Urpekarien oxigenoa

Zientzia Kaiera - Jue, 2017/02/16 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Oxigenoa

———————————————————————————————————–

Ugaztun gehienok lehortarrak gara, baina badira itsasoan bizi direnak edo bizimodu urlehortarra dutenak ere. Itsastarrak dira baleak eta izurdeak. Itsas elefanteak, itsas txakurrak eta itsas lehoiak, berriz, urlehortarrak dira. Urpekari apartak dira bai batzuk eta bai besteak. Aurreko istorioan azaldu dugunez, biriketan gordetako airearen nitrogenoak kalte larriak ekar ditzake; hori dela eta, itsas ugaztunek ez dute biriketan kasik airerik gordetzen urperatzera doazenean.

Hori horrela, eta biriketan oxigeno gutxiegi geratzen dela jakinda, nondik ateratzen dute, bada, itsas ugaztunek behar duten oxigenoa? Bi gordelekutatik ateratzen dutela da galdera horren erantzuna. Gordeleku bat odola bera da. Itsas txakurrek, esaterako, masa-unitateko odol gehiago dute gizakiok baino; ia bikoitza dute, zehatzak izateko. Gainera, oxigeno-kontzentrazioa balio altuagoetara hel daiteke haien odolean, odolaren hemoglobina-kontzentrazioa altuagoa baita. Horrek, hala ere, badu mugarik; izan ere, hemoglobinaren kontzentrazioa oso altua balitz, odolaren biskositatea altuegia izango litzateke, eta horrek lan handiegia emango lioke bihotzari odola ponpatzeko orduan. Hala ere, zenbait itsas ugaztunek [1] badute beste ezaugarri deigarri bat, uretatik ateratzen direnean eritrozito asko kentzen baitituzte zirkulaziotik eta barean gorde. Era horretara, eritrozitoen ehunekoa % 52tik % 38ra pasatzen da eta odolaren dentsitatea nabarmen jaisten.

Irudia: Itsas ugaztunek ez dute birikietan ia airerik gordetzen urperatzera doazenean. Behar duten oxigenoa bi kokalekutik hartzen dute, odolaren hemoglobinatik eta muskuluaren mioglobinatik.

Oxigenoaren bigarren gordelekua muskulua da. Ornodun guztien muskuluek, muskulu geldoek batez ere, mioglobina dute oxigenoa gordetzeko. Oxigenoa odoletik iristen da eta pigmentu horrekin konbinatzen da erabili baino lehen. Era horretara gordeta, konstante samar mantentzen da muskulu-zelulen oxigeno-kontzentrazioa. Horixe da edozein ugaztunetan gertatzen dena. Baina mioglobinarekin loturik dagoen oxigenoa beste ugaztunen muskuluetan dagoena baino askoz gehiago da itsas ugaztunetan, askoz ere mioglobina gehiago dutelako. Hona zenbait datu adierazgarri: gizabanakoen muskuluaren mioglobina-kontzentrazioa 6 g kg-1-koa da eta, aldiz, 50-70 g kg-1-koa da zenbait itsas txakurrena eta 76 g kg-1-koa zeroiarena.

Beraz, urpean denbora luzea igaro ahal izateko behar duten oxigenoa odolaren hemoglobinatik eta muskuluaren mioglobinatik ateratzen dute, birikek ez baitute horretarako balio. Guk biltegi berberak ditugu, baina urpekarienek askoz ere edukiera handiagoa dute.

Oharrak:

[1] Ez dakigu ezaugarri hori itsas ugaztun denek ote duten ala ez.

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.

 

The post Urpekarien oxigenoa appeared first on Zientzia Kaiera.

Categorías: Zientzia

Una electrónica para Venus

Cuaderno de Cultura Científica - Mié, 2017/02/15 - 17:00

Venus

Llamar inhóspito al planeta Venus es quedarse corto, muy corto. De hecho las condiciones son tan terribles que ni siquiera sabemos a ciencia cierta los datos más elementales, porque cualquier equipo que se envíe a medir tiene que ser capaz de aguantar del orden de 460 ºC de temperatura y una presión atmosférica aproximadamente 90 veces mayor que la de la Tierra. Esto se debe a que la atmósfera es en su mayor parte dióxido de carbono y es tan densa que es imposible ver la superficie. El dispositivo que más tiempo aguantó estas condiciones fue la sonda Venera 12 soviética en 1978, que aguantó 110 minutos y eso que estaba diseñada como un submarino de inmersión profunda.

No ha existido una misión a la superficie de Venus desde 1984. Después de todo, ¿para qué?¿Para gastar una barbaridad de dinero en una sonda que podría funcionar unas horas? Aunque quizás ahora las cosas cambien. El Centro de Investigación Glenn de la NASA ha desarrollado una electrónica que puede funcionar de forma prolongada en las condiciones de la superficie de Venus.

Los circuitos antes (arriba) y después (abajo) de la prueba.

Las sondas que se han enviado a Venus en el pasado protegían su electrónica en unos contenedores resistentes a la presión y a la temperatura, lo que añadía un peso significativo al sistema y disparaba el coste de la misión. Lo que el equipo encabezado por Philip Neudeck ha hecho es desarrollar una electrónica que pueda aguantar por sí misma, en la que los circuitos integrados están hechos a base de semiconductores de carburo de silicio.

Eso sí, tampoco hay que ponerse a lanzar cohetes. Ni en el sentido literal ni en el metafórico. La nueva electrónica soportó 521 horas (casi 22 días) en las condiciones de la superficie de Venus. Y si bien es un avance espectacular, que multiplica por 100 el mejor registro conocido de cualquier misión a Venus, tampoco parece mucha garantía como para empezar a diseñar una misión. Eso sí, tras las pruebas los circuitos seguían operativos.

Aparte de las aplicaciones que pueda tener este, u otros desarrollos basados en este en la exploración de Venus y otros planetas, es evidente que las aplicaciones terráqueas de este tipo de electrónica son múltiples: mejores controles en motores de alto rendimiento o instalaciones industriales, en los que las mediciones ahora mismo son indirectas o, directamente, no se tienen, son algunas de las posibilidades. Ello redundaría en un uso más eficiente de la energía y en menores emisiones contaminantes.

Como desde el inicio de la exploración espacial, los desarrollos que alienta terminarán mejorando la vida en la Tierra.

Referencia:

Philip G. Neudeck et al (2016) Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions AIP Advances doi: 10.1063/1.4973429

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Una electrónica para Venus se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. NASA, ¿cuándo vas a llevarnos a Venus en un barco (o en lo que sea)?
  2. Sorpresas en la atmósfera del polo sur de Venus
  3. Los volcanes de Venus
Categorías: Zientzia

El joven Arquímedes

Cuaderno de Cultura Científica - Mié, 2017/02/15 - 11:59

El joven Arquímedes es una colección de cuatro relatos cortos publicados por Aldous Huxley entre 1922 y 1930 (ver nota).

El primero de ellos, el que da título a la antología, narra la historia de Guido, hijo de unos campesinos italianos. Una familia acomodada y culta británica –un matrimonio y su hijo Robin– alquila una casa apartada en la montaña, cerca de un pueblecito italiano, junto a las tierras que cultivan los padres de Guido.

El matrimonio inglés percibe la inclinación natural de Guido hacia la música y comienza a instruirle en este arte. Sin embargo, pronto advierten que, en realidad, sus dotes para la música –a pesar de ser buenas– no son excepcionales: Guido es en realidad un genio en matemáticas.

Se incluyen debajo algunas citas tomadas del libro para conocer la historia de este joven Arquímedes. El narrador es padre de Robin:

Pero teníamos otras razones, a los pocos días de habitarla, para gustar de la casa. De esas razones, era la más poderosa, que en el hijo menor del campesino descubrimos el compañero ideal de juegos de nuestro hijito.

Entre el pequeño Guido –tal era su nombre– y el menor de sus hermanos había una diferencia de seis o siete años. Los dos mayores trabajaban en el campo con su padre; después de la muerte de la madre, dos o tres años antes de conocerlos, la hermana mayor manejaba la casa, y la menor, que acababa justamente de dejar el colegio, la ayudaba y en las horas libres vigilaba a Guido, quien no necesitaba ya mucha vigilancia: contaba de seis a siete años, y era tan precoz, tan seguro y tan lleno de responsabilidad como lo son en general los hijos de los pobres, entregados a sí mismos desde que empiezan a andar.

Guido interrumpe en ocasiones sus juegos, sumiéndose en profundas meditaciones:

Éste era un niño reflexivo sujeto a súbitas abstracciones. Uno lo encontraba, a veces, solo en un rincón, la barbilla en la mano, el codo en la rodilla, sumergido, al parecer, en profunda meditación. Y a veces, aun en medio de sus juegos se detenía de pronto y se quedaba de pie con las manos detrás, el entrecejo fruncido y mirando al suelo. […]Es el Guido abstraído en uno de esos trances en que solía caer, aun en plena risa y juegos, de manera absoluta e inesperada, como si de pronto se le hubiera metido en la cabeza irse y hubiera dejado el hermoso cuerpo silencioso abandonado, como una casa vacía, esperando su vuelta.

Para amenizar sus horas de silencio en la montaña, el matrimonio británico decide llevar desde a su casa italiana un gramófono y varios discos de música clásica. Guido queda impresionado al escuchar estas melodías, tan diferentes de las que había oído hasta entonces en las alegres fiestas familiares:

Guido se detuvo ante el gramófono, y se quedó inmóvil, escuchando. Sus ojos, de pálido azul grisáceo, se abrieron desmesurados, y, con un pequeño gesto nervioso que ya había notado antes, se tiró el labio inferior apretando el pulgar y el índice. Debió de haber hecho una profunda aspiración; porque noté que después de escuchar por algunos segundos espiró vivamente, y aspiró una nueva dosis de aire. Me miró un instante –mirada interrogadora, entusiasta, asombrada–, se rio con una risa que se volvió un estremecimiento nervioso, y se volvió hacia la fuente de esos maravillosos sonidos.

Guido se entusiasma con esa música que surge del gramófono y muestra una enorme habilidad para repetir ritmos y captar –sin conocimientos musicales previos– matices y diferencias entre unas y otras. El narrador piensa que Guido es un genio de la música y decide alquilar un piano para enseñar al pequeño algunas nociones musicales.

Tenía pasión por lo clásico. Cuando le expliqué los principios de esa forma, quedó encantado.

Es hermoso –decía admirado–. ¡Hermoso, hermoso, y tan fácil!

Guido aprende deprisa, pero no es un genio de la música: pronto se manifiesta su talento en otra disciplina:

Pero lo que vi fue a Guido que, con un palo tiznado, demostraba sobre las piedras lisas de la vereda que el cuadrado construido sobre la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados construidos sobre los dos otros lados.Arrodillado en el suelo, dibujaba con la punta de su palo quemado sobre el piso. […] Y empezó a demostrar el teorema de Pitágoras, no como Euclides, sino por el método más sencillo y satisfactorio que según todas las probabilidades empleó el mismo Pitágoras. Había dibujado un cuadrado que había seccionado, con un par de perpendiculares cruzadas, en dos cuadrados y dos rectángulos iguales. Dividió los dos rectángulos iguales por sus diagonales en cuatro triángulos rectángulos iguales. Los dos cuadrados resultan estar construidos sobre los lados del ángulo recto de esos triángulos. Eso era, el primer dibujo. En el siguiente, tomó los cuatro triángulos rectángulos en los cuales estaban divididos los rectángulos y los dispuso alrededor del cuadrado primitivo, de manera que sus ángulos rectos llenaran los ángulos de las esquinas del cuadrado, las hipotenusas en el interior y el lado mayor y menor de los triángulos como continuación de los lados del cuadrado (siendo iguales, cada uno, a la suma de esos lados). De este modo, el cuadrado primitivo está seccionado en cuatro triángulos rectos iguales y un cuadrado construido sobre su hipotenusa. Los cuatro triángulos son iguales a los dos rectángulos de la primera división. Resulta que el cuadrado construido sobre la hipotenusa es igual a la suma de dos cuadrados –los cuadrados de los dos catetos– en los cuales, con los rectángulos, fue dividido el primer cuadrado. En un lenguaje muy poco técnico, pero claramente y con implacable lógica, Guido expuso su demostración.

Teorema de Pitágoras (Wikipedia).

Tras este extraordinario descubrimiento –Guido había descubierto por sí mismo, sin ayuda, la demostración del teorema– las clases de música pasan a compartir su tiempo con lecciones de matemáticas. El pequeño Guido se encuentra plenamente seducido por el álgebra y sus teoremas, aludiendo constantemente a su belleza y su naturalidad:

Así le hice conocer el álgebra, haciéndole una nueva demostración del teorema de Pitágoras. En esa demostración, se traza una perpendicular de lo alto del ángulo recto sobre la hipotenusa, y partiendo de la base de que los dos triángulos así formados son semejantes entre ellos y al triángulo primitivo, y que sus lados homólogos son en consecuencia proporcionales, se demuestra algebraicamente que c2+d2 (los cuadrados de los otros dos lados) es igual a a2+b2 (los cuadrados de los dos segmentos de la hipotenusa) +2ab; cuyo total, como se puede demostrar con facilidad geométricamente, es igual a (a+b)2, o sea al cuadrado construido sobre la hipotenusa. […] Cada día descubría algo que le parecía exquisitamente bello; el nuevo juguete tenía posibilidades ilimitadas. […]Una tarde apareció Guido trayendo cuidadosamente en sus pequeñas y sucias manos un endeble dodecaedro.

¡É tanto bello! –decía mientras lo mostraba, y cuando le pregunté cómo lo había hecho, se contentó con sonreír y decir que ¡había sido tan fácil!

La familia británica debe partir a pasar una temporada a Suiza, obsequiando a Guido los seis primeros libros de Euclides en italiano para que continúe su formación. La dueña de las tierras obliga al padre –al campesino– a dejar al niño a su cargo durante una temporada –le amenaza con expulsarle de las tierras que cultivaba desde hacía años si no accedía a esta solicitud–. Aunque la casera trata bien al pequeño Guido, le obliga a estudiar música –pensando en que está contribuyendo a crear un virtuoso del piano– y le quita los libros de matemáticas para que no se entretenga. Guido, privado de la cercanía de sus seres queridos y de sus matemáticas, se cree abandonado por su familia y por la de su amigo Robin… con trágico final.

Esta novela se llevó al cine en 1950 con el título de Prelude to Fame; las matemáticas desaparecieron del guion, siendo Guido un gran genio de la música. ¡Una lástima!

NOTA: Las cuatro novelas son: El joven Arquímedes; Los Claxton; Cura de reposo y El monóculo.La Editorial Losada (Buenos Aires) los reunió en una antología en 1943, traducida al castellano por Leonor de Acevedo.

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo El joven Arquímedes se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Consejos a un joven científico
  2. “Caten”, catenarias danzando
  3. El ‘truelo’ de «el bueno», «el feo» y «el malo»
Categorías: Zientzia

Musikak eta sexuak bide beretik dakarte plazera

Zientzia Kaiera - Mié, 2017/02/15 - 09:00
Amaia Portugal Garunaren berezko opioideek zerikusi handia dute musikak eragiten duen gozamenean, Quebeceko ikerketa batean egiaztatu dutenez. Horixe bera gertatzen da sexuarekin, drogekin eta janariarekin ere. Opioide horiek blokeatzen dituen botika bat baliatuta, gustuko musika entzun eta hala ere ezer ez sentitzea lortu dute.

Sexua, drogak eta rock-and-rolla: maiz elkarri lotuta agertzen den hitz hirukotea. 1977an Ian Duryk argitaratutako kantu batean du jatorria atsotitz moduko honek. Ordutik bertsioak, filmak eta telebista saioak egin dira izenburu horrekin berarekin, eta esapidea gizartean txertatu da erabat, maiz izaten baitugu ahotan. Bada, Dury jaunak ez zuen halakorik esperoko hori idatzi zuenean, baina zientziak ere frogatu du badela harremanik sexuaren, drogaren eta musikaren artean. Izan ere, hiru horiek (bai eta janariak ere) eragiten duten plazerean, garuneko sistema kimiko berberak hartzen du parte.

Gustuko dugun musika entzuten dugunean, endorfinak (opioide endogenoak) eta dopaminak (neurotransmisoreak) askatzen ditugu; sexuarekin edo janariarekin bezalaxe. Hala egiaztatu dute, Quebeceko McGill Unibertsitatean egindako ikerketa batean. “Lehenbizikoz erakutsi dugu garunaren berezko opioideek esku-hartze zuzena dutela musikaren plazerean“, dio Daniel Levitin neurozientzialari, musikari eta ikerketa honen arduradunak. Scientific Reports aldizkarian eman dute egindako lanaren berri.

1, irudia: Musikak eragiten duen plazera sexuak eta drogek dakartenaren bide beretik dator. (Argazkia: Nickolai Kashirin / CC BY 2.0)

Ikerketa ildo honi lotuta, Levitinen taldeak zein beste batzuek erresonantzia magnetikoak baliatu izan dituzte aurrez, musikaz gozatzen ari garenean, garunaren zer zonalde aktibatzen diren ikusteko. Honetan guztian sistema opioideak zerikusiren bat baduela ondorioztatzeko balio izan die horrek, baina orain, urrats garrantzitsuagoa egin dute, naltrexonarekin egindako esperimentu baten bidez.

Garuneko opioideak blokeatzeko ahalmena duen substantzia da naltrexona, eta zenbait adikzio (alkohola, droga batzuk) tratatzeko baliatzen da horregatik. Beste osagai aktibo batekin konbinatuta, obesitateari aurre egiteko ere erabiltzen da; haren eraginpean, jatea ez baita gozagarria. Zenbait ikerketatan egiaztatu dutenez, orgasmoak eragindako plazera ere blokeatu dezake.

Hori horrela, naltrexona hartuta, musikak eragin ohi duen gozamena ere desagertzen ote den aztertu dute esperimentu honetan. Izan ere, hala balitz, substantzia honek musikaren plazerean duen efektua drogekin edo sexuarekin duenaren antzekoa litzateke, eta hirurek zirkuitu neuronal bertsuak partekatzen dituztela esan nahiko luke horrek.

2. irudia: Daniel Levitin ikertzailea eta musikaria. (Argazkia: Owen Egan / McGill University)

Esperimentua egiteko, unibertsitateko hamazazpi ikasle hartu zituzten lagin gisa. “Osasuntsu dagoen jendeari botikak ematen zaizkion bakoitzean kontu handiz ibili beharra dago, balizko efektuei aurrea hartzeko”, dio Levitinek. Hala, esperimentua hasi baino lehenago ere odol laginak atera zizkieten ikasleei, botikak kalte egiteko arrazoirik ez zegoela egiaztatzeko. Esperimenturako, bi kantu kuttun eramateko eskatu zitzaion parte hartzaile bakoitzari. Batzuei naltrexona jarri zitzaien, eta beste batzuek plazebo lanak betetzen zituen pilula bat irentsi behar izan zuten.

Ondoren, sentsoreak jarri zizkieten aurpegian, muskuluen jarduera neurtzeko. Arnasa, bihotz taupadak, odolaren presioa eta azalaren eroankortasuna ere aztertu zituzten, musika entzun bitartean. Naltrexona hartu zutenen erreakzioa harrigarria izan zela azpimarratu du Levitinek: “Batek zioen: ‘Badakit nire kantu gustukoena dela hau, baina orain ez dut ohi bezala sentitzen’. Beste batek: ‘Ederra da, baina ez nau ukitzen'”.

Ikasleongan izandako efektua ikusita, musikaren, sexuaren eta drogen arteko lotura egiaztatu dute. Hala, artikuluan gaineratzen denez, musikaren jatorria ebolutiboa dela dioen ustea indartzen du lan honek.

Erreferentzia bibliografikoa:

Adiel Mallik, Mona Lisa Chanda & Daniel J. Levitin. Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Scientific Reports 7, Article number: 41952 (2017). DOI:10.1038/srep41952

———————————————————————————-

Egileaz: Amaia Portugal (@amaiaportugal) zientzia kazetaria da.

———————————————————————————

The post Musikak eta sexuak bide beretik dakarte plazera appeared first on Zientzia Kaiera.

Categorías: Zientzia

Catástrofe Ultravioleta #13 LEVIATÁN

Cuaderno de Cultura Científica - Mar, 2017/02/14 - 17:00

Catástrofe Ultravioleta #13 LEVIATÁN

Vuelve Catástrofe Ultravioleta y nos preparamos para su segunda temporada. Nos embarcamos en una gran aventura para avistar cachalotes. Desde Canarias hasta Tarifa, desde la superficie hasta las profundidades del océano.

Agradecimientos: Cabildo Insular de La Gomera, Philippe Verborgh (CIRCE), Juan Ignacio Pérez Iglesias (UPV/EHU), Carlos Álvarez, Natacha Aguilar, Manola y a todos los que habéis hecho posible, con vuestro apoyo, que Catástrofe Ultravioleta regrese.

* Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el apoyo de la Cátedra de Cultura Científicade la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.

Puedes conocernos en nuestra web: Catastrofeultravioleta.com y seguirnos en el twitter Catastrofe_UV

 

El artículo Catástrofe Ultravioleta #13 LEVIATÁN se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Catástrofe Ultravioleta #10 – Hipnosis
  2. Catástrofe Ultravioleta #03 Interferencias
  3. Preparados para una Catástrofe Ultravioleta
Categorías: Zientzia

Paracelso, el sistemático borrachín que trató la sífilis (2)

Cuaderno de Cultura Científica - Mar, 2017/02/14 - 11:59

El uso más importante que podía hacerse de la alquimia, según Paracelso, será preparar medicinas que restablezcan el equilibrio químico de un cuerpo alterado por la enfermedad.

Por lo tanto, Paracelso se dedicó a ello de forma sistemática. En el que puede considerarse el primer proceso químico estandarizado de la historia, sometió a una gran variedad de metales a un conjunto de procedimientos para obtener una serie de sales. En realidad estas llamadas sales, no lo eran en el sentido moderno, sino que eran disoluciones que, para complicar más las cosas, Paracelso llamaba aceites que empleaba como medicamentos.

Paracelso también habría sido el primer europeo en emplear tintura de opio (un extracto alcohólico de opio), a la que llamó láudano, para tratar enfermedades. La acción de los principios activos del opio habría sido más analgésica que curativa, obviamente.

Hay quien sospecha que Paracelso podría haber sido un usuario frecuente del láudano, lo que en parte justificaría la poca influencia que tuvieron sus textos. Efectivamente su estilo extraño, confuso y errático, incluso para los estándares alquímicos, por describirlo amablemente, no facilitaba ni su lectura, ni su comprensión, llegando a plantear incluso que hubiese algo que comprender.

Además del láudano, Paracelso también era un usuario frecuente de esa relativamente nueva medicina, el alcohol destilado. De hecho habría sido la primera persona en usar la palabra alcohol para referirse a la esencia destilada del vino. Un tipo de maquillaje empleado desde la antigüedad en el este del Mediterráneo y Oriente Próximo, el kuhl, la expresión del árabe hispano para nombrarlo al-kuhúl, pasó a usarse para referirse a cualquier “polvo finamente dividido y limpio de impurezas”. Por una nueva metonimia al-kuhúl pasó a significar “la mejor parte de una sustancia”. El que Paracelso considerase el alcohol como la mejor parte del vino parece evidente habida cuenta de las enormes cantidades que trasegaba y que le hacían acabar muchos día en el suelo de una taberna.

Das Christuskind straft die Menschheit mit Syphilis (‘el niño Cristo castiga a la humanidad con la sífilis’, 1496), xilografía de Joseph Grünpeck.

Curase o no curasen sus aceites, láudano y alcohol, todos su remedios quedaron eclipsados por su gran triunfo: el empleo del mercurio en el tratamiento de la sífilis, la enfermedad que marcó una época. Si hoy día se caracteriza la sífilis como una enfermedad de evolución lenta, que causa llagas en los genitales y que puede levara síntomas mucho más graves si no se trata, en 1495 en Europa la sífilis se describía como una enfermedad que provocaba pústulas que cubrían todo el cuerpo, de la cabeza a los pies, en la que la piel se desprendía de la cara, y que terminaba provocando la muerte en unos pocos meses.

Trtamiento de la sífilis en 1498, según un texto publicado en Viena. El médico arrodillado estaría aplicando mercurio según las directrices de Paracelso.

Apenas medio siglo después, para mediados del siglo XVI, la sífilis se había transformado en algo muy parecido a lo que conocemos hoy. Se ha sugerido que en ese periodo el microbio que la produce habría mutado de tal forma que los enfermos se mantenían vivos mucho más tiempo asegurando así una mayor tasa de transmisión de la enfermedad. Con todo, seguía siendo una enfermedad muy temida y la medicina basada en autoridades, básicamente Hipócrates, galeno y Avicena, tenía poco que ofrecer para atacarla más allá de unos remedios basados en hierbas de ninguna eficacia. Sin embargo, la aplicación tópica de mercurio recomendada por Paracelso, era de una eficacia espectacular en comparación. De hecho, no existió mejor tratamiento contra la sífilis hasta comienzos del siglo XX.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Paracelso, el sistemático borrachín que trató la sífilis (2) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Paracelso, el Lutero de la alquimia (1)
  2. Ciencia en la cocina: crujiente de mandioca con queso de Paracelso
  3. Experimentación animal (II)
Categorías: Zientzia

Hona hemen Laboratorium, Bergarako Errege Seminarioko Museoa

Zientzia Kaiera - Mar, 2017/02/14 - 09:00
Bergarako Laboratorium Museoa Antzinako objektu zientifikoen bilduma bat denbora luzean ikertu, sailkatu, zaindu eta zaharberritu ondoren, 2015eko irailean Laboratorium museoa ireki genuen Bergaran (Gipuzkoan). Museo honen funtsezko helburua da aldarrikatzea eta zabaltzea zer nolako garrantzia duten berrikuntzak, zientziak eta hezkuntzak, oinarri gisa, aurrerapena eta garapena lortu ahal izateko. Zergatik museo berri hau? Bergara izan zelako Errege Seminarioko egoitza. Errege Seminarioa Euskal Herrian izandako erakunde bakan eta bikaina da; eta horren ibilbide historiko-zientifiko paregabea eta horren bilduma zientifikoa daude gure proiektu berriaren oinarrian. Ezagutzen duzu Errege Seminarioa? Eta hango bildumak?

1. irudia: Laboratorium Museoa Bergaran dago, Errekalde jauregian, ingeles estiloko lorategi baten erdian. (Argazkia: Laboratorium Museoa)

Errege Seminarioa (jatorrian, “Real Seminario Patriótico Bascongado”) zientziaren sorlekua da Euskal Herrian. Euskalerriaren Adiskideen Elkarteak sortu zuen 1776. urtean, eta hasierako urteak izugarri bikainak izan ziren. Joseph Louis Proust kimikaria –kimika modernoaren sortzaileetakoa eta Proportzio Definituen Legea adierazi zuelako ezaguna– Seminarioko irakasle izan zen eta, gainera, bertako laborategi paregabea (Laboratorium chemicum) antolatu zuen. Laborategi honetan, Elhuyar anaiek 1783. urtean elementu kimiko berri bat deskubritu zuten: wolframa; eta bertan ere, platinoa xaflakor bihurtzeko metodoa aurkitu zen –eta horri esker platino baliotsua erabilgarri bihurtzea lortu zen–. XIX. mendean zehar, nahiz eta gerrek era handian baldintzatu, zentroak bere garrantzia mantentzea lortu zuen. Ingeniariak prestatzeko Eskola Industriala bihurtu zuten (Euskal Herriko lehenengoa), eta urtetan Gipuzkoak zuen institutu bakarra ere izan zen. Bertako azpiegitura zientifikoak lehen mailakoa izaten jarraitzen zuen: kimikako laborategiak, fisikako kabineteak, lorategi botanikoa, zoologia-bildumak, meteorologia-behatokia.

Errege Seminarioko zuzendariek, batez ere 1776-1892 urte bitartean, Bergarako instalazioak hornitzeko behar zuten materiala eskuratzeko, ekipamendu zientifikoaren arloan Europako egile eta merkatari ospetsuenak zirenengana jo zuten. Zientzia egiteko eta zientzia irakasteko kalitate handiko tresna zientifiko moderno asko bildu zituzten. Hor dago museoko oinarria den bildumako objektu zientifikoen jatorria.

2. irudia: Museoetan gordetzen diren objektu zientifiko askok zientzia kontzeptuak transmititzeko ahalmen handia dute.

Euskal Herrian, mota honetako bilduma bakarra da; bakarra, bakana eta bikaina, bai erakunde sortzailearen garrantzi historiko-zientifikoagatik, bai bildumaren sekzio zientifiko desberdinen aberastasunagatik, bai bildumaren antzinatasunagatik, bai bilduma honetan pieza bakan-bakanak, berezi-bereziak, paregabeak gordetzeagatik. Hiru mila objektu zientifikok osatzen dute bilduma: fisika eta kimikako tresneria, mineralak, fosilak, giza anatomiako modeloak eta zoologia-piezak; denak XVIII. eta batez ere XIX. mendekoak.

Errege Seminarioko historia hobeto ezagutu eta bertako bildumen atal batzuk ikusi nahi badituzu, etor zaitez museoko egoitzara, Bergarako Errekalde jauregian. Errekalde jauregiak, gainera, lotura estua du zientziak Euskal Herrian izan zituen hastapenekin; izan ere, XVIII. mendearen bukaeran, jauregi honetan bizi izan zen Xabier Maria Munibe, Peñafloridako VIII. kondea, urtetan Seminarioko zuzendari izandakoa, Ilustrazio garaian. Bisita ezazu! Benetan merezi du!

3. irudia: Laboratorium Museoan hainbat zientzia bilduma daude: Kimika, Fisika eta Zoologiakoak besteak beste. Azken hau mundu guztiko animaliekin osatuta dago. (Argazkia: Laboratorium Museoa)

Hala ere, Laboratorium museoaren jarduna ez da soilik mugatuko erakusgai dagoen bilduma hori erakustera. Ez da gutxiago ere. Gaur egun oso hedatuta dagoen “Museologia Berria” izeneko korronte museologikoaren barruan txertatu da museo hau. Museologia berri honen giltzarria da museo tradizionalaren parametroak zabaltzea eta demokratizatzea; hau da, museo tradizionaletik museo berrira igarotzen dugunean, museoko bildumetara mugatu gabe, Ondarearen Mundura pasatzen gara (ondare kulturala eta naturala); museora joaten den publikoa ahaztu gabe, gizartea eta komunitatea jartzen dugu ardatz; museoaren eraikuntza mespretxatu gabe, lurralderantz zabaltzen dugu.

Eta zabalkuntza-lan horretan honako eskaintza eskuzabal hau sortu zen, UPV/EHUko Kultura Zientifikoko Katedrak egin ziguna, blog hau izan dadin Laboratorium museorako erakusleihotako bat. Leiho edo blog horren bitartez, museo-bildumako aleetatik abiatuta, istorioak eta historiak kontatuko ditugu, zientziari buruz, zientzialariei buruz edo horiek sortu zituzten bildumei buruz. Zurekin partekatzea nahiko genuke.

—————————————————–

Egileez:  Bergarako Laboratorium Museoko talde teknikoa.

Errekalde Jauregia, Juan Irazabal pasealekua, 1. 20570 Bergara

Harremanetarako: 943 769 003 eta laboratorium@bergara.eus

—————————————————–

The post Hona hemen Laboratorium, Bergarako Errege Seminarioko Museoa appeared first on Zientzia Kaiera.

Categorías: Zientzia

Preparados para matar: algunas ideas para el debate

Cuaderno de Cultura Científica - Lun, 2017/02/13 - 17:00

La propia aplicación del pensamiento de Darwin a los problemas humanos… ilumina éstos de una forma que había sido siempre eludida en los planteamientos tradicionales, reconsiderando antiguos problemas y apuntando a su solución.”

Daniel Dennett, La peligrosa idea de Darwin, 1999 (1996).

Esta serie de textos tratará de matar y de su sustrato biológico y evolutivo. Tratará del homicidio, el asesinato y la ejecución. Y, siempre, quien esto escribe y quienes me lean no deben olvidar que la presentación de hipótesis y teorías, incluso de hechos, está afectada significativamente por la predisposición en cultura, historia e ideología del que presenta y del que recibe el argumento. O sea, en esta serie, sobre todo de mí y de mis circunstancias.

En la película “La batalla de Anzio”, Robert Mitchum es el protagonista e interpreta a un periodista de guerra veterano y cínico. Al final de la película, en una charla con un general destituido, Mitchum dice que “el hombre mata porque le gusta matar”, y siguen varias explicaciones, que no vienen al caso, de su afirmación. Siempre me ha fascinado el hecho de que, según declaramos con mucho énfasis, solo hay que recordar el quinto mandamiento, no debemos matar y, sin embargo, matamos sin cesar. O como aclara la Biblia en Éxodo, 23-7, no quites la vida al inocente y justo; y no absuelvas al malvado”, pues hay que precisar cuando y a quien hay que matar y cuando no hay que hacerlo.

Según escribo estas líneas, decenas de personas están muriendo con violencia en todas las partes del mundo, civilizadas o no, según como se declaran los que allí viven. Pero las personas matan, y han matado, a otras personas en cualquier cultura, en cualquier lugar del planeta y en cualquier tiempo. La cuestión, creo, es por qué lo hacen.

En Estados Unidos hubo 13.636 homicidios en 2009. Cerca de 88 millones de personas murieron como resultado de las guerras del siglo XX en todo el planeta, y 54 millones eran civiles. Entre las tribus de cazadores recolectores, lo más parecido a nuestros antepasados de hace unos miles de años, el 13%, según datos de los arqueólogos, o el 15%, según la etnografía actual, de los hombres mueren en guerras. Incluso entre los yanomano, en la Amazonia, entre el 20% y el 30% de los hombres mueren con violencia.

Son solo algunos datos estadísticos de la cantidad y calidad de la violencia cometida por nuestra especie. Aunque algunas de estas muertes se pueden atribuir al abuso del alcohol o las drogas, a desórdenes mentales y a otras causas parecidas, lo cierto es que la mayor parte de las conductas violentas en nuestra especie no se pueden considerar una aberración sino que son obra de personas consideradas normales. Es lo habitual, algo típico de los humanos, incluyendo asesinatos y guerras.

Harold Shipman

Harold Shipman: El ambicioso médico y la estadística

Harold Frederick Shipman nació Nottingham el 14 de enero de 1946 y murió el 13 de enero de 2004. Era médico generalista y se le considera el mayor asesino en serie de la historia de Inglaterra. Fue juzgado y condenado a 15 cadenas perpetuas el 31 de enero de 2000 por 15 asesinatos. En 2004 se suicidó en su celda de máxima seguridad en la cárcel de Wakefield. Nunca admitió su culpabilidad y, por tanto, nunca explicó a cuántos mató y por qué lo hacía.

Estudió en Nottingham y en la Universidad de Leeds, y fue médico residente en la Facultad de Medicina de Bodington Hall en 1965. Allí conoció a la que sería su mujer, Primrose. Se casaron en 1966 y tuvieron cuatro hijos. Al terminar sus estudios en Leeds, comenzó a ejercer la medicina en el Hospital de Pontefract, cerca de Leeds, y se sospecha que ya entonces comenzaron sus asesinatos. También trabajó para el sistema penitenciario a principios de los setenta y, aunque no está probado, se supone que allí también asesinó a algunos pacientes.

En 1975 fue detenido por posesión de recetas de pethidina para uso propio, y por denuncias de sus colegas médicos. Es un opioide sintético utilizado como analgésico y que se considera que causa menos adicción que la morfina. Después de pasar por un centro de desintoxicación, fue declarado sano y apto para ejercer la medicina de nuevo.

Pasó de un puesto a otro siempre dejando buena impresión, hasta que se estableció en Hyde, cerca de Manchester, en 1977, donde llegó a tener su propia clínica a partir de 1993.

Sospechoso por primera vez en mayo de 1998, fue abandonada la investigación policial por falta de pruebas. Todo comenzó con la visita de la doctora Linda Reynolds, en marzo de 1998, al fiscal John Pollard, del distrito de South Manchester, y le comunicó su preocupación por el alto índice de mortalidad entre los pacientes de Shipman. También le comentó el gran número de cremaciones entre los fallecidos y de, en su gran mayoría, eran mujeres mayores, hasta el 80%. Según el fiscal Pollard, Shipman mataba a sus pacientes, aunque no podía asegurar si era negligencia o asesinato. La policía investigó el asunto, aunque sin mucho interés. Como ya he dicho, se archivó el caso por falta de pruebas un mes después, en abril.

Ya en 1985, Allen Massey, de la funeraria local, hizo notar que los pacientes de Shipman parecían morir a una tasa superior a la habitual y, además, muchos morían vestidos y sentados en su sillón. Por otra parte, tampoco parecía que hubieran estado gravemente enfermos antes de su muerte. Y, además, el doctor Shipman, solía estar presente en el momento de la muerte. Massey se enfrentó a Shipman pero este le convenció de que no había nada raro y que allí estaban sus libros de notas y casos listos para una inspección. Justo enfrente de la clínica de Shipman estaba la Clínica Brooke y los médicos que trabajaban allí también notaron el exceso de muertes entre los pacientes de la clínica de la acera de enfrente. Pero, como con Massey, sus sospechas eran difíciles de probar.

La muerte de su última víctima, Kathleen Grundy, hizo que en junio del mismo año, 1998, se retomara el caso. Vivía en Hyde y era muy conocida pues había sido alcaldesa de la localidad. El día de su muerte, el 24 de junio y con 81 años, la última visita que recibió fue la de su médico, el doctor Shipman, que también firmó su certificado de defunción. En la casilla sobre la causa de la muerte, Shipman puso “por su gran edad”.

La hija de la señora Grundy, la abogada Angela Woodruff, descubrió que su madre había cambiado el testamento y dejaba sus ahorros a Shipman. Por cierto, el testamento, escrito a máquina, se supone que por la señora Grundy, que, por otra parte, no tenía máquina de escribir, estaba mal redactado y peor mecanografiado. Desconfiada, Woodruff fue a la policía y consiguió la exhumación del cadáver de su madre. En el nuevo análisis se encontraron en el cuerpo restos de morfina, una sobredosis administrada unas tres horas antes de su muerte, justo cuando tenía lugar la visita de Shipman. Fue arrestado el 7 de septiembre de 1998 y, en el registro de su casa, se encontró la máquina de escribir que se había utilizado para cambiar el testamento de la señora Grundy.

La policía centró su investigación en 15 de los últimos pacientes fallecidos del doctor Shipman. Se analizaron los cuerpos y en todos se encontraron restos de morfina. Con estos datos, la policía acusó a Shipman y el 5 de octubre de 1999 se inició el juicio.

Uno de los policías que interrogó entonces a Shipman contó que era un tipo arrogante, de trato difícil, que intentaba controlar los interrogatorios y se burlaba de los policías. Lo tomaba como una competición en la que su superior intelecto terminaría victorioso. De todas formas, es curioso que, mientras lo habitual para la policía es tener un asesinato y buscar al asesino, con Shipman primero tuvieron al asesino y, después, tuvieron que buscar los asesinatos.

El 31 de enero de 2000, Shipman fue condenado a 15 cadenas perpetuas, una por cada una de sus víctimas, con la recomendación del juez de que nunca le dejaran en libertad. Nunca confesó ni aceptó su culpabilidad. El 13 de enero de 2004, un día antes de cumplir 58 años, Shipman se suicidó en su celda.

La policía acabó considerando que había matado a 218 de sus pacientes, la mayoría mujeres de edad, con 171, y 47 hombres, aunque algunos expertos aseguraron que sus víctimas podían sobrepasar las 400, desde un mínimo de 76 hasta un máximo de cerca de 1000 muertos. Su víctima más joven, Peter Lewis, tenía 41 años. Estuvo muy unido a su madre que falleció a los 43 años en 1963, en la adolescencia de Shipman, y, además, murió como lo harían sus víctimas: enferma de cáncer, en sus últimos días y para aliviarle el dolor, su médico le administraba morfina en su hogar.

La mayoría de los asesinatos de Shipman siguen el mismo patrón. La rutina es la habitual de un médico de cabecera: responder a una llamada del paciente un día entre semana y por la tarde y, una vez en su casa, inyectarle morfina o heroína. El paciente es encontrado muerto con el doctor presente o una media hora después de que se ha ido. El mecanismo de la muerte es descrito como síncope o colapso y la causa de la muerte, certificada por Shipman, es un ataque al corazón, un derrame cerebral o, simplemente, la edad. Las familias, avisadas por Shipman, aceptan que la muerte se debe a causas naturales y, por consejo del doctor, aceptan incinerar el cadáver.

Después del suicidio, la jueza Janet Smith elaboró un informe exhaustivo de las actividades de Shipman. Llegó a la conclusión de que había asesinado, entre 1975 y 1998, unas 250 personas de las 454 que murieron siendo pacientes suyos. El informe terminaba recomendando cambios en la estructura y funcionamiento de los servicios médicos. Muchos aspectos problemáticos de la práctica médica de Shipman no se habían tenido en cuenta: uso excesivo y fácil de la morfina, patrón de las visitas de Shipman a sus enfermos siendo casi siempre la último visita recibida antes de morir, exceso estadístico de muertes entre las mujeres de edad, demasiadas cremaciones, el uso de drogas, el problema de los médicos que trabajan solos, cómo procesar las denuncias si las hay, la función de los forenses, etc. Había que cambiar muchos de los protocolos de la práctica médica, aunque es curioso que la revisión de la práctica médica en Gran Bretaña la promoviese un asesino en serie.

Hay que cuidar con atención la salud del prójimo pues, no se sabe por qué, la medicina es la profesión con más asesinos en serie, seguida de cerca por la enfermería y por algún que otro odontólogo que podríamos añadir a la lista. En cambio y por lo que sabemos hasta ahora, no se conocen asesinos en serie entre los veterinarios.

Después de la condena, Richard Baker, de la Universidad de Leicester y a petición del Consejo Médico, hizo un estudio del número y patrón de las muertes certificadas por Shipman en sus 24 años de práctica médica, de 1974 a 1998, y comparó los resultados con los de otros médicos. Shipman firmó nueve veces más certificados de defunción que otros médicos de su misma localidad y de otras cercanas. La causa de la muerte “por edad” aparece ocho veces más. La mayoría de sus pacientes mueren entre las 14 y las 16 horas, cuando los de otros médicos mueren a cualquier hora del día. Cuando muere una persona, en el 80.2% de los casos hay algún pariente con él; con Shipman la probabilidad bajaba hasta el 40.1%. Además, mueren más rápido, pues el 60% lo hacen en media hora cuando, con otros médicos, solo el 23% muere en ese tiempo.

Con Shipman de médico de cabecera, el riesgo de muerte súbita era mayor que por tabaquismo. Habitualmente, que un médico esté presente cuando muere su paciente ocurre en un 0.8% de los casos; con Shipman, su presencia llegó al 19.5%. Este estudio de Benker concluye que Shipman mató a 236 pacientes.

Ya ven, es difícil detectar a un asesino en serie médico. Shipman tendría unos 3000 pacientes simultáneamente y la muerte de 15 o 20 de ellos no tiene significancia estadística. Es más, Shipman no fue descubierto por un asesinato sino por el testamento falso de Kathleen Grundy.

Mi formación, mi interés y mis lecturas, ya que nunca he matado a nadie y, por tanto, no tengo experiencia directa en ello, me han llevado a aplicar conceptos de biología evolutiva y, en concreto, de psicología evolutiva para examinar algunas de las funciones de la mente humana que se manifiestan en conductas violentas que pueden llevar a la muerte a otras personas. La hipótesis principal es que la violencia servía a los individuos que necesitaban recursos para la reproducción en aquellos entornos ancestrales y que, para ellos, la violencia supuso una ventaja que se seleccionó en el proceso evolutivo. Y así, como una ventaja evolutiva, ha llegado hasta nosotros.

Son dos los objetivos reproductores que buscaban nuestros antepasados, y nosotros seguimos haciéndolo. En primer lugar, sobrevivir para llegar a reproducirse. Para ello necesitaban alimento, refugio y un entorno seguro. Así, muchos de los conflictos dentro del grupo y entre grupos se debían a la escasez de estos recursos, todos ellos esenciales para la supervivencia. Solo hay que recordar la primera parte de 2001, una odisea en el espacio, de Stanley Kubrick, para comprender esta lucha por la supervivencia, en este caso el agua y la comida.

En segundo lugar, el objetivo es conseguir pareja, un recurso en sí mismo para la reproducción. Para conseguirlo hay varios medios que, además, varían según tiempo y lugar. Por ejemplo, necesitamos un territorio con recursos, aliados para defenderlo, estatus social, armas, objetos fabricados por el hombre como ropa, objetos preciosos naturales o artificiales, adornos, accesorios varios, y, en los últimos siglos, también dinero que, por lo que sabemos, no da la felicidad pero ayuda a conseguir el resto de necesidades a cubrir para tener éxito evolutivo.

Son recursos, muchos de ellos, que no tienen que ver con la supervivencia en sí misma, pero la selección de la pareja también implica tanto el éxito en atraer al otro sexo como la capacidad para asustar a los posibles rivales. Para esto último, para asustar, son las armas y el estatus. Y, en consecuencia, los hombres son más violentos que las mujeres. Además, estos mismos rasgos son atractivos para el otro sexo, para las mujeres, pues así se han seleccionado, durante milenios, ya que los violentos tienen más recursos que ayudarán a la supervivencia de los hijos.

Caín y Abel según el “Speculum Humanae Salvationis”, s. XV

Caín, el hermano de Abel

Génesis 4: 2-14. Biblia de Jerusalén (trad. Jesús Moya)

Volvió a dar a luz, y tuvo a Abel su hermano. Fue Abel pastor de ovejas y Caín labrador. Pasó algún tiempo, y Caín hizo a Yahveh una oblación de los frutos del suelo. También Abel hizo una oblación de los primogénitos de su rebaño, y de la grasa de los mismos. Yahveh miró propicio a Abel y su oblación, mas no miró propicio a Caín y su oblación, por lo cual se irritó Caín en gran manera y se abatió su rostro. Yahveh dijo a Caín: «¿Por qué andas irritado, y por qué se ha abatido tu rostro? ¿No es cierto que si obras bien podrás alzarlo? Mas, si no obras bien, a la puerta está el pecado acechando como fiera que te codicia, y a quien tienes que dominar.»

Caín, dijo a su hermano Abel: «Vamos afuera.» Y cuando estaban en el campo, se lanzó Caín contra su hermano Abel y lo mató.

Yahveh dijo a Caín: «¿Dónde está tu hermano Abel? Contestó: «No sé. ¿Soy yo acaso el guarda de mi hermano?» Replicó Yahveh: «¿Qué has hecho? Se oye la sangre de tu hermano clamar a mí desde el suelo. Pues bien: maldito seas, lejos de este suelo que abrió su boca para recibir de tu mano la sangre de tu hermano. Aunque labres el suelo, no te dará más su fruto. Vagabundo y errante serás en la tierra.» Entonces dijo Caín a Yahveh: «Mi culpa es demasiado grande para soportarla. Es decir que hoy me echas de este suelo y he de esconderme de tu presencia, convertido en vagabundo errante por la tierra, y cualquiera que me encuentre me matará.»

En conclusión, la violencia, seleccionada para conseguir recursos y la reproducción, es, sobre todo, de hombres jóvenes contra hombres jóvenes, y el hecho de que las mujeres encuentren atractivos como pareja a hombres dominantes y agresivos y, por tanto con recursos, sugiere que, en último término, han sido ambos sexos, y no solo los hombres, los que han contribuido a la evolución de la violencia en nuestra especie.

En la base de las diferencias entre los sexos en relación con la violencia está que sus objetivos son diferentes en la reproducción. El hombre compite con otros hombres para tener acceso sexual con cuantas más mujeres mejor y conseguir así difundir sus genes lo más posible a las siguientes generaciones. Pero, además, el hombre debe dedicar recursos a su pareja durante el embarazo, la lactancia y, en general, el desarrollo de sus hijos. Su objetivo es llegar a más mujeres pero, también, a conseguir que los hijos, con sus genes, salgan adelante.

Las mujeres, en cambio, no desperdician sus recursos en disputas por los hombres. Dedican todo su interés a encontrar una pareja con gran valor reproductor, es decir, joven y sano, y que contribuya al cuidado y crecimiento de los hijos, o sea, con recursos. Mientras los hombres tienden a buscar parejas a corto plazo, las mujeres las buscan a largo plazo con el objetivo de cuidar durante mucho tiempo a los hijos.

Sin embargo, no hay que olvidar que el entorno en que vivieron nuestros antepasados fue distinto al que tiene la humanidad actual y, quizá, lo que entonces seleccionó estas conductas relacionadas con la violencia, no sea válido en la actualidad. Como ejemplo sirve el hecho indiscutible de que en nuestra cultura matar no es moralmente defendible excepto en situaciones muy concretas. Tampoco podemos olvidar que seguimos teniendo ejércitos o, en muchos países, pena de muerte.

Una de las conductas violentas más típicas de nuestra especie es la guerra, o sea, el enfrentamiento violento y, si se puede decir así, oficial entre grupos humanos. Por tanto, para que exista guerra debe haber grupos humanos y, para que haya grupos, debe existir algún tipo de conducta de cooperación y empatía entre individuos. Sin previa cooperación, no puede haber guerra posterior, como mucho serán combates individuales. Además, hay que destacar que, quizá, la única manera de controlar e, incluso, acabar con la violencia entre personas es desarrollar las conductas de cooperación, empatía y altruismo. Como ven, violencia y cooperación, ambas conductas seleccionadas por el proceso evolutivo, forman parte del mismo comportamiento en nuestra especie.

En fin, más que debatir qué rasgos violentos son adaptaciones biológicas y cuales no lo son, propongo que todos los actos de violencia física o sexual tienen una historia evolutiva asociada con la adquisición de recursos. Aunque, como pasa en los procesos evolutivos, muchos rasgos violentos seleccionados por la evolución pueden ser seleccionados y recombinados para cumplir nuevos propósitos.

Referencias:

Baker, R., D.R. Jones & P. Goldblatt. 2003. Monitoring mortality rates in general practice after Shipman. British Medical Journal 326: 274-276.

Baumeister, R.F. 2001. Raíces de la violencia. Investigación y Ciencia junio.

Buss, D.M. 2005. The murdered next door: Why the mind is designed to kill. Penguin Books. New York. 288 pp.

Buss, D.M. 2012. The evolutionary psychology of crime. Journal of Theoretical and Philosophical Criminology Special Edition January: 90-98.

Buss, D.M. 2013. The science of human mating strategies: An historical perspective. Psychological Inquiry 24: 171-177.

Duntley, J.D. & D.M. Buss. 2004. The plausability of adaptations for homicide. En “The structure of the innate mind”. Ed. por P. Carruthers, S. Laurence & S. Stich. Oxford University Press. New York.

Duntley, J.D. & D.M. Buss. 2011. Homicide adaptations. Aggression and Violent Behavior 16: 399-410.

Ferguson, R.B. 2003. The birth of war. Natural History July/August: 27-35.

Frankel, S., J. Sterne & G.D. Smith. 2000. Mortality variations as a measure of general practitioner performance: implications of the Shipman case. British Medical Journal 320: 489.

García, J.E. 2015. El comportamiento criminal desde un punto evolucionista. Persona 18: 27-46.

Guthrie, B., T. Love, R. Kaye, M. MacLeod & J. Chalmers. 2008. Routiny mortality monitoring for detecting mass murder in UK general practice: test of effectiveness using modelling. British Journal of General Practice May: 311-317.

Jackson, T. & R. Smith. 2004. Obituaries: Harold Shipman. A general practitioner and murderer. British Medical Journal 328: 231.

Kinnell, H.G. 2000. Serial homicide by doctors: Shipman in perspective. British Medical Journal 321: 1594-1597.

Liddle, J.R., T.K. Shackelford & V.A. Weekes-Shackelford. 2012. Why can’t we all just get along? Evolutionary perspectives on violence, homicide, and war. Review of General Psychology 16: 24-36.

Morrall, P. 2006. Murder and society. John Wiley & Sons. Chichester. 214 pp.

Pringue, M. 2000. The Shipman inquiry: implications for the public’s trust in doctors. British Journal of General Practice May: 355-356.

Winter, D.A. 2016. Construing homicide. En “The Wiley handbook of personal construct psychology”, p. 416-425. Ed. Por D.A. Winter & N. Reed. John Wiley & Sons. New York.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Preparados para matar: algunas ideas para el debate se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Preparados para una Catástrofe Ultravioleta
  2. Ciencia, creencias, política y matar al mensajero
  3. La unidad de selección en la evolución y el origen del altruismo (9): Algunas propuestas unificadoras
Categorías: Zientzia

#Hiperkonektatuak

Zientzia Kaiera - Lun, 2017/02/13 - 15:00
Arantxa Arzamendi Lucía Taboada (@TaboadaLucia), kazetaria eta sare sozialetan aditua da. Mugikorren belaunaldikoa bete betean, liburu honetan hiperkonektatuen mundua aztertzen du modu erraz batean, gaian adituak ez direnentzat adibide praktiko ugarirekin eta ironia handiarekin. Hiperkonektatuak bizi direnekin hasi eta hamaika ataletan pantailen mundu zabalari errepasoa ematen dio: sare sozialak, sare sozialetako hizkera, Interneten eta Interneti esker egiten ditugun gauzak, wifia, pantailaren menpekotasuna, whatsappa, exhibizionismo birtuala, youtuber belaunaldia, giffak eta memeak, eta liburuaren amaieran, etorkizunera hurbiltzen gaitu.

Argitalpen honek oso ondo azaltzen ditu sareari lotuak egotearen abantailak eta desabantailak.Mugikorrak eta sare sozialak giza harremanekin bideragarriak direla defendatzen du. Lehen jende asko bakarrik zegoen eta orain sare sozialei esker harremanak izatea lortu dute, alderantziz ere gertatzen da eta norberak ikusi beharko du zer komeni zaion. Alde horretatik, liburuak jarraibideen aukera zabala eskaintzen du eta ondo bereizten digu zer ez dugun egin behar eta zer bai teknologia berriekin.

Lucia Taboadaren iritziz mundu birtuala eta mundu errealaren arteko marra geroz eta lausoagoa da, bi munduak pixkanaka pixkanaka hurbiltzen ari dira eta ondorioz erne egon beharra daukagu. Mundu birtualean egiten ditugun iruzkinak geroz eta eragin handiagoa dute mundu errealean. Twitterren lekuz kanpoko txio bat egiten badugu, bizitza errealean eragina izan dezake. Sare sozialetan bizitza errealean baina kuxkuxeroagoak gara eta autokontrola ezinbestekoa da. Baina Internetek ez al gaitu geroz eta ergelago bihurtzen? Datuen gehiegikeriak ez al digu gainkarga handia sortzen? Alde positiboan eskura dugun eta izan dezakegun material guztia jarri behar da. Taboadak azpimarratzen digu teknologia erabiltzeko eta disfrutatzeko dela. Gizartearen aurrerapenen lekuko zuzenak gara eta hori ere baloratu behar dugu.

Argitalpenaren fitxa:
  • Izenburua: Hiperconectados
  • Egileak: Lucía Taboada
  • Argitaletxea: Planeta, 2015
  • Orrialdeak: 180
  • Prezioa: 15 € paperean: Ebook: 9,98 €
  • ISBNa: 9788408147077
  • Non eskuratu: Hiperconectados liburua eskuragarri dago liburutegi publikoetan, besteak beste, Donostia Kulturako liburutegi sarean.

———————————————————————————-

Egileaz: Arantxa Arzamendi Sesé (@arzamendisese), Filosofia eta Letretan lizentziatua da eta egun, Donostiako Liburutegi Nagusiaren arduraduna da.

———————————————————————————-

The post #Hiperkonektatuak appeared first on Zientzia Kaiera.

Categorías: Zientzia

El papel de las nanopartículas lipídicas en terapia génica

Cuaderno de Cultura Científica - Lun, 2017/02/13 - 11:59

Se han cumplido 25 años desde la publicación del primer trabajo sobre nanopartículas sólidas lipídicas (SLN) y transportadores lipídicos nanoestructurados (NLC) como sistemas de administración de fármacos. Con tal motivo, la revista European Journal of Pharmaceutics and Biopharmaceutics ha preparado un número especial para el que pidió hacer un trabajo de revisión sobre la aplicación de SLN y NLC en terapia génica al grupo de investigación PharmaNanoGene, de la Universidad del País Vasco/Euskal Herriko Unibertsitatea, una autoridad internacional en este campo de investigación.

De izquierda a derecha, María Ángeles Solinís, Ana del Pozo y Alicia Rodríguez. Foto: Nuria González (UPV/EHU)

Las nanopartículas lipídicas (SLN y NLC) se consideran unos sistemas muy prometedores para la administración de ácidos nucleicos en terapia génica. Hasta ahora, los sistemas virales de administración de material genético han resultado ser más eficaces, pero presentan importantes problemas de seguridad. “Los vectores no virales, entre los que se encuentran las SLN y NLC, son menos eficaces pero mucho más seguros, aunque su eficacia ha aumentado significativamente en los últimos años”, comentan Alicia Rodríguez, María Ángeles Solinís y Ana del Pozo, autoras del artículo.

En éste se describen estos sistemas así como sus principales ventajas para terapia génica, como son la capacidad de protección del material genético frente a la degradación, facilitar la internalización celular y nuclear, y favorecer el proceso de transfección. “Además, las nanopartículas están formadas por materiales biocompatibles y biodegradables, son fáciles de producir a gran escala, se pueden esterilizar y liofilizar, y presentan una alta estabilidad, tanto en fluidos biológicos como durante el almacenamiento”, explican las investigadoras.

Nanopartículas lipídicas.

Esta revisión también incluye las principales enfermedades en las que se están aplicando nanopartículas lipídicas, generalmente a nivel preclínico: enfermedades degenerativas de la retina, enfermedades infecciosas, enfermedades metabólicas y cáncer, entre otras. “En PharmaNanoGene trabajamos en el diseño y evaluación de SLN para el tratamiento mediante terapia génica de algunas de esas enfermedades. Estudiamos la relación entre factores de la formulación con los procesos de internalización y disposición intracelular del material genético, que condicionan la eficacia de los vectores, y que es fundamental en el proceso de optimización, y por primera vez demostramos la capacidad de las SLNs para inducir la síntesis de una proteína tras su administración endovenosa a ratones”, resaltan.

En la publicación se incluyen también otros trabajos de este grupo de investigación de la UPV/EHU sobre la aplicación de las SLNs en el tratamiento de enfermedades raras, como la retinosquisis juvenil ligada al cromosoma X, enfermedad en la que la retina está desestructurada debido a la deficiencia de la proteína retinosquisina. “Entre los principales logros de nuestros estudios en este campo se encuentra el demostrar, también por primera vez, la capacidad de un vector no viral para transfectar la retina de animales deficientes en el gen que codifica para la citada proteína y restaurar parcialmente su estructura, mostrando que la terapia génica no viral es una herramienta terapéutica factible y prometedora para el tratamiento de las enfermedades degenerativas de retina”, detallan las investigadoras.

Además, en PharmaNanoGene también han estudiado la aplicación de las SLN para el tratamiento de la enfermedad de Fabry, una alteración metabólica, multisistémica y grave, de carácter hereditario. “Se trata de una enfermedad monogénica, ligada al cromosoma X, que se produce por diversas mutaciones en el gen que codifica la enzima α-galactosidasa A (α-Gal A). En modelos celulares de esta enfermedad, hemos demostrado la capacidad de las SLN para inducir la síntesis de la α-Gal A”. También han revisado la aplicación de las nanopartículas lipídicas al tratamiento de enfermedades infecciosas: “nuestros trabajos en este campo muestran cómo las SLN con ARN de interferencia son capaces de inhibir in vitro un replicón del virus de la hepatitis C, lo que sirvió como prueba de concepto de la utilidad de los vectores basados en SLN como una nueva estrategia terapéutica para el tratamiento de esta infección y otras relacionadas”.

Referencia:

Del Pozo-Rodríguez, A., Solinis, M.A., Rodríguez Gascón, A.. Applications of lipid nanoparticles in gene therapy. European Journal of Pharmaceutics and Biopharmaceutics. Volume 109, December 2016, Pages 184-193. DOI: 10.1016/j.ejpb.2016.10.016.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo El papel de las nanopartículas lipídicas en terapia génica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Nanopartículas lipídicas como vectores en terapia génica
  2. Nanopartículas de oligoquitosano para terapia génica
  3. Nanopartículas de hierro contra el lindano
Categorías: Zientzia

Ospitaleko bakterioen desinfekzio metodoak atakan

Zientzia Kaiera - Lun, 2017/02/13 - 09:00
Acinetobacter baumannii bakterioa da mundu osoko ospitaleetako epidemia-agerraldi askoren eragilea. Gai da kondizio gogorretan denbora luzean bizirik irauteko, lehortzearekiko erresistentzia eta antibiotiko eta desinfektatzaileekiko erresistentzia harrigarriak baititu. Bakterioa bizi den ingurunean zer portaera duen jakiteko asmoz, bakterioak ospitaleko ingurunearekin lotutako askotariko kondizioetan bizirik irauteko zer estrategia dituen aztertu du Zaloa Bravo mikrobiologoak.

Irudia: Ospitaleko infekzioak eragiten dituzten bakterioak kontrolatzeko metodoen efikazia zalantzan jarri du ikerketa batek.

Ospitalean hartzen diren infekzioek osasun-arazo handiak eragiten dituzte, izan ere, arazo ugari sortzen dituzte, infekzioak eragiten dituzten bakterioen erresistentzia handia baita. UPV/EHUko Zaloa Bravo ikertzaileak ikusi du Acinetobacter baumannii bakteriori hainbat desinfekzio-prozesuz aurre egin arren, zelula batzuek bizirik jarraitzen dutela, nahiz eta ez dira gai ohiko kultibo-inguruneetan hazteko. Ondorioz, zelula horiek ez dira detektatzen desinfekzio-prozesua ebaluatzeko metodoen bidez, metodo horiek zelulen hazkuntzan oinarritzen baitira.

Bakterioaren erresistentzia ezaguna izan arren, Zaloa Bravok azaldu du “bakterioak egonkortasun eta bideragarritasun handia duela oso egoera gogorretan denbora luzez, 30 egun baino gehiagoz”. Horregatik, funtsezkotzat jotzen da ospitaleetan mikroorganismoak desinfektatzeko metodoak berme osoz erabiltzea. Ikerketan, hainbat garbiketa-metodoren eraginkortasuna aztertu zuen, bai erradiazioa erabiltzen duten metodoak, bai desinfektatzaileekin egindako garbiketak. A. baumannii bakterioa eragile horien eraginpean jarri ondoren lortutako emaitzek agerian utzi zuten aztertutako desinfektatzaile bat ere ez dela gai mikroorganismo hori erabat ezabatzeko”, azaldu du ikertzaileak.

Ezabatzen diren eta ez diren bakterioez gainera, ikerketa honen emaitza garrantzitsuenetako bat da ikertzaileak ikusi zuela erradiazioek eta oxidatzaile batzuek eragiten dutela mikroorganismoa egoera bideragarri ez-kultibagarrian sartzea (VBNC, viable but nonculturable), hain zuzen ere, zelulak ohiko kultibo-inguruneetan hazteko gai ez diren baina nolabaiteko aktibitate metabolikoa baduten egoeran. Horrek esan nahi du zelula aktiboak direla. “Acinetobacter baumanniik egoera bideragarri ez-kultibagarria hartzen duela frogatzen duen lehen lana da hau”, adierazi du Bravok. VBNC egoeran dauden mikroorganismo patogenoak, oro har, ez dira gai gaixotasun bat eragiteko, baina birulentziari eusten diote eta, egoera lehengoratzen bada, infekzioa berriro has daiteke. Berez, “badira ikerketa batzuk frogatu dutenak beste mikroorganismo batzuk gai direla egoera horretatik berpizteko eta infekzio bat hasteko, baina egia da gai horren inguruan badela halako eztabaida bat komunitate zientifikoaren barnean”, erantsi du.

Desinfekzio metodoen ebaluazioa zalantzan

Egoera bideragarri ez-kultibagarrian dauden zelulak hauteman ondoren, hausnarketa hau egin du Bravok desinfektatzaileak ebaluatzeari dagokionez: “Osasun-zentroetan egiten diren kontroletan, bakterio infekziosorik badagoen edo ez hautemateko, bakterioak kultiboetan nola hazten diren behatzen da. Baina egoera bideragarri ez-kultibagarrian dauden zelulak geratu badira, alegia, halako inguruneetan hazteko gai ez direnak, litekeena da desinfektatzaileek eta kontrol-metodoek ez funtzionatzea espero zen moduan. Izan ere, pentsa daiteke zelularik ez dagoela, baina berez hor daude”.

Hori dela eta, Bravok proposatzen duenez, ospitaleetan ez lirateke kultibo-hazkundean oinarritutako analisiak soilik egin behar, ingurunean mikroorganismo patogenorik badagoen jakiteko; “bideragarritasuna detektatzen duten beste metodo batzuk erabili beharko lirateke, adibidez, gene-espresioa, halako mikroorganismorik badagoen jakiteko”. Halaber, jakin beharko litzateke ea bakterio hori gai den VBNC egoera lehengoratzeko, eta ea infekzio-prozesu bat abiarazteko gai litzatekeen.

Erreferentzia bibliografikoa:

Bravo Z., Orruño M., Parada C., Kaberdin V. R., Barcina I., Arana I.. The long-term survival of Acinetobacter baumannii ATCC 19606T under nutrient-deprived conditions does not require the entry into the viable but nonculturable state. Archives of Microbiology, vol. 198: 398-407. 2016. DOI: http://www.ncbi.nlm.nih.gov/pubmed/26872882.

Iturria:
UPV/EHUko komunikazio bulegoa: Ospitaleko infekzioak eragiten dituzten bakterioak kontrolatzeko metodoen efikazia zalantzan.

 

 

The post Ospitaleko bakterioen desinfekzio metodoak atakan appeared first on Zientzia Kaiera.

Categorías: Zientzia

La ciencia al rescate del país

Cuaderno de Cultura Científica - Dom, 2017/02/12 - 11:59

Acción de la Compañía Guipuzcoana de Caracas, s. XVIII

A mediados del siglo XVIII la estructura económica del País Vasco, y especialmente en los territorios de Gipuzkoa y Bizkaia, comenzó a dar síntomas de agotamiento. La agricultura, que gracias a la introducción del maíz había florecido, dejó de expandirse. Las ferrerías habían vivido una primera mitad de siglo esperanzador pero en la segunda mitad del mismo a duras penas pudieron hacer frente a la competencia del hierro sueco e inglés. Algo parecido podemos decir del comercio: la Compañía Guipuzcoana de Caracas, que tenía el monopolio del comercio con esa urbe y su Hinterland, conoció una primera mitad de siglo esplendoroso pero a mediados de la centuria entró en crisis y sus actividades se paralizaron durante unos años. Cuando echo de nuevo a andar no consiguió los resultados de antaño.

Una élite perteneciente a algunas de las familias más poderosas de los territorios vascos fue plenamente consciente de la situación arriba descrita y se propuso reformar la economía para evitar una crisis profunda. Hablamos, por citar los casos más conocidos, de Xabier María de Munibe (VIII Conde de Peñaflorida), Joaquín de Eguía (Marqués de Narros), Manuel Ignacio de Altuna o Miguel José de Olaso. Muchos miembros pertenecientes a esta élite habían cursado sus estudios superiores en el extranjero, con lo cual conocieron y aceptaron tanto la corriente de pensamiento predominante en el continente, la Ilustración, como la física newtoniana. También tuvieron noticia del quehacer de las numerosas sociedades agrícolas y academias económicas que trabajaban en distintas zonas de Europa fomentando el progreso y la modernización de la industria y de la agricultura.

En 1763 varios caballeros gipuzkoanos redactaron un proyecto de Academia de Agricultura, Ciencias y Artes Útiles y Comercio para su implantación en la provincia, pero un año más tarde las miras se ampliaron y se fundó la Sociedad Bascongada de Amigos del País, formada también por miembros alaveses y vizcaínos. El objetivo de la Sociedad era poner al País Vasco, tanto a nivel científico como técnico y docente, a la altura de Europa. Era necesario introducir en el país el nuevo método científico, la física newtoniana y los avances técnicos que se estaban dando en Europa a nivel industrial y agrícola. El medio más razonable para lograrlo era a través de la educación de calidad. Además de Escuelas de Dibujo (fundamentalmente Educación Profesional) crearon el Real Seminario Patriótico Bascongado de Bergara. Este centro (semillero de los futuros hombres útiles al país) fue pionero en la enseñanza de la Química y de la Mineralogía y Metalurgia y consiguió conformar un completo laboratorio químico, un gabinete de Física y amplias colecciones de Ciencias Naturales. Entre sus profesores se encontraban, entre otros, Louis Proust, François Chabaneau y los hermanos Elhuyar. Algunas de las piezas de los laboratorios de esta época pueden contemplarse hoy en el museo Laboratorium de Bergara.

Fachada del Real Seminario de Bergara en el siglo XVIII

Los ilustrados vascos pusieron en marcha toda una batería de medidas y acciones con el fin de modernizar el territorio. Así, en el campo de la investigación científica analizaron la idoneidad de nuevos cultivos; realizaron un estudio edafológico del País Vasco e investigaron la fertilidad de los distintos tipos de tierras y suelos; ensayaron nuevos métodos de abonado; probaron tanto en Bilbao como en Bergara la idoneidad de nuevos aperos de labranza; ensayaron la bondad de la patata como alimento humano como animal; se estudiaron numerosas minas de nuestro territorio; analizaron las técnicas productivas de las ferrerías vascas e investigaron los modos de producción en aquellas extranjeras; mantuvieron relaciones profesionales con los científicos más punteros y famosos de la Europa del momento; descubrieron, en el Real Seminario de Bergara el método para hacer maleable el platino y en el mismo centro realizaron la mayor aportación científica que el País Vasco haya hecho nunca a la humanidad: el descubrimiento, cuando solamente se conocían 23, de un nuevo elemento químico: el wolframio.

Por lo que respecta al ámbito de la innovación técnica, realizaron plantaciones modelo de nuevas plantas forrajeras; así mismo plantaron nuevas especies arbóreas en Gipuzkoa y Bizkaia con el fin de modernizar el sector forestal; con miras a modernizar el sector textil implantaron plantaciones de lino modernas y racionalmente gestionadas; introdujeron nuevas especies agrícolas en Álava con lo que evitar el monocultivo del trigo; en Bilbao crearon una moderna compañía de pesca; hicieron venir de Europa técnicos cualificados en diversas ramas productivas para introducir sus métodos en el País Vasco; pusieron en marcha una moderna fábrica de producción de acero de calidad en Bergara y también en Bergara abrieron una factoría para la fabricación de cuchillos; subvencionaron la introducción de innovaciones técnicas en sendos talleres papeleros de Bilbao y de Azkoitia; crearon una nueva factoría textil en Vitoria; conformaron en el Real Seminario de Bergara el laboratorio de química mejor equipado del reino y planearon y dirigieron también desde Bergara una misión de espionaje militar e industrial con el fin de hacerse con la técnica de fundición de cañones de la fábrica escocesa de Carron, la más reputada entonces en Europa.

Finalmente, por lo que atañe a la educación de calidad, publicaron un moderno manual de ortografía que difundieron por todo el país; redactaron el proyecto de una escuela para el alumnado femenino; pusieron en marcha y mantuvieron Escuelas de Dibujo en Álava, Gipuzkoa y Bizkaia y fundaron un centro docente de máxima calidad, el ya citado Real Seminario de Bergara. Este centro contó con las avanzadas cátedras de Química y Mineralogía y Metalurgia, las primeras del reino y para dotarlas docentemente se trajo a parte de los profesores y científicos más reputados de Europa. También en el Seminario se crearon, con fines educativos y de investigación, un riquísimo herbario, una completa colección de minerales y una magnífica colección de Ciencias Naturales.

Referencia:

Astigarraga, J. [2003] Los ilustrados vascos. Ideas, instituciones y reformas económicas en España. Barcelona; Crítica.

Autor: Equipo técnico del museo Laboratorium

Museo Laboratorium. Palacio Errekalde, Juan Irazabal s/n, 20570 Bergara

Contacto: 943 769 003;laboratorium@bergara.eus.

El artículo La ciencia al rescate del país se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
  2. “Laboratorium”, el museo del Real Seminario de Bergara
  3. Visión de los jóvenes vascos sobre la ciencia y la tecnología
Categorías: Zientzia

Asteon zientzia begi-bistan #141

Zientzia Kaiera - Dom, 2017/02/12 - 10:30
Uxue Razkin

Osasuna

Ez dugu aitzakiarik. Kirola egitea ona da osasunerako. Hala berretsi egin du UPV/EHUko ikerketa batek. Bertan, jarduera fisikoa gaixo kronikoentzat onuragarria dela frogatu dute. Irantzu Ibañez Lasurtegi, UPV/EHUko Hezkuntza eta Kirol Fakultateko ikertzaileak egiaztatu du jarduera fisikoak berehalako hobekuntzak eragin dizkiela ariketa fisikoko programa bati atxikitako gaixo kronikoei. Programa honetan parte hartu zutenek adierazi zuten “oso pozik zeudela programarekin eta beren gaixotasunen sintomak eta bizi-kalitatea hobetu zirela”. Ikertzaileak bukatu du esanez: “Argi dago prebentzioa dela bidea eta gizarteak ulertu behar du hobe dela prebenitzea tratatzea baino”.

Osasun arloari jarraiki, Amaia Portugalek testu interesgarri bat dakargu. Kazetariak azaltzen digun bezalaxe, fabriketako tximinien eta autoen isuriak, ondoan dugun lagun erretzaileak botatzen dituenak… horiei guztiei bigarren eskuko kea deitzen zaie. Eta zer gertatzen da hirugarren eskuko kearekin? Tabakoak altzari edo alfonbratan uzten duen poluzio arrastoari deritzogu, eta haren albo kalteak ez dituzte gehiegi ikertu orain arte. Badai, Berkeley Laborategian gai horri ekin diote eta egin duten lan batean ondorioztatu dute kutsadura mota hori jasaten duten sagu jaioberriek ohi baino pisu txikiagoa dutela, eta zelulen garapenean gorabehera handiak izaten dituztela, kasu honetan txikienek zein helduagoek. Ez galdu!

Minbiziaren intzidentzia Espainian 2015 ikerlanak argia ikusi berri du. Hego Euskal Herrian 17.900 minbizi kasu berri diagnostikatzen dira urtean, eta heriotza motibo ohikoena da: Nafarroan, urtean 1.500 lagun hiltzen dira minbiziaren ondorioz; EAEn, 30.273 lagun hil ziren 2011-2015eko epealdian. Berria egunkariak datuek erakusten dutenari erreparatu die: gero eta usuago diagnostikatzen direla kasuak eta, halaber, gero eta eraginkortasun handiagoz egiten zaiela aurre; aholkuek, berriz, bizi ohitura osasuntsuak giltzarri direla eritasuna saihesteko.

Ekologia eta biologia

Ur-ekosistemetako materia organikoa areagotzeak merkurio toxikoa zazpi aldiz gehiago metatzea dakar zooplanktonean. Suedian egin dute ikerketa, Elhuyar aldizkariak aditzera eman digunez. Aldaketa klimatikoak eragindako euriteek ekar dezaketen materia organikoaren eraginez, argi gutxiago iristen da ur barrenenera. Horrek kate trofikoa autotrofo izatetik, nagusiki heterotrofoa izatera pasatzea ekartzen du, hau da, materia organikoz elikatzen den zooplanktona nagusi bihurtzen da. Ikertzaileen ustez, kate trofiko heterotrofoan merkurio metaketa handitzen joaten da, guk jaten ditugun arrainengana iritsi arte. Emaitza argitzen digute afera: aldaketa klimatikoak eragina du arrainengan gertatzen den merkurio-metaketan.

Genetika

Salk Institutuko ikertzaileek txerriaren eta gizakiaren zelulak dituzten enbrioiak sortu dituzte lehenengoz. Genetika arloan, beti beldurrak aise zabaltzen dira halako ikerketak martxan jartzen direnean. “Jainkoak baino ez du espezieak nahasteko ahalmena. Munstroak sortu nahi dituzte”. Horien antzeko iruzkinak irakurri behar izan ditu Aida Platero Luengo biologoak hainbat hedabidetako iruzkinetan. Gainerakoak, baina, iruzkin positiboak izan direla nabarmendu du. Bizi ahal izateko organo berri baten zain itxaron zerrendetan dauden gaixoei laguntzea dute buruan zientzialariek. Baina aukera hori oraindik ere urrun dagoela ohartarazi du biologoak. “Teknika berri baten hasierako faseetan besterik ez gaude”. Abantailak ere izan dira mintzagai artikulu honetan. Ikerketa honek bi ditu nagusiki: Batetik, arazoa da ez daudela behar diren adina organo. Jende asko hiltzen da organo baten zain dagoen bitartean. Beraz, adituek azaltzen duten arabera, honek asko arinduko luke organoak lortzeko prozesua. Bestetik, azaltzen duten moduan, arbuio immunologikoa saihestuko litzateke.

Koldo Garciari esker jakin dugu minbizi kutsakorrak existitzen direla. Bai, birusak izango balira bezala. Gizakiok ez dugu horrelakorik pairatzen baina genetika arloko ikertzaile honek adibide bat jarri digu: Tasmaniako deabruak pairatzen duen aurpegiko tumoreen gaixotasuna, hain zuzen. Lehen kasua 1996.urtean jazo zen eta hedatzen joan da geroztik, edozein infekziok izango lukeen patroia jarraituta. Nola kutsatzen da minbizi hori? Testua osorik irakurtzea gomendatzen dizuegu, hantxe topatuko duzue erantzuna.

Astronomia

Katu-begia nebulosak Eguzkiaren etorkizuna iragar dezake. Lehendabizi zehaztu dezagun zer diren planeta-nebulosak: Eguzkiaren antzeko izarren bizitzaren azken faseak dira. Hubble teleskopio espazialak ematen duen informazioa oso garrantzitsua da Katu-begiaren nebulosaren eboluzioa ezagutzeko, eta, ondorioz, lagungarria izan daiteke Eguzkiaren etorkizuna aurreikusteko.

Medikuntza

Tübingen-eko Unibertsitate alemaniarreko ikertzaileek erabateko paralisia dutenekin komunikatzeko interfazea garatu dute. Berauek adierazi du haien pentsamenduak komunikatzeko gaitasuna ez duten pazienteentzat laguntza handia izan daitekeela. Horretaz gain, argi dute sasikoman dauden pertsonekin komunikazioa errazteko balio lezakeela, eta mugimendua berreskuratzen hasteko ere lehenengo urratsa izan daiteke  komunikatzeko modua izatea. Ikerketaren nondik norakoa, hemen.

Biologia

Ugaztun gehienontzat urpean egotea oso zaila da. Urperatzerakoan ditugun zailtasunei erreparatu dio artikuluaren autoreak; zehazki, urpekarien gaitza kontzeptuaz mintzo da testua. Nitrogenoa eta oxigenoa dira arnasten dugun airearen osagai nagusiak. Nitrogenoaren kasua bitxia da; izan ere, artikuluaren egileak azaltzen digunez: “ez dugu behar eta ez dugu ezertarako erabiltzen”. Urpekarien arazoa hauxe izango litzateke: presioaren igoera dela eta, urpekariak arnasten duen airearen nitrogenoaren presio partziala ere handitzen da eta, horren ondorioz, itsas mailan atmosferatik hartuko lukeena baino nitrogeno gehiago hartzen du urpekariaren odolak. Horretaz gain, arinegi igotzen bada urpekaria, presioaren jaitsiera ere azkarregi gertatzen da eta, orduan, nitrogenoa ez da apurka-apurka barreiatzen biriken barrunbera.

Duela 2.400 milioi urte Oxigenazio Handia gertatu zen Lurraren atmosferan, hau da, biologikoki sortutako oxigenoa agertzen hasi zen. Baina oxigeno-maila apal iraun zuen 1.500 milioi urtez. Orain, Exeterreko Unibertsitateko ikertzaileek azaldu dute horren zergatia. Elhuyarrek gerturatu digu berria: Oxigenazio Handiaren ondoren, plaka tektonikoek arroka sedimentarioak azaleratu zituzten, eta han zegoen materia organikoa oxigenoarekin erreakzionatzen hasi zen. Zenbat eta oxigeno gehiago izan atmosferan, orduan eta azkarrago erreakzionatzen zuen materia organikoarekin. Ondorioz, oxigenoa sortu ahala, kontsumitu egiten zen. Horrela izan zen landareak areagotzen hasi arte; izan ere, orduan, fotosintesi globala bikoiztu eta oreka hautsi egin zen. Horrek ahalbidetu zuen animaliek Lurra kolonizatzea eta gizakiaren eboluzioari bide egitea.

Emakumeak zientzian

Bodil Schmidt-Nielsenen beste kapitulu bat ekarri digu Juan Ignacio Perezek. Bodil interesatuta zegoen ur gutxiko parajeetan bizi diren ugaztunek gernuaren bidez galtzen duten ur bolumena murrizteko mekanismoetan. Zehatzago adierazteko, berak jakin nahi zuen nola lor zitzaketen gernuan hain solutu-kontzentrazio garaiak. Hori dela eta, beste zenbait lankiderekin batera aritu zen giltzurrun-hodien azpiatalak diren Henleren euskarria izeneko gailuen zeregina aztertzen. Ikerketa horiei esker jakin ahal izan zen zein ziren gernua kontzentratzeko mekanismoaren oinarriak. Irakurri artikulu interesgarri hau!

Matematika

Artikulu honetan, oinarrizko ikur matematiko batzuen jatorria aztertu dute. Esaterako, + (plus) eta – (minus) ikurrak liburu inprimatu batean erabili ziren lehendabiziko aldiz, Leipzigen 1489an argitaratutako Johannes Widman (1462-1498) matematikari alemaniarraren obra batean. Halere, Widmanek ez zituen + eta – ikurrak batuketa eta kenketa eragiketa aritmetikoen sinbolo gisa erabiltzen, baizik eta testuan aztertzen diren merkataritzako praktiken testuinguruan, salgaien gehiegikeria edo gabezia adierazteko. Van der Hoeke (XVI. mendea) matematikari herbeheretarraren aritmetikako liburua + eta – ikurrak eragiketa aljebraiko gisa ageri diren lehen argitalpen inprimatua dela esan ohi da. 1514ko obratzat jo izan da baina egiatan 1937an argitaratu zen. Ikur horien adiera aljebraikoa aintzat hartu zuen lehen argitalpen inprimatua Henricus Grammateus (1492-1525 inguruan) matematikari alemaniarraren Ayn new Kunstlich Beuch (1518) aljebra eta aritmetikako liburua da. Biderketen eta = ikurraren jatorria ere ezagutzera eman digu artikulu honen autoreak. Ez galdu!

—–—–

Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

———————————————————————–

Egileaz: Uxue Razkin Deiako kazetaria da.

———————————————————————–

The post Asteon zientzia begi-bistan #141 appeared first on Zientzia Kaiera.

Categorías: Zientzia

Hoy es el día de la mujer y la niña en la ciencia, todos lo son

Cuaderno de Cultura Científica - Sáb, 2017/02/11 - 09:00
Muy pocas mujeres deciden cursar algunas carreras científicas y tecnológicas. Y en general, en el mundo de la ciencia las mujeres no llegan a los niveles jerárquicos y de responsabilidad a los que llegan los hombres. Se trata de un fenómeno con múltiples manifestaciones: menos proporción de mujeres en ciertas carreras, menos catedráticas, menos investigadoras principales, menos directoras de centros de investigación, menos mujeres en puestos de alta responsabilidad, y menos mujeres galardonadas con el premio Nobel y otras distinciones.

Las mujeres no gozan de las mismas oportunidades que los hombres en el cursus honorum científico. Las causas de esa desigualdad son variadas y en una medida importante tienen su origen en el efecto de estereotipos en virtud de los cuales hay actividades que se consideran propias de las mujeres y otras que no. Tales diferencias carecen del más mínimo fundamento y no tienen justificación. Son además perniciosas, en primer lugar para las mujeres, que pierden así oportunidades para su desarrollo profesional y, por lo tanto, personal. Por esa razón son radicalmente injustas. Y en segundo lugar, causan un perjuicio al conjunto de la sociedad, pues privan a esta de las aportaciones de personas de valía a quienes, de forma sutil o no tan sutil, se limita el acceso a los puestos desde los que podrían realizar esas aportaciones.

La Cátedra de Cultura Científica de la UPV/EHU se ha propuesto contribuir, en la medida de sus modestas posibilidades, a mostrar la labor que desarrollan las mujeres en el mundo de la ciencia y la tecnología. Queremos visibilizar esa labor. Por eso publicamos desde mayo de 2014 el blog Mujeres con Ciencia. En promedio, un artículo cada día: para la Cátedra todos los días son días de la mujer y la niña en la ciencia.

Pero que todos los días lo sean no es óbice para que nos unamos a la iniciativa de Naciones Unidas y celebremos también el Día Internacional de la Mujer y la Niña en la Ciencia. Con ese propósito hemos producido “Ese lugar”, el vídeo que acompaña este texto. Quiere ser un gesto de denuncia, pero también una llamada al optimismo, optimismo que –no lo olvidemos– solo puede venir de la mano de la acción y, sobre todo, del trabajo. Por eso, para la Cátedra de Cultura Científica de la UPV/EHU mañana también será día de la mujer y la niña en la ciencia, y pasado mañana y los siguientes.

Ese lugares una producción de K2000, ha sido dirigido por Jose A. Pérez Ledo y fue grabado en Begoñazpi Ikastola (Bizkaia).

—————————————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————————————–

El artículo Hoy es el día de la mujer y la niña en la ciencia, todos lo son se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia para todos a través del cine y la literatura de ciencia ficción
  2. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
  3. Ciencia Clip: un concurso de vídeos de ciencia para jóvenes estudiantes
Categorías: Zientzia

Gaur zientziaren arloko emakume eta neskatoen eguna da, egunero bezala

Zientzia Kaiera - Sáb, 2017/02/11 - 09:00
Juan Ignacio Pérez Iglesias Emakume oso gutxik erabaki ohi dute zientziarekin eta teknologiarekin lotutako karrerak ikastea. Eta, oro har, zientziaren munduan emakumeak ez dira ailegatzen gizonek bereganatzen dituzten hierarkia eta ardura mailetara. Fenomeno horrek askotariko ondorioak dakartza: emakumeek proportzio apalagoa dute karrera jakin batzuetan; emakume katedradun gutxiago, ikertzaile nagusiak diren emakume gutxiago eta ikerketa zentroetako emakume zuzendari gutxiago dago; emakume gutxiagok dituzte ardura handiko lanpostuak; eta emakume gutxiagok jasotzen dituzte Nobel saria edota bestelako sari batzuk.

Emakumeek ez dauzkate gizonen aukera berberak zientziaren cursus honorum delakoan. Desberdinkeria horren kausak denetarikoak dira, eta, neurri handi batean, estereotipoen eraginean dute jatorria; izan ere, estereotipoen arabera, lan jakin batzuk emakumeei dagozkie, eta beste batzuk ez. Desberdinkeria horiek, baina, ez dute inolako funtsik, ez eta zuribiderik ere. Gainera, kaltegarriak dira, lehenik eta behin emakumeentzat, beren burua profesionalki zein pertsonalki garatzeko aukerak galtzen baitituzte, eta horrexegatik dira zeharo bidegabeak. Bigarrenik, kalte egiten diote gizarte osoari, balio handiko pertsonen ekarpenez gabetzen dutelako; izan ere, emakumeei, sotilki edo ez hain sotilki, mugatu egiten zaie ekarpen handiak egin ahalko lituzketen postuak lortzeko aukera.

UPV/EHUko Kultura Zientifikoko Katedrak agerian jarri asmo du, ahal duen neurrian, emakumeek zientziaren eta teknologiaren munduan egiten duten lana. Lan hori nabarmendu nahi dugu, eta horregatik argitaratzen dugu Mujeres con Ciencia bloga 2014ko maiatzetik. Batez beste, egunean artikulu bat ateratzen dugu: Katedrarentzat, egunero da zientziaren arloko emakume eta neskatoen eguna.

Alabaina, emakume eta neskato horien eguna egunero izatea ez da inolako oztopoa Nazio Batuen egitasmoarekin bat egin dezagun eta guk ere Emakumea eta Neskatoa Zientzian Nazioarteko Eguna ospa dezagun. Helburu horretxekin ekoitzi dugu “Leku hori”, testu honekin batera doan bideoa: salaketa egiteko, hain zuzen ere, baina baita gaiari optimismoz begiratzeko ere. Eta, gogoan izan, optimismo hori lortzeko, lan egin beharra dugu. Hori dela eta, UPV/EHUko Kultura Zientifikoko Katedrarentzat, zientziaren arloko emakume eta neskatoen eguna izango da bai bihar, bai etzi, bai hurrengo egunetan.

Leku hori  K2000  enpresak ekoitzi eta  Jose A. Pérez Ledok  zuzendu du, eta Bizkaiko  Begoñazpi Ikastolan  grabatu zen.

———————————————————————————-

Egileaz: Juan Ignacio Pérez Iglesias (@Uhandrea) UPV/EHUko Fisiologiako katedraduna da eta Kultura Zientifikoko Katedraren arduraduna.

———————————————————————————-

The post Gaur zientziaren arloko emakume eta neskatoen eguna da, egunero bezala appeared first on Zientzia Kaiera.

Categorías: Zientzia

El hidrógeno en el Universo (IV): Galaxias en interacción

Cuaderno de Cultura Científica - Vie, 2017/02/10 - 12:00

Como describimos en el artículo anterior, las observaciones radioastronómicas en la línea de 21 cm (equivalente a 1420 MHz) del hidrógeno neutro, que en la jerga científica se denota simplemente como “emisión en H I”, nos proporcionaron una nueva visión de las galaxias. Gracias a esta técnica los astrofísicos pueden detectar el gas difuso y frío del Cosmos y usar esas observaciones para entender mejor desde la estructura de la Vía Láctea a las propiedades de otras galaxias. En particular, usando técnicas de radio-interferometría (combinar la luz que llega de varios radiotelescopios para conseguir una imagen en radio con gran resolución angular) se pudo no sólo “pesar” mejor las galaxias, confirmando que todas contienen un gigantesco halo más o menos homogéneo de materia oscura, sino también entender la dinámica del gas y su relación con la formación estelar.

Figura 1. Imágenes de la galaxia NGC 6946. A la izquierda, imagen en colores ópticos usando datos del cartografiado “Sloan Digital Sky Survey” (SDSS). A la derecha, imagen del gas atómico usando la línea de 21 cm del hidrógeno neutro. Las observaciones se obtuvieron con el radio-interferómetro WSRT (“Westerbork Synthesis Radio Telescope”) y necesitaron 192 horas en total. Esta galaxia se encuentra a sólo 16.6 millones de años luz, dentro de lo que se conoce como “Volumen Local de Galaxias”. Crédito: Boomsma et al. (2008), A&A, 490, 555.

Algo que empezó a quedar claro desde el comienzo de las observaciones radio-interferométricas es que el gas difuso observado a 21 cm era más extenso que la componente estelar en las galaxias. Esto se hizo patente a finales del siglo XX, cuando la combinación de observaciones más profundas usando mejores radio-interferómetros con el incremento de la potencia de los ordenadores, que proporcionaban un combinado más efectivo de los datos y mejor procesado final, permitieron obtener mapas detallados del gas neutro en galaxias cercanas. Un buen ejemplo lo vemos en la Figura 1, que muestra la comparación entre las estrellas (izquierda) y el gas (derecha) dentro de la galaxia espiral NGC 6946. La imagen en la línea de 21 cm del hidrógeno atómico se consiguió usando datos del radio-interferómetro Westerbork (WSRT por sus siglas en inglés, “Westerbork Synthesis Radio Telescope”), instalado en Holanda, y que cuenta con 14 antenas de 25 metros. Se necesitaron 192 horas de integración para conseguir el detallado mapa del gas hidrógeno de NGC 6946.

Esta imagen muestra claramente como el disco de las galaxias espirales, trazado por el gas difuso, es mucho más amplio que el disco estelar. Gracias a la alta resolución espacial obtenida en esta imagen en radio (unos 13 segundos de arco de resolución, sólo un poco mayor de la imagen en óptico, con 2 segundos de arco de resolución) se pueden trazar bien los brazos espirales de NGC 6946, además de distinguir muchos más detalles del gas difuso de esta galaxia. En efecto, el disco interior muestra el mismo patrón filamentoso y con “huecos” que se ve en la imagen óptica. A la vez, los brazos espirales se hacen más y más pronunciados en las partes externas, permitiendo contar al menos 3 de ellos. El brazo del norte es el más rico en gas y contrasta mucho mejor con la zona inter-brazo, donde apenas se detecta emisión difusa. A pesar de la aparente regularidad en la forma general del gas, llama la atención que el disco de gas es asimétrico: está ligeramente más extendido en una dirección que en la perpendicular.

Como curiosidad, hay que decir que el “hueco oscuro” que aparece en la imagen en HI justo en el centro de la galaxia es un artefacto a la hora de combinar los datos. En realidad hay mucho gas en las partes centrales de NGC 6946. Sin embargo, el centro de la galaxia alberga un agujero negro súpermasivo que emite grandes cantidades de radiación sincrotrón justamente a longitudes de onda de 20 cm. Cuidado que este agujero negro súpermasivo no debe confundirse con el “agujero” que se ve en la emisión del gas, el agujero negro súpermasivo de NGC 6946 es muchísimo más pequeño y no puede detectarse con este tipo de observaciones. La intensa emisión no-térmica en continuo de radio alrededor de la línea de 21 cm de HI hace que ésta no aparezca como “línea de emisión” sino como “línea de absorción”. Este “truco” está permitiendo detectar el gas H I en galaxias activas muy lejanas. Los estudios en este campo está prácticamente empezando.

Las imágenes detalladas de galaxias espirales en la línea de 21 cm del hidrógeno atómico han permitido encontrar varias cosas interesantes. Las observaciones permiten diferenciar el gas en rotación, algo esperado para el disco espiral, de “otras nubes de gas” que no comparten ese movimiento. Muchas de esas otras nubes parecen ser similares a las “nubes de alta velocidad” que se detectan alrededor de la Vía Láctea.

¿Qué son estos objetos? Las dos teorías más aceptadas sobre la naturaleza de las nubes de alta velocidad que vemos en galaxias espirales son por un lado gas expulsado del disco por “fuentes galácticas” (regiones de formación estelar intensa, con explosiones de supernova de estrellas masivas que viven rápidamente, que expulsan el gas fuera del disco espiral) y por otro rasgos de acreción de gas difuso intergaláctico que ha sido procesado muy poco (su composición química es por tanto muy sencilla). Los datos de NGC 6946 mostrados en la figura 1 confirmaron que muchas de sus nubes de alta velocidad estaban asociadas con “agujeros de gas” en el disco espiral y, por lo tanto, provenían de “fuentes galácticas”. Pero, a la vez, revelaban “rasgos extraños” que sólo parecen explicarse de una forma: hay gas que está cayendo a NGC 6946 por primera vez. En la actualidad los astrofísicos esperamos que en las galaxias se dan los dos fenómenos: expulsión del gas del disco por explosiones de supernova y acreción de gas difuso intergaláctico.

Figura 2: Mapa con la emisión de hidrógeno atómico de la galaxia NGC 6946 obtenido con el radio-interferómetro WSRT (“Westerbork Synthesis Radio Telescope”). En escala de grises se muestra la misma imagen que la que aparece en el panel derecho de la Figura 1 y que tiene alta resolución angular (13 segundos de arco, el tamaño del “beam” del mapa interferométrico, indicado con el círculo pequeño abajo a la izquierda). Los contornos muestran una imagen conseguida con los mismos datos pero con mucha menor resolución espacial (64 segundos de arco, el tamaño indicado con el círculo pequeño abajo a la derecha). Al sacrificar la resolución espacial, la combinación de datos radio-interferométricos otorga mayor sensibilidad, lo que permite detectar gas más difuso y tenue. En este caso, se detectan estructuras asimétricas en las partes externas de NGC 6946 que están relacionadas con interacciones de galaxias. Crédito: Boomsma et al. (2008), A&A, 490, 555.

Pero no queda ahí la cosa. Una de las grandes ventajas de usar técnicas radio-interferométricas es que los datos permiten hacer imágenes a distintas resoluciones. La Figura 2 muestra exactamente los mismos datos que el panel derecho de la Figura 1, pero siguiendo dos combinaciones distintas. La imagen en escala de grises corresponden a los datos en alta resolución (13 segundos de arco), que es la misma que se muestra en la Figura 1. Los contornos corresponden a una imagen con mucha menos resolución angular (64 segundos de arco, las típicas que hasta entonces se obtenían con radio-interferometría). La ventaja de esta imagen de baja resolución es que permite detectar mucho más gas. Y, en efecto, es lo que vemos aquí: ahora aparecen de forma evidente las rasgos asimétricos de las partes externas que mencionábamos antes. Estas estructuras están asociadas a la interacción de galaxias y a la caída de gas difuso intergaláctico.

Y es aquí donde llegó otra de las grandes sorpresas al observar el gas difuso de las galaxias usando radio-interferometría. Como el disco de gas es mucho más extenso que el disco estelar es más fácil que una perturbación “externa” lo deforme. Cuando hablamos de perturbaciones o interacciones en este contexto nos referimos a casi cualquier cosa “externa” a la galaxia: una nube de gas difusa sin (apenas) estrellas, una galaxia enana, o una galaxia grande que pasan cerca (o directamente choca), o quizá la forma en la que la galaxia interacciona con el propio medio intergaláctico. Cuando miramos con detalle y profundidad las partes externas de las galaxias estamos encontrando continuamente esos rasgos de interacción, que son, en muchas ocasiones, imposibles de distinguir usando imágenes en los colores que nosotros vemos.

La Figura 2 revela a los posibles “culpables” de esa “pluma de gas difuso” que aparece arriba derecha del disco de NGC 6946: tiene dos galaxias enanas cercanas (las dos “nubes de gas” cerca de la esquina superior derecha) que han podido interaccionar con NGC 6946 en el pasado. No obstante, este rasgo difuso no está completamente explicado: podría ser también el resto de otra galaxia enana “engullida” en tiempos recientes por NGC 6946, o incluso parte del disco de la galaxia que ha sido parcialmente expulsado de las partes externas por fuerzas de marea inducidas por el paso cercano de otro objeto, originando una “cola de marea”.

Figura 3: Imagen de la galaxia del Remolino, M 51, y su galaxia satélite, NGC 5195, combinando datos ópticos con datos radio-interferométricos (en azul) obtenidos con el VLA (“Very Large Array”). Las observaciones en HI detectan, entre otras cosas, una larga cola de marea de gas difuso producida por las fuerzas de marea generadas por la interacción entre M 51 y NGC 5195. Crédito: Imagen en óptico: Álvaro Ibáñez Pérez. Imagen en radio: NRAO/AUI y Juan M. Uson, NRAO. Composición: Ángel R. López-Sánchez (AAO/MQU).

Las “colas de marea” aparecen de forma especialmente evidente cuando observamos el gas neutro de galaxias cercanas usando radiotelescopios. La Figura 3 muestra el ejemplo de una galaxia muy conocida, M 51, la galaxia del Remolino. Posiblemente sea de las galaxias más observadas por los astrónomos aficionados (del hemisferio norte, dada su posición en el cielo dentro de la constelación de Canes Venatici no se puede ver desde el hemisferio sur) y una de las galaxias espirales de gran diseño más cercanas a la Vía Láctea, a sólo 23 millones de años luz. Estamos muy familiarizados a la visión de M 51 en colores ópticos, y es conocida su interacción con una galaxia enana (NGC 5195), que aparece en colores rojizos contrastando con el disco azul de M 51, pero la visión de M 51 usando la luz H I a 21 cm nos muestra algo nuevo. Los datos obtenidos con el radio-interferómetro VLA (“Very Large Array”, Estados Unidos) en 1992 muestran una larga cola de marea (codificada en azul en la figura), consecuencia de la interacción entre M 51 y NGC 5194, que se aleja mucho de las partes centrales. Además, se descubren algunas nubes difusas de gas neutro en lugares donde no se detectan galaxias enanas o emisión estelar.

Figura 4: Imagen multi-frecuencia de la pareja de galaxias NGC 1512 y NGC 1510 combinando datos ultravioleta (datos de GALEX, NASA, en azul oscuro), óptico (bandas B y R de Digital Sky Survey, en azul claro y amarillo respectivamente), infrarrojo cercano (banda J del cartografiado 2MASS, en naranja), infrarrojo medio (datos del Telescopio Espacial Spitzer, NASA, en rojo) y radio (línea de 21 cm del hidrógeno atómico obtenidos por el interferómetro ATCA (Australia) como parte del proyecto “Local Volume HI Survey” (en verde). Se identifican algunas zonas de interés y las dos galaxias principales. Más información sobre este sistema en este artículo de Naukas. Crédito: Ángel R. López-Sánchez (AAO/MQU) y Baerbel Koribalski (CSIRO).

Otro espectacular ejemplo de galaxia espiral en interacción con intensos brazos espirales es NGC 1512. Localizada a 31 millones de años luz de nosotros, la galaxia NGC 1512 está en interacción con una galaxia enana compacta azul (NGC 1510). Observaciones usando el radio-interferómetro ATCA (“Australian Telescope Compact Array”, Australia) desvelaron que ambos objetos estaban envueltos en una enorme nube de gas difuso que, siguiendo un patrón espiral inducido por las fuerzas de marea, se extiende muy lejos del centro del sistema. La Figura 4 muestra en detalle la extensión del gas H I observado a 21 cm (codificado en verde en esta imagen) en NGC 1512 y NGC 1510 (parece una estrella brillante), envolviendo completamente a las dos galaxias y extendiéndose siguiendo dos largas estructuras espirales hasta más de 250 mil años luz del centro de NGC 1512, esto es, casi 8 veces el tamaño de la galaxia en colores ópticos. Aparecen también algunas nubes difusas de gas donde no se detectan estrellas.

Además, los datos del gas atómico revelan que una de las estructuras espirales ha sido perturbada por la interacción con la galaxia enana NGC 1510, que está “cayendo” hacia la galaxia principal e induciendo la formación estelar en las partes externas del sistema. Combinando datos de espectroscopía óptica, colores ultravioleta e infrarrojos, y el mapa del gas neutro obtenido con radio-interferometría, pudimos confirmar que el gas difuso que posee NGC 1512 en las partes externas no proviene de esta galaxia, sino que ha sido el producto de fusión de galaxias enanas o de material intergaláctico que ya había sido procesado en otras galaxias espirales y después perdido por ellas, y ahora lo vemos acretándose alrededor de NGC 1512.

Figura 5: Galaxias en interacción NGC 4038/4039 (Las Antenas) observadas en colores ópticos (panel izquierdo) y combinando las imágenes ópticas con los datos de la emisión a 21 cm del hidrógeno atómico (en azul) obtenidos con el radio-interferómetro VLA (panel derecho). Crédito: imagen óptica: Robert Gendler, imagen radio: John Hibbard, NRAO/AUI/NSF, combinación multi-frecuencia: Ángel R. López-Sánchez (AAO/MQU).

En otras ocasiones las interacciones de galaxias son mucho más evidentes y se ven claramente incluso en colores ópticos. Esto es lo que sucede en la galaxia de las Antenas (NGC 4038/4039, Figura 5), donde se observan dos núcleos centrales con dos largas colas de estrellas (de ahí el nombre que se le da a este peculiar objeto) que se alejan en direcciones opuestas. La galaxia de las Antennas es un ejemplo típico de lo que sucede cuando dos galaxies espirales chocan directamente: los dos núcleos centrales corresponden a las galaxias en proceso de colisión, mientras que las colas se originan por las intensas fuerzas de marea inducidas por las dos galaxias bailando en una danza que lleva irremediablemente a la fusión de ambas entidades. ¿Qué es lo que hace el gas? Normalmente en estos procesos es lo primero que se expulsa hacia el espacio intergaláctico, como describimos arriba. Pero en el caso de las Antenas aún se observa que buena parte del gas difuso está asociado a las largas colas de marea. El gas atómico, observado a 21 cm con el radio-interferómetro VLA, es especialmente prominente en la cola inferior. Es más, en los extremos de ambas colas aparecen regiones de formación estelar: en estas zonas el gas está condensado y creando nuevos soles. Algunos de estos sistemas quedarán “flotando” alrededor de las galaxias principales como “galaxias enanas de marea” (objetos que, a diferencia de las galaxias enanas típicas, poseen gran cantidad de elementos químicos y estrellas viejas) hasta terminar sus días cayendo de nuevo a la galaxia principal.

Figura 6: Imágenes del grupo de galaxias de M 81 y M 82 en óptico (panel superior) y combinando con los datos del gas difuso observado a 21 cm con el radio-interferómetro VLA (panel inferior). El gas atómico está desparramado por todo el sistema como consecuencia de las interacciones de galaxias. Crédito: Imagen óptica: Robert Gendler, imagen radio: Yun et al. 1994, Nature 372, 530, NRAO/AUI/NSF, combinación multi-frecuencia: Ángel R. López-Sánchez (AAO/MQU).

Hay casos aún más sorprendentes de interacciones de galaxias descubiertas gracias al estudio de la emisión de 21 cm del hidrógeno atómico. El cercano grupo de galaxias de M 81 y M 82 es quizá el caso más sorprendente. El panel superior de la Figura 6 muestra este grupo de galaxias, donde destacan la espiral M 81 (la “Galaxia de Bode”, en el centro) y la galaxia M 82 (la “Galaxia del Cigarro”, a su derecha), que posee una formación estelar muy intensa (tanto que el gas se está escapando perpendicularmente al disco, como se aprecia en los filamentos de color rojo intenso que surgen de su centro). Arriba a la izquierda aparece otra galaxia de baja masa, NGC 3077. Cuando observamos el gas difuso de este grupo de galaxias usando radio-interferómetros nos encontramos con una visión completamente distinta del sistema.

La imagen que reproducimos en el panel inferior de la Figura 6 es precisamente este mapa, tal y como se obtuvo usando datos del radio-interferómetro VLA. Además de descubrir el gas asociado a los discos espirales en rotación de las galaxias, esta poderosa imagen revela claramente el gas que conecta todas las galaxias entre sí. Estos “puentes de material difuso” no se ven en las imágenes en óptico (aunque es de esperar que también existan estrellas en ellos) y nos narran la convulsa historia que ha experimentado el sistema en tiempos recientes, con interacciones múltiples entre varias galaxias. La caída de gas neutro en M 82 como consecuencia de las fuertes interacciones de galaxias es la responsable de los fenómenos de formación estelar que observamos en ella. No es el único caso: una brillante nube de gas justo por encima de M 81 nos indica la posición de otra galaxia enana “estallante”, Holmberg IX, que apenas se distingue en los colores ópticos (sí brilla mucho en colores ultravioleta por el alto contenido de estrellas jóvenes y masivas que este galaxia enana posee), pero que destaca poderosamente en el mapa de la emisión de H I a 21 cm.

Si con sólo unas pocas observaciones a objetos individuales estamos encontrando tantos detalles nuevos y sorprendentes en galaxias que creíamos conocer bien, además de precisar su dinámica, la cantidad de materia oscura, la relación con la formación estelar, las interacciones y fusiones de galaxias, nubes difusas de gas donde no hay estrellas, ¿qué descubriremos al observar de forma sistemática centenares, miles de galaxias o decenas de miles de galaxias? Lo veremos en el último artículo de esta serie, donde detallaremos los cartografiados pasados, actuales y futuros que buscan estudiar la emisión del gas hidrógeno en galaxias usando la poderosa técnica de la radio-interferometría.

Este post ha sido realizado por Ángel López-Sánchez (@El_lobo_rayado) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.

 

El artículo El hidrógeno en el Universo (IV): Galaxias en interacción se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El hidrógeno en el Universo (III): El gas difuso de las galaxias
  2. El hidrógeno en el Universo (I): La emisión del hidrógeno neutro a 21 cm.
  3. El hidrógeno en el Universo (II): El mapa espiral de la Vía Láctea
Categorías: Zientzia

Iraia Muñoa: “Aldaketa epigenetikoak desegiteko botikak sortzea da gaurko erronka” #Zientzialari (66)

Zientzia Kaiera - Vie, 2017/02/10 - 09:00

Geneen eta inguruko faktoreen arteko erlazioa aztertzen duen biologiaren atalari epigenetika deritzo. Dietak, kirolak, farmakoek edota toxikoen kontsumoak lotura zuzena dute gure DNAren erregulazioan. Jakina da ez dutela DNAren sekuentzian mutaziorik eragiten, hala ere, bizi ohituretatik eratorritako molekula kimiko batzuk itsasten dizkio eta, ondorioz, geneen adierazpena beste modu batean egokitzen da.

Kontzeptu honi buruz hitz egin digu Iraia Muñoa UPV/EHUko fisiologia saileko ikertzaileak. Bere esanetan, gure bizi-ohiturek eragindako aldaketa epigenetikoak gaixotasun ezberdinen eragile dira eta hauei aurre egiteko botikak sortzea da gaur egungo erronka.

Zientzialari‘ izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.

The post Iraia Muñoa: “Aldaketa epigenetikoak desegiteko botikak sortzea da gaurko erronka” #Zientzialari (66) appeared first on Zientzia Kaiera.

Categorías: Zientzia

#Naukas16 Arqueología funeraría: la fama y el olvido

Cuaderno de Cultura Científica - Jue, 2017/02/09 - 17:00

El equipo de Almudena en plena faena. Foto: AP Photo/Daniel Ochoa de Olza

El equipo de arqueólogos al que pertenece Almudena García Rubio entró en una iglesia por la fama y se encontró con el olvido. Una charla fantástica donde se pone de relieve la íntimamente relacionadas que están historia, sociología, economía y biología.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 Arqueología funeraría: la fama y el olvido se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14 Arqueología de datos
  2. #Naukas16 Flipando en Colores
  3. #Naukas16 Pianos, torpedos y lo inesperado
Categorías: Zientzia

El papel viejo es amarillo

Cuaderno de Cultura Científica - Jue, 2017/02/09 - 11:59

“Fábulas ascéticas (en verso castellano) II” de Tamara Feijoo Cid (2012). Gouache sobre papel, 36,5 x 28,5 cm

Tanto el dibujo como la escritura y, por ende, el lenguaje, son las formas de comunicación y abstracción más antiguas y definitorias del ser humano. Las palabras se las lleva el viento, se las lleva el tiempo, si no se garabatean sobre algún soporte. Si además este soporte no pudiese trasladarse y apilarse, como ocurría con los estáticos muros de las primitivas pinturas rupestres, el conocimiento seguiría permaneciendo y perteneciendo a un lugar. La evolución del soporte a través de la historia simboliza nuestro carácter social, nuestro afán por conservar y comunicar.

La invención de un soporte ligero sobre el que escribir, dibujar, almacenar y comunicar nuestro conocimiento a nuestra manera, sigue siendo, a día de hoy, un asunto que se reinventa; desde la piedra, al papel, a las memorias de silicio.

El primer «papel», y de ahí el origen de la palabra papel, fue el papiro. El papiro se fabricaba en el Antiguo Egipto a partir del vegetal que le dio nombre: Cyperus papyrus. En la Edad Media, en Europa, se empleaba el pergamino, un papel elaborado a partir de pieles animales curtidas. En China, en el siglo II a.C., se empezó a fabricar papel con restos de tejidos, como seda, algodón o cáñamo. El papel que conocemos en la actualidad, el que fabricamos a partir de madera, comenzó su andadura mucho más tarde, en el siglo XIX.

En todos estos soportes, la huella del tiempo nos resulta muy reconocible. Y es que, cuando el papel envejece, se vuelve amarillo, quebradizo y adquiere ese olor característico a libro antiguo. El envejecimiento se debe principalmente a un proceso de degradación química y, muchas veces, también a agentes bióticos como insectos y microorganismos[1].

El papel, desde mediados del siglo XIX, está constituido por tres componentes: fibras procedentes de la madera, carga y aditivos[2].

Las fibras procedentes de la madera están formadas por cadenas de celulosa. La celulosa es un polisacárido lineal, es decir, está formada por unidades de glucosa unidas una tras otra, como las cuentas de un collar. Entre las cadenas de celulosa se establecen enlaces débiles por puente de hidrógeno que las hacen impermeables al agua y dan lugar a las fibras compactas que componen la pared celular de las células vegetales.

Estas fibras se mantienen unidas entre sí por medio de un polímero denominado lignina que dota a la madera de suficiente rigidez como para que los troncos de los árboles se mantengan erguidos. La lignina es de color ocre, de ahí proviene en mayor medida la coloración de la madera. Al eliminar la lignina, la fibra de celulosa es blanca, por ese motivo se retira la mayor parte durante la fabricación del papel. La eliminación de la lignina se hace por adición de sustancias alcalinas en las que es soluble y por blanqueo por medio de adición de cloro, peróxidos, o sulfitos[3].

La lignina nunca se consigue eliminar completamente del papel y, esto es un problema ya que, de forma natural, ayudada por la presencia de luz y humedad, la lignina se termina oxidando y recuperando su coloración ocre original. Esta es la razón por la que el papel viejo es amarillo.

Este proceso está íntimamente conectado con la química de los radicales libres que intervienen en nuestro envejecimiento natural. Resulta evocador que los procesos químicos que intervienen en el proceso de envejecimiento del papel sean tan similares a los que ocurren en nuestra piel.

En el proceso de oxidación de la lignina también se producen compuestos aromáticos que mantienen cierta similitud con la vainilla, de ahí que el olor a libro antiguo nos resulte agradable.

Además de la fibra procedente de la madera, el papel lleva carga. Al igual que en pintura, la carga suele ser de minerales blancos como carbonato de calcio, caolín, mica, talco, sílice, yeso, o sulfato de bario[4]. Como la carga es más económica que la celulosa, disminuye el precio del papel. La carga rellena todos los vacíos existentes entre las fibras, con lo cual el papel adquiere una superficie uniforme, al mismo tiempo que se blanquea, reduce su transparencia y mejora las condiciones para la impresión. La blancura del papel, su brillo u opacidad, dependen del tipo de carga y de la finura del grano[3].

Además de la carga, el papel suele llevar aditivos que actúan como ligantes, tales como las colas (colágeno), el almidón, el látex o el alcohol polivinílico[3].

Algunos microorganismos también son capaces de degradar el papel, generalmente por hidrólisis u oxidación de la celulosa a través de enzimas como la celulasa, que ocasionan las manchas típicas del papel deteriorado. Son habituales los Aspergilus Niger (hongos) y los vibrios (bacterias) [1].

Hay insectos que también destruyen el papel, como las lepismas, las termitas y los anóbidos. Todos ellos se nutren de la parte orgánica del papel, es decir, de las fibras y de algunos ligantes. Así que, cuando los insectos y los microorganismos colonizan el papel por completo, el único rastro que dejan tras de sí es la carga, la fracción pétrea del papel.

Los soportes de nuestros antepasados fueron muros, por eso resulta sugerente que, cuando el papel envejece tanto que se pierde, lo que queda de él sea la piedra.

Fuentes:

[1] Conservación y restauración de materiales de archivo. Mª Carmen Sistach Anguera. Departament d’Història de l’Antiguetat de la Cultura Escrita. Universitat de València, 1990.

[2] Fibras papeleras. José A. García Hortal. Edicions UPC, 2007.

[3] Conservación y restauración de material cultural en archivos y bibliotecas. José Luis Villacañas Berlanga. Biblioteca Valenciana, 2002.

[4] Los materiales de pintura y su empleo en el arte. Max Doerner. Ed Reverté, 1998.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo El papel viejo es amarillo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cómo proteger la madera con lignina
  2. #Naukas14 Cómo parar 380 toneladas de metal a 200 km/h con unas hojas de papel
  3. Ciencia en la cocina: anchoas en papel de pimiento
Categorías: Zientzia

Urpekarien gaitza

Zientzia Kaiera - Jue, 2017/02/09 - 09:00
Juan Ignacio Pérez eta Miren Bego Urrutia Oxigenoa

———————————————————————————————————–

Itsas ugaztunek oso ondo egiten dute urpean igeri. Baina salbuespenak dira ugaztunen artean, ugaztun gehienontzat urpean egotea oso zaila baita. Ugaztunen birikek ezin dute uretatik oxigenorik erauzi, bistakoa da hori. Baina, horrez gain, oxigenoarekin zerikusirik ez duten bestelako arazoak ditugu ugaztunok urperatzen garenean. Horietako bati urpekarien gaitza deitzen zaio, eta horixe izango da, hain zuzen ere, ondoren azalduko dugun kontua.

Nitrogenoa (% 78) eta oxigenoa (% 21) dira arnasten dugun airearen osagai nagusiak. Oxigenoa erregarri gisa erabiltzen dugu metabolismoan eta arnas sistema erabiltzen dugu hura eskuratu ahal izateko. Nitrogenoa, berriz, geldoa da; ez dugu behar eta ez dugu ezertarako erabiltzen. Ohiko egoeran, arnasten dugun nitrogenoaren zati txiki bat bakarrik pasatzen da odolera, eta zati txiki hori disolbaturik igarotzen da. Baina urperatzean, presio atmosferikoaren ordez presio hidrostatikoak eragiten ditu gasen mugimenduak eta, horren ondorioz, presio handien pean daude biriketako barrunbean dauden gasak, sakoneraren arabera presioa handitu egiten baita: 10 metroko 1 atm handitu, izan ere. Beraz, itsas azalean dagoena (atmosferari dagokiona) 1 atm-koa bada, 2 atm-koa da 10 metroko sakoneran, eta neurri horren arabera handitzen da hortik behera.

Irudia: Urpekarien gaitza azkar azaleratzeagatik sortzen diren nitrogeno-burbuilek eragiten dute.

Ikus dezagun orain zein den urpekariek aurkitu dezaketen arazoa. Presioaren igoera dela eta, urpekariak arnasten duen airearen [1] nitrogenoaren presio partziala ere handitzen da eta, horren ondorioz, itsas mailan atmosferatik hartuko lukeena baino nitrogeno gehiago hartzen du urpekariaren odolak. Harturiko nitrogeno hori bertan geratzen da, odolean eta barne-fluidoetan disolbaturik. Baina urpekaria itsas azalera itzultzen denean, jaitsi egiten da presio hidrostatikoa eta, horrekin batera, baita biriketan dagoen gasen presio partziala ere. Odol eta barne-fluidoetan disolbaturik zegoen nitrogenoa biriken barrunbera itzultzen da jaiste horren ondorioz eta, gero, biriken barrunbetik kanporatzen da.

Arazo larriak sor daitezke, hala ere, urpekaria arinegi igotzen bada. Arinegi igoz gero, presioaren jaitsiera ere azkarregi gertatzen da eta, orduan, nitrogenoa ez da apurka-apurka barreiatzen biriken barrunbera. Egoera horretan gas-nitrogenozko burbuilak sor daitezke gorputz-fluidoetan, eta kalte larriak eragin ditzakete. Izan ere, nitrogenozko burbuilek nerbioak estutu ditzakete, arteriak, zainak eta linfa-hodiak buxatu, eta, halaber, erreakzio kimiko kaltegarriak eragin odolean.

Esan bezala, urpekariei gerta dakiekeen arazo larria da hori, eta horretxegatik deitzen zaio “urpekariaren gaitza”. Baina itsas ugaztunei ez zaie horrelakorik gertatzen, nahiz eta oso arin urperatu eta azaleratu. Itsas ugaztunek urpekarien gaitza ez pairatzearen arrazoia ez dago guztiz argi, baina badirudi urperatu baino lehen birikak hustu egiten dituztela. Horrela jokatuz, biriken barrunbean ez da nitrogenorik geratzen (oxigenorik ere ez) eta, biriketan ez badago, ez da odolera iragaten, eta odolean ez dagoen nitrogenoak ezin burbuilarik sortu.

Itsas txakurrei dagokienez ez dago zalantzarik: frogaturik dago urperatu aurretik birikak husten dituztela. Baleen kasuan, berriz, ez dago horren argi, baina haien birikak oso txikiak dira eta argi dago urperatzean berehala kolapsatzen direla. Kolapsaturik egonik, ez da ezer geratzen birika-barrunbean.

Baina birikak hain arin kolapsatzen badira, nondik ateratzen dute itsas ugaztunek arnas egiteko behar duten oxigenoa? Hori, hurrengo atalean ikusiko dugu.

Oharrak:

[1] Arazo honi dagokionez, berdin da aire konprimituaz beteriko botilatik harturiko airea den edo biriken barrunbean dagoena den.

—————————————————–

Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.

—————————————————–

Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.

The post Urpekarien gaitza appeared first on Zientzia Kaiera.

Categorías: Zientzia

Páginas