Andrew Wiles: de conjetura a teorema
Quizás la mejor manera de describir mi experiencia haciendo matemáticas sea comparándola con entrar en una mansión oscura. Entras en la primera habitación, y está oscura, completamente a oscuras. Vas dando tumbos, tropezando con los muebles. Poco a poco aprendes donde está cada mueble, y finalmente, después de más o menos seis meses, encuentras el interruptor de la luz y lo conectas. De repente todo se ilumina, y puedes ver exactamente dónde estás. Entonces entras en la siguiente habitación oscura…
Andrew Wilesi

Andrew Wiles en 1995. Fuente: Wikimedia Commons.
El matemático británico Andrew Wiles nació el 11 de abril de 1953. En su 65 cumpleaños quería recordarle a través de dos propuestas teatrales, una didáctica y otra musical.
Pero empecemos por el principio. En 1993, Andrew Wiles deslumbró a la comunidad matemática al revelar que había demostrado del Último Teorema de Fermat, el famoso problema matemático enunciado por Pierre de Fermat en 1637. Recordemos que Fermat escribió en el margen de su copia de la Arithmetica de Diofanto, en el problema que trata sobre la división de un cuadrado como suma de dos cuadrados, lo siguiente:
Es imposible dividir un cubo en suma de dos cubos, o un bicuadrado en suma de dos bicuadrados, o en general, cualquier potencia superior a dos en dos potencias del mismo grado; he descubierto una demostración maravillosa de esta afirmación. Pero este margen es demasiado angosto para contenerla.
Durante siglos, nadie consiguió demostrar este enunciado, hasta que en 1993, durante unos cursos de verano en la Universidad de Cambridge, Wiles anunció que la conjetura había pasado a teorema: después de siete años de afanosa entrega, había probado la conjetura de Taniyama-Shimura, de la que se seguía la conjetura de Fermat según un trabajo previo del matemático Kenneth A. Ribet. A finales del verano de 1993, uno de los especialistas que estaban comprobando el documento con la demostración de Wiles encontró un error en una parte del razonamiento. Wiles repasó la demostración con la ayuda de su entonces alumno Richard Taylor, hasta concluir la prueba definitiva en otoño de 1994.
Las dos propuestas escénicas que recuerdo en estas líneas tratan sobre Wiles y la demostración del teorema de Fermat. La primera de ellas, la más reciente, El misterio de Fermat (2017), es una obra de teatro de la compañía Teatre de l’Enjòlit con texto y dirección de Albert Alemany.

Cartel de “El misterio de Fermat”.
La obra persigue acercar las matemáticas al público más joven a través de este misterio que permaneció sin solución durante más de trescientos cincuenta años: en su resolución participaron numerosas mentes brillantes, que solventaron algunos casos particulares y desarrollaron herramientas matemáticas complejas antes de que Andrew Wiles publicara su demostración.
El misterio de Fermat lleva a escena una apasionante historia de descubrimientos, pasiones, errores y logros por medio de escenas cortas y de continuos saltos en el tiempo involucrando veinticinco personajes históricos. Algunos de ellos son Pierre de Fermat (1601-1665) –que no aparece representado por ningún actor, pero es nombrado continuamente, reforzando el misterio al que alude el título de la obra–, Marin Mersenne (1588-1648) –que tuvo una nutrida correspondencia con Fermat–, René Descartes (1596-1650), Blaise Pascal (1623-1662) –que intercambió con Fermat numerosas cartas analizando los juegos de dados, debido a su común interés por la teoría de la probabilidad–, Leonhard Euler (1707-1783) –que demostró el último teorema de Fermat en el caso n=3. Además, gran parte de los primeros trabajos de Euler en teoría de números se basan en estudios de Fermat: probó el pequeño teorema de Fermat, el teorema de Fermat sobre la suma de dos cuadrados y también comprobó la falsedad de algunas de las conjeturas de Fermat–, Sophie Germain (1776-1831) –cuyas importantes aportaciones en teoría de números permitieron avanzar en la prueba del último teorema de Fermat–, Carl Friedrich Gauss (1777-1855), Ernst Kummer (1810-1893) –que probó el último teorema de Fermat para una clase considerable de exponentes primos–, los matemáticos Yutaka Taniyama (1927-1958) y Goro Shimura (1930) –que enunciaron la conjetura de Taniyama-Shimura, un caso especial de la cual fue demostrada en 1995 por Wiles y Richard Taylor (1962), suficiente para demostrar el último teorema de Fermat– y, por supuesto, Andrew Wiles.
El misterio de Fermat pretende entretener, mostrar una parte esencial de la historia de las matemáticas, enseñar algunos conceptos matemáticos sencillos, hablar de la manera en la que ‘se fraguan’ las matemáticas y de la pasión que se siente al recorrer este camino. A través de los personajes que atraviesan la obra, se intenta transmitir el amor por la ciencia, la belleza de las matemáticas, y el valor del esfuerzo y la pasión personalizados en la figura de Andrew Wiles.
La segunda propuesta es el musical Fermat’s last tango (2001) de Joshua Rosenblum y Joanne Sydney Lessner

Cartel de “Fermat’s last tango”.
Este musical –que mezcla estilos variados como rocanrol, jazz o tango– transcurre en la época en que se ha descubierto un error en la demostración del Wiles del teorema de Fermat.
Andrew Wiles está encarnado por un personaje ficticio, el profesor Daniel Keane. La obra comienza con una conferencia de prensa en la que se anuncia la conclusión de la prueba del Teorema de Fermat. Pronto aparece el fantasma de Fermat afirmando que él ya había demostrado su famoso teorema, y mofándose de la complicada demostración de Keane. Como aliados de Fermat para burlarse de Keane aparecen Pitágoras (c. 569 a. C.–c. 475 a. C.), Euclides (ca. 325 a. C.-ca. 265 a. C.), Carl Friedrich Gauss e Isaac Newton (1643-1727), que llegan desde el Aftermath, el lugar en el que viven los matemáticos inmortales. Menosprecian al joven matemático que, en su opinión, usa métodos oscuros y complicados.
Fermat anuncia a Keane que su prueba contiene un error, en una sarcástica canción:
But your proof contains a flaw, Profesor Keane. It destroys the whole fundation of your finely tunned machine. I hate to be a spoilsport. I know it was your Goal. But your proof contains a big fat hole.ii
Keane, aterrado, comprueba que el error efectivamente existe y comienza, ofuscado, a repasar su prueba. Se origina un complicado triángulo entre Anna, la esposa de Keane, que desea que su marido deje de obsesionarse, el propio Keane y Fermat, que sigue burlándose del joven matemático. El resto de la obra es una lucha entre lo viejo y lo nuevo: Fermat desea mantener a toda costa su fama y desanima a Keane en cada uno de sus progresos. En un socarrón concurso en el que se nombra a muchos famosos matemáticos, Fermat y los miembros del Aftermath presionan implacablemente a Keane para que intente encontrar la demostración. Anna, a su vez, sigue intentando que Daniel – que se pasa la vida encerrado en el ático trabajando– reaccione. En un dramático tango –en el que se canta el tema que da título a la obraiii–, el matemático francés y Anna se disputan a Keane como pareja de baile.
Finalmente, los Aftermath se dan cuenta del valor y la dificultad del trabajo de Keane, de la brillantez de los métodos modernos por él utilizados y terminan apoyándole y dándole la bienvenida a su selecto grupo. Tras un arduo trabajo, Keane encuentra finalmente la demostración del teorema, recibiendo la aprobación de su admirado Fermat…
Debajo dejamos el video de una de las representaciones.
Referencias:
-
Dossier sobre la obra El misterio de Fermat, Teatre de l’Enjòlit
-
Marta Macho Stadler, El misterio de Fermat, Teatre de l’Enjòlit, DivulgaMAT, Teatro y matemáticas, abril 2018
-
R. Osserman, Fermat’s Last Tango, Notices of the AMS, vol. 48, núm. 11, 1330-1332, 2001
-
Marta Macho Stadler, Fermat’s Last Tango, DivulgaMAT, Teatro y matemáticas, noviembre 2008
Notas:
iExtraída del documental de S. Singh y John Lynch “Fermat’s Last Theorem” Programa Horizon, BBC, 1997. La traducción es de Capi Corrales Rodrigáñez de su “Un paseo por el siglo XX de la mano de Fermat y Picasso”.
ii Minuto 32:20 del video que acompaña a esta entrada.
iiiMinuto 59:45 del video que acompaña a esta entrada.
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Andrew Wiles: de conjetura a teorema se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El teorema de los cuatro colores (y 4): ¿Podemos creer la prueba de la conjetura?
- El teorema de Marion (Walter)
- Euler y el último teorema de Fermat
La regulación osmótica de los animales de agua dulce

Carassius auratus
Como vimos aquí, solo los invertebrados marinos y, entre los vertebrados, los peces bruja tienen ancestros exclusivamente marinos. Por esa razón sus medios internos tienen la misma concentración osmótica que el agua de mar –no necesitan regularla- y una composición iónica que no difiere demasiado de la de aquél, aunque esta sí la deben regular. Todos los demás vertebrados tienen en sus linajes ancestros dulceacuícolas. En la actualidad, un buen número de invertebrados viven en aguas dulces, al igual que numerosas especies de peces teleósteos, algunas de peces elasmobranquios y otros vertebrados (anfibios y reptiles, principalmente). Pues bien, todos los animales que viven en aguas dulces regulan la concentración osmótica de su medio interno, manteniéndola muy por encima de la del medio externo. Son, por lo tanto, reguladores hiperosmóticos.
Estos animales han de hacer frente a dos posibles problemas para mantener constante la concentración interna. Por un lado el agua tiende a entrar en sus organismos a favor de gradiente osmótico. Si no consiguiesen contrarrestar fisiológicamente esa tendencia, el organismo se llenaría de agua, el medio interno (plasma y fluido intersticial) en primera instancia y, como consecuencia, el medio intracelular también, lo que provocaría la deformación de las células y, eventualmente, su ruptura. El segundo problema sería la pérdida de los solutos internos a favor de gradiente electroquímico.
Una característica común de los animales de agua dulce es que la concentración osmótica de su medio interno (y, por lo tanto, también intracelular) es muy inferior a la de los animales marinos osmoconformadores (u osomoconcordantes). Así pues, la adaptación a un medio muy diluido conllevó una reducción en la concentración osmótica de su medio interno, de manera que el gradiente que habían de mantener los miembros de los linajes que protagonizaron la transición del mar a los ríos es muy inferior al que habría sido de no haberse producido tal reducción. Ha de entenderse que esa reducción no constituye la respuesta de un individuo a un cambio de salinidad del medio, sino que consistió en un cambio de base genética que requirió de plazos de tiempo muy prolongados. Para que nos hagamos una idea de la magnitud de la reducción, sirvan los siguientes valores de osmolaridad (mOsm) del medio interno de diferentes géneros:
Dulceacuícolas (concentración osmótica del agua dulce: 0,5-10): Spongilla (Porifera): 55; Chlorohydra (Cnidaria): 45; Asplachna (Rotifera): 81; Anodonta (Mollusca): 66; Viviparus (Mollusca): 80; Hirudo (Annelida): 200; Astacus (Arthropoda, Crustacea): 477; Potamotrygon (Chordata, Chondrichthyes): 308; Carassius (Chordata, Actinopterygii): 392; Rana (Chordata, Amphibia): 234.
Marinas (concentración osmótica del agua de mar: 1000): Aurelia (Cnidaria): 1050; Asterias (Echinodermata): 1015; Loligo (Mollusca): 1003; Arenicola (Annelida): 1020; Homarus (Arthropoda, Crustacea): 1035; Myxine (Chordata, Cyclostomi): 1152; Squalus (Chordata, Chondrichthyes): 1000; Latimeria (Chordata, Sarcopterygii): 954; Opsanus (Chordata; Actinopterygii): 392; Fejervarya (Chordata, Amphibia): 830.
Pero incluso habiendo reducido considerablemente el gradiente de concentraciones osmóticas entre el medio interno y el externo, sigue habiendo una fuerte tendencia del agua a entrar en el organismo y de las sales a salir. Por esa razón, el tegumento de estos animales suele ser poco permeable, aunque el grado de permeabilidad es muy diferente en unos grupos y en otros. Esa baja permeabilidad del tegumento es considerada la primera barrera frente a la dilución.
La baja permeabilidad general del tegumento, no obstante, no evita los movimientos de agua y de sales. Hay epitelios que no se pueden impermeabilizar. Las superficies respiratorias son el enclave que mejor ilustra esa imposibilidad. Un epitelio impermeable no permitiría el intercambio de gases. Y con el digestivo pasa algo parecido; no obstante, hay que decir que los reguladores hiperosmóticos evitan beber, por lo que el agua que pueda introducirse a través de los epitelios digestivos es solo la que se incorpora con el alimento. Por las razones dadas, los animales de agua dulce han de contar con mecanismos que contrarresten esos flujos pasivos. Y aquí entra en juego la segunda barrera frente a la dilución, que se explica a continuación.

Rana clamitans
Evitan la invasión de agua produciendo grandes volúmenes de orina. El cangrejo de río Astacus fluviatilis elimina un 8% de su masa corporal en forma de orina; en el anfibio Rana clamitans y el pez Carassius auratus ese porcentaje es del 33%, en el sapo Xenopus laevis es del 58% y en el caracol dulceacuícola Viviparus viviparus, puede variar entre el 36% y el 131%. Esa tarea corre a cargo del órgano excretor.
Y además de eliminar una gran cantidad de agua en forma de orina, los animales de agua dulce deben reducir en la medida de lo posible la concentración de sales en la orina. La concentración osmótica de la orina representa, con respecto a la del medio interno, un 20% en Viviparus, un 16% en Xenopus, un 14% en Carassius y un 10% en Astacus. De no proceder de ese modo, la orina tendría la misma concentración osmótica que el medio interno (sería isosmótica) por lo que el trasiego constante de agua dulce hacia el interior y su eliminación como orina isosmótica con el medio interno, provocaría una fuerte pérdida de sales. Sería como si se produjese un lavado permanente del medio interno, lo que anularía la posibilidad de mantener una concentración osmótica constante y diferente de la del medio externo. El órgano excretor debe hacer, por lo tanto, una doble tarea, producir orina abundante, por un lado, y por el otro reabsorber la mayor cantidad posible de iones de esa orina antes de su evacuación. Ese trabajo, no obstante, requiere gastar energía, pues los iones que se reabsorben han de transportarse gastando ATP en el proceso. Nada es gratis.
Pues bien, para los reguladores hiperosmóticos no es suficiente con producir orina abundante y diluida. Porque por baja que sea su concentración osmótica, nunca lo es tanto como el medio externo. Así pues, la eliminación del agua que entra a favor de gradiente osmótico siempre conlleva una cierta pérdida de sales. Parte de las sales que se pierden pueden recuperarse a través del sistema digestivo, porque se absorben junto con el alimento. Y la otra parte ha de incorporarse a través de otras vías extrarrenales, como son la piel en anfibios, la vejiga urinaria en tortugas o las branquias en peces y crustáceos. La incorporación extrarrenal de sales es la tercera barrera frente a la dilución. Los enclaves en los que tiene lugar pueden ser diferentes dependiendo de la especie, pero los mecanismos básicos son similares, ya que conllevan el transporte activo de las sales que tienden a perderse -Na+ y Cl– en mayor medida- y, por lo tanto, de nuevo con importante gasto de energía en forma de ATP.
Así pues, un buen número de grupos animales se han adaptado a vivir en aguas dulces. Esa adaptación ha conllevado una reducción importante en la concentración osmótica del medio interno, un alto grado de impermeabilización de los tegumentos, la producción de altos volúmenes de orina de la que se recupera la mayor cantidad de sales posible, y la incorporación extrarrenal de las sales necesarias para mantener constante su concentración en el medio interno. Para estos procesos se requieren dispositivos tales como eficaces órganos excretores, así como transportadores de sales en determinados enclaves. La osmorregulación conlleva un importante coste de energía, porque transportar iones contra gradiente electroquímico es caro. Pero está claro que ese coste es compensados por las ventajas que comporta ocupar los nichos que ofrecen las aguas dulces. De otra forma no habría habido linajes que, desde los océanos, “se aventurasen” a colonizar esos nuevos medios.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo La regulación osmótica de los animales de agua dulce se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Animales en equilibrio osmótico: invertebrados marinos y peces bruja
- Relaciones hídricas y salinas de los animales
- La distribución del agua animal y el curioso caso del potasio
Comprobaciones experimentales de la relatividad general (y 2)

Titulares de The New York Times del 10 de noviembre de 1919 (izquierda) e infografía del Illustrated London News del 22 de noviembre de 1919 (derecha), que recogen el resultado de Eddington.
Sin duda la predicción que hizo famosa la teoría general de la relatividad y cuya comprobación lanzó al estrellato a la teoría y, con ella, a Einstein fue que el espaciotiempo se curva. La famosa medición de la “desviación de la luz” en las proximidades de un objeto masivo como el Sol por parte de Arthur Eddington en forma de cambio de la posición aparente de una estrella ocupó las portadas de la prensa mundial en 1919. Sn embargo, el concepto de que la luz se “desvía” es erróneo, porque asume un espacio absoluto, newtoniano. Para comprender la magnitud de la predicción de Einstein y el mérito del experimento de eddington, tendremos que hacer un poco de historia.
Ya en otra parte hemos explicado que la predicción de que la luz sufre una desviación al pasar cerca de un objeto masivo está presente en la mecánica newtoniana. Tanto es así que tanto Henry Cavendish en 1784 (en un manuscrito que, fiel a su costumbre, no publicó) como Johan Georg von Soldner [1] realizaron cálculos de la magnitud de esa desviación. El manuscrito de von Soldner, titulado “Sobre la desviación de un rayo de luz de su movimiento rectilíneo por la atracción de un cuerpo celeste del que pasa cerca”, escrito en 1801 y publicado en 1804, contenía los resultados de éste.
En 1911 Einstein publicaba el artículo “Sobre la influencia de la gravedad en la propagación de la luz” [2], ampliación de uno de 1908, en el que obtenía, atención, los valores de von Soldner pero, eso sí, basándose únicamente en el principio de equivalencia. Tal era la coincidencia numérica que Philipp Lénárd tuvo base para acusar después a Einstein de plagio.
Avanzada la teoría general de la relatividad, Einstein se dio cuenta de algunos errores, y corrigió sus cálculos en 1915 obteniendo los datos (la suma de los efectos clásicos y de la dilatación temporal gravitacional) que después Eddington daría por confirmados en 1919.
Diferencias de modelo
Sin embargo, lo importante es la diferencia de modelo. Mientras que Cavendish y Soldner asumen que la luz es una partícula con masa y, por tanto, debe ser atraída por el Sol según la ley gravitatoria de Newton, lo que Einstein afirma es que el espaciotiempo se curva por la presencia de la masa del Sol y que la luz, que viaja en “línea recta”, nos “da la impresión” de que se desvía. Pero hemos de ser conscientes de lo que línea “recta” significa en un espaciotiempo: si el espaciotiempo se curva, la luz se curva.
Quizás un ejemplo de algo aparentemente no relacionado pero que es fácil que hayamos visto alguna vez nos puede servir para aprehender lo que decía Einstein. Está relacionado con los conceptos de campo, en concreto con el de campo magnético. Gilbert describió la acción de la piedra imán diciendo que tenía una “esfera de influencia” alrededor de ella. Con esto quería decir que cualquier otro objeto magnético que entrase en esta “esfera” sería atraído por la piedra imán. Además, la intensidad de la fuerza atractiva sería mayor cuanto más cercano estuviese del imán. En términos actuales diríamos que la piedra imán está rodeada por un campo magnético.
Experimentalmente podemos visualizar fácilmente un campo magnético o, más precisamente, la parte del mismo que intersecta el plano de un papel, colocando debajo de éste un imán (idealmente con una forma regular) y esparciendo limaduras de hierro alrededor, como en la imagen que sigue:
El campo magnético se suele representar en forma de líneas que representan la fuerza y dirección del campo, como en esta otra imagen:
Así es como solemos pensar cuando hablamos de campos, a saber, como líneas de fuerza que existen en el espacio y en el tiempo.
Tengamos en mente que las imágenes anteriores corresponden a un campo magnético en dos dimensiones (la parte del campo que intersecta el plano del papel) porque asumimos que vivimos en un espacio absoluto de 3 dimensiones. Una región del espaciotiempo (que, recordemos, tiene cuatro dimensiones) donde existe un objeto masivo, podemos representarla con una dimensión menos para poder visualizarla de la siguiente forma (asumiendo la perspectiva como una dimensión) según la teoría general de la relatividad:
Las líneas nos pueden parecer las de un campo como las del campo magnético, pero hay una diferencia crucial: estas líneas no representa un campo en el espacio y en el tiempo, estas líneas representan el espaciotiempo mismo y su curvatura. De hecho lo que ves en la imagen es, estrictamente hablando (descartando la perspectiva), bidimensional y representa un “corte” del espaciotiempo cuatridimensional.
Por tanto, en un diagrama de este tipo si un objeto, o la luz, viaja por el espaciotiempo en una región en la que hay un objeto masivo, el camino más corto entre dos puntos será una línea curva. En geometría diferencial estas líneas se llaman geodésicas y no son más que la generalización del concepto de línea recta a espacios curvos.
La observación de Eddington
Decíamos más arriba que tanto la vieja teoría de la gravedad de Newton como la nueva de Einstein predecían que la luz no viaja necesariamente en líneas rectas, sino que puede ser desviada cuando pasa cerca de algo tan pesado como el Sol. Sin embargo Einstein predecía que la desviación aparente sería mayor: lo suficiente como para que las posiciones aparentes de las estrellas detrás del Sol se desplazasen de forma detectable con respecto a las posiciones conocidas y verdaderas.
Un eclipse solar total ocurre cada par de años, pero son solamente visibles desde las regiones ecuatoriales. El eclipse solar del 29 de mayo de 1919 tendría lugar por suerte frente a una brillante constelación de estrellas y daba la oportunidad perfecta para comprobar experimentalmente la nueva teoría Einstein.
Desde Oxford, Arthur Eddington observó cuidadosamente la posición de las estrellas en enero y febrero de 1919. El eclipse sería visible desde ambos lados del Atlántico por lo que, para asegurarse buen tiempo en al menos en un punto de observación, Frank Dyson, el Astrónomo Real, mandó un equipo de observación a Sobral (Brasil) y a Eddington a Príncipe (São Tomé e Príncipe). Los cielos estuvieron despejados en ambas localizaciones y, durante cinco minutos en total, ambos equipos se las arreglaron para tomar varía fotografías nítidas de las estrellas.
Cuando Eddington volvió a casa y comparó las posiciones aparentes de las estrellas detrás del Sol con las reales, ambos conjuntos de datos eran consistentes con la teoría de Einstein. El descubrimiento fue publicado oficialmente en Philosophical Transactions of the Royal Society [3]. Para entonces Einstein ya era una celebridad mundial.
Notas:
[1] J. G. von Soldner (1804) “Über die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung, durch die Attraktion eines Weltkörpers, an welchem er nahe vorbei geht”, Berliner Astronomisches Jahrbuch, pp. 161-172
[2] A. Einstein (1911) “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes”, Annalen der Physik 35: 898–908.
[3] Dyson, F., Eddington, A., & Davidson, C. (1920). A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (1896-1934), 220 (1), 291-333 DOI: 10.1098/rsta.1920.0009
El atento lector se habrá fijado que en el título de este artículo de Eddington et al. se habla de “gravitational field” un concepto que aún es newtoniano, como no puede ser de otra manera ya que esa es la teoría (paradigma, diría alguno) imperante en ese momento.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Comprobaciones experimentales de la relatividad general (y 2) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Comprobaciones experimentales de la relatividad general (1)
- Las ecuaciones de campo de la relatividad general
- El principio de relatividad (y 4): la versión de Einstein
Nanokomik#2, cómic participativo de nanoficción
Acercar la nanotecnología en un formato atractivo para los jóvenes es el objetivo del proyecto nanoKOMIK, desarrollado por los centros de investigación CIC nanoGUNE y Donostia International Phyisics Center (DIPC) y que ha contado con la ayuda de Fundación Española para la Ciencia y la Tecnología (FECYT). NanoKOMIK es una herramienta para dar a conocer los avances que se dan en el campo de la nanociencia y la nanotecnología, a través de un cómic participativo de nanoficción.
En 2017 se ha llevado a cabo la segunda edición del proyecto. En esta segunda edición han participado 240 personas que se han adentrado en el mundo de los nanopoderes de personajes diversos. Parte de los resultados de esta edición se han publicado en el cómic Nanokomik#2, donde se recogen tres historietas en las que han participado los ganadores de la categoría adulta del desafío nanoKOMIK 2017. El cómic está disponible en euskera, castellano, francés e inglés en la página: www.nanokomik.com.

Imagen: Portada del cómic NanoKOMIK#2.
Tomando como referencia las mejores ideas de los cómics presentados al desafío y en colaboración con los ganadores de la categoría adulta, se ha dado forma a las nuevas historietas: Domi(nano)ción del mundo, Míster Llamas y Entre Plantas. En estas divertidas historias se cuentan las aventuras de una ingeniosa neuro-nano-científica que otorga el poder de la ubicuidad a una política corrupta, de un amante de los viajes espaciales que salva una misión a punto de estallar y del científico inmerso en la creación de un nanohíbrido capaz de reproducir el proceso fotosintético de las plantas de manera artificial.
Las historietas del cómic divulgativo recogen las ideas más originales presentadas al desafío. En la recreación han participado los dibujantes Aśka, Rubén Molina y Jöse Sénder, y las coordinadoras del proyecto Amaia Arregi (DIPC) e Itziar Otegui (nanoGUNE). La obra completa está disponible bajo licencia creative commons en euskera, castellano, francés e inglés, tanto en papel como en su versión digital en la web www.nanokomik.com.
El artículo Nanokomik#2, cómic participativo de nanoficción se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Naukas Bilbao 2017 – Mónica Lalanda: Una muerte de cómic
- Las matemáticas en el cómic Ken Games
- Un cómic de hace dos mil años a todo color
El pueblo que hablaba con las ballenas, ¿podría enseñarnos su idioma a los demás?

Un inuit (o esquimal) otea el horizonte en busca de ballenas. Fotograma de la película “Arctic Currents. A year in the life of the bowhead whale” del Museo del Norte de la Universidad de Alaska.
Arqueólogos y antropólogos no tienen muy claro en qué momento el ser humano desarrolló la tecnología necesaria para cazar ballenas, pero en general está aceptado que en el Ártico esta actividad comenzó en las costas de Canadá entre el año 600 y el 800. Durante miles de años antes los pobladores del Ártico sobrevivieron cazando focas, caribús y morsas en las orillas del mar helado.
Cuenta Krista Langois en este reportaje de la revista Hakai, que uno de esos grupos, conocidos como los Dorset, o los Tunit en la tradición oral Inuit, son legendarios por el gran tamaño y la fuerza de sus miembros, a los que se consideraban gigantes, además de estar perfectamente adaptados a su entorno. Pero a pesar de sus míticas capacidades de supervivencia, los Tunit desaparecieron hace unos mil años.

Esquimales arponeando una ballena en 1939. Wikimedia Commons
Una teoría sobre su desaparición es que apareció otro grupo de población, los Inuit (que nosotros llamamos esquimales), proveniente de Alaska, que supo adaptarse mejor que ellos y que creó tecnología conveniente y eficaz, comiéndoles el terreno. Parte de esa tecnología pudieron ser sus barcas hechas con piel de foca, que les permitieron alejarse de la costa mar adentro para cazar ballenas: cada primavera, ballenas boreales de más de 54.000 kilos se adentraban en ese mar de hielo y los nuevos pobladores conseguían cazar alguna con habilidad, talento, y mucha suerte.
Las ballenas articulan la vida social
Cazar ballenas cambió para siempre el modo de vida en el Ártico. Por primera vez, era posible conseguir carne de una sola vez suficiente alimento para dar de comer a un pueblo entero, así que empezaron a surgir asentamientos permanentes aquellos lugares a los que las ballenas volvían con regularidad. Con ello evolucionaron también las organizaciones sociales: los cazadores de éxito hicieron fortuna y se situaron en la cima de las nuevas jerarquías. Muy pronto la caza de ballenas se convirtió en el centro de la vida cotidiana pero también de la vida cultural y espiritual.

Familia esquimal en torno a 1900. Wikipedia Commons
Una vida que fascinaba a los europeos. En la literatura medieval se representaba el Ártico como una tierra de peces monstruosos y personas que podían convocarlos en la costa utilizando magia y murmurando hechizos. Incluso cuando siglos después los primeros exploradores volvieron contando en qué consistía realmente la caza, despiece y cocinado de una ballena, nada muy diferente de cazar un esturión excepto por la escala del animal, el misticismo seguía presente. En 1938, la antropóloga Margaret Lantis describió a los Inuit y otros pueblos emparentados, como los Inupiat, como parte de un “culto a las ballenas”.
Lantis se basaba en tabús muy extendidos y en rituales diseñados para fortalecer la relación entre los humanos y las ballenas: en muchos sitios, a una ballena recién cazada se le dejaba agua fresca, comida e incluso bolsas de viaje para asegurarle una vuelta segura al hogar de su espíritu. Cada cazador tenía su propia canción para atraer a las ballenas hacia él, los chamanes realizaban ceremonias en el interior de círculos hechos con huesos de ballena y amuletos hechos con reliquias de ballena pasaban de padres a hijos dentro de las familias de cazadores.
Para cualquier observador externo, todo resultaba misterioso y desconocido, especialmente para arqueólogos y biólogos, para los que toda esta actitud chocaba frontalmente con los valores científicos occidentales, que evitaban cualquier aspecto que se acercase al antropomorfismo, es decir, a dar a los animales cualidades y emociones humanas.

Un sonajero esquimal con forma de ballena fabricado en torno a 1900. Wikimedia Commons
Unos valores que, según cuenta Erica Hill, zooaequeóloga de la Universidad del Sudeste de Alaska, en el mencionado reportaje de la revista Hakai, han limitado el conocimiento que los arqueólogos tienen hoy de la prehistoria en el Ártico: los amuletos y esos círculos de huesos se han descrito como parte de un ritual sin explorar o explicar apenas qué querían decir en realidad para las personas que los hicieron. En vez de eso, los científicos que los han estudiado se han centrado en la información tangible que ofrecían: qué comían esas personas, cuántas calorías consumían y cómo sobrevivían.
¿Puede ser útil mirar a las ballenas como las miraban los inuit?
Ahora, un grupo creciente de arqueólogos están utilizando información etnográfica e historias orales para reexaminar esos artefactos bajo una luz nueva y reinterpretarlos de un modo menos occidental para conocer algo más sobre la historia de sus antepasados.
Pero hay otro motivo por el que este enfoque arqueológico puede ser interesante: porque permite acometer desde otro punto de vista, y por tanto completar, las investigaciones que tratan de determinar si algunos animales, entre ellos los cetáceos, tienen sistemas comunicativos que se acercan en complejidad al de los humanos. Algunas de esas investigaciones están ayudando a confirmar algunos de esos rasgos y habilidades que los habitantes del Ártico atribuían a las ballenas hace más de mil años.
Uno de esos biólogos es Hal Whitehead, profesor de la Universidad Dalhousie de Nueva Escocia, y él argumenta que los cetáceos tienen su propia cultura, algo que siempre ha quedado reservado para las sociedades humanas.
Según su definición, una cultura es un conocimiento social que va pasando de una generación a la siguiente. Bien, pues algo así ha sido señalado en varios estudios recientes, incluido uno que las ballenas boreales que viven en el Norte del Pacífico, cerca de la costa de Alaska, y las que viven en el Atlántico, cerca de Groenlandia, cantan canciones diferentes igual que los humanos hablamos distintos idiomas o tenemos distintos estilos musicales. Igualmente, manadas de orcas que habitan al sur de la isla de Vancouver, y otras que viven hacia el norte de la misma isla, se saludan entre sí mostrando comportamientos diferentes, a pesar de que genéticamente son grupos casi idénticos y viven en territorios que se solapan.
Además, sabemos que las crías pasan años con sus madres, desarrollando fuertes relaciones materno-filiales que sirven precisamente para la transmisión de esa información cultural, y que las ballenas boreales viven suficiente tiempo como para acumular una información y conocimiento que merece la pena transmitir a las generaciones siguientes.
Por otro lado, otros mitos están demostrando ser menos fantasiosos de lo que una vez parecieron. Durante años, los biólogos pensaron que las ballenas no poseían sentido del olfato, a pesar de que los cazadores Inupiat aseguraban que el olor del humo las ahuyentaba, hasta que en 2010 el científico Hans Thewissen descubrió el sistema olfativo perfectamente funcional al analizar el cráneo y cerebro de varias ballenas. También la vieja creencia de los Yupik de que las beluga una vez caminaron por la tierra ha resultado ser cierta: hace 50 millones de años, un ancestro de las ballenas modernas caminó por la tierra, y por eso los fetos de ballena desarrollan patas durante un breve periodo de tiempo antes de perderlas de nuevo.
Imitar sonidos no es hablar… pero ¿nos acerca un paso?
Nada de todo esto quiere decir que las ballenas conversasen con los cazadores o que se entregasen a ellos cuando eran convocadas. Pero sí que es verdad que una vez que terminemos de descubrir en qué consiste el complejo sistema cultural de las ballenas y cómo lo utilizan, será más fácil entender sus señales y aprender hasta qué punto sería posible una comunicación entre especies.
Estamos aún lejos de esa comunicación, pero algunos estudios recientes permiten vislumbrar de qué estamos hablando. Por ejemplo, el caso de Wikie, una orca que vive en el acuario Marineland en Antibes, Francia, y que demostró cómo estos animales son capaces de imitar el habla humana cuando aprendió a decir con su chirriante voz las palabras “hello”, “goodbye”, “one”, “two”, “three” y “Amy”, el nombre de su entrenadora. Las grabaciones de audio demuestran que sin un aparato fonador como el nuestro algunos sonidos no son sencillos, pero que sin duda Wikie era capaz de imitar y repetir dichas palabras. Como curiosidad, Wikie no solo aprendió a imitar palabras, también otros sonidos poco familiares para las orcas, como una pedorreta.
Este avance sirve para entender mejor cómo unos grupos de ballenas se comunican con canciones diferentes a las de otros grupos: el origen estaría precisamente en sus habilidades de imitación, que habrían ido causando poco a poco que cada grupo evolucione su habla en direcciones diferentes. Otro ejemplo de esa cultura de los cetáceos que nos fascina a todos, científicos o no, y que quizá podamos entender mejor si tomamos nota de lo que sabían aquellos primeros hombres que susurraban a las ballenas.
Referencias:
When men and whales talk – Krista Langlois. Hakai Magazine.
Cultura Dorset – Wikipedia.
Alaskan Eskimo Ceremonialism – Margaret Lantis. Univerisdad de Michigan.
Cultural lifes of whales and dolphins – Hal Whitehead y Luke Rendell.
Olfaction and brain size in the bowhead whale (Balaena mysticetus) – J. G. M. Thewissen, John George, Cheryl Rosa, Takushi Kishida. Marine Mammal Science.
Imitation of novel conspecific and human speech sounds in the killer whale (Orcinus orca) – José Z. Abramson, Mª Victoria Hernández-Lloreda, Lino García, et al. Proceedings of the Royal Society B: Biological Sciences.
Sobre la autora: Rocío Pérez Benavente (@galatea128) es periodista
El artículo El pueblo que hablaba con las ballenas, ¿podría enseñarnos su idioma a los demás? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Eran nuestras ballenas
- Cómo usar a las ballenas como detectores de radiación
- Los enigmas que nos cantan desde el fondo del océano
La filoxera y sus delitos

Hoja de una vid afectada de filoxera.
Las primeras vides afectadas lo fueron en Pujault (Gard, Francia) en 1863. La plaga siguió extendiéndose por ese país y algo más tarde por el resto de Europa. Cinco años después el botánico Jules-Émile Planchon identificó al culpable. Era un insecto diminuto (de entre 0,3 y 1,4 mm) cuyo nombre científico actual es Daktylosphaera vitifoliae, conocido vulgarmente como filoxera. En las viñas europeas el insecto se introduce bajo tierra y ataca a las raíces, alimentándose de su savia y secretando un producto que impide el cierre de los orificios practicados por el parásito. La planta no solo sufre la pérdida de savia sino que, además, queda expuesta al contagio de hongos y bacterias, y desarrolla nudosidades y tuberosidades (tumores) que son las que acaban provocando su muerte. Al principio es una planta la que se marchita; luego lo hacen las de alrededor; poco después sucumben todas las viñas de una misma zona. La planta atacada muere tres años después del contagio. La filoxera procedía de América, de donde había llegado gracias a la rapidez con que los barcos de vapor hacían el viaje a través del Atlántico. Hasta la sustitución de los veleros por los barcos más modernos impulsados por vapor los insectos no sobrevivían a la travesía oceánica.
En sus zonas de procedencia los machos y las hembras de Daktylosphaera copulan en verano y la hembra pone un único huevo sobre el tronco de la planta. La eclosión de ese huevo se produce en primavera y da lugar a una hembra (sin alas) que se reproduce de forma partenogenética, o sea, sin haber sido fecundada por un macho. Tras tres mudas, que se producen en apenas tres semanas, pone entre cuarenta y cien huevos. Cada uno de ellos da lugar a una nueva hembra partenogenética y el proceso se repite otras cinco o seis veces. De esa forma pueden surgir en poco tiempo millones de nuevas hembras de filoxera que pueden instalarse en las hojas o en las raíces, aunque también pueden migrar de una a otra ubicación. Las hembras partenogenéticas de la última generación, tras una muda adicional, se transforman en ninfas que son las que producen los ejemplares (alados) de los que nacen los machos y hembras que se reproducen sexualmente tras copular. Estos no se alimentan y viven tan solo unos pocos días. En Europa las cosas son diferentes, porque rara vez se reproducen sexualmente y cuando lo hacen su descendencia no sobrevive.
Los efectos de la plaga fueron devastadores. Numerosas zonas vitivinícolas europeas se vieron afectadas durante el último tercio del siglo XIX y primeras décadas del XX. Aunque se han ensayado diferentes técnicas para combatir la plaga, a la postre el procedimiento más efectivo ha resultado ser el de los injertos de cepas europeas en troncos de vides americanas. Estas sufren el ataque del insecto, que se alimenta de su savia, pero no provoca su muerte.
Francia fue el país europeo en el que la plaga tuvo un impacto económico más profundo: miles de familias fueron a la ruina y, como consecuencia, el sistema económico en su conjunto sufrió los efectos de la epidemia. Además, sus consecuencias no se limitaron a la esfera puramente económica: en las zonas afectadas se cometieron, en promedio, un 22% más de delitos contra la propiedad, porque muchas personas perdieron el que había sido su modo de vida tradicional y optaron por recurrir al robo. Pero curiosamente en esas mismas zonas se produjeron un 13% menos de crímenes violentos porque a la vez que se redujo la producción de vino también descendió su consumo.
—————————————————————–
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————
Una versión anterior de este artículo fue publicada en el diario Deia el 14 de enero de 2018.
El artículo La filoxera y sus delitos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Naukas Bilbao 2017 – Aitor Sánchez: Si Donald Trump fuese nutricionista
En #Naukas17 nadie tuvo que hacer cola desde el día anterior para poder conseguir asiento. Ni nadie se quedó fuera… 2017 fue el año de la mudanza al gran Auditorium del Palacio Euskalduna, con más de 2000 plazas. Los días 15 y 16 de septiembre la gente lo llenó para un maratón de ciencia y humor.
Aitor Sánchez desarma la pirámide alimentaria y sus aberraciones en 10 minutos. Y sí, sale Trump.
Aitor Sánchez: Si Donald Trump fuese nutricionistaEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Naukas Bilbao 2017 – Aitor Sánchez: Si Donald Trump fuese nutricionista se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Naukas Bilbao 2017 – José Miguel Viñas: Me río yo del cambio climático
- Naukas Bilbao 2017 – Mónica Lalanda: Una muerte de cómic
- Naukas Bilbao 2017 – Laura Morrón: La gran divulgadora
La estrella individual más lejana jamás vista
Un equipo internacional, en el que ha participado Tom Broadhurst, investigador Ikerbasque en la UPV/EHU, ha identificado la estrella individual más lejana jamás vista. Una enorme estrella azul bautizada como Ícaro. Normalmente hubiera sido imposible apreciar este fenómeno, incluso con los telescopios más grandes del mundo, pero gracias a una carambola de la naturaleza, que ha permitido amplificar enormemente el débil brillo de la estrella, los astrónomos que utilizan el Telescopio Espacial Hubble de la NASA han podido localizarla y establecer un nuevo récord de distancia. Asimismo, la identificación de Ícaro ha permitido descartar una de las teorías sobre la materia oscura.
La estrella está localizada en una galaxia espiral tan distante que su luz ha tardado 9 mil millones de años en llegar a la Tierra. De lo que se deduce que surgió cuando el universo tenía aproximadamente el 30 por ciento de su edad actual.El descubrimiento de Ícaro a través de lentes gravitacionales abre un nuevo camino para que los astrónomos estudien estrellas individuales en galaxias distantes. Tom Broadhurst, investigador Ikerbasque en la UPV/EHU, es un experto mundial en el campo de las lentes gravitacionales, método que proporciona una mirada excepcional y detallada de cómo evolucionan las estrellas, especialmente las estrellas más luminosas. “Esta es la primera vez que vemos una estrella individual magnificada”, explicó el líder del estudio, Patrick Kelly, de la Universidad de Minnesota, Twin Cities. “Puedes ver galaxias individuales, pero esta estrella está al menos 100 veces más lejos que la siguiente estrella individual que podemos estudiar, excepto en los casos de explosiones de supernovas”.
La peculiaridad cósmica que hace visible a esta estrella es un fenómeno llamado “lente gravitacional”. La gravedad de un cluster masivo de galaxias actúa como una lente natural en el espacio, doblando y amplificando la luz. A veces, la luz de un solo objeto de fondo aparece como imágenes múltiples. La luz se puede magnificar mucho, de forma que objetos extremadamente tenues y distantes sean lo suficientemente brillantes como para que puedan ser vistos.
Tom Broadhurst es uno de los líderes mundial en el campo de las lentes gravitacionales y se dio cuenta de que este evento es una estrella enormemente ampliada en un universo lejano. En este caso, un cluster de galaxias llamado MACS J1149 + 2223 ubicado entre la Tierra y la galaxia que contiene a Ícaro crea una “lupa” natural. Al combinar la fuerza de esta lente gravitacional con la extraordinaria resolución y sensibilidad del Hubble, los astrónomos pueden ver y estudiar Ícaro. La estrella se ha llamado “Ícaro” por el personaje mitológico griego que voló demasiado cerca del sol y cuyas alas de plumas y cera se derritieron. (Su nombre oficial es MACS J1149 + 2223 Lensed Star 1.) Al igual que Ícaro, la estrella solo alcanzó una gloria fugaz vista desde la Tierra, cuando por un instante se multiplicó 2.000 veces su verdadero brillo.
El equipo de investigadores había estado utilizando el Hubble para monitorizar una supernova en la lejana galaxia espiral cuando, en 2016, detectaron un nuevo punto de luz no lejos de la supernova magnificada. Sabían que no se trataba de otra supernova porque no se calentaba, no explotaba. La luz simplemente llegaba porque estaba magnificada. Cuando analizaron los colores de la luz que provenía de este objeto, descubrieron que era una estrella supergigante azul. Este tipo de estrellas es mucho más grande, más masivo, más caliente y posiblemente cientos de miles de veces más brillante que nuestro Sol, pero a esta distancia, todavía estaba demasiado lejos para ser vista sin ser observada a través de lentes gravitacionales.
Detectar la amplificación de una única estrella de fondo puntual proporciona una oportunidad única para probar la naturaleza de la materia oscura. La materia oscura es un material invisible que compone la mayor parte de la masa del universo. Los resultados de esta investigación rechazan la teoría de que la materia oscura está formada por una gran cantidad de agujeros negros creados en el nacimiento del universo, ya que las fluctuaciones leves de las estrellas de fondo, monitorizadas con Hubble durante 13 años, se verían diferentes si hubiera un enjambre de agujeros negros intermedios. Cuando se ponga en órbita el Telescopio Espacial James Webb de la NASA, los astrónomos esperan encontrar muchas más estrellas como Ícaro. La extraordinaria sensibilidad de Webb permitirá una medición más detallada, incluso en el caso de que las estrellas distantes estén girando.
Referencia:
Patrick L. Kelly et al (2018) Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens Nature Astronomy doi: 10.1038/s41550-018-0430-3
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo La estrella individual más lejana jamás vista se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La luz polarizada de la estrella más brillante de Leo
- #Naukas15 Fantasía en la divulgación: una estrella para Cervantes
- HR, la estrella de los diagramas en astrofísica
Se vende invasora a buen precio
Existe un amplio consenso científico al respecto de las invasiones biológicas: no solo son una de las mayores preocupaciones a nivel ecológico, sino que constituyen un factor clave en lo que denominamos cambio global. Esto es especialmente grave ya que el transporte de especies exóticas aumenta más y más cada día[1].
Mascotas raras que nadie que tú conozcas tiene y que te dan esa sensación de ser alguien especial —más especial cuanto más difícil sea encontrar un veterinario que pueda atenderla— o la sensación de tener el mejor jardín porque has puesto una planta nueva que nadie de tu vecindario parece tener, se suman a las modas que este o aquel famoso promueven al aparecer en televisión hablando de lo que mola su nueva cotorra o el charlatán de turno que dice curar el cáncer con hojas de Kalanchoe daigremontiana, planta con alto potencial invasor, ya que es capaz de reproducirse de forma clonal con una facilidad asombrosa[2].
En algunos países, como Australia o Nueva Zelanda, las políticas son extraordinariamente restrictivas y no se permite la introducción de especies foráneas. Pero en España y en Europa, de momento, adolecemos de medidas preventivas adecuadas. No solo eso, sino que aceptamos la introducción incluso desde entidades públicas. El lector únicamente tiene que pasear por un parque urbano de su ciudad. Que me avise si encuentra un parque que esté dominado por robles, encinas, hayas, alcornoques o cualesquiera especies nativas; cuando aparecen éstas en los parques, solo ocupan puestos anecdóticos. Sin embargo, no entraña gran dificultad observar con asombro parques llenos de acacias, ailantos, castaños de indias, arces y demás flora de diversa procedencia.

Ailanto (Ailanthus altissima)
Es importante remarcar el detalle de que algunas de las plantas que vemos en esos parques, como el ailanto (Ailanthus altissima) o la acacia mimosa (Acacia dealbata) son especies invasoras que están reguladas por la autoridad hipotéticamente competente[3]. Y no solo eso. Se siguen encontrando algunas de estas especies en los viveros[4]. Esto es grave. Por un lado, desde la ciencia se intenta predecir qué especies tienen el potencial de convertirse en invasoras, con el fin de regular su comercio y evitar su dispersión[5], y por el otro lado, nos encontramos con plantas cuyo comercio ya está regulado, que se siguen vendiendo en viveros y plantando en parques y jardines.
Recientemente, la industria ha adquirido una tendencia hacia la existencia de un número menor de productores pero más grandes, y están surgiendo nuevos canales de distribución, en particular el comercio por Internet [6]. Vender y comprar plantas por eBay, a través de foros o por cualquier otro recurso electrónico tiene grandes ventajas tanto para el cliente como para el vendedor. El segundo ya no está limitado a los clientes locales; puede vender prácticamente a cualquier parte del mundo sin tener que asumir grandes costes, y el comprador puede optar a una mayor cantidad de distribuidores, que no tienen que estar necesariamente cerca de él.
El comercio de plantas por internet no solo aumenta el intercambio global de plantas sino que aumenta la dificultad de control, haciendo que sea más fácil eludir los controles fronterizos y la normativa al respecto[7]. De hecho, se ha demostrado que 13 de las 35 especies de plantas que encontramos en la lista de 100 de las especies exóticas invasoras más dañinas del mundo[8] se encontraron sin dificultad en eBay. Es más, casi el 40% de las especies de plantas que se venden en la plataforma son invasoras[9].
Teniendo en cuenta que solo una minoría de las especies de plantas son invasoras, este dato demuestra la existencia de una excesiva representación de las especies invasoras respecto a las que no lo son.

Ejemplo de especies invasoras a la venta en eBay
A pesar de los grandes esfuerzos que se están realizando en el control de las invasiones biológicas, en la erradicación de las especies invasoras en las excepcionales ocasiones en que eso es posible, y en los trabajos de predicción y prevención de futuras invasiones, aún se están ofreciendo a diario, tanto en viveros como en Internet muchas especies exóticas invasoras. Hay quienes opinan que es necesario reforzar las medidas de control y vigilancia de comercio a este respecto para revertir esta peligrosa situación. Hay otros que piensan que deben instalarse sistemas de vigilancia en línea que rastreen este tipo de comercio con el fin de regularlo. Probablemente ambos tengan razón, pero un punto esencial es también la concienciación.
Y es que al fin y al cabo, si algo se vende es porque hay alguien que lo compra. Es muy importante que la gente conozca las especies invasoras, sea consciente del daño que hacen, no solo a nivel medioambiental, sino también a nosotros mismos. Y es que hay especies invasoras que dañan nuestras cosechas, las hay que atacan a nuestro ganado, que destruyen nuestras infraestructuras e incluso que nos hacen enfermar, poniendo en riesgo nuestra propia salud. Hoy he hablado sobre todo de plantas, pero también existen animales, hongos y microorganismos invasores.
Como he dicho, si algo se vende es porque hay alguien que lo compra. La concienciación es muy importante. Que la gente conozca la lista de especies invasoras de su país[10],[11], y rechace activamente la compra de esas especies puede ser una forma más de luchar contra este problema en ocasiones tan olvidado, pero que está muy presente. Si conseguimos que la gente no las compre, tal vez los distribuidores dejen de venderlas.
Este post ha sido realizado por Alvaro Bayón (@VaryIngweion) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
Referencias y más información:
[1] Hulme, P.E., 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46. https://doi.org/10.1111/j.1365-2664.2008.01600.x
[2] Guerra-García, A., Golubov, J., C. Mandujano, M., 2014. Invasion of Kalanchoe by clonal spread. Biological Invasions 17, 1615–1622. https://doi.org/10.1007/s10530-014-0820-0
[3] BOE, 2013. Real Decreto 630/2013, de 2 de agosto, por el que se regula el Catálogo español de especies exóticas invasoras. BOE 185, 56764–56786. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-8565
[4] Cronin, K., Kaplan, H., Gaertner, M., Irlich, U.M., Hoffman, M.T., 2017. Aliens in the nursery: assessing the attitudes of nursery managers to invasive species regulations. Biol Invasions 19, 925–937. https://doi.org/10.1007/s10530-016-1363-3
[5] Roy, H.E., European Commission, Directorate-General for the Environment, CEH (Centre of Ecology & Hydrology), 2015. Invasive alien species: prioritising prevention efforts through horizon scanning: final report. Publications Office, Luxembourg. http://ec.europa.eu/environment/nature/invasivealien/docs/Prioritising%20prevention%20efforts%20through%20horizon%20scanning.pdf
[6] Dehnen-Schmutz, K., Holdenrieder, O., Jeger, M.J., Pautasso, M., 2010. Structural change in the international horticultural industry: Some implications for plant health. Scientia Horticulturae 125, 1–15. https://doi.org/10.1016/j.scienta.2010.02.017
[7] Giltrap, N., Eyre, D., Reed, P., 2009. Internet sales of plants for planting – an increasing trend and threat? EPPO Bulletin 39, 168–170. https://doi.org/10.1111/j.1365-2338.2009.02283.x
[8] Lowe, S., Browne, M., Boudjelas, S., De Poorter, M., 2000. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group Auckland. https://s3.amazonaws.com/academia.edu.documents/33655728/100_world_worst_invasive_alien_species_English.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1521221921&Signature=ZB%2FR1BrlyaYpyD0eaedZOPu6lfA%3D&response-content-disposition=inline%3B%20filename%3D00_OF_THE_WORLDS_WORST_INVASIVE_ALIEN_SP.pdf
[9] Humair, F., Humair, L., Kuhn, F., Kueffer, C., 2015. E-commerce trade in invasive plants. Conservation Biology 29, 1658–1665. https://doi.org/10.1111/cobi.12579
[10] Sanz Elorza, M., Dana Sánchez, E.D., Sobrino Vesperinas, E. (Eds.), 2004. Atlas de las Plantas Alóctonas Invasoras en España. Dirección General para la Biodiversidad, Madrid. http://www.animalrecord.net/Atlas_Plantas_Aloctonas_Espana.pdf
[11] BOE, 2013. Real Decreto 630/2013, de 2 de agosto, por el que se regula el Catálogo español de especies exóticas invasoras. BOE 185, 56764–56786. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-8565
El artículo Se vende invasora a buen precio se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- ¿Cómo llegó el darwinismo a España? 06. Los introductores – Odón de Buen
- #Naukas15 Odón de Buen
- Del zumo de naranja a la selva, un ejemplo de reciclaje extremo
Muchos adultos son incapaces de realizar operaciones financieras básicas
John Jerrim
 

“No sé ni cuánto me va a costar esto”. Imagen: Shutterstock
Supongamos que un litro de cola cuesta 3.15 €. Si compras un tercio de litro de cola, ¿cuánto pagarías?
La anterior puede parecer una pregunta bastante básica. ¿Algo que quizás esperarías que la gran mayoría de adultos pueda responder? Especialmente si se les permite usar una calculadora.
Desafortunadamente, la realidad es que una gran cantidad de adultos en todo el mundo tienen dificultades incluso con un problema financiero tan básico (la respuesta correcta es 1.05 dólares, por cierto).
Utilizando datos del Programa para la Evaluación Internacional de las Competencias de los Adultos (PIAAC, por sus siglas en inglés) de la Organización para la Cooperación y el Desarrollo Económicos (OCDE), mis coautores y yo hemos analizado cómo responden los adultos de 31 países a cuatro preguntas financieras relativamente simples.
Además de la pregunta anterior, a los participantes se les hicieron preguntas como: “Supongamos que en tu visita al supermercado compras cuatro tipos de paquetes de té: té de manzanilla (4.60 €), té verde (4.15 €), té negro (EE.UU. 3.35 €) y té de limón (1.80 €). Si pagases por todos estos artículos con un billete de 20 €, ¿cuánto cambio recibirías? “
Los resultados (como se ve en la tabla) nos permitieron crear un rango estimado para el porcentaje de la población adulta que podría responder la pregunta de la cola correctamente. Estos resultados se basan en una muestra aleatoria de adultos de cada país.
Encontramos que Lituania, Austria y Eslovaquia tuvieron más éxito, pero incluso en estos países uno de cada cuatro adultos no pudo dar la respuesta correcta.
En muchos otros países, la situación es aún peor. Cuatro de cada diez adultos en lugares como Inglaterra, Canadá, España 0 EE. UU. no pueden hacer este cálculo simple, incluso cuando tenían una calculadora a mano. Del mismo modo, menos de la mitad de los adultos en lugares como Chile, Turquía o Corea del Sur pueden obtener la respuesta correcta.
Cálculos básicos
Por supuesto, no todos los grupos dentro de cada país lo hacen tan mal, y existen diferencias notables en las habilidades de alfabetización financiera entre diferentes grupos demográficos.
En las cuatro preguntas financieras que se hicieron a los adultos, en la mayoría de los países, los varones tendían a desempeñarse un poco mejor que las mujeres. Los jóvenes (particularmente los de 25 a 34 años) también obtuvieron mejores resultados que los mayores de 55 años.

Muchos adultos tienen dificultades con tareas financieras básicas, como determinar el mejor precio real [2] en el supermercado. Imagen: Shutterstock
Las diferencias más marcadas se vieron por grupo de educación. Volviendo a la primera pregunta anterior, en muchos países los adultos con un nivel de educación “bajo” (el equivalente a completar la educación secundaria) tenían menos del 50% de posibilidades de responder la pregunta correctamente. En lugares como Canadá o Estados Unidos, esto se redujo a tan solo el 25%.
Dolor de cabeza financiero
Nuestros resultados ponen de relieve claramente la cantidad de adultos que están mal equipados para tomar decisiones financieras clave. Y cómo, de hecho, muchos tienen dificultades para hacer frente incluso a tareas financieras muy simples.
A largo plazo, esto destaca la necesidad crítica de que la alfabetización financiera se enseñe en las escuelas, para garantizar que los jóvenes estén equipados para las complejas decisiones financieras a las que se enfrentarán en el mundo real.
Sin embargo, de manera más inmediata, dado el bajo nivel de habilidades financieras entre muchos adultos, es vital que la información que se suministre con los productos financieros sea tan simple y sencilla de interpretar como sea posible. Y en la era de los préstamos exprés [1] y las tarjetas de crédito de alto interés, también debe haber disponible asesoramiento y orientación adecuados cuando sea necesario. Porque de lo contrario existe un peligro real de que una gran proporción de la población corra el riesgo de cometer graves errores financieros.
Notas del traductor:
[1] Traducimos el “payday loan” original por “préstamo exprés”, una figura más común en la economía altamente bancarizada de Europa continental; el “préstamo nómina” no es exactamente lo mismo porque implica un análisis del riesgo de la operación, mientras que en los anteriores no existe (son préstamos “preconcedidos”). El “payday loan” originalmente era un avance de dinero en efectivo que se realizaba a cambio del cheque de la paga que tenía una fecha de vencimiento posterior, de ahí su nombre.
[2] Traducimos “value” por “mejor precio real” porque se trata de determinar cuánto cuesta un producto por unidad de medida, independientemente del precio de la unidad de venta. Así, por ejemplo, la oferta del supermercado a 0,99 € por un envase de 100 g de producto es en realidad más cara que el aparentemente más caro envase de 125 g que se vende a 1,10 € (0,88 € por 100 g).
Referencia:
Aditi Bhutoria, John Jerrim , Anna Vignoles (2018) The financial skills of adults across the world. New estimates from PIAAC. PIAAC_Working_Report_March_2018
Sobre el autor:
John Jerrim es profesor de economía y estadística social en el University College de Londres (Reino Unido)
Texto traducido y adaptado por César Tomé López a partir del original publicado por The Conversation el 15 de marzo de 2018 bajo una licencia Creative Commons (CC BY-ND 4.0)
El artículo Muchos adultos son incapaces de realizar operaciones financieras básicas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Uno, dos, muchos
- La pubertad está comenzando antes para muchos niños; la educación sexual debería afrontar esta realidad
- Modelos en ciencia: la sinapsis tripartita no existe en adultos
De la sal «sin gluten» al champú «sin gluten»: no solo marketing
Hace unos días comenzó a anunciarse en televisión el champú «sin gluten» de un conocido laboratorio cosmético. En el supermercado nos encontramos alimentos «sin gluten» que de serie no lo contienen, como por ejemplo la sal o los garbanzos. Podríamos pensar que estamos ante dos torticeras estrategias de marketing, pero eso sería quedarnos en la superficie. La realidad del asunto es más compleja y está en los hechos, sobre todo en los hechos científicos.
¿Son necesarios los productos sin gluten?
Las personas con enfermedad celiaca no pueden consumir alimentos con gluten. Es una enfermedad sistémica crónica autoinmune. Esto quiere decir que el organismo de las personas que padecen esta enfermedad reacciona ante algunas sustancias que componen el gluten como si fuesen tóxicas, generando inflamación y ocasionando lesiones intestinales. Puede terminar por dañar cualquier órgano o tejido. Afecta a personas que presentan una predisposición genética. Entre el 1 y el 2% de la población padece esta enfermedad.
La enfermedad celiaca no es exactamente una intolerancia ni una alergia, aunque suele explicarse así para hacerla comprensible, realmente es una enfermedad autoinmune. Las personas que padecen esta enfermedad pueden estar en contacto con el gluten porque éste no atraviesa la piel, sin embargo, no pueden ingerirlo.
Esta enfermedad puede provocar complicaciones de salud muy graves. Su tratamiento consiste en el seguimiento de una dieta estricta sin gluten durante toda la vida. Por este motivo sí es necesario que existan alimentos sin gluten para ellos.
¿Los alimentos sin gluten son mejores para todos?
El gluten es un conjunto de proteínas que está naturalmente presente en muchos cereales como el trigo, la espelta, la cebada, el centeno o el kamut, y les confiere un mayor interés culinario. El gluten es el responsable de la elasticidad de la masa de harina y de la consistencia y esponjosidad de los panes y masas horneadas. También es apreciado por su poder espesante. Durante el horneado, el gluten es el que retiene los gases de la fermentación en el interior de la masa, haciendo que esta suba y quede esponjosa. Después de la cocción, la coagulación del gluten es responsable de que el bollo no se desinfle una vez cocido.
Los panes, bollos y masas hechos con harinas sin gluten, como las de trigo sarraceno, arroz, maíz o garbanzo, son difíciles de manejar precisamente porque no contienen gluten.
Las personas que padecen la enfermedad celiaca, si quieren consumir panes, bollos o pastas, tienen que optar por fórmulas con harinas sin gluten. Desgraciadamente en muchos casos esto va en detrimento del sabor y la textura de los alimentos, además resultan más caros que los productos análogos fabricados con harinas con gluten, debido al mayor coste de las materias primas y a la mayor complejidad del proceso de fabricación.
Las personas que no padecen esta enfermedad no tienen ninguna razón por la que seguir una dieta sin gluten. Comer sin gluten no es ni más sano ni ayuda a perder peso, como muchas veces se ha dado a entender. Sin embargo, nos encontramos que las ventas de productos «sin gluten» ha aumentado a pesar de que no haya más personas con enfermedad celiaca. Algunas dietas se ponen de moda por muy absurdas que sean.
Una dieta sin gluten se basa en evitar una serie de cereales concretos. Nada más. En el caso de las personas con enfermedad celiaca además tienen que cuidar que no haya contaminación cruzada, es decir, que los alimentos no se hayan fabricado y cocinado donde también se fabrican y cocinan los alimentos con gluten. Para ellos seguir una dieta sin gluten es complicado. Si no tienes la enfermedad celiaca, no te compliques la vida.
Sal sin gluten: parece absurdo, pero no lo es
En el año 2000 la Federación de Asociaciones de Celíacos de España (FACE) emprendió la esforzada tarea de solicitar a la industria alimentaria, tanto a fabricantes como a distribuidores, que incluyeran algún tipo de distintivo en sus productos para ayudar a las personas con enfermedad celiaca a diferenciar entre los productos que podían consumir y los que no. Algunos productos, sobre todo procesados, pueden incluir en su composición harinas con gluten por motivos tecnológicos y puede resultar complicado ver cuáles son. Por aquel entonces la legislación vigente todavía no contemplaba las normas de etiquetado que hoy en día conocemos como «sin gluten» o «bajo en gluten». De ahí la petición.
En el año 2002, Mercadona ya ofrecía 50 referencias de productos «sin gluten» que fueron incluidos en la lista de productos aptos para celíacos en FACE. Mercadona sacó su propio sello «sin gluten», incluyéndolo en todos los alimentos libres de gluten, tanto si eran susceptibles de contenerlo como si no. Por este motivo encontramos alimentos con este sello, incluida la sal, el arroz, los garbanzos… alimentos que jamás lo han contenido. Este sello no respondía a una ridícula estrategia de marketing, sino a satisfacer la demanda de los consumidores y la petición de FACE. Otros muchos fabricantes y grandes distribuidores como Eroski o Carrefour se han sumado a esta iniciativa. En la actualidad ofrecen cientos referencias de alimentos sin gluten que habrían sido susceptibles de contenerlo. Tenemos más oferta de alimentos sin gluten que nunca.
El cambio en la normativa tardó algo más en llegar. Gracias a la iniciativa de los grandes distribuidores del sector alimentario, y a una propuesta del Ministerio de Sanidad y Consumo español, desarrollada a través de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN), y presentada a la Comunidad Europea en enero de 2008, se estableció que el límite de cantidad de gluten que debe figurar en la composición de todos los alimentos para ser considerados «sin gluten» ha de ser inferior a 20 mg/kg y para ser considerados «bajos en gluten» ha de ser inferior a 100 mg/kg. Esta propuesta se incluyó en el reglamento en 2009 y se mantiene en el reglamento vigente. En la actualidad existen varios sellos que certifican que los alimentos son «sin gluten».
Cosméticos sin gluten: parece absurdo y casi siempre lo es
Una conocida marca de cosméticos anuncia en televisión un nuevo champú «sin gluten». El envase del producto luce en su frontal el «sin gluten» como si se tratase de un eslogan comercial. Esto suscita chascarrillos y enfados a partes iguales. Hace un par de años se hacían bromas con el famoso «champú creador de materia» sin embargo, para sorpresa de muchos resultó que en aquel producto había mucha más ciencia de la que imaginábamos. Podríamos pensar que el champú sin gluten correrá la misma suerte, pero no, con ese eslogan nos están tomando el pelo, nunca mejor dicho.
Por un lado, el gluten no suele formar parte de los productos cosméticos porque no cumple ninguna función en ellos. Podríamos encontrar cantidades ínfimas en algún producto que contuviese avena o extractos de cereales con gluten. Según los estudios, incluso estos cosméticos contienen un máximo de 10 mg/kg de gluten; están por debajo de la cantidad de gluten que pueden contener los alimentos «sin gluten». Tendríamos que comernos dos labiales de cacao con avena para superar este límite. Obviamente el problema no sería ingerir gluten, sino comer barras de labios.
Por otro lado, el gluten no penetra en el organismo a través de la piel. Así que, aunque un cosmético contuviese gluten, éste no afectaría en nada a las personas con enfermedad celíaca. No obstante, hay que tener cuidado si entra en contacto con mucosas, heridas, o si se trata de productos infantiles, ya que los niños podrían ingerirlos accidentalmente durante el aseo. A las personas con enfermedad celiaca se les aconseja no utilizar labiales con ingredientes susceptibles de contener gluten, porque obviamente es más fácil ingerirlo, o cremas hidratantes de manos que podrían contaminar la comida. Aun así, la probabilidad de ingerir una cantidad nociva de gluten a través del uso de un cosmético es remota.
Hay un tipo de dermatitis que guarda cierta relación con el gluten. Se trata de la dermatitis herpetiforme. Esta enfermedad comúnmente aparece asociada a la enfermedad celiaca. Sin embargo, no se desarrolla por contacto por vía tópica con el gluten, sino tras su ingesta, así que los cosméticos sin gluten tampoco son necesarios para las personas con esta clase de dermatitis.
La Federación de Asociaciones de Celíacos de España (FACE) se ha puesto en contacto con el laboratorio que vende el champú para que retire el reclamo de «sin gluten». La razón que alegan es que este tipo de estrategia publicitaria banaliza la enfermedad celiaca, induce miedo a los consumidores y además de perpetúa los mitos en torno al gluten.
A título individual no pongo en duda las cualidades de este champú. Con total certeza será un buen producto cosmético. La estrategia publicitaria no solo se basa en el «sin gluten», pero desde luego sí ha acaparado toda la atención. Por eso solicito a estos laboratorios que retiren el «sin gluten» de su publicidad. No lo necesitan. Además, las personas que no estén bien informadas, que estén especialmente sensibilizadas con el tema del gluten porque tienen hijos con enfermedad celiaca, son un blanco fácil. Bastante fastidiado lo tienen con la alimentación como para preocuparse por chorradas.
Conclusión
Los cosméticos no llevan gluten porque éste no cumple ninguna función. Indicarlo como reclamo publicitario es un error. Causa inquietud en los consumidores, banaliza la enfermedad celiaca, perpetúa mitos y no responde a ninguna necesidad real. Además, si un cosmético tuviese gluten, las personas con enfermedad celiaca podrían utilizarlo sin problema.
En cambio, los alimentos sin gluten son necesarios para las personas que padecen la enfermedad celiaca. Las personas que no padecen la enfermedad celiaca no tienen por qué seguir una dieta sin gluten. Ni es más sana, ni sirve para perder peso.
La Federación de Asociaciones de Celíacos de España solicitó a fabricantes y distribuidores que todos los productos que no contienen gluten llevasen algún tipo de distintivo. Incluidos los productos que de forma natural no deberían contener gluten. No hubo una intención perversa por parte de la industria alimentaria. Todo lo contrario. Tanto es así que la industria se adelantó y propició un cambio de normativa que ahora nos permite distinguir más fácilmente qué alimentos llevan gluten y cuáles no.
Es tan vago creer que los alimentos sin gluten son más sanos como creer que la única intención de la industria es engañarnos. Suspicacias la justas.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo De la sal «sin gluten» al champú «sin gluten»: no solo marketing se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La pantalla de tu móvil solo tiene tres colores
- En busca de los genes de la enfermedad celíaca
- El peligro de saber sólo un poco
Una teoría cinética para los sistemas financieros
Ya operan en los mercados financieros roboadvisors, asesores automatizados para las inversiones, además de sistemas automatizados basados en algoritmos de toda clase y condición que pueden tomar y ejecutar miles de decisiones por minuto. Además existen sistemas de análisis cuantitativo que han convertido a matemáticos, físicos, estadísticos y expertos en computación, como los propietarios de Renaissance Technologies, en multimillonarios.
Para que nos hagamos una idea de la potencia de estos modelos, en 2008, el año de la gran crisis financiera, en el que el S&P 500, el índice que recoge a las 500 mayores empresas de los Estados Unidos, cayó un 38,5 %, el fondo Medaillon* de Renaissance, basado en el algoritmo Baum-Welch, que se emplea en ingeniería eléctrica, pero mejorado por el espeialista en álgebra James Ax, ganó un increíble 98,2 %. Esto es, la posibilidad de modelar eficaz y eficientemente el mercado existe, pero es una información secreta y solo la conocen algunos de los 290 propietarios-inversores de Renaissance.
Los altibajos de los mercados financieros parecen impredecibles, pero los físicos han demostrado que los modelos estocásticos aleatorios pueden captar la dinámica del mercado a gran escala, como los cambios en el índice Dow Jones. Lo que faltaba hasta ahora era un modelo, publicado en abierto, que describiese las interacciones a escalas más pequeñas, a nivel de operadores del mercado, los llamados traders.
Eso es precisamente lo que ha conseguido un grupo de investigadores encabezado por Kiyoshi Kanazawa, del Instituto Tecnológico de Tokio, un modelo que describe lo que ocurre a pequeña escala, utilizando para ello datos sobre traders individuales que operan en el mercado de divisas, el mayor mercado del mundo y en el que se opera con una frecuencia muy alta. Los investigadores comprobaron que el modelo podía usarse para desarrollar una teoría macroscópica que capturase con precisión la distribución de precios y otros indicadores del mercado.

¿Una partícula de polen en un vaso de agua o el par yen-dólar un día de mercado cualquiera?
El comportamiento estocástico, como el movimiento browniano de las partículas en un fluido, se puede entender con la llamada teoría cinética. En este enfoque, se comienza con un modelo de interacciones (o colisiones) microscópicas, moleculares, y se termina construyendo un modelo macroscópico que puede observarse casi a simple vista en el caso del movimiento browniano. El resultado final es una ecuación que describe la evolución de la posición de la partícula, la temperatura o alguna otra variable estadística a gran escala. Los “econofísicos” han intentado desarrollar una teoría cinética para los sistemas financieros, pero faltaban datos fiables sobre el comportamiento microscópico de los traders individuales.
Kanazawa y sus colaboradores analizaron las transacciones de alta frecuencia de cinco días entre dólares y yenes (cinco días puede parecer poco pero este es un mercado gigantesco, con millones de transacciones semanales). Hicieron un seguimiento del comportamiento de los traders, tanto en sus “ofertas” (bids, en el argot) como en los “precios de venta” (asks). Los traders envían pedidos cada pocos segundos, pero una transacción solo ocurre cuando el precio de venta de un trader coincide con el precio de oferta de otro trader.
Kanazawa et al. descubrieron que los operadores respondían a cada transacción ajustando sus precios de oferta /demanda según los cambios en el precio de transacción del mercado. Modelaron este “seguimiento de la tendencia” y encontraron que conducía a una ecuación similar a la de Boltzmann para el movimiento global de los precios. Esta ecuación macroscópica podría reproducir observaciones a gran escala del mercado de divisas.
* Como curiosidad: el nombre Medaillon viene del hecho de que el fundador de Renaissance James Simmons fue ganador del premio Veblen (1976) de geometría y James Ax del Cole (1967) de teoría de números.
Referencia:
Kiyoshi Kanazawa, Takumi Sueshige, Hideki Takayasu, and Misako Takayasu (2018) Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders Physical Review Letters doi: 10.1103/PhysRevLett.120.138301
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Una teoría cinética para los sistemas financieros se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La teoría cinética y la segunda ley de la termodinámica
- Los antecedentes de la teoría cinética
- La criticalidad de los mercados financieros
El origen poético de los números de Fibonacci
Un tema que ya se está convirtiendo en clásico en la sección Matemoción del Cuaderno de Cultura Científica es la sucesión de Fibonacci. Ya que como decía Marta Macho en una de sus últimas entradas ¡Nos encanta Fibonacci!.
Como seguramente sabrán las personas que estén leyendo esta entrada, la conocida como sucesión de Fibonacci fue introducida por el matemático italiano Leonardo de Pisa (1170-1241), a quien se le conocía como Fibonacci, esto es, hijo de Bonaccio, en su libro “Liber Abaci” (1202, El libro del Ábaco), como solución a uno de los problemas de ingenio que se planteaban en el mismo.

Caricatura de Fibonacci, realizada por el dibujante Enrique Morente para la exposición El Rostro Humano de las Matemáticas
Recordemos el problema en cuestión:
“Consideremos una familia de conejos con la característica de que tardan un mes en ser fértiles. Cuando han alcanzado la fertilidad, cada pareja se aparea teniendo al mes siguiente (cada hembra) una pareja de crías (un macho y una hembra) que de nuevo tardarán en ser fértiles un mes y entonces se aparearán. ¿Cuántas parejas de conejos habría al cabo de un tiempo dado, por ejemplo, un año?”

Número de parejas de conejos durante los primeros meses
No es difícil darse cuenta que la sucesión de parejas de conejos, suponiendo que estos no se mueran, que hay cada mes es la siguiente:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,…
que tiene la propiedad de que cada número der la sucesión, Fn, es igual a la suma de los dos números anteriores, Fn = Fn – 1 + Fn – 2, para n = 1, 2, 3, …
En la sección Una de Mates del Cuaderno de Cultura Científica, que recoge los videos de esta sección dentro del programa de TV Orbita Laika, en su segunda temporada, podéis ver la explicación del problema de Fibonacci.
La sucesión de Fibonacci no solo es interesante dentro de las matemáticas, sino que juega un papel fundamental en el estudio de la morfología de las plantas, en concreto, en la filotaxis, siendo el número de espirales de las cabezas de los girasoles, las piñas o el romanescu, números de dicha sucesión, también nos la encontramos en el arte, como en las obras del artista italiano Mario Merz (1925-2003), o en la literatura, como en el poema Alfabeto (1981) de poeta danesa Inger Christensen (1935-2009).

Números de Fibonacci en el edificio Mole Antonelliana de Turín (Italia), del artista Mario Merz. Wikimedia (Felpe Cadoná)
Sin embargo, en esta entrada no vamos a hablar de las propiedades matemáticas de la sucesión de Fibonacci o de la presencia de esta en la naturaleza y la cultura, sino que vamos a viajar hasta la India, unos cuantos siglos antes de que el matemático italiano Fibonacci escribiera su libro Liber Abaci, para descubrir la presencia de los números de Fibonacci en la poesía en sánscrito.
En 1985, el matemático indio Parmanad Singh, del Raj Narain College de la India, publicó en la revista Historia Mathematica el artículo The so-called Fibonacci Numbers in Ancient and Medieval India (Los así llamados números de Fibonacci en la India antigua y medieval), en el cual mostraba el origen indio de los números de Fibonacci y su conexión con la poesía en la lengua sánscrita.
En la poesía en sánscrito, lengua antigua de la India, existen los poemas en los cuales hay un número fijo de sílabas por verso (los llamados varna-vrttas) y aquellos en los que hay un número fijo de “moras” por verso (llamados matra-vrattas). Para los que no sabíamos que es la “mora”, esta es “la unidad que mide el peso silábico, es decir, la duración de los segmentos fonológicos que componen la sílaba” (según la Wikipedia). En sánscrito hay dos tipos de sílabas, unas cortas (llamadas laghu), de una mora o instante silábico, y otras largas (llamadas guru), de dos moras.
El latín, como las lenguas clásicas indias, el sánscrito y el prácrito, o el griego, también constaba de dos tipos de sílabas, cortas y largas. Las sílabas podían tener una sola mora, como aquellas sílabas acabadas en vocal breve, ya que en latín se distinguía entre vocales breves y largas, y las que tenían dos moras, que eran el resto de sílabas, las terminadas en vocales largas o en consonante. Una misma palabra podía tener dos significados distintos en función de que la vocal fuese corta o larga, así la “a” de “mălus” era una vocal corta y la palabra significaba “malo”, mientras que en “mālus” la vocal era larga y el significado era “manzano”, o también “mástil”. La primera palabra tenía dos sílabas con tres moras, mientras que la segunda tenía dos sílabas con cuatro moras. Otro ejemplo de palabra con dos significados en función de si la vocal es corta o larga es “solum”, con vocal corta “sŏlum” significaba “suelo”, mientras que tenía el significado de “solo” con la vocal larga, “sōlum”.
Volviendo al sánscrito, un verso de tipo varna-vrttas, que recordemos que en este tipo de métrica se mantiene el número de sílabas de cada verso, con tres sílabas posee 8 posibilidades, en relación a las moras que componen el mismo. Si llamamos C a una sílaba corta, con una mora, y L a una sílaba larga, con dos moras, las posibles estructuras, en relación a las moras, son 8: CCC, LCC, CLC, CCL, CLL, LCL, LLC y LLL. Aunque el número de sílabas se mantiene constante, el número de moras varía de unas estructuras a otras, la primera tiene 3 moras, las tres siguientes 4 moras, las tres con dos silabas largas tienen 5 moras y la última tiene 6 moras.
Sin embargo, si consideramos un verso de tipo matra-vrttas, que recordemos que en este tipo de métrica se mantiene el número de moras de cada verso, con tres moras, existen solamente 3 estructuras posibles CCC, CL y LC, siendo ahora variable el número de sílabas, la primera con tres sílabas y las otras con dos.

Fragmento del texto sagrado “Rig Veda”, escrito en sánscrito, que es el texto más antiguo de la India, probablemente escrito entre el 1.500 y 1.200 a.c., y que constaba de una serie de himnos compuestos para los dioses
Pero… ¿qué tienen que ver los poemas en sánscrito con los números de Fibonacci?
Para dar respuesta a esta pregunta vamos a centrarnos en la métrica matra-vrttas. Veamos cuántas posibles estructuras existen de versos con 1, 2, 3, 4 o 5 moras.
El número de variaciones posibles, para versos con 1, 2, 3, 4 o 5 moras, son 1, 2, 3, 5 y 8, que como podemos observar son números de Fibonacci. Pero fijémonos, por ejemplo, en las estructuras de los versos con 4 moras, los podemos dividir en dos tipos, los que terminan en una sílaba larga (L), que son las dos estructuras con 2 moras (L y CC) a las que se ha añadido dos moras mediante una sílaba larga (LL y CCL), y los que terminan en una sílaba corta (C), que son las tres estructuras con 3 moras (LC, CL y CCC) a las que se ha añadido una mora mediante una sílaba corta (LCC, CLC y CCCC). En consecuencia, hay 2 + 3 = 5 posibles estructuras con 4 moras.
Si ahora quisiéramos ver cuántas estructuras diferentes existen para los versos de la métrica matra-vrttas con 6 moras, obtendremos que son 13, los generados a partir de los de 4 moras al añadirle una sílaba larga (L), que son 5, y los generados a partir de los de 5 moras al añadirles una sílaba corta (C), que son 8, luego en total 5 + 8 = 13. En concreto, LLL, CCLL, LCCL, CLCL y CCCCL, junto con LCLC, CLLC, CCCLC, LLCC, CCLCC, LCCCC, CLCCC y CCCCCC.
Por lo tanto, lo que estamos diciendo es que el número de estructuras posibles con m moras es igual a la suma del número de estructuras con m – 1 y m – 2 moras, que es el motivo por el que salen los números de Fibonacci. En resumen,
¡¡la cantidad de estructuras posibles para versos matra-vrttas con m moras es igual al número de Fibonacci Fm+1!!
Si tenemos en cuenta que una sílaba corta (C) es 1 tiempo y una sílaba larga (L) son 2 tiempos, podemos escribir el anterior resultado como un resultado matemático.
Teorema: El número de Fibonacci Fm+1 es igual al número de formas de obtener el número m como sumas de 1s y 2s, donde el orden sí importa.
Por ejemplo, arriba hemos visto que el número 4 se puede obtener como cinco sumas diferentes con 1s y 2s, a saber, 2 + 2, 1 + 1 + 2, 2 + 1 + 1, 1 + 2 + 1 y 1 + 1 + 1 + 1, siguiendo el orden del cuadro anterior.
Ya hemos visto la relación que tiene la poesía en sánscrito con los números de Fibonacci, pero la pregunta ahora es si en la India eran conscientes de esta relación. Veamos lo que nos dice Parmanand Singh en su artículo.
Según este autor, Acarya Pingala (que vivió entre el 700 a.c. y el 100 d.c.), quien fue la primera autoridad en el estudio de la métrica en la India, pudo tener conocimiento de estos números, los conocidos como números de Fibonacci. Sin embargo, no existe una evidencia directa de esto, sino que en los comentarios de su obra realizados en el siglo X por el comentador Yadava, este habla de la regla de Pingala “misrau ca” (algo así como “y los dos juntos”) para explicar la expansión de los matra-vrttas combinando las expansiones de las dos métricas anteriores al añadir un guru (L) y un laghu (C), respectivamente. Y algo similar ocurre con otra autoridad antigua en la métrica de la India, Acarya Bharata, quien pudo vivir entre el 100 a.c. y el 350 d.c.
Sin embargo, la primera autoridad en el estudio de la métrica en la India que menciona explícitamente la regla de la formación de los números de variaciones de matra-vrttas fue Acarya Virahanka, quien vivió entre los siglos sexto y octavo. Puede leerse en una de sus obras algo así “Juntando las variaciones de las dos métricas anteriores, se obtiene la cantidad. Este es un método para conocer el número (de variaciones) de la siguiente matra-vrtta”.
Y el primer autor que menciona explícitamente los números de Fibonacci, mientras analiza y comenta la obra de Acarya Virahanka, es Gopala, cuyo comentario manuscrito de la obra del anterior está datado entre los años 1133 y 1135.
Otra autoridad que menciona explícitamente la regla de la creación de los matra-vrttas y los números de Fibonacci fue el poeta y estudioso de la métrica Acarya Hemacandra, en su estudio sobre la métrica Chandonusasana (1150). La regla de Hemacandra puede ser traducida algo así “la suma de los números [de variaciones] del último y anteúltimo, da lugar al del siguiente matra-vrtta”, y explícitamente menciona, como lo hizo Gopala, “1, 2, 3, 5, 8, 21, 34 y se continua de esta forma”.
Parmanand Singh menciona otra obra famosa sobre la métrica en la cual se dan algunas reglas sobre los números de Fibonacci, Prakrta Paingala, publicada posiblemente en el siglo XIV.
Todos estos estudios sobre la métrica de los matra-vrttas pertenecen al campo de la ciencia de la métrica, pero el primer estudio matemático en India de la sucesión de Fibonacci fue la obra Ganita Kaumudi (1356) del matemático Narayana Pandita, posterior a la obra del matemático italiano Fibonacci. En esta obra se estudian más sucesiones de números, además de la de Fibonacci, como la conocida como sucesión de las vacas de Narayana, de la que hablamos en la entrada Las vacas de Narayana, la versión hindú de los conejos de Fibonacci.

Obra “La secuencia de Fibonacci” del artista venezolano Rafael Araujo
Bibliografía
1.- Mario Livio, La proporción áurea, La historia de phi, el número más sorprendente del mundo, Ariel, 2006.
2.- Parmanad Singh, The so-called Fibonacci Numbers in Ancient and Medieval India, Historia Mathematica 12, n. 3, p. 229 – 244 (1985).
3.- Página web del artista Rafael Araujo.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo El origen poético de los números de Fibonacci se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Los números (y los inversos) de Fibonacci
- ¡Nos encanta Fibonacci!
- Una conjetura sobre ciertos números en el ‘sistema Shadok’
Animales en equilibrio osmótico: invertebrados marinos y peces bruja

Pez bruja del Pacífico o mixino morado (“Eptatretus stoutii”)
Los animales surgieron en el océano y allí se produjo su mayor radiación evolutiva; quizás por esa razón no hay ningún otro medio con más diversidad de grandes grupos. De hecho, en el mar están representados todos los filos y gran parte de las clases de animales, lo que no ocurre ni en las aguas dulces ni en el medio terrestre. Posiblemente eso explique por qué todos los invertebrados que son exclusivamente marinos son osmoconformadores; esto es, tienen la misma concentración osmótica que el agua de mar (alrededor de 1000 mOsm) y no hacen trabajo alguno para ajustar esa concentración1: sencillamente se encuentran en equilibrio osmótico con el medio externo, son isosmóticos2.
Como vimos aquí, de los tres grandes grupos en que puede clasificarse la fauna del planeta de acuerdo con la composición de sus medios interno e intracelular, los invertebrados marinos no solo se caracterizan por tener un medio interno con la misma concentración osmótica que el medio en el que viven sino que, además, tiene una composición iónica similar, aunque no idéntica, a la del agua de mar. Por las razones que dimos aquí, el medio intracelular, sin embargo, no tiene la misma composición de solutos ya que una parte muy importante de ellos son sustancias orgánicas, aunque mantienen, lógicamente, la misma concentración osmótica total.
Dado que la composición iónica del medio interno y la del agua marina no son idénticas, los invertebrados marinos han de recurrir a procesos activos de regulación iónica para mantener esas diferencias. Sus superficies corporales suelen ser muy permeables, lo que conlleva que los iones se muevan libremente entre ambos medios (interno y externo) a favor de gradiente electroquímico. Por ello, aquellos iones que se encuentran más concentrados en el plasma o líquido interno tienden a salir al exterior. Para contrarrestar el efecto de la pérdida, estos animales recurren al transporte activo desde el exterior, lo que conlleva un cierto gasto energético, y a incorporar los iones del agua ingerida con el alimento. Los órganos excretores también juegan un papel importante en estos procesos. En crustáceos y moluscos, por ejemplo, aunque la orina suele ser isosmótica con el plasma, el órgano excretor modifica la composición iónica, recuperando activamente los iones que tienden a perderse con mayor facilidad a través del tegumento o del epitelio respiratorio.
La mayor parte de las especies de esponjas, cnidarios, anélidos, moluscos, equinodermos, artrópodos y otros grupos menores que viven en los océanos pertenecen a linajes que no han abandonado nunca el medio marino. Eso explica el hecho de que sean isosmóticos y que algunos sean, además estenohalinos3, o sea, que no sean capaces de tolerar variaciones ambientales de salinidad. Los equinodermos son estenohalinos, carecen de representantes en aguas dulces; y casi todos los cnidarios también lo son4.
Las aproximadamente sesenta especies de mixines o peces bruja que viven en la actualidad han de incluirse también con los invertebrados marinos osmoconformadores de los que nos hemos ocupado aquí. Pueden considerarse una excepción, ya que son vertebrados, pero su presencia en este grupo no puede considerarse en absoluto anecdótica. Los mixines son muy interesantes. Carecen de mandíbula; o sea, son de los pocos representantes del grupo que retiene la condición agnata. Son, con toda probabilidad, el único grupo de vertebrados con ancestros exclusivamente marinos. Los otros vertebrados agnatos vivientes en la actualidad son las lampreas, algunos de cuyos representantes son de agua dulce. Por esa razón no es anecdótica su presencia aquí junto con los invertebrados marinos, ya que sus linajes son exclusivamente marinos. Eso explica que sus medios internos hayan retenido una concentración osmótica prácticamente idéntica a la del agua de mar en la que surgieron y han evolucionado, y que la composición de solutos del medio interno, aunque no sea la misma que la del medio externo, se le asemeje de forma notable y, lo que es más importante, que esté basada principalmente en sales inorgánicas.
Notas:
1Conviene advertir de que algunos invertebrados marinos ocupan medios de agua salobre o de concentración salina variable, como áreas estuarinas o lagunas costeras, y algunos han desarrollado una cierta capacidad para regular la concentración de su medio interno; pero no nos ocuparemos aquí de ellos por el momento.
2Isosmótico significa “de la misma concentración osmótica”.
3 El prefijo “esteno” indica que no tolera variaciones de algún factor. El opuesto a ese rasgo es la tolerancia amplia, que viene expresada por el prefijo “euri”. Así, estenohalino indica que no tolera variaciones de la salinidad y eurihalino, que tolera amplias variaciones de ese factor. Tanto “esteno” como “euri” se utilizan para caracterizar el rango de tolerancia para con otros factores.
4De las aproximadamente 10.000 especies del filo, menos de 40 son de agua dulce; la inmensa mayoría son marinas.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Animales en equilibrio osmótico: invertebrados marinos y peces bruja se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Relaciones hídricas y salinas de los animales
- La respiración de los invertebrados terrestres
- Efectores osmóticos
Comprobaciones experimentales de la relatividad general (1)
Cuando la teoría general de la relatividad se publicó en 1916 vino a explicar algunas observaciones astronómicas, hasta ese momento sin explicación satisfactoria, y realizó varias predicciones que se irían confirmando a lo largo del siglo siguiente, la última de ellas, las ondas gravitacionales, detectadas en 2016.
Hemos de aclarar que explicación, en filosofía de la ciencia, tiene un sentido minimalista. Simplificando, se dice que una teoría explica un conjunto de datos conocidos de una observación, si estos datos podrían haberse predicho usando la teoría. En cierto sentido una explicación es una predicción retroactiva.

Precesión de la órbita de un planeta.
Pues bien, a comienzos del siglo XX se había venido observando durante décadas, desde que lo describiese Urbain le Verrier en 1859, que la órbita de Mercurio tenía ciertas peculiaridades. Los planetas se supone que siguen órbitas elipsoidales, con el Sol en uno de los focos de la elipse, tal y como había descrito Kepler y explicado (en el sentido que usamos esta palabra) Newton. Resulta que el punto de la órbita más cercano al Sol, el perihelio, se supone que es fijo pero se había observado que se desplazaba ligeramente de lo previsto, lo suficiente como para poder medirse consistentemente, rotando alrededor del Sol; este fenómeno se conoce como precesión de la órbita y ocurre en todos los planetas no solo en Mercurio, algo que solo pudo medirse mucho después en los demás debido a lo pequeño del efecto. La teoría de Newton podía explicar el fenómeno, pero en ningún caso la magnitud de la precesión de la órbita de Mercurio.
Para explicarlo se aventuraron multitud de hipótesis, entre ellas la existencia de un planeta más próximo al Sol que el propio Mercurio, al que llamaron Vulcano. En el artículo que publicó Einstein en 1916 demostraba que sus ecuaciones “predecían” y, por tanto, explicaban, que el perihelio de Mercurio debía avanzar cada año y que la magnitud del avance se correspondía con los valores observados. Un punto a favor de la teoría, pero en ningún caso definitivo. Curiosamente Paul Gerber había llegado a la misma fórmula final para la magnitud de la precesión en 1898, pero se había basado en la teoría electromagnética de Weber (ya superada por la de Maxwell), y la consistencia lógica de la derivación era dudosa, por lo que se descartó la idea.

Corrimiento al rojo gravitacional o de Einstein
Einstein también recogía en su artículo de 1916 que, si la relatividad general es correcta, entonces la longitud de onda de la luz que se aleja del origen de un campo gravitatorio muy fuerte debería presentar un desplazamiento al rojo cuando se observa desde un punto muy alejado del origen. De nuevo esto es algo que ya predice Newton y que ya estudiaron John Michell en 1783 y Pierre Simon de Laplace en 1796 usando la teoría corpuscular de la luz newtoniana.
El problema del planteamiento newtoniano es que llegaría un momento en que la luz no podría escapar de una estrella lo suficientemente masiva, pero el hecho es que escapa. La teoría ondulatoria vino a remediar esta paradoja, pero fue necesaria la teoría de Einstein para explicar el desplazamiento al rojo que ve un observador externo y que se debe, no a que la longitud de onda de la luz se altere, sino a que relojes en diferentes puntos miden diferentes tiempos. El corrimiento al rojo que predice Einstein no es fácil de medir, pero los experimentos realizados a lo largo del siglo XX confirman que la magnitud observada se corresponde con las predicciones, no solo en la luz que escapa de púlsares y estrellas, sino en la que escapa de la propia Tierra donde el efecto es mucho menor.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Comprobaciones experimentales de la relatividad general (1) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Las ecuaciones de campo de la relatividad general
- El principio de relatividad (y 4): la versión de Einstein
- Confirmación experimental de la teoría de la relatividad especial (y 2)
Juguetes y hormonas sexuales

A lo largo de la vida hay distintos momentos en los que se elevan los niveles de hormonas sexuales en la sangre. Uno de esos momentos es el periodo perinatal. Poco antes del nacimiento y durante unos pocos meses posteriores al mismo se produce una elevación transitoria de los niveles de testosterona en los niños y de los de estrógenos en las niñas. La siguiente subida tiene lugar en la pubertad y esa ya no es transitoria, puesto que a partir de ese momento y hasta su muy posterior declive, bien avanzada la madurez, esos niveles se mantienen altos.
La elevación puberal de los niveles de hormonas sexuales induce y acompaña la maduración sexual, así como la aparición de los caracteres sexuales secundarios. Pero si bien sabemos cuál es la función de esa elevación, no tenemos el mismo conocimiento acerca de la subida transitoria perinatal. Dado que esa elevación no antecede ni va acompañada de ningún cambio anatómico o fisiológico -al menos evidente-, se ha postulado que en ese momento el tejido diana de esas hormonas es el cerebral y que podrían ser responsable de la configuración de algunas de las diferencias existentes en el comportamiento de niños y niñas.
En un trabajo publicado hace unos años, un equipo de psicólogas de Texas A & M University dieron cuenta de los resultados obtenidos en una investigación acerca de los condicionantes del comportamiento de niños y niñas y, más en concreto, del modo en que se ve afectado por estereotipos de sexo presentes en la sociedad o por factores de naturaleza biológica.
A la edad de tres años chicos y chicas muestran diferencias en sus preferencias de juego. Los chicos tienden a jugar más que las chicas con pelotas, vehículos y juguetes de construcción, y prefieren jugar con grupos más numerosos que las chicas. En qué medida estas diferencias son debidas a una suerte de programación biológica o son el resultado de la presión social es materia de intenso debate. Aunque parece ser que la exposición uterina a distintos niveles hormonales podría inducir la preferencia por unos u otros tipos de juguetes, no se ha investigado aún cuáles pueden ser el efecto de la elevación perinatal de los niveles de hormonas sexuales en el comportamiento infantil.
Las psicólogas de la universidad tejana trabajaron con bebés de 3 y 4 meses y encontraron que, si bien el comportamiento de las niñas no parecía verse afectado por la exposición pre o postnatal a distintos niveles hormonales, en los niños sí se observó una relación. Los niños con niveles más altos de testosterona mostraban una mayor preferencia por grupos de figuras que por figuras individuales. Y la mayor preferencia por animaciones con una pelota que por animaciones con un muñeco se relacionaba con la exposición prenatal a la testosterona.
No cabe extrapolar conclusiones definitivas de estos resultados al comportamiento en edades posteriores, cuando ya se manifiestan con claridad las diferencias por unos u otros juguetes. Pero si los factores hormonales condicionan algunos aspectos del comportamiento infantil temprano, bien cabe suponer que tal condicionamiento se extienda hacia edades mayores, con todo lo que ello comporta.
Fuente:
Gerianne Alexander, Teresa Wilcox y Mary Elizabeth Farmer (2009): “Hormone–behavior associations in early infancy” Hormones and Behavior 56: 498-502; DOI: 101016/j.yhbeh.2009.08.003
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Juguetes y hormonas sexuales se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Gradualismo o saltacionismo… en evolución lingüística
- Ciencia express: Qué son las hormonas
- ¿Nacidos para creer?
Amor romántico
“Sin el animal que habita dentro de nosotros somos ángeles castrados.”
Hermann Hesse.
“Amor: un juego en el cual hay dos que pierden, el hombre y la mujer, y uno sólo que gana: la especie.”
Abate Prévost.
“El enamoramiento es un estado de miseria mental en que la vida de nuestra conciencia se estrecha, empobrece y paraliza.”
José Ortega y Gasset.
El amor romántico no es fácil de definir. Nada menos que catorce acepciones aparecen en el Diccionario de la Lengua (por cierto, la última afirma que así se conoce el cadillo, una planta que se considera mala hierba). Quizá nos ayude la definición que ha publicado Tiffany Field, de la Universidad de Miami:
“Amor es un sentimiento profundo de afecto y cuidado que implica intimidad, compromiso y pasión, que nutre como el aire, el agua, las palabras y el tacto, y que tiene características típicas en la conducta, la fisiología y la bioquímica de las personas.”
El amor integra, por tanto, conductas, pensamientos, emociones y moléculas asociadas con el deseo de iniciar y mantener una relación con otra persona.
Parece que el amor incluye tres componentes: sexo, unión emocional e intimidad, y compromiso en el cuidado mutuo y de los hijos. Podemos resumir y concretar que el amor romántico es un compromiso para formar pareja con pasión, intimidad y cuidados. Es universal y aparece en todas las culturas. De manera inmediata suspende, en los que forman la pareja, la búsqueda de otras parejas. Tiene características propias en las emociones, en las conductas, en hormonas como la oxitocina o la testosterona, y en las respuestas neuropsicológicas de las zonas del cerebro relacionadas, ante todo, con los circuitos cerebrales de recompensa.
El amor tiene efectos beneficiosos para los individuos, con emociones positivas, felicidad y satisfacción vital, aunque también supone estrés, celos, a veces ruptura con tristeza y sensación de vergüenza, incluso depresión. Golpea a todos por lo menos una vez en la vida. En encuestas publicadas en Estados Unidos, Sandra Langeslag y Jan van Strien, de las universidades de Missouri y de Maryland, afirman que el porcentaje de individuos que padecen, o gozan, del amor romántico casi llega al 100%.
Hay varias hipótesis sobre el amor romántico. Garth Fletcher y sus colegas, de la Universidad Victoria de Wellington, en Nueva Zelanda, plantean tres propuestas conectadas entre sí. En primer lugar, el amor romántico es una conducta de compromiso para motivar la formación de la pareja en nuestra especie. En segundo lugar, la formación de la pareja facilita el peculiar ciclo vital de homínidos que implica dedicar una enorme y duradera inversión en tiempo y recursos para criar los hijos nacidos con un desarrollo muy temprano. Y, finalmente, el amor romántico ayuda a gestionar la pareja a largo plazo, incluyendo las relaciones familiares, y facilita la evolución de la inteligencia social y de las herramientas de cooperación dentro del grupo, clan o familia tan típicos en nuestra especie.
Según la revisión que hacen Fletcher y su grupo, los datos que se conocen son coherentes con la propuesta de que el amor romántico es una conducta de compromiso para formar la pareja. Hay referencias específicas de este objetivo en la conducta de ambos sexos, en la presencia de hormonas y en la aparición de mecanismos psicológicos peculiares del amor. Además, el amor romántico supone una ventaja pues da mejor salud y mayor supervivencia en los adultos y en las crías, o sea, en los niños.
Sin embargo, también hay conductas contrarias para el mantenimiento de la pareja y el cuidado de los hijos. Son, por ejemplo, los matrimonios arreglados y obligatorios, la poligamia, la separación, el divorcio y, en general, la infidelidad. Por el contrario, también hay mecanismos que regulan y controlan la relación y, sobre todo, la fidelidad por lo que implica de evitar la crianza de los genes de otro. Algunos autores sugieren que cada vez hay más evidencias de que, cuando nuestra especie surgió hace unos 150000 años, la conducta habitual en la reproducción era la monogamia. Cuando aparecieron los cazadores recolectores, la relación se complicó con la formación de clanes familiares, aunque siempre a partir de parejas.
En las primeras fases del amor romántico aparecen los síntomas típicos de las adicciones, sean a sustancias o a conductas. Hay euforia, deseo, tolerancia, dependencia física y emocional, abandonos, desintoxicaciones y recaídas. Helen Fisher y su grupo, de la Universidad de Indiana en Bloomington, proponen que el amor romántico es una adicción natural, y resultado de la selección natural pues es, casi siempre, positiva para la reproducción. Fisher afirma que ha evolucionado desde hace miles de años como mecanismo de supervivencia para buscar pareja y para el éxito reproductor.
El escaneo del cerebro de las personas enamoradas revela que se activan las zonas relacionadas con la recompensa y, en concreto, lugares con dopamina, el neurotransmisor conocido como recompensa química cerebral. Son las mismas zonas que funcionan con varias adiciones hacia sustancias o conductas como, por ejemplo, las armas de fuego en Estados Unidos, las autocaravanas en sus dueños, los pastelitos, la cocaína, las anfetaminas o el fútbol en los hinchas. O, en este último caso, es así para los seguidores del Oporto o del Coimbra, de la Primera División de Portugal, como declaran los 56 voluntarios del estudio de Isabel Duarte y su grupo, de la Universidad de Coimbra. Como definen los autores, este apego a un equipo de fútbol es un amor no romántico, pero con una atracción específica a su equipo y una motivación para seguirlo que se sienten premiadas por los circuitos cerebrales de recompensa. En concreto, los autores lo llaman amor tribal. O sea, al grupo, al clan, a la familia.
También el grupo de Zhiling Zou, de la Universidad del Sudoeste en Chongqing, en China, estudia el amor romántico como adicción en su primera fase y relatan que, cuando la relación amorosa progresa, los síntomas de adicción se atenúan y, poco a poco, desaparecen. Se pasa de una conducta de adicción a una conducta prosocial no adictiva.
De nuevo, como en el estudio de Helen Fisher (y en la afición al fútbol), el escaneo del cerebro revela la activación del área de recompensa y, además, de la red de emociones entre personas y con el entorno social. De nuevo, están la oxitocina y la dopamina.
Esta profunda implicación de hormonas, determinadas áreas del cerebro y neurotransmisores en el amor ha llevado a proponer que no es una emoción sino una necesidad fisiológica como el hambre, la sed, el sueño o el sexo. Así lo escribe Enrique Burunat, de la Universidad de La Laguna, cuando afirma que el amor es una conducta resultado de la selección natural para conseguir un mayor éxito en la reproducción. Los que desarrollan amor y, por tanto, compromiso para la cría de los hijos, tienen más descendencia y transmiten los genes de esa conducta a las siguientes generaciones. Los que no tienen amor, tienen menos descendencia y van desapareciendo. Así, después de miles de años, sea seleccionado la mejor conducta para el éxito en la reproducción. Y es una necesidad fisiológica y conductual inevitable. Por ello, el 100% de los humanos sienten o han sentido el amor en algún momento de su vida.
Por cierto, esta adicción al amor romántico es un poco especial. Los estudios del grupo de Jordane Boudesseul, de la Universidad de Grenoble, en Francia, demuestran que quien está enamorado cree más en el amor romántico, lo que se antoja coherente, pero, además, quien está enamorado cree en el libre albedrío aunque, también, acepta que la vida, quizá su enamoramiento en concreto, tiene un fuerte sentido determinista. Está, a la vez y sin ser consciente de ello, convencido de que se enamora obligatoriamente de quien quiere.
Para terminar, el amor romántico también tiene, a veces, un final, una ruptura que, como se dice, rompe el corazón. Nos cuenta Tiffany Field, aquella que nos definió el amor, que existe un síndrome del corazón roto. Una ruptura sentimental reproduce algo parecido a un ataque al corazón, aunque sin arterias ocluidas ni daños permanentes. Estas rupturas provocan hasta el mal funcionamiento del sistema inmune, con aumento general de la inflamación, lo que también influye en el corazón, y disminución de las defensas.
Referencias:
Boudesseul, J. et al. 2016. Free love? On the relation between belief in free will, determinism, and passionate love. Conciousness and Cognition 46: 47-59.
Burunat, E. 2016. Love is not an emotion. Psychology 7: 1883-1910.
Buss, D.M. 1996. La evolución del deseo. Alianza Ed. Madrid. 417 pp.
Duarte, I.C. et al. 2017. Tribal love: the neural correlates of passionate engagement in football fans. Social Cognitive and Affective Neuroscience doi: 10.1093/scan/nsx003
Field, T. 2016. Romantic love. International Journal of Behavioral Research & Psychology 4: 185-190.
*Fisher, H. 2004. Por qué amamos. Naturaleza y química del amor romántico. Santillana Ed. Madrid. 348 pp.
Fisher, H.E. et al. 2016. Intense, passionate, romantic love: A natural addiction? How the fields that investigate romance and substance abuse can inform each other. Frontiers in Psychology doi: 10.3389/fpsyg.2016.00687
Fletcher, G.J.O. et al. 2015. Pair-bonding, romantic love, and evolution: The curious case of Homo sapiens. Perspectives in Psychological Science 10: 20-36.
Langeslag, S.J.E. & J.W. van Strien. 2016. Regulations of romantic love feelings: preconceptions, strategies, and feasibility. PLOS ONE 11: e01611087
Song, S. et al. 2016. Romantic love is associated with enhanced inhibitory control in an emotional stop-signal task. Frontiers in Psychology doi: 10.3389/fpsyg.2016.01574
Zou, Z. et al. 2016. Romantic love vs. drug addiction may inspire a new treatment for addiction. Frontiers in Psychology doi: 10.3389/fpsyg.2016.01436
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo Amor romántico se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Naukas Bilbao 2017 – Carolina Jiménez: Ciencia y cine, avanzando de la mano
En #Naukas17 nadie tuvo que hacer cola desde el día anterior para poder conseguir asiento. Ni nadie se quedó fuera… 2017 fue el año de la mudanza al gran Auditorium del Palacio Euskalduna, con más de 2000 plazas. Los días 15 y 16 de septiembre la gente lo llenó para un maratón de ciencia y humor.
El cine no es más que la combinación del arte de la narrativa y el avance tecnológico. Lo sabe y lo explica como nadie Carolina Jiménez, artista de efectos especiales digitales para el cine que ha participado y participa en algunas de las superproducciones más conocidas de los últimos años.
Carolina Jiménez: Ciencia y cine, avanzando de la manoEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Naukas Bilbao 2017 – Carolina Jiménez: Ciencia y cine, avanzando de la mano se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Naukas Bilbao 2017 – Álex Méndez: Luz de luna
- Naukas Bilbao 2017 – Teresa Valdés-Solís: Limpia, fija y da esplendor
- Naukas Bilbao 2017 – Ignacio López-Goñi: Las bacterias también se vacunan
Una fibra óptica de plástico actúa como concentrador solar luminiscence
Un equipo de investigación de la UPV/EHU ha desarrollado un fibra óptica con dopantes híbridos que concentra la luz solar con un rendimiento alto y un coste bajo. Hasta ahora nunca se había utilizado como concentrador solar una fibra óptica de plástico que combina componentes orgánicos e inorgánicos.

Imagen: Itxaso Parola / UPV/EHU
Los resultados muestran que el rendimiento de la fibra al concentrar y transportar luz solar es alto, y que, conectado a células fotovoltaicas, resulta ser un sistema muy apropiado para suministrar electricidad a pequeños dispositivos.
Tan solo un 3 % de la energía consumida en 2017 proviene de sistemas eólicos, solares y de biomasa; los expertos, sin embargo, creen que actualmente la obtención de energía solar tiene las mayores perspectivas de crecimiento. No cabe duda de que siempre dispondremos de energía solar, y además de aprovecharla utilizando huertos solares, también se pueden utilizar sistemas más pequeños integrados en diversos espacios (en casas, tejados, etc.).
A nivel mundial se están llevando a cabo muchos estudios de mejora de células solares fotovoltaicas. Las células fotovoltaicas más avanzadas hasta el momento son las de silicio, pero son muchos los aspectos que necesitan ser mejorados: las fuentes de silicio son limitadas; las instalaciones requieren de grandes superficies; son necesarios sistemas de seguimiento solar, así como luz solar directa; su rendimiento disminuye mucho en días nublados o con luz difusa, etc. En definitiva, todavía resulta caro disponer de la energía solar.
Precisamente, en una investigación llevada a cabo por los departamentos de Física Aplicada I e Ingeniería de Comunicaciones de la UPV/EHU, en colaboración con el grupo Applied Organic Materials de la Universidad Técnica de Brunswick, han conseguido una fibra óptica de plástico con dopante híbrido que servirá para producir energía a pequeña escala. Para mejorar las características de la fibra óptica han añadido al polímero un dopante compuesto por substancias tanto orgánicas como inorgánicas. “Podrá utilizarse con células fotovoltaicas que alimenten pequeños dispositivos o sensores, y podría tener una gran potencialidad en el mercado de la fotovoltaica integrada en edificios o edificación verde —explica Itxaso Parola, autora de la investigación—. Además, conectada a fibras pasivas, se puede transportar la luz desde un extremo al otro de la fibra, y así, servir para alimentar dispositivos alejados de la fuente de energía”.
“La fibra óptica de plástico con dopante híbrido funciona como un concentrador solar luminiscente: absorbe la luz solar y la emite a una mayor longitud de onda; transporta la luz al extremo de la fibra, por reflexión interna total, y en el extremo de la fibra se coloca la célula fotovoltaica —explica Parola—. Es la primera vez que se utilizan para ese fin fibras ópticas de plástico que combinan componentes orgánicos e inorgánicos”. Asimismo, la investigadora de la UPV/EHU ha destacado que, como otros concentradores luminiscentes, este también resulta muy apropiado para obtener energía solar en espacios situados en sombra y en días nublados.
Según los resultados de las medidas llevadas a cabo, una fibra de 6 cm de longitud puede llegar a concentrar un tercio de la luz que emite el sol un día soleado de verano, y en opinión de la investigadora “ese resultado es muy bueno”. Han medido el rendimiento de la fibra en diversas condiciones ambientales y de iluminación, y “hemos observado que tiene un buen rendimiento en todos los casos, aunque el rendimiento es incluso algo mayor cuando la luz no incide directamente en la fibra. Esa característica es muy positiva teniendo en cuenta que el rendimiento de las células de silicio es muy pequeño en días nublados o de luz difusa”, comenta. Aunque la investigadora ha reconocido que cuando la fibra es muy larga la luz que se transporta por el interior se debilita, “con una sola fibra de 6 m de longitud hemos conseguido concentrar una intensidad de luz 1,3 veces mayor que la luz directa del sol”, detalla.
Tal como afirma la investigadora, es mucho más barato preparar sistemas como este que utilizar mayores superficies de células de silicio. De todas formas, Parola reconoce que es necesario investigar más en este campo para arrojar luz sobre varios aspectos: “Nosotros hemos realizado experimentos utilizando una única fibra, pero se necesitarían haces de fibras para poder cubrir el área activa de una célula fotovoltaica. Por otra parte, la superficie de las células fotovoltaicas es cuadrada, y al cubrir esa superficie con fibras cilíndricas siempre quedarán pequeñas zonas que no obtendrán luz. Ahora, estamos probando con diferentes diámetros de fibra; cuando la fibra es más gruesa pierde flexibilidad, pero, al mismo tiempo, absorbe más luz. Todavía tenemos mucho que investigar, pero los resultados son muy prometedores”.
Referencia:
I. Parola, D. Zaremba, R. Evert, J. Kielhorn, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, Hans-Hermann Johannes (2018) “High performance fluorescent fiber solar concentrators employing double‐doped polymer optical fibers” Solar Energy Materials and Solar Cells. DOI: 10.1016/j.solmat.2018.01.013
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Una fibra óptica de plástico actúa como concentrador solar luminiscence se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Hidrógeno a partir de composites de fibra de carbono
- Cómo incorporar nanotubos de carbono a un plástico de aviación
- La óptica se hace atómica: la lente más pequeña del mundo
La Criatura de “La forma del agua”
Usar el cine para hablar de ciencia es algo que suelo hacer habitualmente, y muchas películas se prestan a ser analizadas desde un punto de vista biológico, y eso es lo que vamos a hacer hoy con La forma del agua. Lo primero que me gustaría comentar sobre ella es que he quedado maravillado con esta nueva película del director mexicano Guillermo del Toro, y me ha recordado a lo mucho que disfruté con su obra El laberinto del fauno. Y es que como se oye mucho por ahí, los monstruos de este cineasta son maravillosos. Si encima me dan la excusa para poder hablar de biología, pues ya tenemos la película perfecta. Pocos Premios de la Academia para mi gusto ha ganado. Cabe recordar que La forma del agua se ha llevado el Oscar a la mejor película, al mejor director, a la mejor banda sonora y al mejor diseño de dirección; un total de cuatro estatuillas de las trece nominaciones que tenía.

Cartel de la forma del agua
Pero empecemos por el principio. ¿De qué trata está película? Si hay que hacer un resumen, tenemos que decir que va sobre el amor, el amor en sus múltiples facetas. Es una oda al amor, claramente. Un precioso cuento de amor en el que uno queda atrapado desde que empiezan las primeras palabras a narrar la historia, acompañadas de unas bellas imágenes cuidadas al máximo. Y es que está claro que ese es otro de los puntos fuertes de la película, la fotografía, que junto con la magnífica banda sonora, terminan de conformar esta maravillosa historia que ha cautivado a tanta gente.

El inicio de la película
Intentaremos que no haya spoilers en el post, pero está claro que tengo que contar algunos detalles, así que si alguien no quiere que le adelante algún detalle tiene que dejar de leer aquí, aunque me voy a centrar solo en la parte biológica que concierne a la criatura y no en la historia que se relata. Y es que esta criatura me ha cautivado a muchos niveles, y nos va a dar pie para que hablemos de detalles biológicos interesantes, que podemos conocer a lo largo del metraje de la película.

La criatura de La forma del agua
Muchos, al verla la primera vez, no hemos podido evitar acordarnos de otro de los monstruos clásicos del cine, La criatura de la Laguna Negra, de la película homónima de 1954 (Creature from the Black Lagoon), que fue titulada en español La mujer y el monstruo. Y es que el propio director, Guillermo del Toro, ha reconocido que esta película marcó su vida cuando la vio de pequeño.
“Tenía seis años cuando vi El Monstruo de la Laguna Negra en la televisión y hubo tres cosas que despertó en mí, la primera que no revelaré; la segunda fue la imagen más hermosa que había visto, me sentí abrumado por la belleza; y la tercera cosa fue que en realidad esperaba que terminaran juntos y no lo hicieron…”

La Criatura de la Laguna Negra
Tengo que reconocer que la primera frase que se nos puede pasar a la mayoría por la cabeza cuando vemos a la criatura es: – Vaya bicho más feo -, pero yo tuve la sensación contraria, me parecía una criatura de gran belleza, magnífica, digna de admiración, por lo que ahí coincido con las palabras de Del Toro, que no había leído hasta que me he puesto a buscar información para escribir esta reseña. Y es que el monstruo está perfectamente diseñado, con un cuidado extremo de todos los detalles, para que nos guste; lo que contrasta muchísimo con el disfraz, mas bien cutre, de la película de 1954, cosa que por otro lado es normal. Los monstruos de las películas antiguas nos suelen parecer mas feos casi siempre.

Comparativa
Según se narra al inicio de la película, cuando traen al monstruo a un laboratorio secreto del Gobierno, se habla de que lo encontraron en Sudamérica, del mismo modo que la Criatura de la Laguna Negra fue encontrado por un paleontólogo en el Amazonas, por lo que ambas tienen el mismo origen. El ser tiene aspecto de anfibio, y desde el primer momento se deja ver su piel húmeda y suave, aunque en algunas partes de la película se pueden intuir algo parecido a escamas, más o menos de gran tamaño que me hicieron dudar de la naturaleza de dicha criatura. Es más, atendiendo a ciertas características, podemos dudar de si estamos ante un anfibio estricto o si es un paso intermedio en la escala evolutiva entre este grupo y el de los reptiles. O incluso un espécimen intermedio entre anfibios y peces, todo ello complicado por la forma claramente antropomórfica del ser.

¿Pez, anfibio o reptil?
Desde el principio de la película nos dejan muy claro que la criatura necesita agua salada, por lo que tenemos que empezar hablando de ósmosis, que es un fenómeno físico que ocurre cuando tenemos dos disoluciones separadas por una membrana semipermeable, es decir una superficie que permite el paso de ciertas sustancias de forma selectiva. En el caso que nos interesa vamos a considerar que la membrana semipermeable permite el paso del agua, pero no de las sustancias que lleve disuelta, esto es, permite el paso del disolvente, pero no de los solutos. La ósmosis, se produce cuando dos disoluciones de diferentes concentraciones se encuentran separadas por una membrana de este tipo.
En este caso, el agua atravesará la membrana desde donde hay menor concentración de solutos hasta donde hay mayor concentración. La lógica y la experiencia nos dice que esto ocurre hasta que las dos disoluciones se igualan, y ambas presenten la misma concentración. A la disolución que tiene mayor concentración de solutos se le llama hipertónica, mientras que a la que tiene menos se le llama hipotónica. Cuando las dos se igualan, tras pasar el líquido desde el medio hipotónico al hipertónico, los dos medios pasan a convertirse en isotónicos, es decir, tienen la misma concentración. A partir de esto se define por ejemplo, la presión osmótica, pero no vamos a entrar en más conceptos físicos, sino que nos vamos a quedar en la aplicación biológica de este proceso. Sobre ósmosis y criaturas de este tipo nos habló magistralmente mi admirado Sergio Palacios en este post.

Ósmosis
Al igual que los peces, nuestra criatura cuenta con adaptaciones que le permiten sobrevivir a determinada concentración de sales en el agua, y debido a ello pueden vivir en el océano. Pero aquí nos encontramos el primer problema, que ahora comentaremos mientras repasamos algunas escenas de diálogo de la película, en las que se habla del origen de la criatura en los siguientes términos:
“… Sí, y lo sé bien. Yo saqué a esa bestia inmunda del fango de un río en Sudamérica y la arrastré hasta aquí. Y por el camino no congeniamos mucho.
Bien, esa criatura puede parecerles humana, porque se yergue sobre dos piernas, pero Dios nos creó a su imagen y semejanza. No creerán que Dios se parece a eso, ¿no?”
(Lo dice el Coronel Strickland hablando con las limpiadoras del laboratorio).

El actor Michael Shannon interpretando magistralmente a Strickland
Vale, tenemos una criatura marina, que dice que fue sacada del fango de un río sudamericano… No cuadra mucho, pero sigamos buscando pistas, a ver si podemos averiguar qué río era. El mismo Strickland, suelta más adelante la siguiente frase:
“Los indígenas del Amazonas lo veneraban como un Dios.”
Se trata del río Amazonas, que por cierto es el mismo río donde se hallaba la criatura de la película de 1954. Pero, ¿es el Amazonas un río de agua salada? Nada más lejos de la realidad. La consideración de agua dulce, que es como se entiende que es la de los ríos, se hace teniendo en cuenta que la salinidad esté entre un 0 y un 0,05 %, por lo que no parece muy lógico que esta criatura pueda vivir en el río Amazonas, excepto que lo haga en su desembocadura. En esa zona se mezclan los dos tipos de agua, dulce y salada, por lo que no sería extraño que los encuentros entre la criatura y los indígenas, y el lugar donde atraparon a este ser fuera la desembocadura del río Amazonas.

Delta del Amazonas
La concentración salina en los mares es de entre 33 y 35 g/l, es decir, de aproximadamente un 3,5 %, a causa de la sal común, el cloruro sódico, que hay disuelta en este medio. Sin embargo, la concentración de los fluidos corporales de los peces teleósteos, que son la mayoría de los peces que viven en medios marinos, es mucho menor, por lo que estos animales nadan en un medio hipertónico o hiperosmótico. Debido a esto, el agua tenderá a salir desde el interior de las células hacia dicho medio, por lo que corren el riesgo de morir, literalmente, deshidratados a pesar de vivir rodeados del líquido elemento. Para compensarlo no tienen mas remedio que beber.
Cabe suponer que nuestra criatura tenga las adaptaciones que los peces marinos: Al beber agua salada, está introduciendo en sus cuerpos una gran cantidad de sales que van disueltas en el agua, por lo que necesita algún mecanismo para expulsar este exceso salino. Y este mecanismo consiste en eliminar las sales mediante unas células especializadas de las branquias, y mediante una orina escasa, pero muy concentrada.

Osmorregulación en peces de agua salada
Existen peces que pueden vivir en los dos medios, es decir, los llamados peces diádromos, que viajan entre los ríos y los mares o viceversa. Hay peces que se aparean y nacen en los ríos, pero que pasan la mayor parte de su vida adulta en el mar, son los llamados peces anádromos, cuyo ejemplo más conocido quizás sean los salmones, entre los que destaca la especie Salmo salar, el salmón común o salmón del Atlántico. Entre los peces catádromos, también uno de los ejemplos más conocidos es el de las anguilas, Anguilla anguilla. Estos curiosos peces con forma alargada, nacen en el Océano Atlántico, en el conocido mar de los Sargazos, donde pasaran unos meses en forma de larva, llamadas larvas leptocéfalas, que arrastradas por las corrientes llegan hasta las costas de Europa, donde remontan los ríos para crecer y vivir en ellos durante muchos años. De adultos viajan río abajo para volver al mar de los Sargazos, donde nacieron, y reproducirse, llevando a cabo la puesta en dicho lugar.
En ambos casos, el problema está en que la osmorregulación debe adaptarse al medio en el que se encuentran en cada momento y para ello las estructuras celulares de las branquias deben cambiar acomodándose a la salinidad del medio. Cuando están en agua dulce, medio hipotónico, el epitelio branquial es capaz de absorber sales, mientras que en agua salada, medio hipertónico, las células de las branquias expulsan sal activamente. El control de la diferenciación y de la actividad de estas células se realiza mediante hormonas, así por ejemplo, el cortisol y la hormona del crecimiento activan este epitelio en la transición de los ríos al mar, mientras que la prolactina lo hace cuando ocurre el paso contrario.

Osmorregulación en peces de agua dulce
Y para complicar aún más el asunto existen algunas especies de peces llamados anfídromos, que se mueven entre el mar y el agua dulce, o entre los ríos y el agua salada, aunque no lo hacen por causas reproductivas, como los anteriores, sino para alimentarse o a causa de cambios estacionales. Un ejemplo de ellos son las lisas, Mugil cephalus, un pez carroñero muy habitual en las desembocaduras de los ríos, ya que es muy adaptable a distintas condiciones de salinidad e incluso a la contaminación. Creo que en un caso parecido a éste nos encontraríamos a nuestra criatura, que vive en el océano y que sube a la desembocadura de los ríos en busca de alimentos, más aún cuando en la película se cita que los indígenas le lanzaban flores, frutas y otros presentes. En varias escenas vemos como le encanta comer huevos cocidos, una fuente de proteína, ofrecidos por personajes humanos.

Los huevos, fuente de proteínas…
De nuevo nos encontramos otro problema de coherencia en los diálogos de la película que llegué a pensar que era un error cuando lo escuché la primera vez, y que me ha hecho buscar la versión original para ver si era un fallo de traducción. Se trata de lo que el Dr. Robert Hoffstetler le dice a Elisa, una de las limpiadoras, durante uno de los momentos más importantes del metraje:
“El agua debe tener entre un 5 y un 8 % de salinidad. Vale con sal común.”

El actor Michael Stuhlbarg con el doctor Robert Hoffstetler
¿Cómo? una salinidad mucho mayor que la media del agua del mar… ¿pero no habíamos quedado en que era una criatura marina que podía moverse a la desembocadura del río Amazonas? En un principio pensé que ahí se habían pasado con el porcentaje, quizás para enfatizar el problema de sacar a la criatura del laboratorio y hacer ver una necesidad o dependencia mayor del agua salada. Uno de los sitios más salados de nuestro planeta es el mar Muerto, cuya salinidad es variable, pero puede rondar entre un 22 y un 28 % de salinidad. El Gran Lago Salado norteamericano tiene una salinidad entre un 5 y un 22 % y muchos lagos salados sudamericanos tienen una salinidad variable entre el 3 y el 25 %. Pero nuestra criatura no vive en un lago, ni en el Mar Muerto.
Podemos aceptar que la criatura puede adaptarse a rangos variables de salinidad, lo que sumado a que también vemos que el agua del tanque del laboratorio y la bañera tienen que tener un producto (que no se menciona qué es), que le da un aspecto verdoso, y que me recordaba en todo momento a las aguas eutrofizadas. Todo ello nos da las pistas necesarias para que podamos concluir que su hábitat es una zona en la desembocadura de un río que está sufriendo este proceso de eutrofización. Esto consiste en que en un cuerpo de agua cerrado o casi cerrado, con poca corriente, los nutrientes que ingresan masivamente al sistema generan una gran biomasa de organismos de vida efímera. Al morir, toda esta masa biológica se acumula sobre el fondo al no ser totalmente consumidos por organismos descomponedores, sobre todo bacterias. Estos procesos naturales de eutrofización se pueden observar en las lagunas formadas por los cauces antiguos de ríos que se transforman en pantanos y posteriormente se cubren de vegetación. En el Amazonas, por supuesto, también ocurre esto. Por fin dimos con la clave del posible sitio de origen de nuestra misteriosa criatura.

Tanque de agua de la criatura
Cuando la criatura sale del laboratorio y tiene que pasar un tiempo en una bañera, además de lo que supone un espacio tan pequeño para un ser más alto que un humano medio, lo pasa muy mal suponemos que por no haber controlado exactamente la concentración salina del agua de la bañera, que seguramente se haya quedado corta. Gran parte de los problemas que tiene en esos momentos se deben a la necesidad de un hábitat natural amplio y acondicionado para que sobreviva, con una concentración salina adecuada.

La criatura en una bañera “eutrofizada” artificialmente
Hasta ahora, en todo momento hemos hablado de peces, pero dijimos al principio que nuestra criatura protagonista posiblemente se tratara de un anfibio, por lo que pasemos ahora a hablar de por qué pensamos esto, teniendo en cuenta las adaptaciones a la vida acuática y terrestre que vemos en la criatura, que son las típicas de este tipo de seres en la ficción.
En primer lugar atendamos a su aspecto general, con un color verdoso muy habitual en muchos grupos de anfibios, como ranas, sapos y tritones. El patrón de colores ondulado es muy característico y llamativo visto así, pero en el medio acuático eutrofizado que comentábamos antes debe significar un buen camuflaje para la criatura. La piel del tritón jaspeado, Triturus marmoratus, o las escamas del pez león, Pterois antennata, presenta patrones parecidos.

Tritón jaspeado y pez león
Es cierto que en el nuevo monstruo de Del Toro nos encontramos con la producción de luz en algunas células de la piel, lo que es una novedad frente a monstruos más clásicos. La bioluminiscencia es la producción de luz por parte de organismos vivos. Bioquímicamente hablando, se trata de una reacción en la que interviene una enzima llamada luciferasa, que hace que el oxígeno oxide a la proteína llamada luciferina, que da lugar a la oxiluciferina, produciéndose también agua y luz. Se trata de una transformación directa de energía química en energía lumínica. En la vida real las funciones de esta bioluminiscencia pueden ser múltiples, desde atraer a posibles presas, servir para comunicación entre individuos, camuflaje o distracción o como señal de advertencia. Para nuestra criatura no sabemos cual es la función en libertad, pero en la película vemos que está asociada con la regeneración de tejidos.

Bioluminiscencia
No hay anfibios bioluminiscentes que conozcamos, aunque recientemente se encontró una rana que brilla en la oscuridad, pero lo hace por fluorescencia que es diferente a la bioluminiscencia. Se trata de una rana sudamericana, la rana puntuada, o Hypsiboas punctatus, una especie que vive en montañas, pantanos, marismas y bosques tropicales y subtropicales, de varios países de Sudamérica, como Argentina, Bolivia, Brasil o Colombia, y que es capaz de brillar en la oscuridad. Lo que si tienen los anfibios es una capacidad increíble para regenerar los tejidos, así que la capacidad del monstruo para hacerlo también tiene su punto de justificación científica.

Hypsiboas punctatus
El ajolote mexicano y otras especies de salamandras y tritones presentan la capacidad de regenerar sus tejidos. Si se lesionan una extremidad o la cola son capaces de regenerarla, pero lo más asombroso es que también pueden hacerlo con partes de sus órganos vitales, como el corazón o el cerebro. Básicamente, lo que hacen estos animales es revertir sus células hasta el estado de células madre, para poder reparar los tejidos renovando todas las células que hagan falta. Al igual que nuestra bestia protagonista tiene esta capacidad para curar, estos anfibios están siendo usados para investigar posibles tratamientos de regeneración en pacientes amputados y curación de algunas enfermedades.

Regeneración en anfibios
Otra característica evidente en la criatura es su modo de respiración. Desde el principio se ven unas agallas grandes en el cuello entre las que suponemos entrever varias hendiduras branquiales, que dan acceso a las branquias que usa para respirar dentro del agua. Así mismo parece claro que cuenta con pulmones, que le permiten respirar en tierra. Hay varias referencias a ello en la película:
“Absorción de oxígeno e intercambio de dióxido de carbono. ¿Qué demonios es esto hijo?”
(Lo dice el general Hoyt hablando con el coronel Strickland)
“Esta criatura puede alternar entre dos mecanismos de respiración totalmente diferentes.”
(La intervención del Dr. Robert Hoffstetler matiza datos sobre la respiración de la criatura)

Detalle de diseño de la criatura. Se ven los repliegues branquiales en la cara y el cuello

Detalle del tórax de la criatura durante una sesión de maquillaje
Strickland apostilla a la intervención anterior con una frase que dice: – “El pez del fango también.”-, en referencia a los peces del género Periophthalmus, también llamados saltarines del fango. Estos fascinantes seres viven en manglares tropicales y tienen la capacidad de respirar aire en un modo de vida anfibio. Tienen capacidad para respirar a través de la piel, su mucosa bucal y faringe. Esto solo es posible en condiciones de mucha humedad, limitándolos a permanecer en el área fangosa. Éste tipo de respiración cutánea es muy similar al de los anfibios, por lo que el comentario de Strickland no está tan fuera de lugar.
Otra importante adaptación para ayudar a respirar aire es la existencia de grandes cámaras branquiales que actúan como un depósito de oxígeno, lo cual les sirve mientras están en tierra. La habilidad de enterrarse en profundos hoyos de sedimentos fangosos, les ayuda en su termorregulación, y también a evitar depredadores. Además, pueden utilizar esta capacidad para desovar en estos agujeros en el fango. Gracias a la cámara branquial pueden respirar cuando están enterrados y el agua tiene poca concentración de oxígeno.

Periophthalmus barbarus
Volviendo a la película, el propio Strickland vuelve a hacer otro comentario en referencia a los pulmones de la criatura:
“¿Ve eso que tiene a lo largo del pecho? Esta criatura tiene un cartílago articulado que separa los pulmones primarios de los secundarios. (…)”
En nuestro mundo real, los anfibios usan varios sistemas de respiración, como son la cutánea, la branquial, la pulmonar y la respiración a través de la cavidad oral. La respiración cutánea la utilizan cuando están sumergidos, por ejemplo para reproducirse, y de esta manera pueden respirar también a través de la piel mientras ésta se mantenga húmeda en el exterior. Tengamos en cuenta que los anfibios fueron los primeros vertebrados que salieron del agua para llevar a cabo gran parte de su vida fuera del agua, aunque no se independizaron totalmente de ella. Su reproducción los ata al agua, ya que sus huevos, sin cáscara, necesitan ser depositado en lugares muy húmedos o masas de agua para que no se desequen.

Respiración branquial en renacuajos

Respiración cutánea en anfibios adultos
Los primeros peces que desarrollaron la capacidad de salir del agua para sobrevivir cierto tiempo en tierra, la adquirieron gracias al desarrollo de pulmones, aunque estos fueran rudimentarios y menos efectivos que los de reptiles, aves y mamíferos. Los pulmones de las salamandras y tritones son unos simples sacos de paredes lisas bien vascularizadas, mientras que los de ranas y sapos son un poco más complejos con pliegues y cámaras, lo que aumenta la capacidad respiratoria. Estos primeros pulmones que tuvieron los anfibios derivan de la vejiga natatoria de los peces.

Vejiga natatoria
En cuanto a la respiración branquial, en los renacuajos y larvas de los anfibios es la forma más usual de respirar, y, normalmente, tras la metamorfosis, al llegar a adultos, sustituyen estas estructuras por los pulmones y pasan de tener respiración branquial a tener respiración pulmonar. De todas maneras, el tipo de respiración depende de la especie. Por ejemplo los ajolotes adultos pueden conservar la respiración branquial, mientras algunos tipos de salamandras, como las del género Bolitoglossa, carecen de respiración pulmonar y lo hacen exclusivamente por respiración cutánea.

Bolitoglossa mexicana
Nuestra criatura, es un ser alto y galante, para este papel, Guillermo del Toro ha utilizado al actor Doug Jones, que también hizo del Fauno en su famosa película. Este actor no es la primera vez que se mente en la piel de un hombre-anfibio, bastante parecido a éste, puesto que ya lo hizo en otra de las películas del cineasta mexicano. En Hellboy hacía el papel Abe Sapien, aunque este personaje es descrito más como un hombre-pez. En cualquier caso el parecido de ambas criaturas es más que razonable.

Abe Sapien
El propio Guillermo Del Toro dice que para los movimientos del monstruo quería la fluidez del Silver Surfer de los 4 Fantásticos, al que por cierto también interpretó Jones en su versión cinematográfica. Para que el diseño de la criatura fuera atractivo, el director se llevaba frecuentemente el traje a su casa para pedir opinión femenina en cuestiones como el abdomen más o menos marcado, el trasero o la anchura del pecho y los hombros. Doug Jones necesitaba cuatro horas de preparación y maquillaje para terminar teniendo el aspecto de la criatura. El resultado era una piel con todas las imperfecciones y detalles que un híbrido entre humano y anfibio debería tener: en el cuello y repliegues de la piel hay imperfecciones, hoyuelos, líneas, arrugas, cicatrices, vasos sanguíneos y pliegues. En cuanto a los colores también se ven diferentes tonos y variaciones según el ángulo de observación, la sombra, el medio en el que esté y la iluminación.

Doug Jones durante una sesión de preparación del traje y el maquillaje
Se pueden ver en las extremidades de la criatura estructuras a modo de aletas, aunque no demasiado grande para primar el aspecto antropomórfico sobre el anfibio. Llama poderosamente la atención la creta dorsal que presenta a lo largo de su espalda, siguiendo la línea de la columna vertebral, que puede ser una referencia a su condición de macho. Los machos de los tritones desarrollan este tipo de crestas dorsales en su espalda y en su cola como un signo de dimorfismo sexual que se usa para hacerlos más llamativos en el cortejo.

La cresta en la espalda de la criatura
La condición de macho de nuestro espécimen queda clara desde el principio, pero se hace referencia varias veces a su entrepierna, que se observa bastante plana, sin señal de la presencia de ningún pene u órgano copulador. Es la protagonista de la película, Elisa, la que en un momento dado explica a su amiga si la criatura tiene pene o no, y es aquí donde, debido a su condición de muda, lo hace mediante gestos. Atendiendo a como lo explica, la imagen que me hice de como era la estructura del pene de la criatura me recordó a la de un animal acuático, pero que precisamente no es un anfibio, ya que la mayoría de ellos carecen de pene, sino a la de los cocodrilos, que son reptiles.

Detalle del cuerpo completo de la criatura

Un juguete sexual inspirado en el supuesto órgano copulador de la criatura
El aligátor americano, también conocido como caimán americano, Alligator mississipiensis, es un tipo de cocodrilo que habita en Estados Unidos. Estos animales tienen un extraño pene blancuzco y con aspecto blando, que está continuamente en erección pero retraído en el interior de la cloaca, y que solo es impulsado al exterior por un reflejo muscular, al estimularse los nervios adecuados. En nuestra criatura el pene también se mantiene en el interior del cuerpo de ésta, hasta que no es necesaria su presencia, lo que coincide un poco con la explicación de Elisa y con la entrepierna plana que vemos en pantalla. Al no depender de sangre ni de ningún tipo de mecanismo hidráulico para su funcionamiento son los músculos los que se encargan de producir su salida, y la estructura elástica de un tendón es la que hace que se retraiga de nuevo, como si de una goma elástica se tratara.
En cuanto la musculatura de la cloaca se relaja y se abre, éste se libera. Los propios científicos encargados de su estudio comparan la eyección del pene del aligátor con la salida del contenido de un tubo de pasta de dientes, para que nos hagamos una idea. Si esto es así con la criatura de La forma del agua no lo sabemos, pero a mí es lo que se me vino a la mente. De esta característica reptiliana hablaba al principio del post, cuando dudábamos de su naturaleza.

El pene siempre erecto de un aligátor
Otro de los aspectos importantes es el rostro, pues Doug Jones se tiene que expresar, y una máscara habría sido un estorbo para ello. El rostro de la criatura está conseguido con prótesis para las agallas y repliegues, que se manipulaban externamente y se movían por control remoto. Se esforzaron por crear un rostro no demasiado extraño y una boca que fuera besable, por lo que los labios son bastante humanos. Su nariz es casi inexistente, reduciéndose a dos pequeñas fosas nasales y son sus grandes ojos lo que más destaca en su rostro. Estos parpadean de una curiosa forma, en horizontal en vez de en vertical, y es debido a que posee una membrana nictitante o tercer párpado, que es transparente y sirve para protegerlo del agua cuando se sumerge. De hecho vemos como estos párpados se le cierran en algunas escenas justo cuando se está hundiendo en el agua.

Los ojos de la criatura
Son muchos los detalles que hemos analizado de esta criatura, y aún así estoy seguro de que podríamos profundizar mucho más en cada uno de ellos o en otros que se nos hayan pasado, como por ejemplo la forma de alimentación, pero queda claro que disfrutar del cine añadiendo un punto de vista científico hace que una película, ya de por sí magnífica, mejore aún más.
Este post ha sido realizado por Carlos Lobato (@BiogeoCarlos) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
Referencias científicas y más información:
Kelly, D. A. (2013). Penile anatomy and hypotheses of erectile function in the American alligator (Alligator mississippiensis): muscular eversion and elastic retraction. The Anatomical Record, 296(3), 488-494.
Salas, R., Cruz, S. J. M., Castillo, E. B., & Guzmán, C. T. (2018). Análisis morfométrico y batimétrico de la laguna de Huamanpata, región Amazonas. INDES Revista de Investigación para el Desarrollo Sustentable, 2(2), 30-38.
Jackson, D. C. (1987). HOW DO AMPHIBIANS BREATHE BOTH. Comparative physiology: Life in water and on land, 9, 49.
Daniels, C. B., & Orgeig, S. (2003). Pulmonary surfactant: the key to the evolution of air breathing. Physiology, 18(4), 151-157.
España, M. D. C. M., Martinez, J. M., Moreira-Turcq, P., Bonnet, M. P., Villar, R. E., de Gamundi, A. V., … & Seyler, P. Monitoreo espacial y temporal del estado trófico de los lagos de planicies de inundación en la Amazonía central mediante sensores remotos.
Brainerd, E. L., & Owerkowicz, T. (2006). Functional morphology and evolution of aspiration breathing in tetrapods. Respiratory physiology & neurobiology, 154(1-2), 73-88.
La “osmótica” criatura de la Laguna Negra
Pero mira como osmorregulan los peces en el río
Descubrieron un arrecife de coral en el río Amazonas
Descubren inmenso arrecife en la desembocadura del río Amazonas
Wikipedia: Ósmosis
Wikipedia: Osmorregulación
La salinización de los ríos es un problema medioambiental en todo el planeta
El artículo La Criatura de “La forma del agua” se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Los animales que respiran en agua
- La distribución del agua animal y el curioso caso del potasio
- La forma de las hojas