100 urte bete ondoren.

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Marthe Louise Vogt (1903-2003): Garuneko mezularien atzetik appeared first on Zientzia Kaiera.

Catégories: Zientzia

Ciencia, política y hechos

Cuaderno de Cultura Científica - jeu, 2017/09/28 - 11:59

Donald J. Trump: “El concepto de calentamiento global fue creado por y para los chinos con objeto de hacer no competitiva la industria estadounidense” 6 de noviembre de 2012.

El objetivo de la política es estar a cargo de la gestión de grandes grupos de humanos para cambiar el mundo; el objetivo de la ciencia es conocer el universo. En este sentido la política se parece más a una tecnología, dado que lo que pretende es actuar sobre la realidad y cambiarla, mientras que la ciencia sólo intenta conocer lo que existe con la mayor precisión posible. Esta es una más de las razones por las cuales ciencia y política jamás se han llevado y nunca se podrán llevar demasiado bien: porque sus fines están en curso de colisión, siempre lo han estado y siempre lo estarán.

Para la ciencia los hechos son sagrados, porque son la base misma de cualquier explicación del cosmos. Para poder aspirar siquiera a comprender lo que hay es necesario empezar por describirlo con la mayor precisión posible, por lo que los datos son esenciales, básicos y (a ser posible) inmutables. Es cierto que se pueden cometer errores, a veces sistemáticos, en otras ocasiones incluso deliberadamente torticeros, aunque los más perniciosos y difíciles de erradicar son los inconscientes, por su propia naturaleza. Cuando los hechos recogidos son falaces, cuando se falsifican deliberadamente o a veces cuando simplemente cuando se clasifican mal, la ciencia puede llegar a descarrilar de modo espectacular. A nadie le agrada pasar su vida y su carrera profesional defendiendo y enseñando teorías basadas en hechos erróneos, por lo que la ciencia como actividad ha desarrollado con el paso del tiempo métodos ingeniosos para eliminar en la medida de lo posible los errores de los datos.

Las interpretaciones, las hipótesis y las teorías son discutibles; idealmente los datos no, aunque en la realidad se discuten continuamente para poner a prueba su resistencia y solidez. La ciencia respeta el poder del dato; como dice el proverbio muchas bellas e ingeniosas teorías se han venido abajo por culpa de un feo, insignificante e incluso repugnante dato. La más hermosa de las teorías no es capaz de resistir si no puede explicar un dato comprobado.

En política, sin embargo, los datos son una herramienta para modificar la realidad, como todo lo demás. La ciencia, sus teorías y sus datos pueden ser utilizadas en un momento dado, pero ése no es el obvetivo de la política, que no pretende describir sino prescribir: modificar la realidad para hacerla más cercana a un modelo preconcebido. De modo que si la ciencia es útil, se usa, pero si las teorías o los datos resultan ser inconvenientes no hay problema ninguno: se ignoran, se tergiversan, se niegan o se retuercen como convenga en cada caso. Si para convencer a suficientes humanos de que nos apoyen hay que negar que el sol sale por el este o afirmar que la luna está hecha de queso todo vale, por mor de la causa. Si para obtener la ventaja táctica a corto plazo hay que comprometer el futuro a largo plazo no importa, porque al fin y al cabo los votantes o partidarios futuros aún no están aquí mientras que las elecciones son inminentes.

Por eso política y ciencia al final no pueden ser otra cosa que antagónicas. Los científicos, como personas que son, tienen todo tipo de ideas políticas, desde las razonables (esas que cada uno estamos pensando ahora mismo) hasta las más descabelladas (que usted y yo sabemos cuáles son). Pero por deformación profesional los científicos acaban respetando los hechos y los datos, de modo que a la larga todos ellos acaban siendo decepcionados por los políticos y sus ‘hechos maleables’.

Quien respeta lo que hay no puede por menos que perder el respeto a quien es capaz de negar lo evidente con tal de rascar un poco de poder, justificándolo en que es mejor que gobierne él mismo que el de enfrente, que es peor. Por eso ninguna relación entre ciencia y política es estable a largo plazo. Y por eso resulta, una vez más, risible imaginar que la ciencia forma parte de las estructuras de poder. Cuando no puede haber nada más antagónico en el mundo de la política que el respeto reverencial (y crítico) al dato sobre la emoción; a la realidad que es sobre la realidad que debería ser. Y por eso ciencia y poder, al final, no se pueden llevar bien.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

El artículo Ciencia, política y hechos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia y política: el papel de la verdad
  2. Teorías, hechos y mentes
  3. Ciencia, ideología y práctica política
Catégories: Zientzia

Mamu-barea

Zientzia Kaiera - jeu, 2017/09/28 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Janaria

———————————————————————————————————–

Mail Online egunkariak 2008ko uztailaren 11n eman zuen kontu honen berri. Honako hau izan zen berriaren titularra: ‘Alien’ killer slug with razor-sharp teeth slithering round gardens in the UK, «Labanak bezain hortz zorrotzak dituen bare hiltzaile atzerritarra Erresuma Batuko lorategietan irristaka».

Antza denez, 2006an aurkitu zuten lehenengo banakoa, baina 2008ra arte ez dute sailkatu eta ez diote izena eman. Selenochlamys ysbryda da jarri dioten izena. Zientziarentzat berria da bare hau, eta haren taldekide hurbilenak Kaukason bizi direnez, handik ekarria dela uste dute. Ongarri naturalarekin batera nahi gabe ekarri zutela uste dute espeziea ikertu duten zoologoek. Zuri-zuria da eta hori dela-eta, litekeena da kobazuloetan eboluzionaturiko espezie bat izatea. Hain da zuria, ezen mamu-barea deitu baitute barea sailkatu duten Bill Symondson eta Ben Rowson zoologoek.

1. irudia: Mail Online egunkariak 2008. urtean argitaratutako berria.

Baina egunkariko izenburuak berak dioen bezala, bare horren ezaugarrietako bat, garrantzi handikoa gainera, hortzeria da. Egia esan hortz bakarra du, baina zeregin bera betetzen duten hortz moduko beste zenbait aho-atal ditu eta oso zorrotzak dira, labanak bezain zorrotzak, Mail Online egunkariak emandako berriaren arabera. Jakina, ezaugarri horrek badu azalpen egokia, izenburuak hori ere adierazten baitigu killer slug hitzen bitartez.

Haragijalea (eta ehiztaria) baita bare hori. Izan ere, lurpean bizi da eta beste bare eta (batez ere) zizareak ehizatzen ditu. Mehetu egiten du bere gorputza zizareen zulobideetan sartu ahal izateko. Organo kimiohartzaileak ditu antenetan, eta horiei esker aurkitzen ditu bere harrapakinak. Zizare edo bare bat aurkituz gero, iltzatu egiten du aho-atal zorrotzak erabiliz eta, ondoren, zurrupatu egiten ditu harrapakinaren barne-fluido eta ehunak, oraindik bizirik dirauen arren.

2. irudia: Selenochlamys ysbryda edo mamu-barea. (Iturria: Pan-species Listing)

Gure artean ere bada bare karniboro bat, Testacella generokoa. Selenochlamys bezala, lurpean bizi da eta zizareak jaten ditu. Honek badu, gainera, beste ezaugarri bitxi bat: maskor txiki bat du gorputzaren atzealdean. Bareak eta barraskiloak oso antzekoak dira. Izan ere, kaltzioz pobreak diren lurretan bizitzeko moldaera da bareek maskorrik ez izatea; hau da, maskorra egiteko nahikoa kaltzio ez zegoen tokietan «maskorrik gabeko barraskiloak» sortu ziren. Baina trantsizio horretan bada erdiko formarik ere, eta horixe da, hain zuzen, Testacella, erdiko forma bat; horregatik du maskor txikia.

Istorio hau arrazoi batengatik ekarri dugu hona: guk dakigula, hauek dira ezagutzen diren bare haragijale gutxietako bi. Egia da guk ezagutzen ditugun bare arruntek ere haragia (euren espezie bereko kideena, zehatzak izateko) jan dezaketela, baina oso gutxitan egiten dute. Haien janaren osagai nagusiak landareak dira ―baserritarrek ondo dakiten bezala― eta noizean behin, proteinen beharrak errazago asetzeko, beste animalia txikiak edo euren espeziekideak ere jan ditzakete.

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso du.

The post Mamu-barea appeared first on Zientzia Kaiera.

Catégories: Zientzia

Computación cognitiva de espectros infrarrojos

Cuaderno de Cultura Científica - mer, 2017/09/27 - 17:00

Copyright Philipp Marquetand / Universität Wien

Los avances en inteligencia artificial y las noticias acerca de ellos parecen estar por todas partes. Desde vehículos autónomos, a buscadores de Internet o filtros de spam, los algoritmos que hemos dado en llamar inteligencia artificial son tremendamente versátiles. En IBM llaman, quizás más apropiadamente, “computación cognitiva” a lo que los demás llamán inteligencia artificial. Y es que las máquinas no poseen una inteligencia, artificial, sino que realizan lo que hacen mejor, computar, de otra forma, cognitivamente.

De hecho, esta es pues otra noticia sobre un avance en computación cognitiva, pero probablemente uno del que no oirás hablar en otra parte. Se trata de algo importante y muy útil, pero que no es tan espectacular como para alcanzar un informativo de televisión, por ejemplo. Sin embargo, ilustra perfectamente la capacidad de complementar (no necesariamente sustituir) la inteligencia humana que esos algoritmos pueden tener.

La espectroscopia infrarroja es uno de los métodos experimentales más útiles para conocer el mundo de las moléculas. Se basa en cómo las moléculas de las sustancias responden a la radiación infrarroja, vibrando y rotando. Los espectros infrarrojos son, por tanto,huellas químicas que proporcionan información sobre la composición y las propiedades de las sustancias y los materiales.

En muchos casos, estos espectros son muy complejos y, si se quiere realizar un análisis detallado, las simulaciones por ordenador se hacen indispensables. Mientras que los cálculos químico-cuánticos teóricamente permiten una predicción extremadamente precisa de los espectros infrarrojos, llevarlos a cabo en la práctica se hace difícil, si no imposible, por el enorme coste computacional que tienen. Por esta razón, los espectros infrarrojos fiables sólo pueden calcularse para sistemas químicos relativamente pequeños.

Y aquí es donde entra la computación cognitiva. Un grupo de investigadores de las Universidades de Viena y Gotinga ha encontrado una forma de acelerar estas simulaciones utilizando lo que se llama aprendizaje máquina, una forma de computación cognitiva. Para este propósito han utilizado redes neuronales artificiales, modelos matemáticos que se basan en el funcionamiento del cerebro humano. Estas redes son capaces de aprender las complejas relaciones mecano-cuánticas que son necesarias para el modelado de los espectros de infrarrojo a partir de solo algunos ejemplos. De esta manera, los científicos pueden llevar a cabo simulaciones en pocos minutos, unas simulaciones que con técnicas estándar necesitarían literalmente miles de años incluso con los superordenadores modernos, y todo ello sin sacrificar la fiabilidad.

Es tal la potencia del nuevo método, que no parece osado predecir que se implantará rápidamente tanto en los laboratorios de investigación (científica y criminal) como en los de control de calidad, y que mejoras sucesivas lo harán una herramienta indispensable en el futuro.

Referencia:

Michael Gastegger,Jörg Behlerb and Philipp Marquetand (2017) Machine learning molecular dynamics for the simulation of infrared spectra Chemical Science doi: 10.1039/C7SC02267K

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Computación cognitiva de espectros infrarrojos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un minuto eterno: pares de Majorana y computación cuántica
  2. Digitalización universal de la computación cuántica analógica en un chip superconductor
  3. Activa Tu Neurona – Física Teórica y Computación Cuántica
Catégories: Zientzia

Una conjetura sobre ciertos números en el ‘sistema Shadok’

Cuaderno de Cultura Científica - mer, 2017/09/27 - 11:59

Los Shadok son los personajes de una serie de animación francesa creada por Jacques Rouxel (1931-2004).

Imagen 1: Una de las imágenes del Doodle dedicado al 48 aniversario (29 de abril de 2016) de la primera emisión en televisión de Les Shadoks (29 de abril de 1968). En la etiqueta: ¡¿Por qué hacerlo simple cuando puede hacerse complicado?!

Los Shadok son seres antropomorfos, con la apariencia de pájaros ‘redondos’, con largas piernas y alas diminutas. Son bastante crueles y tontos; por ejemplo, se dedican a construir máquinas absurdas, que nunca funcionan.

La lengua shadok solo posee cuatro fonemas de base: GA, BU, ZO, MEU. En efecto, su cerebro está constituido por cuatro casillas, y no puede contener más sílabas… de hecho, los Shadok solo son capaces de hacer cuatro cosas; para aprender una nueva, deben olvidar otra…

Estos personajes pueden construir palabras usando las sílabas GA, BU, ZO y MEU… pero la lengua shadok es incomprensible, ya que las palabras son polisémicas. Así, todo Shadok puede emitir cualquier palabra y su interlocutor comprenderá lo que mejor le convenga… aunque intercambian ideas entre ellos. Por ejemplo, ZoGa significa ‘bombear’, ZoBuGa denota ‘bombear con una bomba pequeña’ y ZoBuBuGa representa ‘bombear con una bomba grande’. GaMeu es la noche, BuBu el mar y BuGa la tierra.

Estos cuatro fonemas sirven también para contar: GA (0), BU (1), ZO (2) y MEU (3), y cualquier número se construye a partir de estos cuatro por un sistema de numeración por posición, que es sencillamente la base 4:

Imagen 2: Base decimal versus base shadok.

Existen incluso páginas web destinadas a convertir números del sistema de numeración decimal al sistema shadok y viceversa. Por ejemplo, el número 100 se escribe en el sistema shadok:

BU-ZO-BU-GA.

El pasado domingo, en Blogdemaths (ver [1]) su autor escribía un artículo describiendo algunas propiedades interesantes de los números

Ga-Bu-Zo-Meu-Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu,

donde Ga-Bu-Zo-Meu se repetía n veces.

Los primeros valores de estos números son:

Imagen 3: Los primeros números de la forma Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu, en base 10 y su descomposición en factores primos. Extraído de [1].

A la vista de esta serie de valores, el autor del blog establece la siguiente conjetura:

Conjetura: La descomposición en factores primos de los números

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu

es el producto de una potencia de 3 por un entero libre de cuadrados.

Intentando probar esta conjetura (o encontrar un contraejemplo para ella), el autor obtiene una expresión general para estos números:

Así, para encontrar los divisores de Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu, basta con encontrar los divisores de 28n-1, que es un número de Mersenne.

Usando el teorema de Euler, el autor demuestra que

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (42 veces)

es divisible por 49… así que su conjetura es falsa. A partir de allí encuentra más contraejemplos a su conjetura, para

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (n veces)

con n = 54, 110, 120, 156,… todos ellos números pares.

La conjetura es falsa, pero el autor se pregunta a continuación, ¿quizás no existe un contraejemplo a su conjetura para

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (n veces)

con n impar? La respuesta es negativa; esta vez, usando números de Mersenne y números primos de Wieferich, es capaz de encontrar un contraejemplo con n impar a su conjetura, y lo descubre para n=91.

Aún es posible hacerse más preguntas, y el autor, efectivamente, las plantea: ¿es n=91 el menor contraejemplo impar a su conjetura?

Referencias

[1] GaBuZoMeu…GaBuZoMeu, Blogdemaths, 24 de septiembre de 2017

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Una conjetura sobre ciertos números en el ‘sistema Shadok’ se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Incendios, los grafos de visibilidad y la conjetura de Collatz
  2. La conjetura de Goldbach
  3. La conjetura de Poincaré-Perelman-Miander
Catégories: Zientzia

Bakterioen transplantea, eraikin historikoak babesteko

Zientzia Kaiera - mer, 2017/09/27 - 09:00
Juanma Gallego Ikertzaileek eraikinetan karbonatoak sortzen dituzten bakterioak hartu, hazi eta berriro txertatuz ‘biozementua’ garatzea lortu dute. Granadako eraikin batean probatu dute metodo berria.

Eraikin historikoen kontserbazioa hobetzeko metodologia berria garatu dute Granadako Unibertsitateko ikertzaileek. Kutsadura atmosferikoak eta harrian pilatzen diren gatzek eragiten dituzten narriadura fisikoaren eta kimikoaren ondorioak ekiditeko bidea ireki du aurkikuntzak, zientzialarien esanetan. Nature Communications aldizkarian aurkeztu dute aurrerapena, hilaren hasieran.

Funtsean, eta sinplifikatuz, bakterioen transplantean oinarritzen da metodologia berria. Hori egin ahal izateko, eraikinaren harrietan dauden bakterio komunitate bat hartu, laborategian hazi eta jatorrizko eraikinera itzuli dituzte ondoren.

1. irudia. Granadako San Jeronimoko monasterioan martxan jarri dute metodo berria. (Argazkia: Paul Hermans CC BY-SA 3.0)

Zehazki, bakterio karbonatogenikoen bila joan dira zientzialariak. Bakterio hauek gai dira kaltzio karbonatoa sortzeko, eta horrek eraikinetako harria babesten eta trinkotzen du, “biozementu” izendatu duten materiala sortuz. Bakterioek isurtzen dituzten sustantzia exopolimerikoek, gainera, biozementu hau babesten laguntzen dutela argitu dute ikertzaileek. Exopolimero hauei esker sortzen dira mikrobioez osatutako geruzak, bioteknologiaren alorrean gero eta erabilpen gehiago dituztenak.

Granadan dagoen San Jeronimoko eraikinean probatu dute teknika berria. Beste askotan bezala, Errenazimentuko eraikin honetako harrietan bi motako arazoak izaten dira. Batetik, gatzek harri porotsuetan aldaketa fisikoa eragiten dute, tentsio mekanikoaren bidez. Bestetik, atmosferaren kutsadurak aldaketa kimikoak sortzen ditu, harrian dauden mineralak disolbatzen dituelako.

Egileek diotenez, monasterio horretan dauden bakterio karbonatogenikoak ohikoak dira mundu osoko eraikinetan, eta, ondorioz, metodologia hau beste leku askotan ezartzeko aukera dagoela esan dute.

Aspaldiko garapena

Duela urte batzuk asmatu zuten tratamendu sinpleago baten garapena da honakoa, Granadako Unibertsitateko Mineralogia eta Petrologia katedradun Carlos Rodriguez Navarrok adierazitakoaren arabera. “Orduan, elikagaia zuen kultibo-ingurunea ezartzen genuen harrian, baina bakteriorik gabe. Era horretan, eraikinean zeuden bakterioak aktibatu egiten ziren, eta, ondorioz, karbonatoak sortzen zituzten”.

Baina orain beste aurrerapausoa egin dute, zuzenean eraikinean zeuden bakterioak erauziz, horiek laborategian hazi eta berriro ere eraikinean txertatuz. Funtsean, gizakiengan egiten diren mikrobiotaren transplantearen antzekoa litzateke, auto-inokulazio bat, hain zuzen.

2. irudia. Monasterioaren sarreran egindako esku-hartzea, eta mikroskopio bidez eskuratutako zenbait irudi: narraiatutako kaltzita (e), nitroa (f) eta hexahidritako gatz-kristalak (g). (Argazkia: Nature Communications)

Tratamenduaren ebaluaketa egin ahal izateko, alderdi fisikoak eta kimikoak kontuan hartu dituzte, eta, diotenez, bietan egiaztatu dute harrian izandako hobekuntza. “Eraso kimikoen aurrean iraunkorragoa da, eta mikro-zulaketa baten bitartez ere ikusi dugu harriak hobera egin duela”.

Itxurari dagokionean, kolorearen espektroa ere neurtu dute, espektrofotometriaren bitartez. “Proba sinpleagoak ere egin daitezke halakoetan”, azaldu du Rodriguez Navarrok. “Adibidez, azaleko trinkotasuna ikusteko, eranskailuaren proba egiten da, tratamenduaren aurretik eta ondoren. Pegatina bat harrian itsasi eta zenbat material erausten den ikusten dugu horrela”.

Aurreko tratamenduekin alderatuz izandako aldea nabarmendu du katedradunak. Izan ere, orain arte erabili diren zenbait metodok arazo ugari sortu dute eraikinetan. Hasiera batean harria babesten badute ere, denbora aurrera joan ahala arazoak sortu dituzte. Arazoaren oinarrian dago babes-geruzak harriaren poroak estaltzen dituela. “Funtsezkoa da harriaren sistema porotsuaren iragazkortasuna bermatzea”. Azken finean, eta metaforaren eremuan sartuta, bizidunen antzera harriek ere arnas egin behar dute “bizirik” irauteko.

Euskal Herrian ere antzeko irtenbideak aurkitzen saiatzen ari dira. Zehazki, Nano-Cathedral izeneko proiektuan parte hartzen ari dira Gasteizko Santa Maria katedraleko arduradunak. Nanoteknologiaren bitartez harriaren kontserbazio egokia ahalbidetuko duen tratamendu berrien bila ari dira. Bestetik, UPV/EHUko IBeA Ikerkuntza eta Berrikuntza Analitikoa taldean ere hainbat aurrerapen egin dituzte kutsadurak eta itsas aerosolek eraikinetan duten eragin negatiboa ekiditeko.

Erreferentzia bibliografikoa:

Fadwa Jroundi et al. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nature Communications 8, Article number: 279 (2017) DOI:10.1038/s41467-017-00372-3

———————————————————————————-

Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.

———————————————————————————-

The post Bakterioen transplantea, eraikin historikoak babesteko appeared first on Zientzia Kaiera.

Catégories: Zientzia

Sistemas respiratorios: los límites a la difusión de los gases

Cuaderno de Cultura Científica - mar, 2017/09/26 - 17:00

La mayor parte de los animales necesitan oxígeno para vivir. Es el aceptor final de electrones en la cadena respiratoria, por lo que sin su concurso no sería posible la síntesis de ATP que tiene lugar en el interior de las mitocondrias. Es, pues, la molécula clave para poder degradar las sustancias carbonadas que proporcionan la energía necesaria para el funcionamiento de los sistemas orgánicos. El catabolismo de esas moléculas, además de energía en forma de ATP, rinde CO2, sustancia que ha de ser expulsada al exterior, pues su acumulación en los medios interno o intracelular, daría lugar a peligrosas elevaciones del pH[1]. Llamamos respiración interna o respiración celular a los procesos metabólicos que tienen lugar en las mitocondrias y que, utilizando O2, dan lugar a la obtención de ATP y la producción de CO2 a partir de moléculas carbonadas.

Esquema de la respiración interna

El oxígeno se encuentra en el medio externo y ha de ser transferido al interior de las mitocondrias. Y, como se ha dicho, el CO2 ha de ser expulsado al exterior. Denominamos respiración externa al conjunto de procesos implicados en esas transferencias. Debemos, para empezar, considerar las limitaciones que afectan a la difusión de los gases respiratorios para, a continuación, analizar los dispositivos específicos que han permitido la superación de tales limitaciones.

Intercambio de gases en un alveolo pulmonar

La difusión es el proceso clave y universal mediante el que se produce el intercambio de gases entre el medio respiratorio y el organismo. Se produce de acuerdo con la denominada ley de Fick que, aplicada a los gases, establece que la tasa o velocidad a que se produce es directamente proporcional al denominado coeficiente de difusión (que depende de la permeabilidad para con cada gas de la barrera que hay que traspasar), a la superficie disponible para el intercambio, y al gradiente de presiones parciales del gas existente entre los dos compartimentos; y es inversamente proporcional a la distancia que ha de superar.

Llegados a este punto, conviene introducir la noción de presión parcial pues desde el punto de vista de la actividad biológica de los gases, es a ese parámetro al que hemos de atenernos y no a la concentración. A nivel del mar la presión atmosférica total es de 1 atm (atmósfera) o 760 mmHg (milímetros de mercurio). A dicha presión contribuyen todos los gases que hay en la mezcla y principalmente el N2 y el O2. El oxígeno representa un 21% del volumen del gas, por lo que su presión parcial (pO2) es de 159 mmHg. La del CO2 es de tan solo 0,03 mmHg. Si en vez de tratarse de un gas en la atmósfera, nos referimos a uno disuelto en agua o en alguna disolución fisiológica (medio interno, sangre, etc.), su presión parcial se define como la presión de ese mismo gas en una atmósfera con la que la disolución se encontrase en equilibrio.

Las configuraciones respiratorias más simples son aquellas en las que los gases pasan de un enclave a otro a través de procesos de difusión únicamente. A partir de cálculos teóricos basados en niveles metabólicos y requerimientos de O2 considerados “moderados” y dada una pO2 ambiental de 159 mmHg, la distancia de difusión –o distancia crítica– no debería superar el valor de 1 mm. Esta es una consecuencia de las características del proceso de difusión y supone, de hecho, una importante limitación fisiológica de partida. Hay animales en los que tal limitación no llega a operar. Son los más simples: organismos de muy pequeño tamaño –unicelulares incluso, como los paramecios u otros protozoos- o aquellos cuya anatomía permite que las células se encuentren en contacto con el medio externo o muy próximas a este, como esponjas, cnidarios o gusanos planos.

Sin embargo, la limitación anterior sí actúa sobre la mayor parte de los animales porque, como vimos aquí, en el curso de la evolución su tamaño ha tendido a crecer, además de haber aumentado también su complejidad. También han surgido grupos con muy altas demandas metabólicas (peces escómbridos, insectos voladores, aves y mamíferos). Y por otra parte, prácticamente todos o casi todos los enclaves acuáticos o terrestres de nuestro planeta -incluyendo zonas de muy diversa disponibilidad de oxígeno– han sido colonizados por algún grupo animal. Por todas esas razones, en el curso de la evolución todos esos animales se han dotado de dispositivos específicos que, actuando sobre los términos de la ley de Fick antes citados, facilitan el intercambio de gases respiratorios. Esos dispositivos son el aparato respiratorio, cuya función es realizar los intercambios directos con el exterior, y el sistema cardiovascular, que se ocupa de la transferencia interna (aquí vimos algunas características del sistema circulatorio humano, y aquí una panorámica de las bombas de impulsión). Veamos esto con cierto detalle.

El coeficiente de difusión es propio del gas y de la naturaleza de la barrera que separa el medio respiratorio del medio interno; obviamente, la selección natural no puede actuar sobre las características del gas, pero sí puede hacerlo sobre el epitelio que separa ambos medios. Por ello, los epitelios respiratorios y las paredes de los capilares sanguíneos presentan una alta permeabilidad para con los gases objeto de intercambio.

El área superficial también está sometida a la acción de la selección natural, y lo está en dos niveles. El primero corresponde a los órganos respiratorios, que consisten generalmente en múltiples pliegues del epitelio que se encuentra en contacto con el medio externo, llenos en ocasiones de infinidad de recovecos. A título de ejemplo valga el dato de que la superficie interna del total de alveolos pulmonares de un ser humano es de 100 m2. Cuando los pliegues se proyectan hacia el exterior del organismo en forma de evaginaciones, los órganos respiratorios reciben el nombre de branquias; son característicos de animales acuáticos. Y cuando consisten en invaginaciones reciben el nombre de pulmones; son característicos de animales terrestres. Los insectos, con sus tráqueas, constituyen un grupo aparte, aunque en rigor también su sistema traqueal es un sistema de invaginaciones. El segundo nivel corresponde a los enclaves en los que el sistema cardiovascular se halla en contacto con los tejidos. En este, la irrigación de los tejidos a cargo de variables (y en caso de ser necesarios, grandes) números de capilares sanguíneos ofrece enormes posibilidades para modificar la superficie de transferencia en la vía final de difusión a las células, incluyendo la posibilidad de aumentarla de manera considerable.

La selección natural también actúa sobre los dispositivos implicados en el intercambio de gases, de un modo tal que tienden a mantenerse gradientes de presiones parciales de la suficiente magnitud. También en este caso, son dos los enclaves implicados, órgano respiratorio y sistema circulatorio. Los gradientes amplios se consiguen en el aparato respiratorio impulsando el medio (aire o agua) a su través, de manera que su renovación permite mantener elevada la presión parcial de O2 y, por lo tanto, el gradiente. Lo opuesto vale para el CO2. Llamamos ventilación a la actividad que consiste en hacer circular el medio respiratorio sobre la superficie de los epitelios.

El mismo mecanismo sirve para la transferencia interna a través del sistema circulatorio, ya que la renovación de la sangre o medio interno que irriga o baña los tejidos permite mantener la pO2 relativamente alta y la pCO2 relativamente baja, lo que favorece el intercambio de esos gases con las células. De la misma forma se facilita la captación de O2 desde el medio respiratorio por la sangre, así como la cesión de CO2. En este caso es la bomba de impulsión del sistema circulatorio la que genera el movimiento, cuya velocidad puede también modificarse en función de las necesidades. Y además de lo anterior, muchos animales cuentan con unas sustancias de naturaleza proteica, a las que denominamos pigmentos respiratorios, que se combinan con el O2 y CO2, de manera que se reduce la presencia de dichos gases en la sangre en forma disuelta y por lo tanto, su presión parcial. El efecto de dichos pigmentos es muy importante; al reducir la pO2 en la sangre que irriga el órgano respiratorio, ayuda a mantener un gradiente entre los medios externo (respiratorio) e interno (sangre o hemolinfa) que facilita la transferencia de O2. Y lo mismo ocurre con el CO2 en los tejidos, aunque en este caso, los procesos implicados en su transporte interno son más complejos.

Por último, también la distancia de difusión está sometida a la actuación de la selección natural. Por un lado, los epitelios (respiratorio y capilar) a través de los cuales se produce difusión de gases son muy finos, por lo que la distancia de difusión se minimiza. Por el otro, la misma existencia de sistemas circulatorios equivale, en realidad, a una reducción funcional de la vía de difusión. Y por último, en los animales con sistemas circulatorios abiertos, no existen barreras a la difusión en la vía final, dado que el medio interno baña directamente las células.

Hasta aquí la descripción de los elementos funcionales que participan en los intercambios de gases respiratorios, así como del modo en que actúa la selección natural sobre los procesos representados por los términos de la ecuación de Fick. En posteriores anotaciones nos ocuparemos de otros aspectos de la respiración y de una descripción de la diversidad de órganos respiratorios.

Nota:

[1] Además de disolverse, el CO2 se combina con el agua para dar ácido carbónico, lo que potencialmente genera una elevación del pH.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Sistemas respiratorios: los límites a la difusión de los gases se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sistemas nerviosos: el sistema central de vertebrados
  2. Sistemas nerviosos: el tálamo y el hipotálamo
  3. Sistemas nerviosos: el tronco encefálico y el cerebelo
Catégories: Zientzia

La ley del gas ideal a partir del modelo cinético

Cuaderno de Cultura Científica - mar, 2017/09/26 - 11:59

Tras exponer nuestro modelo simple del gas ideal, incorporar la distribución de las velocidades de las moléculas de Maxwell y tener en cuenta el efecto del tamaño de las moléculas, ya lo tenemos todo para ver cómo se deriva a partir del modelo cinético una ley a la que se ha llegado por estudios macroscópicos y fenomenológicos, la ley del gas ideal.

Según estableció Bernoulli, en la teoría cinética la presión de un gas es el resultado de los impactos contínuos de las partículas del gas contra las paredes del contenedor. Esto explica por qué la presión es inversamente proporcional al volumen (ley de Boyle) y directamete proporcional a la densidad: cuanto más pequeño sea el volumen o mayor la densidad, mayor será el número de partículas que colisionan con la pared en un momento dado. Pero la presión tambien depende de la energía cinética de las partículas (Ec)y, por tanto, de su velocidad, v, ya que Ec = 1/2 m·v2. Esta velocidad determina no solo la fuerza que se ejerce sobre la pared durante cada impacto, sino también la frecuencia de estos impactos.

Si las colisiones con la pared son perfectamente elásticas, la ley de conservación del momento lineal describe perfectamente el resultado del impacto. Un átomo que rebota e una pared sufre un cambio de momento lineal. Como el momento lineal es el producto de la masa por la velocidad, este cambio de momento se traduce en un cambio de velocidad, ya que asumimos que la masa es constante para la partícula (aquí habría que recordar que la velocidad es un vector). Pero si hay un cambio de momento lineal es porque se ha ejercido una fuerza sobre la partícula durante el impacto, como sabemos por las leyes de Newton. Por estas mismas leyes, para esa fuerza que ha hecho rebotar a la molécula de gas debe existir una fuerza de reacción que se aplica sobre la pared: esta fuerza es la contribución del impacto de la partícula a la presión.

Aplicando las mecánica de Newton a nuestro odelo simple de gas llegamos a la conclusión, para las tres dimensiones del movimiento, de que la presión P está relacionada con el promedio de la velocidad de los átomos al cuadrado, (v2)pr, y con el volumen, V, y la masa de la molécula de gas, m, según la expresión P = (v2)pr / 3V.

La derivación de esta expresión es muy sencilla y un magnífico ejemplo de la aplicación de las leyes de Newton en un dominio en el que el propio Newton no se aventuró.

Tenemos ahora dos expresiones para la presión de un gas. Una derivada de datos experimentales macroscópicos, P· V = k ·T y otra derivada de las leyes de Newton aplicadas a nuesto modelo simple, P = (v2)pr / 3V. Si ambas describen la misma realidad, entonces debe ocurrir que k · T = m · (v2)pr / 3. De aquí se deduce que la temperatura, T = 2/(3k) · m ·(v2)pr /2, es decir, la temperatura de un gas es proporcional a la energía cinética promedio de sus moléculas.

Ya teníamos alguna indicación de que aumentar la temperatura de un material afectaba de alguna manera al movimiento de sus “pequeños componentes”. También éramos conscientes de que cuanto mayor es la temperatura de un gas, más rápido se movían sus moléculas. La novedad es que ahora tenemos una relación cuantitativa precisa derivada del modelo cinético y de las leyes experimentales. Por fin podemos afirmar no solo que el calor no es algún tipo de fluido u otra sustancia, sino también que es solo la energía cinética de las partículas (átomos, moléculas) que constituyen el material*.

Nota:

* Para ser precisos, eso que estamos llamado calor, y que ya dejamos claro que es energía térmica, no solo es movimiento de las partículas, también es energía radiante. Pero baste esta forma de expresarse para los fines de esta serie.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La ley del gas ideal a partir del modelo cinético se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La ley del gas ideal y la tercera ley de la termodinámica
  2. Un modelo simple de gas
  3. Los antecedentes de la teoría cinética
Catégories: Zientzia

Ignacio López-Goñi: Bakterioen defentsa-sistema da genoma-editore onena

Zientzia Kaiera - mar, 2017/09/26 - 09:00
Iraide Olalde Bakterioek ere txertoak hartzen dituzte. Izen hori eman zion Ignacio López-Goñik hasiera bere hitzaldiari, Naukas Zientzia Dibulgazioko ekitaldian. Naukas, zazpigarrenez egin da aurten, Euskalduna Jauregia Bilbon. Lopez-Goñi katedraduna da Nafarroako unibertsitatean,

“Bakterioek ez dute pentsatzen baina oso azkarrak dira” esan zuen López-Goñi mikrobiologoak, aurrean entzuleria txunditua zuelarik, Euskalduna Jauregiko Auditorioan. Izan ere, birus batek bakterio bat infektatzen duenean, bakterioa gauza da birusaren DNA zati bat bere genoma propioan txertatzeko. “Hurrengoan, bakterioak ezagutu egingo du birus hori, eta hil egingo du. Horrelakoak dira bakterioek birusen aurka hartzen dituzten txertoak”.

1. irudia: Ignacio López-Goñi, Naukaseko ekitaldian, irailaren 15ean. (Argazkia: Iñigo Sierra)

Sistema sofistikatua eta heredagarria dute bakterioek hor. Berari esker, bakterioen ondorengoek bere “oroimenean” gordetzen dute lehenengo infekzioa, gerokoei aurre egin ahal izateko. Sistema hau ezkutuan egon da milioika urtean, Francis Mojica Alacanteko Unibertsitatean lanean hasi arte.

Mojica Haloferaz mediterranei arkearen genoma aztertzen ari zen. Mikroorganismo hau, gatz kontzentrazio handiak behar ditu bizi ahal izateko, eta Santa Polako (Alacant) gatzagetan bizi da. Lan horretan ari zelarik, ikusi zuen behin eta berriz errepikatzen zirela genoma-sekuentzia jakin batzuk. Clustered Regularlly Interspaced Short Palindormic Repeats izena jarri zien, CRISPR. Alegia, Errepikapen Palindromiko Labur Elkartuak eta Erregularki Tartekatuak.

Zer esanik ez, jakin nahi izan zuen sekuentzia hauek zein funtzio betetzen zuten zelulan. Urte batzuk beranduago, aurkitu zuen defentsa-sistema ezin hobea zela bakterioaren aldetik.

Zehazkiago, prokariotoek inbaditzailearen DNA zati bat txertatzen dute bere genoma propioan, geroago etor daitezkeen inbasioak ekiditeko. Alegia, informazioa biltegiratuta gelditzen da bakterioan eta bere ondorengoetan, eta leinu horrek “txerto” bat izango du birus horien aurka.

2. irudia: Ignacio López-Goñik azaldu zuen Naukasen bakterioek ere txertoa hartzen dutela. (Argazkia: Iñigo Sierra)

2012.etik aurrera, ikertzaile honen ikerketa-ildoan aurrera eginez, Emmanuelle Charpentier biokimikari frantziarrak eta Jenniger Doudna kimikari estatubatuarrak frogatu zuten CRISPR mekanismoak ahalmena duela edozein genoma editatzeko: benetako genoma-editore bat, DNA zatiak moztu eta itsasten dituena.

Testu-editore baten antzera, teknika hau bakuna, merkea eta zehatza da, eta aukera ematen du geneak jartzeko eta kentzeko, eta mutazioak zuzentzeko ere. Bere hitzaldian ikerlari honek baieztatu zuzen bakterioen defentsa-sistema dela ezagutzen den genoma-editore onena.

Teknika oso erabilia da munduko laborategietan, eta berari esker mikrobiologoek eta zientzialariek aldaera hobetuak lortzen dituzte hainbat bizidunetan: izurriteekiko jasankorrak diren landareak, muskulu-masa handiagoko animaliak, edo malaria eta denge hedatzen ez dituzten eulitxoak. “Terapia genikorako ere balio dezake, eta gaixotasun arraroak eta infekzioak sendatzeko ere”. Hain zuzen ere, uda honetan bertan CRISPR teknikak aukera eman die zientzialari estatubatuarrei enbrioi jakin batzuetan gaixotasun genetiko bat ezabatzeko, ADN-sekuentzia kaltegarriak ezabatuz.

Mojikak Santa Polako bakterioak aztertu zituenetik 20 urte igaro direlarik, zientzialari hau hautagaia da hurrengo Nobel Saria hartzeko, Medikuntzan eta Kimikan.

———————————————————————————-

Egileaz: Iraide Olalde kazetaria da GUK komunikazio-agentzian, eta parte hartzen du UPV/EHUko Kultura Zientifikoko Katedran.

———————————————————————————-

—————————————————–

Hizkuntza-begiralea: Juan Carlos Odriozola

——————————————–

The post Ignacio López-Goñi: Bakterioen defentsa-sistema da genoma-editore onena appeared first on Zientzia Kaiera.

Catégories: Zientzia

Ignacio López-Goñi: “El sistema de defensa de las bacterias es el mejor editor de genomas que existe”

Cuaderno de Cultura Científica - lun, 2017/09/25 - 17:00

Las bacterias también se vacunan. Bajo esta premisa comenzó la ponencia que el microbiólogo navarro Ignacio López-Goñi, catedrático en la Universidad de Navarra, ofreció en la primera jornada del evento de divulgación científica Naukas, que este año cumple su séptima edición en el Palacio Euskalduna de Bilbao.

“Las bacterias no piensan, pero son muy listas”, anunció López-Goñi ante una audiencia apasionada de la ciencia que abarrotó el Auditorio del Palacio Euskalduna. Y es que, según avanzó el divulgador, cuando un virus infecta a una bacteria, la bacteria es capaz de coger parte de ese DNA e incluirlo en su genoma. “Así, en la siguiente infección, la bacteria es capaz de reconocer el virus y aniquilarlo. Así se vacunan las bacterias contra los virus”, explicó el científico en su ponencia.

El microbiólogo Ignacio López-Goñi el pasado 15 de septiembre en su intervención en Naukas Bilbao 2017. (Autor imagen: Iñigo Sierra)

Se trata de un avanzado sistema de defensa heredable mediante el cual las bacterias y sus descendientes guardan en su memoria una primera infección para hacer frente a las posteriores. Un sistema de defensa que “ha permanecido oculto durante millones de años”, según explicó López-Goñi, hasta que entró en juego la labor del microbiólogo español Francis Mojica, de la Universidad de Alicante.

Todo comenzó cuando el alicantino comenzó a estudiar el genoma de la arquea Haloferax mediterranei, un microorganismo que habita en las salinas de Santa Pola (Alicante) y que requiere de altas concentraciones de sal para vivir.

Fue entonces cuando descubrió unas secuencias de ADN que se repetían en el genoma del microorganismo; unas secuencias a las que denominó con las siglas CRISPR, o lo que es lo mismo, repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (Clustered Regularly Interspaced Short Palindromic Repeats, por sus siglas en inglés).

Estas secuencias repetidas hicieron al investigador recapacitar sobre la función que estas pudieran tener en la célula. Años más tarde, Mojica encontró la respuesta, y descubrió el maravilloso sistema de defensa que esta secuencias representaban para la bacteria.

En concreto, las procariotas son capaces de incorporar a su genoma un fragmento del ADN invasor que le sirve de guía para evitar futuras invasiones. Es decir, la secuencia del virus queda almacenada como información en el genoma de la bacteria y sus descendientes. Las bacterias quedan “vacunadas”.

Ignacio López-Goñi explicó en Naukas Bilbao 2017 que las bacterias también se vacunan. (Autor imagen: Iñigo Sierra)

A partir de 2012, y gracias a las investigaciones del español, la bioquímica francesa Emmanuelle Charpentier y la química estadounidense Jennifer Doudna demostraron que el mecanismo CRISPR descubierto por el alicantino se puede emplear como una herramienta para editar cualquier genoma; un auténtico “editor” genético que permite cortar y pegar trozos de ADN.

Se trata de una técnica de edición que, como si de un procesador de texto se tratara, y de una manera “sencilla, barata y precisa”, permite quitar y poner genes, además de estudiar y corregir mutaciones de los mismos. “El sistema de defensa de las bacterias ha resultado ser el mejor editor de genomas que existe”, aseguró en su ponencia el navarro López-Goñi.

Se trata de una técnica muy utilizada en los laboratorios de todo el mundo. Mediante este sistema, los microbiológicos y científicos son capaces de obtener plantas resistentes a plagas, animales con más masa muscular o mosquitos que no transmiten la malaria o el dengue. “Incluso puede servir para terapia génica y para la investigación de enfermedades raras e infecciosas”, explicó el científico.

Sin ir más lejos, este verano la técnica CRISPR se ha utilizado en Estados Unidos para modificar embriones con una enfermedad genética, eliminando de forma selectiva las secuencias de ADN no deseadas.

Ahora, más de 20 años después de que el microbiólogo alicantino descubriera las secuencias repetidas y el sistema de defensa de aquellas bacterias de Santa Pola, Francis Mojica es nuestro próximo candidato al Nobel de Medicina y Química.

Sobre la autora: Iraide Olalde, es periodista en la agencia de comunicación GUK y colaboradora de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Ignacio López-Goñi: “El sistema de defensa de las bacterias es el mejor editor de genomas que existe” se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Bacterias emisoras de rayos X
  2. Viscosidad negativa con bacterias
  3. ¿Dónde van las bacterias marinas en invierno?
Catégories: Zientzia

Estroncio en la leche

Cuaderno de Cultura Científica - lun, 2017/09/25 - 11:59

El estroncio (Sr) es un elemento que en caso de accidente nuclear se vierte de forma mayoritaria a la atmosfera. El comportamiento químico del estroncio es similar al del calcio y se puede acumular en el suelo, en vegetales y en animales (especialmente en los huesos). Se trata de un elemento con dos principales radioisótopos (90Sr y 89Sr) que tienen una vida efectiva biológica relativamente alta para el ser humano, y debido a su fijación en los huesos, acaba impartiendo una dosis de radiación a lo largo de muchos años.

El Organismo Internacional de Energía Atómica (OIEA) ha propuesto, entre otros muchos, un método de detección rápida de Sr radiactivo en leche para casos de emergencia o accidente nuclear. Sin embargo, este tipo de métodos no es válido para su aplicación en medidas de rutina medioambientales, en los que los límites de detección son mucho menores que en los casos de emergencia nuclear. Es por ello que en un estudio llevado a cabo por el grupo de investigación Seguridad nuclear y radiológica del Departamento de Ingeniería Nuclear y Mecánica de Fluidos de la UPV/EHU ha obtenido las condiciones y los parámetros con los que convertir el método rápido propuesto por la OIEA en un método utilizable en los planes de vigilancia radiológica integrados en estudios medioambientales rutinarios.

El laboratorio del grupo de investigación Seguridad nuclear y radiológica es un laboratorio de medidas de baja actividad, que además de dedicarse a la investigación también realiza medidas de vigilancia radiológica para diferentes entidades como el Consejo de Seguridad Nuclear. En opinión de la doctora Raquel Idoeta, investigadora del grupo, “se trata de un método rápido, con rendimientos buenos y relativamente fácil y económico de adaptar”.

En el estudio han llevado a cabo tanto medidas experimentales como simulaciones numéricas para determinar los parámetros y condiciones de adaptación; asimismo, según explica Idoeta, han hecho una valoración económica “para ver qué facilidades pueden tener otro laboratorios para adaptarlo”. Y añade que “cualquier laboratorio medioambiental que tenga equipos de detección de partículas beta o que realice determinaciones de estroncio no requiere apenas de nada para integrar este método. Un laboratorio que aplicase este método de forma rutinaria, aunque adaptando en este caso los volúmenes y tiempos de medida, según lo determinado en nuestro estudio para alcanzar las exigencias en materia medioambiental, no tendría mayores problemas en aplicarlo debidamente en caso de una emergencia para dar una respuesta rápida a la determinación de estroncio radiactivo en leche”.

Referencia:

M. Herranz, R. Idoeta, S. Rozas, F. Legarda (2017) “Analysis of the use of the IAEA rapid method of 89Sr and 90Sr in milk for environmental monitoring”. Journal of Environmental Radioactivity. DOI: 10.1016/j.jenvrad.2017.06.003.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Estroncio en la leche se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un espectrómetro Raman portátil mide el punto óptimo de maduración del tomate
  2. La teoría de bandas de los sólidos se hace topológica
  3. Todo lo que se puede medir en un río
Catégories: Zientzia

Pages