Konposatu kimikoez

Zientzia Kaiera - jeu, 2021/01/21 - 09:00
César Tomé López

XVII. mendean, protokimikariek gai konposatuak izendatzeko erabiltzen zuten “mistura” hitzak ez zituen ia bereizten konbinazio kimikoak eta nahasketa fisikoak. Hala ere, XVIII. mendean zehar bereizketa argi bat hasi zen egiten. Dictionaire de chymie-n (1766), adibidez, Pierre Joseph Macquer kimikariak bereizi egiten zituen, batetik, “konbinazio edo konposizio kimikoa […], zeinean, konbinazioaz gainera, substantzien artean elkarrekiko atxikidura egon behar den”, eta, bestetik, “misturak, hots, nahasketa sinple bat, atalen tartekatze soil bat”.

Georg Ernst Stahl mediku eta kimikariak sortu zuen konposatu-mailen ideia, elementu bakunetatik edo printzipioetatik hasten zena, eta konplexutasun mailari jarraiki, honakoekin jarraitzen zuena: “mixtes, composés, décomposés eta surdécomposés”. Macquerrek nahiago izan zuen izendapen ugaritasun hori saihestu, eta lehen, bigarren, hirugarren eta laugarren mailako composés direlakoez mintzo zen. Gaztelaniazko testuetan, composésen ordainez konposatuak itzultzen zuten (itzulpena egiten zutenean).

konposatuIrudia: Konposatu kimikoa taula periodikoko bi elementu edo gehiagoren konbinazio kimikoak osatzen duen substantzia da eta formula kimiko baten bidez adierazten da. (Argazkia: bdyczewski – erabilera publikoko irudia. Iturria: pixabay.com)

XVIII. mendean, konposatu hitzaren definizioek ez zuten aipatzen konposatuen atalen proportzioak konstanteak izateko beharrik. Hala ere, gauza jakina zen konposatu-mota aztertuena ―gatz neutroak― azido batek eta base batek osatzen zutela, eta hauek proportzio jakinetan nahasi behar zirela “elkar asetzeko” (hau da, tintaroiari kolorea emango ez zion konposatu bat sortzeko).

1754an, Guillaume François de Rouelle kimikariak gatz neutro mota berri bat deskribatu zuen; gatz mota horrek azido gehiegi zuen, kristalak eratzen zituen, eta tintaroia gorri bihurtzen zuen. Mota horretako gatz bat sortzeko beharrezko azido gehigarria proportzio zehatz batean ageri zen ere, gatz neutroa sortzeko behar zen azidoarekiko, eta halaxe ohartarazi zuen Torbern Olof Bergman kimikariak 1775ean, gatz azidoak bere afinitate-taulan sartu zituenean.

Antoine Laurent Lavoisier zientzialarik ahalegin handiak eskaini zizkion zehazteari zein ziren “aire finkatu”an (geroago, azido karbonikoaren gasa; gaur egun, karbono dioxidoa) konbinatutako karbonoaren eta oxigenoaren proportzioak eta ura osatzen zuten “aire sukoi”aren (geroago, hidrogenoa) eta oxigenoaren proportzioak pisuan. Erretzen edo kiskaltzen direnean metalek eta ez-metalek oxigenoa xurgatzen dutela frogatu ondoren, Lavoisierrek haien konbinazio-proportzioak ere zehaztu zituen, eta konturatu zen haietako batzuek lau oxigenatze-maila zituztela. Proportzioak zehazteko ahalegin hori bere kontulari-arrazoibidea abiarazteko egin zuen Lavoisierrek, balantzeetan —materiarenak kasu honetan— oinarritutako arrazoibidea, izan ere.

XVIII. mendearen bukaeran konposatu kimikoen izaeraren gainean zegoen jakintza ez zen behar bezain zehatza proportzioen konstantziaren datu esperimentalak azaltzeko. Claude Louis Berthollet kimikariak zioen 1803an “hipotesi” hutsa zela konposatuak proportzio zehatzetan ageri ziren osagaiek osatzen zituztela, eta ideia horren abiapuntua disoluzioen eta konbinazioen arteko –oinarri gutxiko– bereizketa zela. Bertholleten ustez, substantziek kimikoki eragiten zuten beste substantzia batzuengan beren masa eta afinitateekiko indar proportzionalaz. Disoluzioan, partikulak edozein proportziotan konbinatuko lirateke. Hala ere, proportzio jakin batek lurrunkortasun edo kohesio maximoa zuen konbinazio bat sortzen baldin bazuen, delako konbinazioa banandu egingo zen proportzio horrexek ezaugarritutako substantzia gisa. Gasek “beste konbinazio batzuek baino proportzio uniformeagoak” agertuko zituzten, beren osagaiak konbinatzean uzkurdura handiagoa jasaten dutelako. Horrela, Berthollet izan zen lehena konbinazio kimikoaren teoria orokor batetik eratorritako azalpenak ekartzen, logika apur bat ematen zietenak “konbinazio jakin batzuen proportzio finkoak zehazten dituzten antolaera eta egoerei”. Baina, hori egitean, orobat adierazi zuen proportzioak baldintza berezien ondorio zirela; eta baldintza horiek “eten” egiten zuten substantzia batek beste baten gainean zuen akzio kimiko arrunta.

Eztabaida historiko batean ―bi aldeen gizalegeagatik eta lehiaren mailagatik ospetsua, baita aztergaien garrantziagatik ere―, Joseph Louis Proust kimikariak zalantzan jarri zuen bai Bertholleten ikuskera orokorra, bai bere baieztapenak funtsatzeko erabilitako oinarri esperimentala; oinarri horren arabera, hainbat gatz eta oxido proportzioen maila jarraitu batean osatu daitezke. Proustek oinarrizko bereizketa bat egin zuen: batetik, disoluzioak, aleazioak eta beirak, eta bestetik, “benetako konposatuak”. Konposatu bat, esan zuen, “naturak proportzio finkoak ematen dizkion produktu pribilegiatua da […] Benetako konposatuen ezaugarriak beren elementuen arrazoiak bezain finkoak dira”. Nahiz eta konposatu kimikoen proportzio finkoen aldeko froga esperimentalen sorta handia eman zuen ―baita zalantzazko kasuetarako ere― Proust ez zen gai izan benetako konposatuaren definizio zehatz bat emateko, disoluzio batetik edo proportzio aldakorreko beste substantzia homogeneoetatik ezberdintzeko.

Pisu erlatiboak identifikatzean elementuak definitzeko propietate gisa, John Dalton zientzialariak “konbinazio-pisu”en esanahia eraldatu zuen. Haien zehaztapena jada ez zen xedea berez, baizik eta honakoa bilatzeko bidea: “partikula konposatu bat osatzen duten partikula elemental sinpleen kopurua, eta partikula konposatuago baten sorreran sartzen diren partikula ez hain konposatuen kopurua”. Gai konposatuak atomoen zenbaki oso eta txikiek osatzen dituztelako doktrinak funtsezko bihurtu zituen haien proportzio zehatzak bere definizioan, eta ez esperientzia analitikoaren emaitza.

Ezaguera kimikoaren bilakaerak ―bereziki mineral, kristal eta organismo bizien konposizio zehaztuaren ezaguerak― bertolidoetatik bereizteko daltonido deitutako konposatu-multzo oso zehatz batera mugatu zuen Daltonen definizioa. Gaur egun, IUPACek (Gold Book, 2.3.3, 24/02/2014 bertsioa), ezaguera hori guztia egokitze aldera, substantzia kimikoaren —konposatuaren— definizioan ez ditu proportzioak aipatzen; konposizio konstantedun materia aipatzen du, osatzen duten atalek ezaugarritua (atomoak, molekulak, unitate-formula), eta ezaugarri fisiko zehatzengatik identifika daitekeena (dentsitatea, errefrakzio-indizea, urtze- eta irakite-puntuak, etab.).

Egileaz:

Cesár Tomé López (@EDocet) zientzia dibulgatzailea da eta Mapping Ignorance eta Cuaderno de Cultura Cientifica blogen editorea.

Itzulpena:

Leire Martinez de Marigorta

Hizkuntza-begiralea:

Xabier Bilbao

The post Konposatu kimikoez appeared first on Zientzia Kaiera.

Catégories: Zientzia

El cifrado de Gronsfeld en “La Jangada”

Cuaderno de Cultura Científica - mer, 2021/01/20 - 11:59

 

La Jangada. Ochocientas leguas por el Amazonas es una novela de aventuras y suspense de Jules Verne. La escribió por entregas en la revista Magasin d’éducation et de récréation entre el 1 de enero y el 1 de diciembre de 1881. Posteriormente fue publicada en formato de libro en dos partes, una primera describiendo un viaje por el Amazonas, y la segunda centrada en el proceso de resolución de un criptograma.

Portada de La Jangada (Léon Benett). Fuente: Wikimedia Commons.

 

Resumen de La Jangada

Estamos en 1852. Joam Garral es un hombre de origen brasileño y propietario de una próspera hacienda en Iquitos (Perú). Es padre de Benito, de 21 años, y Minha, de 17. La hija va a casarse con el mejor amigo de Benito, el médico brasileño Manuel Valdez. Para ello, la familia debe viajar a Belém (Brasil). Garral decide transportar al séquito de familiares y criados a bordo de una enorme jangada, una balsa de grandes dimensiones que navega hacia el litoral atlántico de Brasil a través del río Amazonas. Deben recorrer ochocientas leguas a lo largo del río para celebrar el matrimonio.

Mapa fluvial del Amazonas, marcadas Iquitos, Manaos y Belém. Fuente: Wikimedia Commons.

 

Garral esconde un terrible secreto: es un prófugo de la justicia brasileña. Muchos años antes había sido falsamente acusado de robo y asesinato. Debió huir de Brasil para evitar un castigo injusto: la condena a muerte por un delito que no había cometido. Al llegar a Manaos, Torres, un siniestro personaje, chantajea a Garral: no le delatará a cambio de casarse con Minha. Garral no accede a someterse a Torres, es detenido por la justicia y condenado a muerte. Torres posee un documento cifrado con la confesión del verdadero asesino. El objetivo de los familiares y amigos de Garral es recuperar ese manuscrito y lograr descifrarlo antes de que se cumpla la sentencia.

El cifrado de Gronsfeld

En un cifrado por sustitución simple cada carácter del texto original se sustituye por otro elegido en el escrito codificado. Además, se dice que es polialfabético cuando cada símbolo no se reemplaza siempre por el mismo carácter. En este sistema de cifrado, distintos alfabetos y diferentes métodos pueden ser utilizados para realizar en encriptado.

El cifrado de Gronsfeld es un cifrado polialfabético que utiliza una clave numérica para codificar y decodificar. Para explicar cómo funciona vamos a ver un ejemplo. Fijemos en primer lugar el alfabeto original de 26 letras con el que vamos a trabajar:

ABCDEFGHIJKLMNOPQRSTUVWXYZ.

Supongamos que el mensaje que queremos enviar es:

CÁTEDRA DE CULTURA CIENTÍFICA,

con la clave 12345.

El mensaje encriptado sería:

DCWIISC GI HVNWYWB ELISUKIMHB

¿Cómo se obtiene? Bajo el texto a encriptar se coloca la clave (un dígito por cada letra), repetida tantas veces como haga falta. Para obtener el mensaje encriptado, cada letra original se reemplaza por la que corresponde al desplazarse (hacia la derecha) en el alfabeto tantas posiciones como indica el dígito bajo esa letra:

Cifrado del mensaje a enviar

 

Es decir, como se indica en la tabla, C+1=D, A+2=C, T+3=W, etc.

Para descifrar el mensaje, se realiza el proceso inverso. Es decir, dado el mensaje codificado, cada letra se reemplaza por la que corresponde al desplazarse (hacia la izquierda) en el alfabeto tantas posiciones como el dígito bajo esa letra:

Por ejemplo, D-1=C, C-2=A, W-3=T, etc.

Observar que, con este método y la misma clave, el mensaje WWWWW se encriptaría como XYZAB, ya que: W+1=X, W+2=Y, W+3=Z, W+4=A (volveríamos a comenzar el alfabeto) y W+5=B.

El criptograma de La Jangada

La novela de Verne comienza con el siguiente mensaje cifrado:

Phyjslyddqfdzxgasgzzqqehxgkfndrxujugiocytdxvksbxhhuypo
hdvyrymhuhpuydkjoxphetozsletnpmvffovpdpajxhyynojyggayme
qynfuqlnmvlyfgsuzmqiztlbqgyugsqeubvnrcredgruzblrmxyuhqhp
zdrrgcrohepqxufivvrplphonthvddqfhqsntzhhhnfepmqkyuuexktog
zgkyuumfvijdqdpzjqsykrplxhxqrymvklohhhotozvdksppsuvjhd.

Se trata del último párrafo de un texto en clave de cien líneas (que no se incluye en el texto) que esconde la confesión de un hombre llamado Ortega, el verdadero autor del delito del que se acusaba a Garral.

Cuando Joam Garral es apresado en Manaos, el juez Jarríquez, encargado de su defensa, intenta descifrar el contenido del mensaje por diferentes métodos. Jarríquez alude a El escarabajo de oro de Edgard Allan Poe como sistema en el que se basa para intentar encontrar la clave. Pero sus intentos son infructuosos. Casi en el último momento, un nombre le llega, el de «Ortega», como posible firmante del mensaje en clave. Gracias a ese descubrimiento, el juez consigue encontrar la clave: si SUVJHD (última parte del mensaje cifrado) corresponde a ORTEGA, la clave debe ser «432513». Y utiliza el método Gronsfeld (aunque sin nombrarlo, tan solo lo describe) para descifrar el mensaje escondido. En este caso, el alfabeto empleado es (elimina la letra W):

ABCDEFGHIJKLMNOPQRSTUVWXYZ.

Primeras palabras del mensaje descifradas

 

La última parte del mensaje dice:

Le véritable auteur du vol des diamants et de l’assassinat des soldats qui escortaient le convoi, commis dans la nuit du vingt-deux janvier mil huit cent vingt-six, n’est donc pas Joam Dacosta, injustement condamné à mort; c’est moi, le misérable employé de l’administration du district diamantin; oui, moi seul, qui signe de mon vrai nom, Ortega.

[El verdadero autor del robo de los diamantes y del asesinato de los soldados que escoltaban el convoy, cometido la noche del 22 de enero de mil ochocientos veintiséis, no es pues Joam Dacosta, injustamente condenado a muerte; soy yo, el miserable empleado de la Administración del Distrito de Diamantes; sí, solo yo, que firma con mi nombre real, Ortega].

Gracias al descubrimiento, Garral (cuyo verdadero apellido era Dacosta) se libra de la horca, y la historia termina con final feliz.

Nota final

En el artículo de Frederick Gass indicado en las referencias, el matemático explica de qué manera enfoca Verne este problema y la manera en la que él mismo lo solucionaría utilizando métodos criptográficos. Y finaliza su texto con la siguiente frase:

By virtue of this solution, Jules Verne is credited with the first published exposition of the probable word method for Gronsfeld ciphers.

[En virtud de esta solución, se atribuye a Jules Verne la primera exposición publicada del método de la palabra probable para los cifrados de Gronsfeld].

En la página DCode.fr puede realizarse de manera automática cualquier codificación/decodificación por el método Gronsfeld, usando el alfabeto y las claves que se deseen. El criptograma contenido en La Jangada es, efectivamente, el indicado en el texto de Verne:

Comprobando el mensaje cifrado de La Jangada. Captura de pantalla en DCode.fr.

 

Referencias

Jules Verne, La jangada. Huit cents lieues sur l’Amazone, Project Gutenberg

Another first, Futility Closet, 18 noviembre 2020

Frederick Gass, Solving a Jules Verne Cryptogram, Mathematics Magazine 59:1 (1986), 3-1

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo El cifrado de Gronsfeld en “La Jangada” se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Criptografía con matrices, el cifrado de Hill
  2. Transmisión de voz con cifrado cuántico a larga distancia
  3. Un cifrado por sustitución: la ‘nictografía’
Catégories: Zientzia

Ugaztun primitiboen gene-bitxikeriak

Zientzia Kaiera - mer, 2021/01/20 - 09:00
Koldo Garcia

Animalia bitxitzat jotzen dugu: ahatearena du mokoa, kastorearena buztana eta igarabarenarena hankak. Pozoitsua da eta, ugaztuna bada ere, arrautzak erruten ditu. Australiako ekialdean eta Tasmaniako irlan bizi da. Ornitorrinkoa da.

Bizirik jarraitzen duen ugaztun primitiboen ordezkaria da ekidnekin batera; biak dira monotrema taldearen ordezkariak, hain zuzen ere. Ekidnak Australian eta Ginea Berrian aurki daitezke eta haiek ere erruleak dira. Ugaztun hauen bitxikeriak beren gene-materialean ere aurki daitezke. Ornitorrinko eme baten genoma sekuentziatuta bazegoen ere, sekuentzien %25 bakarrik zegoen kromosometan kokatuta; nolabait, gene-puzzlea bukatu gabe zegoen.

Gene-sekuentzien kromosoma-kokapena zehazteko lan berri batean ornitorrinko ar baten genoma sekuentziatu dute hainbat teknika erabilita. Gainera, ekidna ar baten genoma ere sekuentziatu dute, modu hain sakonean ez bada ere. Horrela, monotremen inguruko zehaztasunak lortu nahi izan dituzte, bai gainontzeko ugaztunekin erkatzeko, bai monotremen arteko ezberdintasunak aztertzeko. Zeren, ugaztun-talde primitibo bereko kideak badira ere, ornitorrinkoek eta ekidnek moldaketa ezberdinak dituzte: ornitorrinkoak karniboroak dira eta elektroerrezepzioa erabiltzen dute orientaziorako; ekidnak, aldiz, intsektiboroak dira eta usaimena erabiltzen dute.

ugaztun ornitorrinkoa1. irudia: Ornitorrinkoa. (Argazkia: Christine Ferdinand – CC BY-SA 4.0 lizentziapean. Iturria: Wikimedia)

Sekuentziazio berri horri esker posible izan da ornitorrinkoen genomaren %98 kromosometan kokatzea. Hala, ikertzaileek ikusi dute monotremen genomaren sekuentziaren ia erdia gene-osagai mugikorrek osatzen dutela, ornodunetan ohikoa den gertaera, hain zuzen ere; eta gene-osagai mugikor horiek narrastien genometan agertzen direnen antzekoak direla, ez ugaztunetan agertzen direnen antzekoak. Gainera, ornitorrinkoaren genoman 20.742 gene aurkitu dituzte eta ekidnan 22.029 gene.

Genoma-sekuentziak erkatuta, ikertzaileek ondorioztatu zuten orain dela 187 milioi urte banandu zirela monotremak gainontzeko ugaztunetatik; eta orain dela 55 milioi urte banandu zirela ornitorrinkoak eta ekidnak . Gainera, ikertzaileek ondorioztatu zuten bi ugaztun primitibo hauen eboluzio-tasa –hau da, izan duten mutazio-kopurua– gainontzeko ugaztunen eboluzio-tasaren parekoa zela. Era berean, ikusi zuten bazeudela ugaztunetan kontserbatuta dauden gene-sekuentziak. Sekuentzia horietan kokatzen dira garunaren garapenean parte hartzen duten gene-osagaiak. Azkenik, gizakiaren, Didelphidae martsupialaren, Tasmaniako deabruaren, ornitorrinkoaren, oiloaren eta sugandilaren kromosomak erkatu zituzten ondorioztatzeko zeintzuk ziren ugaztunen jatorrizko kromosomak. Horrela, ikusi zuten ugaztunen arbaso komunak 30 kromosoma bikote zituela; eta aztertutako ugaztunetan 918 kromosomen berrantolaketa-gertaera egon zirela. Horretaz gain, ikusi zuten ugaztunen arbaso komunean erantzun immunean eta ilearen hazkundean parte hartzen duten gene-familien hedapena egon dela. Ikertzaileek ikusi zuten, gainera, ornitorrinkoaren genoman erantzun immunean parte hartzen duten geneen antolaketa ugaztunak ez diren ornodunen antzeko antolaketa dela; eta ornitorrinkoen pozoiaren jatorria defensinak deitutako gene-familia dela.

2. irudia: Ekidna. (Argazkia: gabecollett – CC BY-SA 4.0 lizentziapean. Iturria: Wikimedia)

Monotremen gene-ezaugarri oso bitxi bat da sexu-kromosoma bat baino gehiago dutela, gainontzeko ugaztunek bikote bakarra duten bitartean. Sekuentziazio berri horri esker lortu da ornitorrinkoaren bost sexu-kromosoma bikoteen sekuentziak osatzea. Hala, ikertzaileak gai izan dira sexu-kromosoma horien jatorria eta ezaugarriak aztertzeko. Ikertzaileek ondorioztatu zuten monotromen sexu-kromosomak sortu zirela hegaztien eta ugaztunen sexu-kromosomak sortu ziren antzerako gene-mekanismoen bidez; eta sortu zirela ugaztunen aitzindari komunak zituen kromosomen arteko berrantolaketen bidez. Beste berezitasun bat ere badute monotromen sexu-kromosomek: bata besteari lotzen zaizkiola kate antzeko bat eratuta. Gainera, ikertzaileek ondorioztatu zuten sexua ezartzen duen AMH genea kokatzen den gene-eskualdetik hasi zela sortzen ornitorrinkoen sexu-kromosomen antolaketa berezi hori. Aipatutako kromosomen arteko ez-ohiko lotura hori ikusteaz gain, ikertzaileek ornitorrinkoaren sexu-kromosomen arteko elkarrekintzak ikusi zituzten. Gainontzeko kromosomek elkarrekintzak bakarrik beren buruarekin zituzten bitartean, sexu-kromosoma ezberdinetan kokatzen diren gene-osagaien arteko elkarrekintzak detektatu zituzten.

Dietan parte hartzen duten geneei dagokiela, monotremen aitzindariak hortzak bazituen ere, ornitorrinkoek eta ekidnek ez dute hortzik. Izan ere, hortzen garapenean zerikusia duten hainbat gene galdu dituzte bi espezie hauek, hortzak ez dituzten beste ugaztun batzuetan gertatu den bezala. Gainera, bi espezie hauek digestioan parte hartzen duten gene asko galdu dituzte, urdailaren eta arearen garapenean behar-beharrezkoa den gene bat gorde badute ere. Usaimenari dagokiola, ekidnetan usaimen-erraboilaren garapena handiagoa da ornitorrinkoetan baino. Horrek bere isla du genoman: usainen pertzepzioan parte hartzen duten geneen kopurua bikoitza da ekidnetan.

ugaztun ornitorrinkoa3. irudia: Ornitorrinkoa. (Argazkia: Dr. Philip Bethge – CC BY-SA 4.0 lizentziapean. Iturria: Wikimedia)

Monotremen ezaugarri deigarriena, ugaztunak izanda, arrautzak erruten dituztela da. Hortaz, beren genoma baliagarria izan daiteke obiparotzatik –arrautzak errutetik– bibiparotzarako –enbrioia umetokian gelditzerako– trantsizioa ikertzeko. Egia esateko, monotremen kasuan, arrautzek proteina asko izateak ez du garrantzi handirik, enbrioiek nutrienteak lortzen dituztelako uteroko sekrezioetatik eta kumeek edoskitzean zehar. Izan ere, martsupialetan gertatzen den bezala, monotremek edoskitze luzea dute eta esnearen osagaiak aldatzen doaz kumearen beharrak asetzeko. Hala, prozesu horiek isla dute gene-osagaietan: arrautzen proteina-kopuruan parte hartzen duen gene-kopurua narrastietan baino txikiagoa da; eta monotremen genometan aurkitu egin dira gainontzeko ugaztunetan esnearen sorreran parte hartzen duten gene gehienak.

Laburbilduz, ornitorrinkoen eta ekidnen bitxikeriak ez dira soilik mugatzen beren itxurara edota portaerara, beren gene-materialean ere badaude: sexu-kromosomen banaketa berezia dute eta haien genometan narrasti, hegazti eta ugaztunen genomek dituzten ezaugarriak aurki daitezke. Gainera, ugaztun primitibo hauek ikertzeak abagunea eman du ugaztunen eboluzioa sakonago aztertzeko. Espero ez izatekoa bada ere, arrarotasunean gene-arrasto baliagarriak aurki daitezke.

Erreferentzia bibliografikoa:

Zhou, Y., Shearwin-Whyatt, L., Li, J. et al. (2021). Platypus and echidna genomes reveal mammalian biology and evolution. Nature. DOI:https://doi.org/10.1038/s41586-020-03039-0

Egileaz:

Koldo Garcia (@koldotxu) Biodonostia OIIko ikertzailea da. Biologian lizentziatua eta genetikan doktorea da eta Edonola gunean genetika eta genomika jorratzen ditu.

The post Ugaztun primitiboen gene-bitxikeriak appeared first on Zientzia Kaiera.

Catégories: Zientzia

Energía de enlace nuclear y estabilidad

Cuaderno de Cultura Científica - mar, 2021/01/19 - 11:59
Foto:  Science in HD /Unsplash

El cálculo de la energía de enlace nuclear realizado para el deuterón puede extenderse a todas las demás especies nucleares. La gráfica 1 muestra cómo la energía de enlace nuclear total para nucleidos estables aumenta con el aumento de la masa atómica, a medida que se agregan más partículas para formar el núcleo. El término nucleones se refiere tanto a protones como a neutrones; por lo tanto, la energía de enlace del núcleo aumenta con el número de nucleones. Pero, como puede apreciarse, el resultado no es una línea recta.

Gráfica 1. Fuente: Cassidy Physics Library

Estos datos experimentales tienen implicaciones importantes. Estas implicaciones se hacen más evidentes si se calcula la energía de enlace promedio por nucleón. En el caso del carbono-12, por ejemplo, la energía de enlace total es 92,1 MeV. Dado que hay 12 nucleones dentro del núcleo (seis protones y seis neutrones), la energía de enlace promedio por nucleón es 92,1 MeV / 12, esto es, 7,68 MeV. En la gráfica 2 los valores obtenidos experimentalmente de la energía de enlace promedio por nucleón (en MeV) se representan frente al número de nucleones en el núcleo (número de masa, A). Fijémonos en la posición inusualmente alta (por encima de la curva) del punto cerca de los 7,1 MeV, en comparación con sus vecinos en la tabla periódica. El punto corresponde al helio-4. El valor relativamente alto de la energía de enlace de este núcleo indica una estabilidad inusualmente alta.

Gráfica 2. Fuente: Wikimedia Commons

La importancia de esta gráfica está en su forma sorprendente. La energía de enlace por nucleón comienza con un valor bajo para el núcleo de deuterio (el primer punto) y luego aumenta rápidamente. Algunos núcleos en la parte inicial de la curva, por ejemplo, helio-4, carbono-12 y oxígeno-16, tienen valores excepcionalmente altos en comparación con sus vecinos. Esto indica que se tendría que suministrar más energía para eliminar un nucleón de uno de estos núcleos que de uno de sus vecinos. Recordemos: una alta energía de enlace por nucleón significa que se necesita una gran cantidad de energía para separar el núcleo en sus nucleones constituyentes. En cierto sentido, la «energía de enlace» podría haberse llamado mejor «energía de desintegración».

La alta energía de enlace por nucleón de helio-4 en comparación con el deuterio implica que, si dos núcleos de deuterio se unieran para formar un núcleo de helio-4, habría una gran cantidad de energía en exceso disponible, que se emitiría al entorno. Este exceso de energía es la fuente de las enormes energías disponibles en las reacciones de fusión o termonucleares.

Dado que tienen energías de enlace nuclear tan altas, es de esperar que helio-4, carbono-12 y oxígeno-16 sean excepcionalmente estables. Existe evidencia a favor de esta conclusión, por ejemplo, el hecho de que las cuatro partículas que componen el núcleo helio-4 se emiten como una sola unidad, la partícula alfa, en la radiactividad.

La curva de energía de enlace nuclear por nucleón obtenida experimentalmente tiene un máximo amplio, que se extiende desde aproximadamente A = 50 a A = 90. Luego desciende para los elementos pesados. Así, el cobre-63, que está cerca del máximo, tienen una energía de enlace por nucleón de aproximadamente 8,75 MeV, mientras que uranio-235, con uno de los valores de A más altos, tiene un valor de 7,61 MeV. Esto indica que a medida que se agregan más nucleones a los núcleos más pesados, la energía de unión por nucleón disminuye. De ello se deduce que los núcleos próximos al máximo de la curva, como los del cobre, deberían ser más difíciles de romper que los núcleos más pesados, como el radio y el uranio.

También se deduce que cuando el uranio y otros núcleos de alto valor de A se rompen de alguna manera, sus fragmentos son núcleos más pequeños que poseen una mayor energía de enlace por nucleón. Si nos fijamos, en estos casos, nos encontramos nuevamente con un exceso de energía debido a la diferencia de energía entre el núcleo de partida y sus fragmentos, energía que se emite al entorno en forma de energía cinética de los fragmentos y de radiación gamma. Este proceso, de enorme importancia histórica, que implica la división de los núcleos más pesados en núcleos más ligeros, se conoce como fisión nuclear. El exceso de energía disponible durante la fisión es la fuente de las enormes energías liberadas en las reacciones de fisión nuclear.

La forma de la curva de energía de enlace nuclear promedio, que cae en ambos extremos, indica, por lo tanto, que existen dos procesos generales de reacción mediante los cuales se puede esperar liberar energía de los núcleos:

(1) combinar núcleos ligeros en un núcleo más masivo, conocido como fusión nuclear; o

(2) dividir núcleos pesados en núcleos de masa media, que se llama fisión nuclear.

En cualquiera de estos dos procesos los productos resultantes tendrían una mayor energía de enlace media por nucleón, por lo que se liberaría energía. Se ha demostrado que se producen tanto la fusión como la fisión, y la tecnología de la fisión se ha simplificado y explotado en muchos países. Las reacciones de fisión pueden realizarse lentamente (como en una central nuclear) o muy rápidamente (como en una explosión nuclear).

La idea de la energía de enlace nuclear debería aclarar ahora por qué las masas atómicas, cuando se miden con precisión, no son exactamente múltiplos enteros de la masa de un átomo de hidrógeno, a pesar de que los núcleos son solo conjuntos de protones y neutrones idénticos. Cuando esas partículas se combinaron para formar un núcleo, su masa en reposo total se redujo en una cantidad correspondiente a la energía de enlace, y la energía de enlace promedio varía de un nucleido a otro.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Energía de enlace nuclear y estabilidad se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La energía de enlace nuclear
  2. El problema de la estructura nuclear
  3. La hipótesis protón-electrón de la composición nuclear
Catégories: Zientzia

Saihestu, ahal baduzu, aulkia eta sofa

Zientzia Kaiera - mar, 2021/01/19 - 09:00
Juan Ignacio Pérez Iglesias

Jarduera fisikorik ezak ondorio kaltegarriak ditu osasunean, kutsakorrak ez diren zenbait gaixotasun izateko arriskua areagotzen duelako. Gaixotasun kardiobaskularrak, 2. motako diabetesa eta zenbait motatako minbiziak izateko probabilitatea handiagoa da jarduera fisikorik egiten ez duten pertsonen artean. Jarduera fisikorik eza, beraz, heriotza goiztiar batzuen eragilea da; hori modu esanguratsuan murriztuko balitz, bizi-itxaropena zortzi hilabete igoko litzateke, batez beste, gizateria osoarentzat.

Aurreko paragrafoan esandakoa aski jakina da honezkero. Agian ezezagunagoa da gimnasiora joaten direnen edo egunero tarte batez korrika aritzen direnen artean ere ondorio kaltegarriak dituela jarduera fisikorik ezak. Eta ez, bi esaldi horiek ez dira kontraesanezkoak. Jarduera fisikoak ondorio osasungarriak ditu, jakina. Baina egiten duenak bere denboraren zatirik handiena sofan etzanda edo ordenagailuko pantailaren aurrean eserita ematen badu, eragin onuragarriak murriztu egiten dira.

sofaIrudia: Gure gorputzak aldatu egin dira denboran zehar atsedena hartu ahal izateko, baina aulkian eserita eta sofa batean botata egoteak kalteak eragin ditzakegu epe luzean. (Argazkia:  Wokandapix – erabilera publikoko irudia. Iturria: pixabay.com)

Dena den, jarduera fisikoak osasungarria izaten jarraitzen du, baita oso gomendagarria ere, mugimendu gutxiko bizimodua baldin badugu. Zozketaren metafora erabiliz: zenbat eta txartel gehiago erosi, orduan eta handiagoa da tokatzeko probabilitatea. Eserita denbora laburra emanez gero, egoera osasungarrian egoteko txartelak erosiko ditugu; kirolen bat edo jarduera fisikoren bat maiz eginez gero ere bai. Txartel ezberdinak dira. Zenbat eta gehiago erosi, orduan eta handiagoa da osasun ona egokitzeko probabilitatea eta alderantziz.

Entzima lipoproteinlipasak funtsezko rola jokatzen du zozketa horretan. Odol kapilarren barruan dago –argian–, endoteliora erantsita, hau da, hodiak estaltzen dituen zelula geruzara. Odolean zirkulatzen duten dentsitate baxu-baxuko eta oso baxuko lipoproteinen triglizeridoen gainean eragiten du eta molekula bihurtzen ditu. Horiek, halaber, zelula muskularretan sartzen ditu, bere metabolismorako, baita adiposoetan ere, metatzeko.

Egonean egotea osasunerako kaltegarria da, muskuluak ez mugitzeak lipoproteinlipasaren mailak murriztea eragiten duelako, eta, hala, zelula muskularretan sartu behar zuten molekulak odolean geratzen dira. Ondorioz, triglizeridoak kontzentrazio handia izatera eta arazoak sortzera irits daitezke.

Gogora dezagun, amaitzeko, mundu guztiak ez duela bizitza erdia pantailaren aurrean ematen. Are gehiago, batzuek ez daukate aulkirik. Duke Unibertsitateko (AEB) Herman Pontzerrek hadzen metabolismoa aztertu du, hots, ehiztari eta biltzaile afrikar talde batena. Ez daukate ez aulkirik, ez antzeko ezer, baina lo egiteaz gain, atseden hartzen dute; egunean hamar bat orduko atsedenaldia egiten dute, Mendebaldeko herrialdeetan eserita ematen ditugun orduen adinakoa. Eta, hala ere, hadzek ez dute triglizerido maila alturik odolean. Pontzerren arabera, atseden hartzeko moduan datza gakoa, orpoen gainean kukubilko edo belauniko, orekari eusteko nolabaiteko aktibitate muskularra eskatzen duten jarreretan. Badirudi ezberdintasun «txiki» hori nahikoa dela arazoak saihesteko. Baina haiek imitatzeko asmotan bazaude, hobe ez saiatzea: haurtzarotik egiten ez bada, ez da erraza eta, azkenean, lesio bat izan dezakezu.

Beraz, saihestu, ahal baduzu, aulkia eta sofa, baina, zure lanaren edo beste edozein arrazoiren eraginez ordu asko eman behar badituzu eserita, gutxi gorabehera hogei minutuan behin altxatzea eta berriz eseri aurretik pare bat minutuz mugitzea komeni da. Eta, horrez gain, egunero ordutxo bat  ematen baduzu jarduera fisiko moderatua egiten, hainbat txartel erosiko dituzu bizitza osasungarria izateko.

Erreferentzia bibliografikoak: Lee, I.M., Shiroma, E.J., Lobelo, F., Puska, P., Blair, S.N., Katzmarzyk, P.T. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet, 380 (9838), 219-29. doi: 10.1016/S0140-6736(12)61031-9.

Pontzer, H.,  Raichlen, D. (2020). How changing the way you sit could add years to your life. New Scientist, 3291.

Egileaz:

Juan Ignacio Pérez Iglesias (@Uhandrea) UPV/EHUko Fisiologiako katedraduna da eta Kultura Zientifikoko Katedraren arduraduna.

The post Saihestu, ahal baduzu, aulkia eta sofa appeared first on Zientzia Kaiera.

Catégories: Zientzia

¿Se agotará la ciencia algún día?

Cuaderno de Cultura Científica - lun, 2021/01/18 - 11:59

Antonio Diéguez Lucena

Shutterstock / Tithi Luadthong

La rapidez asombrosa con la que los científicos están consiguiendo vacunas efectivas contra la covid-19 es un hito histórico que está siendo señalado como prueba fehaciente de la efectividad de la ciencia y de la tecnología apoyada en ella. Es difícil encontrar un ejemplo más claro en el presente. No obstante, desde hace un tiempo hay voces que anuncian que la ciencia está agotándose debido precisamente a su éxito. Es decir, está alcanzando los límites de lo científicamente cognoscible. Ven señales de ello en una cierta ralentización del progreso teórico en las últimas décadas. Pero, ¿es ajustada a la realidad esa percepción?

La idea de que el progreso científico se está deteniendo –o llegando a su fin– se ha repetido en la física al menos desde finales del XIX, unos años antes de que se produjera la gran revolución de la teoría de la relatividad y la teoría cuántica. Se ha vuelto a defender en otras ocasiones a lo largo del siglo XX, extendiéndose a otras ciencias.

Cuando hablamos de progreso científico habría que empezar por aclarar de qué hablamos exactamente. No es lo mismo el progreso en el sentido de logro de teorías con mayor capacidad explicativa que el progreso en el sentido de aumento del alcance y la exactitud de las predicciones. No es lo mismo el progreso hacia una mayor simplicidad y unificación que el progreso hacia una mayor efectividad y utilidad. No es lo mismo el progreso hacia unos métodos más estrictos de contrastación que el progreso hacia una mejor comprensión de la naturaleza o hacia teorías más verosímiles.

La ciencia puede estar realizando en un momento dado grandes progresos en un sentido, pero no en otros. No es fácil decidir qué sentido de progreso científico consideramos más importante, y eso puede sesgar nuestra visión del mismo. Es muy posible que en la actualidad se le conceda menos importancia al progreso conceptual y en los contenidos teóricos que al éxito práctico proporcionado, sobre todo, por la ciencia aplicada y la tecnología.

Ese éxito tecnológico, el más perceptible para todos, se ha llegado a convertir en el referente casi único del progreso científico, y llega a juzgarse a toda la ciencia en función del aporte que se realiza al mismo desde disciplinas y enfoques diversos. En todo caso, hay que tener en cuenta que los historiadores y filósofos de la ciencia hace tiempo que descartaron una imagen puramente acumulativista del progreso científico, en la que nunca se producirían pérdidas explicativas.

Sin embargo, aunque el número de científicos en activo y de publicaciones científicas sigue creciendo y los avances tecnológicos nos sorprenden cada día, hace un tiempo que Stephen Hawking y, sobre todo, el periodista y divulgador John Horgan, en su libro de 1996 The End of Science, mantuvieron que la ciencia está alcanzando sus límites de progreso. Al menos, en el sentido de que no producirán nuevas revoluciones científicas.

Horgan parece concebir el progreso científico como una carrera hacia unos límites prefijados y bien definidos, que tarde o temprano terminarán por alcanzarse. Pero es muy posible que se parezca más a la exploración cada vez más detallada de una imagen fractal, en la que un nivel de análisis revela niveles superiores de complejidad en una mayor cuantía. Niveles que, no por ser más refinados y detallados, tienen necesariamente menor importancia teórica y práctica.

No conviene olvidar que, en ocasiones, el avance en los conocimientos se produce por la mera reducción (conexión) de los niveles superiores de complejidad con los inferiores. Si tienen razón los que creen que la respuesta a una pregunta abre siempre el abanico de nuevas preguntas por contestar, el progreso podría consistir justamente, como recoge Nicholas Rescher en su libro Los límites de la ciencia, en la disminución de la proporción de preguntas contestadas. O, lo que es igual, en el aumento de la ignorancia percibida. No se puede nunca descartar que, para contestar a las nuevas preguntas, deban formularse teorías que revolucionen un campo.

Unsplash/Andrew George, CC BY

¿Qué pasa en otras disciplinas?

Habría también que analizar la cuestión considerando lo que sucede en disciplinas diferentes. Puede que unas estén en una fase de ralentización, como quizás está ahora la física teórica, debido a limitaciones metodológicas, conceptuales, tecnológicas y económicas, tales como las que imposibilitan por el momento someter a contrastación empírica la teoría de cuerdas. No olvidemos que lo que la física puede estudiar hoy, la materia ordinaria, es solo el 5 % del universo –el resto es materia oscura y energía oscura–, según establece la propia física.

Otras disciplinas (como la genética, las neurociencias y la inteligencia artificial) pueden estar en una fase de expansión. E incluso surgen nuevas disciplinas o especialidades, como la biología sintética. El progreso lleva diferentes ritmos en diferentes especialidades. Por usar un ejemplo que Horgan cita, es ciertamente difícil encontrar en la biología evolutiva algo nuevo de la importancia de la selección natural, pero en la actualidad se están produciendo grandes avances teóricos y prácticos gracias al descubrimiento de mecanismos adicionales que han tenido un papel fundamental en la evolución, y especialmente en la aparición de las novedades evolutivas. Por otro lado, frecuentemente los progresos en una disciplina aceleran los progresos en otras. Así, nuevos avances en la matemática podrían reactivar los progresos en física.

¿Se nos terminará la ciencia?

Esto no significa que no quepa pensar a muy largo plazo, como posibilidad teórica, en el agotamiento de la ciencia. Algunos han sostenido que el fin de la ciencia vendrá porque llegará el momento en que ya no tengamos preguntas importantes que contestar, pero podría ser al revés.

Podría ocurrir que siguiera habiendo progreso en la formulación de preguntas cada vez mejores, pero que no fuéramos capaces de contestarlas debido a su complejidad. Al fin y al cabo, la mente humana es un producto evolutivo limitado en sus capacidades. También podría suceder que la contrastación de algunas hipótesis fuera demasiado costosa o estuviera definitivamente más allá de nuestras posibilidades tecnológicas.

Los límites de la ciencia serían en este caso límites humanos. A no ser, claro está, que en el futuro la ciencia la hicieran máquinas superinteligentes capaces de disponer de todos los recursos del universo, pero incluso esas máquinas tendrían también sus límites físicos y computacionales.

En donde empiezan, sin embargo, a percibirse ciertos límites es en la financiación pública de la ciencia. En los países más desarrollados científicamente, la financiación pública de la ciencia no crece lo suficiente como para satisfacer las necesidades de la propia investigación, lo que está haciendo que una parte cada vez mayor se haga con capital privado.

Esto tiene sus peligros y son bien conocidos, empezando por la desatención a la investigación básica. Otro factor importante que podría comprometer el progreso científico sería la pérdida de la confianza en la ciencia, como parece haber sucedido ya entre los defensores de la anticiencia (antivacunas, negacionistas de la pandemia, negacionistas climáticos, creacionistas del diseño inteligente).

Mantener el progreso científico exige un esfuerzo constante y la sociedad en su conjunto debe estar comprometida con ese esfuerzo.The Conversation

Sobre el autor: Antonio Diéguez Lucena es catedrático de lógica y filosofía de la ciencia en la Universidad de Málaga

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿Se agotará la ciencia algún día? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Existe algún fármaco que nos haga más inteligentes?
  2. Lo verdaderamente divertido es hacer Ciencia
  3. La reinvención de la ciencia
Catégories: Zientzia

Energia eskasiak osasunean eragiten duenekoa

Zientzia Kaiera - lun, 2021/01/18 - 09:00
Juanma Gallego

Bartzelonan egindako azterketa batek ondorioztatu du pobrezia energetikoak eragin esanguratsua duela kinka horretan dauden lagunen osasunean. Besteak beste, bronkitisarekin eta depresioarekin lotu dute etxea behar beste berotu ezin izatea.

Ezaguna da hainbat eta hainbat faktorek osasunean eragiten dutela, baina beti ez da erraza faktore horien garrantzia eta eragin zehatza ezagutzea. Tartean gaixotasun larriak daudenean, are garrantzitsuagoa da lotura horiek argitzea, eta polemika galantak sortu ohi dira horren harira. Agian adibiderik ezagunenak dira minbizia izateko joera indartzen duten faktoreen inguruan Osasunaren Munduko Erakundeak egiten dituen berrikuspenak, baina, horiez gain, sarritan argitaratzen dira hain mediatikoak ez diren ikerketak.

Halakoetan, normalean arazorik handiena da oso zaila dela eraginak maila molekularrean frogatzea, eta, ezinbestean, korrelazioen munduan sartu beharra dagoela. Horien bitartez, aldagaien arteko lotura estatistikoei erreparatzen zaie. Gehienetan, datu medikoak bizi-ohiturekin edota ingurumenean dauden faktoreekin alderatzen dira, atzean horien arteko kausalitatea egon ote daitekeen argitu aldera. Normalean halako ikerketek ezin dute finkatu behin betiko kausalitate bat, baina, abiapuntu duten oinarri estatistikoaren eta azterketaren diseinuaren kalitatearen arabera, arreta sakonagoa merezi duten gaiei buruz oso zantzu interesgarriak eman ditzakete.

pobrezia energetikoa1. irudia: Familiaren egoera sozioekonomikoa, etxearen errendimendu energetikoa eta energiaren prezioak. Hiru faktore horiek eragiten dute pobrezia energetikoa, egileen arabera. (Argazkia: Alexander Popov / Unsplash)

Hau bereziki garrantzitsua da oso gutxi landu izan diren harreman posibleen kasuan. Horren adibide argia da pobrezia energetikoak osasunean izan dezakeen eragina. Orain arte, ikerketa gutxi egin dira horren inguruan, mendebaldeko herrialde garatuen kasuan bederen. Gaia gehiago landu da, ordea, garapen bidean dauden herrialdeetako etxeen barruan kozinatzeko zein berotzeko erabiltzen diren suteen kutsadurari dagokionez: bereziki errekuntzaren ondorioz sortutako karbono monoxidoa da kalte gehien eragiten duena; batzuetan, gainera, heriotza ere ekar dezake, ohartu gabeko intoxikazioen bidez.

Herrialde garatuetan, berriz, pobrezia energetikoa etxebizitzaren behar energetikoak behar bezala asetzeko ezintasunarekin lotu ohi da. Egoera horrek osasunean izan dezakeen eragina aztertu du ikertzaile talde batek. Kasu honetan, Bartzelonako datuak baliatu dituzte, bertan eskuragarri izan dituztelako pobrezia energetikoko egoeran dauden bizilagunen datu base bat, eta horiei inkesta bat egin diete. Gaceta Sanitaria aldizkarian argitaratutako zientzia artikulu batean azaldu dituzte emaitzak.

Pobrezia energetikoaren aurka Bartzelonako Udalak egin zuen programa baten barruan dauden 2.470 lagunen datuak jaso dituzte azterketan (1.799 emakumezko eta 671 gizonezko), eta datuok 2016an egindako osasun publikoaren gaineko inkesta baten arabera energiaren alorrean aparteko arazorik ez duten 2.608 lagunekoekin alderatu dituzte (kasu honetan, 1.393 emakumezko eta 1.215 gizonezko).

Energía, la justa lelopean, 2016an populazio zaurgarrietan pobrezia energetikoa arintzeko egitasmo hori abiatu zuten Bartzelonan. Programak hiru oinarri izan zituen, emaitzen analisia egin zuen ebaluazio batean azaltzen denez: efizientzia energetikoa ahalbidetzeko ohiturak sustatzea, bonu sozialaren tramitazioaren bitartez aurrezkia lortzea, eta etxeetan kontsumo baxuko bonbillak jartzea.

Egileek azaldu dutenez, etxe barruan behar adinako beroa eta bestelako bizi-baldintza egokiak ez izateagatik, neguan heriotzen eta gaixotasunen tasak handitu direla ondorioztatu da aurreko ikerketa batzuetan. Horietan, arnas sistemari eta sistema kardiobaskularrari lotutako arazoak aurkitu dira, eta baita osasun mentalari dagozkionak. Baina orain arte ez da jorratu horrelako ikerketarik Europa hegoaldean.

pobrezia energetikoa2. irudia: Argindarra, gasa eta bestelako baliabide energetikoak ezinbestekoak dira gutxieneko bizi kalitate bat mantentzeko, baina arazo ekonomikoak dituzten familia askok ezin dituzte nahi adina erabili, prezio altuak direla eta. (Argazkia: Brett Jordan / Unplash)

Diotenez, Europar Batasunaren baitan, arazoa bereziki kezkagarria da ekialdeko eta hegoaldeko herrialdeetan, eta egoera larriagoa egin zen 2008tik aurrera higiezinen burbuilak eztanda egin zuenetik. Klima epelagoa izan arren, egileek argudiatu dute Europa hegoaldeko herrialdeek arazoarekiko zurgarritasun handiagoa dutela, babes sozialerako sistemak “zatikatuta eta gutxi garatuta” daudelako, berotze sistema egokiak faltan daudelako, eta etxebizitzen kalitatea txarragoa delako. “Egoera ondorengo faktoreen elkarrekintzari lepora dakioke: batetik, etxebizitzaren alorreko politika eskasei; bestetik, truke-balioa beharrean erabilera-balioa lehenesten duen eta merkatura bideratuta dagoen etxebizitzen produkzioari. Eskuragarria, egokia eta kalitatezkoa den etxebizitza bat izateko eskubidean txarrerako eragiten du bigarren faktoreak”.

Inkestan, norberak informatutako osasun egoera kontuan hartu dute. Hau da, inkestatutakoak izan dira haien osasun egoeraren berri eman dutenak. Baina egileek babestu dute datu horien balioa. Ikerketaren egile nagusi Juli Carrere soziologoak posta elektroniko bitartez argitu duenez, beste ikerketa batzuek erakutsi dute osasun erregistroak eta norberak emandako erantzunak maila handi batean bat etorri ohi direla.

“Oro har, nolakoa da zure osasun egoera?” galdetu diete parte hartzaileei. Modu berean, aurreko 12 hilabeteetan asma, bronkitis kronikoa, depresioa edota antsietatea izan ote duten galdetu zaie. Haien etxeetan dagoen egoera ere izan dute hizpide: tenperatuta egokia mantentzen duten, edota fakturak ordaintzeko zailtasunik izan ote duten; etxebizitzen egoeraz ere galdetu diete. Datu horiekin guztiekin, hiru mailatan sailkatu dituzte parte hartzaileak: pobrezia energetikoko maila baxua, ertaina edo altua.

Bronkitis kronikoa izateko aukera 4,9 aldiz handiagoa da pobrezia energetikoa duten emakumezkoetan, eta 5,4 aldiz handiagoa gizonezkoetan. Osasun mentalari dagokionez, depresioa eta antsietatea izateko aukera 3,3 aldiz handiagoa da emakumezkoen artean, gizonezkoetan 4 aldiz handiagoa izanik. Ikertzaileek diotenez, familien egoeraren eta osasunaren arteko lotura indartsuagoa da pobrezia energetikoa handiagoa den kasuetan. Aldagai guztietan aurkitu dute harremana, batean izan ezik: gizonezkoek informatutako bronkitis kronikoa.

Egileek hiru faktore jo dituzte egoeraren abiapuntutzat: familiaren egoera sozioekonomikoa, etxearen errendimendu energetikoa eta energiaren prezioak. Faktore horiek, noski, testuinguru politiko, sozial eta ekonomiko zabalago baten barruan daudela ohartarazi dute. “Umeak, adineko pertsonak, emakumeak, etorkinak eta klase baxuko populazioak zaurgarriagoak dira pobrezia energetikoaren aurrean”, idatzi dute. Arazoaren tamaina ikusita, gaia jorratuko duten “politika publikoen beharra” nabarmendu dute.

Erreferentzia bibliografikoa:

Carrere, Juli; Peralta, Andres;  Oliveras, Laura; López, María José; Marí-Dell’Olmo, Marc; Benach, Joan; Novoa, Ana M. (2020). Energy poverty, its intensity and health in vulnerable populations in a Southern European city. Gaceta Sanitaria. DOI: https://doi.org/10.1016/j.gaceta.2020.07.007

Egileaz:

Juanma Gallego (@juanmagallego) zientzia kazetaria da.

The post Energia eskasiak osasunean eragiten duenekoa appeared first on Zientzia Kaiera.

Catégories: Zientzia

Virus, selección natural y vacunas

Cuaderno de Cultura Científica - dim, 2021/01/17 - 11:59

Cuando un virus penetra en las células del organismo infectado hace uso de la maquinaria de esas células para replicar su material genético –ADN o ARN– y producir, siguiendo las instrucciones contenidas en él, miles de copias del original. En ese proceso se pueden producir errores –mutaciones–, de manera que alguna de las nuevas réplicas de la molécula hereditaria sea ligeramente diferente de la original. Surgiría así una nueva variante genética del virus. En una fracción mínima de las ocasiones esa mutación le confiere alguna ventaja; puede, por ejemplo, favorecer su capacidad para contagiar. En ese caso, la nueva variante se expandiría con mayor celeridad, sustituyendo progresivamente a las preexistentes hasta hacerse mayoritaria. Lo normal, no obstante, es que durante un episodio epidémico coexistan, en distintas proporciones, diferentes variantes de un mismo virus.

La selección natural es uno de los dos mecanismos que impulsa la evolución de los seres capaces de reproducirse y transmitir su herencia a la siguiente generación; el otro es la deriva genética, que ahora podemos dejar de lado. En el párrafo anterior hemos visto cómo actúa la selección natural sobre una población de virus cuando surgen variantes con diferente capacidad de transmisión. Pero esa no es su única forma de actuación. En muchos casos se produce bajo la influencia de un factor ambiental que, en términos comparativos, favorece la supervivencia y proliferación de ciertas variantes genéticas frente a otras. De esa forma, los favorecidos dejan más descendencia, por lo que sus rasgos genéticos se acabarán haciendo mayoritarios en la población. A ese factor lo denominamos presión selectiva.

Antivirales y vacunas pueden actuar, en lo que a los virus se refiere, como presiones selectivas. Actúan de esa forma cuando impiden o dificultan la reproducción de ciertas variantes pero no la de otras. En ese caso, suprimirían o convertirían en minoritarias a las primeras, dejando vía libre para la proliferación de las segundas. Eso es lo que ocurre cuando una variante de un virus es resistente a la acción de un antiviral o una vacuna.

No es difícil que surjan tales resistencias. Por un lado, los antivirales suelen administrarse cuando ya se ha producido una infección y hay ya millones de partículas virales en el organismo hospedador. En tales circunstancias hay millones de virus que, potencialmente, pueden mutar y devenir resistentes al fármaco. Y por otro lado, el efecto de un antiviral (como el de un antibiótico en las bacterias) suele basarse en la acción sobre un único proceso celular, y la probabilidad de que surja una variante genética resistente a tal acción no es muy baja.

Con las vacunas, afortunadamente, las cosas son algo diferentes. Por un lado, porque se administran antes de que se produzca una infección, de manera que las defensas que generan pueden actuar antes de que el patógeno prolifere en el organismo, evitando así que al multiplicarse surjan millones de potenciales variantes resistentes. Y por el otro, porque la vacuna induce la producción de todo un arsenal de anticuerpos que actúan contra diferentes dianas –denominadas epítopos– en los patógenos. La probabilidad de que, por mutación, surjan variantes genéticas que modifiquen todos los epítopos y, de esa forma, eviten la acción de los anticuerpos es muy baja, aunque no es nula.

De lo anterior se deriva que es importante evitar la transmisión de un patógeno, porque así se le dan pocas opciones de proliferar. No solo se evita de esa forma que mucha gente enferme, sino que, además, al limitar su proliferación, se minimiza la probabilidad de que surjan variantes que puedan ser más fácilmente transmisibles o que generen resistencias a las vacunas.

Fuente: Kennedy D A, Read, A F (2017): Why does drug resistance readily evolve but vaccine resistance does not? Proc. R. Soc. B 284: 20162562.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Virus, selección natural y vacunas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Selección natural en poblaciones humanas actuales
  2. La cultura no protege de la selección natural
  3. #Naukas15 Somos virus
Catégories: Zientzia

Asteon zientzia begi-bistan #333

Zientzia Kaiera - dim, 2021/01/17 - 09:00
Uxue Razkin

Osasuna

Gorka Orive UPV/EHUko Farmazia irakasleak abenduan abiatutako txertaketa prozesuaren erritmoa jarri du ezbaian artikulu honetan. Haren irudiko, beharrezkoa da datozen asteetan abiadura etengabe batean arintzea.

Ildo horri jarraikiz, honatx Elhuyar aldizkariak dakarrena asteon: eztabaida sortu du txertoen bigarren dosia atzeratzeko auziak. Izan ere, bigarren dosia oso berandu hartzeak arazoak sor litzake, adibidez, birusak erresistentziak garatzea.

Txertoen historiari erreparatu dio Ana Galarragak artikulu honetan. Zehazki, txertoen garapenean egon diren emakumeak: Mary Wortley, Marie Laurent, Leone Farrell. Modu berean, COVID-19aren txertoen garapenaren atzean dauden emakumeak aipatu ditu, horien artean, Katalin Karikó.

Txertotik botiketara. Garatzen ari direnen artean, bi multzo: batzuk, antibirikoak, besteek ez dute zuzenean birusaren aurka egiten, gaixotasun larriaren sintomen kontra baizik. Miren Basarasen eskutik bi talde horietako adibideen azalpenak topatuko dituzue Berriako testu honetan.

Ingurumena

Trafikoaren eta kutsaduraren arteko harremana ikertu dute Nafarroako Agrobioteknologia Institutuan. Horretarako metodo berritzaile bat erabili dute, Berriak azaldu duen moduan: ezkien hostoetan metatutako metal astunen kontzentrazioen bitartez egin dute neurketa.

Ikerketa batek erakutsi du biodibertsitateak gizakion osasunean izan dezakeen garrantzia. Elhuyar aldizkariak azaldu duen moduan, kitridiomikosiak eragindako anfibioen gainbeherak malaria-agerraldiak areagotu zituen 1990eko eta 2000ko hamarkadetan Erdialdeko Amerikan, azterlan batek ondorioztatu duenez. Xehetasun gehiago, hemen.

Biokimika

Proteinen munduan murgildu gara erreportaje honen bidez. Horien egiturak ezagutzeko metodo ezberdinak erabiltzen dira. Duela gutxi, esparru honetan egindako aurrerapen teknologiko bat azaldu digute testu honetan: adimen artifizialaren bidez, algoritmo batek (AlphaFold 2, deitua) proteinen egitura zehaztu du, asmatze maila oso handiarekin, haien aminoazidoen sekuentziatik abiatuz.

Kristalografia

Asteon elurra mara-mara aritu da eta ezin hobeto datorkigu azalpen hau: elur malutak izotz-kristal multzoez osatuta daude baina nola osatzen dira kristal hauek? Zergatik dute horrelako itxura konplexuak? Artikulu honetan galdera horien erantzunak topatuko dituzue. Ez galdu!

Ingeniaritza

Aireko garraio ekologikoagoak, jasangarriagoak eta eraginkorragoak lortze aldera, kontuan hartzen dira elektrifikazio-maila altuak dituzten hegazkinak (MEA, More Electric Aircraft, ingelesez). MEA motako hegazkinetan bi aplikazio elektriko daude: aktuadore elektromekanikoak (EMA, Electro Mechanical Actuator, ingelesez) eta propultsio elektrikoa/hibridoa. Horri buruzko azalpena, hemen.

Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.

Egileaz:

Uxue Razkin (@UxueRazkin) kazetaria da.

The post Asteon zientzia begi-bistan #333 appeared first on Zientzia Kaiera.

Catégories: Zientzia

Virginia Arechavala – Naukas Pro 2019: Buscando terapias para enfermedades poco frecuentes

Cuaderno de Cultura Científica - sam, 2021/01/16 - 11:59

Virginia Arechavala trabaja en el grupo de desórdenes neuromusculares del Instituto de Investigación Sanitaria Biocruces Bizkaia. En esta interesante charla presenta su trabajo en busca de nuevas terapias para enfermedades poco frecuentes (habitualmente conocidas como «raras»), especialmente la distrofia muscular de Duchenne.

Virginia se doctoró en neurología en el King’s College de Londres y, tras varios años de investigación en centros británicos, se incorporó a Biocruces como profesora de investigación Ikerbasque.



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Virginia Arechavala – Naukas Pro 2019: Buscando terapias para enfermedades poco frecuentes se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Francisco Villatoro – Naukas Bilbao 2019: El abrazo de la plata
  2. Medicina regenerativa: utilización de células madre para el tratamiento de enfermedades humanas
  3. Alfredo García – Naukas Bilbao 2019: Derribando mitos sobre la energía nuclear
Catégories: Zientzia

Ezjakintasunaren kartografia #336

Zientzia Kaiera - sam, 2021/01/16 - 09:00

Lesboseko marismetan asmatu zuen biologia Aristotelesek, sekulako ondorioekin.  The ‘prehistory’ of philosophy of science (7): The invention of biology Jesús Zamorarena.

Gainerako ozeanoekin konparatuta, ezberdina da ozeano Antartikoa, arrazoi askorengatik, gainera. Eta planetaren etorkizunerako duen garrantzia izugarria da. Berarekin erlazionatutako guztia da izugarria. An ocean like no other: the Southern Ocean’s ecological richness and significance for global climate Ceridwen Fraser et al.-en eskutik.

Javalambre-Photometric Local Universe Surveyren lehen datuen analisiek oso ondorio interesgarriak ditu. Haien artean, urrun izarrak uste genuen zenbait elementu, quasarrak direla. DIPC-k The brightest end of the Lyman alpha luminosity function.

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #336 appeared first on Zientzia Kaiera.

Catégories: Zientzia

El papel de los astrocitos en la aparición de la enfermedad de Parkinson

Cuaderno de Cultura Científica - ven, 2021/01/15 - 11:59
La galaxia interna: neuronas (teñidas de rojo) y astrocitos (teñidos de verde) en un cultivo de células corticales de ratón. Fuente: Wikimedia Commons

Es conocida la importancia de la salud de las neuronas y sus conexiones para prevenir la aparición de algunas de las enfermedades neurodegenerativas más comunes, como las de Alzheimer o Parkinson. Sin embargo, las neuronas no están solas en el encéfalo, y muchas de sus funciones están soportadas por otras células, las llamadas células gliales. Entre estas grandes desconocidas se encuentran los astrocitos, las más abundantes y cuyas funciones incluyen desde el aporte de nutrientes y energía a las neuronas hasta el soporte físico de las mismas.

La enfermedad de Parkinson se relaciona con el deterioro de las neuronas de tipo dopaminérgico y con la acumulación de la proteína denominada alfa-sinucleína.

“Hasta ahora, puesto que las células que se ven principalmente afectadas por la enfermedad son las neuronas, la inmensa mayoría de estudios han estado enfocados a comprender los eventos que llevaban a estas células a morir. Es por ello, y puesto que se sabe muy poco del papel de los astrocitos en esta enfermedad, que nosotros decidimos dirigir nuestra investigación a entender si estas células tan importantes para la supervivencia neuronal contribuyen al desarrollo de la enfermedad de Parkinson”, señala Paula Ramos González investigadora del departamento de Neurociencias de la UPV/EHU.

Los investigadores han seguido dos líneas de investigación. Por un lado, “hemos trabajado con células de rata tanto con neuronas como con astrocitos, y pudimos determinar que los astrocitos son capaces de contribuir a la transmisión de la proteína tóxica alfa sinucleina —proteína que se acumula en el cerebro de los pacientes con enfermedad de Parkinson— y favorecer la muerte neuronal, sugiriendo un papel importante de estas células en la progresión de la enfermedad”, explica la investigadora.

Por otro lado, “con el fin de aproximarnos más a la realidad, planteamos un segundo estudio utilizando células humanas. Para ello, generamos astrocitos a partir de células de la piel de pacientes con Parkinson. Una vez generados estos astrocitos, comparamos diversos parámetros importantes entre los astrocitos derivados de donantes sanos y los astrocitos con la mutación. Sorprendentemente, encontramos que los astrocitos con la mutación no sólo eran hasta ocho veces más pequeños que los astrocitos sanos, sino que además generaban elevados niveles de proteínas oxidadas, que pueden resultar tóxicas para las células” añade Ramos González.

Finalmente, “consideramos importante cocultivar estos astrocitos directamente con neuronas, y analizar los efectos que podrían tener las células con la mutación sobre la supervivencia neuronal. Utilizando una técnica que nos permite seguir las neuronas individualmente, observamos que cuando estas convivían con los astrocitos con la mutación, el riesgo de muerte neuronal aumentaba significativamente, contrariamente a lo que ocurría al cultivarlas con astrocitos sanos” comenta.

La investigadora ha destacado que «todos estos resultados sugieren que los astrocitos disfuncionales contribuyen al inicio y progresión de la enfermedad de Parkinson, favoreciendo el proceso neurodegenerativo típico de la enfermedad. Aunque aún es necesario ahondar en el tema y profundizar con nuevos experimentos, este estudio propone una nueva posible diana terapéutica dirigida a mantener la funcionalidad de los astrocitos y abre un abanico de posibilidades en cuanto a futuros posibles tratamientos”.

Referencias:

Cavaliere, F. et al. (2017) In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains Neurobiology of Disease doi: 10.1016/j.nbd.2017.04.011

Bengoa-Vergniory, N. et al. (2020) CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson’s disease Nature Communications doi: 10.1038/s41467-020-18689-x

Ramos-González, P. (2020) Unraveling the role of astrocytes in the onset and spread of Parkinson’s disease UPV/EHU Tesis doctoral

 

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

 

El artículo El papel de los astrocitos en la aparición de la enfermedad de Parkinson se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Una posible terapia neuroprotectora y neurorrestauradora para el párkinson
  2. El cannabis rompe el equilibrio metabólico entre neuronas y astrocitos alterando el comportamiento social
  3. La mutación vasca de la dardarina y el párkinson
Catégories: Zientzia

Ana Rodriguez-Larrad: “Gure osasun fisikoa, afektiboa eta kognitiboa oso lotuta daude, elkarrekintza estu batean” #Zientzialari (145)

Zientzia Kaiera - ven, 2021/01/15 - 09:00

Jarduera fisikoak osasunean eragiten du. Izan ere, bizitzan zehar egiten ditugun mugimenduek eragina dute gure osasun fisiko, kognitibo eta afektiboan. Baina zein da inpaktu-maila?

Ariketa fisikoko esku-hartze programak erreminta baliagarriak dira eraginak neurtzeko. Esaterako, ikusi da mugitzeko arazoak dituzten pertsonek edo zaharren egoitzetako egoiliarrek ariketa fisikoko esku-hartze programetan parte hartzen dutenean, erorketa kopurua jaitsi egiten dela eta menpekotasun maila ere murrizten dela.

Ana Rodriguez-Larrad ikertzaileak, besteak beste, ariketa fisikoko esku-hartzeen diseinua eta ebaluazioan eta esklerosi anizkoitza duten pertsonen exoeskeletoen esku-hartzeak ditu ikergai. Ageing On ikerketa taldeko kidea da eta UPV/EHUko Fisiologia saileko ikertzailea eta irakaslea ere, eta berarekin bildu gara gaia hauetan gehiago sakontzeko.

Zientzialari” izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.

The post Ana Rodriguez-Larrad: “Gure osasun fisikoa, afektiboa eta kognitiboa oso lotuta daude, elkarrekintza estu batean” #Zientzialari (145) appeared first on Zientzia Kaiera.

Catégories: Zientzia

El silencio de los grillos

Cuaderno de Cultura Científica - jeu, 2021/01/14 - 11:59

Existen muchos relatos, folclore y mitología relacionados con los grillos, que otorgan distintos significados a su sonido característico. En algunas zonas de Brasil, el canto de los grillos se asocia a la lluvia inminente o a una ganancia financiera inesperada. En otras, también puede ser un presagio de enfermedad. En Caraguatatuba, su significado depende de su color. En Barbados, un grillo ruidoso es señal de dinero, mientras que uno más tímido puede presagiar la enfermedad o incluso la muerte. En nuestra propia cultura audiovisual es común utilizar el sonido de los grillos para enfatizar el silencio, probablemente porque lo asociamos al campo, a las noches tranquilas lejos de la ciudad.

Foto: Aurélien Lemasson-Théobald / Unsplash

El origen de este sonido fue un misterio durante mucho tiempo. Algunas ilustraciones infantiles los muestran tocando pequeños violines. Otro mito persistente es que estos insectos se frotan las piernas para cantar. Ninguna de estas versiones es correcta (aunque me encantaría que la de los violines lo fuera). Lo cierto es que los grillos producen su sonido con ayuda de sus alas. Las frotan entre sí en un proceso conocido como estridulación. En una de las alas se encuentra el llamado “rascador”, con un borde bien definido. Mientras que la otra cuenta con una superficie con ondulaciones llamada “cuerpo”. El efecto es similar al de pasar un dedo por los dientes de un peine y no tan distinto al de deslizar un arco sobre las cuerdas de un violín. Si el traqueteo es lo bastante rápido, da lugar a un tono musical agudo y rugoso, como el canto del grillo, precisamente. Cada especie de grillo cuenta con estructuras distintivas que dan lugar a su timbre único. En el año 2012, un grupo de científicos consiguió incluso recrear el canto de una especie extinta [1], el Archaboilus musicus. Analizando un fósil de 165 millones de antigüedad, con las alas excepcionalmente bien preservadas, determinaron que este grillo o saltamontes jurásico producía un sonido de 6400 Hz.

La mayoría de los grillos hembra carecen de esas estructuras en sus alas por lo que no pueden produir los mismos sonidos. Hay excepciones: algunas hembras de grillos topo cantan. Pero en general, son los machos los que producen este característico timbre. Y, como decía Josquin des Prez, cuando lo hacen es solo por amor: su objetivo es atraer a las hembras y algunos utilizan todo un repertorio de distintas llamadas con este fin. Unas sirven para llamar a sus parejas desde lejos, otras funcionan mejor en las distancias cortas. Cuentan incluso con melodías triunfales para después del apareamiento o cantos cuyo objetivo es intimidar a otros machos. Las hembras, mientras tanto, les escuchan con los pies. No es nada despectivo: los grillos tienen pequeños agujeros en sus patas delanteras, de apenas un milímetro de diámetro. Son uno de los oídos más pequeños del reuno animal, pero también son muy sensibles.

Parte inferior del ala de un macho normal (a), un macho de alas planas (b) y una hembra (c). Fuente

Por otra parte, en la isla de Kauai en Hawaii, existe una especie de grillos que se han quedado mudos en apenas veinte generaciones [2][3]. En 2003, Marlene Zuk viajó a la isla y quedó sorprendida por su extraño silencio. Llevaba estudiando a estos bichos desde 1991 cuando su sonido inundaba el paisaje. Pero de año en año, su canto había ido atenuándose, hasta alcanzar un completo silencio apenas 12 años después. Los grillos no habían desaparecido. Pero estaban siendo atacados por una especie de mosca parasitaria que los localiza gracias a su canto. La mosca deja caer su larvas sobre ellos y estas los devoran desde dentro. La nueva presión ambiental ha hecho que en muy poco tiempo, solo sobrevivan los grillos silenciosos, con alas lisas parecidas a las de las hembras de su especie. Lo curioso es que estos grillos siguen frotando sus alas, como solían hacerlo para cortejar a las hembras. Como una orquesta de mimos aplicados, los grillos de Kauai siguen tocando sus violines, aunque ninguno cuente ya con su arco.

Referencias:

[1] Gu, J.-J., Montealegre-Z, F., Robert, D., Engel, M. S., Qiao, G.-X., & Ren, D. (2012, March 6). Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. PNAS. https://www.pnas.org/content/109/10/3868

[2] Zuk M., Rotenberry J.T., Tinghitella R.M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2006; 2: 521-524 https://pubmed.ncbi.nlm.nih.gov/17148278/

[3] Pascoal, Cezard, Eik-Nes, Gharbi, Majewska, Payne, Ritchie, Zuk & Bailey. 2014. Rapid Convergent Evolution in Wild Crickets. Current Biology. http://dx.doi.org/10.1016/j.cub.2014.04.053

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo El silencio de los grillos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un genio desconocido del Renacimiento
  2. El océano en una caracola
  3. El sonido del viento (2)
Catégories: Zientzia

Hegazkinen elektrifikazioa: aktuadore elektromekanikoak eta propultsio elektrikoa

Zientzia Kaiera - jeu, 2021/01/14 - 09:00
Andres Mauricio Sierra, Edorta Ibarra, Iñigo Kortabarria, Jon Andreu, Joseba Lasa Gaur egun, eraginkorrak diren eta ingurugiroa errespetatzen duten garraio-sistemen ikerketa eta garapena beharrezkoa da, batez ere kutsadura, aldaketa klimatikoa eta erregai fosilen eskasia direla medio.

Aireko garraioari dagokionez, Advisory Council for Aviation Research and innovation in Europe (ACARE) elkartearen helburua da % 80ko murrizketak lortzea nitrogeno oxidoen (NOx) isurketetan, eta % 20ko murrizketak lortzea CO2 isurketetan. Bestalde, Europar Batasuneko “Flightpath 2050” txostenean 2050erako % 75eko murrizketa proposatzen da helburu bezala, CO2 isurketei dagokionez, 2000. urteko isurketa-tasekin konparatuz. Horrez gain, % 90eko NOx kutsatzaileen murrizketa proposatzen da, eta baita ere % 65eko murrizketa hegazkinek sortzen duten zaratan. Hori guztia kontuan hartuta, elektrifikazio-maila altuak dituzten hegazkinak (MEA, More Electric Aircraft, ingelesez) kontsideratzen dira jarraitu beharreko paradigma.

Konbentzionalki, lau sistema-mota nagusi erabiltzen dira hegazkinetan:

  1. Sistema pneumatikoak.
  2. Sistema hidraulikoak.
  3. Sistema mekanikoak.
  4. Sistema elektrikoak.

Motorrek sortutako airea aprobetxatzen dute sistema pneumatikoek, hegazkinaren ingurugiroaren kontrola (presurizazioa eta aire girotua) eta hegaletako izotzaren aurkako sistemak gauzatuz. Aldiz, hegazkinaren eragintza guztiaz arduratzen dira sistema hidraulikoak: lurreratze-trena, balaztak eta hegaldirako kontrol-aktuadoreak, besteak beste. Bestalde, erregaiaren eta olioaren ponpaketaz arduratzen da sistema mekanikoa. Azkenik, argiztapen-sistemaz, entretenimendu sistemaz eta hegazkinaren elektronikaz arduratzen dira sistema elektrikoak. Sistema horiek guztiek hegazkinaren konbustiozko motorretatik edota turbinetatik jasotzen dute energia.

Hegazkin sistemen eskemaHegazkin konbentzional baten eta MEA hegazkin bateko potentzia-iturrien eta sistemen alderaketak. (Irudia: Ziortza Guezuraga, artikuluaren orijinalak aldatuta).

Aldiz, MEA kontzeptuak sistema elektrikoek hegazkinetan duten protagonismoa handitzea proposatzen du. Hori da, propultsio-motorretik lau sistema mota elikatuta izan beharrean, MEAk proposatzen duena da iturri horretatik sorkuntza-elektrikoa bakarrik elikatzea. Horrela, sorgailu elektrikoak elikatuko ditu azpisistema guztiak. Era horretara, konpresore elektrikoek ordezkatuko dituzte sistema pneumatikoak, erregaiaren ponpaketa ponpa elektrikoen bidez gauzatuko da eta eragintza hidrauliko guztia aktuadore elektro mekanikoek (EMA, Electro Mechanical Actutator, ingelesez) ordezkatuko dituzte.

Guzti horren helburua da sistema konbentzionalek dituzten desabantailak neurri batetan kentzea. Adibidez, eragintza hidraulikoari dagokionez, olio-banaketarako sistema bat behar da, handia eta pisutsua dena, eta sarritan isurketak sortzen dituena. MEA kontzeptuaren beste abantaila bat da sistema konbentzional bakoitza konektatuta duen kargaren potentzia maximoari erantzuteko diseinatuta dagoela. Hala ere, potentzia-mutur horiek ez dira aldi berean ematen; energia-iturriak sistema elektrikoan bateratuz, osagaien dimentsionamendu egokiagoa egin daiteke, hegazkinaren beharrizan errealetara hobeto egokituz. Ondorioz, hegazkinaren pisua eta bolumena nabarmen murriztu daiteke, erregai fosilen kontsumoa murriztuz. Horrez gain, komunitate zientifikoan adostasuna dago esatean ezinbestekoa dela hegazkinen propultsio-sistemen elektrifikazio partziala edo totala gauzatzea ere, hasieran aipatutako murrizketa-helburuak lortu nahi baldin badira

Elektrifikatu beharreko bi aplikazio kritiko nabarmendu daitezke hegazkinean: EMAk eta propultsio elektrikoa/hibridoa. Osagai horien kritikotasuna nabarmena da, sistema
horietan gertatutako hutsegiteek bidaiarien segurtasuna jartzen baitute arriskuan. Alde horretatik, motor elektrikoak eta potentzia-bihurgailuak dira sistema horien osagai nagusienetakoak. Horien hutsegite-tolerantzia hobetzeak sistema elektriko horien fidagarritasuna hobetzea dakar, sektore aeronautikoak eskatzen dituen segurtasun-mailak betetzeko. Lan honetan, potentzia sistema trifasikoen ordez hutsegite-tolerantzia handiagoa duten sistema polifasikoen ezarpena aztertu da, diren aukera ezberdinak esploratuz. Horien ikerkuntzan jarraituko dute autoreek, topologia horiek hegazkinetan integratzeko eta, kontrol-algoritmo aurreratuen bidez hutsegite-tolerantzia eta hutsegiteen ondorengo funtzionamendua optimizatzeko.

Iturria:

Sierra, Andres Mauricio; Ibarra, Edorta; Kortabarria, Iñigo; Andreu, Jon; Lasa, Joseba (2019). «Hegazkinen elektrifikazioa: aktuatzaile elektromekanikoak eta propultsio elektrikoa»; Ekaia, 35, 2019, 257-275. (https://doi.org/10.1387/ekaia.19780) Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: Ekaia 35
  • Artikuluaren izena: Hegazkinen elektrifikazioa: aktuadore elektromekanikoak eta propultsio elektrikoa.
  • Laburpena: Gaur egun, elektrifikazio-maila altuak dituzten hegazkinak (MEA, More Electric Aircraft, ingelesez) kontuan hartzen dira aireko garraio ekologikoagoa, jasangarriagoa eta eraginkorragoa lortzeko. Alde horretatik, tradizionalak diren sistema pneumatikoak, hidraulikoak, eta mekanikoak sistema elektrikoengatik ordezkatu nahi dira, denborarekin, MEA kontzeptuaren helburuak lortzeko. Bi aplikazio elektriko nabarmentzen dira MEA motako hegazkinetan: aktuadore elektromekanikoak (EMA, Electro Mechanical Actuator, ingelesez) eta propultsio elektrikoa/hibridoa. Teknologia horien teknologiaren egoera garatzen da lan honetan, eta egileek EMA prototipo erreal batean lortutako emaitzak azaltzen dira. Horrez gain, sistema horien elementu nagusi diren potentzia-sistemak eta motor elektrikoak aztertzen dira, industria aeronautikoaren beharrizan zorrotzak direla-eta egokienak izan daitezkeen fase anitzeko topologietan zentratuz.
  • Egileak: Andres Mauricio Sierra, Edorta Ibarra, Iñigo Kortabarria, Jon Andreu, Joseba Lasa
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua.
  • ISSN: 0214-9001
  • Orrialdeak: 257-275
  • DOI: 10.1387/ekaia.19780

————————————————–
Egileez:

Andres Mauricio Sierra Tecnalia Research and Innovationen dabil eta Edorta Ibarra, Iñigo Kortabarria, Jon Andreu eta Joseba Lasa UPV/EHUkoIngeniaritza eskolako Teknologia Elektronikoa Sailean dabiltza.

———————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.

The post Hegazkinen elektrifikazioa: aktuadore elektromekanikoak eta propultsio elektrikoa appeared first on Zientzia Kaiera.

Catégories: Zientzia

Ajedrez y matemáticas: el problema de Guarini

Cuaderno de Cultura Científica - mer, 2021/01/13 - 11:59

En mi anterior entrada en el Cuaderno de Cultura Científica, A vueltas con el origen del ajedrez, mencionamos la fructífera relación que ha existido, y existe, entre las matemáticas y el ajedrez.

Muchos rompecabezas matemáticos y juegos de ingenio tienen al tablero y las piezas del ajedrez como elementos principales. En esta entrada vamos a prestar atención a algunos problemas que utilizan la pieza del caballo, con su movimiento característico en forma de L, moviéndose en todo el tablero o en parte del mismo. Uno de los principales problemas de este tipo es “el recorrido del caballo en el tablero de ajedrez”, que interesó a grandes matemáticos como Abraham de Moivre, Pierre de Montmort, Leonhard Euler o Adrien-Marie Legendre, y sobre el que podéis leer, por ejemplo, en el libro Del ajedrez a los grafos, la seriedad matemática de los juegos (RBA, 2015). Sin embargo, en esta entrada vamos a interesarnos por el problema de Guarini y otros relacionados.

Monolitos rotados (1988), del matemático británico Ron Brown, pertenece a una serie de obras que toman el problema del recorrido del caballo como herramienta de creación artística. Fotografía de Stephen Barth en el artículo The Use of the Knight’s Tour to Create Abstract Art

El problema de Guarini pertenece a una familia de juegos solitarios que consisten en intercambiar la posición de dos grupos distintos de fichas, normalmente de diferente color, blancas y negras, ya sea mediante el desplazamiento de las mismas –como Todas cambian, La estrella de ocho puntas o el Kono de cinco– o permitiéndose además saltar sobre las fichas contrarias –como El salto de la rana o El puzzle dieciséis inglés (sobre los que se puede leer en el artículo El salto de la rana, y familia), aunque en este caso las fichas son los caballos blancos y negros del ajedrez.

Antes de adentrarnos en el problema de Guarini os propongo jugar a dos versiones de un solitario de esta familia de juegos de intercambio de fichas sobre cierto tablero, el sencillo juego Todas cambian. En ambas versiones se juega con tres fichas (aunque puede generalizarse a un número mayor) de cada color, blancas y negras, sobre los tableros y con las posiciones iniciales que se muestran en la imagen.

Las reglas del solitario Todas cambian son las siguientes:

i) las fichas se mueven de una en una, y cada una puede desplazarse a una posición adyacente que esté libre;

ii) cada desplazamiento puede ser realizado en horizontal (a izquierda o derecha), en vertical (hacia arriba o abajo) o en diagonal;

iii) el objetivo es intercambiar la posición de las fichas negras y blancas en el menor número de movimientos posible.

Estos son juegos ideales para pasar un buen rato, y su solución es lo que podríamos llamar una demostración constructiva. Sabemos que existe solución al reto porque la encontramos explícitamente, la construimos.

Por otra parte, el procedimiento para encontrar la solución es el básico método del ensayo y error, que consiste en realizar repetidos y variados intentos, en muchas ocasiones sin una regla aparente, hasta alcanzar el éxito. El problema de este procedimiento es que se trata de una búsqueda aleatoria, que no garantiza encontrar la solución, salvo que sea posible explorar todas las opciones, y aunque se encuentre la solución, no genera una técnica útil para utilizar con otros problemas, ni explica el motivo de la misma.

Antes de seguir leyendo, os animo a jugar a estos solitarios y a buscar vuestras soluciones a los mismos.

No es difícil de demostrar que la solución al primer juego puede alcanzarse en siete movimientos. Si numeramos los cuadrados de la primera fila como 1, 2, 3, 4 y de la segunda 5, 6, 7, y describimos cada movimiento como un par de números, la casilla origen de la ficha y la de llegada, entonces, la solución se puede expresar: (7,4), (2,7), (5,2), (1,5), (6,1), (3,6), (4,3). En realidad, no necesitamos tanta información, nos bastará con mencionar cuál es el hueco sin ficha, a partir del 4 inicial, esto es, 7 – 2 – 5 – 1 – 6 – 3 – 4.

En diez movimientos se pueden intercambiar las fichas en el segundo tablero, aunque si se añade la condición extra de mover las fichas blancas y negras alternativamente, entonces serán necesarios un mínimo de doce. Es aconsejable mantener un registro de los movimientos realizados para comprobar que la solución ha sido correcta y contar el número de pasos.

Fotografía de la exposición Acromática. Una partida inmortal de Mabi Revuelta, en el Azkuna Zentroa, de Bilbao, en la cual el ajedrez, y en particular, la conocida como partida inmortal, es un elemento fundamental de esta exposición de la artista bilbaína Mabi Revuelta

Pero vayamos ya al pasatiempo relacionado con el ajedrez, el problema de Guarini. Este juego nos sirve además para ilustrar un procedimiento muy útil en el trabajo matemático, como es cambiar el punto de vista. Si el problema que estamos intentando resolver es complejo o la técnica que estamos utilizando no parece la apropiada, transformar el problema original en otro más sencillo o para el que conozcamos algún procedimiento que permita resolverlo, puede ser una estrategia exitosa.

El Problema de Guarini, de intercambio de caballos en un tablero de ajedrez de tamaño 3 x 3, aparece como el problema 42 en un manuscrito de 1512 del impresor, tipógrafo y arquitecto italiano Paolo Guarini di Forli (1464-1520), y dice lo siguiente:

Dos caballos blancos y dos caballos negros están colocados en las cuatro esquinas de un tablero cuadrado de nueve casillas; se pide hacer pasar, según las reglas, los caballos blancos al lugar que ocupan los caballos negros, e inversamente, sin salirse del cuadrado”.

Aunque es algo muy conocido, vamos a recordar primero cómo es el movimiento del caballo en el ajedrez. Esta pieza realiza un salto o movimiento en forma de L –dos casillas hacia delante y una a un lado– como los que se muestran en la siguiente imagen.

En la siguiente imagen se muestra el tablero del problema de Guarini y su posición inicial.

Este solitario ya aparecía en la recopilación de problemas de ajedrez y juegos de tablero del siglo XV, Civis Bononiae (Ciudadano de Bolonia), aunque realmente esa fue solo su primera aparición en Europa, puesto que había sido incluido, unos siglos antes, en el primer manuscrito árabe sobre ajedrez kitab ash-shatranj (hacia el año 840) del jugador y teórico árabe del shatranj, una forma antigua de ajedrez, al-Adli.

Un primer acercamiento al problema de resolver este desafío, consiste en transformarlo en el llamado Juego de la estrella de ocho puntas, que realmente no es más que el grafo asociado al Problema de Guarini.

La idea es representar mediante un esquema sencillo y útil los posibles movimientos del caballo en el tablero de ajedrez 3 x 3. Las casillas del tablero (que numeramos del 1 al 9 como en la imagen de abajo) se van a representar como puntos o círculos y los movimientos del caballo, de una casilla del tablero a otra, se representan mediante líneas que unen esos círculos (salvo el cuadrado central que es un punto aislado).

Así, se obtiene una estrella de ocho puntas y el Problema de Guarini de cambio de posición de caballos se transforma en el solitario que consiste en intercambiar la posición de las fichas blancas y negras (que son los dos caballos blancos y los dos negros), siendo los posibles movimientos de las fichas los desplazamientos a lo largo de las líneas de la estrella.

Esta presentación más moderna y sencilla del problema de Guarini, al igual que el problema original sobre el pequeño tablero de ajedrez, puede intentar solucionarse con el habitual método de ensayo y error. Sin embargo, antes de abalanzarnos sobre el mismo, podemos analizarlo un poco más y descubrir que realmente es un problema más simple de lo que aparenta, si se enfoca convenientemente.

Si nos fijamos en las líneas que unen los círculos, observaremos que realmente constituyen un ciclo circular cerrado. Por lo tanto, podemos desenrollar la estrella y transformarla en el circuito circular de la imagen, siendo la solución del solitario tan simple como desplazar las fichas en uno de los sentidos, por ejemplo, en el de las agujas del reloj.

La solución consta de dieciséis movimientos, que consisten en desplazar cada una de las fichas cuatro posiciones en el sentido de las agujas del reloj. Esta solución llevada al problema de Guarini original describe en un cierto movimiento simétrico de los caballos alrededor del cuadrado central. El matemático recreativo británico Henry E. Dudeney (1857-1930) llamaba al anterior método de resolución, el “método de los botones y la cuerda”.

Relacionados con el problema de Guarini se han planteado otros problemas similares en los cuales se cambiaba el tamaño y forma del tablero de juego, y/o el número de caballos. La primera variante de este problema, para un tablero de tamaño 3 x 4, fue publicada en la revista Journal of Recreational Mathematics en 1974 (y posteriormente, en Scientific American en diciembre de 1978). El tablero y la posición inicial de la misma es la siguiente.

El método para resolverlo es de nuevo construir el grafo, de puntos y aristas, asociado al juego. Esta variante del problema de Guarini se transformaría en un problema de intercambio de fichas, tres blancas y tres negras, sobre la siguiente estructura estrellada.

Aunque de nuevo debemos de deshacer el lío de las intersecciones de las aristas y simplificar el grafo, que ahora quedará de la siguiente forma.

Ahora se pueden intercambiar las fichas blancas y negras en dieciséis movimientos. Para las fichas negras, la ficha de la casilla 1 va a la 6 (3 movimientos), de la 3 a la 7 (2 movimientos) y la de la 2 a la 8 (2 movimientos), en total serían 7 movimientos para las negras. Lo mismo para las blancas, otros 7 movimientos. El problema es que hay cruces entre las fichas blancas y negras, por lo que se necesitan dos movimientos más. En total dieciséis movimientos.

Para terminar con el contenido de esta entrada del Cuaderno de Cultura Científica os dejo planteadas otras dos variantes más.

Las siguientes imágenes, que cierran esta entrada, son dos obras del artista británico Tom Hackney pertenecientes a sus series de obras geométricas que representan partidas de ajedrez del artista y ajedrecista francés Marcel Duchamp (1887-1968).

Chess Painting No. 86 (Devos vs. Duchamp, Folkestone, 1933), del artista Tom Hackney, realizada en 2016. Imagen de la página web de Tom Hackney

 

Chess Painting No. 61 (Duchamp vs. Hanauer, New York, 1952), del artista Tom Hackney, realizada en 2015. Imagen de la página web de Tom Hackney

 

Bibliografía

1.- Raúl Ibáñez, Del ajedrez a los grafos, la seriedad matemática de los juegos, El mundo es matemático, RBA, 2015.

2.- Édouard Lucas, Recreaciones Matemáticas, vol. 1 – 4, Nivola, 2007, 2008.

3.- Miodrag S. Petrovic, Famous Puzzles of Great Mathematicians, AMS, 2009.

4.- Ron Brown, The Use of the Knight’s Tour to Create Abstract, Leonardo, Vol. 25, No. 1, pp. 55 – 58, 1992.

5.- John J. Watkins, Across the board, The Mathematics of Chessboard Problems, Princeton University Press, 2004.

6.- Miodrag S. Petrovic, Mathematics and Chess, 110 Entertaining Problems and Solutions, Dover Publications, 1997.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Ajedrez y matemáticas: el problema de Guarini se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. A vueltas con el origen del ajedrez
  2. El problema de Malfatti
  3. El problema de las flechas de Mahavira
Catégories: Zientzia

Izotz-kristalen zientzia

Zientzia Kaiera - mer, 2021/01/13 - 09:00
Leire Sangroniz, Ainara Sangroniz

Azken egunotan elurra mara-mara aritu da Euskal Herriko txoko askotan. Elur malutak izotz-kristal multzoez osatuta daude. Forma geometriko eder eta harrigarriak osatzen dituzte, artelan bat balira bezala. Baina nola osatzen dira kristal hauek? Zergatik osatzen dituzte horren geometria konplexuak? Hurrengo lerroetan horretaz mintzatuko gara.

Irudia: Elur malutak. (Argazkia: Free-Photos – domeinu publikoko irudia. Iturria: pixabay.com)

Izotz-kristalak mikroskopikoak dira eta lainoetan osatzen dira, ur-lurruna edota egoera likidoan dagoen ura atmosferan dauden partikulekin kontaktuan jartzean. Kristal hauek elur malutak osatzen dituzte, zenbaitetan kristal gutxi batzuez osatuak daude, baina bestetan kristal multzo handiak dira. Azken hamarkadetan argazkigintzan eta beste alorretan egin diren aurrerakuntzek izotz-kristalen itxura sakonago aztertzea ahalbidetu dute. Hala ere, elur malutak osatzen dituzten kristalek harridura eta interesa piztu izan dute aspalditik, nahiz eta iraganean begi hutsez soilik aztertu ahal ziren, ez baitzegoen beste tresna egokiagorik.

Izotz-kristalen itxura hexagonala, hots, 6 aldeko itxura geometrikoa, dagoeneko ezaguna zen Kristo aurreko 2. mendean, Txinako zenbait dokumentutan jasotzen denez. Alberto Magno teologo eta pentsalariak XIII. mendean identifikatu zituen izar itxurako kristalak. 1611. urtean Kepler astronomo eta matematikariak izotz-kristalen simetria hexagonala aztertu zuen, De nive sexangula izeneko lanean. Lan hau Wacker von Wackenfels diplomatikoari oparitu zion urte berrian. Keplerren hitzetan, opari bikaina zen, izotz-kristalak zerutik baitatoz eta izar itxura baitaukate. Beraren ustez izotz-kristalek itxura hexagonala zuten hori delako paketatze egokiena materialean ahalik eta hutsune txikiena gelditzeko. Ideia hau Thomas Harrior astronomo eta matematikariari zor dakioke; izan ere, Keplerrekin harremanetan egon zen, itsasontzi batean kanoi balak gordetzeko modu eraginkorrena bilatu nahian. Garai hartan atomoen teoria oraindik ez zegoen garatua, baina berak partikula esferikoetan pentsatzen zuen. Paketatze hexagonalak hutsarte txikienak uzten dituen egitura izateari Keplerren hipotesia deritzo eta 1998an frogatu zen, metodo konputazionalak erabiliz. Edozein kasutan, Keplerrek izotz-kristalen inguruan ikerketa sakonagoa behar zela uste zuen.

XIX. mendean Amerikan zein Europan elur-maluten argazkiak egiten hasi ziren. Argazkilari horietako bat Wilson Bentley zen, Vermont-eko baserritar bat. Beraren ama irakaslea zen eta etxean mikroskopio bat zeukaten. Bentleyk gaztetatik erabiltzen zuen mikroskopioa ur tantak, hegaztien lumak edota beste objektu batzuk aztertzeko. Izotz-kristalekin liluratuta, mikroskopioan ikusten zituen irudiak kopiatzen zituen eskuz, baina, marrazkietatik haratago joan nahian, mikroskopioarekin bat eginda erabil zitekeen argazki-kamera bat erosi zuen. Izotz-kristalen argazkiak ateratzea zuen helburu eta, bere kasa ikasiz, 1885ean tamaina mikroskopikoa zuen izotz-kristal baten lehen argazkia lortu zuen. 1885etik 1931ra elur maluten argazkiak ateratzen igarotzen zituen neguak. Milaka izotz-kristal aztertu zituen eta zenbait ikerketa-artikulu eta liburu argitaratu zituen. Bentleyren arabera ez daude bi izotz-kristal berdin.

Garai bertsuan, 1930 inguruan, Nakaya Ukichiro fisikari japoniarra naturan sortzen diren izotz-kristalak aztertzen hasi zen, haien egitura, erorketa-abiadura edota tamaina-banaketa zehazten ahaleginduz. Kristalak sakonago ikertzeko, haiek modu artifizialen sortzeari ekin zion, eta horretarako izotz-kristalak tenperatura eta hezetasun kontrolatuan sortzeko makina bat garatu zuen. Hala ere, laborategian izotz-kristalak eratzea erronka handia zen: hasieran kristal-pilaketak lortzen zituen, baina izotzen eraketa-prozesua aztertzeko, kristal bakar baten hazkuntza jarraitu behar da. Horretarako behar den substratua, hau da, kristala hazteko behar den oinarria, aldatzen joan zen, filamentu desberdinak erabiliz, kotoia edo zeta esaterako, baina emaitza onik lortu gabe. Azkenean, untxi baten ilea erabiliz, kristal bakar bat lortu zuen eta haren hazkuntza-prozesua jarraitu ahal izan zuen. Horrela tenperaturaren eta hezetasunaren araberako diagrama bat osatu zuen, kristalek hartzen zuten itxura azaltzen zuena. Grafiko hau Nakaya diagrama izenaz ezagutzen da. Baldintzen arabera, xaflak, orratzak, dendritak edo era askotariko zutabeak eratu daitezke. Oro har, ur-lurrun gehiago dagoenean forma konplexuagoak eta tamaina handiagoa hartzen dute. Tenperaturari dagokionez, 0 eta -30 °C artean osatzen dira.

Izotz-kristalen morfologia tenperaturaren eta hezetasunaren araberakoa dela orain dela 80 urte jakin bazen ere, ez dago azalpen zehatz bat mendekotasun hau modu egokian azaltzeko. Kontuan izan behar da kristalen hazkuntza egoera ezegonkorrean gertatzen dela. Prozesu dinamikoa da eta, Kenneth Libbrechet fisikariaren arabera, horrek zaildu egiten du kristalen azterketa. Libbrechetek erlazio hau ikertzen jarraitzen du, tenperaturak egiturari eta kristalaren hazkuntza-prozesuari nola eragiten dien aztertuz. Bere laborategian ia berdinak diren kristal-izotzak sortzeko gai izan da. Halako kristalak aldi berean sortzen ditu baldintza berdinetan, eta horrek hazkuntza antzekoa izatea eragiten du.

Erreferentzia bibliografikoak:

Higashi, A. (1962). Ukichiro Nakaya—1900–1962. Journal of Glaciology, 4 (33), 378-380. doi: 10.3189/S0022143000027763

Libbrecht, K. G. (2005). The physics of snow crystals. Reports on Progress in Physics, 68 (4), 855-895. doi: 10.1088/0034-4885/68/4/R03

Ball, P. (2011). In retrospect: On the Six-Cornered Snowflake. Nature, 480, 455. doi: https://doi.org/10.1038/480455a

Libbrecht, K. G. (2017). Physical Dynamics of Ice Crystal Growth. Annual Review of Materials Research, 47 (1), 271-295. doi: 10.1146/annurev-matsci-070616-124135

Iturriak: Egileez:

Leire Sangroniz eta Ainara Sangroniz Kimikan doktoreak dira eta UPV/EHUko Kimika Fakultatearen, Polimeroen Zientzia eta Teknologia Saileko ikertzaileak Polymat Institutuan.

The post Izotz-kristalen zientzia appeared first on Zientzia Kaiera.

Catégories: Zientzia

La energía de enlace nuclear

Cuaderno de Cultura Científica - mar, 2021/01/12 - 11:59

Los conceptos de estructura atómica y nuclear, esto es, que un átomo consiste en un núcleo rodeado por electrones y que el núcleo está compuesto por protones y neutrones, llevaron a una pregunta aparentemente trivial, pero que resultó ser fundamental: ¿Es la masa de un átomo neutro igual a la suma de las masas de los protones, neutrones y electrones que componen el átomo neutro?

Foto: Casey Horner / Unsplash

Esta pregunta puede responderse con precisión porque se conocen las masas del protón, el neutrón y el electrón, así como las masas de casi todas las especies atómicas. Un estudio de las masas atómicas conocidas ha demostrado que, para cada tipo de átomo, la masa atómica es siempre menor que la suma de las masas de las partículas constituyentes cuando se miden en sus estados libres. El átomo más simple que contiene al menos un protón, un neutrón y un electrón es el deuterio, 21H. En este caso, las masas (en unidades de masa atómica, u) de los constituyentes de un núcleo de deuterio, llamado deuterón, son

Masa en reposo de un protón: 1,007276 u

Masa en reposo de un neutrón: 1,008665 u

Masa en reposo total de las partículas libres: 2,01594 u

Masa en reposo del deuterón 2,01355 u

Diferencia (Δm): 0,00239 u.

Aunque la diferencia en la masa en reposo, Δm, puede parecer pequeña, corresponde a una diferencia de energía significativa, debido al factor c2 en la relación E = mc2, donde c es la velocidad de la luz [1]. La diferencia, Δm, en masa, que se llama defecto de masa, corresponde a una diferencia en la cantidad de energía ΔE antes y después de la formación del núcleo, ΔE = Δmc2.

Por lo tanto, si consideramos la formación de un núcleo de deuterio a partir de la combinación de un protón y un neutrón, se “perderá” en el proceso una cantidad de masa de 0,00239 u. Este defecto de masa significa que una cantidad de energía igual a 2,23 MeV [2] debe irradiarse desde este sistema de partículas que se combinan antes de que se constituyan como un núcleo de deuterio.[3]

La pérdida de energía calculada a partir de la diferencia en la masa en reposo se puede comparar con el resultado de un experimento directo. Cuando el hidrógeno es bombardeado con neutrones, se puede capturar un neutrón en la reacción.

Esta reacción no produce fragmentos de partículas que tengan una gran energía cinética, por lo que el defecto de masa de 0,00239 u del deuterón en comparación con la suma de las masas del átomo de hidrógeno y el neutrón debe estar en el rayo gamma. La energía del rayo gamma se ha podido determinar experimentalmente y se ha encontrado que es de 2,23 MeV, ¡exactamente lo calculado! Esto confirma que al formar un núcleo, los constituyentes emiten energía, generalmente como un rayo gamma, correspondiente a la cantidad de diferencia de masa.

También se ha estudiado la reacción inversa, en la que un deuterón es bombardeado con rayos gamma:


Cuando la energía de los rayos es inferior a 2,23 MeV, esta reacción no tiene lugar. Pero si se utilizan rayos de energía de 2,23 MeV o más, la reacción ocurre; algunos fotones se absorben y se pueden detectar protones y neutrones libres.

En resumen: tras la “captura” de un neutrón por un núcleo de hidrógeno (un protón) para formar un deuterón, la energía se libera en forma de rayo gamma. Esta energía (2,23 MeV) se denomina energía de enlace del deuterón. Se puede considerar como la energía liberada cuando un protón y un neutrón se unen para formar un núcleo. Para obtener la reacción inversa (cuando se bombardea un deuterón con rayos gamma), se debe absorber energía. De aquí que se pueda pensar en la energía de enlace también como la cantidad de energía necesaria para romper el núcleo en las partículas nucleares que lo constituyen.

Notas:

[1] Sobre esta equivalencia puede leerse Equivalencia entre masa y energía, dentro de nuestra serie sobre la relatividad, Teoría de la invariancia.

[2] Un factor de conversión conveniente de masa atómica (expresada en unidades de masa atómica) a energía (expresada en millones de electronvoltios) es 1u = 931 MeV. Por tanto (0,00239 u) · (931 MeV/u) = 2,23 MeV.

[3] Además, también se debe perder un poquito más de energía (13,6 eV), emitida como fotón, cuando un electrón se liga a este núcleo para formar un átomo de deuterio.

 

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

 

El artículo La energía de enlace nuclear se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El modelo protón-neutrón
  2. El problema de la estructura nuclear
  3. La hipótesis protón-electrón de la composición nuclear
Catégories: Zientzia

AlphaFold 2: proteinen forma aurresaten duen algoritmoa

Zientzia Kaiera - mar, 2021/01/12 - 09:00
Juan Ignacio Pérez Iglesias

Max Perutzek Nobel saria jaso zuen 1962an hemoglobinaren –hau da, odolari kolore gorria ematen dion proteinaren– egitura aurkitzeagatik.

Ziurrenik, proteina hitza irakurtzean, ia automatikoki haragiarekin lotuko dugu, elikagaietan pentsatuz gero, edo gorputzeko muskuluetan, giza gorputza baldin badugu buruan. Hala da, muskuluek proteina asko dituzte, molekula horien filamentuak baitira lerradura bidez uzkurdura sortzen duten egiturak.

AlphaFold1. irudia: Max Perutzek Nobel saria jaso zuen 1962an, hemoglobinaren egitura aurkitu zuelako, odolari kolore gorria ematen dion proteina. Irudian, hemoglobinaren bereizmen handiko lehenengo eredua bukatzen. (Argazkia: Max Perutz Labs)

Muskuluak uzkurtzea eta, hala, horiek lan egitea eragiteaz gain, proteinek izaki bizidunentzat funtsezkoak diren beste zeregin batzuk ere betetzen dituzte. Organismoetan gertatzen diren ia erreakzio kimiko guztiak katalizatzen dituzte: arnasketa organoetatik ehunetara oxigenoa eramaten dute, substantziak zelulen kanpoaldetik barnealdera garraiatzen dituzte edo garraiatzen laguntzen dute, askotariko funtzioak betetzen dituzten zelulen barne arkitekturak eratzen dituzte, eta zelularen kanpoaldetik seinaleak jaso eta informazioa barrualdera eramaten dute, funtsezko beste zeregin batzuen artean.

Proteinek aminoazidoak dituzte, karbonoz, hidrogenoz, oxigenoz eta nitrogenoz osatutako molekula txikiak, eta horietako bat, zisteina, sufrez ere osatuta dago. Izaki bizidun gehientsuenek gehienez ere horrelako hogei aminoazido dituzte. Proteinak molekula horien kateak dira, askotariko luzeratakoak. Proteinen hiru dimentsioko egitura beren osaketaren mende dago, hau da, berauek osatzen dituzten aminoazidoen eta katean duten ordena zehatzaren mende. Egitura oso garrantzitsua da, proteinen funtzioa finkatzen duelako, eta oso sentikorra, beraz, giroko hainbat faktorek –erradiazioak, beroak eta pHak, besteak beste– alteratu egin dezakete eta, ondorioz, proteinak bere funtzioa betetzea oztopatuko lukete.

Gaur egun, egitura ezagutzeko zenbait metodo erabiltzen dira. Ohikoena X izpien kristalografia da, horiek egoera kristalinoan dagoen substantzia batera zuzentzen direnean osatzen den difrakzio ereduaren azterketan oinarritua. Teknika horretan, X izpien eta kristalaren elektroi hodeiaren arteko elkarrekintzak irudi bereizgarri bat sortzen du, difrakzio eredua, zeinak atomoen kokapena deduzitzea ahalbidetzen duen eta, beraz, baita molekularen egitura ere. Arazoa da metodo hori nekeza dela eta egitura askotan ezin dela aplikatu. Kriomikroskopia elektronikoa berriagoa da, oso tenperatura baxuetan izoztutako laginekin lan egin eta hala artefaktuak agertzea saihesten duen mikroskopia modalitate bat.

AlphaFold 22. irudia: MSK1 proteina edo kinasa proteina. (GIFa: BQUB1819-JNavarro – CC BY-SA 4.0 lizentziapean. Iturria: Wikimedia Commons)

Bada, duela egun batzuk, esparru horretako aurrerapen teknologiko oso garrantzitsu bat ezagutarazi da, DeepMind enpresaren eskutik. Adimen artifizialaren bidez, algoritmo batek (AlphaFold 2 izenekoa) proteinen egitura zehaztu du, asmatze maila oso handiarekin, haien aminoazidoen sekuentziatik abiatuz.

AlphaFold 2 metodoa ez da oinarritzen molekulen propietate fisiko-kimikoen ezagutzan eta, ezagutza horretatik abiatuta, haien propietateen eta formaren dedukzioan. AlphaFoldek ehun eta hirurogeita hamar mila proteinako aminoazidoen egiturak eta sekuentziak konparatzen ditu (naturan berrehun milioi proteina daude); erkatze horretatik abiatuz «ikasi» egiten du eta egitura ezezaguna izan arren sekuentzia ezaguna duten proteinen forma aurresaten du.

AlphaFolden sortzaileen ustez, garapen hau xede espezifikoetan eragiteko forma egokia duten sendagaiak diseinatu eta ekoizteko atea izango da. Agian goizegi da hori esateko. Baina aurrerapena ikaragarria da eta izaki bizidunen egituren ezagutzan eta horren aplikazio posibleetan mugarri bat ezarriko du.

Erreferentzia bibliografikoak:

Le Page, Michael (2020). DeepMind’s AI biologist can decipher secrets of the machinery of life. New Scientist, 3311. 2020ko abenduaren 5ean argitaratua.

Service, Robert F. (2020). ‘The game has changed.’ AI triumphs at solving protein structures. Science Magazine. doi:10.1126/science.abf9367

Egileaz:

Juan Ignacio Pérez Iglesias (@Uhandrea) UPV/EHUko Fisiologiako katedraduna da eta Kultura Zientifikoko Katedraren arduraduna.

The post AlphaFold 2: proteinen forma aurresaten duen algoritmoa appeared first on Zientzia Kaiera.

Catégories: Zientzia

El hombre que extrajo pan del aire (pero también mató a millones de personas)

Cuaderno de Cultura Científica - lun, 2021/01/11 - 11:59

Manuel Peinado Lorca

Fritz Haber.

La “revolución verde” impulsada por el “padre de la agricultura moderna”, el ingeniero agrónomo norteamericano Norman Ernest Borlaug, premio Nobel de la Paz en 1970, no hubiera sido posible si cuarenta años antes los campos de cultivo no hubieran experimentado otra revolución cuyo promotor fue a la vez criminal de guerra y responsable de la salvación de la agricultura moderna.

Inspire a fondo. Seguramente crea que está llenando sus pulmones de oxígeno. No es así. Casi el 80 % del aire que respiramos es nitrógeno, el elemento más abundante en la atmósfera, que es vital para nuestra existencia, porque, entre otras cosas, es un componente esencial de ácidos nucleicos y aminoácidos.

La vida orgánica, nuestra vida, es pura química reactiva, pero paradójicamente el nitrógeno es inerte, pues no interactúa con otros elementos. Cuando respiramos, el nitrógeno penetra en los pulmones y vuelve a salir de inmediato sin provocar reacción alguna salvo la de servir como agente diluyente del oxígeno en la respiración.

Para que nos resulte útil debe adoptar otras formas más reactivas, como el amoniaco, y son las bacterias las que hacen ese trabajo para nosotros, fijándolo y transformándolo en nitratos para que pueda ser absorbido por las plantas en uno de los ciclos fundamentales para el mantenimiento de la vida.

La falta de nitrógeno asimilable por las plantas parecía una barrera insalvable a comienzos del siglo XX. Hasta que el químico alemán Fritz Haber inventó los fertilizantes artificiales hace poco más de un siglo, la producción agrícola dependía del uso de abonos de origen natural (salitre, guano y estiércol, fundamentalmente), unos recursos próximos al agotamiento por la creciente demanda de alimentos impulsada por el incremento demográfico.

Imagen de la página 88 de Bulbs, plants, and seeds for autumn planting: 1897.
Archive.org

En 1907, Haber fue el primero en extraer nitrógeno directamente del aire. Como cuenta Benjamin Labatut, Haber solucionó la escasez de fertilizantes que amenazaba con desencadenar una hambruna global como no se había visto nunca; de no haber sido por él, cientos de millones de personas que hasta entonces dependían de fertilizantes naturales para abonar sus cultivos podrían haber muerto por falta de alimentos.

En siglos anteriores, la demanda insaciable había llevado a empresas inglesas a viajar hasta Egipto para saquear los campos funerarios de los antiguos faraones en busca del nitrógeno contenido en los huesos de los miles de esclavos inhumados con sus dueños para que continuaran sirviéndolos más allá de la muerte.

Como puede leerse en la imagen adjunta recortada del Morning Post de 1820, los comerciantes británicos, estaban adquiriendo rápidamente todo hueso disponible en Europa continental. La batalla de Leipzig (citada como Leipsic en la noticia), también llamada Batalla de las Naciones tuvo lugar entre el 16 y el 19 de octubre de 1813. Cabe señalar que un quintal de la época eran 100 libras, por lo que el artículo habla de un envío de más de 203 toneladas de osamentas.

Los saqueadores de tumbas ingleses ya habían agotado las reservas de Europa continental; desenterraron más de tres millones de esqueletos, incluyendo las osamentas de cientos de miles de soldados y caballos muertos en las guerras napoleónicas, para enviarlos en barco al puerto de Hull, en el norte de Inglaterra, donde los esqueletos eran molidos en las trituradoras de huesos de Yorkshire para usarlos como fertilizante para la tierra verde y agradable de Inglaterra, un mantillo de los campos de batalla que también produjo dientes para ser reutilizados como dentaduras postizas.).

Dentaduras postizas con dientes de Waterloo. Museo Militar de Dresde, Alemania.
Adam Jones

Al otro lado del Atlántico, los cráneos de más de treinta millones de bisontes masacrados en las praderas norteamericanas eran recogidos uno a uno por colonos pobres e indios desharrapados para venderlos al Sindicato de Huesos de Dakota del Norte, que los amontonaba hasta formar una pila del tamaño de una iglesia antes de transportarlos a las fábricas de Michigan que los molían para producir fertilizantes.

El saqueo de tumbas cesó cuando Carl Bosch, el ingeniero principal del gigante químico alemán BASF, convirtió en un proceso industrial lo que Haber había logrado en el laboratorio. En poco tiempo, BASF fue capaz de producir cientos de toneladas de nitrógeno en una fábrica operada por más de cincuenta mil trabajadores.

Hombres de pie con un montón de cráneos de bisonte, Michigan Carbon Works, Rougeville MI, 1892.
Colección Histórica Burton, Biblioteca Pública de Detroit.

El proceso Haber-Bosch fue el descubrimiento químico más importante del siglo XX: al duplicar la cantidad de nitrógeno disponible, permitió la explosión demográfica que hizo crecer la población humana de 1,6 a 7 mil millones de personas en menos de cien años. Hoy, cerca del cincuenta por ciento de los átomos de nitrógeno de nuestros cuerpos han sido creados de forma artificial, y más de la mitad de la población mundial depende de alimentos fertilizados gracias al invento de Haber.

En la Gran Guerra (1914-1918), el invento resultó decisivo: después de que la flota inglesa cortara el acceso al salitre chileno, Alemania se habría tenido que rendir mucho antes al no poder alimentar a su población ni obtener la materia prima que necesitaba para seguir fabricando pólvora y explosivos. Los recursos y la potencia industrial eran claves en un nuevo tipo de conflicto bélico, el más global conocido hasta entonces.

Las grandes potencias movilizaron a sus mejores talentos. A principios del siglo XX, la ciencia alemana era puntera; sólo en química, siete de los premios Nobel concedidos entre 1900 y 1918 fueron de esa nacionalidad. Entre estos últimos, Haber fue nombrado responsable del departamento de suministros químicos del ejército alemán.

La Gran Guerra iba ser completamente nueva. En el escenario europeo, las operaciones terminaron estancadas en un frente de trincheras. Las armas que podían ser decisivas, los temibles gases tóxicos, habían sido regulados por los tratados de La Haya que prohibieron utilizarlos dentro de proyectiles de artillería.

Esta prohibición respondía a un dilema ético que había atrapado a políticos, militares y científicos. Apoyado por el sector duro del ejército, Haber, a quien la ética le traía sin cuidado, dio con la solución: los gases estaban prohibidos en los proyectiles, pero ¿y si encontrara una sustancia idónea para liberarla desde bidones y se dejara que el viento hiciera el resto?

El primer ataque con gas de la historia arrasó a las tropas francesas atrincheradas cerca de Ypres, en Bélgica. Al despertar en la madrugada del jueves 22 de abril de 1915, los soldados vieron una enorme nube verdosa que reptaba hacia ellos por la tierra de nadie. A su paso las hojas de los árboles se marchitaban, las aves caían muertas desde el cielo y los prados se teñían de un color metálico enfermizo.

Aprovechando la dirección del viento, los alemanes abrieron unos 5 730 cilindros de cloro, unas 168 toneladas, hacia las filas aliadas durante la segunda batalla de Ypres, en abril de 1915.
Wikimedia Commons

Cuando las primeras patrullas enviadas al silencioso campo de batalla llegaron a las líneas francesas, las trincheras estaban vacías, pero a poca distancia los cuerpos de los soldados franceses yacían por todas partes con las caras y los cuellos arañados intentando volver a respirar. Algunos se habían suicidado. Todos estaban muertos.

Tras el armisticio de 1918 que puso punto final a la Primera Guerra Mundial, Haber fue declarado criminal de guerra por los aliados. Tuvo que refugiarse en Suiza, donde recibió la noticia de que había obtenido el Premio Nobel de Química por un descubrimiento que había hecho poco antes de la guerra, y que en las décadas siguientes alteraría el destino de la especie humana.

El mundo moderno no podría existir sin el hombre que «extrajo pan del aire», según palabras de la prensa de su época, aunque el objetivo inmediato de su milagroso hallazgo no fue alimentar a las masas hambrientas. Con el nitrógeno de Haber, el conflicto europeo se prolongó dos años más, aumentando las bajas de ambos lados en varios millones de personas, cientos de miles de ellos aniquilados por las nieblas letales inventadas por el propio Haber.The Conversation

Sobre el autor: Manuel Peinado Lorca es catedrático de universidad en el Departamento de Ciencias de la Vida e Investigador del Instituto Franklin de Estudios Norteamericanos, Universidad de Alcalá

Este artículo fue publicado originalmente en The Conversation. Artículo Original.

El artículo El hombre que extrajo pan del aire (pero también mató a millones de personas) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El ARN está de moda… desde hace 3 800 millones de años
  2. Un fósil neuronal de 25 millones de años: los humanos también orientamos las orejas
  3. Las redes 5G no afectan a la salud… pero podrían hacer que el hombre del tiempo acierte menos
Catégories: Zientzia

Pages