Inmunoterapia contra el cáncer

Cuaderno de Cultura Científica - Sáb, 2019/10/19 - 11:59

El Sistema Inmunitario está formado por una red compleja de células, tejidos y órganos que funcionan para defendernos de microorganismos infecciosos y otros agentes invasores, los cuales detectan la sustancia invasora y colaboran entre sí para reconocerla y eliminarla. En 2014 se realizaron los primeros tratamientos de inmunoterapia contra el cáncer, con el fin de que algunos de los componentes del sistema inmunitario detectasen las células cancerígenas y las eliminaran.

El tratamiento de inmunoterapia contra el cáncer puede ser mucho más efectivo que la quimioterapia, ya que solo ataca a las células cancerosas y no tiene los efectos secundarios asociados a la quimioterapia. Por esta razón, en 2013 la revista Science consideró la inmunoterapia contra el cáncer como el descubrimiento científico del año.

El pasado 2 de mayo se celebró en la Biblioteca Bidebarrieta de Bilbao una charla-coloquio bajo el título “Inmunoterapia contra el cáncer” en la que intervinieron tres destacados investigadores (Francisco Borrego Rabasco, profesor de Investigación Ikerbasque en el Instituto de Investigación Sanitaria Biocruces Bizkaia, y Ane Orrantia e Iñigo Terrén, biotecnólogos e investigadores del Grupo de Inmunología de Biocruces) que abordaron las principales ventajas y retos del tratamiento inmunológico contra el cáncer.

La charla se enmarca dentro del ciclo “Bidebarrieta Científica”, una iniciativa de carácter mensual dirigida a divulgar el conocimieno científico y que está impulsada por la Cátedra de Cultura Científica de la UPV/EHU y la Biblioteca Bidebarrieta.

Edición realizada por César Tomé López

El artículo Inmunoterapia contra el cáncer se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Inmunoterapia contra el cáncer
  2. La batalla contra el cáncer: la importancia de la alimentación
  3. La importancia del agua en un biomarcador contra el cáncer
Categorías: Zientzia

Rumbo a la obesidad

Cuaderno de Cultura Científica - Vie, 2019/10/18 - 11:59
María Elena Pérez Ochoa. Foto: UPV/EHU.

En los últimos años el comportamiento alimentario y el incremento del peso corporal han sido temas de interés para la sociedad y organismos como la Organización Mundial de la Salud (OMS), por los altos costes que supone a un país y la pérdida en calidad de vida.

En 2010 la OMS nombró a México como el primer país con mayor índice de obesidad del mundo. En España se espera un incremento preocupante para el 2030. “El comportamiento de ingesta saludable se ve vulnerado por los aspectos sensoriales y el entorno”, determina María Elena Pérez Ochoa, profesora colaboradora del Basque Culinary Center, y autora de la tesis ‘El placer de comer: Una mirada biopsicosocial’.

Comer es un placer y se convierte en más que un medio para un fin. Comer significa una elección de estilo de vida y tiene un significado considerable en nuestra sociedad más allá de la adquisición de energía y nutrientes esenciales.

Este trabajo pretende arrojar luz a la pregunta de ¿por qué la gente come determinados alimentos en vez de otros? “El proceso viene determinado por mecanismo homeostáticos (relativos a la autorregulación) y mecanismos hedónicos (que buscan el placer como fin)”, explica Pérez. Asimismo, la relación entre los dos determina cuándo, qué y cuánto comemos.

La ingesta alimentaria viene definida por un comportamiento motivado por nuestros sentidos y un filtro cultural con varios componentes: hábitos, actitudes, emociones, creencias y sensaciones. «La estimulación visual y gustativa facilita la activación de áreas cerebrales relacionadas a centros de placer, modulando así, la motivación hacia la ingesta”, afirma Pérez.

Ante la apariencia de un plato se desarrolla el comportamiento de ingerir ese alimento u otro. Sensaciones como lo que vemos, olemos, sentimos o escuchamos, vulneran el comportamiento saludable y entra en juego la respuesta al consumo calórico.

A grandes rasgos, esta investigación revela que la presentación de los alimentos genera en el consumidor una activación emocional (como alegría, tristeza, asco) y unas actitudes (que parezca sabroso, que se estime que engorde) que llega a condicionarnos sobre lo que comemos. Estos condicionantes son mucho más importantes en ocasiones que las propias calorías y valores nutricionales de los alimentos. En el día a día, parece ser que la elección de los alimentos saludables se ve comprometida por estos constructos. “Se hace cada vez más necesario poder generar estrategias de autorregulación alimentaria desde una perspectiva biopsicosocial”, sentencia Pérez.

Referencia:

Pérez Ochoa, María Elena (2019) El placer de comer: una mirada biopsicosocial Tesis doctoral UPV/EHU (acceso libre) URI: 10810/32504

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

 

El artículo Rumbo a la obesidad se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El pteroestilbeno como posible tratamiento de la obesidad
  2. Obesidad y delgadez también se heredan
  3. Gripe, obesidad y cáncer. Medicina de frontera.
Categorías: Zientzia

Marcia Neugebauer geofisikaria eta eguzki-haizearen sekretuak

Zientzia Kaiera - Vie, 2019/10/18 - 09:00
Uxue Razkin Jendeak eguzkia marrazten duen bakoitzean alde batera uzten du astroari atxiki zaion basakeria. Txikiak garenean, ohikoa da horiz edo laranjaz margotzea; esfera txiki bat, malezia gabeko izpiez inguratuta, orriaren iskin batean, trabarik egin ez dezan. Irudi apala eta alaia da guztiz, Ikaro suntsitu zuen esfera goritik oso urrun dagoena, alegia. Eguzkia argi- eta bizi- iturririk handiena da; Eguzki-sistemaren erdian kokatzen den izarra da. Baina gas beroez osatuta dago; haren nukleoan energia askatzen duten fusio nuklear erreakzioak gertatzen dira. Benetako leherketak gertatzen dira: eguzkiaren azala ireki eta haren edukia kanporatzen da.

1. irudia: Eguzkiaren geruza ezberdinak erakusten dituen ilustrazioa. (Argazkia: NASA eta ZTH)

Urtetan zehar, eguzkiaren barne-jarduera ezezagunak zientzialari mordoa erakarri du. Ezin dugu ahantzi gure planetari eragiten dion elementua dela, zehazki, Lurra inguratzen duen eremu magnetikoari. Izan ere, Eguzkiak askatzen dituen energia “jaurtigaien” aurrean, magnetosfera da gure babesa.

Marcia Neugebauer geofisikariak argitu zuen eguzki-haizearen fenomenoa. Eguzkitik (eguzki korotik) etengabe ateratzen den karga elektrikoa duten partikula korronte bat da, heliosfera sortzen duena. Fenomeno hau ekaitz geomagnetikoen, auroren eta kometek askatzen duten gasen atzean dago. Gure protagonista eguzki-haizearen neurketak egin zituen lehen ikertzailea izan zen. Gainera, fenomeno horren ezaugarriak (tenperatura eta abiadura, esaterako) aztertu zituen, baita eguzki-haizearen eta kometen arteko elkarreragina ere.

Arrakastarik gabeko misioen ondoren, miraria

Marcia Neugebauer New Yorken jaio zen, 1932an. Fisikako ikasketak egin zituen, Cornell Unibertsitatean, 1954an. Graduondokoa ere egin zuen, Illinoiseko Unibertsitatean. Ikasten ari zen bitartean, David Lazarusen laborategian egin zuen lan. Bertan, metalen difusioa aztertu zuen. Lan hark ez zuen arrakasta handirik izan eta, gainera, gaia ez zuen oso gustuko, hortaz, beste ikerketa bat abiatu zuen: emultsio nuklearretan, partikula energetikoen ezohiko dispertsioa ikertzen hasi zen, Robert Hill zuzendari zuelarik.

2. irudia: Marcia Neugebauer 1962. urtean NASAko egoitzan lanean. (Argazkia: Jet Propulsion Laboratory / NASA. Iturria: Wikimedia Commons – Domeinu publiko irudia)

Halere, masterra bukatu zuenean, ikerketa-lerro hori utzi eta Kaliforniara joan zen. Han, unibertsitate garaian ezagutu zuen Gerry Neugebauer fisikariarekin ezkondu zen. Horren ondotik, Jet Propulsion Laborategian (JPL) hasi zen lanean, 1956an. NASArako espazio-ontzien eraikuntzaz eta bestelako lanez arduratzen zen dibisioa zen. Bertan, Marciak argitu behar zuen bideragarria ote zen kohete nuklearrak eraikitzea erreaktore nuklear batean gasa berotuz.

Armada izan zen proiektuaren babesle nagusia baina une hartan aireko indarrekin gatazkan sartuta zegoen eta horrek azkartu zuen proiektuaren amaiera. Gauzak horrela, Conway Snyderren taldeak beste ikergai bat bilatu zuen: gas ioidunak. Marciak eta Ray Newburnek lan oso garrantzitsu bat zuten esku artean: artikulu bat idatzi behar zuten argitu gabeko galdera zientifikoei buruz. Zerrendako lehenengo gaia eguzki-haizea eta kometak ziren.

3. irudia: Marcia Neugebauer geofisikaria Mariner 2 ontziaren ondoan, planeta baten inguruan hegan egin zuen lehen espazio-ontzia. Mariner 2 ontziak, eguzki-haizea partikula fluxu konstante bat zela baieztatu zuen erreminta diseinatu zuen taldeko partaidea zen Marcia. (Argazkia: NASA)

Urteak eta urteak eman zituzten lanean espazio-tresnak garatzen, eguzki-haizearen ezaugarriak ezagutzeko asmoz. Marcia espazio tresnen diseinu kontzeptualaz eta objektu horien bitartez lortutako informazioa analizatzeaz arduratzen zen. Eraikitako zunda batzuek huts egin zuten, jakina, Explorer 14 eta Ranger 1 eta 2-ak, kasu. Baina azkenean, miraria iritsi zen. 1962. urtean, Mariner 2 zunda jaurti zuten eta arrakastatsua izan zen. Izan ere, Venusera iritsi eta planetaren atmosferari buruz informazio nahikoa jaso zuen zundak. Esperimentuak lehen aldiz neurtu zituen eguzki-haizearen ezaugarriak; bere abiadura, tenperatura eta korronteen bidez gertatzen ziren aldaketak. Marciak ziurgabetasuna hil zuen horrela.

Fisika espazialean aitzindari

Mariner 2aren ondoren, bi misio zuzendu zituzten Snyderrek eta Marciak: OGO 5 deiturikoa (AEBk jaurti zituen sei sateliteetako bat izan zen, zeinak gure planetaren magnetosfera ikertzea zuen helburu) eta Apolo Programaren esperimentu zientifikoen ekipamendua (ALSEP ingelesez). Giotto misio espazialean ere parte hartu zuen Marciak. Misio honi esker ikertu zuten Halley kometaren konposizio kimikoa, eta plasmaren dinamikak eguzki-haizearen eta kometaren arteko interakzioan.

Eguzki-haizearen ikerketa egiteagatik hainbat sari jaso zituen. 2010ean, adibidez, Ameriketako Estatu Batuetako Zientzien Akademia Nazionalak (NAS ingelesez) Arctowski Domina aitortu zion. Horretaz gain, eta urte berean, George Ellery Hale saria jaso zuen. NASAk ez zuen bere lana ahaztu eta hiru dominarekin saritu zuen. Marciak sari ugari jaso ditu bere ibilbidean zehar, baina berak ez du inoiz ikusi bere burua fisika espazialeko aitzindari gisa. Harentzat bere misioen eta lanaren sona une eta toki egokian egotearen ondorioa da.

Iturriak:

———————————————————————–

Egileaz: Uxue Razkin (@UxueRazkin) kazetaria da.

———————————————————————–

The post Marcia Neugebauer geofisikaria eta eguzki-haizearen sekretuak appeared first on Zientzia Kaiera.

Categorías: Zientzia

Por qué se corta la mayonesa y qué relación tiene esto con la cosmética

Cuaderno de Cultura Científica - Jue, 2019/10/17 - 11:59
Fuente: Pixabay

 

Para hacer mayonesa se necesita aceite de oliva, vinagre, huevos y sal. Hay variantes con otros aceites, como el de girasol, o con otros ácidos que no sean vinagres, como el zumo de limón.

El proceso es siempre el mismo. Primero se echa el huevo y por encima el aceite. El orden es muy importante para que no se corte. También es importante que el huevo esté a la misma temperatura que el aceite, no de la nevera. Introducimos el brazo de la batidora hasta el fondo y comenzamos a batir. En ese momento se empieza a formar una emulsión, la mezcla estable del huevo y el aceite. Sin dejar de batir añadimos vinagre y sal al gusto.

Decimos que la mayonesa se corta cuando no se forma bien la emulsión. En lugar de espesarse, la mezcla parece que se vuelve más líquida, y por mucho que se insista con la batidora, parece que no hay marcha atrás. La razón por la que esto a veces sucede y a veces no está en la naturaleza química de las emulsiones.

Las emulsiones son mezclas entre sustancias que por su naturaleza química no se podrían mezclar. Esto sucede por ejemplo con el agua y el aceite, que no se mezclan. Cuando ponemos en contacto agua y aceite, una sustancia rehúye de la otra. Los químicos tenemos un dicho para esto: “lo semejante disuelve a lo semejante”. Con ello nos referimos a las sustancias polares y apolares.

La polaridad es una propiedad química que se caracteriza por la presencia de una marcada distribución heterogénea de las densidades electrónicas en una molécula. Cada elemento químico tiene una tendencia diferente por retener la nube electrónica de los elementos con los que enlaza cuando forma moléculas. Debido a esta desigual distribución electrónica surge la polaridad. En las moléculas en las que ocurre esto hay regiones cargadas negativamente (δ-) y otras cargadas positivamente (δ+), generando lo que llamamos momento dipolar.

El agua es una molécula polar que es útil para ilustrar esta propiedad. El agua está formada por dos hidrógenos que se unen a un oxígeno por sendos enlaces covalentes. Como el oxígeno es más electronegativo que el hidrógeno tiende a atraer más los electrones que comparten. Esto se traduce en que el oxígeno tiene más densidad de carga negativa (rojo), mientras que el hidrógeno tiene más densidad de carga positiva (azul).

Densidad electrónica de una molécula de agua. Fuente: Wikimedia Commons

El agua es una sustancia polar. En cambio, el aceite es apolar, no presenta una distribución tan desigual de las cargas. Por este motivo el agua y el aceite no se mezclan, se repelen. Las moléculas de agua tratan de mantenerse unidas entre sí porque son afines por ser polares, y las de aceite hacen lo mismo, rehúyen de las de agua para mantenerse unidas entre sí. Como el agua es más densa que el aceite, es decir, la misma cantidad de volumen tiene más masa que el aceite, se mantendrá en el fondo, mientras que el aceite permanecerá flotando.

Sin embargo, hay muchas salsas como la mayonesa, en las que hay una mezcla estable de fase acuosa y fase grasa. Lo que en principio es imposible se vuelve posible gracias a la formación de una emulsión.

La base de la mayonesa es el aceite y el huevo. El aceite es una grasa vegetal apolar, y el huevo es esencialmente polar, ya que contiene un 80% de agua. El resto del huevo está formado por proteínas y grasa, así que el propio huevo ya es en sí mismo una emulsión, especialmente la yema, que tiene una cantidad de grasa mayor.

La razón por la que el huevo se mezcla con el aceite reside en la yema de huevo, ahí es donde encontramos la lecitina. La lecitina es un término genérico que se utiliza para designar a un tipo de grasas que son consideradas emulsionantes.

Los emulsionantes son sustancias que presentan dos extremos: uno polar y otro apolar. Así, cuando el emulsionante se distribuye entre dos fases, como agua y aceite, empieza a rodear a las gotas de aceite que se han dispersado en el agua. El extremo del emulsionante apolar, como es afín al aceite, se sitúa dentro de la gota. Mientras que el extremo afín al agua se sitúa en la parte exterior de la gota. Cuando dos gotas se acercan, el emulsionante impide que las gotas se unan entre sí. Se ha empezado a formar la emulsión.

Para hacer mayonesa es importante empezar batiendo el huevo en el fondo. De esa manera conseguimos liberar el emulsionante. A continuación, o ya sobre el huevo, tenemos el aceite que, por agitación se irá dispersando en pequeñas gotas dentro de la fase acuosa del huevo. El emulsionante irá rodeando estas gotas hasta dejarlas suspendidas en la fase acuosa.

Es importante que primero se disgregue el huevo y no al revés. Si lo hiciésemos al revés conseguiríamos el resultado inverso. El agua se iría dividiendo en gotas pequeñas, que quedarían rodeadas por el emulsionante. El extremo afín al agua del emulsionante se dirigiría hacia el centro de la gota, y la parte afín al aceite se dirigiría hacia el exterior de la gota, manteniendo a esas gotas de agua dispersas en el medio aceitoso. Esto es lo que ocurre cuando decimos que la mayonesa se corta, que hemos hecho la emulsión justo al revés.

Que la emulsión suceda en un sentido o en otro también depende de la temperatura del huevo. Al batir el huevo este se dispersa y se separa la lecitina del resto del agua. Eso se consigue gracias a la energía que aplicamos al batirlo. Si el huevo está frío necesitaremos aplicar más energía para que esto suceda, así que el resultado puede ser que el huevo no llegue a disgregarse todo lo necesario como para que el emulsionante se disponga alrededor de las gotas de aceite. Por esta razón se aconseja que el aceite y el huevo estén a la misma temperatura.

El siguiente ingrediente que se añade a la emulsión es un ácido. O bien el vinagre, que es una sustancia ácida por su contenido en ácido acético; o bien zumo de limón, que es ácido por su contenido en ácido cítrico. La función de los ácidos es estabilizar la emulsión. Las gotas de aceite rodeadas de emulsionante y dispersas en agua son más estables cuando el medio es ácido, ya que el medio ácido fomenta la repulsión entre los extremos polares y apolares. Impedir la unión entre gotas por medio de un ácido hace que la emulsión sea más estable.

Añadimos sal al gusto y listo, ya tenemos preparada la mayonesa.

  • ¿Qué relación tiene esto con la cosmética?

La mayor parte de las cremas son emulsiones, presentan una fase acuosa y una fase grasa.

Fuente de la imagen: cosmeticosaldesnudo.com

Dependiendo del tipo de cosmético que se quiera formular podemos fabricar la emulsión en un sentido u en otro: con la fase interna acuosa y la externa grasa, o al revés. Para ello empleamos emulsionantes.

Así tenemos cosméticos “oil in water” (aceite en agua), también denominados O/W. Y cosméticos “water in oil” (agua en aceite), también denominados W/O.

El 80% de los cosméticos del mercado son O/W, ya que son más frescos, ligeros y se absorben mejor. Los W/O son cosméticos más untosos. Generalmente los cosméticos para el rostro con fórmulas ligeras son O/W. Mientras que los cosméticos más viscosos diseñados para las zonas más secas del cuerpo, suelen ser W/O.

La química de la emulsión de los cosméticos O/W es como la que sucede en la mayonesa. Mientras que la química que la emulsión de los cosméticos W/O es como la que sucede cuando se nos corta la mayonesa. Lo que en cocina es un error, resulta de gran utilidad en cosmética.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo Por qué se corta la mayonesa y qué relación tiene esto con la cosmética se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El buen turrón tiene su ciencia
  2. El mejor lacón con grelos tiene su ciencia
  3. La pantalla de tu móvil solo tiene tres colores
Categorías: Zientzia

Integratzaile simetrikodun 10 ordenako konposizio metodo simetrikoen bilaketa

Zientzia Kaiera - Jue, 2019/10/17 - 09:00
Elisabete Alberdi Celaya, Joseba Makazaga Odria, Ander Murua Uria Konposizio metodoak ekuazio diferentzial arrunten (EDAen) sistemen hasierako baliodun problemen zenbakizko ebazpenerako algoritmoak eraikitzeko tresna ahaltsuak dira. Konposizio metodo bat oinarrizko zenbakizko metodo bat edo batzuk zenbaitetan konposatzearen emaitza da. Honela, s konposizio eginez lortzen den metodoari, s ataleko konposizio metodoa esaten zaio.

Irudia: Linealizazioko parte esanguratsua zehazteko prozesua.

Oinarrizko integratzaile gisa bigarren ordenako metodo simetrikoa darabilten konposizio metodo simetrikoei erreparatuko diegu. Konposizio metodoa simetrikoa izateak esan nahi du oinarrizko integratzailea simetrikoki konposatu dela. Honelako prozesuen helburua izaten da, oinarrizko metodoaren zenbait propietate mantenduz zehaztasun ordena altuagoko metodoak lortzea.

Simetria baldintzek konposizio metodoaren ordena bikoitia izatea ziurtatzen dute. Bestalde, konposizio metodo simetrikoa zehaztu dugun ordenakoa izan dadin, beharrezkoa da atal kopuru minimo bat izatea. Adibidez, 8 ordenako konposizio metodoak gutxienez s=15 atal izan behar ditu, eta 10 ordenakoak, gutxienez s=31 atal. Asko dira konposizio metodoen koefizienteak bilatzen jardun duten autoreak. Honela, ezaguna da aipaturiko eran lortutako 8 ordenako metodorik onenak 17 atal dituela, eta 10 ordenako eta 31, 33 eta 35 ataleko metodo oso onak ere lortu direla.

Lan honetan 10 ordenako eta 31 ataleko konposizio metodo simetrikoak lortzeko sortu ditugun bi teknika aurkezten dira. Atal kopuru minimoa duen konposizio metodoan, parametro kopurua eta murrizketa aljebraikoen kopurua bera da (10 ordenakoetan zehazki hamasei), eta Newton-en metodoa erabil daiteke soluzioak lortzeko, soluzioen hasierako hurbilpen egokiak izanez gero.

10 ordenako eta 31 ataleko metodo simetrikoen kasuan, milaka soluzio daude, eta horien artean, irizpideren baten arabera onena edo onenak hartzen dira. Hainbat autorek erabilitako irizpidea tarte osoan ibilitako distantzia minimizatzean datza eta guk ere irizpide horri jarraituko diogu. 10 ordenako eta 31 ataleko metodoen artean, Sofroniouk eta Spalettak proposatutakoa da egun ezagutzen den onena. 10 ordenako konposizio metodo simetrikoak hamasei ordena-baldintza bete behar ditu. Ordena-baldintzetako ekuazioak oso konplexuak dira, eta aipatutako autoreek, teknika eraginkor bat diseinatu beharrean, konputagailu ahaltsuen indarra erabili zuten beraien metodoa lortzeko.

Hemen, gure helburua izan da aipatutako metodoak sortzeko teknikak diseinatzea eta berauek probatzea. Sofroniouk eta Spalettak lortutako 10 ordenako eta 31 ataleko metodoa edota hobeak lortzea, guk diseinatutako teknikez baliatuz. Diseinatu ditugun teknika bietan, hamasei ordena-baldintzek osatzen duten sistemaren azpisistema bat ebatziz hasten dugu prozesua. Azpisistema hau 5 ekuaziok osatzen dute, eta ekuazio hauek betetzen dituzten emaitzen multzotik norma euklidearra lokalki minimizatzen duten puntuak aukeratzen ditugu. Ondoren, falta diren beste 11 ordena-baldintzak betearazteko bi bide proposatzen ditugu.

Teknika biak izan dira gai Sofroniouk eta Spalettak lortu zuten soluzioa lortzeko eta bigarren teknikak, beste soluzio batzuk ere eman dizkigu. Teknika hauek erabil daitezke ekuazio polinomikodun sistemak askatzeko (bereziki, ordena altuko zenbakizko integratzaileen sorreran ageri direnak askatzeko).

Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: Ekaia 34
  • Artikuluaren izena: Integratzaile simetrikodun 10 ordenako konposizio metodo simetrikoen bilaketa.
  • Laburpena: Konposizio metodoek, Ekuazio Diferentzial Arruntak (EDAak) ebazteko oinarrizko zenbakizko integrazio-metodo bat modu egokian konposatuz emaitzak hobetzeko aukera ematen dute. Lan honetan erreparatuko diegu bigarren ordenako zehaztasuna duen oinarrizko integratzaile simetriko bat erabiliz lortzen den konposizio metodo simetrikoei. Simetrien erabilerak, ordena-baldintzak sinplifikatzeaz gain, ezezagunen kopurua gutxitzea eragiten du. Asko dira honelako metodoen koefizienteak bilatzen jardun duten autoreak. Honela, ezaguna da aipaturiko eran lortutako 8 ordenako metodorik onenak 17 atal dituela, eta 10 ordenako eta 31, 33 eta 35 ataleko metodo oso onak ere lortu direla. Lan honetan 10 ordenako eta 31 ataleko konposizio metodo simetrikoak lortzeko sortu ditugun bi teknika aurkezten dira.
  • Egileak: Elisabete Alberdi Celaya, Joseba Makazaga Odria, Ander Murua Uria.
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua.
  • ISSN: 0214-9001
  • Orrialdeak: 99-121
  • DOI: 10.1387/ekaia.19341

————————————————–
Egileez:

Elisabete Alberdi Celaya UPV/EHUko Bilboko Ingeniaritza eskolako Matematika Aplikatua Sailean dabil eta Joseba Makazaga Odria eta Ander Murua UPV/EHUko Informatika Fakultateko Konputazio Zientzia eta Adimen Artifiziala sailean.

———————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.

The post Integratzaile simetrikodun 10 ordenako konposizio metodo simetrikoen bilaketa appeared first on Zientzia Kaiera.

Categorías: Zientzia

La transformación de la panadera

Cuaderno de Cultura Científica - Mié, 2019/10/16 - 11:59

Una transformación biyectiva de una imagen de n por m píxeles es una modificación de esta figura en la que cada píxel se desplaza del lugar que ocupa a otro, y el que llenaba ese sitio se mueve a otra parte de esa imagen. De este modo ningún píxel desaparece, sólo cambia de posición. En matemáticas se dice que se ha realizado una permutación de los píxeles que componen la imagen.

Las transformaciones biyectivas de imágenes poseen la siguiente propiedad general:

Existe un menor número entero, k, de manera que realizando k veces la transformación se vuelve a obtener la imagen original.

Este resultado es una consecuencia inmediata del hecho de que el conjunto P de las permutaciones sobre un conjunto finito forma un grupo –el grupo simétrico, que en este caso, además, es un grupo finito–. Puede demostrarse que si P es una permutación de este tipo, existe un número entero k tal que si P se aplica k veces se recupera la transformación identidad –la permutación que no cambia nada–.

Para aclarar esta idea, supongamos un conjunto con cinco objetos {A,B,C,D,E} y llamemos P a la permutación que intercambia el primer y tercer objetos, lleva el segundo objeto a la cuarta posición, el cuarto al quinto lugar y el quinto pasa a ocupar la segunda posición. Puede simbolizarse esta transformación del modo ABCDE → CEABD. Si aplicamos sucesivamente P obtenemos las ordenaciones siguientes:

ABCDE → CEABD → ADCEB → CBADE → AECBD → CDAEB → ABCDE,

es decir, en seis iteraciones hemos regresado a la configuración inicial.

Por cierto, en este Cuaderno de Cultura Científica hablamos hace unos años de la transformación del fotomatón, que es un ejemplo de transformación biyectiva de una imagen.

La transformación (discreta) de la panaderai es un caso particular de transformación biyectiva de imágenes. La introdujeron en 1997 los matemáticos Jean-Paul Delahaye y Philippe Mathieu (ver [1] y [2]).

Su nombre se refiere al tipo de distorsiones que definen la permutación, que recuerdan al proceso de preparar una masa de pan, estirando y plegando la mezcla. En efecto, partimos de una imagen con un número par de filas n y columnas m. Los puntos –píxeles– de la primera línea tienen por coordenadas (de izquierda a derecha) (0,0), (1,0), (2,0), …, (m-2,0) y (m-1,0); las de la segunda línea (0,1), (1,1), (2,1), …, (m-2,1) y (m-1,1), etc. Y se procede del siguiente modo

  1. Estirado de “la masa”: mezclando líneas pares e impares

La altura del rectángulo de partida se divide por 2 y su longitud se multiplica por 2. Tras esta transformación, la primera línea pasa a ser (0,0), (0,1), (1,0), (1,1), …, (m-2,0), (m-2,1), (m-1,0) y (m-1,1), la segunda (0,2), (0,3), (1,2), (1,3), …, (m-2,2), (m-2,3), (m-1,2) y (m-1,3), y así sucesivamente.

  1. Plegado de “la masa”: cortando el rectángulo obtenido en la etapa anterior en dos y colocando la parte derecha sobre la izquierda tras haberla hecho girar 180 grados.

Con esta segunda permutación, la primera línea se transforma en (0,0), (0,1), (1,0), (1,1), …, (m/2-1,0) y (m/2-1,1) y la segunda queda (0,2), (0,3), (1,2), (1,3), …, (m/2-1,2) y (m/2-1,3). Y los puntos de las últimas líneas que resultan del plegado de la mitad derecha quedan: (m-1,3), (m-1,2), (m-2,3), (m-2,2), …, (m/2,3) (penúltima línea) y (m/2,2), y (m-1,1), (m-1,0), (m-2,1), (m-2,0), …, (m/2,1) y (m/2,0) (última línea).

Esquema de la transformación de la panadera.

 

Observar que, tras realizar estas dos operaciones, se obtiene una imagen cuyas dimensiones coinciden con las de la imagen original. Es decir, es una imagen que posee n filas y m columnas, como la de partida. La transformación de la panadera es la obtenida tras realizar las operaciones de estirado y plegado.

Como la transformación (discreta) de la panadera es una permutación de n por m píxeles, si se aplica de manera iterada, llegará un momento en el que se debe recuperar la imagen original, tal y como se ha comentado antes.

Por ejemplo, si se toma una imagen de la Gioconda de n=256 por m=256 píxeles y se aplica la transformación de la panadera, se obtiene una figura como la que se muestra debajo:

Aplicando una vez la transformación de la panadera en una imagen de La Gioconda (256 por 256 píxeles). Imagen: Jean-Paul Delahaye y Philippe Mathieu.

 

Si se sigue aplicando sucesivamente la transformación de la panadera a cada imagen obtenida, tras 17 iteraciones, ¡la imagen original aparece! En este enlace podéis ver el proceso completo de cambio.

En la página de Philippe Mathieu se pueden ver otras transformaciones de imágenes mediante la transformación de la panadera y otras transformaciones biyectivas de imágenes.

Referencias

[1] Jean-Paul Delahaye y Philippe Mathieu, Images brouillées, Images retrouvées, Pour la Science 242 (1997) 102-106

[2] Jean-Paul Delahaye y Philippe Mathieu, Les transformations bijectives d’images, página web de P. Mathieu

[3] Marta Macho Stadler, La transformación del panadero, Boletín de la Titulación de Matemáticas de la UAL, vol. VIII, no. 1 (2014) 16-17

i Se suele llamar ‘del panadero’, pero la panadería de mi barrio está regentada por una mujer…

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo La transformación de la panadera se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La transformación del fotomatón
  2. Los ritmos primos de Anthony Hill
  3. El problema matemático de las cartas extraviadas
Categorías: Zientzia

Txorien garunean oroimen faltsuak txertatzea lortu dute

Zientzia Kaiera - Mié, 2019/10/16 - 09:00
Juanma Gallego Optogenetikaren teknika baliatuta, eta gurasoen irakaspena jaso gabe, txori espezie bati abesti baten zatiak “irakastea” lortu dute ikertzaileek. Etorkizunean gizakien artean ikasketa arazoak tratatzeko lagungarria izatea espero dute.

Beste garai batean, abenduaren 28aren harira hedabideetan zabaltzen ziren inozentaden artean, bazegoen behin baino gehiagotan errepikatu egiten zen klasiko bat: nonbaiten, euskara ikasteko txip bat asmatua zuten, garunean txertatzeko modukoa. Munduko leku askotan zabaldu den txantxa da, noski; eta, hizkuntzekin ez ezik, beste hainbat jakintzarekin ere erabili da. Pentsa, akabo ikasketa arazoak! Baina, modu berean, akabo ikasketa prozesuaren plazera ere.

1. irudia: Ahozko bokalizazioaren bitartez garuna nola aritzen den ikertzen dute Todd Robertsen laborategian, eta horretarako txoriak baliatzen dituzte. (Argazkia: UTSW)

Zientzia fikzioaren alorrean ere behin baino gehiago erabili izan da gaia, normalean, gizateriak metatu duen ezagutza guztia txip batean bildurik irudikatuta. Beste modu batean bada ere, askok etorkizun urrun batean imajinatzen zuten tramankulu hori eskuratu ditugu gizaki gehienok. Eskuratu baino, sakelaratu: smartphone deitzen diogu, eta hari esker Guggenheim zelan idatzi behar den ahaztu zaigu gehienoi.

Baina zuzenean garunean eragiteko ahaleginak ez dira inolaz ere ahaztu. Esan beharrik ez dago garunaren gaineko kontrola intentzio txarrekin egiterik badagoela, baina, —irakurleek ondo dakite— guk Monty Python taldearen Always Look on the Bright Side of Life leloa dugu banderatzat.

Lerroetako bat da garunean gertatzen diren ikerketa prozesuak aztertzea, modu horretan arazoak daudenean prozesu horietan eragin ahal izateko. Norabide horretan, Science aldizkarian argitaratutako zientzia artikulu batean aurrerapen esanguratsu bat azaldu dute. Funtsean, eta oso oinarrizko moduan izanda ere, txori kantari bati abesti baten zatiak irakatsi dizkiote, garuneko zenbait eremu zehatz piztuta.

Taeniopygia guttata espeziearekin lortu dute. Zientzialariek hegazti mota hau erabili dute, ahozko garapenean gizakiak dituen antzeko ezaugarri batzuk ere komunean dituelako. Hegazti kantaria da, eta txitek entzumenaren eta errepikapenaren bitartez ikasten dute abesten: lehen egunetatik entzuten dituzte gurasoen kantak, eta horiek oroimenean gordetzen dituzte. Ondoren, kantua imitatzen saiatzen dira, behin eta berriz errepikatzen. Funtsean, gizakiek ere hala ikasten dute hitz egiten, gurasoak entzundakoari adi eta hori errepikatzen.

Alabaina, eta oso zabalduta egon arren, ahozko bidezko ikasketa honen oinarria argitu gabeko misterioa da. Zehazki, argitzeke dago garunak gurasoak imitatzeko orduan darabiltzan memoriak nola kodifikatzen dituen. Prozesu horiek zehaztasunarekin ezagututa, aukera hobeagoa egongo litzateke gauzak ikertzen direnean aterabideak lortzeko. Ohi bezala, gizakian izaten diren prozesu horiek hobeto ulertzeko eredu animalietara jotzen da sarritan, eta, kasu honetan, Estrildidae ordenako hegazti hauek erabiltzen dira eredu gisa.

2. irudia: Txoriengan irakaspen hau “sortzeko”, euren garunean dauden neuronen jarduera manipulatu dute, optogenetika erabilita. (Argazkia: UTSW)

Lehenik eta behin, zientzialariek ikertu dute kantuaren ikasketa prozesuan parte hartzen duten neuronen sarea; eremu motor eta auditiboa lotzen dituen sarea, hain zuzen. Hauek ezagututa, ikertzaileak saiatu dira prozesuan esku hartzen, eta txori gazteei abesti bat irakasten, gurasoen parte-hartzea izan gabe. Den-dena kontrolpean izatea lortu ez badute ere, funtsean, prozesua abiatzea lortu dute.

Hori lortzeko, optogenetika baliatu dute. Teknika horren bitartez, hainbat zelula zehatz genetikoki eraldatzen dira, eta modu horretan posible da zelula horiek aktibatu edo desaktibatu nahieran, garunean ezarritako gailu batek igortzen duen argiaren bitartez. Kasu honetan, bokalizazioen ikasketa prozesuan zehar erabiltzen diren neuronak izan dira eraldatu dituztenak.

Gailua erabilita, argi bulkada bakoitzaren iraupena eta kantuaren silaba bakoitza berdin irautea lortu dute, eta modu horretan gai izan dira hegaztiaren kantua modulatzeko, kantua irakasteko modu berria lortuz. Finean, eta oso oinarrizko moduan bada ere, garunean ikasketa hori txertatzea lortu dute, oroimen faltsuen bitartez.

“Portaerara bideratutako memoriak kodetzen dituzten garuneko eremuak baieztatu ditugun lehenengo aldia da honakoa”, adierazi adierazi du prentsa ohar batean Texas Southwestern Unibertsitateko (AEB) ikertzaile Todd Roberts-ek. “Norbait imitatu nahi dugunean erabiltzen ditugun memoriak dira hauek, bai hitz egiten ikasten dugunean zein pianoa jotzen ikasten dugunean ere”.

Momentuz silaben iraupena mendean hartzea lortu dute, iraupen hori argiaren bitartez kontrolatzea lortu dutelarik. Oraindik falta zaie, ordea, tonua edota notak abesteko ordenua kontrolatzea. “Beste ibilbide hauek aurkitzen baditugu, teorian gai izango ginateke hegazti bati haren kantua abestera bultzatzeko, gurasoarekiko inolako elkarrekintza izan gabe”, esan du Robertsek. Dena dela, hau oraindik ere urrun dagoela onartu du.

Ahozko ikasketan parte hartzen duten prozesuak ikertuta, ikertzaileek espero dute gizakiek hitz egiten ikasteko duten modua hobeto ezagutzea. Bereziki, prozesuan eragina duten geneak identifikatu nahi dituzte. Modu horretan, gene horiek gaizki espresatzen direnean, eta horren ondorioz ikasketa arazoak suertatzen direnean, medikuek tresna gehiago izango dute eskura sendabideak aurkitzeko. Arazo horien artean daude, besteak beste, autismo mota batzuk.

Lengoaiari dagokionez, gizakien eta hegaztien garunaren artean alde nabarmenak daudela ohartarazi dute; baina, halere, hegaztien kantu-prozesuaren sinpletasunean baliagarriak izango diren mekanismoak aurkitzea espero dute. Etorkizunari begira, txoriek bokalizazioa egiten nola ikasten duten argitu nahi dute; modu horretan, oroimenen txertatze prozesua txukutzeko gai izango direla espero dute.

Erreferentzia bibliografikoa:

Wenchan Zhao et al. (2019). Inception of memories that guide vocal learning in the songbird. Science, 366 (6461), 83-89. DOI: 10.1126/science.aaw4226.

———————————————————————————-

Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.

———————————————————————————-

The post Txorien garunean oroimen faltsuak txertatzea lortu dute appeared first on Zientzia Kaiera.

Categorías: Zientzia

La energía del estado estacionario

Cuaderno de Cultura Científica - Mar, 2019/10/15 - 11:59

Como sabemos, armado solo con sus dos postulados, Bohr podía calcular el radio de cada órbita permitida. No solo eso, además podía calcular la energía total del electrón en cada órbita, es decir, la energía del estado estacionario. Los resultados que obtuvo Bohr pueden resumirse en dos expresiones muy simples.

Foto: Octavio Fossatti / Unsplash

Recordemos que el radio de una órbita con número cuántico n viene dado por la expresión rn = a·n2, aunque también podemos escribirlo como rn = nr1, donde r1 es el radio de la primera órbita (la órbita para n = 1) y tiene el valor de 5,3·10-11 m.

La energía (la suma de la energía cinética y la energía potencial eléctrica) del electrón en la órbita con el número cuántico n también se puede calcular a partir de los postulados de Bohr. La energía asociada a la posición, la energía potencial, siempre nos va a depender de qué tomemos como referencia por lo que no tiene sentido asignar un valor absoluto a la energía potencial. En este caso, solo los cambios en la energía tienen un significado físico. Por tanto, se puede elegir cualquier nivel cero que nos resulte conveniente. Para un electrón en órbita en un campo eléctrico, las matemáticas son vuelven especialmente simples [1] si como nivel cero para la energía elegimos el estado n = ∞. En este nivel, el electrón estaría infinitamente lejos del núcleo (y, por lo tanto, libre de él) [2]. La energía para cualquier otro estado En es la diferencia con respecto a este estado libre.

Los posibles estados de energía para el átomo de hidrógeno serán por tanto, En = 1/n2 ·E1, donde E1 es la energía total del átomo cuando el electrón está en la primera órbita (n =1). E1 es la energía más baja posible para un electrón en un átomo de hidrógeno. Su valor es -13,6 eV [3] (el valor negativo significa solo que la energía es 13.6 eV menor que el valor de estado libre E∞). Este es el llamado estado fundamental. En ese estado, el electrón es cuando más «unido» está al núcleo. El valor de E2, el primer estado excitado por encima del estado fundamental, es, según la expresión anterior, E2 = 1/22 ·(-13,6 eV) = -3,4 eV. Este estado solo tiene 3,4 eV menos que el estado libre.

Según la fórmula para rn, la primera órbita estacionaria, definida por n = 1, tiene el radio más pequeño. Los valores más altos de n corresponden a órbitas que tienen radios más grandes. Las órbitas más altas están separadas más y más, y el campo de fuerza del núcleo cae aún más rápidamente. De aquí que el trabajo requerido para moverse a la siguiente órbita con n mayor se vuelva cada vez más pequeño. Se sigue además, que los saltos de energía de un nivel de energía permitida E al siguiente de n mayor se vuelvan cada vez más pequeños. Si estos saltos absorben luz, o la emiten en sentido contrario de los saltos, debería apreciarse en la longitud de onda de esa luz. Esta será la primera comprobación experimental del modelo.

Notas:

[1] Como siempre que se habla del uso de matemáticas en física, son especialmente, pero no estrictamente, simples. Aquí admitimos que 1/∞ = 0, pero te recomendamos que no uses esta igualdad a la ligera en tus asignaturas de matemáticas.

[2] Otra imagen irreal pero conveniente. El universo es finito, por lo tanto se puede estar muy lejos, pero un lejos finito. Por lo tanto al electrón le pasa como a Luke Skywalker, que por muy lejos que se vaya la fuerza le acompaña, por pequeña que ésta sea.

[3] El electrón-voltio es una unidad de medida muy conveniente porque nos permite manejar valores absolutos pequeños. Sobre él y su definición hablamos aquí.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La energía del estado estacionario se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Se intuye la conservación de la energía (1)
  2. Se intuye la conservación de la energía (2)
  3. Se establece el principio de conservación de la energía
Categorías: Zientzia

Prest al gaude giza enbrioien genomak editatzeko? (eta 2)

Zientzia Kaiera - Mar, 2019/10/15 - 09:00
Koldo Garcia Aurreko atalean landu genituen giza enbrioien genomak editatzeko dauden mugak. Bertan aztertu genituen CRISPR lanabesaren muga teknikoak eta aipatu genuen horiek gainditzea denbora kontua zela. Atal honetan aztertuko ditugu kontuan hartu behar diren beste alderdi batzuk giza enbrioien genomak editatzeko orduan.

1. irudia: DNA editatzeak hainbat ertz ditu. (Argazkia: mcmurryjulie – Pixabay lizentzia. Iturria: pixabay.com)

Zein edizio dira seguruak?

Gene-edizioa perfekzionatzen bada eta lortzen bada DNA editatzea nahi den lekuan eta nahi den bezala, inolako nahi gabeko ediziorik gabe, argitu beharko da egindako aldaketa hori segurua den. Giza enbrioietan gene-edizioen segurtasuna bermatzeko, 2017. urtean zehaztu zuten nazioarteko erakundeek zein irizpide bete behar ziren. Horietako irizpide bi izan ziren sortutako DNA sekuentzia populazioan ohikoa izatea eta gaixotasunik ez sortzea.

Esate baterako, PCSK9 genearen aldaera bat lotuta dago kolesterol maila baxuagoekin eta, hortaz, bihotz-gaixotasunen arrisku baxuagoarekin. Ondorioz, gene hori proposatu da editatzeko hautagai moduan. Baina kolesterol maila altuetatik babesten duen aldaera hori ez da batere ohikoa populazioan. Eta, aldaera hori duten pertsonak osasuntsuak badira ere, ezezagunak dira aldaera horrek izan ditzakeen beste eragin batzuk.

Orain arte publikoa egin den enbrioien gene-edizio bakarrean CCR5 genea editatu da. Gene horrek sortzen duen hartzailea da GIB birusak erabiltzen duena zelulak infektatzeko. Haurrak GIBarekiko erresistenteak izan zitezen CCR5 genea editatu zitzaien, europar populazioan ezaguna den GIBarekiko erresistentea den gene-aldaera “idatzita”. Orain dela gutxi ikusi da, ordea, GIBarekiko erresistentzia ematen duen aldaera horrek bizitza labur dezakeela. Gainera, aldaera hori ez da batere ohikoa txinatar populazioan; eta, agian, horrek esan nahi du garrantzitsua dela CCR5 genea bere horretan izatea, Asian egon daitezkeen birusei aurre egiteko eraginkorragoa izan daiteke eta.

Izan ere, garrantzitsua da jakitea zein diren populazio bakoitzean agertzen diren gene-aldaerak eta haien funtzioa. Egin diren gene-ikerketa gehienak europar jatorriko populazioetan egin direnez, beste populazio batzuetan ezezaguna da gene-aldaera horiek zein eragin duten edo beste gene-aldaera batzuek eraginik ote duten. Hortaz, ez dago argi funtzionatuko ote duen edo segurua ote den gene-edizio jakin bat populazio ezberdinetan. Horretarako, lehenengo, beharrezkoa da europarrak ez diren populazioetan gene-ikerketak egitea.

2. irudia: Egindako gene-edizioa segurua dela ziurtatu behar da. (Argazkia: rawpixel – Pixabay lizentzia. Iturria: pixabay.com)

Nola aurre egin mosaikoei?

Izatez, gure gorputzeko zelula guztiek gene-sekuentzia berbera dute. Baina hori ez da guztiz horrela. Uste zena baino ohikoagoa da pertsona baten zelulen artean ezberdintasunak egotea gene-sekuentzian. Gertaera horri mosaizismo esaten zaio. Eta gene-edizioa egiteko arazo bat da.

Alde batetik, gaixotasuna sortzen duen mutazioa zelula gutxi batzuetan egon liteke, zelula gehienak osasuntsuak diren bitartean. Biopsia eta gene-testak egiteko hartzen diren zelulak mutazioa dutenak badira, modu okerrean ondoriozta daiteke enbrioi horretan gene-edizioa egin behar dela.

Bestetik, gerta liteke edizio-genomikoa enbrioiaren zelula guztietan ez gertatzea eta horrek editatutako eta editatu gabeko zelulen mosaiko bat sortzea. Ezezaguna da horrek enbrioiaren garapenean izan dezakeen eragina; eta zaila da zehaztea zenbat zelula editatu behar diren gaixotasuna saihesteko. Gainera, lehenago aipatu bezala, biopsiak egiteko enbrioiaren zelula gutxi batzuk hartzen direnez, ezin daiteke ziurtatu gene-edizioa enbrioiaren zenbat zelulatan gertatu den. Arazo hori konpontzeko, ikertzaile batzuek ikusi dute enbrioia zelula bakarra denean editatzeak mosaikoak sortzea saihesten duela. Baina oraindik ziurtatu behar da geroago mosaikorik ez dela sortzen.

3. irudia: DNA sekuentzian ezberdintasun txikiak dituzten zelulen mosaikoak izan gaitezke eta horrek gene-edizioa zailtzen du. (Argazkia: StockSnap – Pixabay lizentzia. Iturria: pixabay.com)

Nolakoak izan behar dute saiakuntza klinikoek?

Botika batek, merkaturatu aurretik, prozesu luzea gainditu behar du eraginkortasuna eta segurtasuna bermatzeko. Prozesu horren baitan egiten diren azterketa eta saiakuntza multzoari saiakuntza klinikoa esaten zaio. Botiken kasuan prozesu horren nondik norakoak guztiz zehaztuta daude eta erakundeek zorrotz gainbegiratzen dute. Baina oraindik ez da ezarri nolakoa izan behar duen gene-edizioak gainditu beharreko kontrola. Eta egiten den aldaketa betirako denez, atzera bueltarik ez duenez, adituek uste dute oso zorrotza izan behar duela kontrol horrek.

Gehien hurbiltzen den aurrekaria mitokondrioen donazioa da. Teknika horren bidez, mitokondrioetan gaixotasunak sortzen dituen mutazioak ekiditeko, emaile osasuntsu baten mitokondrioak txertatzen dira enbrioian. Erresuma Batuko Giza-Ernalketa eta Enbriologia Agintaritzak 14 urte eman zituen datuak biltzen eta aztertzen baimen baldintzatua eman aurretik. Teknika hau debekatuta dago herrialde askotan, oraindik zalantzan dagoelako nahiko segurua ote den. CRISPR bidezko gene-edizioren inguruan ez dago hainbeste informaziorik oraindik eta, hortaz, itxaron beharko da informazio nahikoa lortu arte.

Gainera, zenbat denboraz aztertu behar dira editatutako haurrak teknika segurua dela ziurtatu arte? Editatutako haurren ondorengoak ere aztertu behar dira? Eztabaida korapilatsua da hau. Adituak oraindik eztabaidatzen ari dira irizpide argiak ezarri nahian. Agian, teknologiaren garapena baino motelago doan eztabaida da.

4. irudia: Nola aztertu gene-edizioak behar bezala funtzionatzen duela? (Argazkia: Michal Jarmoluk – Pixabay lizentzia. Iturria: pixabay.com)

Mundua prest al dago?

Zientziaz eta genetikaz haratago, nola kudeatu arazo etiko eta sozialak? Adituek ondorioztatu dute oraindik goiz dela gene-edizioa erabiltzeko eta arduragabekeria izan daitekeela gene-edizioa erabiltzea; mundu-mailako itxaronaldi bat eskatu dute gene-edizioa erabiltzen hasi aurretik eta hainbat zientzia-elkartek esan dute beharrezkoak direla adostasun zabalak edozein erabaki hartu baino lehenago. Gogoan izatea komeni da, bestalde, gene-edizioaren inguruan egindako gogoetak batez ere Mendebaldeko herrialdetan egin direla.

Tokian tokiko gizartearen arabera eta haurrak izateko presioa dela eta, etorkizunean gene-edizioaren eskaerak gora egin dezake. Momentuz gene-gaixotasunak pairatzen dituzten pertsonen artean ez dago aldarri handirik gene-edizioa gauzatzearen alde. Hasierako beroaldia baretu ostean, balizko tratamenduak eskuragarri egoteak luze joko duela ikustean, gene-gaixotasunak transmiti ditzaketen gurasoak askietsi beste irtenbiderik ez dute enbrioietan mutazioak modu eraginkorrean detektatze hutsa.

Gene-edizioak gizartean duen onarpenaren inguruan, Erresuma Batuan egindako inkesta baten arabera, %83 gene-edizioaren alde agertu zen sendaezinak diren gene-gaixotasunei aurre egiteko; baina %60 gene-edizioa ezaugarriak “areagotzeko” erabiltzearen aurka agertu zen; adibidez, adimena handitzeko. Bereizketa hau argi badago ere, geneen eragina hain argia ez den gaixotasunetan adostasunera heltzea zailagoa izan daiteke. Hortaz, aditu batzuek proposatzen dute erregistro bat sortzea gene-ediziorako aproposak izan daitezkeen gaixotasunak bilduko dituena.

5. irudia: Zaila da aurresatea noizbait gure artean ikusiko ote ditugun geneak editatuta dituzten pertsonak. (Argazkia: Free-Photos – Pixabay lizentzia. Iturria: pixabay.com)

Laburbilduz, behin arazo teknikoak gaindituta, ziurtatu behar da egindako edizioak seguruak direla eta enbrioiaren zelula guztietan gertatu direla, horiek frogatzeko prozedura oraindik zehaztu ez bada ere; eta oraindik arazo etiko guztiak konpondu ez badira ere. Gene-edizioa hobetzen joango da, eztabaidak jarraituko du eta ez dago argi noizbait mundua prest egongo ote den gene-ediziorako. Edonola delarik, ezin daiteke aurreikusi aldaketa handietara ohitzeko dugun gaitasuna noraino iritsiko den.

Erreferentzia bibliografikoa:

Ledford, H. (2019). CRISPR babies: when will the world be ready? Nature, 570(7761), 293-296. DOI: 10.1038/d41586-019-01906-z

—————————————————–
Egileaz: Koldo Garcia (@koldotxu) Biodonostia OIIko ikertzailea da. Biologian lizentziatua eta genetikan doktorea da eta Edonola gunean genetika eta genomika jorratzen ditu.

—————————————————–

Enbrioien genomak editatzeari buruzko artikuluak:

  1. Prest al gaude giza enbrioien genomak editatzeko? (1)

  2. Prest al gaude giza enbrioien genomak editatzeko? (eta 2)

The post Prest al gaude giza enbrioien genomak editatzeko? (eta 2) appeared first on Zientzia Kaiera.

Categorías: Zientzia

Como personas normales

Cuaderno de Cultura Científica - Lun, 2019/10/14 - 11:59

«Existe la curiosa idea entre los hombres profanos de que en los escritos científicos hay un estrato común de perfeccionismo. Nada está más lejos de la verdad. Los informes de los biólogos son una dimensión, no de la ciencia, sino de los hombres. Existen tan pocos científicos gigantes como de cualquier otra clase. En algunos informes, es imposible relacionar las descripciones de animales vivos, a causa de la ineptitud de su lenguaje, y en otros, los lugares de recolección aparecen tan mezclados o ignorados, que las especies mencionadas no pueden ser halladas. El mismo condicionante se introduce en la especificación como en cualquier otra clase de observación, y las mismas faltas de negligencia que se encuentran en los informes científicos, se hallan en el banco de testigos de un tribunal criminal. A veces, parece que los hombres, en un trabajo científico, asuman el temor de un sacerdocio para ocultar sus defectos, como hace el médico-brujo con sus orgullosas máscaras y trípodes de barro, como tienen los sacerdotes de todos los cultos con lenguajes y símbolos, secretos y extraños. Normalmente, sólo los hombrecillos obstinados se oponen a lo que se llama «popularización», por la que ellos entienden escribir con claridad comprensible a alguien que no esté familiarizado con las claves y ritos del culto. No hemos conocido ni a un solo gran científico que no pueda disertar con desenvoltura con un niño. ¿Significa esto, tal vez, que los que aborrecen la claridad no tienen nada que decir, no han observado nada, no poseen una idea clara ni tan siquiera de sus propias actividades? Un hombre estúpido es estúpido sea cual sea su profesión, y naturalmente un científico inepto tiene derecho a protegerse con togas y plumajes, emblemas y grados, como hacen otros hombres obtusos, que son potentados y dictadores imperialistas de logias de hombres estúpidos.»

John Steinbeck, Por el Mar de Cortés, 1951.

El mayor problema de la comunicación es la ilusión de que ha tenido lugar”.

George Bernard Shaw.

Foto: Nathan Anderson / Unsplash

El enigma de por qué los científicos no hablan como las personas normales preocupaba a Katherine Wu, de la Universidad de Harvard, y dio título al artículo que publicó en el blog de Scientific American en mayo de 2017. Comenta que, mientras los científicos se preparan, terminan su carrera, terminan el doctorado y planifican y dirigen proyectos de investigación, comienzan a distinguir entre científicos y público en general. Antes de empezar su proceso de aprendizaje, ellos también eran público y, ahora, ya no lo son, son científicos. Y en ese momento queda comprometida su capacidad para comunicar ciencia con eficacia a los ciudadanos.

Sabe comunicarse con otros científicos, pero no con el público en general que, ya he dicho, son otro grupo, si se quiere no son de “los nuestros”. Son entidades separadas, incluso excluyentes. Ambos grupo se sienten culturalmente incomprensibles, incluso, para muchos, son inaccesibles. Es más, los científicos se sienten, muchos de ellos, en un pedestal, lejos, por encima y separados del público. Un buen entrenamiento e impartir docencia, dar clase subido a la tarima.

Hay diferencias e incomunicación entre ambos grupos, a pesar de que deseos y objetivos son, en último término, los mismos: curiosidad, interés, deseo de aprender, experimentar,…

Sin embargo, estamos en un tiempo en que recuperar el contacto entre la ciencia y la ciudadanía es urgente. La política dirige la ciencia, la financia y marca sus objetivos. Además, muchos asuntos relacionados directamente con los conocimientos científicos los deciden los ciudadanos y, es evidente, para ello deben conocer la ciencia, sus métodos y sus resultados. Siempre se acusa a los ciudadanos de que no tienen suficientes conocimientos científicos para entender lo que la ciencia es y significa. Ya lo discutiremos más adelante. Pero, también, es a los científicos a los que corresponde comunicar lo que hacen y consiguen, y llegar al ciudadano.

Para conseguir esta comunicación eficaz, Sara Brownell y sus colegas, de la Universidad de Stanford, han desarrollado un curso sobre neuroinmunología que incluye la práctica para los alumnos de leer artículos científicos originales como base indispensable para la comunicación de ciencia. Después, deben comunicar la investigación que se explica en el artículo al público en general.

Como destacan Tania Bubela y su equipo, de la Universidad Simon Fraser, de Canadá, los artículos científicos no llegan con facilidad al público. Por ejemplo, los resultados son casi siempre cuantitativos mientras que los textos en los medios son cualitativos y diseñados para llegar y atraer al lector. Además, los artículos científicos están dirigidos a una audiencia muy concreta de especialistas mientras que en los medios se intenta llegar a una audiencia lo más amplia posible. Como resultado final, el texto en los medios se suele basar en las anécdotas que cuenta el científico al periodista o en historias concretas de perjudicados o beneficiados por la investigación de que se trate. En fin, primero hay que entender el artículo original, aunque casi siempre los medios se basan en notas de prensa simplificadas, y deben saber cómo hacer para llevarlo al público general.

El grupo de Sara Brownell utiliza las reglas del New York Times para el diseño de un artículo periodístico y las aplica a sus alumnos para conseguir una comunicación eficaz. Las reglas son empezar el texto con una breve introducción del tema, centrarse en los hallazgos importantes y limitar otras informaciones, controlar el argot y explicar cada término que se tenga a utilizar, destacar el significado e importancia de los hallazgos, y escribir el texto con orden y desarrollo lógicos.

Los resultados finales explican, después de escribir los textos con las reglas del New York Times, que los alumnos confían en la comunicación de ciencia al público en general. La comunicación no es poco eficaz por la carencia de conocimientos del público o porque la ciencia sea complicada de explicar. Es, más bien, porque los científicos deben aprender a comunicar, y se puede conseguir con cursos como el de Sara Brownell.

Un estudio similar, sobre contenidos geológicos y resultados parecidos e interesantes, es el firmado por Núria Iglesias y su grupo, de la Universidad Complutense, sobre un proyecto que tiene el objetivo concreto y específico de geodivulgar.

Imagen de Gerd Altmann / Pixabay

Desde Australia, desde la Universidad de Queensland, Lucy Mercer-Hapstone y Louise Kuchel concretan y amplían la propuesta de Sara Brownell. Revisan publicaciones anteriores y entrevistan a expertos para encontrar las acciones esenciales que ayuden a una comunicación eficaz de la ciencia. Enumeran doce competencias que doy a continuación:

1.- Identificar y conocer la audiencia.

2.- Usar el lenguaje apropiado para la audiencia. Como aconseja David Oppenheimer, de la Universidad de Princeton, si se tienen dos palabras a elegir con el mismo o similar significado, elegir siempre la más corta.

3.- Identificar con precisión el objetivo que se quiere comunicar.

4.- Tener en consideración el nivel de conocimientos de la audiencia.

5.- Separar lo esencial de lo no esencial siempre teniendo en cuenta la audiencia y sin perder el rigor.

6.- Usar un formato y una plataforma adecuadas para la audiencia.

7.- Considerar el contexto social, político y cultural de la información científica que se quiere comunicar.

8.- Considerar y utilizar elementos de estilo apropiados: humor, anécdotas, relatos, citas, metáforas, imágenes, lenguaje corporal, contacto visual, diagramas, gráficas,…

9.- Conocer las teorías que apoyan los adelantos de la ciencia.

10.- Promover el compromiso del público con la ciencia.

11.- Usar herramientas narrativas y de contar historias para ayudar a llegar a la audiencia.

12.- Animar al debate con la audiencia.

A pesar de lo anterior, Katherine Wu propone reevaluar la comunicación entre científicos y ciudadanos. Y plantea tres puntos clave de esa comunicación que debemos olvidar y, a menudo, utilizamos como excusa para evitar comunicar con eficacia o, simplemente, no comunicar.

El primer concepto a olvidar es suponer que no se nos entiende porque el público no tiene suficientes conocimientos de ciencia. Cierto, pero solo hasta cierto punto y ya lo hemos visto con los estudios de Sara Brownell. Los científicos, de su tema, saben mucho y, además, utilizan su propia jerga. Pero, para llegar al público, dependen de cómo presentan sus conocimientos. En general, el científico está preparado para hablar con científicos pero la ciencia, para el público, no es un tema normal de conversación. Para conseguir que lo sea y llegar a los ciudadanos, los científicos, como dice Katherine Wu, deben hablar como” personas normales”.

Ayuda a ello que los científicos reciban con interés las perspectivas e intereses de los ciudadanos. No se les puede, ni debe, rechazar a priori como temas poco interesantes e, incluso, erróneos. Los científicos tienen como tema de investigación, si pueden, lo que les interesa pero si se quiere llegar a los ciudadanos hay que conseguir que ese tema les interese. Es una opción que el científico debe tomar con responsabilidad. Bajemos de la tarima y charlemos con el público para ponernos al día.

La segunda desilusión que nos propone Katherine Wu es la suposición de que la ciencia tiene alguna finalidad concreta, es decir, que la investigación tiene un final contundente para resolver definitivamente una cuestión concreta. Vamos, el objetivo definitivo de personajes como C. Augustus Dupin o Sherlock Holmes. Un científico debe huir de la sensación de sentirse un experto capaz de resolver definitivamente los problemas de su campo. Siempre queda algo, o mucho, por hacer. Si fuéramos capaces de hacerlo, por lo menos en algún caso, y con los científicos tan extraordinarios que nos han precedido, esos hombros de gigante en los que nos aupamos, ya no quedaría nada por hacer. Desalentador y, siempre, humildad, mucha humildad.

Para el público, la ciencia desilusiona porque casi siempre o, mejor, nunca, da una respuesta clara y definitiva a un problema. Los datos requieren más estudio, faltan nuevos experimentos, las conclusiones exigen prudencia y, además, plantean nuevas incógnitas e hipótesis de trabajo. Por todo ello, la ciencia comunica mal pues el público demanda dogmas más que nuevos conocimientos. Y, por si fuera poco, la ciencia así expuesta da para llamativos titulares en los medios.

Para ayudar a la comprensión del público sobre el inacabable proceso de la ciencia, hay que explicar con detalle el método científico. Con su utilización eficaz, la ciencia produce suave y continuamente conocimientos y los golpes de efecto, los grandes titulares no le convienen. Como público, desconfíen de las soluciones estupendas. Como científicos, comuniquen avances, nunca metas definitivas, y planteen, siempre, cómo seguir adelante.

En tercer lugar, Katherine Wu propone que debemos olvidar que la comunicación efectiva entre científicos y público es inevitable y, antes o después, con más o menos trabajo, se conseguirá. Los científicos, por su preparación, piensan que, cuando la investigación en que están ha terminado y es publicada, ya llegará, sin más, la comunicación con el público. Pero, como nos recuerda Katherine Wu y escribió George Bernard Shaw, “el mayor problema de la comunicación es la ilusión de que ha tenido lugar”. Si queremos comunicación, hay que informar a los interesados, sean público en general o gestores políticos en particular, y aceptar que no siempre funcionará.

Propuestas como la del curso de Sara Brownell crean el entorno adecuado para la comunicación entre científicos y público. No se conseguirá, como indica Katherine Wu, una comunicación perfecta y completa pero, es seguro, mejorará. Acercar a los alumnos de ciencia al mundo exterior y evitar la muchas veces denostada “torre de marfil”. Integrar a los científicos en su entorno social y, quizá, se consiga que la rutina del científico, incluya la comunicación activa de la ciencia y lleve su trabajo a la mayor diversidad posible de audiencias.

Lo mínimo es que el científico aparezca y converse con quien sea necesario y esté interesado. Y una conversación es, según el Diccionario de la Lengua, “acción y efecto de hablar familiarmente”. Es evidente que, para conseguirlo, hay que salir de la torre de marfil y bajar de la tarima.

Para terminar, Tim Radford, editor de ciencia en The Guardian, tituló un texto publicado hace unos años con un contundente “Of course scientists can communicate”. Que un profesional de los medios lo afirme con tanta convicción anima a seguir. Radford dice que los científicos tienen todo lo necesario para conseguirlo: entusiasmo por lo que hacen, son buenos en la exposición clara y directa de su historia, están entrenados en observar los resultados de su trabajo, y, es obvio, saben de lo que comunican. Por tanto, ánimo y un paso adelante: escribir, comunicar, divulgar es, también, labor de los científicos.

Referencias:

Brownell, S.E. et al. 2013. A writing-intensive course improves biology undergraduates’ perception and confidence of their abilities t oread scientific literatura and communicate science. Advances in Physiology Education 37: 70-79.

Brownell, S.E. et al. 2013. Science communication to the general public: Why we need to teach undergraduate and graduate students this skill as a part of their formal scientific training. Journal of Undergraduiate Neuroscience Education 12: E6-E10.

Bubela, T. et al. 2009. Science communication reconsidered. Nature Biotechnology 27: 514-517.

Iglesias, N. et al. 2017. Ideas y reflexiones para una divulgación científica efectiva. Boletín de la Real Sociedad Española de Historia Natural Sección Aula, Museos y Colecciones 4: 29-41.

Mercer-Hapstone, L. & L. Kuchel. Core skills for effective science communication: A teaching resource for undergradutae science education. International Journal of Science Education doi: 10.1080/21548455.2015.11135-73

Oppenheimer, D.M.. 2006. Consequences of erudite vernacular utilized irrespective of necessity: problems with using long wprds needlessly. Applied Cognitive Psychology 20: 139-156.

Radford, T. 2011. Of course scientists can communicate. Nature 469: 445.

Wu, K. 2017. Why can’t scientists talk like regular humans? Scientific American Blog Network May 24.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Como personas normales se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cómo hacer ciencia en un periódico: la experiencia de ‘Público’
  2. Científico, ¿cómo usas Twitter?
  3. Consolider-Gran Telescopio Canarias: Cómo comunicar Astrofísica
Categorías: Zientzia

Anisakisa

Zientzia Kaiera - Lun, 2019/10/14 - 09:00
Eduardo Angulo Anisakis simplex eta Pseudoterranova decipiens espezieak (lehen Phocanema decipiens izenez ezagutzen zen) itsas animalien nematodo parasitoak dira, eta, gure espeziean ostatatu, eta anisakidosi izeneko gaixotasuna eragin dezakete, Bostongo Unibertsitateko Natasha Hochberg eta Davidson Hamer dioten bezala. Félix Dujardin zoologo frantsesak, 1845ean, Anisakis simplex espeziea marrazoen parasito gisa deskribatu zuen bere obra handian: Histoire naturelle des helminthes ou Vers intestinaux. Arrainak eta itsas zefalopodoak zenbait nematodoren fase larbarioekin infektatuta daudenean eta gordinik edo gutxi eginda jaten direnean gertatzen da anisakidosia.

1988an adituek egin zuten bileran ondorioztatu zutenez, anisakidosia Anisakidae familiako parasitoek eragindako gaixotasuna da; anisakiosia, ordea, Anisakis generoko parasitoek eragindako gaixotasuna da. Nematodoak, arrunki, «zizare biribil» edo «zizare zilindriko» izenez ezagutzen dira, zehar-ebaki bat eginez gero gorputz biribila dutelako. Nagusiki, uretako organismoak dira, baina lur-inguruneetan ere agertzen dira. Bizitza libreko itsas espezieak daude lurzoruan, bai eta landare eta animalien –gizakiak barne– espezie parasitoak ere. Elikagaien bidez kutsatzen diren gaixotasunak eragiten dituzte; besteak beste, trikinosia, filariasia eta anisakidosia. Nematodo espezie guztien kopurua kontuan hartuta, oso gutxi dira gizakia zuzenean parasitatzen duten espezieak.

1. irudia: Anisakisaren larbak, sardinzar batean. (Argazkia: Domeinu publikoko argazkia – Wikipedia)

Bibliografia zientifikoan dokumentatutako lehen anisakidosi kasua 1876an ezagutu zen, haur batek zizare bat bota zuenean ahotik. Baina deskribapen osoa 1960. urtean iritsi zen, Van Thiel-ek (Leidengo Medikuntza Tropikaleko Institutua, Herbehereak) parasitoa nematodo gisa identifikatu zuenean, eta haren fase larbarioa sardinzarrean, bakailaoan, legatzean eta berdelean aurkitu zen, eta fase heldua, marrazoan eta arraian. Van Thielen pazienteak sardinzar batekin batera jan zuen parasitoa. Horrez gain, bere artikuluan, antzeko sintomak zituzten eta 1955etik 1959ra bitartean diagnostikatu ziren beste hamar kasu aipatzen ditu.

Espainiako lehen anisakis infekzioa Juan José Arenalen taldeak argitaratu zuen, 1991n, Valladolideko Pío del Río Hortega ospitalean: 41 urteko gizonezko bat infektatu zen, baina ezin izan zuten zehaztu nola kutsatu zen nematodoarekin.

Anisakisak eragindako infekzioek sintomak eragiten dituzte digestio hodian, abdomeneko minekin eta erreakzio alergikoekin batera, eta apendizitis akutuko kasuak ere gertatu dira. Nematodo horiekiko sentiberak diren pertsonek erreakzio alergikoak bakarrik izan ditzakete, digestioan minik izan gabe. Espainian, anisakisarekiko erreakzio alergikoak deskribatu dira legatza, antxoa, bakailaoa, atuna, sardina, txokoa, berdela eta oilarra jan ondoren. Hain zuzen ere, Gasteizen, erreakzio alergikoak aurkitu dira legatza egina eta antxoak eginak zein gordinik jan ostean, eta Luis Fernández Corresen taldeak erreakzio alergikoen 100 kasu diagnostikatu ditu. Zifra hori nabarmena da parasitoari buruzko literatura medikoan.

Anisakisak eragindako kasuak

Mundu osoan urtero, gutxi gorabehera, 20.000 kasu detektatzen dira, eta horietatik % 90 baino gehiago Japonian gertatzen dira; bereziki, gizonengan eta kostaldean. Gainerako % 10 kasuak, batez ere, Europan diagnostikatu dira (Herbehereak, Erresuma Batua, Alemania, Italia, Frantzia eta Espainia), baita Asian (Korea), Ipar Amerikan (Estatu Batuak eta Kanada), Hego Amerikako Ozeano Bareko herrialdeetan eta Zeelanda Berrian ere. Laburbilduz, kontinente eta ozeano guztietan.

Mendearen bigarren erdian, azken hogei urteetan zehazki, eta 2008an Audicanak (Santiago Ospitalea, Gasteiz) eta Kennedyk (Glasgowko Unibertsitatea) argitaratutako azterlanaren arabera, kasuak gehitu egin dira, gaixotasuna gaizki diagnostikatuta dagoelako; ingurune medikoetan ere informazioa falta da, eta detektatzeko metodo onak eta berriak behar ditu. Horrez gain, azken urteotako moda gastronomikoa arraina gordinik edo gutxi eginda jatea da, sukaldaritzan nagusitzen ari den joera baita arraina gehiegi ez kozinatzea. Edo, beste modu batean esanda, behar bezala ez kozinatzea. Zalantzarik gabe, dieta mediterraneoaren modaren ondorioz, kontsumitzaileek gero eta arrain gehiago eskatzen dute. Eta, halaber, parasitoak areagotu egin dira merkaturatzen diren arrain espezieetan.

Espainian, anisakisak eragindako parasitosiari buruzko lan batean –Zaida Herradorrek eta bere taldeak (Carlos III.a Osasun Institutua) argitaratu zuten 2018an–, 1977tik 2015era bitarteko ospitalizazio datuak aztertzen dira: anisakidosi sintomekin eta diagnostikoarekin ospitaleratutako 2.471 kasu. 2017. urtean, eta 2013ko datuekin, Miguel Baok Kantabria jarri zuen kasu kopuruen zerrendaren lehenengo postuan, eta haren atzetik, Euskadi.

Zaida Herradorren taldea ohartu zen kasuak etengabe areagotu zirela aztertutako 19 urteetan; bereziki, 2002an eta 2014an, non erpina oso altua den. Batez beste, milioi bat biztanleko 2,93 kasu daude, eta tasarik altuenak Madrilen –milioi bat biztanleko 9,17 kasu–, Gaztela eta Leonen eta Errioxan daude. Euskadiko tasa milioi bat biztanleko 4,62 kasu da. Egileen arabera, Espainian urtean diagnostikatzen ez diren gaixo kopurua 10.000 eta 20.000 artekoa da.

2. irudia: Anisakidosia Anisakidae familiako edozein kidek eragindako infekzioa da, eta anisakiasia, zizareren batek eragindako infekzioa; bereziki, Anisakis generokoak. (Ilustrazioa: Domeinu publikoko irudia – CDC/Alexander J. da Silva, PhD/Melanie Moser. Iturria: Wikipedia)

Anisakisa itsas espezietan

Kutsadura herrialde bakoitzak arraina kontsumitzeko duen kulturaren araberakoa da. Japonian, sushia eta sashimia dira arrain gordinaren iturririk handiena, baina sukaldari profesionalek erraz antzematen dituzte anisakisarekin infektatuta dauden arrainak. Hala ere, etxeetan kontsumitzen diren arrain eta zefalopodo batzuk ere infektatuta egon daitezke. Estatu Batuetan izokina da; Herbehereetan, sardinzar gazitua edo ketua; Hego Amerikan, cevichea, eta Espainian, antxoak.

Anisakisa duten itsas espezieak eta nematodoen gertuko espezieak mundu osoko itsasoetan daude. Parasito horiek eragiten duten osasun arazoa ulertzen hasteko adibide gisa, esan genezake Japoniako arrain merkatu batean, berdelen % 98k eta bakailaoen % 94k anisakisa duela. Espainiako merkatu batean, berdelen % 39,4k anisakisa dauka. Eta antzeko zifrak aurkitu dira Eskozian, Italian, Frantzian eta Estatu Batuetan. Zehazki, Espainian, anisakisaren larbak aurkitu dira ohiko kontsumoko 35 arrain espezietan. Legatzetan, aleen % 88k anisakisa dauka; bakaladetan, % 85ek; txitxarro arruntetan, % 60k; antxoetan, % 5,6k, eta sardinetan, % 9k. Badira aldaera bitxiak zeinen kausa ez den ezagutzen, eta, hala, Adroherren eta bere kideen arabera (Granadako Unibertsitatea), 1990ean, anisakisa zuen Kantauri itsasoko berdelaren % 49,5ek, Ozeano Atlantikokoaren % 36k eta Mediterraneokoaren % 6,3k.

3. irudia: Antxoa gordinak ozpinetan. (Argazkia: CC BY-SA 4.0 lizentziapean – Juan Emilio Prades – Wikipedia)

Babes neurriak eta sukaldaritzaren ohitura berriak

Anisakidosiaren aurkako babesik onena da jendeari jakinaraztea arriskutsua dela arraina gordinik edo gutxi eginda kontsumitzea, baita arrain gazitua edo ketua ere. Hala ere, Ignacio Ferre-k (Cardenal Herrera Unibertsitatea-CEU, Valentzia) dioen moduan, zaila da elikadura ohiturak aldatzea arrain gordina kontsumitzeko kultura duten herrialdeetan; esaterako, Japonian, Perun (cevichea) eta Espainian (antxoak). Ahal den neurrian, prebentzio neurriak aplikatu behar dira, toki askotan, garabidean dauden herrialdeetan adibidez, kozinatzeko erregaiak eta izozkailuak lortu ezin diren luxuak baitira.

Horrez gain, larbak deuseztatzeko metodoak aplikatu behar dira arrainean. Minutu batez baino gehiagoz 60 ºC-tik gorako tenperaturan badaude, hil egiten dira (hobe 5-10 minutu artean uzten badira). Arrain ketuak tenperatura altuak behar ditu prozesuan, eta arrain gazituak gatz kontzentrazio oso handia behar du denbora luzez. Mikrouhin labean, 74 ºC edo gehiagotan kozinatu behar da, potentzia handienean, bi minutuz baino gehiagoz. Gordinik kontsumitu nahi den arrainaren kasuan, –20 ºC-tan izoztu behar da, 24 orduz gutxienez, eta hobe bi, hiru edo zazpi egunez bada.

Oro har, arraina gazitua, lehortua, marinatua, ozpindua edo ketua 40 ºC-tan prestatuta, patogeno batzuk esterilizatzen dira, baina anisakisa, ez. Hala, Pilar Puenteren taldeak (Unibertsitate Konplutentsea) ikusi zuen anisakis gehiago aurkitzen dela arraina gordinik edo gutxi eginda jan ohi duten kontsumitzaileengan, arraina prestatu baino lehen izoztu egiten duten kontsumitzaileengan baino.

Oscar Caballerok bere itsasoaren historia kulturalean aipatzen duenarekin azaldu daiteke anisakis kasuak areagotzearen eta sukaldaritza moda berrien arteko erlazioa. Parisen, 1965. urtean, alde bakoitza 15 segundoz bakarrik salteatutako izokin xerrak zerbitzatzen hasi ziren jatetxeetan. Ezaguna egin zen, halaber, lupia carpaccioa, hau da, lupia gordina. Caballerok zera dio: «Arrain gordina isilean sartu zen jatetxeetan, sashimiak eta cevicheak ustekabean sartu baino mende laurden bat lehenago». L’Arête jatetxea (Montparnasse) 1970. urte inguruan hasi zen arraina rosé à l’arête zerbitzatzen, haragi gorria hezurraren inguruan, hau da, arraina gutxi egina. Arrain ia gordina da, nouvelle cuisine delakoa, mundu osoan ezarriko den sukaldaritza mota.

Espainian, 80ko hamarkada hasieran, José Carlos Capelek aldarrikatzen zuen errekiak «gorri» egitea, Frantzian egiten zuten bezala; alegia, haragia gutxi egina, eta arrainaren hezurra, gorrixka: «teknika horrek elikagaien ezaugarri gastronomikoak errespetatzen ditu, eta, aldi berean, bere benetako kalitatea nabarmendu. Moda betiko izango dela iruditzen zaigu, itsasoko zapore bikainak guztiz kontserbatzeko balio duen metodo bakarra da eta». Argi dago nouvelle cuisine sukaldaritzak ahaztu egiten duela suak gure espeziearentzat betetzen duen funtzio garrantzitsuenetako bat: elikagaiak esterilizatzea eta parasitoak deuseztatzea; esaterako, anisakisa, bai eta arrainean egoten diren beste nematodo batzuk ere.

Eta, amaitzeko, sukaldaritzako aldaketa horien adibide batzuk emango ditugu. Amparo jatetxean, 1930. urtean, ordu erdiz kozinatzen zuten legatza. Urretxuko Baztartxo elkarte gastronomikoan, 1973. urtean, 45 minutuan prestatzen zuten. Baina 1976. urtean, Ana Maria Calerak gomendatzen zuen hamabost minutuz egitea; Argiñanok, 1996an, 10-12 minutuz; Arzakek, 6 minutuz, eta 2018an, Interneten, Pescanova elikagai enpresak lau minutuz besterik ez egitea gomendatzen du. Beraz, 90 urtean, ordu erditik 4 minutura igaro gara.

Erreferentzia bibliografikoak:

Arenal Vera, J.J. et al. (1991). Anisakiasis como causa de apendicitis aguda y cuadro reumatológico: primer caso en la literatura médica. Revista Española de Enfermedades Digestivas, 79: 355-358.

Puente, P. et al. (2008). Anisakis simplex: The high prevalence in Madrid (Spain) and its relation with fish consumption. Experimental Parasitology, 118(2), 271-274. DOI: 10.1016/j.exppara.2007.07.002 .

Hochberg, N.S. eta Hamer, D.H. (2010). Anisakidosis: Perils of the deep. Clinical Infectious Diseases, 51(7), 806-812. DOI: 10.1086/656238.

Herrador, Z. et al. (2018). Epidemiological scenario of anisakidosis in Spain base don associated hospitalizations: The tip of the iceberg. Clinical Infectious Diseases, 69(1), 69-76. DOI: 10.1093/cid/ciy853.

—————————————————–

Egileaz: Eduardo Angulo Biologian doktore, UPV/EHUko Zelula Biologiako irakasle erretiratua eta dibulgatzaile zientifikoa da. Zenbait liburu argitaratu ditu, eta La biología estupenda blogaren egilea da.

—————————————————–

Oharra: Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2019ko ekainaren 17an: Anisakis.

The post Anisakisa appeared first on Zientzia Kaiera.

Categorías: Zientzia

Alegato por el árbol

Cuaderno de Cultura Científica - Dom, 2019/10/13 - 11:59

Mertxe de Renobales Scheifler, lectora

Para la mayoría de las personas, sobre todo las que vivimos en ciudades, los árboles son objetos decorativos que embellecen el paisaje urbano y rompen la monotonía de los edificios y el cemento de las calles. En días soleados veraniegos apreciamos su sombra, pudiendo ser difícil encontrar un hueco en un banco protegido del sol para leer tranquilamente un libro, o el periódico. Y ya está. A lo largo de sus 336 páginas, Alegato por el Árbol (primera edición en español) me ha hecho apreciar los árboles como seres vivos sorprendentes e impresionantes, y me ha proporcionado muchos ratos buenos e interesantes paseando por parques urbanos, fijándome en los árboles y tratando de identificar algunas de las estructuras que describe este libro (no es tan difícil!). Me ha enseñado a mirar los árboles de otra manera, a darme cuenta de aspectos y detalles que antes nunca había visto a pesar de «haber visto» muchos árboles, en las ciudades y en la naturaleza. Pero no sabía cómo mirarlos para realmente verlos. Y también a apreciar su influencia en las culturas de diferentes pueblos. Las fotos que acompañan esta reseña están sacadas en ambientes urbanos del País Vasco.

Francis Hallé, su autor, es botánico, profesor emérito de la Universidad de Montpellier, y experto reconocido internacionalmente en ecología forestal de regiones tropicales. Dicho de otra manera, sabe de lo que está hablando. Y, además, lo hace en un lenguaje sencillo, ágil y fácil de entender para el público en general, sin perder rigor científico. Las explicaciones escritas, concisas y claras, se acompañan de 95 excelentes dibujos, la gran mayoría hechos por el propio autor, en los que resalta los detalles botánicos mencionados en el texto, y de 19 fotografías en color. Todo ello se completa con un glosario de los conceptos científicos utilizados para que los lectores legos en la materia vayamos adquiriendo un vocabulario correcto.

El libro consta de 3 partes que se pueden leer en cualquier orden, aunque creo que es mejor seguir el orden propuesto para adentrarnos en el inesperado mundo del árbol. El título del capítulo 1 «¿Puede definirse el árbol?» ya nos indica que quizá el concepto de árbol no está tan consolidado, aunque hasta ahora hubiéramos pensado que estábamos seguros de lo que es un árbol! ¿Cómo se es árbol? El Profesor Hallé es muy conocido, entre otras contribuciones científicas, por proponer (junto con otros dos expertos botánicos) los modelos arquitectónicos que describen el modo de crecimiento y la forma de los árboles atendiendo a: si tienen ramas o no; si el crecimiento del eje principal del árbol es continuo o rítmico; si las ramificaciones son homogéneas o no; la disposición de los órganos sexuales (flores, inflorescencias, conos, etc) con respecto al eje principal (tronco) y sus ramificaciones. En total ha descrito 24 modelos arquitectónicos existentes en la naturaleza. Sorprende leer que «hay muy pocos árboles que se mantienen durante toda su vida en una misma unidad arquitectónica que, simplemente, crece con el tiempo» (es lo que se llama un «árbol unitario»). Nos explica el autor que esto se debe a que la mayoría de los árboles son seres coloniales, es decir, formados por repeticiones de la unidad arquitectónica principal («unidades reiteradas). Es como si dijéramos que al árbol original «le sale» otro árbol! (ver Figura 1).

Figura 1. Ejemplos de «unidades reiteradas» Las «ramas» de la izquierda de estos árboles son Unidades Reiteradas. Al fondo de la imagen de la derecha, hay un árbol cuyo eje (tronco) principal está tumbado y del que emerge otra unidad reiterada vertical. En la imagen de la derecha, el árbol en primer plano también tiene por lo menos 1 unidad reiterada, si no 2. Fotos suministradas por la autora.

El hecho de ser colonial le permite al árbol llegar a alcanzar longevidades prácticamente indefinidas. ¿Indefinidas? El autor describe cómo muchos árboles forman «renuevos» que en realidad son unidades reiteradas producidas a partir de la raíz. Un análisis genético nos indica si un pequeño árbol que está creciendo en las inmediaciones de otro es un renuevo o ha brotado de una semilla: en el primer caso mantiene el genotipo del árbol crecido, y en el segundo no. Muchos árboles tienen una gran tendencia a formar clones (organismos que tiene el mismo genotipo que el organismo original) unidos por redes de raíces. Aparentemente son individuos diferentes, pero el análisis genético ha revelado en varias ocasiones que son el mismo individuo con decenas de miles de reiteraciones, como ya se ha comprobado en algunos bosques de álamos en Estados Unidos a los que se les ha calculado una edad superior a los 10.000 años. Por eso se pregunta el autor «el árbol, ¿es un individuo o una colonia?» la respuesta no es sencilla.

Las otras dos partes del libro inciden en la relación que los seres humanos hemos tenido, y seguimos teniendo, con los árboles, su influencia en diferentes culturas, en sus economías y hasta en el desarrollo del moderno sector del automóvil. En nuestra sociedad, altamente tecnificada, podríamos aprender mucho de las prácticas agronómicas de bajo coste que muchos pueblos indígenas han puesto a punto para mejorar la productividad de sus árboles y aprovechar sus escasos recursos naturales, sobre todo el agua. El último capítulo es un sugerente estudio de lo que la especie humana podría deber a nuestros antepasados arborícolas.

Como sucede en todos los campos científicos, no todos los expertos están de acuerdo en la interpretación de las razones que explican lo que observamos. Los temas que trata el presente libro no son una excepción. A lo largo del texto, con abundantes referencias a publicaciones científicas, el profesor Hallé señala las diferentes posturas e hipótesis junto a la que él considera más adecuada, lo que nos amplía la visión del tema en cuestión.

La cuidada edición de este libro en todos sus aspectos es una constante de la alta calidad a la que ya nos tiene acostumbrados la editorial Libros del Jata. Se lee muy fácilmente, por una parte gracias la pluma ágil del autor, y por otra a la exquisita traducción, como si el libro hubiera estado originalmente escrito en español, sin esas frases forzadas, resultado de una traducción literal que, aunque se entiendan, disminuye mucho la calidad del texto. No he encontrado una sola errata en todo el texto, ni una coma fuera de lugar! La portada, los dibujos del autor y la calidad de las fotografías están a la altura de las excelentes descripciones científicas del texto. Este libro proporciona una visión de los árboles que le marcarán a Ud., lector o lectora, un antes y un después en su manera de verlos y considerarlos. Estoy segura de que lo disfrutará y ya no volverá a ver un árbol de la misma manera que antes.

 

Ficha:

Autor: Francis Hallé

Editorial: Libros del Jata, S.L.,

Año: 2019. Primera edición en español (título original: Paidoyer pour l’arbre).

Colección: La Mirada Atenta.

ISBN: 978-84-16443-10-9. EAN: 9788416443109

Sobre la autora de la reseña: Mertxe de Renobales Scheifler es catedrática de bioquímica en la Facultad de Farmacia de la UPV/EHU.

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

El artículo Alegato por el árbol se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Árbol sagrado, árbol maldito
  2. Historias de la malaria: El árbol de la quina
  3. I, Mammal. The Story of What Makes Us Mammals
Categorías: Zientzia

Asteon zientzia begi-bistan #272

Zientzia Kaiera - Dom, 2019/10/13 - 09:00
Uxue Razkin Astrofisika

Orain arte ezagutzen ez ziren beste hogei ilargi aurkitu dituzte Saturnoren inguruan. Emaitzak hauek jakinda, Saturnok Jupiterreri irabazi egin dio: ilargi gehien dituen eguzki-sistemako planeta bilakatu da. Astronomoek azaldu dute ez zirela planetarekin batera sortu; grabitazio-eremuak gerora harrapatutako gorputzak dira, eta eguzki-sistemaren sorrerari buruzko informazio interesgarria ematen dute. Elhuyar aldizkariak eman dizkigu xehetasunak.

Mikrobiologia

Eskuak lehortzeko metodo batzuk eta bakterioak murrizteko duten eraginkortasuna zehaztu omen dute Lorna K. P. Suen ikertzaileak eta bere lankideek. Josu Lopez-Gazpiok artikulu honen bitartez eman digu horren berri. Kontuz! Ondo lehortu behar dira eskuak! Izan ere, ondo lehortzen ez diren eskuekin probableagoa da mikroorganismoak transmititzea. Sei metodo deskribatu dituzte guztira, horien artean aipatzen dira, eskuak arroparekin lehortzea eta txorro motako esku-lehorgailuak erabiltzea. Badakizu zein de metodorik eraginkorrena eta zein okerrena? Erantzuna jakiteko, irakurri testua osorik!

Fisika

Berrian irakur daiteke historikoa izan daitekeen gertaera bat: Googlek zabaldu duenez, bere ordenagailu kuantiko bat lehen aldiz nagusitu zaio munduko konputagailu klasikorik indartsuenari. Zer dute, baina, “superordenagailu” hauek? Prozesagailu klasikoekin alderatuta (hauek bitarrak dira), kuantikoek beste modu batera funtzionatzen dute, artikuluan azaltzen digutenez: “Qubit edo bit kuantikoetan kodetzen dute informazioa, eta qubit bat egoera batean baino gehiagotan egon daiteke aldi berean”.

Klima larrialdia

Zientzialari talde batek, AEBtako Stanfordeko Unibertsitatearen gidaritzapean, planeta osoaren mapa interaktibo bat osatu eta horretan islatu dute naturak munduko eremu bakoitzean gizakiek zenbateko onura jasotzen duten naturak ekosistemen egonkortasunari egiten dion ekarpenari esker. Halaber, klima larrialdia dela eta, identifikatu dituzte zeintzuk diren naturaren ekarpena galtzeko arrisku handiena duten eremuak. Emaitzak ez dira itxaropentsuak: 5.500 milioi herritar egon daitezke arriskuan 2050 urterako.

Osasuna

Eltxoak dira artikulu honen muina. Timothy Winegard historialariaren The Mosquito: A Human History of Our Deadliest Predator liburuan agertzen diren zenbait istorio azaltzen ditu, denak gizakiaren eta eltxoen harreman estua islatuz. Adibidez, oso interesgarria da nazien inguruan irakur daitekeen testua. Badirudi naziek ikertu nahi zutela eltxoen erabilera belikoa, Hirugarren Reicheko etsaien aurka gerra kimiko eta bakteriologiko baten elementu gisa. Ez galdu artikulu interesgarri hau, halako istorio gehiago topatuko dituzu eta!

Biologia

Zientzialari talde batek proposatu du baldintzapen klasikoaren bidetik amebak portaera berriak ikasteko gai direla, estimuluen asoziazioan oinarrituta. Ikertzaileek proposatu dute gainera zelulak gai direla migrazio zelularrari lotutako portaera hauek ikasteko eta denbora luzean gogoan mantentzeko (45 minutuz mantentzeko gai dira).

Ingeniaritza

Hiri-hondakin solidoen (HHSn) kudeaketa kezka izaten ari da azken urteotan. Hori dela eta, artikulu honetan horren inguruko ikerketa-lan baten berri ematen da. Bertan, Arabako Gorbeialdeko Hondakinen Partzuergoak kudeatzen dituen hiri-hondakin solidoen (HHSen) errefusa frakzioa karakterizatzeko proposaturiko metodologia eta lorturiko emaitza nagusiak jaso dira. 2035rako HHSen %65a birziklatu, ontzien %75a birziklatu, eta hondakin guztien hondakindegiko ezabatzea %10eko gehienekora murriztu beharko dira.

Nobel sariak

Urtero lez, iritsi da zientzako Nobel saridunak ezagutzeko eguna. Lehenik eta behin, azpimarratzekoa da saridunen artean ez dagoela emakumerik (Ana Galarragak hitz egin digu honen inguruan, Berrian). Medikuntza arloari dagokionez, zelulak oxigeno-erabilgarritasunari nola egokitzen diren argitu dutenentzat izan da Nobela. William G. Kaelin, Sir Peter J. Ratcliffe eta Gregg L. Semenzak jasoko dute saria medikuntza molekularraren arloan egindako lanagatik. Xehetasun gehiago: Berrian eta Elhuyar aldizkarian.

Bestalde, Fisikakoa dugu. James Peebles, Michel Mayor eta Didier Queloz astrofisikariak izan dira saridunak, unibertsoaren eboluzioa ulertzeko ekarpenak egin dituzten ikertzaileak, alegia. Sariaren erdia Peeblesentzat izango da, fisika kosmologikoaren arloan unibertsoaren eboluzioa ulertzeko egindako aurkikuntzengatik; eta beste erdia, Michel Mayor eta Didier Quelozentzat, Eguzkiaren antzeko izar baten inguruan orbitatzen duen lehen planeta aurkitzeagatik. Xehetasun gehiago: Berrian eta Elhuyar aldizkarian.

Azkenik, 2019ko Kimikako Nobel saria Stanley Whittingham, John Goodenough eta Akira Yoshino ikertzaileek jasoko dute, litio-ioizko bateriak garatzeagatik. Nobel Fundazioak adierazi duenez, hiru ikertzaileok ekarpen handia egin diote gizarteari: “Mundu birkargagarri” bat sortu dute. Xehetasun gehiago: Berrian eta Elhuyar aldizkarian.

–——————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

———————————————————————–

Egileaz: Uxue Razkin (@UxueRazkin) kazetaria da.

———————————————————————–

The post Asteon zientzia begi-bistan #272 appeared first on Zientzia Kaiera.

Categorías: Zientzia

Leonardo Torres Quevedo en Bilbao, 1919-2019: Naútica, Aeronáutica y Computación

Cuaderno de Cultura Científica - Sáb, 2019/10/12 - 11:59
El catamarán que Leonardo Torres Quevedo diseñó y se construyó en los astilleros de Euskalduna en Bilbao. Conocido como «binave» se probó en la ría de Bilbao en 1918 por primera vez. Fotografía: Francisco Gonzalez Redondo – Museo Torres Quevedo

El ingeniero Leonardo Torres Quevedo (1852-1939) fue el protagonista de importantes sucesos ocurridos en Bilbao hace cien años. Por un lado, completó en la ría de la capital vizcaína las pruebas de su “Binave”, el primer catamarán moderno construido en los astilleros Euskalduna. Por otro, hacía público en el Teatro Arriaga el proyecto del dirigible trasatlántico “Hispania”, culminación de su obra aeronáutica.

Otro de los grandes logros del ingeniero de origen vasco fue su “aritmómetro electromecánico”, aparato que puede considerarse el primer ordenador de la historia en el sentido actual del término y que fue presentado en la Exposición de Material Científico.

Todos estos grandes inventos, entre otros, hicieron que fuera calificado en 1930 como el más prodigioso inventor de su tiempo, por lo que ocupa un importante lugar en la historia universal de la ciencia y la técnica. Francisco A. González Redondo, profesor de la Universidad Complutense de Madrid (UCM), analizó las grandes obras del ingeniero el pasado 18 de septiembre en la Biblioteca Bidebarrieta de Bilbao.

Francisco A. González Redondo es profesor en la Universidad Complutense de Madrid (UCM) en el Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas, además de ser uno de los grandes especialistas en la vida y obra de Leonardo Torres Quevedo. Sobre él ha escrito una biografía y numerosos artículos, además de organizar numerosos congresos y exposiciones.

Edición realizada por César Tomé López

El artículo Leonardo Torres Quevedo en Bilbao, 1919-2019: Naútica, Aeronáutica y Computación se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. «Leonardo Torres Quevedo, el más prodigioso inventor de su tiempo» por F.A. González Redondo
  2. Neandertales ¿crónica de una muerte anunciada?, por María Martinón-Torres
  3. Francisco Ayala en Bilbao
Categorías: Zientzia

Ezjakintasunaren kartografia #279

Zientzia Kaiera - Sáb, 2019/10/12 - 09:00

Egia izango da garagardo bat hartzearren sedentario bilakatu ginela? Did we settle down for beer? Pablo Ortizen eskutik.

CRISPR teknologiak emaitza garrantzitsuetarantz doa: Rosa García-Verdugoren CRISPR gene therapy against AIDS

Kristaletako akatsak, bereziki bidimentsionalak badira, kristala bera bezain garrantzitsua izan daitezke. Zuzen identifikatzeko tresna teoriko eta esperimentalak behar direla frogatzen dute DIPCkoek How to identify a point defect in 2D transition metal dichalcogenides

–—–

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #279 appeared first on Zientzia Kaiera.

Categorías: Zientzia

¿Quiere que coman fruta y verdura? Conviértalos en pequeños artistas

Cuaderno de Cultura Científica - Vie, 2019/10/11 - 11:59


Edurne Maiz Aldalur

«Vertumnus» (1590/1591) de Gisussepe Arcimboldo

Las tasas de sobrepeso y obesidad infantil son preocupantes a nivel mundial. Por ello, se han llevado a cabo programas para promover hábitos alimentarios saludables. La mayoría se ha centrado fundamentalmente en la educación nutricional, pero esta no es la única estrategia posible. Nosotros hemos optado por una aproximación diferente a este problema.

Es habitual que niños y niñas rechacen probar nuevos alimentos, sobre todo frutas y verduras. Este comportamiento se denomina neofobia alimentaria y se considera como característico del desarrollo evolutivo entre los 2 y 6 años. Sin embargo, si no se gestiona adecuadamente puede prolongarse hasta la edad adulta.

Frutas y verduras son, además, una fuente de minerales y vitaminas. Por todo ello es sumamente importante explorar nuevas estrategias para fomentar el consumo de estos alimentos entre la población infantil.

El papel de los sentidos

La simple exposición ha sido una de las estrategias más utilizadas para inducir el consumo de nuevas frutas y verduras. De esta manera, el niño se familiariza con el alimento. Además, durante un tiempo se consideró que en su aceptación era decisivo el sentido del gusto y, por eso, había que probar y saborear estos alimentos.

No obstante, otros autores observaron que la información de los sentidos del tacto, de la vista y del olfato también eran importantes para probar nuevas verduras.

Centrémonos en el sentido de la vista. En un estudio donde se presentaron los vegetales con diferentes formas (enteros, a rebanadas, en palitos y con figuras de estrella), los resultados mostraron que los pequeños preferían mucho más las verduras con figura de estrella.

De manera similar, otros autores encontraron que los niños comieron el doble de fruta cuando esta se presentaba decorada con palillos para cócteles y dentro de una sandía que cuando se mostraba de manera habitual. Los elementos divertidos siempre han resultado atractivos para los más pequeños: un claro ejemplo de ello es la variedad de colores y formas que presentan la mayoría de golosinas.

Efecto ‘Ikea’

Hasta el momento, varios estudios han identificado una relación entre la participación de los niños en la preparación de los alimentos (concretamente, en la compra y el cocinado) y el aumento de su disposición a probar cosas nuevas.

Este tipo de actividades prácticas son muy valoradas entre los pequeños, y se ha demostrado que aportan una sensación de responsabilidad y orgullo. Dichas emociones han sido explicadas a través del denominado “Efecto Ikea” o, más específicamente en relación a la comida, “lo cocino para mí”.

Este fenómeno explica cómo los consumidores aprecian más (por tanto, les gusta más e ingieren mayor cantidad) aquellas comidas que han preparado ellos mismos, comparadas con las elaborados por otras personas. Además, crear experiencias positivas con nuevos alimentos es también interesante, ya que la aceptación de nuevos sabores puede generalizarse y aumentar así la de otros diferentes.

Preparar platos artísticos

En un estudio, llevado a cabo en el departamento de I+D del Basque Culinary Center de Donostia-San Sebastián analizamos los efectos en el consumo y el agrado de nuevas frutas y verduras al involucrar a los niños en la creación de una merienda artística.

Uno de los platos artísticos preparados para el experimento.

Para ello, se crearon tres grupos:

  1. El grupo ART, en el que los pequeños elaboraron ellos mismos el plato artístico y luego lo comieron para merendar.
  2. El grupo VISUAL, donde los niños participaron en una actividad creativa de tipo collage con imágenes de frutas y verduras. A continuación merendaron el mismo plato artístico que el grupo anterior, pero elaborado por los investigadores.
  3. El grupo CONTROL, en el que los niños participaron en la misma actividad creativa que el grupo anterior y merendaron los mismos alimentos que el resto, pero presentados de la manera habitual (simplemente cortados).

Los resultados mostraron que tanto el grupo ART como el VISUAL aumentaron su disposición a probar y comer nuevos alimentos. Esto indica que tanto la creación como la presentación del plato artístico pueden ser dos estrategias válidas para fomentar el consumo de nuevas frutas y verduras.

Proceso de elaboración del plato.

Este experimento ha demostrado, además, que los niños también “comen primero con la vista”.

No obstante, el grupo que elaboró el plato por ellos mismos (ART) mostró un estado de ánimo más positivo, así como una mayor dominancia. Esto prueba que participar en la elaboración tiene un mayor impacto en el estado emocional que el simple hecho de comer algo elaborado por otro.

También es importante recalcar la importancia de jugar con los alimentos, tocándolos con las manos e implicando diferentes sentidos. Al final, crear comidas artísticas es una nueva forma de jugar y divertirse en familia.The Conversation

Sobre la autora: Edurne Maiz Aldalur es profesora adjunta de la Facultad de Psicología, Universidad del País Vasco / Euskal Herriko Unibertsitatea

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿Quiere que coman fruta y verdura? Conviértalos en pequeños artistas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Acumuladores térmicos domésticos más pequeños usando parafinas
  2. Artistas científicos
  3. Artistas que miran a las matemáticas
Categorías: Zientzia

Lur Epelde: “Lurzoruek ematen digute jaten dugunaren %95a” #Zientzialari (123)

Zientzia Kaiera - Vie, 2019/10/11 - 09:00

Lurzoru osasuntsuak izatea benetan garrantzitsua da, izan ere, gizakiok jaten dugunaren gehiengoa horietatik dator, klima aldaketa arintzen laguntzen dute eta uraren zikloa erregulatzen dute. Lurzoruak sistema biziak dira, eta planetako biodibertsitate handiena dute, mikroorganismo ugari daudelako bertan.

Lurzoruetako Mikroorganismoen Ekologia taldeak mikroorganismoen azterketa du lan-ildo nagusi eta, hain zuzen ere, klima-aldaketek, lurzoru kutsatuek edota nekazal praktika desberdinek lurzoruan duten inpaktua aztertzen dute.

Neiker Tecnaliako Lurzoruetako Mikroorganismoen Ekologia taldeko kidea da Lur Epelde, eta berarekin hitz egin dugu lantaldeak jorratzen duen azterketaren nondik norakoak eta erronka nagusiak ezagutzeko.

Zientzialari” izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.

The post Lur Epelde: “Lurzoruek ematen digute jaten dugunaren %95a” #Zientzialari (123) appeared first on Zientzia Kaiera.

Categorías: Zientzia

A la sombra de un Adagio

Cuaderno de Cultura Científica - Jue, 2019/10/10 - 11:59
Imagen de Almudena M. Castro (@puratura)

El Adagio de Barber ha sonado en cientos de funerales, exequias y homenajes. Pero hubo uno donde su ausencia se hizo notar: el funeral de su propio compositor, Samuel Barber. Él mismo lo vetó poco antes de su muerte, cansado del que fue simultáneamente su mayor éxito y un espejo asfixiante durante toda su carrera.

Barber copuso su famoso Adagio en 1936, cuando apenas tenía 26 años. Pocos años antes, había conocido a Arturo Toscanini, uno de los compositores más célebres de su tiempo, quien le había animado a enviarle alguna de sus obras. Barber, un compositor joven y deseoso de darse a conocer, arregló rápidamente el movimiento lento de un cuarteto de cuerda que había compuesto poco antes y así nació su famoso Adagio para cuerdas.

La obra se estrenó el 5 de noviembre de 1938. Un selecto grupo de melómanos fue invitado al Estudio 8H del Rockefeller Center para ver a Toscanini dirigir la premier al frente de la Orquesta Sinfónica de la NBC. La obra además se grabó y emitió en directo para todos los oyentes de la Radio Nacional. Hasta la fecha, pocas obras del repertorio clásico se habían estrenado ante una audiencia tan inmensa y un público tan pequeño.

Desde entonces, y a partir de las primeras críticas positivas, su fama no dejó de crecer. Funerales, elegías, películas, televisión… durante el s. XX, no hubo lugar triste donde no sonase el Adagio. A día de hoy, algunas orquestas aún lo ensayan periódicamente, por si a alguna celebridad le da por estirar la pata.

Sin embargo, el compositor acabó lamentando este éxito tan temprano. Por un lado, su tremenda intensidad emocional fijó un estándar que Barber se sentía presionado a replicar en cada un de sus obras, condenado a destilar, una y otra vez, la fórmula que le había llevado al éxito. Pero además, sucedió que esta ópera prima eclipsó por completo el resto de su obra (y lo sigue haciendo a día de hoy, basta con buscar Samuel Barber en Spotify, por ejemplo).

Barber estaba convencido de haber escrito obras al menos igual de buenas que el Adagio, como sus conciertos para violín y para piano. Por eso no entendía que estas no llenasen los escenarios. Su irritación se volvía evidente, cada vez que alguien le comentaba cuánto admiraba su (dichoso) Adagio. En una entrevista de 1949, un periodista de la CBS le interpela, admirado, explicando que el Adagio fue la primera composición de Barber que él conoció. El compositor le contesta, “ojalá hubieses escuchado alguna de las nuevas” y añade con desdén “todo el mundo toca esa”. Hacia 1979, la acidez parece haber ido in crescendo: “A veces me aburro escuchando el Adagio. Pero me divierto durante las representaciones porque sé que siempre va a haber un error en alguna parte; simplemente espero que suceda. Es una obra tan sencilla, que ni siquiera se molestan en ensayarla”. A pesar del paso de los años, su Adagio lo seguía y ocultaba como una sombra, un espejo plano y oscuro en el que el compositor ya no se reconocía y que otros se empeñaban en mostrar.

No es de extrañar, por tanto, que Barber pidiese excluirlo de su propio funeral. Carlo Menotti, su pareja de toda la vida, se aseguró de que así fuera: durante la ceremonia sonaron corales de Bach, otras obras de música vocal de Barber, un madrigal del propio Menotti… ni resto del Adagio. Sin embargo, no logró silenciarlo durante la agonía del pobre Barber, atrapado en el hospital a causa del cancer: poco antes de su muerte, el director Lukas Foss dirigió su propia interpretación al frente de la Orquesta Filarmónica de Brooklyn y se la dedicó al compositor convaleciente. También Bernstein lo dirigió como homenage, poco tiempo después. Los amigos de Barber fueron a visitarle al hospital y le tocaron el Adagio en directo con todo su amor (y para aburrimiento mortal del compositor, segúnel testimonio de Menotti)… no falta comedia en esta pequeña tragedia, si uno la quiere ver.

Referencia:

Thomas Larson (2012) «The Saddest Music Ever Written: The Story of Samuel Barber’s Adagio for Strings»

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo A la sombra de un Adagio se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Naukas Bilbao 2017 – Ángel Gómez Roldán: Tras la sombra de la Luna
  2. Tema y variaciones
  3. El último puzle de Bach
Categorías: Zientzia

Gorbeialdeko Hondakinen Partzuergoak kudeatutako hiri-hondakin solidoen errefusaren karakterizazioa

Zientzia Kaiera - Jue, 2019/10/10 - 09:00
Daniel Zuazagoitia, Naiara Rojo, Arrate Santaolalla, Iñigo Zuazagoitia Hiri-hondakin solidoen (HHSn) kudeaketa kezka handiko gaia bihurtu da azken urteotan. Europa mailan, indarrean dagoen zuzentarauan finkatutako helburuak zorroztea berriki proposatu da; horren arabera, 2035rako HHSen %65a birziklatu, ontzien %75a birziklatu, eta hondakin guztien hondakindegiko ezabatzea %10eko gehienekora murriztu beharko dira.

Irudia: Karakterizatutako hiri hondakin solidoen batez besteko konposizioari dagokionez, materia organiko biodegradagarriak osatu du masa-portzentajerik handiena (% 49a).

Modu ez selektiboan biltzen diren HHSen (errefusa, zabor nahasia) konposizioa ezagutzea da gaur egun egiten den kudeaketa hobetzeko lehenengo pausua. Ildo horretan, Gorbeialdeko Hondakinen Partzuergoak kudeatzen duen errefusa karakterizatu da, horren konposizio zehatza ezagutu ahal izateko (ze masa-portzentaje dagokio frakzio bakoitzari?). Modu horretan bakarrik diseinatu ahal izango dira legez ezarritako birziklatze-tasak lortzea ahalbidetuko duten ekintzak.

Gorbeialdeko Hondakinen Partzuergoak Urkabustaiz, Zuia, Zigoitia, Legutio, Otxandio eta Oletako kontzejuko errefusa kudeatzen du, besteak beste. Udalerri horiek Gorbeialdeko Koadrilan kokatzen dira (Otxandio ezik), eta ikerketa-eremua osatu dute. Ikerketa lan honetan HHSen errefusaren konposizioan eragina duten bi aldagai aztertu dira: etxebizitza-egitura eta urtaroa. Etxebizitza-egiturari dagokionez, ikerketa-eremuan hiru multzo nagusi identifikatu dira: baserrialdea (baserriak), herrialdea (biztanle nukleo handiak), eta txaleten-ingurunea (lorategia duten bigarren etxebizitzak). Urtaroaren eragina ere aztertu da, eta horretarako laginak udan eta neguan hartu dira. Guztira, beraz, sei karakterizazio egin dira: hiru neguan, bat eremu bakoitzeko, eta beste hiru udan.

Laginketa bakoitzean, etxebizitza-egitura eta urtaro bakoitzari dagokion errefusa bildu, eta 250 kg-ko lagina karakterizatu da. Horretarako, hondakin-mota ezberdinak (beira, papera eta kartoia, ontzi arinak, materia organikoa, eta bestelako hondakinak) begi bistaz identifikatu, eta eskuz bereiztu dira. Azkenik, frakzio bakoitzaren masa determinatu eta masa totalaren konposizioa kalkulatu da, masa-portzentajean.

Karakterizatutako HHSen batez besteko konposizioari dagokionez, materia organiko biodegradagarriak osatu du masa-portzentajerik handiena (% 49a), ez da harritzekoa, izan ere frakzio honen bereizketa selektiboa ez da ematen eskualdean. Nahiz eta eremutik eremura desbiderapen txikiak antzeman, laginketa guztietan frakzio horrek masa totalaren erdia izan du (% 43-53), gutxi gorabehera. Beirari (% 2,1), ontzi birziklagarriei (% 7,2) eta papera eta kartoiari (% 6,8) dagozkion batez besteko portzentajeak baxuak izan dira. Datu hauek, frakzio hauen bereizketa selektiboa egokia dela mahai gaineratu du; beraz, hobekuntza tartea frakzio horietan txikia da. Beste hondakinen frakzioak (birziklatu eta konpostatu ezin diren horiek, alegia) masa totalaren % 35a osatu du (batez beste), hau da, benetan sortzen den errefus masa dagokion kontenedorean jasotzen dena baino askoz txikiagoa da (HHSen masa osoaren %65.6 izatetik %23.1ra izatera pasako litzateke bereizketa egokia izango balitz).

Urtaroak eta etxebizitza motak eragina izan dute azterturiko HHSen errefusaren konposizioan. Udan materia organiko biodegradagarriaren, beiraren, paper eta kartoiaren, eta ontzi birziklagarrien frakzioek gora egin dute aztertu diren hiru eremuetan. Etxebizitza motari dagokionez, txaleten-inguruneko HHSetan materia organiko biodegradagarriaren masa-portzentajerik handiena antzeman da (batez beste: txaleten-ingurunean % 53; herrialdean % 50, baserrialdean % 43), eta baserrialdean, aldiz, bestelako hondakinen frakzioren portzentajerik handiena (batez beste: baserrialdean % 43, herrialdean % 33, txaleten-ingurunean: % 30).

Azkenik, adierazi deigarria suertatu dela, baserrialdean eta txaleten-ingurunean, aztertutako bi urtaroetan, jasotako plastiko handien (normalean nekazaritzan erabiltzen direnak) masa-portzentajea, baita hildako animalien presentzia ere. Bi zona horietako materia organiko biodegradagarrian, janari-hondarrez gain, inausketa-hondakinen, lurraren, eta soropilaren presentzia nabaria izan da. Azken hondakin horiek udako laginketan negukoan baino ugariagoak izan dira.

Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: Ekaia 34
  • Artikuluaren izena: Gorbeialdeko Hondakinen Partzuergoak kudeatutako hiri-hondakin solidoen errefusaren karakterizazioa
  • Laburpena: Ikerketa-lan honetan Arabako Gorbeialdeako Hondakinen Partzuergoak kudeatzen dituen hiri-hondakin solidoen (HHSen) errefusa frakzioa karakterizatzeko proposaturiko metodologia eta lorturiko emaitza nagusiak jaso dira. Aztertu diren laginak osatzeko, bilketa kamioiek egin beharreko ibilbideak diseinatu dira, eta horretarako aldagai orokor bi kontuan hartu dira: sasoia (negua eta uda) eta etxebizitza-mota (herrialdea, baserrialdea eta txaletak). Egindako analisiek adierazi dute bi aldagai horiek eragina dutela errefusa frakzioaren konposizioan, eta batez ere errefusa osatzen duten bi frakzio nagusietan: materia organikoa eta bestelako hondakinak. Nabarmentzekoa da errefus masa totalaren %65 (gutxi gorabehera) birzikla edota berrerabil daitezkeen materialek osatzen dutela. Oro har, aztertutako lagin guztiek hobetzeko hein zabala dute materia organikoaren bilketa selektiboan.
  • Egileak: Daniel Zuazagoitia, Naiara Rojo, Arrate Santaolalla, Iñigo Zuazagoitia.
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua.
  • ISSN: 0214-9001
  • Orrialdeak: 225-242
  • DOI: 10.1387/ekaia.19068

————————————————–
Egileez:

Daniel Zuazagoitia UPV/EHUko Hezkuntza eta Kirol fakultateko Matematika eta Zientzia Esperimentalen Didaktika Sailean dabil; Naiara Rojo eta Arrate Santaolalla UPV/EHUko Gasteizko Ingeniaritzako Unibertsitate Eskolako Ingeniaritza Kimikoa eta Ingurumenaren Ingeniaritza Sailean; Iñigo Zuazagoitia UPV/EHUko Gasteizko Ingurugiro Gaietarako Ikastegian dabil.

———————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.

The post Gorbeialdeko Hondakinen Partzuergoak kudeatutako hiri-hondakin solidoen errefusaren karakterizazioa appeared first on Zientzia Kaiera.

Categorías: Zientzia

42, la respuesta definitiva a la vida, el universo y todo lo demás

Cuaderno de Cultura Científica - Mié, 2019/10/09 - 11:59

Una serie clásica de novelas de ciencia ficción de la década de los años 1980 es La guía del autoestopista galáctico, del escritor inglés Douglas Adams (1952 – 2001). Originalmente fue una serie para la radio, de 1978, con ese mismo nombre. La serie literaria se compone de cinco libros, el primero que da título a toda la serie, La guía del autoestopista galáctico, fue publicado en 1979, al que siguieron El restaurante del fin del mundo; La vida, el universo y todo lo demás; Hasta luego, y gracias por el pescado e Informe sobre la Tierra.

Portadas de las novelas de la serie de ciencia ficción La guía del autoestopista galáctico, publicadas por la editorial Anagrama, y cartel de la película

En la novela aparece un superordenador, llamado Pensamiento Profundo y que es el segundo ordenador más grande del universo del espacio y del tiempo, que ha sido construido por una raza de seres “pan-dimensionales” que buscan el sentido de la vida. Cuando le preguntan al superordenador cuál es la “respuesta definitiva a la vida, el universo y todo lo demás”, éste contesta, después de siete millones y medio de años haciendo cálculos, que “cuarenta y dos”.

– Buenos días –dijo al fin Pensamiento Profundo.

– Hmmm… Buenos días, Pensamiento Profundo –dijo nerviosamente Loonquawl–, ¿tienes… hmmm, es decir…?

– ¿Una respuesta que daros? –le interrumpió Pensamiento Profundo en tono majestuoso–. Sí, la tengo.

Los dos hombres temblaron de expectación. Su espera no había sido en vano.

– ¿De veras existe? –jadeó Phouchg.

– Existe de veras –le confirmó Pensamiento Profundo.

– ¿A todo? ¿A la gran pregunta de la Vida, del Universo y del Todo?

– Sí.

Los dos hombres estaban listos para aquel momento, se habían preparado durante toda la vida; se les escogió al nacer para que presenciaran la respuesta, pero aun así jadeaban y se retorcían como criaturas nerviosas.

[…] Los dos hombres se agitaron inquietos. La tensión era insoportable.

– En serio, no os va a gustar –observó Pensamiento Profundo.

– ¡Dínosla!

– De acuerdo –dijo Pensamiento Profundo–. La Respuesta a la Gran Pregunta…

– ¡Sí…!

– … de la Vida, del Universo y de Todo… –dijo Pensamiento Profundo.

– ¡Sí…!

– Es… –dijo Pensamiento Profundo, haciendo una pausa.

– ¡Sí…!

– Es…

– ¡¡¡¿Sí…?!!!

– Cuarenta y dos –dijo Pensamiento Profundo, con calma y majestad infinitas.

Ante el asombro de sus creadores, el supercomputador les plantea que tienen que buscar cuál es la “pregunta definitiva”. Y como ese ordenador no puede contestar a esa pregunta construyen el superordenador más grande del universo, llamado Tierra, que es destruido antes de responder a la cuestión de cuál es la “pregunta definitiva” y se pierde la posibilidad de conocer esa información de vital importancia.

Esta historia de La guía del autoestopista galáctico es el motivo por el cual cuando hace unas semanas se pudo leer en la prensa que los matemáticos habían resuelto un problema relacionado con el número 42, a muchas personas nos vino a la cabeza la “respuesta definitiva a la vida, el universo y todo lo demás”.

El número 42 era el último número de la conocida sucesión de números 4, 8, 15, 16, 23, 42 de la serie de televisión Lost. Aquí vemos el billete de lotería que, en la serie, tocó a uno de los personajes, Hurley

 

Algunos de los titulares de prensa que pudieron leerse hace unas semanas fueron

Matemáticos resuelven el diabólico acertijo del número 42, sin solución durante 65 años” (ABC Ciencia)

Un viejo problema sobre el 42, resuelto” (Investigación y Ciencia)

Resuelven por fin un misterioso problema matemático que lo puede cambiar todo” (El Confidencial)

Dejando la ciencia ficción a un lado, expliquemos cuál es el problema matemático al que se estaban refiriendo los titulares de la prensa. El problema es el siguiente.

Problema: ¿cómo expresar los números naturales del 1 al 100 como suma de tres cubos de números enteros?

Si lo escribimos de forma algebraica sería lo siguiente. Dado un número natural k, entre 1 y 100, buscar los números enteros x, y, z tales que verifican la ecuación diofántica:

x3 + y3 + z3 = k.

Empecemos explicando qué es una ecuación diofántica. Estas son ecuaciones polinómicas de dos o más variables x, y, z, etc, para las que se estudian las soluciones con números enteros (los naturales, el cero y los negativos).

Por ejemplo, se puede considerar la ecuación, en las variables x, y, z, relacionada con el teorema de Pitágoras x2 + y2 = z2 y estudiar sus soluciones enteras. Una solución de esta ecuación es la clásica (3, 4, 5), ya que 32 + 42 = 52. Estas soluciones enteras se conocen con el nombre de ternas pitagóricas. Otras ternas pitagóricas son (5, 12, 13) o (8, 15, 17). Los griegos se dedicaron a investigar la existencia de diferentes ternas pitagóricas. El matemático griego Diofanto, que vivió en Alejandría en el siglo III, escribió un libro sobre ecuaciones algebraicas de título Arithmetica. En particular, Diofanto elaboró una regla general para encontrar todas las ternas pitagóricas, y se interesó por el estudio de lo que hoy llamamos ecuaciones diofánticas.

Portada de la edición de 1621 de la Arithmetica de Diofanto. Imagen de Wikimedia Commons

Pero volviendo a nuestro problema, a la ecuación diofántica concreta x3 + y3 + z3 = k, o cómo expresar los números naturales del 1 al 100 como suma de tres cubos de números enteros, esta cuestión fue planteada de forma explícita y extensamente estudiada en un artículo publicado en 1955, en la revista Journal of the London Mathematical Society, por los matemáticos ingleses, J. C. P. Miller y M. F. C. Woollett, con el explícito título Solutions of the Diophantine Equation x3 + y3 + z3 = k.

Estos matemáticos se interesaron por este problema a raíz de un comentario del matemático inglés L. J. Mordell en otro artículo anterior, de 1953, en la misma revista:

No sé absolutamente nada sobre las soluciones enteras de x3 + y3 + z3 = 3, más allá de la existencia de (1, 1, 1) y (4, 4, – 5); y tiene que ser realmente muy difícil descubrir algo sobre otras soluciones”.

Además, Mordell sugirió a sus colegas Miller y Woollett que utilicen el ordenador ERSAC, de la Universidad de Cambridge, para obtener soluciones de la ecuación diofántica x3 + y3 + z3 = k, para valores de k menores, o iguales, a 100. Fruto de ese trabajo es el mencionado artículo.

Aunque ya con anterioridad de había estudiado la ecuación x3 + y3 + z3 = k. En la revista inglesa de matemática recreativa The Ladies’ Diary se publicó en 1825, por S. Ryley, una familia de soluciones racionales, no enteras, de esa ecuación. Y las primeras soluciones enteras fueron obtenidas para las ecuaciones diofánticas x3 + y3 + z3 = 1 y x3 + y3 + z3 = 2 (k = 1, 2), en 1908 y 1936, respectivamente.

Portada de 1740 de la revista The Ladies’ Diary, en la que aparece un retrato de Carolina de Brandeburgo-Ansbach, reina consorte del rey Jorge II de Gran Bretaña [*]. Desde el inicio de la revista se incluían en la portada retratos de mujeres prominentes británicas, para atraer a las mujeres a leer la revista. Imagen de la Princeton University Library, a través de Google Books 

Pero volvamos a la ecuación diofántica x3 + y3 + z3 = k y al estudio de sus soluciones enteras.Veamos algunos ejemplos que nos permitan entender mejor la cuestión. Podríamos incluso plantearnos primero la ecuación x3 + y3 + z3 = 0, la cual por el último teorema de Fermat (véase la entrada Euler y el último teorema de Fermat) no tiene soluciones más allá de las triviales, del tipo (a)3 + (– a)3 + 03 = 0.

Para k = 1, además de la solución trivial 13 + 03 + 03 =1, se pueden encontrar otras soluciones, como 93 + (–8)3 + (–6)3 = 729 – 512 – 216 = 1 o (– 12)3 + 103 + 93 = –1728 + 1000 + 729 = 1. De hecho, en 1908 se demostró que existen infinitas formas de obtener 1 como suma de cubos, como aparece en el artículo de Miller y Woollett:

(9 t4)3 + (3 t – 9 t4)3 + (1 – 9 t3)3 = 1.

Este resultado se extiende, de forma natural, a los números que son cubos, a3. Luego, para números menores de 100 serían 8, 27 y 64.

También se probó, en 1936, que para k = 2, algunas de cuyas soluciones son 13 + 13 + 03 = 2 y 73 + (– 5)3 + (–6)3 = 2, existen, de nuevo, infinitas soluciones:

(6 t3 + 1)3 + (– 6 t3 + 1)3 + (– 6 t2)3 = 2,

que se extiende a los números que son el doble de un cubo, 2 a3. Para menores de 100 serían 16 y 54.

Para el 3, como menciona Mordell, se conocían solo las soluciones 13 + 13 + 13 = (– 5)3 + 43 + 43 = 3. A pesar de los intentos computacionales de encontrar más soluciones a esta ecuación diofántica x3 + y3 + z3 = 3, no se produjo ningún avance. Solo, en 1985, se demostró que una condición necesaria para que una terna de números enteros (x, y, z) fuese solución de esa ecuación debía de cumplir que x, y y z fuesen congruentes entre sí, módulo 9. Es decir, que el resto al dividirlos por 9 fuese el mismo. Pero ninguna solución particular fue encontrada.

Ahora tocaría el turno a los números 4 y 5. Aunque os recomiendo que no lo intentéis, puesto que no es posible. De hecho, el resultado es más general.

Proposición: No existen soluciones de la ecuación diofántica x3 + y3 + z3 = k, para valores de k “congruentes con 4 o 5, módulo 9”, es decir, que al dividirlos por 9 el resto de la división es 4 o 5, como los números 4, 5, 13, 14, 22, 23, 31, 32, 40, 41, 49, 50, 58, 59, 67, 68, 76, 77, 85, 86, 94 y 95.

Esto se debe a que cualquier número elevado al cubo a3 es congruente con 0, 1 u 8, módulo 9, es decir, el resto de dividir a3 entre 9 solo puede ser 0, 1 u 8. Por lo tanto, la suma de tres cubos no puede ser congruente con 4 o 5, módulo 9, puesto que no hay forma de sumar tres valores (pueden ser repetidos) de 0, 1 u 8 para que quede un resultado congruente con 4 o 5, módulo 9. Por ejemplo, los siguientes cubos 23 = 8, 33 = 27, 53 = 125, son congruentes con 8, 0 y 8, módulo 9, respectivamente, luego su suma es congruente con 8 + 0 + 8 = 16, es decir, congruente con 7, módulo 9. Efectivamente, 8 + 27 + 125 = 160 es congruente con 7, módulo 9, ya que al dividir 160 entre 9 nos queda 17 y de resto 7.

Ordenador británico Electronic delay storage automatic calculator (EDSAC), de la Universidad de Cambridge, fue utilizado por los matemáticos Miller y Woollett para encontrar soluciones a las ecuaciones diofánticas. Las primeras tareas de EDSAC, en 1947, fueron el cálculo de una tabla de cuadrados de números y un listado de números primos. Imagen de la Universidad de Cambridge

Los matemáticos británicos Miller y Woollett, utilizando el ordenador EDSAC, encontraron soluciones particulares para 69 valores de k entre 1 y 100, buscando en un rango de valores de x, y, z comprendidos entre – 3.164 y 3.164. Si tenemos en cuenta que además había 22 valores, menores que 100, para los que no existen soluciones, quedaron sin resolver las ecuaciones diofánticas correspondientes a nueve valores, a saber, 30, 33, 39, 42, 52, 74, 75, 84 y 87.

Llegados a este punto de esta entrada del Cuaderno de Cultura Científica, os animo a que os enfrentéis vosotros mismos a la búsqueda de soluciones particulares al problema de expresar los números naturales del 1 al 100 (evitad los nueve valores que no consiguieron resolver Miller y Woollett, así como los 22 valores que no tienen solución) como suma de tres cubos de números enteros. Para algunos valores de k no es difícil encontrar soluciones, mientras que para otros no es tan sencillo, aunque para la mayoría existen soluciones con x, y, z menores, en valor absoluto, que 25 (esto es, entre – 25 y 25). En particular, para k = 16 la solución de Miller y Woollett es complicada,

16263 + (– 1609)3 + (– 511)3 = 16.

Bueno, pues si os animáis, disfrutad del problema/juego… divertíos… pero no os olvidéis de seguir leyendo esta entrada.

A partir del artículo Solutions of the Diophantine Equation x3 + y3 + z3 = k, de J. C. P. Miller y M. F. C. Woollett, se empezó a trabajar en la solución de estos nueve números menores que 100 que quedaban pendientes, pero también se estudió la ecuación diofántica x3 + y3 + z3 = k, para valores de k mayores que 100, en particular, se puso mucho énfasis en los menores que 1.000. Para resolver estas ecuaciones diofánticas se desarrollaron nuevos algoritmos computacionales y se amplió el rango de valores para x, y, z.

Hasta el año 2001 se había resuelto el problema para todos los números menores que 100, salvo 33, 42 y 74, para los cuales se sabía que no existían soluciones para x, y, z menores (en valor absoluto) que 1011. Así mismo, se habían encontrado soluciones para las ecuaciones diofánticas de todos los valores menores de 1000, salvo veinte, además de los tres anteriores.

Hubo que esperar a 2016 para obtener una solución para el número 74 y al inicio de este año 2019, aún quedaban por resolver los números 33 y 42.

En abril de este año, 2019, el matemático británico Andrew Booker, de la Universidad de Bristol, empezó a trabajar en el problema de escribir el número 33 como suma de tres cubos a raíz del video The uncracked problem with 33 [https://www.youtube.com/watch?v=wymmCdLdPvM] del canal de Youtube Numberphile.

Booker desarrolló un nuevo algoritmo que le permitiera buscar soluciones enteras con números de 16 dígitos de la ecuación diofántica x3 + y3 + z3 = 33. Y, con ayuda de este algoritmo, encontró la buscada solución. Como cuenta el propio Andrew Booker en una entrevista para Numberphile, saltó de alegría en su despacho cuando encontró esa solución.

Y a principios del pasado mes de septiembre (de 2019) Andrew Brooker, junto con el matemático estadounidense Andrew Sutherland del MIT, han conseguido la solución del número que faltaba, el 42. Para ello han tenido que subir el rango de las posibles soluciones x, y, z a números de 17 dígitos. En concreto, el 42 se puede expresar como suma de tres cubos de la siguiente forma

Booker y Sutherland también encontraron algunas soluciones para números menores que 1000, como 165, 795 y 906. De esta forma ha quedado resuelto el problema, hasta los 100 primeros números, aunque hasta 1.000 aún quedan unos pocos… 114, 390, 579, 627, 633, 732, 921 y 975, sobre los que se seguirá trabajando en el diseño de algoritmos que los resuelvan.

Pero, ¡sorpresa! Solo diez días más tarde del anuncio de que habían conseguido resolver el problema de expresar el 42 como suma de tres cubos, Booker y Sutherland volvieron a hacer otro importante anuncio, relacionado con este problema. Por fin, habían encontrado una nueva solución de la ecuación diofántica citada por el matemático británico L. J. Mordell en 1953, x3 + y3 + z3 = 3, más allá de las ya conocidas (1, 1, 1) y (4, 4, – 5). Los números de esta solución no trivial tienen 21 dígitos.

Para resolver estos complicados problemas de computación, asociados a la solución de la ecuación diofántica, los matemáticos Andrew Booker y Andrew Sutherland utilizaron la aplicación Charity Engine, que conecta más de 500.000 ordenadores personales de todo el planeta, creando una red planetaria de ordenadores.

Existen muchos otros problemas que implican la suma de cubos de números, por ejemplo, el problema de ver qué números, en progresión aritmética, verifican que la suma de sus cubos es, de nuevo, un cubo. Por ejemplo, 33 + 43 + 53 = 63 (por cierto, que a este número, 63, se le conoce como el número de Platón) o 113 + 123 + 133 + 143 = 203, pero eso es otra historia que será contada en otra ocasión.

Floating cubes, an essay in superrealism (1962), del artista irlandés Harry Kernoff (1900 – 1974). Imagen de la galería WHYTE’S

 

Bibliografía

1.- University of Bristol: Sum of three cubes for 42 finally solved

2.- Andrew R. Booker, Cracking the problem with 33, Res. Number Theory vol. 5, n. 29, 2019.

3.- John Pavlus, Sum-of-Three-Cubes Problem Solved for “Stubborn” number 33, Quanta Magazine, March, 2019.

4.- J. C. P. Miller y M. F. C. Woollett, Solutions of the Diophantine Equation x3 + y3 + z3 = k, Journal of the London Mathematical Society, vol. 30, pp. 101 – 110, 1955.

5.- L. J. Mordell, On the integer solutions of the equation x2+y2+z2+2xyz = n, Journal London Math. Soc, vol. 28, pp. 500-510, 1953.

6.- Armen Avagyan, Gurgen Dallakyan, A New Method in the Problem of Three Cubes, Universal Journal of Computational Mathematics vol. 5, n. 3, pp. 45-56, 2017.

7.- J. W. S. Cassels, A Note on the Diophantine Equation x3 + y3 + z3 = 3, Mathematics of Computation, vol. 44, n. 169, pp. 265-266, 1985.

8.- University of Bristol: Almost imposible 66-years-old maths puzzle solved

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

Nota del editor: Como es costumbre en España se traduce el nombre del rey o la reina y su correspondiente consorte. También es correcto su título como «rey de Gran Bretaña»; la denominación «Gran Bretaña» para el estado duró desde el 1 de mayo de 1707 al 1 de enero de 1801, momento en el que pasó a ser «Reino Unido de la Gran Bretaña e Irlanda» («…Irlanda del Norte» desde 1927).

El artículo 42, la respuesta definitiva a la vida, el universo y todo lo demás se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. 1 = 0, la prueba definitiva
  2. Cuando todo tu universo es un sólido
  3. El universo en un día: El origen de la vida, por Carlos Briones
Categorías: Zientzia

Páginas