Subscribe to Cuaderno de Cultura Científica feed
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Updated: 28 min 6 sec ago

El caso de la deliciosa musaraña

Mon, 2016/10/31 - 17:00

No sé cómo se cocina. Ni siquiera he encontrado una receta en Google, donde todo se encuentra. O no he buscado lo suficiente y con suficiente habilidad. Solo conozco lo que Brian Crandall y Peter Stahl, de la Universidad Estatal de Nueva York en Binghamton, detallan en su artículo: “el cuerpo se hierve suavemente durante aproximadamente dos minutos y se traga sin masticar en porciones de cabeza, cuerpo, cola y patas anteriores y posteriores”. Según escriben, hervir rápido y suave impide que el animal se rompa o pierda tejido pero, sin embargo, al hacerlo con el animal troceado se dejan huesos al aire que quedarían protegidos si el animal se cocina entero.

Blarina brevicaudaBlarina brevicauda

En fin, así hemos cocinado e ingerido una musaraña norteña de cola corta, Blarina brevicauda de nombre científico, típica de Norteamérica central y oriental, desde Canadá a Georgia. Y todo ello para cumplir con un objetivo científico. Vamos con la historia.

Es una narración sobre arqueólogos y paleontólogos. Cuando encuentran, en un yacimiento con restos y herramientas de origen humano, gran cantidad de huesos de mamíferos pequeños, dudan si son parte de su alimentación o si aparecen en el mismo lugar por alguna otra razón. Puede ser que por accidente, quizá por arrastre de aguas de la lluvia, se hayan acumulado. O, puede que algún depredador llevara hasta allí los cuerpos para alimentarse de ellos. Quién sabe si los humanos que pasaron por allí tenían perro, gato, halcón o cualquier otra mascota que se alimentara de pequeños mamíferos. Y, por supuesto, pudieron ser parte de la alimentación de nuestros antepasados. Crandall y Stahl se preguntaron cómo demostrarlo.

Hasta entonces la única manera segura era encontrar esos huesos, junto con pelos y otros restos, formando parte de coprolitos, o sea, de nuestras heces fósiles. Pero los coprolitos son escasos pues las heces no fosilizan con facilidad y, además, hay que encontrarlos en los yacimientos. En fin, volviendo al principio: tenemos muchas acumulaciones de pequeños huesos y, con ello, muchos datos sobre el entorno, las especies y la ecología de los micromamíferos, pero las conclusiones respecto a su relación con la alimentación de nuestra especie siguen siendo dudosas.

Mucho se ha estudiado sobre los cambios que la digestión provoca en los huesos cuando el depredador es otro y no nuestra especie. También se han empezado a estudiar esos efectos de nuestra digestión sobre el esqueleto de peces, es decir, sobre las espinas. Más adelante volveremos sobre ello. Por ahora, vemos como Crandall y Stahl se proponen hacerlo con huesos de micromamíferos, de un micromamífero en concreto, la ya mencionada musaraña norteña de cola corta.

Para probar que nuestra digestión produce cambios evidentes y, si es posible, distintivos, en los huesos de la musaraña, hay que comérsela y, después, vigilar las heces, recuperar los huesos que se pueda y estudiarlos en detalle.

La musaraña la capturan en Nueva York a comienzos del verano de 1991. Mide 11.5 centímetros de longitud y pesa 18.9 gramos. Le quitan la piel y las vísceras y quedan unos 10 gramos de carne. Ya saben, la hierven dos minutos, parten en cuatro trozos y se la traga el voluntario. Antes y después de la musaraña, el voluntario come maíz y sésamo que funcionarán después como marcadores en las heces para indicar cuándo aparecerán los restos del animal.

Años más tarde, Crandall declaró en una entrevista que añadieron al cocido una pizca de salsa de tomate, supongo que para hacerlo más sabroso y, por tanto, más tragable a la musaraña. No quiso revelar quien se comió el animal y, para justificarlo, añadió que “un poco de misterio es saludable”. Y confesó que “la persona que se comió la musaraña se sentía bien después”.

Por si interesa, aquí va una sugerencia personal. En el tiempo de aquella investigación, Crandall era el doctorando y Stahl el director de la tesis. Esta era la jerarquía entonces y, para quien conozca el escalafón académico, creo que no debo añadir más y dejar que el lector saque sus propias conclusiones. Es más, en una revisión sobre estos temas que publicó Stahl al año siguiente agradeció a Crandall “su colaboración entusiasta en el experimento sobre la digestión humana”.

Aunque vigilaron las heces durante tres días, la mayor parte de los restos aparecieron en la primera muestra. El segundo día encontraron un molar y el húmero, y el tercer día no había restos evidentes. Solo recobraron el 20% del esqueleto de la musaraña; lo que falta o ha desaparecido en la digestión o está tan fragmentado que no se pudo identificar. Solo hay una vértebra de 31, una mandíbula de dos, cuatro molares de doce, y ocho falanges de dedos y pies de un total de 56.

Los huesos, que hay que recordar que no fueron masticados sino tragados enteros, presentan, en todo caso, cambios debidos a la digestión en el estómago, digestión potente según los autores. Y no deja características especiales que se puedan atribuir en concreto a la digestión de nuestra especie. Aunque, también es cierto, los datos solo se refieren a una muestra, a una sola musaraña. Hay que seguir investigando y, entre tanto volver a los coprolitos como mejor método para conocer nuestra dieta de pequeños mamíferos.

CoprolitosCoprolitos

Como dato sobre la importancia, interés y originalidad de este trabajo de Crandall y Stahl, hay que recordar que el artículo ganó el Premio IgNobel 2013 dedicado a la Arqueología.

Pero toda esta investigación sobre los efectos de la digestión humana en los huesos de los vertebrados había comenzado unos años antes con el esqueleto de los peces, con esos huesos que llamamos espinas, pequeños y frágiles. Uno de los primeros trabajos lo publicó Rebecca Nicholson, de la Universidad de York, en Inglaterra, que, por lo menos, reconoció que era ella quien se comió los peces y eran sus heces las que examinó con minucioso interés.

Freía o asaba a la parrilla los peces, no mucho tiempo, unos cinco minutos, y con las espinas algo tostadas, se los comía. Lo hizo cinco veces y degustó un arenque (Clupea harengus) de 30 centímetros de longitud, 25 peces pequeños (“pescaítos”) con arenques y espadines (Sprattus sprattus) de 6 a 8 centímetros, y, finalmente, cinco sardinas (Sardinus pilchardus) de 16 a 19 centímetros. Por supuesto, los huesos, y todo el animal, están masticados para poder tragarlos. Antes y después del pescado come maíz como marcador de las heces que contienen las espinas y que examina los cinco o seis días siguientes.

La recuperación de huesos y espinas es muy escasa y varía entre el 1.3% y el 6% del esqueleto, con el máximo en las sardinas. Lo más recuperado, hasta el 100% de lo ingerido, son las lentes oculares, seguida de los huesos de la zona de unión de la cabeza con el resto del cuerpo, con menos del 20%. No encuentra ninguna espina de los peces pequeños.

En conclusión, pocos huesos sobreviven a la digestión y, además, desaparecen todos los huesos de los peces de pequeño tamaño. Es evidente que la digestión humana es tan destructora que ofrece poca ayuda a los arqueólogos. Y tampoco es posible distinguir si los ha comido un miembro de nuestra especie pues otros mamíferos que se alimentan de ellos producen daños parecidos.

Referencias:

Crandall, B.D- & P.W. Stahl. 1995. Human digestive effects on a micromammalian skeleton. Journal of Archaeological Science 22: 789-797.

Nicholson, R.A. 1993. An investigation into the effects on fish bone of passage through the human gut: some experiments and comparisons with the archaeological material. Circaea 10: 38-51.

Stahl, P.W. 1996. The recovery and interpretation of microvertebrate bone assemblages from archaeological contexts. Journal of Archaeological Method and Theory 3: 31-75.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo El caso de la deliciosa musaraña se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El caso de la fístula incurable
  2. El caso de William & Frank Buckland
  3. El caso de la paloma desaparecida
Categories: Zientzia

El mecanismo que bloquea receptores de membrana celular

Mon, 2016/10/31 - 11:59

Cerca del 70% de los fármacos que se desarrollan en la actualidad están dirigidos contra los receptores de membrana. Situados en el exterior de la célula, estos receptores juegan un papel determinante en la transmisión de información al interior de la célula. Por ello, para poder avanzar en el desarrollo de medicamentos más específicos y eficientes, es necesario descifrar el mecanismo molecular que regula la actividad de dichos receptores. Una investigación en la que ha participado el investigador Ikerbasque del Instituto Biofisika (UPV/EHU, CSIC) Xabier Contreras ha conseguido un nuevo avance al desvelar cómo interaccionan los receptores con los nanodominios lipídicos de la membrana. El trabajo se publica en Cell.

La activación de la señalización intracelular del receptor IFN-R depende de nanodominios lipídicos presentes en la membrana. La alteración de dichos nanodominios o la presencia de una sola mutación en el receptor induce la unión de Galectinas. El receptor queda atrapado en filamentos de actina y se bloquea la señalización celular.La activación de la señalización intracelular del receptor IFN-γR depende de nanodominios lipídicos presentes en la membrana. La alteración de dichos nanodominios o la presencia de una sola mutación en el receptor induce la unión de Galectinas. El receptor queda atrapado en filamentos de actina y se bloquea la señalización celular.

El estudio comenzó a partir del historial médico de 11 niños, todos los cuales tenían un desorden por infecciones por micobacterias. Descubrieron que todos ellos tenían el mismo fenotipo con la misma mutación, la cual estaba localizada en el receptor interferon-gamma (IFNGR), y el grupo comenzó a investigar qué provocaba esa disfunción.

La membrana celular se puede comparar con un océano, un mar formado principalmente por lípidos y proteínas, en el que hay islas compuestas por lípidos específicos, como el colesterol y los esfingolípidos. Sobre las islas se sitúan las proteínas de membranas y solo en esos nanodominios pueden realizar su función.

El receptor IFNGR es una de esas proteínas de membrana y se ocupa de activar genes involucrados en una gran variedad de procesos celulares, entre ellos la defensa contra agentes patógenos y cáncer. El equipo descubrió que una simple mutación en la cadena de 337 aminoácidos que lo conforma permite que se le añada un azúcar. Ese azúcar es reconocido por una proteína de la familia de proteínas extracelulares llamadas galectinas. Cuando esa proteína se añade al receptor, lo saca de su nanodominio, y queda atrapado entre los filamentos de actina que conforman el citoesqueleto de la célula. Una vez fuera de su nanodominio, el receptor se bloquea y no puede ya transmitir la señal.

“La investigación aporta evidencias directas sobre el papel fundamental que tienen ciertos nanodominios lipídicos en la activación y regulación de la señalización celular mediada por el receptor IFNGR. Además, los resultados de este trabajo enfatizan la necesidad de estudiar la interacción entre galectinas y receptores de membrana altamente N-glicosilados y relacionados con varias enfermedades congénitas”, indica Xabier Contreras. El estudio ofrece, así mismo, posibles dianas terapéuticas para el tratamiento de pacientes portadores de la mutación en el receptor IFNGR.

Referencia:

Blouin CM, Hamon Y, Gonnord P, Boularan C, Kagan J, Viaris de Lesegno C, Ruez R, Mailfert S, Bertaux N, Loew D, Wunder C, Johannes L, Vogt G, Contreras FX, Marguet D, Casanova JL, Galès C, He HT, Lamaze C. Glycosylation-Dependent IFN-γR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell. 2016 Aug 11;166(4):920-34. DOI: 10.1016/j.cell.2016.07.003.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo El mecanismo que bloquea receptores de membrana celular se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La secuencia de estructuras intermedias durante la división de la membrana celular
  2. La catálisis geométrica como mecanismo de fisión celular
  3. Un modelo para la colaboración científica abierta, por Ash Jogalekar
Categories: Zientzia

Peces escurridizos

Sun, 2016/10/30 - 11:59

Hay peces que nacen en el río pero que, alcanzado un cierto tamaño, viajan al mar, donde engordan y se desarrollan sexualmente. Después recorren el viaje de vuelta al río del que salieron, en cuya cabecera desovan y después mueren. Son peces anádromos. El salmón es uno de ellos. Otros peces hacen lo contrario que aquéllos. Nacen en el mar, viajan al río siendo muy jóvenes; y vuelven después a las aguas oceánicas a reproducirse. Son peces catádromos. La anguila es uno de ellos.

Anguilla anguilla (Illustrations de Ichtyologie ou histoire naturelle générale et particulière des Poissons Bloch, Marcus Elieser, J. F. Hennig, Plumier, Krüger, Pater, Schmidt, Ludwig, Bodenehr, Moritz 1795-1797; dominio público)Anguilla anguilla (Illustrations de Ichtyologie ou histoire naturelle générale et particulière des Poissons Bloch, Marcus Elieser, J. F. Hennig, Plumier, Krüger, Pater, Schmidt, Ludwig, Bodenehr, Moritz 1795-1797; dominio público)

No es fácil explicar por qué ocurren esas migraciones, cuál es –en términos metafóricos- el mandato al que obedecen o –en términos darwinianos- la presión selectiva que ha favorecido su aparición. Si todas las especies que lo hacen migrasen en la misma dirección sería fácil de entender, pero en todas las costas europeas coexisten unos y otros, anádromos y catádromos. Unos van en una dirección y los otros en la contraria.

De los salmones sabemos muchas cosas. Hace ya décadas que se cultivan con éxito. Por eso conocemos su biología. Pero de las anguilas sabemos mucho menos. Su carne es muy apreciada, y las angulas -fase de desarrollo de pequeña longitud y cuerpo transparente- están consideradas un manjar entre nosotros. Hace medio siglo las capturas de anguilas se acercaron a las 20.000 T, pero desde entonces han descendido hasta unas 5.000 T. Por esa razón se empezaron a cultivar a finales del siglo pasado. Su producción actual ronda las 70.000 T, y durante la pasada década llegó a alcanzar las 100.000 T. El problema es que científicos y productores no son capaces aún de completar el ciclo biológico de la especie en cautividad porque, al parecer, las anguilas necesitan haber nadado antes miles de kilómetros para poder reproducirse. Por esa razón, es necesario capturar juveniles para su engorde en las granjas.

Las anguilas son muy escurridizas, y no sólo en el sentido literal, también como objeto de estudio. Sabemos que sus primeras larvas aparecen en el Mar de los Sargazos, un área del Atlántico Occidental que se encuentra al este de las Bermudas. Esas larvas recorren miles de kilómetros hasta llegar a las desembocaduras de los ríos, no sólo de Europa Occidental, también de Norteamérica. Antes de completar el viaje se transforman en anguilas de cristal (angulas) y, si consiguen escapar de los anguleros, ascienden río arriba experimentando una serie de transformaciones. Crecen durante un periodo que puede ir de los cinco a los veinte años hasta convertirse en adultos, en verdaderas anguilas. Al completar su desarrollo, su aparato digestivo se atrofia y entonces comienzan el viaje de vuelta al Mar de los Sargazos. Durante el trayecto no se alimentan. Al llegar desovan y a continuación mueren. O, al menos, así es como creemos que ocurren las cosas.

Creemos que desovan porque sus larvas aparecen en el Mar de los Sargazos, sí, pero nunca se ha observado desovar a ninguna anguila. Tampoco se conocen con precisión importantes detalles de sus grandes migraciones. Se han llegado a marcar anguilas con radiotrazadores a ambos lados del Atlántico. Pero lo más que se ha conseguido es detectar vía satélite una anguila marcada en Nueva Escocia a 2.400 km, en el límite norte de los Sargazos, precisamente, y de ninguna marcada en Europa se han recibido señales al oeste de las Azores.

Aristóteles pensaba que las anguilas surgían de los gusanos de tierra. Otros naturalistas creyeron que aparecían por generación espontánea. Han pasado muchos siglos, y aunque ahora sabemos bastante más que entonces, todavía hay aspectos de la biología de estos animales que siguen escurriéndose entre los dedos.

——————————–

Nota: la primera versión de este artículo fue publicada en el diario Deia el 3 de julio de 2016. El pasado 5 de octubre la revista Science Advances publicó un estudio muy amplio mediante el que se han podido caracterizar aspectos relevantes de las migraciones de las anguilas (Anguilla anguilla L.) en su viaje desde las costas europeas hacia el Mar de los Sargazos. La investigación se basó en el uso de radiotrazadores y permitió determinar las rutas principales de migración, al menos hasta las islas Azores, la velocidad de desplazamiento (entre 3 y 47 kmh-1), así como la existencia de migraciones diarias verticales (las anguilas viajan de noche cerca de la superficie y se desplazan a mayores profundidades durante el día). A partir de los datos obtenidos los autores concluyen que hay anguilas que sólo necesitan unos pocos meses para, partiendo de los ríos en el otoño, llegar a tiempo de la freza o desove en el invierno o primavera siguientes, mientras que otras necesitan más de un año. Pues bien, si esas conclusiones son correctas, me resulta difícil aceptar que puedan vivir durante un periodo de tiempo tan largo sin alimentarse. Está claro que la biología de estos animales sigue siendo muy escurridiza.

 10.1126/sciadv.1501694)Reconstrucción de las migraciones de las anguilas a partir de los datos de radiotrazado (Imagen tomada de Righton et al: Science Advances 05 Oct 2016: Vol. 2, no. 10, e1501694 DOI: 10.1126/sciadv.1501694)

——————————————

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Peces escurridizos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Existen los peces?
  2. La topología modifica la trayectoria de los peces
  3. Ratones, peces y moscas, un modelo a seguir
Categories: Zientzia

#Naukas15 Superrredes de grafeno

Sat, 2016/10/29 - 11:59

El año 2015 pasó a los libros de historia (de la física) como el año en el que se descubrieron los aislantes topológicos que son semimetales de Weyl. ¿Te suena a chino? Espera, que Francisco R. Villatoro te lo explica.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Superrredes de grafeno se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 (jo)Dido problema
  2. #Naukas15 Gráficas de vida o muerte
  3. #Naukas15 El olfato, el sentido menos conocido
Categories: Zientzia

El Peine del Viento de Chillida: materia, forma y lugar

Fri, 2016/10/28 - 12:00

Peine del Viento XV Acero Cor-ten, Eduardo Chillida Juantegui, 1977 Peine del Viento XV, Acero Cor-ten, Eduardo Chillida Juantegui, 1977

El Peine del viento quizá sea la obra más emblemática y reconocible de Eduardo Chillida (San Sebastián, 1924 – Ibídem, 2002). Está situada en la bahía de la Concha, en San Sebastián. Alberga dos playas, La Concha (este) y Ondarreta (oeste). Hay quienes prefieren el Paseo Nuevo de La Concha, con su oleaje abierto y los hay, como Chillida, que preferían el promontorio rocoso del final de la playa de Ondarreta, en el cierre del litoral urbano, un lugar más recogido, más a escala humana. En este lugar es donde se sitúa el Peine del viento.

Ese lugar era para Chillida su lugar, su patria. Él conocía el sentido de ese lugar y quiso compartirlo con sus conciudadanos. «Este lugar es el origen de todo. Él es el verdadero autor de la obra. Lo único que hice fue descubrirlo. El viento, el mar, la roca, todos ellos intervienen de manera determinante. Es imposible hacer una obra como ésta sin tener en cuenta el entorno. Es una obra que he hecho yo y que no he hecho yo».

Si nos fijamos en la ficha técnica del Peine del Viento veremos que es el Peine del Viento XV, el decimoquinto de la serie, es decir, que ha hay catorce piezas anteriores a ésta. Esto nos da información acerca de cómo funciona el arte. En contra del estereotipo del artista-genio, de la mística de la inspiración, las obras de arte son fruto de la investigación, del trabajo, de la reflexión, de la búsqueda de referentes, del ensayo. El arte es una forma de conocimiento y, como tal, se rige por motivaciones que abarcan algo más que la sublimación de las emociones.

Chillida comenzó en 1952 su serie de esculturas Peine del Viento, y no fue hasta 1977 cuando por fin se construyó el Peine del Viento de Ondarreta. La primera escultura de la serie, Estudio Peine del Viento I, es la más esquemática, de líneas rígidas y racionales. Un despliegue de planos y ángulos geométricos extendidos a lo largo de dos puntos de apoyo que marcan la rigidez de su estructura y la dureza de sus formas de chapa de hierro. Durante esta época también realizó collages y dibujos que mantienen el estatismo de este primer periodo.

Estudio del Peine del Viento I, Chapa de hierro, Eduardo Chillida Juantegui, 1968Estudio del Peine del Viento I, Chapa de hierro, Eduardo Chillida Juantegui, 1968

En los collages, Chillida dispone formas geométricas sobre el plano, a través de una superposición de papeles artesanales recortados a los que aplica alquitrán para dar distintas tonalidades y una apariencia similar a la oxidación de las esculturas de hierro.

peine-del-viento-3

Las siguientes esculturas de la serie fueron evolucionando hacia formas más orgánicas. Chillida experimentó con diferentes materiales como la plata, el acero inoxidable, la madera y el granito. Entre 1966 y 1968, se puede distinguir todo un grupo de esculturas desde Estudio Peine del Viento IV hasta Estudio Peine del Viento VIII, cuya base, de fuerte protagonismo, afinca la escultura sobre el suelo a la vez que la sostiene, vibrante y arbórea, extendiéndose en el espacio. Este tipo de peines que describen finas líneas articuladas sobre su base tomarán fuerza y consistencia, convirtiéndose en las sólidas garras de las esculturas de los años 70 y décadas posteriores; donde los peines son más sencillos y proporcionados a sus bases, pero más sólidos y fuertes.

Estudio del Peine del Viento VIII Acero inoxidable Eduardo Chillida Juantegui, 1968 Estudio del Peine del Viento VIII, Acero inoxidable, Eduardo Chillida Juantegui, 1968

Cuando se aproxima el momento de realizar la obra de Ondarreta, el artista se encuentra ante un nuevo desafío, el de la propia naturaleza, de ahí que las formas vuelvan a mutar de nuevo. «El lugar es siempre condicionante de la obra (…) es una locura tratar de competir en grandiosidad con el mar, el viento y las rocas». Las piezas de este periodo desde Estudio Peine del Viento IX del año 1974 al XIV dos años más tarde, son las que más se aproximan a la definitiva. Se caracterizan por una austeridad de formas, asemejándose a garras que tratan de aprehender el espacio. Los bloques de acero se curvan en tensión luchando contra la gravedad.

Estudio Peine del Viento IX Hierro Eduardo Chillida Juantegui, 1974 Estudio Peine del Viento IX, Hierro, Eduardo Chillida Juantegui, 1974

La evolución de la serie Peine del Viento no concluye con la colocación de las tres piezas en Ondarreta. Eduardo Chillida continúa indagando en el tema y, la realización de cinco esculturas desde Estudio Peine del Viento XVI (1974) a Peine del Viento XX (1999), pone de manifiesto que sus inquietudes e interrogantes siguen vigentes, que el artista continúa materializando nuevas variaciones sobre el mismo tema [1].

Peine del Viento XX Acero Cor-ten Eduardo Chillida Juantegui, 1999 Peine del Viento XX, Acero Cor-ten, Eduardo Chillida Juantegui, 1999

A finales de los 70, Chillida ya era un artista consagrado mundialmente. Había compartido espacio expositivo con artistas de la talla de Rothko, Braque, Chagall, Miró, Giacometti y Kandisnsky. Pero no fue hasta 1974, con la llegada de un nuevo alcalde a San Sebastián, cuando encontró una actitud más receptiva ante su proyecto de colocar el Peine del viento definitivo en aquel lugar tan suyo de Ondarreta.

Ese espacio había sido concebido para la creación de un aparcamiento, pero a pesar de las presiones recibidas por algunos sectores de la ciudad, el alcalde Lasa apostó por el proyecto de Chillida a cambio de ceder a otras propuestas como la colocación de nuevas fuentes en la ciudad. «Gracias a que el anterior alcalde rechazó el proyecto, me ha dado tiempo a descubrir que era imprescindible hacer tres esculturas y no sólo una».

Chillida había renunciado al deseo de inmortalizar su obra en su lugar como una pieza única, como un acto de autoafirmación personal y, en su lugar descubrió la importancia del estrato geológico que unió en un tiempo la tierra con la isla de Santa Clara. Vio la continuidad entre la roca última del litoral y la que sobresale del agua en línea con la isla y, decidió que tenía que marcar esa tensión horizontal con sendas esculturas para representar la memoria, para recordar lo que un día estuvo unido. El tercer elemento del triángulo, situado al fondo, es el que marca el horizonte. Se trata de una pieza abierta al cielo que sugiere o bien una ofrenda o bien una demanda [2].

Ese eje vertical es la pieza clave, la dimensión sagrada del espacio, la que afirma e interroga. «Mi escultura es la solución de una ecuación que, en lugar de números, tiene elementos: el mar, el viento, los acantilados, el horizonte y la luz. Las formas de acero se mezclan con las fuerzas de la naturaleza, dialogan con ellas, son preguntas y afirmaciones».

peine-del-viento-7

Chillida encargó a la fundición Patricio Etcheberría, en Guipúzcoa, la fabricación en acero Cor-ten de tres piezas similares, pero no idénticas. Cada pieza, de 10 toneladas y más de 2 metros de altura y anchura, está formada por cuatro barras gruesas de sección cuadrada que emergen de un tronco común enraizado a la roca. Una de las barras marca la curva en el aire y traza una paralela con el tronco común, antes de volver a incrustarse en la roca. Los otros tres brazos se retuercen y curvan a modo de garfios atrapando el espacio en su interior y modelando el espacio que los envuelve. El factor común de la obra escultórica de Chillida es que lo primordial es el aire.

peine-del-viento-8

Los aceros son aleaciones (mezclas) de hierro y un pequeño porcentaje de carbono. Según su método de fabricación, su contenido en carbono y su contenido en otros aleantes, encontramos los diferentes tipos de aceros.

Los aceros que presentan una capa superficial protectora de herrumbre se denominan aceros patinables. A la capa protectora de aspecto y color terroso se le denomina pátina. La pátina es una capa más tenaz, compacta y perfectamente adherida al resto del acero, que actúa como barrera frente a la corrosión atmosférica. Un acero común, que no presente ninguna pátina protectora, iría oxidándose poco a poco hasta el interior y terminaría por corromper totalmente la pieza.

De forma genérica se pueden definir como aceros suaves, con un contenido en carbono inferior al 0,2 % en peso, a los que se han adicionado principalmente cobre, cromo, níquel y fósforo como elementos aleantes en una cantidad global no superior al 5 % en peso [2]. Esta definición, sin embargo, no es estática y ha evolucionado a medida que se han desarrollado nuevas composiciones de aceros patinables con objeto de aumentar las propiedades mecánicas y superar condiciones atmosféricas cada vez más agresivas desde el punto de vista de la corrosión, especialmente para ambientes marinos. Una definición más actual para los aceros patinables podría ser «conjunto de aceros estructurales de baja y mediana aleación (bajo contenido en carbono) con capacidad para generar herrumbres que disminuyan la corrosión atmosférica a niveles tolerables y que permitan su uso sin la necesidad de aplicar posteriormente recubrimientos de pintura». [3]

El nacimiento de los aceros patinables hay que situarlo en el desarrollo de los aceros con contenido en cobre, denominados aceros al cobre [4]. En 1910 se observó que unas chapas de acero con un pequeño porcentaje de cobre, fabricadas por la US Steel, mostraban un mejor comportamiento que el acero al carbono sin alear, por lo que decidió realizar el primer ensayo de corrosión atmosférica a gran escala de aceros al cobre. Gracias a un gran número de ensayos se consiguieron delimitar las concentraciones adecuadas de cobre en acero que mejoraban sensiblemente la resistencia a la corrosión atmosférica.

En 1933 US Steel lanzó al mercado el primer acero patinable comercial bajo el nombre USS Cor-ten steel, cuyas siglas Cor-ten derivan de las dos propiedades que lo diferencian por un lado del acero al carbono, resistencia a la corrosión atmosférica (Corrosión, Cor), y por otro del acero al cobre, superiores propiedades mecánicas o límite elástico (Tenacidad, Ten) [3]. Se pretendía aumentar hasta un 30% las propiedades mecánicas de los aceros al carbono convencionales, de tal forma que para unas mismas exigencias mecánicas se redujese el espesor necesario y, por tanto, el peso del acero a emplear [5-7].

Las primeras versiones de los aceros Cor-ten se basaron en sistemas Fe-Cu-Cr-P (hierro-cobre-cromo-fósforo), a los que posteriormente se les fue adicionando Ni (níquel) para mejorar la resistencia a la corrosión en ambientes marinos. No obstante, los aceros USS Cor-Ten presentaban dos especificaciones, A y B, cuya diferencia principal reside en la cantidad de fósforo presente en la composición.

peine-del-viento-9

El alto contenido de cobre, cromo y níquel del acero Cor-ten hace que adquiera un color rojizo anaranjado característico. Este color varía de tonalidad según la oxidación del producto sea fuerte o débil, oscureciéndose hacia el marrón en el caso de que la pieza se encuentre en ambiente agresivo. El uso de acero Cor-ten a la intemperie tiene la desventaja de que partículas del óxido superficial se desprenden con el agua, quedando en suspensión y siendo arrastradas, lo que resulta en unas manchas de óxido, muy estéticas para unos y antiestéticas para otros, muy difíciles de quitar en el material que se encuentre debajo del acero [8].

Inicialmente la aplicación de estos aceros se centró en la fabricación de vagones de ferrocarril destinados al transporte de carbón, aumentando sustancialmente la vida en servicio de los mismos con respecto al acero al carbono.

Las capas de herrumbre suelen presentar considerable porosidad, astillamiento y agrietamiento que facilitan la corrosión. Por el contrario, las capas compactas de óxido favorecen la protección del substrato metálico. Conforme mayor es la corrosividad de la atmósfera, las estructuras de las capas de herrumbre son más abiertas y la herrumbre está más desprendida y menos adherente, favoreciendo la aparición de desconchamientos y desprendimientos [9]

En la exposición atmosférica, los ciclos de humectación y secado influyen en la estructura de la herrumbre y en sus propiedades protectoras. La herrumbre formada sobre el acero libremente expuesto a la lluvia muestra una estructura menos porosa y laminada, comparada con la estructura menos protectora, más pulverulenta y granulada, formada sobre las superficies protegidas de la lluvia [10]. Conforme progresa el tiempo de exposición decrece el número y tamaño de los defectos (poros, grietas, etc.) debido a procesos de compactación, aglomeración, etc. de la capa de herrumbre, reduciéndose la velocidad de corrosión.

La composición de la pátina tiene dos regiones entremezcladas compuestas por óxidos e hidróxidos de hierro [11]: una región interna más compacta compuesta de oxihidróxido de hierro amorfo (FeOOH) y Fe3O4 cristalina, y otra región externa compuesta por dos formas critalinas diferentes, α-FeOOH y γ-FeOOH.

El fósforo no es esencial para la formación de la capa protectora de herrumbre, sin embargo, su presencia ralentiza la corrosión notablemente.

El cobre es el elemento aleante más relevante en la composición de un acero patinable. Diferentes investigadores han tratado de atribuir el efecto inhibidor del cobre a la modificación que éste genera en la estructura y propiedades de la herrumbre, asociando la disminución en la velocidad de corrosión a un aumento en la densidad de la herrumbre y, por tanto, a un mayor efecto barrera.

El efecto que ejerce el cromo en la corrosión atmosférica de los aceros patinables es probablemente el mejor comprendido de todos los elementos aleantes, ya que inhibe la reacción de oxidación del hierro.

El níquel fue incorporado en la composición de los aceros patinables para minimizar la fragilización en caliente durante el proceso de laminación, debido al enriquecimiento de cobre en la capa superficial del acero y, principalmente para mejorar la resistencia a la corrosión atmosférica en ambientes marinos [12].

peine-del-viento-10

En un primer momento se propuso una mera exposición transitoria del Peine del Viento. «La idea se me ocurrió hace tiempo para este lugar y esta roca. Querían que realizara una exposición, pero no me pareció lo más indicado. Prefería algo que ‘quedase’» [13]

También se prometió el cambio de nombre del paseo, adoptando el de Paseo del Peine del Viento. Desde el fallecimiento de Eduardo, el paseo se denomina Paseo de Eduardo Chillida.

Tras la construcción de la plaza, se pasó a la fase de instalación de la obra escultórica, previo reconocimiento del terreno, construcción de planos, maquetas, documentos y prototipos.

peine-del-viento-11

Se reforzaron las rocas con pernos y anclajes para soportar el peso de 10 toneladas de cada una de las esculturas y se hicieron los agujeros para encajarlas. El objetivo era procurar una simbiosis de las esculturas con la roca, de manera que todos los materiales introducidos en las rocas para soportar el peso no se percibieran una vez colocadas las esculturas. El resultado es que las garras del Peine del Viento emergen de la roca como si ésta se hubiese ido erosionando y dejase al descubierto su esqueleto.

Estos refuerzos son totalmente imperceptibles incluso a día de hoy. No hay más que roca y acero. No hay rastro de emplastos artificiales ni sujeciones.

peine-del-viento-12

Primero se instaló la escultura del fondo, situada a una distancia de 80 metros. Se trató de movilizar un helicóptero de la base militar americana de Zaragoza. El intento fracasó porque no disponían de aparatos preparados para soportar ese tonelaje.

peine-del-viento-13

Otra solución que se barajó fue la bajada con cuerdas desde la carretera del faro de Igeldo hasta el lugar, construyendo un vial provisional. Esto no solucionaba el problema de colocación y encaje. Otra propuesta fue transportar la escultura en balsa o grúa flotante, pero las características de las rocas de alrededor, junto con el oleaje lo hacían peligroso [1]. La solución final fue construir unas pasarelas capaces de soportar el peso de la escultura, las mareas y el oleaje.

La última pieza que se instaló fue la de la derecha. Para ello se construyó una pasarela de 10 metros. Finalmente se procedió a la fase de limpieza, borrando todo resto de hormigón o material artificial que se había colocado.

peine-del-viento-14

Contra los deseos del escultor, que quería que cada pieza saliera de un único tronco de acero, hubo que separar los brazos en la fundición y ensamblarlos posteriormente, una tarea difícil por la extrema curvatura, según afirmaron los herreros.

El acero Cor-ten no llevaba demasiado tiempo en el mercado, pero era el único que por un lado cumplía mejor los requisitos técnicos, ya que se esperaba que la pátina protectora fuese suficientemente fuerte como para soportar la crudeza del oleaje y el tiempo y, por otro lado, respondía a un criterio estético y artístico. La herrumbre simboliza la conversión del metal en piedra, simboliza el paso del tiempo, la fuerza natural del mar que transforma en tierra todo lo que sucumbe a él.

peine-del-viento-15

El Peine del Viento es un peine porque es un artificio del hombre, del hombre que trata de domar, de comprender, de transformar en su lenguaje, de peinar el viento que llega del mar. Ese viento es el horizonte, y el horizonte, donde tierra-mar-cielo convergen, enfrenta al hombre consigo mismo y con la naturaleza a la que pertenece, a veces con consciencia de ello, a veces no.

El peine es de acero porque simboliza la herramienta del hombre, el material proletario con el que construimos herramientas resistentes, como un peine que pretende domar el viento del mar. Y es de acero Cor-ten porque es una herramienta recubierta de bagaje, en comunión con la tierra, con el lugar. Muestra la honestidad del paso del tiempo, la derrota asumida frente a la tempestad del mar, frente a la naturaleza transformadora. Es de acero Cor-ten porque representa esa redención.

Mientras Chillida controlaba los trabajos de la fundición, el arquitecto Luis Peña Ganchegui, construía sobre el suelo de roca la plataforma que hace de preámbulo de la obra de arte y que representa la unión de la ciudad con la naturaleza, el final de una urbe que termina en un absoluto que es el mar. La plaza actúa como un témenos, el espacio de preparación a los templos en la antigua Grecia. Junto al anfiteatro sobre el mar, a una altura inferior, discurre la calle que conduce hacia la obra y que va descubriendo al paseante, primero, la escultura de la derecha; después, la del horizonte y, finalmente, el conjunto, una vez alcanzado el emplazamiento de los siete chorros.

peine-del-viento-16

Decía Chillida que «El mar tiene que entrar en San Sebastián ya peinado» [13]. Ese Peine del Viento marca el límite entre lo salvaje y lo urbano. Es una herramienta que desenreda la vorágine natural del viento antes de adentrarse en lo que ya hemos ordenado en forma de ciudad.

Mientras el viento sur levanta, ondula y riza la cresta espumosa de las olas que cabalgan impetuosas, las esculturas derraman su herrumbre sobre las rocas que las sustentan, como si esas garras de hierro hubiesen estado cobijadas en su interior. De día, cuando la herrumbre cubre las esculturas, reluce como polvo dorado al sol.

El que fue el mirador privado de Chillida se ha convertido en un mirador colectivo de la ciudad sin perder el carácter individualista, de recogimiento, de soledad del acto contemplativo.

«Los hombres somos de un lugar. Es muy importante que tengamos las raíces en un lugar, pero lo ideal es que nuestros brazos lleguen a todo el mundo, que nos valgan las ideas de cualquier cultura. Los hombres somos como árboles con los brazos abiertos. Como soy de aquí, mi obra tendrá algunos tintes particulares, una luz negra que es la nuestra».

Este post ha sido realizado por Deborah García Bello (@Deborahciencia) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

Si te ha interesado este artículo, te recomendamos leer otra colaboración de Naukas con el CCC, escrita también por Deborah y titulada: “El Elogio del Horizonte de Chillida, un encuentro entre ciencia y arte“.

Fuentes:

[1] http://peinedelviento.info/

[2] José Luis Barbería. El Peine del Viento. Especiales 1976-2001 de El País. p.2-3, 2001.

[3] I. Díaz Ocaña. Corrosión atmosférica de aceros patinables de nueva generación. Departamento de Ingeniería de Superficies, Corrosión y Durabilidad del Centro nacional de Investigaciones Metalúrgicas (CENIM) y la Agencia Estatal Consejo Superior de Investigaciones Científicas (CESIC). Madrid, 2012.

[4] F. B. Fletcher. Corrosion of Weathering Steels, en ASM Handbook. Volumen 13B: Corrosion Materials, 2005.

[5] L. Ocampo C. Influência dos elementos de liga na corrosão de aços patináveis. Universidade Federal do Rio de Janeiro, COPPE, 2005.

[6] M. Pourbaix. Lecciones de Corrosión Electroquímica. Instituto Español de Corrosión y Protección. Madrid, 1987.

[7] G. Smith. Steels fit for the countryside. New Scientist, 1971: p. 211-213

[8] D. M. Buck. Copper in Steel – The influence on corrosion. J. Ind. Eng. Chem., 1913. 5(6): p. 447-452.

[9] K. Asami y M. Kikuchi. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years. Corros. Sci. 45(2003)(11) 2671-2688.

[10] P. Decker, S. Brüggerhoff, y G. Eggert, To coat or not to coat? The maintenance of CorTen® sculptures. Materials and Corrosion, 2008. 59(3): p. 239-247.

[11] H.P. Cano Cuadro. Aceros patinables (Cu, Cr, Ni): Resistencia a la corrosión atmosférica y soldabilidad. Departamento de Ingeniería de Superficies, Corrosión y Durabilidad del Centro nacional de Investigaciones Metalúrgicas (CENIM) y la Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC). Madrid, 2012.

[12] T. Murata. Weathering Steel, in: R.W. Revie, Editor, Uhlig’s Corrosion Handbook, J. Wiley & Sons. New York, 2000.

[13] Relato de Eduardo Chillida, ITURBI, J. J., “Chillida y el Peine del Viento”, periódico Unidad diario de la tarde, 18 de febrero de 1976, p. 14.

Imágenes y más información: Beatriz Matos Castaño. Eduardo Chillida, arquitecto. Universidad Politécnica de Madrid. Escuela Técnica Superior de Arquitectura. Departamento de proyectos arquitectónicos. Madrid, 2015

El artículo El Peine del Viento de Chillida: materia, forma y lugar se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El Elogio del Horizonte de Chillida, un encuentro entre ciencia y arte
  2. Máquinas inteligentes (I): Del molino de viento al test de Turing
  3. #Naukas14 Espadas romanas para detectar materia oscura
Categories: Zientzia

#Naukas15 Mitos y realidades de la seguridad informática

Thu, 2016/10/27 - 17:00

¿Cómo de seguro es en realidad el WiFi? Fernando de la Cuadra nos los aclara.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Mitos y realidades de la seguridad informática se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14 Mitos del cáncer
  2. #Naukas14 Guerras y mitos
  3. #Naukas15 Errores al copiar la realidad
Categories: Zientzia

8 razones para que los niños estudien ciencias… o cualquier otra cosa

Thu, 2016/10/27 - 11:59

FuenteFuente

“Todos nacemos curiosos”, “lo importante es mantener la curiosidad durante toda la vida”, “el sistema coarta las ganas de saber que todos tenemos de niños”. Todas estas frases, y muchas parecidas, son, ahora mismo, de uso común en cualquier foro sobre enseñanza y concretamente sobre enseñanza y divulgación de la ciencia.

Sinceramente creo que todas estas afirmaciones remiten a una realidad imaginaria, a una especie de paraíso del conocimiento en el que todos queremos creer, a una situación idílica que no sé hasta qué punto es real. Es una idea que presupone que si las circunstancias educativas y sociales fueran las ideales (está por ver cual sería ese ideal) todos seríamos científicos, todos andaríamos preguntándonos por el porqué de las cosas y ardiendo en deseos de conocer e investigar.

No tengo recuerdos de mí misma con 3 años preguntándome por el por qué de las cosas pero sé que cuando empecé a ser consciente de lo que me interesaba lo que que me llamaba la atención nunca fue la “ciencia”. Jamás me interesó saber porqué flotamos en el espacio o porqué las cosas aceleran, de qué sustancias estaba hecho mi yogur, el barro o los animales.

Con esto quiero decir que la presunción de que la curiosidad siempre va asociada al conocimiento científico es una afirmación que veo, cada vez con mayor frecuencia, en los argumentarios para defender la absoluta necesidad que tenemos como sociedad por favorecer el desarrollo científico y no sé hasta qué punto es real. Por supuesto, no discuto esa necesidad, como es obvio por todo lo que llevo escrito aquí, pero me gustaría, a través de esta infografía, demostrar como estas supuestas ventajas son aplicables a casi cualquier tipo de conocimiento, tanto científico como humanístico o de letras o como queramos llamarlo.

Pensamiento crítico. Sin duda alguna, la falta de pensamiento crítico es uno de los mayores problemas a los que nos enfrentamos ahora mismo. La mayor parte de la gente acepta la realidad o la exposición de argumentos sin plantearse ninguna otra opción o bien porque le conviene tal exposición, o bien porque “lo he leído en internet” o porque ni se plantea que pueda haber otro acercamiento a determinado hecho, idea o circunstancia. A esta falta de pensamiento crítico contribuye mucho, en mi opinión, la cada vez más arraigada idea de que cuando alguien expone una opinión contraria a la tuya, está por defecto equivocado y además coarta la libertad de expresión.

El pensamiento crítico es una actitud ante la vida que se consigue a base de conocer, leer, estudiar y cuestionar cualquier aspecto de la realidad. Y no, no necesariamente tiene que adquirirse exclusivamente a través de la ciencia.

Resiliencia, entendida como la capacidad para sobreponerse a los resultados adversos. Sinceramente creo que aquí, con esta idea, caemos en una de las actitudes más habituales últimamente en la exposición de las virtudes de la ciencia. Efectivamente en la ciencia hay muchas experiencias frustrantes, muchos experimentos fallidos y muchas teorías que se demuestran erróneas tras horas de trabajo pero dudo mucho, muchísimo que sea a través del estudio de la ciencia como nuestros hijos, nuestros niños deban adquirir esta capacidad que es imprescindible para capear con la vida.

Aprendizaje constante para mejorar. La argumentación en este caso viene dada por el hecho, teórico, de que los científicos se pasan la vida intentando demostrar que sus teorías no son ciertas para así conseguir una validez absoluta sobre ellas (al menos durante un tiempo). Según esta infografía gracias a esto, los niños descubren el placer de saber por el simple hecho de conocer.

¿No es el mero hecho de interesarse por un tema, encontrarlo fascinante y cada vez querer saber más lo que provoca el placer de conocer por conocer? Y no necesariamente, una vez más, tiene que ser algo exclusivo de la ciencia. Interesarse, por ejemplo, por la historia de un cuadro puede abrir un campo de conocimiento tan amplio como para tener a un niño interesado durante muchísimo tiempo.

Ser superhéroes. En fin, esto es una frivolidad pero lamentablemente remite a una corriente de pensamiento que se está mostrando cada vez más en la imagen de la ciencia.

La ciencia mejora nuestras vidas, lo ha hecho siempre pero también tiene un lado oscuro porque los hombres y mujeres que la realizan están muy lejos de ser siempre ciudadanos ejemplares.

No idealicemos a los científicos ni a la ciencia.

La ciencia mantiene en nosotros la capacidad de asombrarnos. No solo la ciencia. La capacidad de asombro creo que va más asociada a la capacidad para ver tu entorno, para percibirlo más allá de su simple presencia y preguntarte por lo que te rodea, pero no tiene porqué ir, y de hecho no va, siempre asociado a la ciencia.

En esto discrepo muchísimo con una eminencia como R.Dawkins y no creo que su capacidad para percibir la belleza de una flor sea superior a la de alguien que no conoce la ciencia de las flores.

Proporciona el método científico. Interesarse por la ciencia da acceso a conocer el método científico y su manera de cuestionarse la realidad. Sí, esto es cierto. Preguntarse, responderse y descartar hipótesis falsas o no probadas es una herramienta muy valiosa para enfrentarse a la vida.

Ser mejores consumidores. Fundamental y muy cierto. De todos modos para esto no hace falta estudiar ciencia, basta simplemente, como hacemos muchos, con acercarse a la divulgación, los libros, posts o charlas de científicos que se toman la molestia de enseñarnos a todos a saber enfrentarnos a las campañas de marketing que manipulan ideas, frases, palabras y sensaciones para vendernos productos.

Ser mejor persona. Esto si que no. Ser científico no te hace necesariamente mejor persona. Puede hacerte mejor persona de la misma manera que ser bombero, fontanero, ama de casa, agricultor o peón de obra. ¿Puede hacerte más culto? Sí, pero la cultura no te hace necesariamente mejor persona.

Con todo esto quiero decir que estoy muy a favor de animar a nuestros hijos, a nuestras hijas a estudiar ciencias pero no nos pasemos de frenada y les vendamos la ciencia como el cielo de los listos, de los buenos y de los mejores.

Los beneficios de la ciencia son innegables y vitales para nuestra sociedad, pero disfrutar de ellos no es algo limitado a aquel que ejerce la actividad científica y creo que, por tanto, no debemos exponerlo así.

Estudia ciencias porque te interesa conocer, porque te gusta, porque es lo que quieres hacer. No porque vayas a ser mejor.

Sobre la autora: Ana Ribera (Molinos) es historiadora y cuenta con más de 15 años de experiencia en el mundo de la televisión. Es autora del blog Cosas que (me) pasan y responsable de comunicación de Pint of Science España.

El artículo 8 razones para que los niños estudien ciencias… o cualquier otra cosa se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El aprendizaje del inglés es mejor si se usa para aprender otra cosa
  2. Aprender un idioma: esa cosa de niños que ayuda a los ancianos
  3. La ciencia no es cosa de prisas
Categories: Zientzia

Una brecha en nuestro escudo

Wed, 2016/10/26 - 17:00

El 13 de octubre de este año el presidente de los Estados Unidos, Barack Obama, emitió una orden ejecutiva con la idea de preparar a ese país contra los estragos que puede provocar una fulguración solar posterior y la tormenta geomagnética posterior. ¿Exagerado? No lo parece según los últimos datos publicados.

El campo magnético de la Tierra se cree que está generado por un efecto dinamo. Los campos magnéticos rodean a las corrientes eléctricas, de modo que se supone que las corrientes eléctricas circulantes, en el núcleo fundido de la Tierra, serían el origen del campo magnético que rodea a la Tierra. La región por encima de la ionosfera —que se extiende varias decenas de miles de kilómetros en el espacio— y que nos protege de las partículas cargadas que podrían llegar a la superficie de la Tierra es llamada la magnetosfera. La interacción de la magnetosfera con las partículas del viento solar crea las condiciones para los fenómenos de auroras cerca de los polos.

En las primeras horas del 21 de junio de 2015 el Sol expulsó una enorme nube de plasma magnetizado en una fulguración solar. 40 horas más tarde, esas partículas llegaron a la magnetosfera terrestre, desencadenando un importante tormenta geomagnética que afectó gravemente a señales de radio en Norte y Sudamérica.

El análisis de los datos recogidos por el telescopio de rayos cósmicos GRAPES-3, ubicado en India, muestra que un flujo anormalmente alto de rayos cósmicos consiguió perforar la magnetosfera durante esta tormenta, con el resultado de que durante dos horas los rayos cósmicos (partículas subatómitas procedentes del espacio exterior extremadamente energéticas) pudieron llegar a la superficie.

Las simulaciones realizadas apuntan a que los rayos cósmicos pudieron atravesar la magnetosfera porque la tormenta geomagnética habría debilitado el campo magnético en las regiones polares. Este debilitamiento se debe a que el plasma magnetizado procedente del Sol deforma el campo magnético terrestre, estirando su forma en los polos y disminuyendo su capacidad para desviar las partículas cargadas, sobre todo las más energéticas.

No, no parece que la idea de Obama de proteger a su país de acontecimientos extremos de la meteorología espacial sean exagerados, sobre todo cuando pueden afectar no solo a señales de radio, sino a la red de suministro eléctrico de forma catastrófica.

Referencia:

P. K. Mohanty et al (2016) Transient Weakening of Earth’s Magnetic Shield Probed by a Cosmic Ray Burst Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.171101

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Una brecha en nuestro escudo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Trayectorias de las partículas cargadas en un campo magnético
  2. Bacterias emisoras de rayos X
  3. Gobekli Tepe: descubriendo nuestro pasado
Categories: Zientzia

Poesía retorcida sobre banda de Möbius

Wed, 2016/10/26 - 11:59

Utilizo mucho la banda de Möbius en mis charlas de divulgación: a menudo llevo papel, tijeras y cinta adhesiva para realizar una bella magia, la magia topológica, que es especialmente sorprendente al manipular una cinta de Möbius.

Schrödinger’s cat playing with Möbius band. ©Anastasis.Schrödinger’s cat playing with Möbius band. ©Anastasis.

Incluso cuando hablo de literatura y matemáticas (ver [1]), la banda de Möbius tiene su especial protagonismo. Uno de los ejemplos que suelo mostrar es un poema sobre cinta de Möbius propuesto por el patafísico Luc Étienne en [3]. El autor utiliza dos de las propiedades principales de esta superficie con borde (ver [2]): posee una única cara y es no orientable.

Para escribir este especial poema, Luc Étienne proporciona unas precisas instrucciones (traducido del original francés –página 266 de [3]– intentando conservar el sentido y la rima):

En la primera cara de una tira de papel rectangular (al menos 10 veces más larga que ancha) se escribe la mitad de la poesía:

Trabajar, trabajar sin cesar,
para mi es obligación
no puedo flaquear
pues amo mi profesión…

Imagen extraída de [3].Imagen extraída de [3].

Se gira esta banda de papel sobre su lado más largo (es esencial), y se escribe la segunda mitad del poema:

Es realmente un tostón
perder el tiempo,
y grande es mi sufrimiento,
cuando estoy de vacación.

Imagen extraída de [3].Imagen extraída de [3].

Se pega la tira en forma de banda de Möbius (ver [2]). El poema inicialmente escrito sobre las dos caras de una banda de papel aparece ahora escrito en una única cara, que podemos empezar a leer verso a verso. Y, sorprendentemente, la poesía inicial alabando el esfuerzo en el trabajo se ha convierte en un elogio a la holgazanería… ¿será por el carácter no orientable de la cinta de Möbius?

Trabajar, trabajar sin cesar, es realmente un tostón
para mi es obligación
perder el tiempo
no puedo flaquear y
grande es mi sufrimiento,
pues amo mi profesión… c
uando estoy de vacación.

Imagen extraída de [3].Imagen extraída de [3].

En su blog Simplemente números, Claudio Meyer comentaba otro divertido ejemplo de poema sobre banda de Möbius. Pero empecemos por el principio; por favor, mirad y escuchad la divertida Serenata Mariachi de Les Luthiers.

Bernardo y Porfirio comparten mariachi para cantar a sus amadas. Aproximadamente en el minuto 7 del video, los dos amigos se dan cuenta de que ambos tienen como amada a la misma mujer: María Lucrecia. Y Bernardo comienza su canción:

Siento que me atan a ti
tu sonrisa y esos dientes
el perfil de tu nariz
y tus pechos inocentes.

Porfirio empuja a Bernardo y envía su mensaje de amor a María Lucrecia:

Tus adorados cabellos,
oscuros, desordenados
clara imagen de un anzuelo
que yo mordí fascinado.

Tras las dos intervenciones, Bernardo y Porfirio comienzan a interrumpirse: Bernardo vuelve a recitar su primera estrofa, Porfirio le empuja y canta su primer verso, Bernando le corta y entona su segundo verso, y así sucesivamente. La ‘nueva’ copla para la mujer suena ahora de este modo:

Siento que me atan a ti tus adorados cabellos,
tu sonrisa y esos dientes oscuros, desordenados
el perfil de tu nariz clara imagen de un anzuelo
y tus pechos inocentes que yo mordí fascinado.

¿Y qué tiene que ver esto con la banda de Möbius? Podría haberse conseguido la serenata final del mismo modo que en el poema de Möbius de Luc Étienne. En efecto, escribid en la primera cara de una banda de papel rectangular la canción de Bernardo; girad esta tira sobre su lado más largo, y escribid la romanza de Porfirio. Pegad la tira de papel para obtener una banda de Möbius. Ahora tenemos una serenata sobre una única cara: la banda de Möbius –que es no orientable– ha cambiado dos serenatas de amor por una canción para María Lucrecia bastante descortés…

Referencias

[1] Marta Macho Stadler, Un paseo matemático por la literatura, Sigma 32 (2008) 173-194.

[2] Marta Macho Stadler, Listing, Möbius y su famosa banda, Un Paseo por la Geometría 2008/2009 (2009) 59-78.

[2] Oulipo, La littérature potentielle, Gallimard, 1973

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Poesía retorcida sobre banda de Möbius se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Poesía métrica, ¿de metro?
  2. Teorías fantásticas sobre el origen de la grafía de las cifras
  3. El teorema del pollo picante (o sobre particiones convexas equitativas)
Categories: Zientzia

#Naukas15 Replay

Tue, 2016/10/25 - 17:00

replay

La música y el lenguaje están así de cerca: la repetición basta. Almudena M. Castro lo ilustra

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Replay se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
  2. #Naukas15 Endosimbiontes
  3. #Naukas15 Mosquito tigre
Categories: Zientzia

El lenguaje de la química

Tue, 2016/10/25 - 11:59

Lavoisier juanto a su ayudante (y esposa) Marie-Anne Pierrette PaulzeLavoisier juanto a su ayudante (y esposa) Marie-Anne Pierrette Paulze

Hasta mediados del siglo XVIII el nombre de los compuestos y procesos químicos era, siendo generosos, un galimatías ininteligible salvo para los muy iniciados. Esta falta de sistematización y exceso de localismos impedían la comunicación y, con ello, el avance de la química. Una de las mayores aportaciones de Lavoisier a la química fue precisamente organizar a sus colegas para crear una nomenclatura sistemática justo antes del estallido de la Revolución Francesa. La extensión de la Revolución por Europa llevó con ella la adopción de la nueva nomenclatura química, cuyos rudimentos hoy, con las modificaciones y ampliaciones introducidas a lo largo de los siglos XIX y XX, los alumnos de secundaria del XXI se esfuerzan por aprender. Esta es su historia.

La nomenclatura francesa de 1787 fue el trabajo de Louis-Bernard Guyton de Morveau (quien comenzó el proyecto en 1782) junto a Antoine-François de Fourcroy, Claude-Louis Berthollet y Antoine-Laurent de Lavoisier. Si idea básica hoy nos puede parecer muy simple, pero en su momento fue una revolución: identificar un compuesto de forma unívoca usando dos nombres que tuviesen que ver con su composición.

Podemos encontrar precedentes de la idea en un texto de Oswald Croll de 1609, Basilica chymica, y en los esfuerzos en los años setenta del XVIII de Torbern Bergman por sistematizar la mineralogía y la química usando el latín tal y como su compatriota Carl Linnaeus había hecho con la taxonomía de los seres vivos. Por otra parte, en 1746 el Real Colegio de Médicos de Francia publicó un diccionario que influiría mucho en el de química que publicó Pierre-Joseph Macquer en 1766. En este diccionario ya aparece el principio de que el nombre de una sustancia debería reflejar su composición más que su origen geográfico, extractivo o sus características observables.

Lavoisier fue el encargado de proveer una legitimación filosófica al proyecto. La necesidad de una nueva nomenclatura podía justificarse a partir de la filosofía del lenguaje de Étienne B. de Condillac empleando una argumento expresable de forma muy breve: un lenguaje construye una ciencia (“une langue bien faite est une science bien faite”).

La nueva nomenclatura eliminó el flogisto del vocabulario científico y, con ello, de la teoría química. Organizó 33 sustancias simples en 4 categorías y nombró a un compuesto en función de los dos elementos que formaban los “radicales” que se suponía que lo constituían. El sistema subordinaba por tanto los lenguajes seculares de la metalurgia, la farmacia y la elaboración de tejidos a una nueva lógica dualista. El blanco de plomo pasaba a ser “óxido de plomo” y el aire pestilente, “hidrógeno sulfuratado”.

Con todo, el uso de la lógica tuvo sus límites. Así, por ejemplo, el “principio acidificador”, el elemento cuya participación convertía la sustancia en un ácido, y que Lavoisier llamó por ello en su momento “oxígeno”, tendría que haber cambiado de nombre cuando Humphry Davy encontró que existía al menos un ácido, el muriático (HCl), que no contenía oxígeno. Pero el nombre se mantuvo.

Los químicos alemanes aceptaron la idea general, no así algunos nombres demasiado franceses. Para los alemanes el oxígeno siguió siendo, y lo es hoy día, Sauerstoff (la “sustancia” de los ácidos); el hidrógeno, Wasserstoff (la “sustancia” del agua); el carbono Kohlenstoff (la “sustancia” del carbón).

Con el tiempo se retomaron algunas formas de la nomenclatura tradicional. La más significativa era nombrar a los nuevos elementos que se descubrían en función de sus propiedades, su descubridores o su lugar de descubrimiento. Así, por ejemplo, el cloro recibe su nombre del verde (chloros en griego), el bromo de lo mal que huele (bromos, apesta), y los nacionalistas galio (de Francia), germanio (de Alemania), escandio (de Escandinavia) o polonio (de Polonia).

Con el establecimiento de la teoría estructural de la química orgánica en la década de los sesenta del siglo XIX, las cadenas de hidrocarburos sencillas se convirtieron en la base sobre la que nombrar las sustancias orgánicas, con las cadenas de las ramificaciones recibiendo los nombres metil, etil, propil, etc., y prefijos numéricos indicando la posición de los sustituyentes.

von Hoffmannvon Hoffmann

En 1865 August Wilhelm von Hofmann sugirió el uso de “eno” como sufijo de los hidrocarburos con un doble enlace, “dieno” si tenía dos, e “ino” si tenía un triple enlace. La presencia de grupos funcionales también se solucionaba con sufijos: “ol” para alcoholes, “al” para aldehidos, “ona” para cetonas”, e “ico” (precedido el nombre por la palabra ácido) para ácidos.

En 1892 se celebró en Ginebra la Conferencia Internacional sobre Nomenclatura Química, presidida por Charles Friedel. En esta conferencia se sistematizaron todas estas convenciones en forma de 62 resoluciones. Las resoluciones admitían el uso de términos no sistemáticos usados internacionalmente, como llamar ácido láctico al ácido alfahidroxipropanoico.

IUPACIUPAC

Tras la Primera Guerra Mundial, en 1919, se crea la Unión Internacional de Química Pura y Aplicada que se encarga desde entonces de supervisar la nomenclatura química. Los químicos alemanes tenían prohibida la pertenencia, el francés era su único idioma oficial y desde el inicio la influencia de los químicos estadounidenses fue cada vez mayor. Se reorganizó tras la Segunda Guerra Mundial, cuando el inglés pasó a ser su único idioma oficial. Un aspecto este que quizás habría llamado la atención de de Condillac.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo El lenguaje de la química se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. De la materia a la vida: ¿Química? ¡Química!, por Jean-Marie Lehn
  2. Pensando la química matemáticamente
  3. El Nobel de Química 2013: Bailando con proteínas
Categories: Zientzia

Munch y la cagada de pájaro

Mon, 2016/10/24 - 17:00

imagen-1

Dicen que dicen por Noruega que Edvard Munch gustaba de trabajar al aire libre. Esto de echarse a la calle a pintar era algo que se venía haciendo desde unas décadas antes, cuando los impresionistas le dieron un giro al modus operandi del artista y abandonaron los estudios para realizar las obras en el exterior, donde el contacto con la naturaleza fuese una fuente de inspiración. «No es el lenguaje de los pintores el que hay que escuchar, sino el de la naturaleza» que rezaba van Gogh. Este amor por la naturaleza encaja a la perfección con la idiosincrasia de los pueblos nórdicos y es lógico pensar que el más célebre de los pintores noruegos realizase su gran obra, El Grito, al aire libre. ¿Qué mejor manera de captar ese atardecer de color sangre, de dejar grabado para la posteridad el fiordo visto desde el rio Ekeberg1 que teniéndolo delante de los ojos? Además, hay una prueba irrefutable. Una pequeña mancha blanca junto al brazo derecho de la angustiosa (o el angustioso) protagonista de la obra. Me refiero a una cagada de pájaro (Figura 1). Imagínense qué situación: Munch dejando sus característicos trazos sobre una obra de arte que pasaría a la historia de la pintura con mayúsculas2, que decoraría miles de paredes, que un siglo después inspiraría uno de los emoticonos más populares de esa cosa llamada whatsapp, que se convertiría en un referente del expresionismo y… un ave decide arrojar un misil de heces sobre ella. Como si quisiese compartir la gloria y hacer eternos sus excrementos. Gajes del oficio, podríais pensar. O también podríais pensar, al igual que Tine Frøysaker, profesora en la universidad de Oslo, que se trata de una historieta sin fundamento.

Figura 1. El grito (91x73,5 cm) de Munch (1893)Figura 1. El grito (91×73,5 cm) de Munch (1893). Fuente.

La catedrática Frøysaker no se creía la leyenda urbana que se había fraguado en su país. Durante su carrera como conservadora de arte y patrimonio se había familiarizado con los excrementos de ave y se negaba a creer que lo que reposaba sobre la obra de Munch tuviese el origen que le asignaban. Y no lo decía solo por el aspecto, se apoyaba en el hecho de que las heces de pájaros corroen la obra, algo que no se aprecia en El Grito, donde la mancha blanca descansa tranquilamente sobre la pintura sin alterarla. Además, en algunas zonas la mancha está descascarillada, un comportamiento que no encaja con las heces de ave. Su último argumento iba más allá y atacaba incluso la creencia de que el cuadro hubiese sido pintado al aire libre. Munch empleó cartón como soporte, un material realmente frágil y débil ante las inclemencias climáticas. ¿Quién lo usaría para pintar en las calles de Oslo? Frøysaker creía por lo tanto que el trabajo había sido realizado en un taller y de ahí que rechazase que pudiese haber un excremento de ave en él. A menos, claro, que Munch fuese un aficionado a la ornitología y tuviese pajarillos revoloteando mientras trabajaba. Así, la profesora hipotetizó que la dichosa manchita era posiblemente una pintura blanca o tiza que el artista había puesto ahí por accidente. Obviamente estos argumentos no eran suficientes. Las leyendas urbanas sin fundamento suelen tener sólidas raíces y, ¿quién era esta señora para llevar la creencia a todo un pueblo? Se precisaban pruebas. La ciencia debía acudir al rescate.

Aprovechando que un equipo de expertos de Amberes visitaba el museo para realizar un estudio sobre los materiales empleados en tan conocida obra, se investigó el origen de la blanca mácula. Para ello se empleó la fluorescencia de rayos X, una técnica no destructiva que permite estudiar qué elementos químicos hay en una muestra. Sin entrar en más detalles os diré que mediante esta técnica se buscaron los elementos más habituales en los pigmentos blancos, como el plomo, el zinc o el calcio. ¿Resultado? Frøysaker 0 – Leyenda Urbana 1. No había rastro de esos elementos en la mancha blanca y, por lo tanto, no se trataba de pintura o tiza.

Figura 2. Imágenes de fluorescencia de rayos X en busca de compuestos conocidos de color blanco. De izquierda a derecha las imágenes correspondientes al estudio del plomo, zinc y calcio. Ninguno de estos elementos se detectó en el punto en el que se encuentra la mancha blanca.Figura 2. Imágenes de fluorescencia de rayos X en busca de compuestos conocidos de color blanco. De izquierda a derecha las imágenes correspondientes al estudio del plomo, zinc y calcio. Ninguno de estos elementos se detectó en el punto en el que se encuentra la mancha blanca.

Tras realizar esos experimentos el origen de la mancha resultaba todavía más intrigante. Para solucionar este interrogante se decidió ir más allá en el estudio científico y realizar un análisis de difracción de rayos X en el Sincrotrón Alemán de Electrones (DESY) empleando el acelerador de partículas PETRA de Hamburgo. La tecnología más avanzada en física de partículas puesta a prueba por un insignificante residuo blanco.

Difracción de rayos X para resolver el misterio

Ya os he hablado unas cuantas veces de las maravillas que los rayos X pueden descubrir en el mundo de arte. La aplicación de este tipo de energía no se limita solo a la obtención de radiografías o al estudio elemental que os acabo de mencionar. También permite estudiar la estructura cristalina de un sólido gracias a la difracción de rayos X. Esta técnica, de gran aplicación en mineralogía, ciencia de materiales o biología molecular, ha demostrado ser de gran utilidad para el estudio de obras de arte. Pero, antes de entrar en harina, permitidme que os exponga los antecedentes y os cuente un poco el funcionamiento de la técnica (aunque la física no sea de vuestro agrado, os pido un poco de paciencia que son tres parrafitos de nada).

Los pioneros en los estudios de difracción de rayos X fueron el alemán Max von Laue (Nobel de física en 1914) y los británicos William Henry Bragg y William Lawrence Bragg (padre e hijo que también ganaron el Nobel en 1915). El hecho de que estos tres señores lograran el más prestigioso premio que un científico puede soñar en años sucesivos nos da una idea de la importancia de sus descubrimientos. William Lawrence formuló la conocida ley de Bragg con tan sólo 22 años y recibiría el galardón tres años después. Si hay algún investigador o investigadora leyendo esto, que no se desanime y rompa a llorar. Consolémonos pensando que eran otros tiempos.

La difracción de rayos X es un fenómeno que se basa en la interacción entre las ondas de rayos X y los átomos que forman una red cristalina. Entre los diferentes tipos de interacciones que pueden existir, la que nos importa es la llamada dispersión elástica, que sucede cuando una onda de rayos X es desviada por un electrón sin perder su energía. Imaginad el cristal como una red de átomos colocados de forma regular (Figura 3). Pongamos que dos ondas interactúan con dos átomos adyacentes y son dispersadas. Estas dos ondas interferirán entre ellas de modo que cuando las dos estén desfasadas, es decir, sus máximos no coincidan, se anularán entre ellas. En cambio, cuando estén en fase (sus máximos coincidan), la señal se amplificará, permitiendo que un detector mida un aumento en la señal. Para que suceda este tipo de interferencia, llamada constructiva, se tienen que cumplir ciertas condiciones tal y como postula la simple y elegante ecuación de la ley de Bragg:

d·senθ = n·λ

En ella se incluyen la distancia entre los átomos (d), la longitud de onda de la radiación (λ) y el ángulo de incidencia de la onda (θ). Como se suele decir en estos casos, una imagen vale más que mil palabras, así que, acudid de nuevo a la Figura 3 para una mejor comprensión. Variando el ángulo de incidencia de los rayos X se pueden obtener lo que se conoce como difractogramas, que muestran la intensidad de la radiación en función del citado ángulo. Resulta que la aparición de interferencias constructivas sucede sólo a ciertos valores del ángulo. Esto provocará máximos en la señal que dependen de la estructura del material y, por lo tanto, cada material tendrá un patrón de difracción característico que se podrá comparar con una muestra de referencia o consultar en una base de datos. Antes de apabullaros con más física y, como esto tampoco pretende ser una clase magistral sobre cristalografía, os invito a leer esta serie de artículos en Experientia Docet si queréis aprender algo más sobre este fascinante tema.

 Figura 3. Visualización de la difracción de rayos X. A la izquierda se muestra una interferencia constructiva y a la derecha una destructiva.Figura 3. Visualización de la difracción de rayos X. A la izquierda se muestra una interferencia constructiva y a la derecha una destructiva. Fuente.

Viajemos ahora hasta Hamburgo, a donde los científicos belgas llevaron la muestra de nuestra desconocida mancha blanca. Empleando el poderoso acelerador PETRA obtuvieron el difractograma de la mancha blanca. Nada más verlo el doctorando que estaba realizando el análisis gritó ¡Eureka! (suelen ser quienes se dan cuenta de estas cosas…). Había visto ese patrón muchas veces, era un material relativamente habitual en pintura, un compuesto de origen animal que la humanidad conoce desde hace siglos, se trataba simplemente de un rastro de… cera. Al compararlo con una referencia de este material la coincidencia fue más que obvia, como podéis ver en la Figura 4. Pero todavía quedaba descartar la teoría del excremento de ave, puesto que quizás también tuviese un difractograma similar. Para ello el líder del proyecto se dio un paseo por la ciudad y, ni corto ni perezoso, recogió algunas muestras que los pajarillos nórdicos habían depositado amablemente en el suelo (esto es lo que se llama labor de campo). Está claro que esas muestras no serían idénticas a las del pájaro que supuestamente le había dejado el regalito a Munch. Al fin y al cabo no se sabe ni a qué especie pertenecía ni la dieta que seguía. De todos modos, el patrón de difracción no mostró absolutamente nada en común con el de la mancha blanca. Así pues, todo indica que la substancia que tanta controversia había desatado no era más que cera, posiblemente proveniente de alguna vela, lo que abre las puertas a la posibilidad de que El Grito fuese elaborado en estudio. Al final Frøysaker había acabado ganando el partido.

Figura 4. Difractogramas de la mancha desconocida encontrada en el cuadro (Scream –white substance), de la cera (Beeswax reference) y de un excremento de pájaro (Bird droppings).Figura 4. Difractogramas de la mancha desconocida encontrada en el cuadro (Scream –white substance), de la cera (Beeswax reference) y de un excremento de pájaro (Bird droppings).

Notas:

1 Munch, tras un paseo junto al río con dos amigos, dejó escrito en su diario: “y entonces sentí el enorme grito infinito de la Naturaleza”. En algún lado he leído que Schopenhauer había dicho unos cuantos años antes: “el potencial expresivo de la pintura estaba limitado por su incapacidad para representar el grito”. Obviamente todavía no había nacido Munch.

2 Munch realizó cuatro versiones de El Grito que podéis observar en la imagen que abre este artículo. En la esquina superior izquierda la versión de 1893 que se encuentra en el Museo Munch de Oslo. En la esquina superior derecha la versión más conocida, realizada también en 1893 y que se encuentra en la Galería Nacional de Oslo. En la esquina inferior izquierda la única obra en manos privadas, realizada en 1895 y vendida en 2012 por 120 millones de dólares (récord en aquel momento). En la esquina inferior derecha la última versión, pintada en 1910, que también se encuentra en el museo Munch.

Para saber más:

Solving a Cold Case: the Bird Droppings Mystery – Universidad de Amberes-

Página web del Deutsches Elektronen-Synchrotron

Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.

El artículo Munch y la cagada de pájaro se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Parásitos mafiosos: el pájaro que podría salir en ‘Los Soprano’
  2. ¿Por qué el pájaro carpintero no sufre lesiones cerebrales?
  3. Radiografiando el arte
Categories: Zientzia

¿Y si falla el GPS?

Mon, 2016/10/24 - 11:59

image_galleryImagen del nuevo prototipo con aguja magnética estándar que contiene un sistema de compensación basado en un plato regulable (parte inferior de la fotografía)

Históricamente las embarcaciones se han guiado por agujas magnéticas para fijar su rumbo de navegación. Sin embargo, estas agujas se ven influenciadas por todas las piezas metálicas que tienen a su alrededor, y no marcan exactamente el norte magnético, por lo que es necesario compensarlas periódicamente. El norte magnético no es el norte geográfico, se trata de una dirección generada por el campo magnético terrestre, que se desplaza continuamente. La compensación de las agujas magnéticas se ha realizado de la misma manera desde el siglo XIX. Esta operación consiste en realizar unos cálculos y determinar en qué posición se deben colocar unos imanes correctores para que la aguja magnética indique siempre el norte magnético. Conocido el norte magnético y corregida la declinación magnética (diferencia entre norte verdadero y magnético), se obtiene siempre el norte verdadero y, con él, la dirección exacta en la que se desplaza la embarcación.

Sin embargo, “aunque en la actualidad la aguja magnética está relegada al olvido, los sistemas de navegación de los que dependemos los marinos precisan de corriente eléctrica, sin la cual todos los posicionamientos que procedan de dichos sistemas se convierten en inútiles —explica el investigador Josu Arribalzaga—. Además, los sistemas GPS pueden llegar a dar una lectura errónea de la señal, por distorsiones ajenas o manipulaciones, intencionadas o no”. Habida cuenta, además, que la Organización Marítima Internacional obliga a todos los buques a portar una aguja magnética con su bitácora, donde se ubican los imanes compensadores, y otra aguja de repuesto para el caso de que los demás sistemas de navegación fallen, Arribalzaga ha propuesto un nuevo sistema de compensación basado en un plato que contiene imanes movibles, mediante el cual se consigue corregir los desvíos de la aguja de una manera más autónoma.

En vez de utilizar la potencia relativa de los imanes correctores como hasta ahora, el investigador ha utilizado el momento magnético de estos imanes para calcular su capacidad correctora y dependiendo de ese momento magnético determinar a qué distancias reales de la aguja se corrige una cuantía determinada de desvío. Asimismo, los investigadores han descubierto inesperadamente que el sistema de compensación utilizado hasta el momento no es correcto debido a una serie de rectificaciones que habría que hacer para conseguir una compensación correcta.

El compás magnético integral para la obtención de desvíos en tiempo real, patentado por la UPV/EHU, calcula automáticamente todos los desvíos de la aguja magnética a todos los rumbos en tiempo real, pero una vez calculado este desvío habría que hacer ajustes para que la aguja magnética llegase a marcar el norte magnético. En ese sentido, el investigador de la Escuela de Ingeniería de Bilbao de la UPV/EHU Arribalzaga ha modernizado el sistema de compensación de la aguja y ha conseguido un sistema totalmente autónomo y que no depende de la electricidad. “He propuesto este modelo con una idea de futuro —explica—, con una idea de llegar a automatizar el sistema de alguna manera”. En vez de insertar los imanes correctores de la aguja en determinados casilleros, como hasta ahora, los ha dispuesto en un plato de manera que éste se puede desplazar hacia arriba o hacia abajo (aproximándose o alejándose de la aguja), y los imanes correctores se pueden girar, efectuando un efecto mayor cuanto más cerca esté el imán de la aguja.

“El plato que he diseñado y probado se puede ajustar al milímetro en cualquier posición vertical y en todo momento —detalla Arribalzaga—. En principio, el prototipo producido se puede manipular manualmente, porque su motorización implicaría un coste adicional importante, y, además, acoplarlos implicaría un sistema mecánico que habría que adaptar a los imanes y al plato”. La investigación realizada es, por tanto, un primer paso para poder llegar a acoplar el compás magnético integral patentado por la UPV/EHU y el plato diseñado, que debería ajustarse a unos sistemas específicos de autoajuste. “Pero esa sería otra fase”, concluye.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo ¿Y si falla el GPS? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Las corrientes eléctricas actúan sobre los imanes
  2. Y la falla de San Andrés se salió de cuentas (otra vez)
  3. Campo magnético y cargas en movimiento
Categories: Zientzia

#Naukas15 Alzhéimer

Sun, 2016/10/23 - 11:59

puzzlealzheimer-620x349

Durante Naukas15, el editor de este Cuaderno y Javier Burgos dialogaron sobre el alzhéimer y la investiagción más actual sobre el mismo.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Alzhéimer se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 De publicaciones científicas
  2. #Naukas15 Aberron entevista a Josu Mezo y Antonio Calvo Roy
  3. #Naukas15 El año que descubrimos Plutón
Categories: Zientzia

#Naukas15 ¿Ictus? no, nosotros no tenemos plantas en casa

Sat, 2016/10/22 - 11:59

ictus-500x386

Nadie está libre de sufrir un ictus. ¿Cómo reconocer los síntomas de un accidente cerebrovascular y cómo reaccionar ante ellos? El neurólogo Azuquahe Pérez lo explica.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 ¿Ictus? no, nosotros no tenemos plantas en casa se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14: Knockouts entre nosotros
  2. #Naukas15 Somos virus
  3. #Naukas15 (jo)Dido problema
Categories: Zientzia

#Naukas15 Ingeniería genética para cambiar la Historia

Thu, 2016/10/20 - 17:00

spidergoat-final

La ingeniería genética no es aun una ingeniería. Lucas Sánchez nos cuenta qué se está haciendo para conseguirlo.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Ingeniería genética para cambiar la Historia se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 La cuarta dimensión de la genética
  2. #Naukas15 Fantasía en la divulgación: una estrella para Cervantes
  3. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
Categories: Zientzia

El miedo se esconde en el cerebro

Thu, 2016/10/20 - 11:59

halloween

Se acerca la noche del 31 de octubre y en muchos países se celebrará Halloween, en otros la noche de brujas y en general habrá quien aproveche esa fecha para ver alguna película con la luz apagada o realizar algún otro ritual o tradición relacionada con el miedo.

Esta fiesta moderna, anterior al día de Todos los Santos y muy asentada sobre todo en países anglosajones, tiene su origen en la conmemoración celta del Samhain en la que esa noche servía como celebración del final de la temporada de cosechas y era considerada como el año nuevo.

Los Celtas pensaban que los muertos volvían la noche del Samhain, el señor de la muerte, para comunicarse con ellos y pedirles alimentos. Y si no conseguían su objetivo, maldecían a los habitantes del poblado y les lanzaban conjuros. De ahí que se disfrazaran con pieles para tratar de ahuyentarlos.

Con el paso del tiempo, la fiesta ha ido incorporando otras costumbres y modificando las originales hasta convertirse en un evento relacionado con fantasmas, brujas, calabazas, arañas y bichos varios, así como todo lo asociado a la muerte, espíritus y el terror.

¿Pero por qué sentimos miedo? El miedo es una emoción y provoca diferentes reacciones en el organismo. Se produce cuando nos sentimos en peligro, nos ayuda a estar alerta. Se trata de un modo primario de supervivencia.

Como no podía ser de otro modo, es el cerebro (a través de la información que recibe por los sentidos) el que percibe que algo extraño está ocurriendo y pone en marcha los mecanismos necesarios que nos llevan a actuar.

Localización de la amígdalaLocalización de la amígdala

Aunque, como digo, el miedo es algo innato y por tanto que ha existido desde que el hombre es hombre; fue hace unos pocos meses cuando por primera vez, un equipo internacional de científicos demostró que la amígdala cerebral humana es capaz de extraer información de manera ultrarrápida sobre posibles amenazas que aparecen en la escena visual.

La amígdala, situada en la parte interna del cerebro, es una estructura clave en el procesamiento de las emociones que forma parte del sistema límbico. Éste es el encargado de regular las respuestas fisiológicas frente a determinados estímulos, es decir, en él se encuentran los instintos humanos.

El análisis de las amígdalas permitió a los científicos obtener la primera prueba directa en seres humanos de que esta área, por sí misma, puede ser capaz de extraer información muy rápido respecto a posibles amenazas o estímulos biológicamente relevantes en la escena visual, antes de recibir la información visual más fina procesada en el neocórtex.

En concreto, lo que descubrieron es que la información gruesa que la amígdala maneja sobre la escena visual –antes de que le llegue la información desde la corteza– la hace sensible a estímulos biológicamente relevantes, como podría ser la expresión de miedo de una persona que se encuentre cerca, que pone en alerta al individuo para buscar dónde está el peligro.

Estos nuevos datos sobre cómo viaja la información entre el circuito visual y el circuito emocional pueden ayudar al tratamiento de trastornos emocionales como la ansiedad, donde la amígdala desempeña un papel fundamental.

Recuerdos

No todos los miedos son innatos sino que se pueden desencadenar a partir de una experiencia desagradable con algún objeto, animal o situación, pero pueden surgir también sin que haya situaciones aversivas previas; de hecho, existen fobias prácticamente a cualquier cosa, desde a las cucarachas hasta a la relación con otras personas.

Y cuando se convierten en algo que impide hacer vida normal se trata de un problema que hay que tratar porque las fobias son un temor irracional y desproporcionado en relación al estímulo que las desencadena y la persona que las sufre no las puede evitar, a pesar de reconocer que pueden ser absurdas.

Los tratamientos que se emplean actualmente para acabar con este tipo de trastornos van desde técnicas de psicoterapia cognitiva conductual como la desensibilización sistemática, hasta tratamientos farmacológicos. De hecho, lo que recomiendan los expertos es ser tratado por psicólogos y psiquiatras al mismo tiempo.

Y dado que se sabe que hay miedos que se pueden aprender, se están desarrollando estudios para averiguar cómo eliminar esos recuerdos para hacer desaparecer los problemas asociados.

De hecho, un equipo de científicos ya ha logrado excitar con luz las neuronas de la amígdala cerebral que juegan un papel crucial en los recuerdos relacionados con el peligro. Según los cuales, la investigación abre la puerta a nuevas dianas terapéuticas en el tratamiento de las fobias, el trastorno obsesivo-compulsivo o el de estrés postraumático.

La técnica, probada en ratones, consistió en estimular mediante un láser un grupo de neuronas de la amígdala cerebral, llamadas Tac2, previamente convertidas en sensibles a la luz. Estas neuronas son necesarias para almacenar en la memoria los recuerdos relacionados con el miedo. Los ratones que recibieron este tratamiento tenían aumentada la memoria a largo plazo, por lo que recordaban más el peligro.

Claro que esto no ha hecho más que empezar por lo que, en futuros trabajos, continuarán profundizando en la comprensión del mecanismo cerebral por el que se aprende a tener miedo.

Un miedo distinto

Por otro lado, cabe señalar que no todos los miedos provocan las mismas reacciones. Curiosamente, uno de los elementos más característicos de Halloween, la sangre, provoca en quienes la temen unos patrones de respuesta que difieren de los que aparecen en otros casos, incluyendo una tendencia al desmayo en algunos pacientes cuando ven heridas o sangre, algo que no ocurre en otras fobias y de lo que se desconoce su origen.

Las personas afectadas de una fobia específica (por ejemplo, las fobias a pequeños animales, como arañas o serpientes) suelen presentar una fuerte respuesta defensiva cuando se exponen a su objeto fóbico (como una fotografía del estímulo que temen). Esta respuesta consiste en un intenso temor o miedo que se acompaña de una conducta de evitación o huida.

Fisiológicamente, dicha respuesta se caracteriza por un aumento de la reactividad simpática, consistente en aumentos de la frecuencia cardiaca, presión arterial y frecuencia respiratoria, vasoconstricción de los vasos periféricos y aumento de la respuesta electrodérmica, así como un incremento de los reflejos defensivos (como la potenciación del parpadeo reflejo de sobresalto).

En cambio, el temor a la sangre constituye una excepción a este tipo de patrón de respuesta. Mientras que subjetivamente los pacientes con fobia a la sangre no se diferencian de otras fobias específicas (sienten miedo cuando ven sangre o heridas, por ejemplo), es en las respuestas fisiológicas donde se producen las mayores diferencias con otras fobias.

Los primeros estudios al respecto ya mostraron que en los fóbicos a la sangre la visión de sangre y heridas no producía una reacción defensiva sostenida en el tiempo (como aceleración cardiaca), sino más bien un patrón cardiaco bifásico compuesto por un aumento inicial de la frecuencia cardiaca y la presión arterial seguido inmediatamente de desaceleración cardiaca y disminución de la presión arterial (hipotensión). En aproximadamente 3 cuartas partes de los pacientes con fobia a la sangre, este descenso brusco puede provocar el desmayo (síncope vasovagal).

Sin embargo, no todos los estudios encuentran este patrón cardiovascular en la fobia a la sangre. Los investigadores han propuesto varias hipótesis acerca del origen de estas respuestas atípicas en la fobia a la sangre, que incluyen una sobrecompensación parasimpática de la aceleración cardiaca inicial, un desequilibrio en la activación simpática y parasimpática, la prevalencia de una respuesta de asco sobre una respuesta de miedo, o una alteración de la regulación emocional ante el estímulo temido.

Y es que el cerebro de alguien que tiene miedo a la sangre no actúa igual que el de otros miedosos. Los estudios mediante neuroimagen funcional muestran que durante la visión de imágenes de sangre, los fóbicos a ésta no presentan un aumento de actividad en la amígdala cerebral, al contrario de lo que sucede en otras fobias específicas.

Además, las imágenes de sangre provocan en los pacientes con fobia a la sangre un aumento de actividad en la región prefrontal (una región que se ha relacionado, entre otras cosas, con la regulación de la emoción), mientras que este aumento de actividad en esta región no se produce en otros casos.

A día de hoy, científicos de todo el mundo trabajan para determinar cuáles son los mecanismos cerebrales y psicofisiológicos que subyacen a esta fobia y por qué son diferentes de los que se observan en otras.

Referencias:

Constantino Méndez-Bértolo, Stephan Moratti, Rafael Toledano, Fernando López-Sosa, Roberto Martínez-Álvarez, Yee H Mah, Patrik Vuilleumier, Antonio Gil-Nagel y Bryan A Strange. “A fast pathway for fear in human amygdala”, Nature Neuroscience,13 de junio de 2016. DOI: 10.1038/nn.4324

Andero R, Daniel S, Guo JD, Bruner RC, Seth S, Marvar PJ, Rainnie D, Ressler KJ. “Amygdala-Dependent Molecular Mechanisms of the Tac2 Pathway in Fear Learning”. Neuropsychopharmacology. 2016 May 26. doi: 10.1038/npp.2016.77.

Sobre la autora: Maria José Moreno (@mariajo_moreno) es periodista

El artículo El miedo se esconde en el cerebro se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El paisaje del miedo
  2. Miedo
  3. Hablemos del cerebro
Categories: Zientzia

El fondo cósmico de microondas y el espejo de feria

Wed, 2016/10/19 - 17:00

espejo-de-feriaLook At Us – We’re Beautiful 2 – Judithcarlin / Wikimedia Commons

Fíjate en el retrato superior, ¿a cuantas personas crees que corresponde en la realidad?¿Dos, tres, quizás cuatro? Si sabemos que el cuadro corresponde a una imagen distorsinada por un espejo de feria, podemos crear un algoritmo que, deshaciendo las deformaciones que provoca el espejo, algunas deducibles de la propia imagen, nos lleve a comprender que estamos en realidad ante una pareja.

Podemos pensar que el fondo cósmico de microondas (FCM) es un cuadro del universo observable. El estudio de los patrones que aparecen en este cuadro nos desvela la historia del universo. Pero las imágenes que vemos están distorsionadas por los efectos gravitatorios que los objetos masivos, como las galaxias, por ejemplo, tienen en el espaciotiempo, lo que se conoce como efecto de lente gravitacional. Un objeto masivo deforma el espacio tiempo convirtiéndolo en una lente que afecta a la trayectoria de los rayos de luz; de hecho, una lente gravitacional potente permite ver los objetos que están detrás de ella según nuestra línea de visión.

Fondo cósmico de microondas según los datos del satélite Planck publicados en 2015Fondo cósmico de microondas según los datos del satélite Planck publicados en 2015

Ahora un nuevo trabajo muestra que, como con el espejo de feria, se pueden eliminar estas distorsiones en el FCM usando la radiación de fondo en frecuencias de infrarrojo. Esta primera demostración de lo que ha dado en llamarse “delensing” (algo así como “deslentización”) podría ser muy útil para búsquedas futuras de señales de ondas gravitacionales en el FCM.

Durante los últimas décadas los cosmólogos han usado los mapas del FCM para determinar la geometría y la distribución de densidad del universo. Estudios posteriores, centrados concretamente en los patrones de polarización en el FCM, podrían suministrar información de las ondas gravitacionales que se cree que se originaron en la rápida expansión del universo tras el Big Bang. Sin embargo, el efecto de las lentes gravitacionales oscurece las señales de polarización.

Anisotropías en el fondo cósmico de infrarrojo.Anisotropías en el fondo cósmico de infrarrojo.

Los propuestas que existían hasta ahora para esta deslentización recurrían a características del propio FCM para identificar los lugares donde existía un efecto de lente gravitacional. El equipo encabezado por Patricia Larsen, del Instituto de Astronomía y del Instituto Kavli de Cosmología (Reino Unido), ha desarrollado y comprobado un método de deslentización que se basa en algo externo al FCM, el llamado fondo cósmico infrarrojo (FCI), que es una luz difusa que proviene fundamentalmente de galaxias ricas en polvo donde se están formando estrellas. Los puntos brillantes en el FCI se corresponden a regiones de alta concentración de galaxias que deberían producir un efecto de lente gravitacional muy importante.

Los investigadores han usado un mapa del FCI suministrado por el satélite Planck para crear una plantilla de deslentización que después han aplicado al mejor mapa completo del FCM que existe (también de Planck). El mapa del FCM librado de los efectos de lente gravitacional muestra picos más definidos en el espectro de fluctuaciones de temperaturas, y esta mayor definición se corresponde con los modelos teóricos de lentes gravitacionales.

Referencia:

P. Larsen et al (2016) Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background Phys Rev. Lett. doi: 10.1103/PhysRevLett.117.151102

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo El fondo cósmico de microondas y el espejo de feria se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cosmología de ondas gravitacionales en 29 órdenes de magnitud
  2. Comprimiendo la luz para detectar mejor ondas gravitacionales
  3. Microondas e infrarrojo
Categories: Zientzia

Metros o millas… Houston, tenemos un problema!

Wed, 2016/10/19 - 11:59

El 23 de septiembre de 1999, tras más de nueve meses de viaje entre la Tierra y Marte, la sonda espacial Mars Climate Orbiter se desintegró al entrar en contacto con la atmósfera del planeta rojo. La Mars Climate Orbiter, que tenía un coste de 125 millones de dólares y formaba parte de un programa espacial con un presupuesto de más de 300 millones de dólares, tenía como objetivo estudiar el clima y las condiciones atmosféricas del planeta Marte, así como servir de apoyo para la transmisión de datos de la Mars Polar Lander, ambas parte de la misión espacial Mars Surveyor’98.

Imagen artística, de la página de la NASA, de la Mars Climate OrbiterImagen artística, de la página de la NASA, de la Mars Climate Orbiter

Como puede leerse en el informe de la investigación que se realizó sobre el accidente de la Mars Climate Orbiter en noviembre de 1999 –Mars Climate Orbiter Mishap Investigation Board, Phase I Report– el accidente tuvo lugar por el uso de datos en el sistema imperial de medidas cuando se tenían que haber utilizado los datos en el sistema métrico decimal.

Desde la NASA se estaban realizando los cálculos para el impulso que debían de producir los motores, cada vez que se encendían para corregir la trayectoria del viaje a Marte de la Mars Climate Orbiter, en libras de fuerza multiplicado por segundos (lbr.sg), es decir, en el sistema inglés de medidas, mientras que el software de los ordenadores de la sonda operaban en Newtons segundo (Nw.sg), es decir, en el Sistema Internacional de Medidas. Así, cada vez que se encendían los motores para ir corrigiendo la trayectoria se iba acumulando un error en la misma, debido a esa discrepancia en los datos.

Al llegar a Marte, la sonda debía estar a una altura de 226 km sobre la superficie del planeta rojo, a partir de ese momento se realizaría una maniobra de aproximación hasta quedar estacionada en una órbita alrededor del planeta, sin embargo, la sonda pasó a tan solo 57 kilómetros de altura, destruyéndose por el contacto con la atmósfera.

 Commons wikimediaDiagrama, basado en el que aparece en el informe de la investigación, comparando la trayectoria que debía haber llevado la Mars Climate Orbiter y la que realmente describió. Fuente: Commons wikimedia

Pero veamos de qué magnitud fue el fallo que se cometió al mezclar ambos sistemas de medidas. Imaginemos que el cálculo realizado por la NASA en Tierra ofrecía la información de que el impulso que debía darse al motor de la sonda espacial era de 10.000.000 libras (de fuerza) segundo, pero el ordenador de la sonda interpretaba ante esta información, puesto que su software trabaja en el sistema internacional de medidas, que eran 10.000.000 Newtons segundo. Teniendo en cuenta que 1 libra (de fuerza) son 4,5 Newtons, se tendría que

10.000.000 Newtons·segundo = 10.000.000 x (1/4,5) = 2.222.222 libras·segundo,

Es decir, se habría producido un déficit en el impulso de más de 7 millones de libras (de fuerza) segundo. Solo un 22% del impulso que se tenía que haber generado.

Este es solo uno de los ejemplos de los errores que se han producido en las últimas décadas por el uso simultáneo de dos sistemas de medidas distintos, el sistema internacional y el sistema imperial de medidas.

 undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France" (1792), del escritor inglés Arthur YoungPrimeras páginas del libro “Travels during the years 1787, 1788, & 1789: undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France” (1792), del escritor inglés Arthur Young

Antes de la revolución francesa, 1789, la situación de los sistemas de medidas era caótica. Cada país, pero lo que es peor aún, cada región dentro de un mismo país, tenía sus propios sistemas de medidas, pero incluso en ocasiones compartían el mismo nombre, lo que convertía en un problema una simple compra y venta de alimentos, utensilios o ganado en una feria comarcal, y en general, dificultaba las transacciones comerciales, la investigación científica y todo tipo de comunicación.

El escritor inglés Arthur Young (1741-1820) en la versión extendida, de cuatro volúmenes, de sus viajes por Francia, Travels during the years 1787, 1788, & 1789: undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France (W. Richardson,1792), comenta “en Francia, la infinita perplejidad que causa la profusión de medidas excede toda comprensión. No solo difieren en cada provincia, sino en cada distrito, y casi en cualquier población”.

En el libro La medida de todas las cosas (2003), su autor Ken Alder escribe que “algunos contemporáneos calculaban que, bajo la cobertura de unos ochocientos nombres, el Antiguo Régimen de Francia utilizaba la asombrosa cifra de unas doscientas cincuenta mil unidades diferentes de pesos y medidas”.

O en el libro Outlines of the evolution of weights and measures and the metric system (Macmillan, 1906), de William Hallock y Herbert T. Wade, los autores indican que “A finales del siglo pasado (dieciocho), en diferentes partes del mundo, la palabra “libra” se aplicaba a 391 unidades diferentes de peso y la palabra “pie” a 282 unidades diferentes de longitud”.

Como es lógico, en la antigüedad cada región había desarrollado sus propios sistemas de medida, en muchas ocasiones basados en el cuerpo humano (por lo que la medida dependía del tamaño medio de los habitantes de esa región) o en cuestiones culturales específicas de la región donde se establecían, pero el mundo, su cultura, su ciencia y su economía, cada vez se hizo más global y las diferentes medidas empezaron a chocar unas con otras.

Como hemos visto, la situación antes de la revolución francesa de las unidades de medida en Europa, y en el mundo, era un auténtico desastre. Como decía el matemático y filósofo Nicolás de Condorcet (1743-1794) en sus Observaciones sobre el Libro XXIX delEspíritu de las Leyes” de Montesquieu (1793), “la uniformidad de los pesos y medidas solo pueden desagradar a los empleados de los tribunales de justicia que teman ver disminuido el número de pleitos, y a aquellos comerciantes a los que la disminución de beneficios va a afectar, en cuanto a que contribuye a convertir las transacciones comerciales fáciles y simples”.

//gallica.bnf.fr/ark:/12148/btv1b8412951c/Grabado en madera, de 1800, mostrando las nuevas unidades decimales que fueron las legales en Francia desde el 4 de noviembre de 1800. Grabador, L. F. Kabrousse; editor, J. P. Delion. Fuente: Gallica

Aunque ya habían existido intentos anteriores, tras la Revolución Francesa se ponen las bases para crear un sistema de medidas universal. En palabras de Condorcet “para todos los pueblos, para siempre”. Para tal fin, en 1790, se crea la Comisión de Pesos y Medidas, constituida por los científicos Jean-Charles Borda (1733-1799), Joseph-Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827), Gaspard Monge (1746-1818) y Nicolás Condorcet. Para alcanzar la universalidad, el sistema de medidas debía ser decimal (aunque inicialmente también se valoró la posibilidad del sistema duodecimal), sus valores derivados de la naturaleza (por ejemplo, el metro tomaría el valor de “una diezmillonésima parte de la circunferencia de la Tierra”), las unidades de medida derivadas deberían basarse en potencias de las unidades básicas y se debían utilizar prefijos para designar los múltiplos y submúltiplos de las unidades.

La historia del sistema métrico decimal es apasiónate y empieza con la aventura de la medición del meridiano que pasa por París para definir determinar el valor del metro, aunque este no es el objetivo de esta entrada. Sobre este tema existen buenos libros, como El metro del mundo (Anagrama, 2003) de Denis Guedj o el mencionado La medida de todas las cosas (2003), de Ken Alder.

Tras la instauración en Francia, no sin problemas, del Sistema Métrico Decimal, muchos otros países del entorno, así como de Latinoamérica, empezaron a adoptar a lo largo del siglo XIX este sistema de medidas universal, Países Bajos, España, Alemania, Italia, Portugal, Noruega, Suecia, el Imperio Austro-Húngaro, Finlandia, Perú, México, Venezuela, entre muchos otros.

Mapa del mundo mostrando el momento de la adopción del sistema métrico decimal, o su derivado el Sistema Internacional de Medidas, por parte de los diferentes paísesMapa del mundo mostrando el momento de la adopción del sistema métrico decimal, o su derivado el Sistema Internacional de Medidas, por parte de los diferentes países

En 1875, diecisiete países firmaron la Convención del metro, “anhelando la uniformidad y la precisión internacionales en los estándares de pesos y medidas”, y se crearon las organizaciones internacionales para velar por la uniformidad de los pesos y medidas a lo largo de todo el mundo, la Oficina Internacional de Pesas y Medidas, el Comité Internacional de Pesas y Medidas y la Conferencia General de Pesos y Medidas. Poco a poco los diferentes países del mundo se fueron sumando a estas organizaciones y adoptando el sistema métrico decimal.

En la Conferencia General de Pesos y Medidas de 1960 se estableció finalmente el Sistema Internacional de Unidades. Las unidades básicas del Sistema Internacional (SI) son siete, el metro (longitud), el kilogramo (masa), el segundo (tiempo), el amperio (corriente eléctrica), el kelvin (temperatura termodinámica), el mol (cantidad de sustancia) y la candela (intensidad lumínica). Y de estas unidades básicas se derivan las otras unidades, como por ejemplo, el hercio (frecuencia), el Newton (fuerza), el pascal (presión), el julio (trabajo), etc.

Como se muestra en el mapa anterior, en la actualidad solamente hay tres países que no se han sumado al Sistema Internacional de Unidades, que son Estados Unidos, Liberia y Birmania (Myanmar), aunque estos dos últimos están en el proceso de adopción del Sistema Internacional. Por otra parte, países que han adoptado recientemente el SI, como Gran Bretaña o Canadá, siguen utilizando su viejo sistema de medidas en muchos ámbitos de su vida, el sistema imperial (o inglés) de medidas, que es el que continúa utilizando Estados Unidos en la actualidad.

Entre las décadas de los años 1970 y 1980 hubo un intento fallido de adopción del sistema internacional de medidas en EE.UU, motivo por el cual existen algunas señales de tráfico con medidas en el sistema métrico decimal, como las señales de distancia de la interestatal 19 entre Tucson y NogalesEntre las décadas de los años 1970 y 1980 hubo un intento fallido de adopción del sistema internacional de medidas en EE.UU, motivo por el cual existen algunas señales de tráfico con medidas en el sistema métrico decimal, como las señales de distancia de la interestatal 19 entre Tucson y Nogales

Entre las unidades del Sistema Imperial de Medidas están las yardas (en longitud), los acres (en área), los galones (en volumen), las libras (en masa), entre otras.

A continuación, veremos otros ejemplos de errores y catástrofes producidos por la confusión en el uso de estos dos sistemas de medidas, el Sistema Internacional y el Sistema Imperial. Estos ejemplos aparecen, entre otros sitios, referenciados en la página web de una asociación que existe en EE.UU. para la promoción del Sistema Internacional de Medidas fundada en 1916, la U. S. Metric Association.

Antigua pesa para báscula de 1 kilogramoAntigua pesa para báscula de 1 kilogramo

El primer ejemplo que traemos a esta entrada, aparte del inicial sobre la Mars Climate Orbiter, es un ejemplo sencillo de confusión entre kilogramos y libras de los que seguramente se habrán producido muchos, pero que no suelen ser recogidos en los medios de comunicación, a diferencia de este.

En 2001, se publicó en el San Francisco Business Times la noticia “Fabricantes, los exportadores piensan en métrico”. En ella se contaba la historia de un empresario norteamericano, Carlos Zambello, que había vendido un cargamento de arroz salvaje a un cliente japonés y como en la transacción había habido una cierta confusión, causándoles cierto bochorno, por no hablar de las pérdidas económicas.

Trigo salvajeTrigo salvaje

En concreto, a la compradora japonesa se le ofreció el arroz salvaje a un precio de 39 centavos… el problema es que ella estaba entendiendo que la oferta era de 39 centavos el kilogramo, mientras que el vendedor se estaba refiriendo a 39 centavos la libra. La cuestión es que como 1 kilogramo equivale a 2,2 libras, el coste del trigo salvaje era realmente de 85,8 centavos el kilogramo, mucho más de lo que pensaba la compradora, 39 centavos el kilogramo.

Una vez que se dieron cuenta del malentendido, el gerente general de la compañía The Wild Rice Exchange, Carlos Zambello, acabó aceptando que el precio del arroz salvaje vendido fuera su precio de coste, puesto que en el otro lado tenían a un buen cliente desde hacía muchos años, sin obtener ningún beneficio en la transacción, mientras que el comprador japonés, aunque pagó menos de lo que era su precio real, acabó aceptando pagar el precio de coste, más de lo que había pensado que era su precio de compra.

Otra historia con un malentendido entre kilogramos y libras se recogió en el periódico Los Angeles Times, en febrero de 2001. Bajo el titular “Mismeasure for measure” (que podríamos traducir como “Incorrecta medida para medir”) se contaba como el Zoológico de Los Ángeles había prestado su vieja tortuga galápago Clarence, de 75 años de edad, al Exotic Animal Training and Management Program de la Universidad de Moorpark (Moorpark College). Pero, durante la primera noche de la vieja tortuga en su nuevo hogar, esta se había escapado echando abajo uno de los postes de la cerca en la que se encontraba.

 Moorpark CollegeClarence, la tortuga galápago de 75 años, que se escapó de su cerca de la Universidad de Moorpark, California. Fuente: Moorpark College

El Zoológico de Los Ángeles había avisado que la tortuga galápago era grande y que se necesitaba una cerca para un animal de un peso de 250, que es lo que construyó la Universidad de Moorpark. El problema estaba en que desde la institución universitaria habían interpretado que se estaba hablando de 250 libras, cuando realmente hablaban de 250 kilogramos, o lo que es lo mismo, unas 550 libras.

Nuestro siguiente ejemplo, nos lleva a uno de los últimos países en adoptar el Sistema Internacional de Medidas, Canadá, cuyo proceso de metrización empezó en la década de los años 1970, aunque no ha sido desarrollado completamente.

En julio de 1983 el avión Boeing 767-200 del vuelo 143 de Air Canadian se quedó sin combustible a mitad de su vuelo entre Montreal y Edmonton, debido a que la tripulación calculó mal el fuel que necesitaban para el viaje (junto con una serie de fallos en el sistema indicador de la cantidad de combustible del avión). Por suerte, se pudo realizar un aterrizaje de emergencia en una antigua base militar.

Posición en la que quedó el avión del vuelo 143 de Air Canada, en julio de 1983, tras realizar un aterrizaje de emergencia por haberse quedado sin fuel a mitad de su vuelo entre Montreal y EdmontonPosición en la que quedó el avión del vuelo 143 de Air Canada, en julio de 1983, tras realizar un aterrizaje de emergencia por haberse quedado sin fuel a mitad de su vuelo entre Montreal y Edmonton

El error en el cálculo de la carga de combustible necesaria se produjo debido a que el personal no tenía una formación adecuada en el sistema métrico decimal que se acababa de adoptar en Canadá, sustituyendo al sistema imperial.

La tripulación sabía que se necesitaban 22.300 kilogramos de fuel para realizar el viaje entre Montreal y Edmonton. Pero el avión ya tenía 7.682 litros en sus tanques, por lo que había que calcular cuánto fuel extra era necesario cargar en los tanques para realizar el viaje.

Teniendo en cuenta que el peso de 1 litro de fuel es de 0,803 kilogramos, entonces el peso del fuel que tenía ya el avión era de 7.682 litros x 0,803 kg/litro = 6.169 kg.

Por lo tanto, el avión necesitaba que se le añadieran a sus tanques 22.300 – 6.169 = 16.131 kg.

Luego, ¿cuántos litros de fuel debían de cargarse en el avión? Teniendo en cuenta de nuevo, que cada litro pesa 0,803 kilogramos, la cantidad de fuel necesario era de 16.131 kg x (1 litro /0,803 kg) = 20.088 litros.

La tripulación, sin embargo, tuvo en cuenta el factor de conversión de 1,77 (en lugar de 0,803), que era el que habían estado utilizando hasta entonces ya que 1 litro de fuel pesa 1,77 libras (tengamos en cuenta que 1 kilogramo son 2,205 libras, luego 0,803 kilogramos son 1,77 libras).

Por lo tanto, esta fue la cuenta que realizaron…

1.- el peso del fuel que aún quedaba en los tanques del avión era…

7.682 x 1,77 = 13.587 “kilogramos” (en realidad eran libras)

2.- el peso del fuel que había que añadir era…

22.3000 – 13.587 = 8.713 “kilogramos”

3.- luego, ¿cuántos litros calcularon que había que cargar en los tanques?

8.713 kg x (1 / 1,77) = 4.923 litros (el factor a utilizar debía de ser litros/kilogramo, aunque el dato que utilizaban de nuevo era litros/libra, 1/1,77)

En conclusión, cargaron solamente 4.923 litros de los 20.088 litros que realmente eran los necesarios.

 Avión McDonnell Douglas MC-11F que realizaba el vuelo 6316 de Korean Air Cargo de Shanghai a Seoul en la década de los años 1990Avión McDonnell Douglas MC-11F que realizaba el vuelo 6316 de Korean Air Cargo de Shanghai a Seoul en la década de los años 1990

En abril de 1999 el avión McDonnell Douglas MC-11F en su vuelo 6316 de Korean Air Cargo de Shanghai a Seoul se estrelló, muriendo las tres personas de la tripulación y otras 5 personas en tierra, así mismo, hubo 37 heridos en tierra.

Después del despegue el avión debía subir a una altura de 1.500 metros (que son 4.900 pies, puesto que 1 metro equivale a 3,28 pies). Cuando el avión subió a 4.500 pies (casi a 1.400 metros), el primer oficial informó al capitán de que la altura del avión debía ser de 1.500 pies (confundiéndose con los 1.500 metros que realmente debía de tener), pensando por lo tanto que el avión estaba 3.000 pies más arriba de lo que debía. Como consecuencia el capitán puso bruscamente el avión en descenso para intentar poner al avión a una altura de 1.500 pies (que son unos 460 metros), como consecuencia de esta maniobra el avión se volvió incontrolable y terminaría estrellándose en una zona industrial a 10 kilómetros del aeropuerto.

Los deportistas norteamericanos suelen sufrir su aislamiento del Sistema Internacional de Medidas en las competiciones deportivas, en particular, en los Juegos Olímpicos. Un ejemplo de este problema fue el no reconocimiento mundial de un record en atletismo. La atleta Carol Lewis realizó un salto de longitud que parecía ser un record mundial en los campeonatos NCAA Men’s and Women’s Indoor Track Championship celebrados en Pontiac, Michigan, en 1983. Sin embargo, su marca no fue reconocida como un record oficial, puesto que para que se considere un record oficial las medidas deben tomarse en el sistema internacional, es decir, en el sistema métrico decimal.

La atleta Carol Lewis en 1991La atleta Carol Lewis en 1991

En Diciembre de 2003, el tren de la montaña rusa Space Mountain que se encuentra en el parque temático Tokyo Disneyland descarriló cuando llegaba a la estación. El descarrilamiento se produjo debido a la ruptura de un eje del tren. Por suerte, no hubo que lamentar ninguna desgracia y todo quedó en un susto.

Como resultado de la correspondiente investigación para aclarar los motivos del accidente, se descubrió que el eje se había construido con un diámetro más pequeño que las especificaciones de los planos del diseño. En el año 1995 se habían cambiado las medidas de los planes maestros para la construcción de la Space Mountain, del sistema imperial al sistema internacional de medidas. Cuando se fue a construir la Space Mountain de Tokyo en 2002, se tomaron los valores de las medidas de los planos del diseño anteriores a 1995.

 Tokyo Disney Resort [www.tokyodisneyresort.jpImágenes de la Space Mountain de Tokyo Disneyland. Fuente: Tokyo Disney Resort

Según el informe, mientras que en los planos del diseño se especifica que el espacio entre el eje y su cojinete debía de ser de 0,2 mm, realmente era de alrededor de 1 mm, lo cual creó una mayor vibración que hizo que se rompiera el eje. Recordemos que 1 pulgada son 2,54 centímetros, o recíprocamente, 1 cm equivale a 0,3937 pulgadas.

Y para terminar, un ejemplo relacionado con el volumen. En 2004 a un niño se le estuvo dando 5 veces la dosis prescrita por el médico de Zantac Syrup, un medicamento para reducir la producción del ácido estomacal, hasta que un mes más tarde el médico descubrió la confusión. Afortunadamente, el error no tuvo ninguna consecuencia grave para el bebé.

El médico había prescrito una dosis de 0,75 mililitros, dos veces al día, pero el farmacéutico escribió en el bote del medicamento “administrar 3/4 de cucharadita (teaspoon) dos veces al día”. Teniendo en cuenta que esta medida de Estados Unidos, 1 “cucharadita” (u.s. teaspoon), tiene la equivalencia en el sistema métrico decimal de 4,9 mililitros, se le estuvieron suministrando 3,675 mililitros, dos veces al día, es decir, casi 5 veces la dosis prescrita.

imagen-14Humor gráfico aparecido en la revista “Industry Week” en 1981

Bibliografía

1.- U.S. Metric Association.

2.- Mars Climate Orbiter Mishap Investigation Board, Phase I Report, November 10, 1999

3.- Some Famous Unit Conversion Errors, Space Math, NASA

4.- Arthur Young, Travels during the years 1787, 1788, & 1789: undertaken more particularly with a view of ascertaining the cultivation, wealth, resources, and national prosperity of the Kingdom of France, W. Richardson,1792.

5.- Ken Alder, La medida de todas las cosas, Taurus/Santillana, 2003.

6.- William Hallock y Herbert T. Wade, Outlines of the evolution of weights and measures and the metric system, Macmillan, 1906.

7.- Nicolás de Condorcet, Observaciones sobre el Libro XXIX delEspíritu de las Leyes” de Montesquieu, 1793.

8.- Denis Guedj, El metro del mundo, Anagrama, 2003.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Metros o millas… Houston, tenemos un problema! se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El neerlandés que subirá unos pocos metros pero bajará una montaña
  2. El problema de los McNuggets de pollo
  3. El problema de las estudiantes de Kirkman
Categories: Zientzia

#Naukas15 Vacunaos, por Jenner

Tue, 2016/10/18 - 17:00

ciencia-bulebar-36-638

Clara Grima no habla de vacunas, pero sí de algo muy relacionado: este mundo es muy pequeño, está muy conectado y eso lleva a paradojas.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas15 Vacunaos, por Jenner se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas15 Endosimbiontes
  2. #Naukas15 Mosquito tigre
  3. #Naukas15 Luis Quevedo entrevista a Eudald Carbonell y Goyo Jiménez
Categories: Zientzia

Pages