Gandor neuralaren jatorria

Zientzia Kaiera - Az, 2024-06-19 09:00

Baliteke askok gandor neuralari buruz entzun ez izana. Hala bada, ezin dute imajinatu zenbat zor dioten. Gure gorputzaren zati handi bat gandor neuraletik sortzen da, orain ikusiko dugun moduan. Gauza bera gertatzen da animalia ornodun guztietan, eta kontu honetan bitxiena da gure arbaso ornogabeetan ez zela antzekorik ezagutzen. Horregatik, gandor neuronal garrantzitsuaren jatorria enigma bat zen. Orain arte.

Gandor neuralaren1. irudia: nerbio hodi enbrionarioaren eraketa, ornodunen nerbio sistema zentrala sorrarazten duena (entzefaloa eta bizkarrezur muina). Plaka neuralaren ertzek gandor neurala sortzen dute, jomuga anitzeko zelula mugikorren multzoa. (Irudia: NikNaks – Irudi eraldatua, jabari publikoa. Iturria: Wikimedia Commons)

Has gaitezen hasieratik. Ornodun guztien garapen enbrionarioan esku hartzen duten zelulek osatzen dute gandor neurala (1. irudia).  Zelula horiek plaka neuralaren ertzetan sortzen dira, hau da, enbrioian hondoratu eta gure nerbio sistema zentrala (entzefaloa eta bizkarrezur muina) sortuko duten azaleko zelulen multzoan. Gandor neuralak gorputz osoan zehar migratzen du, eta eratorri asko eta askotarikoak sortzen ditu: adibidez, nerbio sistema zentral horretatik kanpoko neurona guztiak (nerbio sistema sinpatikoak eta parasinpatikoak), horiek babesten dituzten Schwannen zelulak barne. Ehun endokrinoak ere sortzen ditu, hala nola, muin adrenala edo tiroideko C zelulak. Ekarpen harrigarria egiten die baita ere garezurreko hezurrei, dentinari, erdiko belarriko hezurtxoei, arteria handien muskulu leunari, edo irteera aortikoa biriketatik bereizten duen bihotzeko trenkadari. Eta hori gutxi balitz, gure larruazalari kolorea ematen dioten melanozitoak ere gandor neuraletik datoz.

Gandor neuralak gure garapenean duen garrantzia azpimarratzekoa da neurokristopatiak ezagututa. Terminoa duela mende erdi sortu zen, gandor neuralaren garapenean izandako anomaliek eragindako patologiak izendatzeko. Gandor neuralaren norako ugarien ondorioz, haren alterazioek sistema organiko askori eragin diezaiekete. Orain arte 66 neurokristopatia identifikatu dira, besteak beste, garezur aurpegiko malformazioak, bihotzeko akatsak, pigmentu alterazioak edo tumoreak, hala nola, feokromozitoma. Adibide batzuk aipatzearren, Hirschprung gaixotasunak hesteetako buxadura larriak eragiten ditu 5000-10.000 jaioberritik 1ean. DiGeorge sindromearen prebalentzia handiagoa da (4.000 haurtxotik 1). Paziente horietan, 22. kromosomaren zati bat galtzeak alterazioak eragiten ditu gandor neuralaren migrazioan, eta patologia espektro bat sortzen du, infekzioak, hipokaltzemia, bihotzeko akatsak eta ahosabaiko arraila barne. Bakanagoa da piebaldismoa, melanozitoen migrazioan izandako akatsen ondoriozko alterazio pigmentario zabala, esan bezala, gandor neuraletik eratorriak baitira zelula horiek.

Gure gorputzeko hain osagai desberdinak sortzeko gaitasun horrek garapenaren biologoak liluratu ditu betidanik. Baina galdera gehien egiten zituena gandor neuralaren jatorri ebolutibo bera zen. Gurekin ahaidetasun handiena duten ornogabeek, anfioxoek eta urokordatuek (aszidiak eta salpak) gurea bezalako nerbio hodi bat osatzen dute, baina ez dute gandor neural bat garatzen. Aszidietako enbrioian, zelula sentsorialak eta pigmentarioak sortzeko migratzen duten plaka neuraleko zelula batzuk identifikatu ziren. Baina zelula horiek ez dute eratorri eskeletiko edo muskularrik sortzen, gandor neuralak egiten duen bezala.

Gandor neuralaren2. irudia: gorriz ageri dira ikertzaile japoniarrek proposatutako aszidia gastrulako zelulak, gandor neuralaren eta ornodunen ama neuromesodermikoen aitzindari gisa. Zelula horiek neuronak eta muskulua sortzen dituzte aszidiako larba igerilariaren buztanean (metaformosiaren ondoren galtzen den buztana). (Irudia: Eric A. Lazo-Wasem-ek egindako aszidiaren irudia – Jabari publikoa, CC0 1.0. lizentziapean. Iturria: Cuaderno de Cultura Científica)

Kyotoko Unibertsitateko bi biologok Ciona intestinalis aszidiari buruz egindako ikerketa batek erakutsi berri du bere gastrulako bi zelula parek ornodunen gandor neuralarekin harremana iradokitzen duten ezaugarriak dituztela. Plaka neuralaren ertzetan kokatzen dira, gastrulak ehun zelula pasatxo dituenean (2. irudia). Ikerketak zelula horiek aitzindari neuromesodermikoekin duten harremana ere iradokitzen du, nerbio hodiari eta ornodunen enbrioiaren atzeko mesodermoari laguntzen diotenak.

Aszidietako lau zelula horien leinuak ornodunen gandor neuralaren ohiko geneak adierazten ditu. Leinu horrek nerbio hodiaren atzealdeko neuronak nahiz larba buztaneko muskulu zelulak sortzen ditu. Neuronen edo muskuluen bereizketa kontrolatzen duen sistema genetikoa ornodunen aitzindari neuromesodermikoek erabiltzen duten bera da. Ebidentzia gehigarri gisa, aszidietako zelula hautagaien transkriptorea (adierazitako geneen multzoa) ornodun baten transkriptorearekin (zebra arraina) alderatzeak argi eta garbi erlazionatzen ditu aitzindari neuromesodermikoekin.

Ikertzaile japoniarrek ondorioztatu dutenez, aszidia enbrioiaren zelula gutxi horiek dira bai gandor neuralaren bai ornodunen enbrioiko aitzindari neuromesodermikoen jatorri ebolutiboa. Ornodunok hasieratik egin genuena zelula horien plastikotasuna sakon ustiatzea izan zen, askotariko funtzioak betetzera bideratzeko, gure gorputz antolamenduaren konplexutasuna areagotuz.

Erreferentzia bibliografikoa:

Ishida, T., Satou, Y. (2024). Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nature Ecology & Evolution. DOI: 10.1038/s41559-024-02387-8

Egileaz:

Ramón Muñoz-Chápuli Oriol Animalien Biologiako Katedraduna (erretiratua) da Malagako Unibertsitatean.

Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2024ko apirilaren 22an: El origen de la cresta neural.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Gandor neuralaren jatorria appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

La mayor parte de la vida en la Tierra está aletargada

Cuaderno de Cultura Científica - Ar, 2024-06-18 11:59

Muchos microbios y células están en un sueño profundo, esperando el momento adecuado para activarse. Los biólogos han descubierto una proteína muy extendida que detiene abruptamente la actividad de una célula y la vuelve a activar con la misma rapidez.

Un artículo de Dan Samorodnitsky. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

Cuando las cosas se ponen difíciles, muchos microbios quedan inactivos. Una nueva investigación ha descubierto una proteína ubicua que detiene la producción de proteínas de una célula en un instante. Fuente: Nico Roper/ Quanta Magazine

Se ha informado recientemente del descubrimiento de una proteína natural, llamada Balon, que puede detener por completo la producción celular de nuevas proteínas. Balon se ha encontrado en bacterias que hibernan en el permafrost ártico, pero también parece ser que es producida por muchos otros organismos y podría ser un mecanismo de letargo pasado por alto en todo el árbol de la vida.

Para la mayoría de las formas de vida, la capacidad de aislarse es una parte fundamental de mantenerse con vida. Las condiciones duras como la falta de alimentos o el clima frío pueden aparecer de la nada. En esta situación desesperada, en lugar de desplomarse y morir, muchos organismos han dominado el arte del letargo. Ralentizan su actividad y metabolismo. Luego, cuando vuelven tiempos mejores, se reaniman.

Permanecer en un estado latente es en realidad la norma para la mayoría de la vida en la Tierra: según algunas estimaciones, el 60% de todas las células microbianas están hibernando en un momento dado. Incluso en organismos cuyo cuerpo entero no está inactivo, como la mayoría de los mamíferos, algunas poblaciones celulares dentro de ellos descansan y esperan el mejor momento para activarse.

«Vivimos en un planeta aletargado», afirma Sergey Melnikov, biólogo molecular evolutivo de la Universidad de Newcastle. «La vida se trata principalmente de estar dormido».

Pero, ¿cómo logran las células esta hazaña? A lo largo de los años, los investigadores han descubierto una serie de «factores de hibernación», proteínas que las células utilizan para inducir y mantener un estado latente. Cuando una célula detecta algún tipo de condición adversa, como hambre o frío, produce un conjunto de factores de hibernación para detener su metabolismo.

Algunos factores de hibernación desmantelan la maquinaria celular; otros impiden que los genes se expresen. Los más importantes, sin embargo, desactivan el ribosoma, la máquina celular para construir nuevas proteínas. La producción de proteínas representa más del 50% del uso de energía en una célula bacteriana en crecimiento. Estos factores de hibernación arrojan arena en los engranajes del ribosoma, impidiéndole sintetizar nuevas proteínas y ahorrando así energía para las necesidades básicas de supervivencia.

A principios de este año, en una publicación en Nature, un equipo de investigadores ha informado del descubrimiento de un nuevo factor de hibernación, al que han llamado Balon. La proteína es sorprendentemente común: una búsqueda de su secuencia genética descubrió su presencia en el 20% de todos los genomas bacterianos catalogados. Y funciona de una manera que los biólogos moleculares nunca antes habían visto.

Anteriormente, todos los factores de hibernación conocidos que alteraban los ribosomas funcionaban pasivamente: esperaban a que un ribosoma terminara de construir una proteína y luego le impedían iniciar una nueva. Balon, sin embargo, tira del freno de mano. Se introduce en cada ribosoma de la célula, incluso interrumpiendo los ribosomas activos en mitad de su trabajo. Antes de Balon, los factores de hibernación sólo se habían observado en ribosomas vacíos.

«El artículo Balon es sorprendentemente detallado», comenta el biólogo evolutivo Jay Lennon, que estudia la latencia microbiana en la Universidad de Indiana y que no ha participado en el nuevo estudio. «Ampliará nuestra visión de cómo funciona el letargo».

Karla Helena-Bueno descubrió un factor de hibernación común cuando accidentalmente dejó una bacteria del Ártico en el hielo durante demasiado tiempo. «Traté de buscar en un rincón poco estudiado de la naturaleza y encontré algo», cuenta. Fuente: Karla Helena-Bueno

Melnikov y su estudiante de posgrado Karla Helena-Bueno descubrieron Balon en Psychrobacter urativorans, una bacteria adaptada al frío nativa de los suelos helados y recolectada del permafrost ártico. (Según Melnikov, la bacteria se encontró por primera vez infectando un paquete de salchichas congeladas en la década de 1970 y luego fue redescubierta por el famoso geneticista Craig Venter en un viaje al Ártico). Estudian P. urativorans y otros microbios inusuales para caracterizar la diversidad de herramientas de construcción de proteínas utilizadas en todo el espectro de la vida y para comprender cómo los ribosomas pueden adaptarse a ambientes extremos.

Debido a que el letargo puede ser desencadenado por una variedad de condiciones, incluyendo el hambre y la sequía, los científicos llevan a cabo esta investigación con un objetivo práctico en mente: «Probablemente podamos usar este conocimiento para diseñar organismos que puedan tolerar climas más cálidos», apunta Melnikov. “y por lo tanto resistir el cambio climático”.

Presentamos: Balon

Helena-Bueno descubrió Balon por pura casualidad. Estaba intentando convencer a P. urativorans para que creciera felizmente en el laboratorio. En lugar de eso, hizo lo contrario. Dejó el cultivo en una cubeta de hielo durante demasiado tiempo y logró aplicarle un golpe de frío. Para cuando recordó que estaba allí, las bacterias adaptadas al frío ya estaban en letargo.

No queriendo desperdiciar el cultivo, los investigadores persiguieron de todos modos sus intereses originales. Helena-Bueno extrajo los ribosomas de las bacterias afectadas por el frío y los sometió a crio-EM. Abreviatura de microscopía electrónica criogénica, crio-EM es una técnica para visualizar estructuras biológicas minúsculas en alta resolución. Helena-Bueno vio una proteína atascada en el sitio A del ribosoma paralizado, la «puerta» por donde se entregan los aminoácidos para la construcción de nuevas proteínas.

Helena-Bueno y Melnikov no reconocieron la proteína. De hecho, nunca antes se había descrito. Tenía similitud con otra proteína bacteriana, una que es importante para desmontar y reciclar partes ribosomales, llamada Pelota en referencia al término en español. De ahí que llamaran a la nueva proteína Balon, por el homónimo español a “pelota”, “balón”.

La capacidad de Balon para detener la actividad del ribosoma es una adaptación crítica para un microbio bajo estrés, comenta Mee-Ngan Frances Yap, microbióloga de la Universidad Northwestern que no ha participado en el trabajo. «Cuando las bacterias crecen activamente, producen muchos ribosomas y ARN», continúa. «Cuando se encuentran con estrés, una especie podría necesitar detener la traducción» del ARN en nuevas proteínas para comenzar a conservar energía para un período de hibernación potencialmente largo.

Llamativamente, el mecanismo de Balon es un proceso reversible. A diferencia de otros factores de hibernación, se puede insertar para detener el crecimiento y luego expulsarlo rápidamente como una cinta de casete. Permite que una célula entre rápidamente en estado de letargo en caso de emergencia y que resucite con la misma rapidez para readaptarse a condiciones más favorables.

Balon puede hacer esto porque se adhiere a los ribosomas de una manera única. Cada factor de hibernación ribosómica descubierto previamente bloquea físicamente el sitio A del ribosoma, por lo que cualquier proceso de producción de proteínas que esté en progreso debe completarse antes de que el factor pueda unirse para desactivar el ribosoma. Balon, por otro lado, se une cerca del canal, pero no a través de él, lo que le permite ir y venir independientemente de lo que esté haciendo el ribosoma.

A pesar de la novedad mecánica de Balon, es una proteína extremadamente común. Una vez identificada, Helena-Bueno y Melnikov encontraron parientes genéticos de Balon en más del 20% de todos los genomas bacterianos catalogados en bases de datos públicas. Con la ayuda de Mariia Rybak, bióloga molecular de la Rama Médica de la Universidad de Texas, caracterizaron dos de estas proteínas bacterianas alternativas: una del patógeno humano Mycobacterium tuberculosis, que causa la tuberculosis, y otra de Thermus thermophilus, que vive en el último lugar en el que econtrarías a P. urativorans, en las ultracalientes fuentes hidrotermales submarinas. Ambas proteínas también se unen al sitio A del ribosoma, lo que sugiere que al menos algunos de estos parientes genéticos actúan de manera similar a Balon en otras especies bacterianas.

Balon está notablemente ausente en Escherichia coli y Staphylococcus aureus, las dos bacterias más comúnmente estudiadas y los modelos más utilizados para el letargo celular. Al centrarse sólo en unos pocos organismos de laboratorio, los científicos habían pasado por alto una táctica de hibernación generalizada, afirma Helena-Bueno. «Traté de buscar en un rincón poco estudiado de la naturaleza y encontré algo».

Todo el mundo hiberna

Cada célula necesita la capacidad de permanecer aletargada y esperar su momento. Melnikov explica que el modelo de laboratorio de la bacteria E. coli tiene cinco modos diferentes de hibernación, cada uno de los cuales por sí solo es suficiente para permitir que el microbio sobreviva a una crisis.

«La mayoría de los microbios se están muriendo de hambre», comenta Ashley Shade, microbióloga de la Universidad de Lyon que no ha participado en el nuevo estudio. “Existen en un estado de necesidad. No se están duplicando. No están viviendo su mejor vida”.

Pero el letargo también es necesario fuera de los períodos de hambruna. Incluso en organismos, como la mayoría de los mamíferos, cuyo cuerpo entero no queda completamente inactivo, las poblaciones celulares individuales deben esperar el mejor momento para activarse. Los ovocitos humanos permanecen inactivos durante décadas esperando ser fertilizados. Las células madre humanas nacen en la médula ósea y luego permanecen inactivas, esperando que el cuerpo las llame para crecer y diferenciarse. Los fibroblastos del tejido nervioso, los linfocitos del sistema inmunitario y los hepatocitos del hígado entran en fases latentes, inactivos y sin división y se reactivan más tarde.

«Esto no es algo exclusivo de bacterias o arqueas», afirma Lennon. “Cada organismo del árbol de la vida tiene una forma de lograr esta estrategia. Pueden pausar su metabolismo”.

Los osos hibernan. Los virus del herpes se lisogenizan. Los gusanos tienen una etapa dauer. Los insectos entran en diapausa. Los anfibios estivan. Los pájaros entran en torpor. Todas estas son palabras para exactamente lo mismo: un estado de letargo que los organismos pueden revertir cuando las condiciones son favorables.

«Antes de la invención de la hibernación, la única forma de vivir era seguir creciendo sin interrupciones», dice Melnikov. “Poner la vida en pausa es un lujo”.

También es un tipo de seguro a nivel poblacional. Algunas células persiguen el estado de letargo detectando cambios ambientales y respondiendo en consecuencia. Sin embargo, muchas bacterias utilizan una estrategia estocástica. «En entornos que fluctúan aleatoriamente, si a veces no entras en estado de letargo, existe la posibilidad de que toda la población se extinga» a través de encuentros aleatorios con desastres, explica Lennon. Incluso en los cultivos de E. coli más sanos, felices y de más rápido crecimiento, entre el 5% y el 10% de las células permanecerán inactivas en cualquier caso. Son los supervivientes designados que vivirán si algo les sucede a sus primos más activos y vulnerables.

En ese sentido, el letargo es una estrategia de supervivencia ante catástrofes globales. Por eso Helena-Bueno estudia la hibernación. Le interesa saber qué especies podrían permanecer estables a pesar del cambio climático, cuáles podrían recuperarse y qué procesos celulares, como la hibernación asistida por Balon, podrían ayudar.

Más fundamentalmente, Melnikov y Helena-Bueno esperan que el descubrimiento de Balon y su ubicuidad ayude a las personas a replantear lo que es importante en la vida. Todos nos quedamos inactivos con frecuencia y muchos de nosotros lo disfrutamos bastante. «Pasamos un tercio de nuestra vida durmiendo, pero no hablamos de ello en absoluto», comenta Melnikov. En lugar de quejarnos de lo que nos perdemos cuando dormimos, tal vez podamos experimentarlo como un proceso que nos conecta con toda la vida en la Tierra, incluidos los microbios que duermen en las profundidades del permafrost del Ártico.

El artículo original, Most Life on Earth is Dormant, After Pulling an ‘Emergency Brake’, se publicó el 5 de junio de 2024 en Quanta Magazine.

Traducido por César Tomé López

El artículo La mayor parte de la vida en la Tierra está aletargada se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Paleodieta beti ez zen uste genuen modukoa

Zientzia Kaiera - Ar, 2024-06-18 09:00

Urte luzez historiaurreko dietari buruz egon den estereotipo bat zalantzan jarri dute Marokon aurkitutako datu berriek: Neolito aroaren aurreko populazio batek landare jatorriko elikagai ugari jaten zuen.

paleodieta1. irudia: Neolito Aroaren aurreko ehiztari-biltzaileen dietan begetalek garrantzi handia izan zutela ondorioztatu dute azterketa isotopikoek. (Argazkia: Hans Splinter – CC BY-ND 2.0 lizentziapean. Iturria: flickr.com)

Haragiaren kontsumoa gizakiaren eboluzioan funtsezkoa izan zelako ideia luze eta zabal hedatuta dago, eta, hein handi batean, aditu gehienak bat datoz esatean haragiak berebiziko garrantzia izan zuela, batez ere, garunaren garapenerako beharrezko energia izatea ahalbidetu zielako gure arbasoei. Baina horrek ez du halabeharrez esan nahi Neolito Aroaren aurreko gizakiek haragia baino jaten ez zutenik.

Dena dela, hain garai urrunetan zer nolako elikadura izaten zen jakitea ez da batere erraza. Izan ere, dieta nolakoa zen ezagutzeko, arkeologiak ez du asko laguntzen. Edo, hobeto esanda, laguntzen du, baina hala moduz, denbora luzean kontserbatzen diren arrastoak baino ez direlako geratzen aztarnategietan. Hala, gehienetan, mantentzen direnak hezurrei edo —kostaldeko populazioen kasuan— moluskuei lotuta daude.

Esan beharrik ez dago horrek isuri kognitibo erraldoia dakarrela garaiko gizakien bizimoduen gaineko ulermenerako, baina, zorionez, bide horretan laguntzen duten teknika berriak garatzen eta izugarri hobetzen ari dira azken urteotan. Plaza honetara behin baino gehiagotan ekarri dugun teknika horietako bat da isotopoen analisia, eta, oraingoan ere, bide horri eutsita nobedade interesgarriak dakartzate zientzialariek besopean.

Nature Ecology & Evolution argitaratutako zientzia artikulu batean azaldu dute iberomauritaniar kulturako gizakien arrastoen analisietatik ondorioztatutakoa. Aurkitu dute duela 15.000-13.000 urte inguru gaur egungo Marokon bizi zen ehiztari-biltzaileen populazio horrek landare jatorriko produktuetan zuela proteina iturri nagusia. Klima-aldaketa sakoneko garaia izan zen ordukoa, azken hotzaldi handiaren ostean beroketa handia gertatu zelako, eta Holozenoa abiatu zen.

Ondorio horretara iritsi dira Taforalt izeneko haitzuloan aurkitutako 25 hortz eta zazpi hezur analizatu ostean. Zehazki, hortzetako esmaltean dauden zink eta estrontzio isotopoak aztertu dituzte, eta horietan aurkitu dituzte argudiorik indartsuenak proposatzeko beren dieta nagusiki landareetan oinarritzen zela. Horiez gain, hezurretako kolagenoan ere nitrogeno eta karbono isotopoen arabera ondorioztatu dute alde gutxiago zegoela gizaki horien eta animalia belarjaleen artean, Europan eta Asian Goi Paleolitoko beste aztarnategiekin alderatuz.

Isotopoetan ez ezik, inguruabar arkeologikoek ere berretsi dituzte emaitzak. Izan ere, aztarnategian erretako ezkurren, pistatxoen eta basa-oloen arrastoak aurkitu dituzte. Horiekin batera, ehotzeko tresnak ere aurkitu dituzte. Gauzak hala izanik ere, haragi kontsumoaren zantzuak ere agertu dira, ebaketa markak aurkitu dituztelako ardi eta gazelen hezurren arrastoetan.

paleodieta2. irudia: Marokon dagoen Taforalt aztarnategian jaso dituzte analisietan erabilitako arrasto arkeologiko eta antropologikoak. (Argazkia: Nicolas Perrault III – CC0 1.0 lizentziapean. Iturria: Wikimedia Commons)

Beste kontu interesgarri bat azaleratu dute arrastoek. Aztertutako norbanako baten kasuan, aurkitu dute goiz kendu ziotela titia. Ikertzaileen irudikoz, horrek adierazi lezake almidoia duten elikagai begetalak eman ahal zizkiotela umeari, ehiztari-biltzaileen gizarteetan horrelako portaerak ohizkoak ez diren arren. Are, proposatu dute hau ohiko portaera izan ahal zela, eta urtebete inguru zutenean kentzen zietela titia haurtxoei, landare jatorriko dieta batera igaroarazteko. Hau posible bide zen zerealen moduko elikagai bigun eta erraz digerigarriak eskura zituztelako, ikertzaileen arabera.

Atzemandako karies aztarnek ere berresten dute karbohidrato ugari hartzen zituztelako ideia. Aurretik egindako beste ikerketa batek agerian utzi zuen populazio hauek arazo oso larriak zituztela hortzetan, eta une horretan ere pentsatu zuten hartzigarri diren landareetako karbohidratoak izan ahal zirela arazo horien iturria.

Klervia Jaouen egileak prentsa ohar batean azaldu dutenez, “teknika isotopikoak erabilita dieta paleolitiko batean landare jatorria duen horren zati handia dokumentatzen den aurreneko aldia da hau seguru aski”.

Horregatik guztiagatik uste dute agian talde hori sedentarismorako trantsizioan ari zirela jada. Izan ere, Ekialde Hurbileko lehen nekazariek izan zituzten dieten parekoa zela azaldu dute ikertzaileek. “Nekazaritza aurreko giza taldeetan animalia proteinen dependentzia handia zegoelako ideia zalantzan jartzen du dieta patroi desberdin honek”, erantsi du Zineb Moubtahij ikertzaileak.

Ikertzailek azaldu dute lortutako emaitzek beste behin agerian utzi dutela giza espeziearen arrakastaren ezaugarri nagusienetako bat malgutasuna izan dela; kasu honetan, dietarekiko. Hots, inguruaren eta bertan zeuden baliabideen arabera, elikadura aldatzeko gaitasuna zutela. Norabide honetan, gizakiak beren elikadura ohituretan “erresilienteak eta malguak” direla nabarmendu du Moubtahijek, modako terminoari eutsita.

Aurretik ere halako portaeren zantzuak baziren, baina probatzeko zailagoak. Kasurako, Alacanten aurkitutako gorozki arrastoen analisi molekularrean oinarrituta 2014n argitaratutako ikerketa batek ondorioztatu zuen duela 50.000 urteko neandertalek ere landare jatorriko produktuak kontsumitzen zituztela.

Egileek uste dute nekazaritza agertu aurretik ere gero eta landare gehiago kontsumitzen zirela —kasurako, Israelego iparraldean duela 23.000 urteko zereal aleak ere aurkitu direla gogora ekarri dute ikertzaileek—.

Bestetik, Taforalt haitzuloan egindako analisi batzuek sedentarismo zantzuak aurkitu dituzte, bai eta kanaberaz egindako saskigintza ere. Sedentarioak izan zirela uste da hilerriak aurkitu direlako zonaldean —Taforalt da horietako bat; bertan helduak, nerabeak eta haurrak ehortzi zituztelarik—, eta aterpeak sarritan berrerabiliak izan zirelako.

Landareetara jotzeko arrazoiari dagokionez, ikertzaileek uste dute hainbat faktore egon ahal zirela, baina nagusiena izan zela gizakiek ehizatzen zituzten animalia erraldoien iraungitzea.

Bestetik, urtaroen arabera moldatzen ziren ere. Ikertzaileek uste dute landareen kontsumoa bideratuta egon ahal zela ehizatzeko animaliak eskasak ziren uneetan elikatzera.

Erreferentzia bibliografikoa:

Zineb Moubtahij et al. (2024). Isotopic evidence of high reliance on plant food among Later Stone Age hunter-gatherers at Taforalt, Morocco. Nature Ecology & Evolution, 8, 1035–1045. DOI: 10.1038/s41559-024-02382-z

Egileaz:

Juanma Gallego (@juanmagallego) zientzia kazetaria da.

The post Paleodieta beti ez zen uste genuen modukoa appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Los hongos carnívoros “olfatean” a sus presas

Cuaderno de Cultura Científica - Al, 2024-06-17 11:59

Estoy seguro de que este título ha sorprendido a los lectores. Primero, por el concepto de “hongo carnívoro” bastante opuesto a lo que conocemos sobre estos seres. Segundo, porque atribuimos un cierto sentido del olfato a organismos carentes de sistema nervioso. Lo explicamos a continuación.

En verde, las células producidas por el hongo hambriento ayudan a atraer y atrapar gusanos nematodos. Las líneas grises en forma de hilo son micelio, las hebras conectivas que forman un solo hongo.
Foto: Yen-Ping Hsueh

Los hongos y los animales compartimos algunas características importantes. Somos pluricelulares y heterótrofos. Esto quiere decir que estamos formados por multitud de células organizadas que obtienen su energía a partir de la oxidación de materia orgánica. Esto nos distingue de seres autótrofos como las plantas, que son capaces de utilizar energía de fuentes no orgánicas como la luz.

Hongos y animales también somos diferentes en ambos aspectos. La pluricelularidad se alcanza en los animales a través de un desarrollo embrionario. Esto no sucede en los hongos, cuyo micelio crece a partir de esporas, sin formar tejidos ni órganos. Por otro lado, la alimentación de los hongos es fundamentalmente pasiva, por crecimiento del micelio sobre una fuente de materia orgánica. Los animales (salvo esponjas y placozoos) desarrollamos un sistema nervioso que nos permite desplegar un comportamiento proactivo de detección y obtención del alimento.

La capacidad evolutiva de los seres vivos produce innovaciones insólitas que rompen estos esquemas simples. Hay un grupo de hongos, conocidos genéricamente como NTF (nematode trapping fungi), que en condiciones de inanición y presencia de nematodos son capaces de desarrollar rápidamente unos filamentos adhesivos que atrapan al gusano, causan su muerte y les proporcionan alimento.

Los mecanismos que regulan este sorprendente comportamiento están siendo revelados por una serie de estudios sobre el NTF Arthrobotrys oligospora, liderados por la investigadora taiwanesa Yen-Ping Hsueh. Este hongo ya era conocido por su capacidad de producir compuestos químicos que actuaban como cebo para atraer a los nematodos, simulando el olor de fuentes de alimento o incluso feromonas para la atracción sexual.

hongosFigura 1. El nematodo C. elegans atrapado por el hongo A. oligospora. Escala=10 μm. Fuente:  Hsueh et al. (2017) eLife 2017;6:e20023

Más recientemente, el grupo de Yen-Ping Hsueh mostró que la presencia del nematodo Caenorhabditis elegans provocaba en el hongo la activación de un gran número de genes. Esta respuesta inducía cambios morfológicos, sobre todo el crecimiento rápido de los filamentos de las trampas (Figura 1). Al mismo tiempo se expresaban proteínas adhesivas para dificultar la huida del gusano, y finalmente se secretaban enzimas, en concreto metaloproteasas, que digerían al infortunado C. elegans haciendo posible su absorción por el hongo. El proceso se puede ver en este espectacular vídeo del laboratorio de la Dra. Hsueh1.

¿Cómo se regula a nivel molecular la rápida respuesta de A. oligospora a la presencia del nematodo? El equipo taiwanés identificó la vía AMPc-PKA como la activadora de este proceso. El adenosín monofosfato cíclico (AMPc) es un “segundo mensajero”. Cuando una célula recibe una señal externa a través de un receptor es habitual que se desencadene una cascada de reacciones en el interior que culmine en una respuesta fisiológica, por ejemplo, la expresión de determinados genes. Este proceso se conoce como “transducción de señales” y en él intervienen muchas veces segundos mensajeros, es decir, pequeñas moléculas como el AMPc o iones como el calcio (Ca2+). En concreto el AMPc activa la proteína kinasa A (PKA), activadora a su vez de otras proteínas que regulan la respuesta celular.

Yen-Ping Hsueh y sus colaboradores mostraron que la inactivación de esta vía de señalización hacía que los hongos fueran indiferentes a la cercanía de sus presas potenciales. Pero todavía quedaba una cuestión por resolver, ¿cómo detecta un hongo sin sistema nervioso la presencia de C. elegans?

hongosFigura 2. Nuestra sensación olfativa se genera cuando un receptor GPCR del epitelio olfativo capta un ligando (molécula olorosa) y cambia su configuración. Esto provoca la disociación y activación de la proteína G cuya subunidad α activa la enzima sintetizadora de AMPc. Esta molécula provoca la apertura de canales iónicos, la despolarización de la membrana celular y la generación del impulso nervioso. En el caso del hongo A. oligospora el ligando de las GPCRs es un ascarósido segregado por el nematodo. La elevación de los niveles de AMPc activa la proteína kinasa A y se dispara el mecanismo de desarrollo de la trampa

 

En cierto sentido A. oligospora “huele” al nematodo. Evidentemente no existen órganos olfativos en los hongos, pero el mecanismo que utilizan es sorprendentemente parecido al que usamos nosotros para percibir los olores (Figura 2).

Nuestro sentido del olfato se basa en receptores acoplados a proteína G (GPCRs, por G protein-coupled receptors). Se trata de proteínas cuya cadena atraviesa siete veces la membrana celular. Cuando su porción extracelular detecta las señales adecuadas (hormonas, péptidos, diverso tipo de moléculas…) cambia la configuración del receptor disociando la proteína G unida a su dominio intracelular, lo que desencadena la transducción de la señal.

Estos receptores son importantísimos en la detección de señales. Para hacernos una idea, los humanos tenemos más de 800 GPCRs que intervienen en multitud de procesos sensoriales y de respuesta a hormonas o neurotransmisores. Por esto son la principal diana de los fármacos que utilizamos.

En un reciente artículo, el equipo de Yen-Ping Hsueh acaba de identificar dos familias de GPCRs usadas por A. oligospora para detectar la presencia de nematodos. Una de estas familias detecta ascarósidos, pequeños glicolípidos que secretan continuamente los nematodos a modo de feromonas. La segunda familia detecta otras moléculas segregadas por los nematodos y que todavía no han sido identificadas. En ambos casos la activación de las proteínas G dispara la vía AMPc-PKA y pone en marcha el programa de construcción de las trampas.

En resumen, los hongos NTF no “huelen” al nematodo en un sentido estricto de la palabra, pero el paralelismo entre el uso de GPCRs para la detección de presas y el funcionamiento de nuestro olfato es extraordinariamente llamativo.

Referencias:

Chen SA, Lin HC, Hsueh YP. (2022) The cAMP-PKA pathway regulates prey sensing and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3 (Bethesda). doi: 10.1093/g3journal/jkac217.

Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW. (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife. doi: 10.7554/eLife.20023.

Kuo CY, Tay RJ, Lin HC, Juan SC, Vidal-Diez de Ulzurrun G, Chang YC, Hoki J, Schroeder FC, Hsueh YP. (2024) The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol. doi: 10.1038/s41564-024-01679-w.

Lin HC, de Ulzurrun GV, Chen SA, Yang CT, Tay RJ, Iizuka T, Huang TY, Kuo CY, Gonçalves AP, Lin SY, Chang YC, Stajich JE, Schwarz EM, Hsueh YP. (2023) Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus. PLoS Biol. doi: 10.1371/journal.pbio.3002400.

Nota:

1 En la primera parte. En una segunda parte se muestra la estrategia de otro hongo carnívoro, Pleurotus ostreatus, que produce una toxina volátil que paraliza al nematodo.

 

Sobre el autor: Ramón Muñoz-Chápuli Oriol es Catedrático de Biología Animal (jubilado) de la Universidad de Málaga

El artículo Los hongos carnívoros “olfatean” a sus presas se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Pirinioetako larreetan biodibertsitatea indartzeko gakoak identifikatu dituzte

Zientzia Kaiera - Al, 2024-06-17 09:00

Nafarroako mendebaldeko Pirinioetako bazkalekuetan biodibertsitatea sortzeko eta mantentzeko kudeaketako jardunbide gakoak identifikatu dituzte. UPV/EHUko FisioKlima-AgroSosT taldeak, Nafarroako Gobernua eta Nafarroako Ingurumen Kudeaketa (GAN-NIK) enpresa elkarlanean aritu dira ezterlan honetan.

Landa-garapeneko eta biodibertsitatea kontserbatzeko Europako estrategiek aspalditik onartzen dute balio natural handiko abeltzaintza-sistema estentsiboek duten garrantzia. Hala ere, inguru horietako asko gaur egun mehatxupean daude, intentsifikazioagatik eta lurrak utzi egiten direlako. Balio natural handiaren (high natural value, HNV) kontzeptuak edo adierazleak barruan hartzen ditu biodibertsitatea mantentzen laguntzen duten eta horretarako garrantzia duten landa-sistema guztiak. Hainbat lan egin dira paisaiaren eskalan balio natural handia duten guneak identifikatzeko. Oso urriak dira, ordea, kudeaketa-unitate oinarrizkoenen –hau da, partzelen– mailako ikerlanak.

biodibertsitateaIrudia: aztertutako nekazaritzako lurzatien kokapena Mendebaldeko Pirinioetan (Nafarroa, Espainia). (Argazkia: Pardo, Iker; et. al. (2024))

UPV/EHUko FisioKlima-AgroSosT ikerketa-taldeak eta erakunde laguntzaileek partzela mailako landa-ikerketa zabala egin dute. “Partzelaz ari garenean erabilera-unitateen eskalaz ari gara —erabilera eta jabe bakarreko larreak—“, azaldu du Iker Pardo Guereñok, UPV/EHUko Landareen Biologia eta Ekologiako saileko irakasleak. Horretarako, “Nafarroako mendebaldeko Pirinioetako 144 partzela inguru ikertu ditugu, eta metodologia bat garatu dugu haien balio naturalaren adierazle bat lortzeko, islatzen duena zeinen intentsiboa den erabilera eta zer ekarpen egiten dion biodibertsitateari”, azaldu du Pardok.

Adierazle berri hori zenbait indizetan oinarrituta dago, zeinek batera biodibertsitatearen ebaluazio osatuagoa ematen baitute ohiko adierazleek baino (esaterako, espezieen aberastasuna). Gainera, “datuak erraz jaso daitezke lekuan bertan, eta horrek aukera ematen du espezializatu gabeko jendeak parte hartzeko (adibidez, nekazariek edo abeltzainek), beren lurren edo larreen balio naturala ebaluatzen eta haien jarraipena egiten”.

Biodibertsitatea hobetzen laguntzen duten faktoreak

Honako hau da ikerlanaren ondorioa: “Nafarroako mendebaldeko Pirinioetan azienda-mota da larrearen balio naturala zehazten duen faktore garrantzitsu bat. Zaldi-azienda, ardi-azienda edo biak nahastuak zituzten partzelek nabarmen balio natural handiagoa zuten behi-azienda zutenek baino”.

Horrez gain, Pardok azpimarratu duenez, “lehentasuna eman behar zaio era estentsiboan eta tratamendurik gabe (landatzea eta/edo ongarritzea) erabiltzen diren bazka-partzelak babesteari eta kontserbatzeari, balio natural handia baitute. Nekazaritzako politikek indartu egin beharko lukete dauden belarretarako larre eta bazkaleku erdinaturalak lehengoratzea, mantentzea eta kontserbatzea, eta esku-hartzeak diseinatu beharko lituzkete, utz edo intentsifika ez daitezen. Pirinioetan, belarretarako zelai tradizional asko belardi artifizial bihurtu dira, eta horrek, azterlan honetan agerian utzi denez, balio natural handia galtzea dakar. Hortaz, lehentasuna izan beharko luke egoera hori lehengoratzeak”, gaineratu du UPV/EHUko ikerlariak.

Azkenik, “Europar Batasuneko Natura 2000 sare ekologikoan sartutako partzelek naturaltasun-balio nabarmen handiagoak zituzten haren kanpo daudenek baino. Dena den, Natura sareak egindako ekarpena aztertzeko denborari-testuinguruari erreparatu behar zaio; izan ere, litekeena da Natura 2000 sareko partzelen egoera ona izatea dagoeneko sarean sartu zirenean”, argitu du Iker Pardok.

Balio naturalaren indizea berariaz Pirinioetako larreekin probatu zen arren, “ikusmolde hori abeltzaintzako edozein gune edo eskualdetara zabaldu liteke, adierazleak tokian tokiko egoerara egokituz gero”. Orobat, “proposatutako landa-azterketaren metodoa hain da soila, ezen indizea egokia baita aztertzeko biodibertsitatearen arloan arrakasta duten ala ez nekazaritzako eta ingurumeneko dirulaguntzen bitartez lagundutako jardunbideek”, gaineratu du Iker Pardok.

Iturria:

UPV/EHU prentsa bulegoa: Jardunbide gakoak identifikatu dituzte mendebaldeko Pirinioetako landa-inguruko biodibertsitatea indartzeko.

Erreferentzia bibliografikoa:

Pardo, Iker; Zabalza, Silvia; Berastegi, Asun; Ripoll-Bosh, Raimon; Astrain, Carlos (2024). Assessment of determinants of high nature value (HNV) farmland at plot scale in Western Pyrenees. Journal of Environmental Management, 349. DOI: 10.1016/j.jenvman.2023.119516

The post Pirinioetako larreetan biodibertsitatea indartzeko gakoak identifikatu dituzte appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Las mentiras visuales de la IA

Cuaderno de Cultura Científica - Ig, 2024-06-16 11:59

Federico Kukso

A medida que se expande la inteligencia artificial en cada rincón de nuestras vidas, un cliché se consolida: el de representar visualmente estos sistemas como robots humanoides blancos, cerebros destellantes o con referencias a la ciencia ficción. Un grupo cada vez mayor de especialistas se opone a esta iconografía cargada de sesgos históricos sobre género, etnia y religión que genera expectativas poco realistas y enmascara los efectos sociales de estas tecnologías.

Las imágenes mediáticas que representan la IA como robots humanoides blancos y sensibles enmascaran la responsabilidad de los humanos que realmente desarrollan esta tecnología. Foto: Jezael Melgoza / Unsplash

El 25 de abril de 2018, la Comisión Europea publicó un documento que marcó el inicio de su camino hacia la primera ley regulatoria de la inteligencia artificial del mundo. En él, se detallaban las recomendaciones presentadas por un grupo de expertos, se enumeraban los pasos a seguir y se proponían directrices éticas para una IA confiable. Sin llamar mucho la atención, una atractiva imagen acompañaba al texto: una mano humana y una mano robótica –brillante y metálica– se extendían delante de un fondo azul y gris, casi tocándose con las yemas de los dedos.

Inspirada en La creación de Adán de Miguel Ángel, fresco que desde el siglo XVI adorna el techo de la Capilla Sixtina en el Vaticano, esta composición que presenta a la IA como una fuerza creativa divina o como una chispa, una conexión entre lo humano y lo divino, se ha convertido en uno de los pósteres oficiales de la inteligencia artificial.

Imágenes que recrean ‘La creación de Adán’ de Miguel Ángel son usadas con frecuencia para ilustrar la IA, como hizo la Comisión Europea en 2018. Fuente: Michelangelo / Comisión Europea

Se la ve una y otra vez en sitios de noticias y revistas, en publicidades, en portadas de libros, en comunicados de empresas, en afiches de cursos y conferencias, a la par de retratos pintorescos de robots humanoides siempre blancos, cerebros azules brillantes, placas de circuitos, código binario y trilladas referencias a personajes de ciencia ficción como Terminator.

Conforman la iconografía actual de la IA, su traducción visual, cada vez más criticada por especialistas que advierten sobre sus peligros y las suposiciones estereotipadas y potencialmente discriminatorias que arrastran sobre género, etnia y religión.

“Estas imágenes tergiversan completamente las realidades de la IA”, advierte a SINC la investigadora en ética Tania Duarte, fundadora de We and AI, una organización sin fines de lucro del Reino Unido que busca mejorar la alfabetización en inteligencia artificial para la inclusión social e impulsar el pensamiento crítico. “Refuerzan mitos sobre la IA –subraya–, ideas falsas sobre la infalibilidad, la sensibilidad y el misticismo religioso que envuelve a estas tecnologías y no ayudan al público a desarrollar una comprensión de lo que está en juego”.

El poder de la imagen

Como hace tiempo explicó la escritora Susan Sontag, las imágenes son elementos poderosos. Enmarcan nuestra percepción del mundo, confirman, refuerzan o disipan estereotipos. Influyen en la forma en que la sociedad piensa y comprende temas que retratan. En el caso de la IA, ciertas ilustraciones exageran las capacidades de estos sistemas informáticos cada vez más ubicuos.

Otras, en cambio, siembran miedo, aumentan la desconfianza pública, enmascaran la responsabilidad de los humanos y perpetúan un entendimiento demasiado limitado y temeroso de la IA pero también misterioso, al no mostrar su contexto real, ni sus procesos y ni sus aplicaciones o limitaciones. Y desvían el debate sobre las consecuencias potencialmente significativas para la investigación, la financiación, la regulación y la recepción de estos sistemas cada vez más ubicuos.

Para combatir estos clichés y distorsiones, Duarte y un equipo de más de cien ingenieros, artistas, sociólogos y especialistas en ética impulsan un programa conocido como Better Images of AI.

Con el apoyo del Alan Turing Institute, el Centro Leverhulme para el Futuro de la Inteligencia y del departamento de investigación y desarrollo de la BBC, exponen cómo estas representaciones dominantes refuerzan conceptos erróneos y limitan la comprensión pública del uso y funcionamiento de los sistemas de IA.

“Necesitamos imágenes que retraten de manera más realista la tecnología y las personas detrás de ella y que señalen sus fortalezas, debilidades, contextos y aplicaciones”, indican sus promotores, que ofrecen un repositorio gratuito de mejores imágenes de IA y una guía de consejos para un uso responsable.

Una de las imágenes del colectivo ‘Better Images of AI’. Fuente:  Alan Warburton / BBC / Better Images of AIImperios visuales

Una parte importante de las fotografías e ilustraciones que se emplean en publicidades, marketing corporativo, diseño de sitios web y también en sitios de noticias provienen de “fábricas de imágenes”: el negocio de las fotografías de archivo o de stock, una industria global de miles de millones de dólares, dominada por un puñado de corporaciones transnacionales –Getty Images, Corbis, Alamy, Shutterstock, Adobe Stock, Science Photo Library (SPL), entre otras–, con una fuerza poderosa en la cultura visual contemporánea.

Como indican los investigadores Gaudenz Urs Metzger y Tina Braun de la Escuela Superior de las Artes de Zúrich (Suiza) en un estudio publicado en el Journal of Death and Dying, estas imágenes influyen en cómo se imagina un tema, así como en lo que se puede decir y no decir en una sociedad.

A medida que las empresas periodísticas invierten cada vez menos en fotógrafos y diseñadores de infografías, las imágenes de stock expanden su presencia.

Por lo general, se trata de montajes, gráficos o ilustraciones genéricas, con un estilo realista, aunque más simbólico que documental, que buscan atraer la atención del lector al representar visualmente temas complejos como las tijeras moleculares de la técnica CRISPR de edición genética, el mundo subatómico, el interior del cuerpo humano, la computación cuántica, el blockchain (cadena de bloques) o la computación en la nube.

En el caso de la IA, el robot humanoide blanco ha sido elevado en el último tiempo al rol de embajador visual de estas tecnologías complejas por directa influencia de la cultura popular. Como registró el AI Narratives Project de la Royal Society de Londres, existe una fuerte tendencia a concebir las máquinas inteligentes con forma humana.

Una IA con formas hipersexualizadas

“Cuando las personas imaginan a otros seres inteligentes, estas imaginaciones tienden a tomar forma humanoide”, destaca el documento principal de esta iniciativa. “Una consecuencia de este antropomorfismo es que los sistemas de IA son con frecuencia representados con género: sus formas físicas a menudo no son andróginas, sino que tienen las características sexuales secundarias estereotipadas de hombres o mujeres. De hecho, a menudo están hipersexualizados: tienen cuerpos masculinos exageradamente musculosos y tendencias agresivas, como Terminator, o formas femeninas convencionalmente hermosas como Ava en la película Ex Machina”.

La IA y sus ramas, como el aprendizaje automático, no son temas sencillos de explicar ni de ilustrar. Pero imaginar estas tecnologías como androides es problemático: desinforma, plantea expectativas demasiado altas, sugiere que su fin último es el de reemplazar a los humanos y dificulta que se consideren sus beneficios reales. Además, cuanto más humanos se ven estas representaciones, más étnicamente blancas son sus características.

De ahí que Stephen Cave y Kanta Dihal, investigadores de la Universidad de Cambridge (Reino Unido), señalen en su ensayo The Whiteness of AI que la representación de la IA sufre de un problema racial. “Imaginar máquinas que sean inteligentes, profesionales o poderosas es imaginar máquinas blancas porque el marco racial blanco atribuye estos atributos predominantemente a la blancura”, dicen los también autores de Imagining AI: How the World Sees Intelligent Machines.

“En las sociedades europeas y norteamericanas, la blancura está normalizada hasta tal punto que la vuelve en gran medida invisible. Al centrar la blancura como el color predeterminado del futuro, estas imágenes contribuyen a imaginar un futuro tecnológico que excluye a las personas de color de la misma manera que lo hacen las grandes empresas tecnológicas en la actualidad”, apuntan.

Clichés visuales y confusión sobre la IA

Los clichés visuales son varios: placas de circuitos, código binario descendente, brillantes cerebros situados en un espacio oscuro y vacío, aislados de las necesidades de un cuerpo, es decir, una clara alusión a la inteligencia, si bien gran parte de la IA y el aprendizaje automático que se utilizan hoy en día están muy alejados de la inteligencia humana. “Las personas que no entienden qué es la IA no pueden defender las formas en que la tecnología debería o no impactar a la sociedad”, señala Duarte.

Cerebros brillantes y robots blancos conforman la iconografía actual de la IA.  Fuentes: Wiley / Routledge / Apress

Además de la prevalencia de robots blancos, el color favorito de las empresas de tecnología para representar sus sistemas es el azul, usualmente asociado con inteligencia, confianza, seriedad, eficiencia pero también con masculinidad, como destaca la historiadora Alexandra Grieser en Blue Brains: Aesthetic Ideologies and the Formation of Knowledge Between Religion and Science.

“Existe una gran brecha entre la realidad de la IA y la percepción que tiene el público general, que es alimentada por representaciones en los medios y películas que a menudo presentan la IA como robots autónomos con capacidades casi humanas”, indica la desarrolladora de software mexicana Yadira Sánchez, asesora de Better Images of AI.

“Esta distorsión es preocupante porque impide que el público comprenda y participe efectivamente en debates cruciales sobre cómo la IA está remodelando áreas esenciales como la atención médica, la agricultura y la vigilancia estatal. Además –añade–, estas imágenes inexactas crean pensamientos futuristas muy optimistas o muy pesimistas sobre la IA y esto es peligroso porque generan expectativas y miedos en la sociedad”.

Otras imágenes para minimizar la confusión

Para minimizar la confusión, sostienen los investigadores de Better Images of AI, es importante utilizar imágenes que representen honestamente la realidad de la IA, como los recursos naturales y materiales que se consumen en su desarrollo. Por ejemplo, la extracción de litio en América Latina, o el agua y los ríos que se usan para mantener centros de datos en funcionamiento.

“Deberíamos mostrar cómo la IA se integra y afecta nuestros entornos naturales y sociales”, agrega Sánchez, “y cómo su infraestructura impacta directamente en el ecosistema y la vida cotidiana de las personas”.

“La enfermedad de la fotografía de stock de la IA ha alcanzado el estado epidémico”, señaló hace unos años el investigador Adam Geitgey, especialista en aprendizaje automático y reconocimiento facial. Aunque la IA no es la única rama científica que sufre estas tergiversaciones visuales. Más bien, todas las disciplinas, en algún grado u otro, las padecen cuando son representadas en periódicos, avisos publicitarios, campañas públicas o en webs de instituciones.

“Los medios optan por la solución más sencilla: utilizar imágenes que la gente reconozca y asocie rápidamente con la ciencia”, apunta la socióloga portuguesa Ana Delicado, quien estudió las representaciones visuales de la ciencia durante la pandemia de la covid-19 en sitios web de instituciones políticas y medios de comunicación en Portugal y España.

“Las imágenes de stock siempre se basan en estereotipos. Son productos comerciales: su objetivo es vender, no reflexionar sobre los temas que venden. Las imágenes estereotipadas en los medios de comunicación contribuyen a perpetuar representaciones estereotipadas en la opinión pública”, recalca.

En su análisis, publicado en la revista Frontiers in Communication, esta investigadora del Instituto de Ciencias Sociales da Universidad de Lisboa registró el abuso de ilustraciones del coronavirus SARS-CoV-2 con sus púas y pintado de rojo, haciéndolo parecer más amenazador.

También detectó una gran lista de elementos visuales que aluden a la actividad científica: hélices de ADN, células, moléculas, radiografías, equipos de laboratorio como microscopios, tubos, placas de Petri y pipetas, a menudo sostenidos por manos incorpóreas enguantadas, así como la presencia de personas con batas blancas, gafas protectoras y mascarillas, pero sin diversidad étnica, lo que refleja la subrepresentación de las minorías en la comunidad científica.

“La elección de imágenes para ilustrar la ciencia de la covid-19 tiende a reproducir nociones estereotipadas de la investigación científica como una actividad centrada en el laboratorio”, indica Delicado.

Nuevos generadores del imágenes

Ahora, con el auge de los sistemas de IA generadores de imágenes, como Stable Diffusion, Midjourney y DALL·E, se teme que empeoren las distorsiones sobre la realidad de la IA y la actividad científica en general. Como ya han demostrado algunas investigaciones, estas herramientas que producen imágenes a partir de indicaciones de texto suelen dar resultados racistas y sexistas.

Es decir, reproducen y amplifican sesgos raciales y de género, pues son entrenadas con imágenes utilizadas por medios de comunicación, organizaciones mundiales de salud y bases de datos de internet. “Estas imágenes son utilizadas sin crítica, sin reflexión”, advierte la socióloga portuguesa, “y la IA va a seguir perpetuando los estereotipos sobre la ciencia y las tecnologías”.

Una versión de este artículo fue publicada originalmente en SINC el 3 de mayo de 2024.

El artículo Las mentiras visuales de la IA se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Asteon zientzia begi-bistan #490

Zientzia Kaiera - Ig, 2024-06-16 09:00

Asteon zientzia begi-bistan igandeetako gehigarria da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna jaso eta laburbiltzea da gure helburua.

ozono

Zientziaren komunikazioa

Ekainaren 4an, Bilbon, Generoa eta zientziaren komunikazioaren bigarren edizioa ospatu zen. Hainbat profesionalek parte hartu zuten, eta agerian geratu zen genero-ikuspegia duen komunikazioa egiteko beharra. Zientzia-komunikazioak estrategiaz aldatu behar du, praktika profesionala eta irakaskuntza-praktika berrikusi behar ditu, azken finean, desorekak arindu behar dira. Informazio gehiago Zientzia Kaieran.

Klima-larrialdia

Klima-larrialdiari buruzko NBEren azken konferentzian, herrialde aberatsek pobreei eman beharreko finantzaketaz aritu dira. Izan ere, hainbat ikerketek baieztatu dute herrialde txiroagoek jasaten dituztela Mendebaldeak ingurumenari egindako kalteen ondorio latzenak. Gasen isuriari dagokionez, Iparralde globaleko herrialdeek isuri gaindikinen %92 sortzen dute. Datu guztiak Berrian.

Ingurumena

Ozono-geruza suntsitzen duten substantzien mailak behera egin du atmosferan. Gehienbat hidroklorofluorokarbonatuen (HCFC) maila jaitsi da. Hauek berotegi-efektu handia eragiten dute baita ere, beraz, emaitza itsaropentsuak dira. 1987an adostu zen Montrealgo Protokoloan ozonoa suntsitzen duten substantzien ekoizpena eta erabilera arautzea, eta protokolo horri esker, 2040an dago ezarrita epemuga HCFCak erabiltzeari guztiz uzteko. Azalpenak Elhuyar aldizkarian.

Osasuna

Aitaren dietak semeen osasunean eragiten duela frogatu dute. Dietak aitaren espermatozoideetan aldaketak eragiten ditu. Adibidez, gantz ugariko elikagaiak kontsumitu zituzten gizonezkoen semeek joera handiagoa izan zuten arazo metabolikoak izateko. Saguetan egindako beste ikerketa batek horren arrazoia azaldu dezake; gantz askoko dieta baten ondodrioz, espermak transferentziazko RNA-zati gehiago ditu, eta mitokondrioen zenbait generen jardueran eragin dezakete. Informazio gehiago Elhuyar aldizkarian.

Soziologia

Lankidetzetan aniztasuna egoteak zientzia ona sustatzen du. Sexu, genero eta kolektibo ezberdinak haintzat hartzea garrantzitasua da, baita zientzian ere. Ikerketa bat inklusiboa izan dadin eta errealitatea eslatu dezan, kolektibo sorta zabal baten ikuspegiak hartu behar ditu kontuan. Emakume askorentzat, ordea, zaila izan daiteke lankidetza bat egiteko erabakia hartzea, askotan gizonen itzalean gelditzen baitira. Datu guztiak Zientzia Kaieran.

Zoologia

Elefanteek izenen antzekoak izan litezkeen deiak erabiltzen dituzte. Hala ondorioztatu dute Afrikako sabanako elefante basatien talde batekin egindako behaketetan. Ikertzaileek ikusi zuten elefanteak azkarrago hurbiltzen zirela eta dei gehiago erantzuten zituztela dei jakin bat eurei zuzendutakoa zenean, beste elefanteei zuzendutako deien kasuan baino. Horrek iradokitzen du elefanteek identifikatzen dituztela haiei zuzendutako deiak, eta seguruenik bakoitzak berea duela. Informazio gehiago Elhuyar aldizkarian.

Paleontologia

Neandertal baten fosilak aurkitu dituzte Karrantzako El Polvorínen. 18 arrasto dira, guztiak banako bakarrarenak direla uste dute, eta gutxienez, 150 mila urte izan ditzakete. Hala ere, 200.000-300.000 urte izan ote ditzakeen aztertzen ari dira, bertatik gertu topatu baitzituzten adin horretako leize-hartz batzuk. Testuingurua ikertzen jarraituko dute, kronologia zehaztu ahal izateko. Datu guztiak Elhuyar aldizkarian eta Berrian.

EHUko ikertzaileek dinosauro espezie ezezagun bat aurkitu dute Errioxan. Riojavenatrix lacustris izena jarri diote, eta espinosaurido bat da. Aurkitutako hezur fosiletatik ondorioztatu dute zortzi metro luze zela, eta 1,5 tonako gorputz masa zuela. Bi hanken gainean ibiltzen zen, eta nagusiki arrainak jaten zituela uste dute. Bere izen zientifikoak “Errioxako lakuko ehiztaria” esan nahi du. Informazio gehiago Berrian.

Fisika

Azkenean, fisikariek ordenagailu kuantikoek bakarrik konpon dezaketen arazo bat aurkitu dute. Ordenagailu klasikoak nahiko onak dira eginkizun askotarako, eta ikertzaileak hainbat urte daramatzate ordenagailu kuantikoek soilik ebatzi ditzaketen arazoen bila. Ikerketa berri batean, sistema kuantiko batzuen energia aztertzen ari zirela, galdera espezifiko eta erabilgarri bat aurkitu zuten, makina kuantiko batentzat erantzuteko erraza dena, baina klasiko batentzat zaila. Azalpenak Zientzia Kaieran.

Astronomia

Eris Eguzki Sistemako bigarren planeta nano handiena da, Plutonen atzetik. 2005ean aurkitu zen, eta azalera oso zuria eta islatzailea du. Berriki, planeta nano horren barne-egiturari buruzko informazio gehiago lortu da, eta emaitzen arabera, ez da gorputz erabat zurruna. Badirudi nolabaiteko konbekzio-korronteak izan ditzakeela izotzez egindako tarteko geruzan. Informazio gehiago Zientzia Kaieran.

Argitalpenak

Einstein: Jauzi kuantikoa Ikaselkar argitaletxeak argitaratzen duen “Zientzialariak” komiki-sortaren ale bat da. Komiki honetan Albert Einstein zientzialari entzutetsuarne bizitzari buruz hainbat datu bitxi ikasiko ditugu. Besteak beste, Patenteen Bernako bulegoan teknikari ibili zeneko bizipenak kontatzen dizkigu, bertan hasi baitzen Einstein denboraren inguruan pentsatzen. Datu guztiak Zientzia Kaieran.

Egileaz:

Irati Diez Virto (@Iraadivii) Biologian graduatua da, Biodibertsitate, Funtzionamendu eta Ekosistemen Gestioa Masterra egin zuen UPV/EHUn eta Kultura Zientifikoko Katedrako kolaboratzailea da.

The post Asteon zientzia begi-bistan #490 appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

El protagonismo de los cuidados en la evolución humana

Cuaderno de Cultura Científica - La, 2024-06-15 11:59

cuidados

Los cambios del cerebro durante el embarazo y la maternidad, cómo el estrés ha pasado de ser un mecanismo de supervivencia a un eventual elemento de riesgo para nuestra salud o cuál ha sido el papel que ha jugado el suicidio en la evolución del ser humano fueron algunos de los temas que se tratarán en la VI Jornada Nacional sobre Evolución y Neurociencias.

La jornada tuvo lugar el Bizkaia Aretoa de la UPV/EHU los pasados 25 y 26 de abril y estuvo dirigida por Eva Garnica y Pablo Malo, de la Red de Salud Mental de Bizkaia, institución que organizó la jornada junto a la Cátedra de Cultura Científica de la UPV/EHU.

El encuentro, cuya primera edición se celebró en 2017, se ha convertido en una cita imprescindible para las y los expertos en ámbitos como la psiquiatría, la psicología o la biología. Una jornada que sirve para analizar el comportamiento humano desde un punto de vista evolutivo y divulgar de un modo accesible para todos los públicos.

¿Cuándo comenzamos a cuidarnos entre los humanos? ¿Cómo se encuadra este comportamiento en nuestra evolución? Los orígenes de los cuidados están estrechamente vinculados al desarrollo de comportamientos que consideramos emblemáticamente humanos: en particular, nuestra disposición a cooperar por un bien mayor y nuestras habilidades de organización social. Explorar cuándo y por qué surgió este rasgo es un reto apasionante, y debe hacernos reflexionar sobre el impacto que su estudio debe producir, y produce, en la ciencia y en la sociedad actual. Estos son los temas que trata la conferencia El protagonismo de los cuidados en la evolución humana. La imparte Roberto Sáez, Doctor en Antropología, Máster en Ingeniería Industrial y divulgador científico, experto en Evolución Humana y en la Bioarqueología del Cuidado. Sáez es el autor del blog Nutcracker man.



Si no ve correctamente el vídeo, use este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo El protagonismo de los cuidados en la evolución humana se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Ezjakintasunaren kartografia #497

Zientzia Kaiera - La, 2024-06-15 09:00


Gure giza ikuspuntu subjektibotik, unibertsoari buruz hitz egin ahal izan genuenean hasi zen unibertsoa. Juan F. Trillok Steven Mithenen liburuaren inguruko berria: The Language Puzzle: How it all began

Badirudi auto elektrikoek azkar kargatzeak eta autonomia nahikoa izateak arazo izateari utz diezaiokeela. Stable, high-energy-density and fast charging lithium-ion batteries

Dastamen-hartzaileak barrabiletan? Barrabiletan gustuaren hartzaileak daude. Taste receptors: not only in the mouth, not only for taste, JR Alonsorena.

Helizeno izeneko konposatu organiko batzuen kimikak, zeinen izena helizeak osatzen dituztelako sortzen baiten, gero eta interes handiagoa pizten du dituzten propietate estruktural eta optiko interesgarriengatik. DIPCko jendeak modu erraz bat asmatu du atomo metalikoak dituztenak sintetizatzeko. Synthesis of organometallic helicenes by simple combinations

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

The post Ezjakintasunaren kartografia #497 appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Uso y abuso de la pregabalina

Cuaderno de Cultura Científica - Or, 2024-06-14 11:59
pregabalinaEnvase de Lyrica (pregabalina) comercializado en Finlandia. Fuente: Acdx / Wikimedia Commons

El pasado mes de marzo, una noticia llegada desde Reino Unido generó cierta alarma respecto a la seguridad de la pregabalina, medicamento utilizado frecuentemente para el tratamiento del dolor crónico y la ansiedad. Una investigación del periódico británico The Sunday Times relacionaba el consumo de este fármaco con la muerte de 3 400 personas en los últimos años y describía los problemas de abuso y adicción que puede generar.

Dada la gravedad de la crisis sociosanitaria que sufre EE. UU. por la adicción a los opioides, los problemas de seguridad que puede plantear el uso de medicamentos como la pregabalina constituye un tema de especial interés.

Usos no contemplados en la ficha técnica

La pregabalina es un medicamento con una estructura química similar a la del neurotransmisor GABA (ácido gamma-amino-butírico), sustancia que regula de forma inhibitoria la actividad del cerebro. Junto con la gabapentina, forma un grupo de medicamentos denominado gabapentinoides.

En España, el primer medicamento con pregabalina lo lanzó al mercado el laboratorio farmacéutico Pfizer, con el nombre comercial Lyrica. Inicialmente, fue aprobado para tratar la epilepsia y el dolor neuropático, y después se autorizó para tratar el trastorno de ansiedad generalizada.

Con el tiempo, el uso de Lyrica se amplió para tratar otras patologías que no contaban con la autorización sanitaria, como el dolor crónico, el dolor lumbar, la prevención del dolor postoperatorio, la fibromialgia y la profilaxis de la migraña. Esta aplicación se conoce como off-label o fuera de ficha técnica. En ocasiones, dichos usos pueden estar médicamente justificados si no existen alternativas terapéuticas autorizadas, y en todo caso se encuentran regulados por ley.

Lo que está prohibido es publicitarlo, y esto condenó a Pfizer a pagos de multas millonarias. Es conveniente recordar que el uso off-label de los medicamentos puede constituir un problema de seguridad, incrementar los costes del tratamiento o, directamente, resultar ineficaz, ya que se ha demostrado que su beneficio terapéutico es insuficiente.

Sin embargo, distintos estudios concluyen que más de la mitad de las recetas de gabapentinoides se realizan para indicaciones no autorizadas; mayoritariamente para tratar distintos tipos de dolor, a pesar de que los estudios científicos no recomiendan su uso.

Un consumo disparado

Hoy en día, disponemos de 168 medicamentos que contienen pregabalina, incluidos los llamados genéricos. Los datos de consumo se pueden consultar en la página web de la Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), concretamente en el informe sobre la utilización de analgésicos no opioides.

Esta información se expresa en DHD, es decir, en la dosis diaria definida (DDD) por cada 1 000 habitantes y día. Así sabemos que en los últimos 10 años el consumo de pregabalina se ha incrementado un 66 %, puesto que entre 2012 y 2022 el DHD pasó de 3,56 a 5,92. Este último dato significa que cada día un promedio de 5,92 personas de cada 1 000 recibe una DDD de pregabalina. Actualmente, se encuentra en el tercer puesto de fármacos analgésicos no opioides con mayor consumo en España, por detrás del paracetamol y el metamizol.

¿Es seguro tomar pregabalina?

La pregabalina, como todos los medicamentos, no está libre de producir efectos adversos, es decir, efectos que no deseamos pero que en muchos casos no se pueden evitar. Por suerte, los más frecuentes, que aparecen en al menos una de cada 10 personas, son leves. Entre ellos destacan los mareos, la somnolencia y el dolor de cabeza.

También pueden manifestarse otros con menor frecuencia. Todos ellos pueden ser consultados en la ficha técnica en la página web del centro de información de la AEMPS, de acceso abierto, o en el prospecto del medicamento. Es importante señalar que los efectos adversos son más frecuentes cuando la pregabalina se toma en dosis altas y de forma crónica. Y en cualquier caso, este tipo de uso no ha demostrado aliviar mejor del dolor.

Entre los efectos más graves encontramos el riesgo de reducir la respiración, debido a que actúan sobre la zona del cerebro que controla esa función. Es importante tener esto en cuenta si el paciente ya está tomando otros medicamentos que tienen el mismo efecto, ya que su combinación en dosis altas podría llegar a paralizar la respiración y causar la muerte.

Estos otros medicamentos depresores son los analgésicos opioides (como la morfina), que utilizamos para aliviar dolores fuertes, y las benzodiazepinas (como el orfidal), que tomamos para dormir o calmar los nervios. Diversos estudios indican que el 60 % de los pacientes que usa gabapentinoides toma también los otros depresores. Una combinación fatal podría estar detrás del incremento de muertes asociadas al uso de pregabalina que describía el The Sunday Times.

Ese mismo efecto depresor de la pregabalina, pero ejercido sobre el sistema límbico del cerebro, produce una sensación de euforia y bienestar que puede conducir a comportamientos de abuso y dependencia. El concepto de dependencia se refiere a la necesidad de seguir tomando una sustancia para experimentar sus efectos deseados o aliviar el malestar que causa no consumirla (síndrome de abstinencia).

Si no se ingiere el medicamento, aparecen síntomas que provocan malestar y empujan a seguir tomándolo, a pesar de los posibles efectos negativos; es lo que coloquialmente llamamos “estar enganchado”. Son especialmente vulnerables aquellas personas que han sufrido con anterioridad problemas de adicción.

Siempre bajo supervisión médica

Los riesgos asociados al abuso de pregabalina pueden minimizarse con un seguimiento adecuado de la pauta médica, valorando periódicamente la necesidad de mantener o retirar el tratamiento según criterios de eficacia, tolerabilidad, efectos adversos y adherencia. Si la valoración recomienda suspender el tratamiento, se realizará de forma gradual y con supervisión médica.

En todo caso, la pregabalina está autorizada para tratar el dolor neuropático –que se produce por el daño de un nervio–, la epilepsia y la ansiedad porque los estudios indican que los beneficios del tratamiento superan los riesgos. En este contexto, la evaluación de la relación riesgo-beneficio del tratamiento con pregabalina corresponde a los profesionales médicos y cuentan con el apoyo de la AEMPS.

Finalmente, no podemos olvidar el papel de la ciudadanía en la gestión activa de su salud: es fundamental seguir las indicaciones médicas y comunicar si sufrimos efectos adversos y si notamos que el tratamiento no está funcionando. Transmitir toda esta información en las visitas a la consulta es clave para que el médico o la médica evalúe correctamente la utilidad del tratamiento y su seguridad.The Conversation

Sobre las autoras: María Torrecilla Sesma y Cristina Bruzos Cidón son Profesoras de Farmacología en la Universidad del País Vasco / Euskal Herriko Unibertsitatea

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Uso y abuso de la pregabalina se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Zientzia-komunikazio arduratsu, anitz eta berdinzale baten alde

Zientzia Kaiera - Or, 2024-06-14 09:30

Komunikazioa espektatibak sortzen dituen jarduera da. Izan ere, helarazten dugun mezuak hartzailearengan eragina izatea espero dugu. Hala ere, komunikaziotik sortzen diren espektatiba horietan igorleak eta hartzaileak zeresana daukate eta kasu bietan bakoitzak egiten dituzten aukerek eragin zuzena daukate.

Komunikazioan egiten den aukeraketa oro ez da ariketa neutroa. Helarazi nahi den informazioa eta erabiliko diren hitzak aukeratzen dira eta berdin gertatzen da mezuaren tonuarekin. Gure gizartean, inguruan eta erakundeetan nagusi diren eskemez elikatzen da komunikazioa eta, ondorioz, errepresentazioak presente daude.

zientzia-komunikazioIrudia: ekainaren 4an Bilbon izandako Generoa eta Zientziaren Komunikazioa jardunaldiaren momentu bat. (Argazkia: Iñigo Sierra – UPV/EHUko Kultura Zientifikoko Katedra – CC BY-NC 4.0 lizentziapean)

Gizarteko eskema horien erreprodukzioak isuriak, estereotipoak, aurreiritziak eta balio-iritziak indartu eta legitimatzen ditu. Hala ere, komunikazioa aldaketarako bidea ere izan daiteke eta aurretik gizartean ezarritako eskemak aldatzeko elementuan bihurtu. Baina aldaketak estrategien diseinuan eta gaur egun dauden dinamiketan eragiteko neurri zehatzak abian jartzea eskatzen du.

Hain zuzen ere, ekimen zehatzak eta horiek nola bideratu izan zen Generoa eta zientziaren komunikazioaren bigarren edizioan parte hartu zuten hainbat profesionalen mintzagaia joan den ekainaren 4an, Bilboko Iberdrola Dorrean. Euskal Unibertsitateko Kultura Zientifikoko Katedrak antolatutako ekimenak, UPV/EHUko Berdintasunerako Zuzendaritza, Iberdrola, Eusko Jaurlaritza eta EITBren laguntzarekin, agerian utzi du komunikazioak kontuan hartu behar duela zein testuingurutan ari den eta norbanako guztiak berdintasunetik barneratu behar dituela.

Zientzia-komunikazio arretatsua oinarri

Eulalia Pérez Sedeño, CSICeko Filosofia Institutuko Teknologia, Zientzia eta Gizarteko irakasleak eman zion hasiera jardunaldiari esanez “zientzia ez dela neutroa, nahiz eta zientzialari askok oraindik hori sinetsi”. Hori dela eta, zientziaren komunikazioa zientziaren izaera soziala kontuan hartuta egin behar da. Baina, zer esan nahi dugu zientziaren izaera sozialaz hitz egiten dugunean? Azpimarratu nahi dena da zientzia, gizakiek garatutako beste edozein jarduera bezala, ezin dela testuinguru soziokulturaletik at ulertu.

Zientzia komunitate zientifikoek testuinguru sozio-historiko zehatz batean egiten duten jarduera da. Testuinguru horretan, gainera, norbanakoaren egoera, gizartearen baloreek eta balio kulturalek eta taldearen eta norbanakoen lehentasunek praktika zientifikoan eragina daukate. Hori dela eta, zientzia komunikatzerakoan ezinbestekoa da gizartearen ikuspegitik egitea.

Alderdi sozial hori gizartea ulertzeko ariketa da eta, gizartea bere osotasunean ulertzeko, garrantzitsua da pertsona nagusiek osatzen duten kolektiboan arreta jartzea, Mireia Fernández-Ardèvol Universitat Oberta de Catalunyako (UOC) Informazio eta Komunikazio Zientzietako Fakultateko Komunikazio Digitaleko irakasleak azpimarratu zuen bezala.

Gizartea ezaugarri propioak eta ezberdinak dituzten gizabanako talde batek osatzen du. Hortaz, datuak modu agregatuan ematen direnean biztanle batzuen arazoak ezkutatzen dira. Horrela azaldu zuen Cecilia Castaño Collado Madrilgo Unibertsitate Konplutentseko (UCM) Ekonomia Aplikatuko katedradunak. Castañok adibide bezala jarri zuen hainbat botika emakumeentzat kaltegarriak direla azaleratu izana. Orain arte ezkutuan egon den datua izan da ikerketa farmakologikoek gizonezkoen laginekin bakarrik egin dutelako lan eta, datuak modu agregatuan aurkezterakoan, errealitatea ez da bere osotasunean erakutsi.

Arantxa Iraola Alkorta kazetariak ere datuak ezkutatzeko arazoari heldu zion bere hitzaldian eta eskatu zuen asmo ona daukaten goiburuek ez dezatela errealitatea ezkutatu. Izan ere batzuetan, bokazioak sustatzeko asmoarekin edota berdintasun politiken emaitzak erakusteko, gizon eta emakumeak maila berean daudela ulertzera ematen duten goiburuak idazten dira. Eta errealitatea beste bat da.

Edozer komunikatzerakoan ezin da ahaztu astiro pentsatu eta ikuspegi zabal bat izateko komunikatzea kostu handia daukan ariketa dela. Ritxar Bacete González soziologoak azaldu zuen bezala, isurietan oinarritutako gogoeta azkar eta automatizatua oso erosoa da eta ez du energia edo gogo gasturik suposatzen. Ez da horrela gertatzen astiro eta pentsamendu kritikoan oinarritutako gogoetarekin.

Nahiz eta hezkuntza-sistema pentsamendu kritiko horren berme izan desparekotasunen igorle izan daiteke, Ana López-Navajas Valentziako Unibertsitateko filologo eta doktoreak azpimarratu zuen bezala. Ildo beretik, Pastora Martínez Samper Universitat Oberta de Catalunyako (UOC) nazioarteko ekimenetarako ordezkariak eskatu zuen irakaskuntza-praktikak berrikustea eta aztertzea zer eta nola irakasten den, unibertsitate mailako irakaskuntzan genero ikuspegia txertatuz. Horrela sexu eta generoan oinarritutako desberdintasunen arrazoiak eta ondorioak identifikatu, ulertu eta aztertu ahal izango dira.

Betebehar horrek hezkuntza eta akademiako komunitatearen inplikazioa behar du. Konpromiso horrek, Koldo Garcia Etxebarria Genetikan doktore eta dibulgatzaileak zioen bezala, komunikazioa hobetzen lagunduko luke testuinguru aldaketarengatik. Izan ere, egungo testuinguruak ez dio mesederik egiten komunikazio eraginkorrari. Estrategia aldatu behar da eta komunitatearen lanaren ondorioa izan behar da. Zientzia eta komunikazioaren eragile ezberdinak biltzen dituen lana izan behar da.

Zentzu berean Irene Lapuente Aguilar hezkuntza-prozesuetan eta zientziaren komunikazioan adituak azpimarratu zuen komunikazio zientifikoa norabide bakarreko eredu batetik elkarrizketa eredura pasatu behar dela. Hau da, zientziaren komunikazio eraginkorra nahi badugu esparru akademikotik (adituak, alegia) (ezagutzarik gabeko) publikoari aritzen zaion defizitaren komunikazioa alde batera utzi behar da eta hartu-emanean oinarritutako elkarrizketa eredua sustatu behar da.

Beraz, zientzia-komunikazioak estrategiaz aldatu behar du, praktika profesionala eta irakaskuntza-praktika berrikusi behar ditu, eta dauden desorekak arintzen ahalegindu behar da, genero-ikuspegia duen komunikazioari helduz. Lan hori batera egin behar dugu eta, jardunbide arduratsuak bere gain hartuta, errealitate soziala erakutsi behar du zientzia-komunikazioak, aniztasunari so egin behar dio eta desparekotasuna eragiten duten diskurtsoak saihestu behar ditu.

Erreferentzia bibliografikoak:
  • García-Jiménez, Leonarda; Torres-Morales, Susana y Díaz-Tomás, Juan Manuel (2022). El rol de la mujer en la ciencia y la docencia en la comunicación: análisis a partir de los programas universitarios en España. Revista de Comunicación, 21(2), 91-112. DOI: 10.26441/RC21.2-2022-A5
  • Gértrudix Barrio, Manuel (2021). Medir la eficacia de la comunicación científica. En M. Gértrudix y M. Raja (ed. lit.) Comunicar la ciencia: guia para una comunicación eficiente y responsable de la investigación e innovación científica (121-147). Editorial Gedisa
  • Gómez-Escalonilla, Gloria e Izquierdo-Iranzo, Patricia (2021). Género y comunicación en revistas y congresos científicos. Comunicación y género, 5(1), 1-11. DOI: 10.5209/cgen.77148
  • Bernárdez Rodal, Asunción (2015). Mujeres en medio(s). Propuestas para analizar la comunicación masiva con perspectiva de género. Editorial Fundamentos
Egileez:

UPV/EHUko Kultura Zientifikoko Katedra eta Euskampus Fundazioko Kultura Zientifikoko eta Berrikuntza Unitatea.

The post Zientzia-komunikazio arduratsu, anitz eta berdinzale baten alde appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Un coloso de la informática

Cuaderno de Cultura Científica - Og, 2024-06-13 11:59

El 18 de enero de 1944, llegó a Bletchley Park un camión con una carga muy especial: una máquina de cálculo que pesaba una tonelada, medía 2,13 x 5,18 x 3,35 metros, estaba construida con alrededor de 1600 válvulas termoiónicas y era capaz de operar a una velocidad de 5000 caracteres por segundo. La llamaron Colossus, se considera la primera computadora electrónica, programable y digital de la historia… y estuvo a punto de no existir.

Durante la Segunda Guerra Mundial, Bletchley Park fue uno de los centros neurálgicos de los servicios de inteligencia británicos. Bajo el nombre en clave de Ultra, allí se descifraban todas las comunicaciones que Inglaterra interceptaba al Ejército y la diplomacia de la Alemania nazi y pasó a la historia, sobre todo, por el duelo que tuvo lugar allí entre el matemático inglés Alan Turing y la supuestamente impenetrable Enigma naval de la Kriegsmarine que utilizaban los U-Boote del Atlántico.

flowersMáquina enigma de cuatro rotores expuesta en Bletchley Park. Funete: Tim Gage / CC BY-SA 2.0

En 1941, casi a la par que la Enigma naval quedaba al descubierto tras un arduo trabajo por parte del barracón 8 que dirigía Turing, las estaciones de escucha británicas comenzaron a interceptar una nueva clase de mensajes indescifrables que no se estaban retransmitiendo en morse, como los de Enigma, sino en el código internacional del teletipo. Alemania había puesto en escena una nueva máquina de cifrado automática y mucho más sofisticada que Enigma para las comunicaciones diplomáticas: la Lorenz SZ, a la que apodaron Tunny.

En este caso, fue el coronel John Tiltman quien consiguió descifrar un mensaje de Tunny por primera vez a finales de aquel mismo año. Con el trabajo de este, el matemático Bill Tutte dedujo cómo debía de ser el funcionamiento de la máquina. Por último, Alan Turing ideó un método algorítmico, la «turingería» ―de «Turing» e «ingeniería»― que permitió acotar sustancialmente las posibles configuraciones de los doce rotores de los que constaba el disposivo y… entonces se marchó a Estados Unidos.

Máquina de cifrado Lorenz SZ40, sin la carcasa, en el US National Cryptologic Museum. En ella se pueden apreciar los doce rotores. Fuente: Mark Pellegrini / CC BY-SA 2.5

Fue Bill Tutte el que continuó trabajando en nuevos métodos de descifrado de Tunny, pero, a medida que Alemania aumentó la extensión aquella red de comunicaciones, que los aliados bautizaron como Fish, y mejoró la seguridad, los cálculos empezaron a volverse inabarcables: se iba a necesitar algún tipo de dispositivo electromecánico para realizarlos, al igual que se habían necesitado las Bombe para poder romper Enigma.

El primer intento de mecanizar el descifrado de Tunny vino de la mano de Max Newman y sus «Heath Robinson» unos cacharros llamados así en honor a William Heath Robinson, un ilustrador que solía hacer dibujos de inventos bizarros dada la lentitud, imprecisión y tendencia al sobrecalentamiento que tenían. Pero un ingeniero eléctrico de Bletchley Park, al que, en un principio, habían reclutado como ayudante de Alan Turing, tenía en mente desde hacía algún tipo una idea de máquina mucho más rápida, precisa y eficiente.

flowersRéplica de una de las Heath Robinson de Max Newman en el National Museum of Computing, de Bletchley Park. Fuente: TedColes / CC BY-SA 4.0

Tommy Flowers había nacido en una familia humilde en uno de los distritos más pobres de Londres, Poplar, muy cerca de Whitechapel, y ya desde muy pequeño le había llamado la atención la ingeniería. Estuvo durante un tiempo como aprendiz en el Arsenal Real de Londres hasta que encontró trabajo en el departamento de ingeniería de Correos mientras se sacaba el título en la escuela nocturna. Allí conoció y empezó a investigar las posibilidades que ofrecía un nuevo componente electrónico que podía realizar tareas de interruptor a una velocidad mucho más alta de la habitual: la válvula termoiónica o de vacío.

flowersTommy Flowers. Fuentes: Dominio público

Aunque ya se estaban utilizando en algunos dispositivos ―y las Heath Robinson eran uno de ellos, aunque solo parcialmente―, el uso de las válvulas de vacío aún era bastante limitado. Tommy Flowers fue el primero al que se le ocurrió que podían utilizarse en un número mucho mayor para fabricar máquinas de computación completamente electrónicas. Pero, como sucede casi siempre que alguien presenta una idea demasiado disruptiva, en Bletchley Park aquello les pareció una locura.

Sin el apoyo que necesitaba, pero convencido de que un computador completamente electrónico era posible, pese a las dificultades de diseño que presentaba, Flowers reunió a cincuenta científicos, ingenieros y técnicos del laboratorio de la oficina de Correos de Dollis Hill donde trabajaba y se pusieron manos a la obra, trabajando doce horas al día, seis días y medio a la semana para crear, en un tiempo récord de diez meses, el primer computador electrónico: Colossus. Cuando se presentaron con él en Bletchley Park y, más aun, cuando lo pusieron en funcionamiento, el personal no daba crédito a lo que tenía delante.

El primer prototipo de Colossus que llegó a Bletchley funcionaba muy bien, pero no lo todo lo rápido que se necesitaba, así que Tommy Flowers y su equipo se pusieron de nuevo a trabajar contrarreloj en una versión mejorada que el Gobierno quería tener lista, como muy tarde, para el 1 de junio: aquella iba a ser la fecha inicial en la que iba a tener lugar el Día-D y se necesitaba que la máquina estuviera ya operativa. Colossus Mark II, con 2400 válvulas y una velocidad de 25 000 caracteres por segundo, lo estuvo y, de hecho, el 5 de junio se descifró con ella un mensaje de Adolf Hitler dirigido al mariscal Erwin Rommel en el que los aliados pudieron confirmar que la maniobras de los servicios secretos para desviar la atención del Führer lejos de las playas de Normandía había funcionado. Al día siguiente, el Ejército aliado tomó la costa francesa y comenzó la ofensiva por la liberación de Europa occidental. Mientras tanto, una Colossus tras otra iba llegando a Bletchley Park a medida que las fuerzas aliadas penetraban en el continente. Veinticuatro horas al día, siete días la semana, un ejército de WRENs ―mujeres pertenecientes al Women’s Royal Naval Service― averiguaba sin descanso la configuración diaria de la las máquinas Tunny y dejaba al descubierto las comunicaciones enemigas.

Colossus Mark II en Bletchley Park, operada por las WRENs (Women’s Royal Naval Service) Dorothy Du Boisson y Elsie Booker en 1943.

A menudo se ha tratado de establecer el impacto que todo el trabajo de criptoanálisis de Bletchley Park tuvo sobre el desarrollo de la guerra. Hay quienes dicen que ayudó a acortar el conflicto en unos dos o tres años, por ello, resulta bastante inquietante pensar que Colossus fue posible gracias a una serie de serendipias que podrían, perfectamente, no haber tenido lugar.

A finales de agosto de 1939, y con las tensiones en Europa a punto de hacer estallar todo, algún superior no muy centrado envió a Tommy Flowers a Berlín en viaje de trabajo. Tan pronto como este puso el pie en la capital alemana, la Embajada británica lo llamó para advertirle de que abandonara el país lo antes posible. Flowers consiguió cruzar a Holanda apenas unas horas antes de que se cerraran las fronteras de Alemania, evitando así, seguramente, acabar como prisionero del régimen nazi. También fue providencial que luego la oficina de Correos lo enviara a él, y no a otro, a ayudar a Alan Turing con Enigma y las Bombe, porque cuando alguien iba a consultarle al matemático cualquier tema de ingeniería o problema con los equipos, Alan simplemente respondía: «Flowers»… Lo que llevó a este hasta Newman, luego hasta Tunny, luego hasta Colossus y, finalmente, a marcar ―casualidades que pasan― el primer gran hito de la historia de la computación.

Referencias:

Copeland, B. Jack, et. al. (2006). Colossus. The secrets of Bletchley Park’s codebreaking computers. Oxford University Press.

Copeland, B. Jack (2021 [2013]). Alan Turing. El pionero de la era de la información. Turner.

Para saber más:

Marian Rejewski, el matemático que «rompió» la Máquina Enigma

Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo Un coloso de la informática se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Einstein: Jauzi kuantikoa

Zientzia Kaiera - Og, 2024-06-13 09:00

Albert Einstein Alemanian jaio zen 1879an, familia judu batean. Gaztea zela, Suitzara joan zen ikastera, eta hango nazionalizatea eskuratu zuen.

Einstein1. irudia: “Einstein: Jauzi kuantikoa” komikiaren azala. (Ilustrazioa: Jordi Bayarri. Iturria: Ikaselkar)

Patenteen Bernako bulegoan teknikari ibili zen hasiera batean, eta bertan aztertu behar zituen patenteetako askok denbora neurtzeko balio zuten. Horrek zer pentsatua eman zion denboraren inguruan.

Gerora, zientzialari entzutetsua bilakatu zen benetan. Masa eta energia lotzen dituen ekuazio ezagunaren egilea izan zen, eta bere lan esanguratsuneak erlatibitatearen inguruan egin zituen.

Einstein2. irudia: “Einstein: Jauzi kuantikoa” komikian zientzialari entzutetsu honen bizitzaren berri izango dugu, hastapenetatik, mito bihurtzera arte. (Ilustrazioa: Jordi Bayarri. Iturria: Ikaselkar)

Naziek Alemaniako boterea eskuratu zutenean, Eisnteinek Estatu Batuetara egin zuen alde, bera judua zen eta. Bertan gelditu zen hil zen arte, Princeton-eko Unibertsitatean irakasle.

“Einstein: Jauzi kuantikoa” Ikaselkar argitaletxeak argitaratzen duen “Zientzialariak” komiki-sortaren ale bat da. Komikiek haur eta gazteen artean irakurzaletasuna sustatzea eta euskaraz irakurtzeko ohitura zabaltzea ditu helburu. Horrez gain, irudi-sorta atsegin eta hizkuntza hurbilaren bidez, haur eta gazteei zientzia gerturatzea ere nahi du egitasmoak. Komikien bidez zientzialari eta pentsalari ezagunen biografiak eta lorpenak plazaratzen dira: Marie Curie, Newton, Galileo, Darwin, Hipatia edo Aristoteles.

Argitalpenaren fitxa:
  • Izenburua: Einstein: Jauzi kuantikoa
  • Egilea: Jordi Bayarri
  • Itzultzailea: Maialen Berasategi
  • Argitaletxea: Ikaselkar
  • Urtea: 2021
  • Orrialdeak: 48 orrialde
  • ISBNa: 978-84-18410-47-5
Iturria:

Ikaselkar: Einstein, jauzi kuantikoa.

The post Einstein: Jauzi kuantikoa appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

El infinito en un segmento (3)

Cuaderno de Cultura Científica - Az, 2024-06-12 11:59

A finales del siglo XIX, el matemático ruso-alemán Georg Cantor (1845-1918) conmocionó al mundo de las matemáticas, rompiendo las creencias existentes sobre el concepto de infinito. Entre los revolucionarios resultados que demostró están que existe más de un infinito o que la cantidad de puntos de un segmento es la misma que la cantidad de puntos de un cuadrado. A esta revolución matemática hemos dedicado, en el Cuaderno de Cultura Científica, la miniserie titulada El infinito en un segmento.

Página de la novela gráfica Logicomix, de Apostolos Doxiadis y Christos H. Papadimitiou, Bloomsbury, 2009. En la viñeta se muestra una noticia con motivo del Congreso Internacional de Matemáticos de 1900, con una caricatura de dos matemáticos enfrentados, el francés Henri Poincaré, con su frase “¡Le acuso Señor Cantor! ¡La teoría de conjuntos es una enfermedad de la que hay que curar a las matemáticas!”, y el alemán David Hilbert, con su frase “Nadie nos expulsará del paraíso que Herr Cantor ha creado para nosotros”

 

La primera entrega de esta miniserie, El infinito en un segmento (1), se centró en cómo resolvió el matemático ruso-alemán el problema de comparar dos conjuntos con infinitos elementos. La respuesta es sencilla y está en la base del origen del concepto de número. Dos conjuntos tienen la misma cantidad de elementos cuando se puede establecer una “correspondencia uno-a-uno” entre los elementos de los dos conjuntos. De esta forma, llegamos a la paradoja de que para un conjunto infinito existen subconjuntos propios del mismo que tienen la misma cantidad de elementos que el propio conjunto. Por ejemplo, el conjunto de los números pares tiene la misma cantidad de elementos que el conjunto de los números naturales (que está formado por los números pares y los números impares).

Existe una correspondencia uno-a-uno entre el conjunto de los números pares y el conjunto de los números naturales

 

De hecho, Georg Cantor tomó esta paradoja del ininfito como definición de “conjunto infinito”, es decir, un conjunto es infinito si existe un subconjunto propio suyo que tiene la misma cantidad de elementos que el conjunto.

En esta primera entrega de la serie se demostró también que los conjuntos de los números enteros y de los números racionales son conjuntos numerables, es decir, tienen la misma cantidad de elementos que el conjunto de los números naturales.

En la segunda entrega de esta miniserie, El infinito en un segmento (2), se mostró que el conjunto de los números reales (de forma explícita, en la demostración se consideró el intervalo (0,1), es decir, los números reales entre 0 y 1) no es numerable, no se puede poner en correspondencia uno-a-uno con los números naturales. Por lo tanto, existe más de un infinito, al menos, el infinito de los números naturales (cuyo cardinal se denomina aleph-zero) y el infinito de los números reales (cuyo cardinal se denomina cardinal del continuo, c).

El bueno de Cuttlas (4MOR, 37 & 99), de Calpurnio, publicado en 20 MinutosEl infinito en un cuadrado

Como se comentó al final de la segunda entrada de esta miniserie, una vez demostrado que el cardinal del continuo c (el infinito de los números reales) es mayor que aleph-zero (el infinito de los números naturales), Georg Cantor se planteó si el plano (de dimensión 2) tiene una mayor cantidad de puntos que la recta (de dimensión 1), es decir, si el infinito del plano es mayor que el infinito del continuo. Simplificando la cuestión.

Problema: ¿Hay la misma cantidad de puntos en el segmento unidad [0,1] que en el cuadrado unidad [0,1] x [0,1]?

Para abordar el anterior problema, primero recordemos un par de cuestiones básicas. La primera es que los números reales del intervalo [0,1], es decir, mayores que 0 y menores que 1, se escriben en forma decimal como

donde, si todos los dígitos son 0 se obtendría el número cero (0), y si todos los decimales son 9 se obtendría el número uno (1), ya que, como se comentó en la anterior entrada, el número 1 se puede representar de dos formas distintas 1,00000000… (infinitos ceros) y 0,99999999… (infinitos nueves). Por ejemplo, el número pi menos 3, que es un número real del intervalo (0,1) se expresa como 0,1415926535…

La segunda cuestión básica es que todo elemento del plano real se puede identificar con sus coordenadas cartesianas, es decir, con un par (x, y), donde x e y son números reales, como se muestra en la siguiente imagen (aunque en ella solamente se han utilizado puntos cuyas coordenadas x e y son números enteros).

De manera, que los elementos del cuadrado [0,1] x [0,1], serán los puntos del plano (x, y), donde x e y son números reales del intervalo [0,1]. Es decir, son de la forma

(Nota: hemos utilizado el punto y coma “;” para separar las coordenadas, en lugar de la tradicional coma “,”, con la intención de que quede más clara la separación entre las dos coordenadas)

 

Ahora, una cuestión técnica. Antes de entrar en la construcción de la buscada correspondencia uno-a-uno entre el segmento y el cuadrado, vamos a tener en cuenta lo siguiente, de cara a dicha construcción. Como se puede demostrar (aunque no quiero meterme ahora en esta cuestión para no complicar más esta entrada) que los segmentos [0,1], es decir, los números reales mayores o iguales que 0 y menores o iguales que 1; (0,1], es decir, los números reales mayores que 0 y menores o iguales que 1; y (0,1), es decir, los números reales mayores que 0 y menores que 1, tienen la misma cantidad de elementos (existen correspondencias uno-a-uno entre ellos), es equivalente demostrar que existe una correspondencia uno-a-uno entre el segmento [0,1] y el cuadrado [0,1] x [0,1], que entre el segmento (0,1] y el cuadrado (0,1] x (0,1] o que entre el segmento (0,1) y el cuadrado (0,1) x (0,1). Por motivos técnicos, nosotros vamos a centrarnos en construir una correspondencia uno-a-uno entre el segmento (0,1] y el cuadrado (0,1] x (0,1], es decir, los puntos (x, y) tales que sus coordenadas x e y pertenecen a (0, 1].

Por lo tanto, ya estamos en condiciones de mostrar la construcción de Georg Cantor de la correspondencia uno-a-uno entre los elementos del segmento (0,1] y los elementos del cuadrado (0,1] x (0,1], que prueba que ambos conjuntos tienen la misma cantidad de elementos. La idea básica es asignar a cada elemento A del intervalo (0,1], es decir, un número real con su expresión decimal (por ejemplo, 0,1234567891011…), un elemento (B, C) del cuadrado (0,1] x (0,1] tal que los decimales de la primera coordenada B son los decimales en las posiciones impares de A y los decimales de la segunda coordenada C son los decimales en posiciones pares de A, como se muestra en la imagen.

Y cuya aplicación inversa, es decir, que envía los elementos del cuadrado (0,1] x (0,1] en elementos del segmento (0,1], está definida mediante la construcción inversa, juntando los decimales de ambas coordenadas e intercalándolos en posiciones impares y pares.

Por ejemplo, la imagen de la conocida “constante de Champernowne”, que es el número real, entre 0 y 1, cuyos decimales son los números naturales ordenados de izquierda a derecha, es decir,

0,123456789101112131415161718192021…

es el punto del cuadrado (0,1] x (0,1] cuyas coordenadas son

(0,135790123456789012…; 0,24681111111111222…).

Por otra parte, si tomamos el punto del cuadrado (0,1] x (0,1] dado por las coordenadas (x, x), donde x es la raíz de 2 menos 1, es decir, el punto

(0, 41421356237309…; 0, 41421356237309…),

su imagen, mediante la aplicación inversa, es el elemento del segmento (0,1] dado por la siguiente expresión

0, 4411442211335566223377330099…

Resolviendo algunas cuestiones técnicas

La idea de Cantor es ingeniosa, sin embargo, el hecho de que haya números reales, en concreto, los números racionales con un número finito de decimales (incluido en caso en el que no hay decimales, es decir, los números enteros) que tienen dos representaciones genera algunos problemas en la anterior aplicación, que hay que resolver.

Problema 1. Como decíamos, hay números que tienen dos representaciones decimales, por ejemplo, el número racional 11/20 se puede representar como 0,55 (o si lo preferimos 0,55000000…) y 0,54999999… Esto es un problema, ya que ese número racional tendría dos posibles imágenes mediante la anterior construcción

(0,500000…; 0,500000…) y (0,599999…; 0,499999…).

Por lo tanto, lo que hizo Cantor fue quedarse con una única representación de las dos, la que tiene infinitos nueves, en este caso, 0,54999999… De esta forma, solo existe, a priori, una imagen en (0,1] x (0,1] de cada número real de (0,1], que, en el ejemplo anterior, es (0,599999…; 0,499999…).

Problema 2. Pero al elegir una única representación de las dos se genera un problema añadido, ya que puede haber números reales de (0,1] cuya imagen contenga una expresión de las primeras y ya no sea válida, como 118/275 = 0,429090909…, cuya imagen sería, por la construcción de Cantor, el punto del cuadrado (0,49999…; 0,20000…), que ya no es un punto válido puesto que para el número 0,2 se ha elegido la representación 0,199999… Notemos que si se admitiesen aquí las dos representaciones se tendría que dos números reales distintos 0,429090909… y 0,4199999999… tendrían la misma imagen (0,49999…; 0,20000…) = (0,49999…; 0,19999…), es decir, la correspondencia no sería uno-a-uno.

Este nuevo problema lo resuelve Cantor de una forma ingeniosa. En la aplicación del segmento (0,1] en el cuadrado (0,1] x (0,1], en lugar de separar dígitos en posiciones pares e impares (y en la aplicación inversa intercalar los dígitos de las dos coordenadas del punto), lo que propone es separar (respectivamente, intercalar) grupos de dígitos, de manera que los ceros consecutivos dentro de la representación decimal se “pegan” al siguiente dígito no nulo. Por ejemplo, los grupos de dígitos de 118/275 = 0,429090909… serían

4 / 2 / 9 / 09 / 09 / 09 …

Por lo tanto, su imagen mediante la aplicación de Cantor sería ahora

(0,49090909…; 0,2090909…).

De hecho, el punto (0,49090909…; 0,2090909…) sería el único punto de (0,1] x (0,1] cuya imagen es 118/275 = 0,429090909…

Veamos otro ejemplo. El número real 0,01002000300004000005… tendría los siguientes grupos de dígitos

01 / 002 / 0003 / 00004 / 000005 …

por lo que su imagen sería el punto del cuadrado de coordenadas (0,010003000005…; 0,002000040000006…). Y ese punto del cuadrado es el único cuya imagen inversa es el número real 0,01002000300004000005…

Por supuesto, los números que no tienen ceros entre sus decimales funcionan como antes. Así, 1/2 = 0,4999999… tiene como imagen (0,4999999…, 0,9999999) y este punto es el único cuya imagen inversa es 1/2 = 0,4999999…

 

En conclusión, Cantor demostró que existen tantos puntos en el intervalo (0,1], como en el cuadrado (0,1] x (0,1].

Retrato del matemático ruso-alemán Georg Cantor, de alrededor de 1910. Imagen obtenida de “Library of Congress, courtesy AIP Emilio Segrè Visual Archives”

Bibliografía

1.- R. Ibáñez, La gran familia de los números, Libros de la Catarata – FESPM, 2021.

2.- David Foster Wallace, Todo y más, Breve historia del infinito, RBA, 2013.

3.- J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis, Undergraduate Texts in Mathematics, Springer, 2013.

4.- Eli Maor, To infinity and Beyond, A Cultural History of Infinity, Birkhauser, 1987.

5.- José A. Prado-Bassas, Historia del infinito (el apasionante relato de uno de los conceptos más profundos y enigmáticos de las matemáticas), Pinolia, 2023.

6.- Erich Kamke, Theory of Sets, Dover, 1950.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo El infinito en un segmento (3) se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Eris, planeta nanotik planeta “bigunera”

Zientzia Kaiera - Az, 2024-06-12 09:00

Jendearentzat oso ezezaguna den arren, Eris gure Eguzki Sistemako bigarren planeta nano handiena da, Plutonen atzetik. 2005ean aurkitu zen, eta eztabaida eta liskar handia sortu zuen astronomiaren munduan, planetatzat zer hartzen genuen birpentsatzera behartu baitzuen komunitate zientifikoa.

Eztabaida hori kategoria berri baten agerpenarekin amaitu zen (planeta nanoarena), zortzi planetako Eguzki Sistemara itzuli gintuena… baina bertan dagoeneko bederatzi planeta nano daude. Guzti horietatik oso gutxi ikusi ahal izan ditugu, Zeres eta Pluton kenduta. Izan ere, distantzia ikaragarriek bereizten gaituzte, eta gorputz horiei misio gutxi eskaini zaizkie.

Gorputz horiekiko distantziak eta haien tamainak eragiten dituzten zailtasunak gorabehera, teleskopio onenekin egindako Erisen behaketek aukera ematen digute planeta nano hori nolakoa izan daitekeen ezagutzeko.

Eris1. irudia: Kaliforniako Palomar mendiko behatokitik hartutako irudien sekuentzia, 2005ean Eris aurkitu zenean.  (Irudia: NASA/JPL/Caltech-en eskaintza. Iturria: Cuaderno de Cultura Científica)

Datu horien arabera, azalera oso zuria eta islatzailea du Erisek (eguzki argiaren % 96 islatzen du), eta horrek Plutonenarekin kontrastatzen du. Izan ere, azken horrek askoz ere argi gutxiago islatzen du eta, neurri handi batean, kolore gorrixkakoa da. Horrek iradokitzen du Eris estaltzen duen izotza berritu egiten dela (oraintxe bertan zaila izango litzateke jakitea ea barneko edo kanpoko prozesuen bidez gertatzen den hori), eta, beraz, planetan nolabaiteko dinamika aktiboa dagoela.

Erisek Disnomia izeneko satelite bat du, 615 kilometro inguruko diametroa duena (Erisek duen diametroaren laurdena), eta Erisekiko 37.000 kilometrora orbitatzen du. Satelite horren existentziari esker, zientzialariek zehaztasun handiz kalkulatu ahal izan zuten Erisen masa, eta haren osaerari eta barne egiturari buruzko baieztapenak egiten hasi ziren.

Bada, Science Advances aldizkarian argitaratutako ikerketa berri batek Eris eta Disnomiaren arteko erlazio orbitala aztertu du, Erisen barne egiturari buruzko argitasun pixka bat emateko edo, gutxienez, egitura horren eredu eta bilakaera batzuk eraikitzeko. Horrek, aldi berean, barne dinamika posible bati buruzko arrastoak emango lizkiguke.

Azterlan horren ondorioez hitz egiteko, Eguzki Sistemaren eraketara jo behar dugu, duela 4.500 milioi urte inguru. Gure planeta-sistemaren haurtzaro horretan, Erisek inpaktu handi bat jasango zukeen. Inpartu horren ondorioz, bere mantuko materia asko galduko zukeen (% 15 inguru) edo bestela, inpaktuak sortutako bero handiaren ondorioz, mantua osatzen zuten elementu lurrunkorren ehuneko handi bat gal zitekeen. Inpaktu horren ondorioz, hain zuzen ere, eratuko zitzatekeen Disnomia.

Eris2. irudia: Hubble teleskopio espazialak eginiko irudia. Bertan, Eris eta Disnomia ikus daitezke, eskala batekin, distantziaren ideia onartua izateko. (Irudia: NASA, ESA eta M. Brown-en eskaintza. Iturria: Cuaderno de Cultura Científica)

Erisentzat ondoriorik berehalakoena planeta nano trinkoago bihurtu izana litzateke, adibidez, Plutonekiko eta beste objektu batzuekiko nabarmentzen dena. Izan ere, bero horrek elementu lurrunkorren bolumen handi bat sublimatu edo lurrunduko zukeen eta planetako izotz/harkaitz proportzioa aldatu.

Baina ez hori bakarrik: Disnomia Erisengandik orain baino askoz hurbilago sortu zela uste da. Horrek Erisen marea garrantzitsuak eragingo lituzte (eta alderantziz). Mareek sortutako energia hori, lehenik eta behin, bero bihurtuko litzateke, eta fenomeno kriobolkanikoak eta gainazalaren gaztetzea elikatu ahal izango lituzke. Auskalo, agian azalaren azpian ur likidoko ozeano bat sortzea ere eragin zezakeen, gaur egun egon litezkeenak baino tenperatura altuagoak mantendu ahal izango bailituzke.

Baina mareek sortutako energiaren disipazioak osagai astronomiko bat ere izango luke. Alde batetik, Disnomiaren orbita aldatzeko gai izan zitekeen, pixkanaka Erisengandik urruntzen joan baita, eta, bestetik, bi gorputzen arteko mareen akoplamendua eragin zezakeen.

Akoplamendu horren ondorioz, Eris eta Disnomiak beti aurpegi bera “erakusten” diote elkarri, bi gorputzen errotazio aldia eta Disnomiaren translazio aldia sinkronizatuta baitaude, gure Lurrarekin eta Ilargiarekin gertatzen den moduan. Arraroa iruditzen bazaigu ere, nahiko ohikoa da gure planeta sisteman.

Eris3. irudia: Eris-Disnomia sistemaren inprimatze artistikoa. (Irudia: NASA/JPL-Caltech-en eskaintza. Iturria: Cuaderno de Cultura Científica)

Xehetasun horrek iradokitzen du sistemak konfigurazio egonkor bat lortu duela milioika, ziurrenik milaka milioi, urtetan zehar, eta Eris gai dela Disnomiarekin duen elkarreraginetik sortutako energia kantitate handi bat disipatzeko. Horrek pentsarazten die zientzialariei ez dela gorputz erabat zurruna, baizik eta oraindik ere nolabaiteko konbekzioa jasan lezakeela izotzez egindako tarteko geruzan. Mareen energiaren disipazioak sortutako beroari esker eta oraindik nukleo harritsuan gera litezkeen elementu erradioaktiboen desintegrazioari esker, bero hori azalerara eramango luke. Hortik dator izenburuko planeta “biguna”ren txantxa.

Hain zuzen ere, disipazio handiago horren ondorioz, Eris erabat bereizitako gorputza izango litzateke; hau da, geruza ezberdinez osatua —kasu honetan, ziurrenik, izotz azal zurrunago bat gainazalean, izotz mantu bat egoera likatsuan eta konbekzioan, eta, azkenik, nukleo harritsu bat, gure planetan gertatzen den moduan—. Ez litzateke izango harriaren eta izotzaren nahasketa gutxi gorabehera homogeneoz osatutakoa, ustez beste planeta nano batzuetan hala baita.

Gorputz horien egitura ezagutzeak etorkizunean haien bizigarritasunari (oraingoa eta iraganekoa) buruzko xehetasunak aztertzen edo haien historia berreraikitzen lagun diezaguke, eta hori oso baliotsua da gure Eguzki Sistemaren dinamika konplexua ulertzeko, batez ere lehen etapei dagokienez.

Erreferetzia bibliografikoa:

Nimmo, F. and Brown, M.E. (2023) The internal structure of Eris inferred from its spin and Orbit Evolution, Science Advances, 9 (46). DOI: 10.1126/sciadv.adi9201

Egileaz:

Nahúm Méndez Chazarra geologo planetarioa eta zientzia-dibulgatzailea da.

Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2023ko abenduaren 11n: Eris, de planeta enano a planeta “blandito”.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Eris, planeta nanotik planeta “bigunera” appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

La carga efectiva del protón depende del isospín

Cuaderno de Cultura Científica - Ar, 2024-06-11 11:59

Al calcular las propiedades de los núcleos pesados los teóricos suelen centrarse en un subconjunto de los nucleones (protones y neutrones) y suponen que estas partículas tienen “cargas efectivas” que de alguna manera compensan todos los nucleones que se ignoran. Sin embargo, elegir las cargas efectivas adecuadas puede resultar complicado. Ahora Andrea Jungclaus, del Instituto de Estructura de la Materia (IEM-CSIC), y sus colegas han proporcionado la primera evidencia experimental clara de que las cargas efectivas dependen del isospín (groseramente, la proporción neutrón-protón) y han medido esta dependencia de forma inequívoca. La nueva información debería mejorar la precisión de los cálculos para núcleos pesados y ricos en neutrones, para los cuales existen datos experimentales limitados.

isospínEl Radioactive Isotope Beam Factory de RIKEN, donde se realizaron los experimentos. Fuente: RIKEN

Las partículas subatómicas que interaccionan a través de la interacción fuerte se conocen como hadrones. Esta categoría incluye a los protones, los neutrones y los piones. El espín isotópico o isospín es un número cuántico que se aplica a los hadrones para diferenciar los elementos de un conjunto de partículas que difieren en sus propiedades electromagnéticas pero que, por lo demás, son indiscernibles. Así, si se ignoran las interacciones electromagnéticas y débiles, el protón no puede distinguirse del neutrón por sus interacciones fuertes: el isospín se introdujo para distinguirlos.

El modelo nuclear de capas asigna a cada nucleón un estado de partícula única que es similar al orbital de un electrón en un átomo. La investigación había demostrado previamente que la carga efectiva es diferente para diferentes núcleos, pero no había quedado claro si la variación era atribuible a diferencias en la configuración orbital de los núcleos o a diferencias en el isospín (o ambas).

Jungclaus y sus colegas aislaron el efecto del isospín comparando las propiedades del estado excitado del cadmio-130 con las medidas previamente en cadmio-98. Estos dos núcleos tienen números muy diferentes de neutrones y, por tanto, una gran diferencia en isospín. Pero tienen configuraciones orbitales similares, ya que ambos tienen capas de neutrones completas y solo les faltan dos protones para tener capas de protones completas.

Los investigadores observaron núcleos de cadmio-130 que se produjeron cuando un haz de uranio colisionó con una diana de berilio en RIKEN (Japón). Combinaron los cálculos del modelo de capas y los nuevos datos junto con datos previos para determinar una carga efectiva de protones de +1,35 para este núcleo rico en neutrones, en comparación con +1,17 para el cadmio-98, lo que sugiere una inesperada dependencia del isospín importante de la carga efectiva.

Para saber más:

Una introducción fácil y paso a paso al núcleo atómico: El núcleo (serie)

Referencias:

A. Jungclaus et al. (2024) Excited-State Half-Lives in 130Cd and the Isospin Dependence of Effective Charges Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.222501

D. Ehrenstein (2024) Proton Effective Charge Depends on Neutron Population Physics 17, s65

 

 

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La carga efectiva del protón depende del isospín se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Lankidetzetan aniztasuna egoteak zientzia ona sustatzen du

Zientzia Kaiera - Ar, 2024-06-11 09:00

Lankidetzak, batez ere zenbait diziplinaren artekoak, gero eta beharrezkoagoak dira kalitatezko zientzia egiteko eta ibilbide zientifiko batean aurrera egiteko. Ikertzaile ezagunen sareetan sartu eta haien babespekoen artean leku bat egitea zaila izan daiteke emakumeentzat. Sarritan, emakumezko zientzialari gazteek baliabide onak dituen zientzialari batekin lan egin nahi duten erabaki behar dute, nahiz eta haren izen onaren itzalpean geratu.

Nork egiten du zientzia?

Ikerketa taldeen aniztasunak ondorioak ditu mundu errealean. Gizonek eta emakumeek ikuspegi desberdinak izan ditzakete, batez ere, sexua eta generoa tartean dituzten ikerketetan. «Zientzia egiten duenak erabakitzen du benetan nolako zientzia egingo den», adierazi du Londa Schiebingerrek zientziaren historialariak. Ikerketetan, ikuspegi ahaztu horren adibide asko ditugu: nahiko ohikoa da sendagaiak sagu arretan soilik probatzea eta emakumeak saiakuntza klinikoetatik kanpo uztea; ondorioz, lortzen diren tratamenduak egokiagoak dira gizonentzat. Akatsak ikusi dira klima aldaketak itsas organismoetan eragindako ondorioen azterketetan, modu desberdinean erantzuten baitute organismook arrak edo emeak diren. Eta inoiz pentsatu al dugu hegaztien kantuaren sexuaren inguruan?

Sandi Toksvig antropologia ikasten ari zela, haren irakasleetako batek 28 marka zituen adar hezur baten argazkia erakutsi zuen. «Hau», esan zuen, «gizon batek egutegi baten bidez denbora neurtzeko egindako lehen ahalegina da». Toksvigek galdera bat zuen buruan: zer gizonek jakin behar du noiz igarotzen diren 28 egun? Doktoregaiari zirrara sorrarazi zion begirada desberdin horrek, eta gizakiaren eboluzioa aztertzeko beste modu batean pentsatu zuen.

lankidetzetan1. irudia: aniztasuna funtsezkoa da ikerketa taldeetan, zientzia hobea egiten da horrela. (Argazkia: Gerd Altmann – Pixabay lizentziapean. Iturria: Pixabay.com)

Mende askoz, gizonen bizitza hartu izan da oinarritzat giza espezie osoaren bizitza irudikatzeko. Gizateriaren beste erdia isilduta egon da, eta isiltze horiek nonahi ikus daitezke: zineman, albisteetan, literaturan, zientzian, hirigintzan, ekonomian, gure iraganari, orainari eta etorkizunari buruz kontatzen ditugun istorioetan. Eremu asko daude desitxuratuta emakumeen faltagatik.

Inpaktua txikia izan daiteke, esaterako, goiko apal batera ez iristea, gizonen ohiko altuera kontuan hartuta pentsatu direlako; baina baita larria ere, emakumeen neurriak kontuan hartu ez dituzten segurtasun probak gainditu dituen auto batekin istripua izatea, adibidez. Gauza bera gertatzen da balen aurkako txalekoekin, bularrik gabeko soinetarako diseinatuta egon ohi baitira.

Bulegoak girotzeko formula 1960tik datorkigu, eta ingurune horretan dagozkion lanak egiten dituen batezbesteko gizonak atsedenean duen tasa metabolikoa hartzen du oinarri. Herbehereetan duela gutxi egindako ikerketa batean berriki aurkitu denez, antzeko lanak egiten dituzten emakume helduen tasa metabolikoa jarduera berbera egiten duten gizonena baino nabarmen baxuagoa da. Hala, emakumeentzat atsegina litzatekeena baino bost Celius gradu gutxiagoko tenperaturan klimatizatutako bulego bat lortzen da.

Antzeko beste adibide asko ditugu, eta gaur egun badakigu emakumeen ehuneko ertain bat duten taldeek arazo horiek kontuan hartuko dituztela, seguruenik. Horri buruz, Schiebingerrek eta haren lankideek ikerketa medikoko 1,5 milioi artikulu baino gehiagoren egiletza aztertu zuten, eta ikusi zuten emakumezko egileak zituztenetan ohikoagoa zela sexua eta generoa aintzat hartzea lanaren metodologian eta ondorioetan. Aniztasuna funtsezkoa da ikerketa taldeetan, zientzia hobea egiten da horrela.

Hala ere, agian ez da nahikoa talde bakoitzean emakume bat egotea: ikerketek erakusten dutenez, talde minoritario bateko kideen diskurtsoa aintzat hartua izan dadin, ikerketa taldeko kideen % 25-30 izan behar da talde horretakoa. Schiebingerrek gaineratu duenez, ikerketa bat inklusiboa izan dadin, kolektibo sorta zabal baten ikuspegiak hartu behar ditu kontuan, barne hartuta beste etnia batzuetako emakumeak, askotariko maila sozioekonomikoak eta aurrekariak dituzten pertsonak, desgaitasuna duten pertsonak eta askotariko identitate eta orientazio sexualak dituztenak.

Egiletzaren inguruko eztabaidak

Emakume askorentzat, zaila izan daiteke lankidetza bat egiteko erabakia hartzea. Emakumeek gizonek baino joera handiagoa izaten dute egiletza eztabaidetan sartzeko. 2021ean, Cassidy Sugimoto informazioaren zientzialariak galdeketa bat egin zien 5.575 zientzialariri, argitalpen bat egin aurreko argibide horiei buruz. Emakumeek esan zuten eztabaida horien ondorioz kolaborazio gutxiago izan zituztela gerora, beren borondatez atzera egin zutelako edo laguntzaileek kanpoan utzi zituztelako. Ikerketak erakutsi zuen gizonen ehuneko handi batek ez zuela egiletzari buruz eztabaidatzen artikulua argitaratzear zegoen arte, batzuetan orduan ere ez. Emakumeek, ordea, lankidetzaren hasieran argitu nahi zuten beren izena non eta nola agertuko zen.

Alderdi hori garrantzitsua da ibilbide zientifiko baten hasieran, eta emakumezko ikertzaile gazteek badakite tinko jarraitu behar dutela. «Doktoretza egiteko ibilbidean artikulu baten lehen egilea izatea zientzian jarraituko duzula iragartzen duen adierazle garrantzitsu bat da», dio Sugimotok. 2021ean, haren taldeak ikerketako 30.000 artikulutan egileek izandako ekarpena aztertu zuten, eta ikusi zuen ohikoagoa zela emakumeek lan teknikoak egitea eta gizonek, berriz, zeregin garrantzitsuagoa izatea ikerketa berriak planteatzen. Halaber, ondorioztatu zuenez, doktoretzako gizonezko ikasleek emakumezko doktoretza ikasleek baino argitalpen gehiago egiten dituzte lehen egile gisa.

Sarritan, lankidetzak egiten hastea dauden sareetara sartzeko modu bat besterik ez da, eta han aukera egongo da kolaboratzaile potentzialak aurkitzeko, bai eta beren ibilbidea bultzatu dezaketen mentoreak lortu eta osterantzean hurbilgaitzak izango liratekeen kideekin aritzeko ere.

Elkartzea

Merezimendu asko dituzten zientzialarien sare sotiletik kanpo sentitzen diren emakumeek elkarrekin lan egin dezakete, hitzaldietan kolaboratzaileak aurkituz eta zientzialari gazteagoei laguntza emanez. Hori ez da oso ohikoa emakumeengan, hainbat arrazoirengatik, Joyce Benenson psikologoak dioenez. Batetik, emakumeek gizonek adina aurreiritzi inplizitu izaten dituzte emakumeak kontratatzeari dagokionez. Gainera, gogoa beren ibilbidean aurrera egiten jartzen duten emakumezko zientzialariek agian ez diete laguntzarik eskainiko emakume gazteenei, Benensonek dioenez. Alabaina, gizonak nagusi diren sare zientifikoen kontrola arintzeko, emakumeentzat interesgarria izan daiteke koalizio estrategikoak sortzea, banaka lehiatu beharrean.

lankidetzetan2. irudia: ikerketa bat inklusiboa izan dadin, kolektibo sorta zabal baten ikuspegiak hartu behar ditu kontuan. (Argazkia: Gerd Altmann – Pixabay lizentziapean. Iturria: Pixabay.com)

Azken hamarkadan, soilik emakumezko zientzialariek osatutako taldeak sortzeko joerak gora egin du. 2019an, Luke Holman biologo ebolutiboak eta haren lankideek ikusi zutenez, bizitzaren zientzietako ikertzaileek zori hutsagatik espero zitekeena baino maizago idatzi zituzten artikuluak beren genero bereko beste ikertzaile batzuekin, beren esparruko genero proportzioak kontuan hartuta. Holmanek dioenez, ez dago argi zergatik gertatzen den hori. Agian, emakumeek elkarri laguntzeko duten inplikazioak bultzatzen du, edo emakumezko ikasleek berentzat garrantzitsuak diren ikuspuntuetan antzeko pentsamoldea duten emakumezko mentoreekin lan egiteko duten nahiak, bestela. Aldi berean, litekeena da gizonezko zientzialarien sareek emakumeak baztertzea, edo emakumeek gizonekin lan egin nahi ez izatea, jazarpena izateko beldur.

Lara Mahal kimikaria da, eta adierazi du beste erakunde batzuetako emakumeekin lankidetzan aritzeak aukera eman ziola bere interes eta premiekin bat zetozen zientzialari sare handietan sartzeko. Ezohiko laborategi talde batekin egiten du lan, birus eta zeluletan dauden azukreak aztertzen; izan ere, azterketa horretarako ikertzaile askoren parte-hartzea behar da. Egia da gizonekin lankidetza onuragarriak izan zituela, baina Mahalen harreman iraunkorrenak emakumeekin izan ziren, eta hark «arima bikiak» direla dio. Emakumeen interes zientifikoak eta nortasunak bat etorri ohi dira eta, haren hitzetan, horrek lana bereziki atsegina egiten du. «Lanean oso ondo pasatzen duzunean, zuk bezala pentsatzen duen jendearekin, halako lan gehiago egin nahi izaten duzu», adierazi du.

Tutoretzak eta genero estereotipoak

Gaur egun, oraindik ere mesedegarria da emakumezko ikertzaile gazteen ibilbideak bultzatuko dituzten zientzialarien sareetan sartzea. Egia da arrakala murrizten ari dela, baina, oraindik ere, gizonak dira ezagunenak eta haiek dituzte loturarik hoberenak zientziaren munduan. Adibidez, Estatu Batuetan, biologiako irakasle titularren % 18 baino ez dira emakumeak. Europan, batez beste, 2016an ospea zuten ikertzaileen % 15 baino gutxiago ziren emakumeak.

Tutoretzaren genero dinamika konplexua izan daiteke. Mahali, adibidez, doktoretzako aholkulari gisa Kaliforniako Unibertsitateko Carolyn Bertozzi biokimikaria aukeratzeko zuen asmoa kendu nahi izan zioten, unibertsitatean izan zuen aholkularia ere emakumea zelako eta, beraz, Mahalek gizonekin ez zuela lan egin nahi pentsa zezakeelako jendeak. Alabaina, ez zuen aholkua aintzat hartu eta Bertozzik eta Mahalek berak lankidetzaz gozatu zuten: Mahalen graduondoko ikerketari esker, Bertozzik bere lehen artikulua argitaratu zuen Science aldizkarian.

2020an, Bedoor AlShebli gizarte-zientzialari konputazionalak eta haren lankideek artikulu bat argitaratu zuten; horretan, 215 milioi egileren generoa eta antzinatasuna aztertu zituzten, hainbat alorretan eta 100 urtez idatzitako 222 milioi artikulutan (AlShebli et al, 2020). Ikusi zutenez, emakumezko mentore bat izateak ikertzaile gazteen aipuak % 35eraino murrizten zituen, eta emakumezko begiko bat izateak, berriz, % 18 murrizten zituen mentoreen aipuak. Ondorioz, mundu akademikoan, emakumeek gizonekin lan egin beharko lukete, nolabaiteko arrakasta lortu nahi izanez gero.

Azkar deuseztatu zuten artikulua eta horren ondorioak. Komunitate zientifikoak gogor kritikatu zuen tutoretzaren ordez egilekidetza faktorea erabiltzea, bai eta arrakastaren neurri gisa aipuak aldagaia erabiltzea ere, beste alderdi metodologiko batzuen artean.

Artikulua argitaratu eta gutxira, 7.600 ikertzaile inguru artikulu hartan esandakoaren ondorioez kezkatuta agertu ziren, eta beren babesa adierazi zieten berori egin zuten akademikoei, Stanfordeko Christine Jacobs-Wagner biologo molekularrak eta haren lankideek idatzitako gutun ireki batean.

AlSheblik eta haren egilekideek atzera egin zuten artikuluan idatzitakoaz, eta aitortu zuten argitalpenaren ondorengo berrikuspenek muga handiak aurkitu zituztela metodologian.

Hala ere, guztiak ez zeuden ados atzera egite horrekin. Benensonek generoa aztertzen du talde dinamiketan, eta uste du ikerketa ondorioengatik gutxietsi zela, ez hainbeste zuzena ez zelako. Adierazi duenez, azterlanaren ondorioak sozializazioari eta lankidetzari buruz generoan oinarrituta egin diren beste ikerketa batzuekin lotzen dira. Adibidez, Benensonek lehen hezkuntzako ikasleekin egindako ikerketak berak iradokitzen du estatus sozial bereko neskak elkarrekin jolasten direla, baina beste estatus bateko neskekin harremanik ez izateko joera dutela, eta gauza bera gertatzen da artean edo kirolean gutxi gorabehera trebeak diren neskekin. Mutilak, aldiz, etengabe lehiatzen dira elkarren artean, eta ondo funtzionatzen duten hierarkia sozial aldakorrak sortzen dituzte.

Benensonek eta Sugimotok gogoeta egiteko aukera ikusi zuten artikulu polemikoa argitaratu ondoren; Benensonek adierazi zuen emakumezko mentoreak desabantailan daudela nagusiki gizonek eta gizonentzat diseinatuta dagoen sistema baten ondorioz. Bestalde, Sugimotok azaldu zuenez, emakumeak beren ibilbiderako mesedegarrienak diren sareetara sartzea eragozten duten zenbait egitura instituzional daude. Adibidez, gertagarriagoa da gizonak talde handien buru izatea eta nazioarteko lankidetzetan parte hartzea, baina, gaur egun, emakume askok familiakoen zainketak beren gain hartzen dituzte, eta horrek zaildu egiten die etxebizitzaz aldatzea edo beren herrialdetik kanpo bidaiatzea. Onargarria iruditzen al zaigu batzuei eskubideak kentzea eta besteei pribilegio bat ematea?

Gero eta funtsezkoagoa da zientzian askotariko pertsonekin lankidetzan aritzen ikastea; izan ere, esan bezala, alor asko diziplinartekoak bihurtu dira eta, gainera, aberasgarria da askotariko ikuspegiak izatea. Lankidetza atseginetan aurrerapen zientifikoak lortzea poztasun handiena ematen duen erronketako bat da; alaitasun partekatu eta hedatua sortzen du, kontaktuz eta izenez egindako mailetan gora egitean datzan igoera lehiakorraz harago.

Erreferentzia bibliografikoak:
  • AlShebli B, Makovi K, Rahwan T (2020). The association between early career informal mentorship in academic collaborations and junior author performance. Nature Commun. 11, 5855. DOI: 10.1038/s41467-020-19723-8
  • Reardon S (2022). Scientific collaborations are precarious territory for women. Nature 605, 179.–181. or. DOI: 10.1038/d41586-022-01204-1
Egileaz:

Marta Bueno Saz (@MartaBueno86G) Salamancako Unibertsitatean lizentziatu zen Fisikan eta Pedagogian graduatu. Gaur egun, neurozientzien arloan ari da ikertzen.

Jatorrizko artikulua Mujeres con Ciencia blogean argitaratu zen 2022eko maiatzaren 5ean: ‘La diversidad en las colaboraciones promueve la buena ciencia‘.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Lankidetzetan aniztasuna egoteak zientzia ona sustatzen du appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

¿Es esta la (otra) prueba definitiva de que Venus tiene volcanes activos?

Cuaderno de Cultura Científica - Al, 2024-06-10 11:59

Hace poco más de un año, escribíamos en esta sección el artículo “¿Es esta la prueba definitiva de que Venus tiene volcanes activos?” en el cual hablábamos de la que podría ser la primera observación directa de una erupción volcánica en Venus tras el estudio de las imágenes tomadas por el radar de la misión Magellan de la NASA a principios de la década de los 90.

Como también comentábamos en el anterior artículo, y a modo de introducción para quien no lo leyese entonces, no sería extraño que Venus tuviese un nivel de actividad geológica similar a nuestro planeta porque, al fin y al cabo, tienen un tamaño y composición muy parecidos y, por lo tanto, podríamos asumir que todavía mantiene una importante cantidad de calor interno que le permita tener actividad geológica. Si esto no fuese así, deberíamos replantearnos los modelos de evolución planetaria.

Obviamente que sean parecidos no es una razón suficiente para justificar la existencia de actividad geológica, sino que necesitamos pruebas fehacientes de procesos volcánicos y sísmicos que ocurran en Venus a día de hoy. Pero es un planeta terrible tanto para observarlo desde la superficie del planeta como desde la órbita: Una temperatura media superior a los 450ºC -de día y de noche- y una presión atmosférica 90 veces la terrestre hacen muy complicada la supervivencia de la electrónica a largo plazo.

Desde la órbita la dificultad es otra, y es la imposibilidad de estudiar Venus con longitudes de onda visibles, ya que su superficie está completamente cubierta por nubes. Eso sí, este problema tiene una solución más sencilla: El uso de radares de apertura sintética que permitan estudiar la superficie como ya hizo la Magellan en este planeta, la Cassini en Titán o continuamente en la Tierra.

Pero el problema que tenemos es que hasta la próxima década no tendremos nuevas misiones en Venus capaces de estudiar su superficie con radar, la EnVision de la ESA y la VERITAS de la NASA, que nos aportarán una visión mucho más detallada de su superficie de lo que jamás la habíamos visto. Mientras tanto, todavía podemos aprovechar los datos de misiones anteriores para revisitarlos con una mayor capacidad de computación que cuando se tomaron los datos.

magellanCambios en la concentración de dióxido de azufre desde 1980 hasta 2011. Estas fuertes variaciones podrían apuntar a inyecciones de este gas a causa de las erupciones volcánicas. Imagen cortesía de E. Marcq et al. (Venus Express); L. Esposito et al. (datos antiguos); imagen de fondo: ESA/AOES Medialab

A pesar de todos estos inconvenientes, ya tenemos una serie de pruebas importantes a favor del vulcanismo activo en Venus: cambios en la concentración de dióxido de azufre -un gas que en nuestro planeta proviene principalmente de la actividad volcánica- en la atmósfera; zonas con muy pocos cráteres de impacto -atestiguando un relieve muy reciente-; anomalías térmicas -en este caso, puntos calientes- sobre la superficie en lugares que parecen volcanes – y que podrían indicar coladas de lava recientes o actividad en los puntos de emisión volcánicos-; y por último, el descubrimiento del fosfano en la atmósfera, que también podría estar relacionado con las erupciones volcánicas y no tanto con la vida como se sugirió inicialmente.

El pasado año, Herrick et al. (2023) publicaban en Science la que podría haber sido la primera evidencia inequívoca de una erupción volcánica en Venus, eso sí, ocurrida treinta años antes y de la que tendríamos una imagen del antes y otra del después, pero que debido al ingente volumen de datos, los cambios entre las dos imágenes habían pasado desapercibidos para los científicos de la época y, solo ahora que podemos procesar y comparar las imágenes con mucha mayor capacidad, había podido detectarse.

Pero, ¿había más erupciones volcánicas escondidas en las imágenes de la Magellan? Parece que sí. Un estudio publicado a finales de mayo por Sulcanese et al. (2024) sugiere que tanto en el flanco occidental de Sif Mons como en Niobe Planitia se aprecian alteraciones compatibles con la ocurrencia de erupciones volcánicas.

Este nuevo artículo se basa en el estudio del fenómeno de la retrodispersión de las ondas de radar que emitía la Magellan para tomar imágenes del planeta. La retrodispersión es la proporción de la señal del radar que se refleja en la dirección de la antena tras rebotar en el suelo. El estudio de esta señal nos aporta detalles sobre la rugosidad topográfica y la composición de la superficie.

Los datos de radar no suelen ser tan fácilmente interpretables como las imágenes en luz visible, lo que supone un reto a la hora de procesar los datos y evitar malentendidos. Para solucionar este problema, los autores del estudio han corregido los datos originales teniendo en cuenta el ángulo de incidencia de la señal del radar, ya que puede tener influencia en el reflejo, así como normalizar los datos para poder comparar mejor los pares de imágenes sin que una de las imágenes tuviese una mayor influencia que la otra y así evitar falsos positivos.

magellanReconstrucción tridimensional de Sif Mons realizada con datos de la Magellan. Cortesía de NASA/JPL.

Pero, ¿qué se ha detectado y en donde? En Sif Mons los autores han encontrado cambios en la retrodispersión de la señal del radar que son compatibles con la aparición de nuevas coladas de lava sobre la superficie. Sif Mons es un gran volcán en escudo, tanto que tiene un diámetro de unos 300 kilómetros y más de 2000 metros de altura. Este tipo de volcanes son como los que forman hoy día la isla de Hawaii en nuestro planeta o la Isla de Fernandina, en las Galápagos, por poner algunos ejemplos.

El otro lugar donde se han detectado cambios es Niobe Planitia, una gran llanura -forma aproximadamente un 13% de la superficie de Venus- donde se existen distintos tipos de volcanes así como evidencias de que muchos de los cráteres de impacto que pueblan su superficie han sufrido cambios posteriores a su formación, como el relleno por coladas de lava. Aquí los científicos también han observado una serie de formas lineales y en abanico que no existían antes y cuyo mecanismo de formación estaría también relacionado con la aparición de nuevas coladas de lava que cubren la superficie.

Por si no fuese suficiente, los investigadores además han realizado un análisis topográfico: Es decir, han estudiado las pendientes de Sif Mons y de Niobe Planitia y comprobado hacia donde tendrían que moverse las coladas de lava, comprobando que los cambios observados en la superficie siguen ese camino y no otro.

magellanImagen de la superficie de Venus donde se pueden ver distintas coladas de lava y una aparente ausencia de cráteres de impacto. Cortesía de NASA/JPL.

Un último paso ha sido el comparar los datos de Venus con los de una erupción en la Tierra, en este caso la del volcán Pacaya, en Guatemala, y observar si los cambios relacionados con la erupción del año 2014 -observada con los radares en la órbita de nuestro planeta- sufría una amplificación en la señal retrodispersada, cosa que ocurría también en la Tierra, apoyando con ello las observaciones hechas por los investigadores.

Este nuevo estudio pone de manifiesto que Venus está más activo de lo que pensábamos y que probablemente hemos estado durante décadas ante un sesgo observacional a la hora de cuantificar su actividad de nuestro “gemelo” planetario, ya que los medios de los que disponíamos nos aportaban una visión muy limitada espacial y temporalmente, pero también por una menor capacidad de procesamiento que la que tenemos hoy.

Venus, por lo tanto, es un planeta que requiere repensar nuestra estrategia de exploración espacial puesto que, a la vista de los descubrimientos que se están haciendo en los últimos años, todavía podría guardar muchos secretos sobre la evolución de los planetas a lo largo del tiempo.

Nota:

Gracias a Davide Sulcanese por proveerme de una copia del artículo para poder comentarlo en Planeta B.

Referencias:

Marcq, Emmanuel, Jean Loup Bertaux, Franck Montmessin, and Denis Belyaev (2013) Variations of Sulphur Dioxide at the Cloud Top of Venus’s Dynamic Atmosphere Nature Geoscience doi: 10.1038/ngeo1650.

Zhang, Xi. (2014) On the Decadal Variation of Sulphur Dioxide at the Cloud Top of Venus EPSC Abstracts  Vol. 9, EPSC2014-189.

Bains, William, Oliver Shorttle, Sukrit Ranjan, Paul B Rimmer, Janusz J Petkowski, Jane S Greaves, and Sara Seager (2022) Constraints on the Production of Phosphine by Venusian Volcanoes Universe doi: 10.3390/universe8010054

Herrick, Robert R, and Scott Hensley (2023) Surface Changes Observed on a Venusian Volcano during the Magellan Mission Science doi: 10.1126/science.abm7735

Shalygin, E. V., A. T. Basilevsky, W. J. Markiewicz, D. V. Titov, M. A. Kreslavsky, and Th Roatsch. “Search for Ongoing Volcanic Activity on Venus: Case Study of Maat Mons, Sapas Mons and Ozza Mons Volcanoes.” Planetary and Space Science 73, no. 1 (2012): 294–301. https://doi.org/10.1016/j.pss.2012.08.018.

Smrekar, Suzanne E., Ellen R. Stofan, Nils Mueller, Allan Treiman, Linda Elkins-Tanton, Joern Helbert, Giuseppe Piccioni, and Pierre Drossart. “Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data.” Science 328, no. 5978 (2010): 605–8. https://doi.org/10.1126/science.1186785.

Basilevsky, A. T., E. V. Shalygin, D. V. Titov, W. J. Markiewicz, F. Scholten, Th Roatsch, M. A. Kreslavsky, et al. “Geologic Interpretation of the Near-Infrared Images of the Surface Taken by the Venus Monitoring Camera, Venus Express.” Icarus 217, no. 2 (2012): 434–50. https://doi.org/10.1016/j.icarus.2011.11.003.

Bains, William, Oliver Shorttle, Sukrit Ranjan, Paul B. Rimmer, Janusz J. Petkowski, Jane S. Greaves, and Sara Seager. Only Extraordinary Volcanism Can Explain the Presence of Parts per Billion Phosphine on Venus. Proceedings of the National Academy of Sciences of the United States of America 119, no. 7 (2022): 2–3. https://doi.org/10.1073/pnas.2121702119.

Cordiner, M. A., G. L. Villanueva, H. Wiesemeyer, S. N. Milam, I. de Pater, A. Moullet, R. Aladro, et al. Phosphine in the Venusian Atmosphere: A Strict Upper Limit From SOFIA GREAT Observations. Geophysical Research Letters 49, no. 22 (2022). https://doi.org/10.1029/2022GL101055.

Sulcanese, Davide, Giuseppe Mitri, and Marco Mastrogiuseppe (2024) Evidence of Ongoing Volcanic Activity on Venus Revealed by Magellan Radar 2024. doi: 10.1038/s41550-024-02272-1

Herrick, Robert R., and Scott Hensley. Surface Changes Observed on a Venusian Volcano during the Magellan Mission. Science 379, no. 6638 (2023): 1205–8. https://doi.org/10.1126/science.abm7735.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario, divulgador científico u autor de la sección Planeta B.

El artículo ¿Es esta la (otra) prueba definitiva de que Venus tiene volcanes activos? se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Azkenean, fisikariek ordenagailu kuantikoek bakarrik konpon dezaketen arazo bat aurkitu dute

Zientzia Kaiera - Al, 2024-06-10 09:00

Ikertzaileek frogatu dute sistema kuantiko baten energiari buruzko arazo bat konpontzea erraza dela ordenagailu kuantikoentzat, baina zaila klasikoentzat.

sistema kuantiko1. irudia: Carlos Arrojo. (Iturria: Quanta Magazine)

Ordenagailu kuantikoak superpotentzia konputazional bihurtzear daude, baina ikertzaileek denbora asko daramate abantaila kuantiko bat emango lukeen arazo bideragarri baten bila, hau da, ordenagailu kuantiko batek bakarrik konpon dezakeen zerbaiten bila. Argudiatzen dutenez, orduan bakarrik joko da teknologia hori funtsezkotzat.

Hainbat hamarkadatan bila ibili dira. «Hein batean erronka bat da, ordenagailu klasikoak nahiko onak direlako egiten dituzten gauza askotan», azaldu du John Preskillek,  Kaliforniako Teknologia Institutuko fisikari teorikoak.

1994an, Peter Shorrek aukera bat aurkitu zuen: zenbaki handiak faktorizatzeko algoritmo kuantiko bat. Shorren algoritmoa indartsua da, eta algoritmo klasiko guztiak gainditzen dituela uste da. Ordenagailu kuantiko batean exekutatzen denean, Interneteko segurtasun sistema asko apurtzeko ahalmena du, zenbaki handiak faktorizatzeko zailtasunaren mende baitaude. Baina hain harrigarria bada ere, algoritmoa ikerketa arloen zati txiki baterako baino ez da garrantzitsua, eta litekeena da bihar norbaitek makina klasiko batean zenbaki handiak faktorizatzeko modu efiziente bat aurkitzea, eta horrek Shorren algoritmoa eztabaidagarri bihurtuko luke. Shorren aplikagarritasun mugatuaren ondorioz, ikertzaileen komunitateak makina kuantikoen beste erabilera kasu batzuk bilatu ditu, aurkikuntza zientifiko berriak egiten benetan lagun dezaketenak.

«Ez dugu ordenagailu bat sortu nahi zeregin berezi baterako bakarrik», dio Soonwon Choik, Massachusettseko Teknologia Institutuko fisikariak.  «Shorren algoritmoaz gain, zer gehiago egin dezakegu ordenagailu kuantiko batekin?».

Preskillek dioen moduan: «Klasikoki zailak diren arazoak aurkitu behar ditugu, baina orduan [erakutsi] beharko dugu metodo kuantikoak benetan efizienteak izango direla».

Batzuetan, ikertzaileek uste izan zuten lortu zutela, arazoak konpon zitzaketen algoritmo kuantikoak aurkituz, ordenagailu klasiko batek egin dezakeen edozer baino azkarrago. Baina gero, norbaitek (sarritan Ewin Tang ikertzaile gazteak) kuantikoak gaindi zitzaketen algoritmo klasiko berri eta adimentsuak asmatu zituen.

Orain, fisikari talde batek, Preskill barne, abantaila kuantikorako orain arteko hautagairik onena aurki zezakeen. Sistema kuantiko batzuen energia aztertzean, galdera espezifiko eta erabilgarri bat aurkitu zuten, makina kuantiko batentzat erantzuteko erraza dena, baina klasiko batentzat zaila. «Hori aurrerapen handia da algoritmo kuantikoen teorian», dio Sergey Bravyik, IBMko teorialari eta informatikariak. «Emaitza abantaila kuantiko bat da materialen zientzietarako eta kimikarako  garrantzitsua den arazo baterako».

Ikertzaileak ere gogotsu daude lan berriak zientzia fisikoen ustekabeko arlo berriak aztertzearekin. «Gaitasun berri hori kualitatiboki [Shorrena] ez bezalakoa da, eta algoritmo kuantikoen munduan aukera berri asko ireki ditzake», dio Choik.

sistema kuantiko2. irudia: John Preskillek denbora luzez bilatu zuen abantaila kuantikoaren adibide bat, konputagailu kuantikoek egin zezaketena eta ordenagailu klasiko normalek egin ezin zutena. (Argazkia: Greg Segal. Iturria: Quanta Magazine)

Arazoak sistema kuantikoek (normalean atomoek) hainbat energia egoeratan dituzten propietateekin du zerikusia. Atomoek egoeren artean salto egiten dutenean, haien propietateak aldatu egiten dira. Argi kolore jakin bat eman dezakete, adibidez, edo magnetiko bihurtu. Sistemaren propietateak hainbat energia egoeratan hobeto aurreikusi nahi baditugu, erabilgarria da sistema hain asaldatuta ez dagoenean ulertzea, zientzialariek oinarrizko egoera gisa definitzen duten horretan.

«Kimikari, materialen zientzialari eta fisikari kuantiko asko lanean ari dira oinarrizko egoerak aurkitzeko», azaldu du Robert Huangek, artikulu berriaren egileetako bat eta Google Quantum AI-ko ikertzaile zientifikoak. «Badakigu oso zaila dela».

Hain zaila da non, mende bat baino gehiagoko lanaren ondoren, ikertzaileek oraindik ez baitute aurkitu ikuspegi konputazional efizienterik sistema baten oinarrizko egoera zehazteko, lehen printzipioetatik abiatuta. Ez dirudi ordenagailu kuantiko batekin hori egiteko modurik dagoenik ere. Zientzialariek ondorioztatu dute sistema baten oinarrizko egoera aurkitzea zaila dela ordenagailu klasikoentzat zein kuantikoentzat.

Baina sistema fisiko batzuek panorama energetiko konplexuagoa dute. Hozten direnean, sistema konplexu horiek ez dira beren funtsezko egoeran finkatzen, baizik eta hurbileko eta energia maila baxuagoko batean, tokiko gutxieneko energia maila gisa ezagutzen dena. (2021eko Fisikako Nobel Sariaren zati bat sistema multzo horietako batean egindako lanagatik eman zen, spinezko beirak izenekoak). Ikertzaileek beren buruari galdetu zioten orduan ea sistema baten tokiko gutxieneko energia maila zehaztea ere unibertsalki zaila ote zen.

Erantzunak iaz hasi ziren sortzen, Chi-Fang (Anthony) Chenek, artikulu berriaren beste egile batek, termodinamika kuantikoa simula zezakeen algoritmo kuantiko berri bat garatzen lagundu zuenean (beroaren, energiaren eta lanaren eragina sistema kuantiko batean aztertzen duena). «Uste dut jende askok [ikertu] duela energia potentzialaren azalerak sistema kuantikoetan duen itxura, baina lehen ez zegoen hori aztertzeko tresnarik», dio Huangek. Chenen algoritmoak leiho bat irekitzen lagundu du sistema horiek nola funtzionatzen duten jakiteko.

sistema kuantiko3. irudia: Robert Huangek eta John Preskillek lagundu zuten aurkitzen ordenagailu kuantikoen erabilgarritasuna frogatzen zuen arazo bat: sistema kuantiko baten gutxieneko energia-maila lokala aurkitzea. (Argazkia: Chi-Yun Cheng. Iturria: Quanta Magazine)

Tresna berria zein indartsua zen ikusita, Huang eta Leo Zhouk, artikulu berriaren laugarren eta azken egileak, ordenagailu kuantikoek sistema baten tokiko gutxieneko energia egoera zehazteko modu bat diseinatzeko erabili zuten, oinarrizko egoera ideala bilatu beharrean; ikuspegi hori, hain zuzen ere, konputazio kuantikoan ikertzaileak bilatzen ari ziren galdera motan zentratzen zen. «Orain arazo bat dugu: tokiko energia kantitate bat aurkitzea, eta hori oraindik zaila da ikuspegi klasikotik, baina esan dezakegu kuantikoki erraza dela», dio Preskillek. «Beraz, horrek egon nahi dugun eremuan jartzen gaitu, abantaila kuantiko bat lortzeko».

Preskillek zuzenduta, egileek sistema baten tokiko gutxieneko energia egoera zehazteko beren ikuspegi berriaren ahalmena frogatzeaz gain (fisika kuantikoaren arloan aurrerapen handia), frogatu zuten azkenean arazo hori ordenagailu kuantikoek beren balioa frogatzeko modukoa zela. «Tokiko gutxieneko bat aurkitzeko arazoak abantaila kuantikoa du», ondorioztatu du Huangek.

Eta aurreko hautagaiak ez bezala, algoritmo klasiko berri batek ez dio aurre hartuko ziur asko. «Ez da oso litekeena deskuantifikatzea», dio Choik. Preskillen taldeak oso hipotesi onargarriak egin zituen eta arrisku logiko gutxi hartu zituen; algoritmo klasiko batek emaitza berdinak lor baditzake, fisikariek beste gauza askotan erratuta egon behar dutela esan nahi du. «Emaitza txundigarria izango da», dio Choik. «Poztu egingo nau ikusteak, baina txundigarriegia izango litzateke sinesteko». Lan berriak hautagai bideragarri eta etorkizun handikoa aurkeztuko du abantaila kuantikoa erakusteko.

Gauzak argi uzteko: emaitza berria teorikoa da oraindik. Ikuspegi berri hori gaur egun benetako ordenagailu kuantiko batean frogatzea ezinezkoa da. Denbora beharko da arazoaren abantaila kuantikoa zehatz-mehatz frogatzeko gai den makina bat eraikitzeko. Horregatik, Bravyirentzat, lana hasi besterik ez da egin. «Duela bost urte gertatutakoari erreparatzen badiogu, qubit gutxi batzuetako ordenagailu kuantikoak baino ez genituen, eta orain ehunka eta baita 1.000 qubiteko makinak ere baditugu», azaldu du. “Oso zaila da bost edo hamar urte barru zer gertatuko den aurreikustea. Eremu oso dinamikoa da”.

Jatorrizko artikulua:

Lakshmi Chandrasekaran (2024). Physicists Finally Find a Problem That Only Quantum Computers Can DoQuanta Magazine, 2024ko martxoaren 12a. Quanta Magazine aldizkariaren baimenarekin berrinprimatua.

Itzulpena:

UPV/EHUko Euskara Zerbitzua.

The post Azkenean, fisikariek ordenagailu kuantikoek bakarrik konpon dezaketen arazo bat aurkitu dute appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

¡Abre los ojos! La ciencia de la visión y de la mirada

Cuaderno de Cultura Científica - Ig, 2024-06-09 11:59

El sistema visual de los mamíferos, y de los vertebrados, en general, es de una complejidad asombrosa. El ojo es una estructura tan complicada y su función, tan relevante, que el mismísimo Charles Darwin lo tenía por la principal amenaza para su teoría sobre el origen de las especies. Y no fue el único; también a Ramón y Cajal le asaltó la duda. El ojo humano, principalmente, pero también los sistemas visuales y las estructuras fotorreceptoras de otras especies son el tema del libro de Conchi Lillo ‘¡Abre los ojos!’.

visiónFuente: Next Door Publishers

El libro empieza por invocar la evolución y el mecanismo que (a mi juicio) le es más propio, la selección natural. Entiendo que ese es el mejor punto de partida posible para un libro como este, porque si bien el adagio de Theodosius Dobzhansky «En biología nada tiene sentido si no es a la luz de la evolución» –que diese título a su ensayo de 1973– es válido en cualquier caso, resulta especialmente luminoso cuando nos referimos a una modalidad de recepción sensorial con una plasticidad tan grande como la de la visión y con una relación, en general (aunque no en todos sus aspectos), tan evidente con las características del entorno.

A esa inicial contextualización evolutiva de la visión, sigue una descripción del ojo humano. La autora presenta su estructura, tanto del órgano receptor –la retina–, con sus elementos, como de las estructuras accesorias.

Los colores no existen aunque los veas

Más adelante se adentra en el mundo de los colores –la visión en color–, para explicar que el fenómeno se basa en la posesión de pigmentos visuales que responden de forma diferente a las distintas longitudes de onda de las radiaciones electromagnéticas que constituyen la luz visible. Es visible, precisamente, porque los pigmentos, al absorber la radiación, reaccionan y desencadenan una secuencia de acontecimientos que desemboca en la generación de señales nerviosas. En definitiva, la energía que portan los fotones se acaba convirtiendo en la energía bioeléctrica propia de los impulsos nerviosos.

El título de este apartado –‘Los colores no existen’– me ha recordado una conversación que tuve hace años con mi madre, a quien se lo dije con esas mismas palabras: «¿Sabes que los colores no existen?» «¿Qué tontería es esa?» me respondió ella. «¿Cómo no van a existir si los estoy viendo?» Traté de explicárselo lo más claramente que pude, pero me resultó imposible. Incluso a mis estudiantes les resulta una noción extraña, y el argumento, un tanto alambicado. Pero Conchi Lillo lo explica muy bien; mi madre, a ella, se lo habría entendido.

El color de los ojos también es objeto de su atención; en el libro se explica la razón por la que unas personas tenemos los ojos oscuros y otras los tienen claros. O, incluso, a qué se debe que, como le ocurría a un compañero de estudios en el instituto de Portugalete, haya quien tiene uno de cada color. Conviví con ese compañero –de clase y de francachelas– en el aula, el patio y los bares, durante meses, sin percatarme de su rareza. Hasta que me lo dijo una compañera. Siempre me había parecido que tenía una mirada extraña, pero me tuvieron que decir que tenía un ojo castaño y otro azul para percatarme. Entendí entonces la razón de mi perplejidad.

Problemas de visión

A los problemas visuales se les dedica un extenso capítulo. Es extenso porque al tratarse de un sistema tan complejo, con tantos elementos, las posibilidades de que funcione de forma anómala se multiplican. Son muchos los fallos posibles del sistema, tanto en los fotorreceptores y sus características pigmentarias, como en el efecto que el paso del tiempo tiene sobre las estructuras retinianas o las averías de algunos componentes accesorios. Cataratas, fatiga visual, miopía, degeneración macular y otros males asoman a las páginas del libro. Y uno no puede dejar de pensar que vemos de milagro. Aunque, en realidad, la reflexión pertinente es otra: qué sistema tan maravilloso es el de la visión que a pesar de tantos elementos constituyentes y potencialmente falibles, lo normal es que durante gran parte de nuestra vida nos preste un servicio excelente.

Tampoco aquí debemos perder de vista la lógica evolutiva. La mayor parte de esos problemas, al menos los que pueden comprometer la supervivencia o capacidad para dejar descendencia, surgen precisamente cuando ya la hemos dejado o, en todo caso, hemos perdido la oportunidad de hacerlo. En otras palabras, la selección natural ha actuado descartando variantes que limitaban a nuestros ancestros; las pocas anomalías que aparecen a edades jóvenes son eso, pocas: excepciones, en realidad.

Los artistas plásticos –me refiero aquí a los pintores, principalmente– también sufren problemas de visión y las consecuencias de esos problemas, de una u otra forma, quedan reflejados en su obra. Es interesantísimo seguir la pista de las deficiencias visuales que delatan los cuadros: miopía, cataratas, estrabismo y otros, son afecciones cuya huella queda impresa en la obra del artista.

Percepción animal

Uno de los aspectos más interesantes de la visión como modalidad sensorial es el fenómeno perceptivo, la forma en que la información recogida por los sistemas receptores es procesada por los centros superiores del cerebro y el papel que juega en ese procesamiento la memoria, las emociones y, en general, cualquier tipo de información –incluida la que se recibe por otras vías sensoriales– que interactúa con la de origen visual para generar la percepción. De hecho, lo que vemos acaba siendo el resultado de la confluencia, con las señales procedentes de la retina, de expectativas, recuerdos, sentimientos y otros elementos de nuestra experiencia presente o pasada. Por esa razón, nunca dos personas ven lo mismo cuando contemplan una misma escena.

La autora deja para casi el final, un recorrido por los sistemas visuales de diferentes especies, como bivalvos, cefalópodos, crustáceos, insectos o arácnidos. Este es el apartado que mejor ilustra el apotegma antes citado del señor Teodosio. Y es, por eso mismo, el que mejor muestra la asombrosa diversidad de soluciones que ha generado la naturaleza para, sirviéndose de la información contenida en ciertos intervalos de longitudes de onda de las radiaciones electromagnéticas que “bañan” el universo, dotar a las criaturas animales de herramientas mediante las que desenvolverse con éxito en entornos de lo más dispares.

Cierra el libro una breve mirada a lo que nos puede deparar el futuro desde la tecnología electrónica y telemática, en combinación –casi simbiosis– con nuestro sistema visual. Pero el futuro no está escrito y aunque lo que cuenta Lillo es apasionante, estoy seguro de que nos deparará maravillas aún más asombrosas de lo que hoy somos capaces de vislumbrar.

En resumen, querido lector, querida lectora, si tiene curiosidad acerca del funcionamiento de la visión, la nuestra y la de otros seres vivos, ‘¡Abre los ojos!’ es, por claridad, rigor y amenidad, una lectura muy recomendable.

 

Autora: Conchi Lillo

Título: ¡Abre los ojos!

Ed por Next Door (2023)

 

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

Una versión de este texto de Juan Ignacio Pérez Iglesias apareció anteriormente en Lecturas y Conjeturas (Substack).

El artículo ¡Abre los ojos! La ciencia de la visión y de la mirada se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Orriak