Estrellas de mar: de no tener cabeza a tener solo cabeza

Cuaderno de Cultura Científica - Og, 2023-12-14 11:59

Las estrellas y los erizos de mar forman parte de uno de los grupos más enigmáticos de seres vivos: los equinodermos. Un estudio publicado recientemente los convierte en criaturas todavía más enigmáticas. Al menos, si las contemplamos con nuestros ojos humanos.

Estrellas de marFoto: Adrian Pingstone / Wikimedia Commons

La inmensa mayoría de los animales, nosotros incluidos, somos bilaterales: nuestra simetría divide el cuerpo en dos mitades casi idénticas. En otras palabras, estamos organizados sobre la base de un eje anteroposterior y otro dorsoventral. Hacia finales del siglo pasado se descubrió que los genes que controlan la formación de estos ejes durante el desarrollo son los mismos en todos los animales bilaterales. Es decir, el mecanismo que determina qué región va a ser anterior, media o posterior es el mismo en una mosca y en un ser humano.

Una organización bilateral parece la más lógica en animales que tienen un tubo digestivo y se desplazan en una dirección determinada. Lo razonable es que alrededor del extremo anterior, donde está la boca, se concentren los órganos de los sentidos y los centros nerviosos. En pocas palabras, que se desarrolle una cabeza.

Esta es la razón por la que nos resultan fascinantes los equinodermos. Sus ancestros eran bilaterales con todas sus ventajas, cabeza incluida. Sin embargo, en algún momento de su evolución perdieron esta característica y desarrollaron una organización pentámera. Dejaron de tener un único plano de simetría para contar con nada menos que cinco, dispuestos alrededor de un eje oral-aboral, el eje que pasa por la boca y por el lado opuesto del cuerpo.

Esta innovación evolutiva se refleja en el desarrollo de los equinodermos: su larva es bilateral, pero tras una metamorfosis compleja adquiere la simetría pentámera.

La organización pentámera, sin eje anteroposterior ni centros nerviosos, implica la ausencia de una cabeza. O, al menos, esto se creía hasta ahora. Un artículo recientemente publicado en la revista Nature sugiere lo contrario de lo que se pensaba. Los equinodermos no solo tienen cabeza, sino que no tienen nada más. Son cabezas sin cuerpo.

Cuatro hipótesis, todas inválidas

Hasta ahora se habían formulado cuatro hipótesis para explicar cómo el eje presente en todos los animales bilaterales pudo transformarse en los cinco planos de simetría de los equinodermos. Estos modelos eran la bifurcación, circularización, duplicación y el apilamiento.

Estrellas de marLas cuatro hipótesis formuladas sobre la transición de un eje anteroposterior (A-P) a una simetría pentámera en los Equinodermos.

Un equipo de biólogos de la Universidad de Stanford (EE UU) propone en su artículo un modelo nuevo y diferente, que supone una nueva concepción de cómo evolucionaron los equinodermos.

Su estrategia consistió en seleccionar una serie de marcadores genéticos típicos del eje anteroposterior de los bilaterales. Estos han sido conservados a lo largo de la evolución, por lo que es interesante saber dónde se expresan en un animal pentámero. Entre los 36 marcadores seleccionados los había de la región más anterior del cuerpo, de la media y de la posterior. También se incluyeron los genes del complejo Hox, que son fundamentales en la organización del eje de todos los animales bilaterales.

La técnica utilizada fue la tomografía de ARN aplicada a los pequeños estados juveniles de una estrella de mar abundante en la costa de California, Patiria miniata. Esta avanzada técnica molecular consiste en seccionar brazos de la estrella en tres planos diferentes: a lo largo del eje del brazo, en un plano horizontal y de forma transversal. En las distintas secciones fue detectada la expresión de los diferentes marcadores.

El sorprendente resultado obtenido fue que los genes más anteriores se expresaban en la línea media de los brazos, y los más posteriores en sus márgenes laterales. Como la línea media de los brazos está ocupada por los surcos ambulacrales, en los que se localizan los pequeños pies con los que las estrellas de mar se desplazan, este nuevo modelo de organización se ha denominado ambulacral-anterior.

Estrellas de marLa estrategia consistió en seccionar los brazos de la estrella en tres planos y comprobar la expresión de genes anteriores, medios y posteriores en animales bilaterales. Los más anteriores se expresaban en la línea media de los brazos y los posteriores en sus márgenes.Un resultado inesperado

Que el centro de los brazos corresponda a la parte anterior de los demás animales y los márgenes a la posterior, no era un resultado esperado. Pero menos todavía lo fue la ausencia de marcadores típicos del tronco de los animales bilaterales.

En el ectodermo de la estrella de mar solo se expresa uno de los trece genes del complejo Hox, Hox1, y lo hace en el margen de los brazos, lo que corresponde a la zona posterior de su cuerpo. Dicho de otra forma, lo más posterior que encontramos en el cuerpo de la estrella corresponde al límite posterior de la cabeza de los vertebrados. El cuerpo de la estrella de mar se corresponde con nuestra cabeza, pero no hay evidencia molecular de que haya nada semejante a un tronco.

Los genes Hox se expresan ordenadamente a lo largo del cuerpo de los animales bilaterales. En el ectodermo de la estrella de mar sólo se expresa el más anterior, Hox1, y lo hace en el margen de los brazos. Vertebrados y hemicordados sirven como comparación.

Queda por comprobar si estos resultados son exclusivos de las estrellas de mar o, como parece muy probable, son aplicables a todos los equinodermos. Si se confirma esto, se trataría de una concepción completamente novedosa de la forma en que los equinodermos reorganizaron su eje bilateral y construyeron su cuerpo. Una constatación final que nos confirma este estudio: la biología, y en particular la evolución, mantiene intacta su capacidad de asombrarnos.The Conversation

Sobre el autor: Ramón Muñoz-Chápuli Oriol, Catedrático de Biología Animal (jubilado), Universidad de Málaga

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Estrellas de mar: de no tener cabeza a tener solo cabeza se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Nanotermodinamika, sistema txikien termodinamika

Zientzia Kaiera - Og, 2023-12-14 09:00

Termodinamika Klasikoak nagusitasun ukaezina dauka zientzian. Hain zuzen, bere legeak (energiaren kontserbazioa eta entropiaren etengabeko igoera, batik bat) ezinbestekoak dira naturaren izaera termikoaren oinarriak finkatzeko eta ulertzeko. Hori dela eta, nabarmentzekoa da teoria horrek zientziaren hainbat esparrutara izan duen hedadura; hala nola, kimika fisikora, biokimikara eta alor ugaritako ingeniaritzetara. Beinke, askotariko sistemen deskribapenean egundoko arrakasta izan du Termodinamikak.

Dena dela ere, aintzakotzat izan beharrekoa da ezen teoria klasikoa bi hurbilketatan oinarritzen dela edozein sistemaren azterketa termodinamikoa burutzeko; sistema hori berori makroskopikotzat eta homogeneotzat hartzean, alegia. Horren ondorioz, erabat baztertzen ditu sistema txikien mailan azaleratzen diren tamaina finituko efektuak; beste hitzez esateko, aipaturiko hurbilketa murriztaileok Termodinamika Klasikoa nanoeskalara eramatea eragozten dute.

NanotermodinamikaIrudia: Multzo mikrokanonikoa, kanonikoa eta makrokanonikoa hagitz ezagunak dira, eta Termodinamikan zabalki erabiliak. Nanokanonikoa, ordea, lehen begiratuan arrotza gerta lekiguke. Parentesien barnean multzo bakoitzean kontrolpean izango ditugun azpisistemen mailako aldagaiak daude. Azpisistemek noranzko biko gezien ondoan ageri diren magnitude estentsiboak elkartrukatzeko askatasuna dute. Argi dago, beraz, multzo nanokanonikoa dela lauretatik askeena. (Iturria: Ekaia aldizkaria)

Horren harira, artikulu honetan Termodinamikatik haratago doan formalismoa aurkeztuko dugu: Terrell Hill fisikariak 1960ko hamarkadan sortutako eta garatutako Nanotermodinamika. Hill-ek “Thermodynamics of Small Systems” artikulua eta izen bera daraman liburu parea plazaratu zituen, Sistema Txikien Termodinamikaren (“Nanotermodinamika” hitza berantiarragoa da) oinarri matematikoak zein aplikazioak azaltzeko. Hala ere, azken sei hamarkadetan ez da haren lanari jarraipen nabarmena eman dion fisikaririk izan. Ondorioz, ez da batere ezaguna mundu-mailako zientzialarien artean.

Ezer baino lehen, aipatzekoa da, arestiko azalpenen harira, arrotza gerta lekigukeela “nano” eta “termodinamika” hitz berean batera ikustea, haien esangurak elkarren artean kontrajarriak dira eta. Bada, kontua da Hill-en teoria Termodinamikak sistema txiki eta heterogeneoak zehaztasun handiagoz ezaugarritzea posible egiten duen orokorpena dela funtsean; bestela esanda, hedapen finituko zuzenketak eta moldaketak eransten dizkie ekuazio klasikoei, eta, halakoak ezaugarritzeko, berariazko potentzial termodinamikoa sortu zuen: banatze-potentziala.

Bada, azalpen teorikoak aurkeztuz, eta tarteka adibide adierazgarriak sartuz, irakurleak ohiko Termodinamikatik haratago eramatea, eta Nanotermodinamikak sistema txikien azterketan duen eraginaz ohartaraztea da artikulu honen xedea, teoria horren nondik norakoez jabetu daitezen bidenabar. Bertatik eskuratuko ditugun ondorio esanahitsuenen artean, honako hauek daude: alde batetik, mundu makroskopikoan intentsiboak diren aldagaiek (T tenperaturak eta ???? potentzial kimikoak, adibidez) oro har izaera estentsiboa dute. Bestetik, gas ideal klasikoa multzo estatistiko berezi batean aztertuko dugu: multzo nanokanonikoan, zeina soilik eskualde nanotermodinamikoan eraiki baitaiteke. Hala, azken hori sistema txikiaren entropiaren maximizazioa bermatzeko baitezpadakoa dela ohartuko gara; era berean, hain entzutetsua den Gibbs-en paradoxaren aurrean soluzio berritzailea eskainiko digu. Aipatutako efektu horiek guztiak banatze-potentzialaren gidaritzapean daude.

Hill-en lana urte luzez baztertuta egon den arren, aipatu beharrekoa da ezen 2020az geroztik, Norvegiako NTNU unibertsitateko ikertzaile-talde batek badiharduela hura berrabiarazi eta bultzatu nahian, eta, horri esker, hainbat sistemaren portaera simulatzeko gai izan direla nanoeskalan; adibidez, adsorbatzaile txikia edota ingurune porotsuetako sistemak.

Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: 44
  • Artikuluaren izena: Nanotermodinamika
  • Laburpena: Lan honetan, Termodinamika Klasikotik haratago doan teoria aurkeztuko dugu: Terrell Hill fisikariak 1960ko hamarkadan sortutako eta garatutako Nanotermodinamika. Funtsean, sistema txikien azterketarako nahitaezkoa den tresneria biltzen du, banatze-potentzial deritzon potentzial termodinamikoa dela medio. Hain zuzen, horrek ahalbidetzen du, besteak beste, banatzearekin lotutako askatasun-gradu berezia abian jartzeaz bat, multzo estatistiko nanokanonikoaren eraikuntza. Adibideen bidez, eskualde nanotermodinamikoan kasuan kasuko tamaina finituko efektuek duten esanguran sakonduko dugu. Horiek horrela, Termodinamika eta Fisika Estatistikoa irakasgaiko ikasleei arras aberasgarria gertatuko zaie, alde batetik, ohiko Termodina- mikaren irismenaz ohartzea, eta, bestetik, Nanotermodinamikaren nondik norakoak ulertzea eta barneratzea. Aipatzekoa da ezen urte luzez baztertuta egon bada ere, egun Hill-en teoria baliagarria gertatu zaiela hainbat esparrutako zientzialariei; esate baterako, kimika fisikoan eta biologian.
  • Egileak: Mikel Garitano Telleria eta Josu Mirena Igartua Aldamiz
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua
  • ISSN: 0214-9001
  • eISSN: 2444-3255
  • Orrialdeak: 137-152
  • DOI: 10.1387/ekaia.24252
Egileez:

Mikel Garitano Telleria eta Josu Mirena Igartua Aldamiz UPV/EHUko Zientzia eta Teknologia Fakultateko ikertzaileak dira.

Ekaia aldizkariarekin lankidetzan egindako atala.

The post Nanotermodinamika, sistema txikien termodinamika appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

El cuento de la ruleta rusa

Cuaderno de Cultura Científica - Az, 2023-12-13 11:59

Cuando presento alguno de mis libros en una librería, aunque la verdad es que esto no ocurre tantas veces como uno desearía, me gusta pedir a las personas que trabajan en la misma que me recomienden algunos libros, principalmente, novelas. En octubre (de 2023) presenté mi último libro “Las matemáticas como herramienta de creación artística” (Catarata / FESPM, 2023) en la librería Zubieta-TROA, de Donostia/San Sebastián. El responsable de esta librería, Adolfo López Chocarro, me recomendó varios libros, entre los cuales estaba el cuento El Ruletista (Impedimenta), del escritor rumano Mircea Cartarescu (Bucarest, 1956), en el cual se menciona, de pasada, la probabilidad de morir jugando a la ruleta rusa, en su versión en solitario. Y es de esto precisamente de lo que vamos a hablar en esta entrada del Cuaderno de Cultura Científica.

Portada del cuento El Ruletista (Impedimenta, 2010), del escritor rumano Mircea CartarescuMircea Cartarescu

El escritor y crítico literario Mircea Cartarescu está considerado el mejor escritor rumano de la actualidad y uno de los grandes escritores de la literatura europea contemporánea. La editorial Impedimenta ha traducido al español y publicado muchos de sus libros, como El Levante (Impedimenta, 2015), una epopeya heroico-cómica, que es también una aventura a través de la historia de la literatura rumana; el libro de relatos Nostalgia (Impedimenta, 2012), que se habría precisamente con el cuento El ruletista, y que consagró a Cartarescu como uno de los grandes escritores actuales de Rumanía; la novela Solenoide (Impedimenta, 2017), incluida en el listado de los mejores libros de ese año por la prensa cultural española e iberoamericana (que es parte de mi “tsundoku”, es decir, descansa en mi mesilla a la espera de ser leída); o Poesía esencial (Impedimental 2021), una recopilación de poemas escritos durante sus primeros años creativos. Para describir su filosofía como escritor, podemos acudir a una de sus citas, “Escribo porque quiero entender mi situación en el mundo”.

Fotografía del escritor rumano Mircea Cartarescu, en la editorial ImpedimentaEl Ruletista, un cuento de Cartarescu

Aprovechemos la contraportada de la publicación en español, por parte de la editorial Impedimenta, para introducir brevemente el cuento del que vamos a escribir en esta entrada del Cuaderno de Cultura Científica.

Prohibido durante años en Rumanía por lo explícito de su argumento, El Ruletista constituye uno de los más brillantes hitos narrativos de la reciente literatura europea. Esta pieza, tan breve como intensa, narra la improbable historia de un hombre al que nunca le ha sonreído la suerte, un desarraigado que sorprendentemente hace fortuna participando en letales sesiones de ruleta rusa. Multitudes enfervorecidas, presas del morbo, guardan cola para participar en las ceremonias de muerte y redención en que se convierten sus apariciones, y que dan paso a la histeria colectiva. Un escritor moribundo que conoció al Ruletista en su juventud intenta explicar cómo ese hombre insulso termina convirtiéndose en alguien inmortal y aparentemente inexpugnable, cuando en realidad en él solo anida el más desesperado espíritu de la autodestrucción.

Expliquemos en primer lugar en qué consiste el macabro juego de la ruleta rusa que es un elemento principal de este cuento. Mientras que en la ruleta rusa que hemos visto en duras películas como El cazador (1978), dirigida por Michael Cimino e interpretada por Robert de Niro, Christopher Walken, Meryl Streep, John Savage y John Cazale, se juega entre dos, o más jugadores, en el cuento El ruletista es una ruleta rusa solitaria, de un solo jugador.

Cartel de la película El cazador (1978), dirigida por el director estadounidense Michael Cimino

Los principales protagonistas de la ruleta rusa de este relato son los siguientes. Por un lado, la persona que se juega la vida en la ruleta rusa, el ruletista, que en el cuento se explica que suele ser alguna persona que por diferentes circunstancias vitales no le importa jugarse la vida a cambio de dinero, normalmente, algún borracho, vagabundo o expresidiario, como se menciona más arriba “un desarraigado”. Luego está el patrón, que es quien contrata, o convence, al ruletista y que va a apostar a su favor, es decir, va a apostar a que esa persona que se juega la vida a la ruleta rusa va a sobrevivir a la misma. Y finalmente están los accionistas que son quienes apuestan en contra del patrón, esto es, ganan si muere el ruletista.

ruleta rusa

El juego consiste en lo siguiente. Primero se introduce una bala en el tambor de un revólver, que tiene capacidad para alojar seis balas (aunque hay revólveres que admiten otra cantidad de balas, cinco, seis, siete, ocho o diez balas), luego se gira el tambor y se cierra rápidamente para que la bala quede colocada en una posición al azar, entonces el ruletista coge el revólver, se apunta a la sien y dispara. Si tiene la suerte de que no salga la bala (lo cual ocurre en 5 de las 6 posiciones posibles del tambor, es decir, la probabilidad de que sea un disparo fallido es de 5 de cada 6 veces, el 83,33 %) el patrón gana, se queda con el dinero de los accionistas y le da al ruletista un diez por ciento de las ganancias. Por otra parte, si se dispara la bala (lo cual ocurre 1 de cada 6 veces, esto es, una probabilidad del 16,66 %), el ruletista muere y el patrón debe pagar a los accionistas entre diez y veinte veces la cantidad apostada por ellos, según hayan acordado. Es cierto, que el peso de la bala modifica algo estas probabilidades, pero no vamos a tenerlo en cuenta en esta entrada.

En el cuento hay dos protagonistas, el viejo escritor que escribe la historia del Ruletista y este, que se ha ganado el derecho a ser nombrado con la inicial mayúscula, ya que, como escribe el viejo escritor, “ha sido el único hombre al que fue concedido vislumbrar al infinito Dios matemático y luchar cuerpo a cuerpo con él”, refiriéndose a que este hombre ha jugado muchísimas veces a la ruleta rusa solitaria y siempre ha salido indemne, saltándose la “alta” probabilidad de morir. Como escribe el viejo escritor, referente a esto último:

“… el ruletista solo tenía cinco posibilidades entre seis de salvarse en la primera partida. Según el cálculo de probabilidades, si volvía a llevarse la pistola a la sien, sus posibilidades disminuían. En el sexto intento, esas posibilidades se reducían a cero. De hecho, hasta que mi amigo entró en el mundo de la ruleta, en el que llegaría a convertirse en el Ruletista con mayúscula, no se conocían casos de supervivencia ni siquiera tras cuatro intentos. La mayoría de los ruletistas lo eran, por supuesto, de forma ocasional, y no volverían a repetir esa terrible experiencia por nada del mundo…

Y continuaba:

“… supongo que los accionistas apenas se fijaron en él cuando escapó con vida la primera o la segunda vez, puede que incluso la tercera. Fue considerado, como mucho, un ruletista afortunado. Pero después de la cuarta y de la quinta, se convirtió en la figura central del juego, un verdadero mito llamado a alcanzar proporciones gigantescas en los años posteriores. Durante dos años, hasta nuestro reencuentro en el restaurante, el Ruletista se había llevado el revólver a la sien en ocho ocasiones…

ruleta rusa

Antes de entrar en el tema de las probabilidades, al que dedicaremos la siguiente sección de esta entrada, presentemos brevemente al Ruletista, a quien el viejo escritor conocía desde que eran niños. Desde siempre este perdía a todos los juegos, de pequeño a las canicas o el lanzamiento de herradura, cuando estuvo en la cárcel siempre perdía al póquer y cuando al salir de la misma se dedicó a la bebida e iba mendigando un trago de cerveza de mesa en mesa por las tabernas, los parroquianos de las mismas se lo jugaban con él al palillo más largo y, de nuevo, siempre perdía. El Ruletista era un candidato ideal para ser jugador de la ruleta rusa, pero, además, su malísima suerte en todo tipo de juegos hacía que en el caso de la ruleta rusa jugase a su favor, ya que podríamos decir que nunca “acertaba” con la bala en la posición de disparo y salía ileso del juego.

Un poco de probabilidad

Realmente hay diferentes cuestiones de probabilidad que se pueden analizar relacionadas con la ruleta rusa, pero vayamos exactamente a la situación descrita en este cuento. Empecemos por lo que ya sabemos y es evidente. Si un ruletista solo juega una vez a la ruleta rusa de un solo jugador, la probabilidad de sobrevivir es del 83,33 %, esto es, 5 de cada 6, mientras que la probabilidad de morir durante el juego es, la complementaria de la anterior, es decir, el 16,67 %, solo 1 de cada 6.

La probabilidad de que el ruletista viva o muera si juega solo una vez a la ruleta rusa

 

La siguiente cuestión que nos planteamos, siguiendo lo escrito en este pequeño relato, en extensión, no en calidad literaria, es la siguiente. Si el ruletista juega dos veces a la ruleta rusa, ¿cuál será la probabilidad de que muera o viva?

Pero cuidado, cada vez que se juega a la ruleta rusa la probabilidad es la misma que hemos comentado arriba, no cambia, ya que el juego, o el revólver, no tiene memoria. Lo que queremos conocer es la probabilidad de salir indemne, o respectivamente, morir, si se arriesga a jugar dos veces. Aunque no es necesario, podéis pensar en que ha decidido previamente jugarse la vida a la ruleta rusa solitaria en dos ocasiones. Calculemos esta probabilidad.

Recordemos brevemente, aunque realmente ya lo hemos utilizado, que la probabilidad de un evento es igual al número de casos favorables (del evento) dividido el número de casos posibles (del evento). Por ejemplo, si queremos conocer cual es la probabilidad de que salga un múltiplo de 3 si tiramos un dado, el número de casos favorables sería dos -que salga 3 o 6-, mientras que hay seis casos posibles -los seis valores del dado 1, 2, 3, 4, 5, 6-. Por lo tanto, la probabilidad de que salga un múltiplo de tres (3 o 6) al tirar el dado es 2 / 6 = 0,3333…, esto es, una probabilidad del 33,33 %.

Volvamos a la probabilidad de que el ruletista viva o muera si juega dos veces a la ruleta rusa. Primero veamos los casos posibles. Como en el primer disparo tenemos seis posibles posiciones del tambor del revólver o, dicho de otra forma, seis agujeros para disparar (que en la siguiente imagen hemos numerado como 1, 2, 3, 4, 5, 6) y en el segundo disparo tenemos otros seis posibles agujeros (de nuevo del 1 al 6 en la imagen), entonces el número de posiciones posibles de los tambores en los dos disparos o, mejor dicho, parejas de agujeros sobre los que disparamos son 6 x 6 = 36 (que podemos pensarlos como parejas de números, desde el (1, 1), (1, 2), (1, 3), hasta el (6,6)).

ruleta rusa

Ahora contemos cuántas parejas de agujeros serían favorables, si queremos calcular la probabilidad de que el ruletista salga indemne de las dos sesiones de la ruleta rusa. Como en el primer revolver hay 5 agujeros para los que el jugador vive, serán estos los que hay que tener en cuenta en la primera posición de la pareja de agujeros (en el ejemplo de la anterior imagen son los agujeros 1, 2, 3, 4, 5) y para cada uno de esos 5 agujeros, tenemos otros 5 agujeros en la segunda pistola que no contienen la bala de la muerte. Por lo tanto, el número de casos favorables, es decir, parejas de agujeros para los que el ruletista no muere, son 5 x 5 = 25. Por lo tanto, la probabilidad de que el ruletista quede con vida si juega dos veces a la ruleta rusa es 25/36 = 0,6944, es decir, una probabilidad del 69,44 %, mientras que la probabilidad de que muera es su complementario, 11/36 = 0,3056, esto es, el 30,56%.

La probabilidad de que el ruletista viva o muera si juega dos veces a la ruleta rusa

 

Aunque, si lo pensamos un poco, la probabilidad de salir indemne de las dos partidas de la ruleta rusa es la probabilidad de vivir en la primera partida (5/6) por la probabilidad de vivir en la segunda partida (5/6), es decir, (5/6)2 = 25 / 36.

Esta forma de entenderlo nos permite obtener fácilmente la respuesta a la cuestión de qué probabilidades tiene el ruletista de vivir, o morir, si juega k veces a la ruleta rusa (para k = 1, 2, 3, 4, 5, …). De hecho, podemos obtener una fórmula en función del número k de partidas jugadas a la ruleta rusa por el ruletista.

La probabilidad de que el ruletista viva o muera si juega un número k de veces a la ruleta rusa

Ahora es fácil ir calculando la probabilidad de vivir o morir en función de cuantas veces juegue el ruletista a la ruleta rusa solitaria, que precisamente es de lo que habla, sin calcular probabilidades, el viejo profesor en los párrafos que hemos incluido más arriba. A continuación, incluimos una tabla con estas probabilidades para los casos en los que el ruletista juega entre una y diez veces, en la cual podemos apreciar la velocidad a la que la probabilidad de que el ruletista salga vivo va disminuyendo, y creciendo la probabilidad de morir.

Tabla con las probabilidades de que el ruletista viva o muera si juega k veces a la ruleta rusa, para k = 1, 2, 3, …, 9, 10

Podemos sacar entonces algunas conclusiones. Para empezar la probabilidad de morir es menor que el 50 % para los casos de una sola partida de la ruleta rusa (16,67 %), dos partidas (30,56 %) e incluso tres partidas (42,13 %). Luego en esos casos hay más probabilidades de ganar que de perder. El problema es que, si el jugador pierde, ha perdido algo tan importante e irrecuperable como es su propia vida. Además, cuando se dice que después de la tercera partida era considerado un ruletista afortunado, aun estando de acuerdo -ya que se está jugando la vida- podemos decir que no era tan excepcional, ya que la probabilidad de salir con vida seguía siendo, como hemos comentado, menor que el 50 %.

Justo se supera la probabilidad del 50 %, es decir, la misma que de sacar cara, o cruz, al tirar una moneda al aire, cuando se juegan cuatro partidas a la ruleta rusa. En concreto, hay una probabilidad del 51,77 % de morir y una probabilidad del 48,23 % de vivir. De hecho, cuando en el relato se escribe que “no se conocían casos de supervivencia ni siquiera tras cuatro intentos”, esto podríamos explicarlo como que los ruletistas no se atrevían a arriesgarse con la cuarta partida, porque lo que nos dicen los fríos números es que, a la larga, entre todos los jugadores que jugasen cuatro partidas, más o menos la mitad de los mismos vivirían y la otra mitad moriría.

Si continuamos, cuando se juegan seis partidas, la probabilidad de vivir no es cero, de hecho, es todavía relativamente alta, ya que es, más o menos, uno de cada tres casos. Aunque, como hemos dicho antes, el jugador no se juega dinero, sino su propia vida, por lo que la apuesta es demasiado arriesgada para él.

Por otra parte, el viejo escritor cuenta que cuando él se encontró con el Ruletista ya había superado 8 partidas de la ruleta rusa solitaria. Salir con vida de ocho partidas, como se ve en la anterior tabla es, más o menos, del 25 %, es decir, uno de cada cuatro casos. Luego, aun siendo algo excepcional, no es tan raro. Dicho de otra forma, si jugasen muchas personas a la ruleta rusa solitaria en ocho ocasiones, de media, una de cada cuatro viviría, aunque eso sí, tres de cada cuatro, moriría. A partir de ahí la probabilidad continúa cayendo cada vez más y más.

Por otra parte, en cierto momento del relato, el Ruletista empieza a incluir más balas en el revólver, aunque el cálculo de las probabilidades, para una cantidad de balas entre 1 y 6, es similar al realizado previamente, lo dejamos como diversión para las personas que están leyendo esto, si así lo desean.

Para terminar, me gustaría comentar que el objetivo de escribir esta entrada del Cuaderno de Cultura Científica no es corregir el cuento de Mircea Cartarescu, que es un cuento de una calidad excepcional, sino de aprovechar la mención a la probabilidad para hablar de la misma y calcular con exactitud cuál es esa probabilidad mencionada. De hecho, mi recomendación es que, si no lo habéis hecho ya, leáis este magnífico cuento.

Terminaremos con un poco de humor negro de la mano de El Mundo Today y la noticia en clave de humor cuyo titular es: Uno de cada ocho jugadores de la ruleta rusa no llega a fin de mes; así como con el cortometraje, también en clave de humor, Ruleta (2015), de Álvaro Carmona, que podéis ver aquí.

Fotograma del corto Ruleta (2015), dirigido por Álvaro Carmona

Bibliografía

1.- Mircea Cartarescu, El ruletista, Impedimenta, 2010.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo El cuento de la ruleta rusa se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Txerri baten bihotza gizaki bati lehenengoz transplantatu ziotenekoa

Zientzia Kaiera - Az, 2023-12-13 09:00

Urtero munduan 120.000 transplante baino gehiago egiten dira munduan, milaka pertsonek bizitzen jarraitzeko aukera izan dezaten. Baina beste asko itxaron zerrendan hiltzen dira, organoen eskaria emate kopurua baino askoz handiagoa delako. Arazoa areagotzen ari da urteekin, hainbat herrialdetan biztanleria pixkanaka zahartzen ari denez, organoen beharrak ere gora egin duelako.

Osasun arazo larri hau konpondu asmoz, zientzialariak beste aukera batzuk aztertzen ari dira giza organoen ordez beste batzuk erabiltzeko. Azken hamarkadan xenotransplanteen alorrean (zelulen, ehunen edo organoen transplantea espezie desberdinen artean) aurrerapen handiak egon dira ingeniaritza genetikoari eta zelula amen ezagutzan eta erabileran egin diren aurrerapenei esker. 2022ko urtarrilean giltzarri historiko bat gertatu zen: lehenengo aldiz txerri baten bihotza arrakastaz transplantatu zioten pertsona bati eta honek bizirik iraun zuen. Animalia genetikoki eraldatu zuten zeluletan molekula batzuk gara ez zitzan, giza sistema immunitarioak arrarotzat jotzen baititut, eta horrek errefusa minimizatu zuen.

txerriIrudia: 2022an lehenengo aldiz txerri baten bihotza arrakastaz transplantatu zioten pertsona bati. (Domeinu publikoko irudia. Iturria: pxhere.com)

David Bennet pazienteak jaso zuen txerriaren organo preziatua Marylandeko Unibertsitateko Zentro Medikoan. Aukera bakar horixe zuen, giza bihotz baten itxaron zerrendan sartzeko baldintzak ez baitzituen betetzen. Dena ondo zihoala zirudian: funtzio kardiakoa normala zen eta ez zegoen errefus immunitario akutuaren arrastorik. Baina transplantea egin eta 47 egunera bat-batean hil zen Bennet bihotz gutxiegitasun baten ondorioz (bizirik mantentzeko behar zuen odola punpatzeari utzi zion bihotzak). Zoritxarreko egun hori baino lehen egindako azterketa ekokardiografikoek eta beste proba batzuek bihotza arazorik gabe zebilela erakusten zuten.

Hasieran ikertzaileak ez ziren gai izan zoritxarreko istripuaren zergatia identifikatzeko, baina zenbait azterlan egin zituzten transplantearen ondorengo urrats bakoitza aztertzeko eta jakiteko zer faktorek izan zuten zerikusia, etorkizuneko xenotransplanteetarako ere oztopo izan zitezkeelako. Datozen urteetan animalien organoak pertsonei transplantatzeko saio klinikoak agertzea espero da eta funtsezkoa da Bennetena bezalako kasuetatik jaso daitekeen informazio oro.

Duela hilabete batzuk The Lancet aldizkari medikoan argitaratutako artikulu batek zehatz-mehatz argitzen du zer gertatu zen pazientea bihotz gutxiegitasun baten ondorioz hiltzeko. Arrazoi bakar bat egon ordez, datuen arabera hainbat faktorek eragin zuten transplantatutako txerri bihotzaren narriadura funtzionala.

Bihotz gutxiegitasunaren zergatietako bat errefus hiperakutua zela usten zuten hasieran. Transplantearen ondorengo lehenengo egunetan gertatzen da antigorputzek emandako organoaren aurka egindako eraginagatik, ondorioz, koaguluak sortu odol hodi txikiak blokeatzen direnez, ehunaren infartua eragiten dute oxigeno eta elikagairik ez duelako. Dena dela, errefus immunitario mota hori ez zen agertu. Ikertzaileen ustez Bennetek transplantearen aurretik zuen osasun egoera kaxkarra izan zen hainbat gertaera eragin zituen hasierako arrazoia eta azkenean heriotza eragin zion.

Pazienteak immunodepresioa oso larria zuen eta immunodepresoreen erabilera estandarra dezente murriztu behar izan zen, infekzio hilgarririk izan ez zezan. Baina horrek bazuen bere ordaina: jasotako organoaren errefus immunitarioa izateko arriskua hazi egingo zen eta hala gertatu zen. Benneten heriotzaren beste faktore eragileetako bat izan daiteke bigarren hilabetean infekzioei aurrea hartzeko bitan zain barnera eman zitzaizkion immunoglobulinak (antigorputzak) eta odoleko plasma trukatu izana. Uste da horren ondorioz jasotako bihotza errefusatzeko erantzun immunitarioa eragin zela, txerrien molekulen aurkako antigorputzak gehitu egin baitziren (batez ere IgG) immunoglobulinak eman ondoren eta, gainera, molekula horiek txerri bihotzaren odol hodien barneko azalerarekin (endotelioa) bat egin zuten.

Medikuen antigorputzek erasoen zeharkako probak aurkitu zituzten laborategiko teknika desberdinak erabiliz analisiak eginda. Eraso horiek txerri bihotzaren zelula eta ehunen aurka izan ziren. Adibidez, organo horren hodietako endotelioan lesio orokortuak hauteman zituzten. Bestalde, txerriaren birusen (txerriaren zitomegalobirus eta roseolobirus, zehatz esateko) erreaktibazioa eta ereplikazioa identifikatu ziren, ordura arte aktibitaterik izan ez zuten arren eta seguru asko erantzun inflamatorioa eragin zuten eta horrek ere kaltetu zuen emandako organoa. Litekeena da pazientearen osasun egoeraren ondorioz tratamendu antibirikoa arintzeak birus horiek aktibatu izana.

Aurreko horren guztiaren ondorioz, bihotz muskuluak orbainak garatu zituen (fibrosia) eta bihotza ezgaitu zuten behar bezala uzkurtzeko eta Bennet bizirik mantentzeko beharrezko odola punpatzeko. Zoritxarreko gertakari biologikoen kate malapartatua saihesten saiatuko dira zientzialariak txerrien bihotzak jasotzen dituzten hurrengo pazienteetan. Orain prestatuago daude: teknika berriak dituzte xenotransplantea jasotzen dutenak zehatzago monitorizatzeko eta errefus immunitarioaren lehen arrastoak goiz hautemateko. Datozen saio klinikoek zehaztuko dute Benneten arazoak bere osasun egoera kaxkarraren ondorio ziren edo, aitzitik, beste paziente batzuek ere izango dituzten eta saihesterik ba ote dagoen.

Egileaz:

Esther Samper (@Shora) medikua da, Ehunen Ingeniaritza Kardiobaskularrean doktorea eta zientzia-dibulgatzailea.

Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2023ko airailaren 25ean: ¿Qué salió mal en el primer trasplante de un corazón de cerdo a un humano?.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Txerri baten bihotza gizaki bati lehenengoz transplantatu ziotenekoa appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

La comprobación experimental de la teoría postcuántica de la gravedad clásica

Cuaderno de Cultura Científica - Ar, 2023-12-12 11:59

El pasado 4 de diciembre se publicaron un par de artículos científicos en los que se introducía el concepto de teoría postcuántica para referirse a la gravedad clásica. Un titular típico en la prensa para recoger estas publicaciones podría ser el de Xataka: Esta teoría reconcilia la relatividad general y la mecánica cuántica. Y lo que propone es revolucionario. Los científicos proponen un experimento para comprobar la nueva teoría consistente en “medir la masa de un objeto con muchísima precisión para determinar si su peso fluctúa con el tiempo.” Pero esa no es la única posibilidad, hay una más radical.

postcuánticaPesando una masa. Ilustración: Isaac Young

La mejor teoría de la materia que tenemos es la mecánica cuántica, que describe el comportamiento discreto (cuantizado) de las partículas microscópicas mediante ecuaciones de ondas. La mejor teoría de la gravedad es la relatividad general, que describe el movimiento continuo (clásico) de los cuerpos con masa a través de la curvatura del espaciotiempo. Estas dos teorías de gran éxito chocan a la hora de describir la naturaleza del espacio-tiempo: las ecuaciones de ondas cuánticas se definen en un espacio-tiempo fijo, pero la relatividad general dice que el espacio-tiempo es dinámico y se curva en respuesta a la distribución de la materia.

La mayoría de los intentos de resolver este conflicto se han centrado en la cuantificación de la gravedad, siendo las dos propuestas principales la teoría de cuerdas y la gravedad cuántica de bucles. El nuevo trabajo teórico de Jonathan Oppenheim y sus colaboradores lo que hace es dejar la gravedad como una teoría clásica y acoplarla a la teoría cuántica mediante un mecanismo probabilístico. Esta estrategia híbrida ha sido considera tradicionalmente como estéril, ya que llevaría a inconsistencias. Oppenheim las evita a costa de tener que insertar la probabilidad –una “tirada de dados”– en la evolución del espacio-tiempo.

Comprobando la teoría postcuántica

Una forma de ir delimitando qué modelo es más adecuado es lo que proponen los investigadores, medir las fluctuaciones de la masa de un objeto. Esto supone en realidad medir el tiempo de coherencia de un objeto masivo en una superposición cuántica, ya que el tiempo de coherencia puede relacionarse con la evolución de la métrica del espacio-tiempo. Los datos de tiempo de coherencia existentes ya se han utilizado para descartar ciertos rangos de parámetros para modelos híbridos clásico-cuánticos como el de Oppenheim. Pero, como decimos, estos experimentos no descartarían, solo limitarían.

Es mucho más radical y, por tanto, mucho más interesante, contestar a la pregunta fundamental: ¿la gravedad es cuántica o no? Una forma de hacerlo es detectando gravitones directamente, otra sería entrelazar dos objetos masivos solo con su interacción gravitacional. Esto que se resume así de fácil en una frase, tiene una complejidad enorme.

postcuánticaIlustración: G. W. Morley/University of Warwick and APS/Alan Stonebraker

Sin embargo, ha habido avances significativos en la segunda idea. En 2017 se hicieron dos propuestas en este sentido que, si bien difieren en los detalles, se basan en el mismo concepto: dos masas (microesferas, por ejemplo) interactúan solo a través de su atracción gravitacional mutua. Si estas masas se entrelazan mecanocuánticamente, entonces la gravedad debe ser la culpable. Para quedar entrelazadas por la gravedad, las masas deben estar en una superposición de estados cuánticos.

Si cada masa se coloca en uno de dos interferómetros próximos, que crearían la superposición. Si las masas están entrelazadas cuando salen de los interferómetros, esto implicaría que la gravedad es inherentemente cuántica, ya que solo un campo cuántico puede inducir el entrelazamiento.

Los experimentos están plagados de obstáculos técnicos, entre ellos cómo garantizar que la gravedad sea la única forma en que las masas interactúen. Pero están más cerca de realizarse que otros métodos propuestos, como la detección directa de gravitones. Para que estos experimentos se realicen, los investigadores deben descubrir cómo crear y mantener superposiciones cuánticas de objetos relativamente masivos y cómo reducir los efectos de fuerzas distintas a la gravedad.

Referencias:

Oppenheim, J. (2023) A Postquantum Theory of Classical Gravity? Physical Review X doi: 10.1103/PhysRevX.13.041040

Oppenheim, J., Sparaciari, C., Šoda, B. et al. (2023) Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity. Nat Commun doi: 10.1038/s41467-023-43348-2

Marletto, C. and Vedral, V. (2017) Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240402

Bose, S. et al. (2017) Spin Entanglement Witness for Quantum Gravity Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240401

Galley, T. (2023) Might There Be No Quantum Gravity After All? Physics 16, 203

Para saber más:

Teoría de la invariancia (serie)

Incompletitud y medida en física cuántica (serie)

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La comprobación experimental de la teoría postcuántica de la gravedad clásica se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Funtzio jakinik gabeko geneen bilduma

Zientzia Kaiera - Ar, 2023-12-12 09:00

Orain dela 20 urte, lehen emaitzak izan zituen giza genoma sekuentziatzeko egitasmoak. Orduan kalkulatu zen giza genomak 20.000 gene inguru zituela eta, ordutik, zehaztu egin da gene horietako askoren funtzioa. Baina oraindik badira funtzio ezezaguna duten gene asko; zergatik dakigu hain gutxi gene horiei buruz?

Funtzio jakinik ez duten gene horietako asko espezie ezberdinen artean kontserbatuta badaude ere, ezin daiteke beren funtzioa jakin, ez direlako funtzio ezaguna duten geneak bezalakoak. Harrigarria bada ere, funtzio jakinik gabeko gene horietako askok hainbat gaixotasunetan parte har dezaketela ikusi da eta itu terapeutikoak izan daitezkeela uste da. Hala ere, ikerketa gehienek oso ezagunak diren geneak aztertzen dituzte. Hau horrela izan daiteke finantziazioa lortzeko sistemak eta argitaratzeko sistemak kontserbadoreak izatera bultzatzen dituelako ikertzaileak, dirua jasotzeko aukera gehiago baititu funtzio ezaguna duten geneen ikerkuntzak. Gainera, arrazoi teknikoak egon daitezke: gene horiek ikertzeko laborategi-produktuak eskuragarri ez egotea, gene horien aktibitatea baxua izatea edo ehun gutxi batzuetara mugatzea aktibitatea. Hortaz, oso zaila izan daiteke gene horiek detektatzea.

Edonola ere, ez dirudi gutxitzen ari denik hainbat generen funtzioari buruzko ezezaguntasun hau. Hala, izan dezaketen interes klinikoa dela eta, hainbat egitasmo abiatu dira ezezaguntasun hau murrizteko: gene horiek ikertu ahal izateko laborategi-produktuak sortzea, interesekoak izan daitezkeen gene taldeen ikerkuntza bultzatzea edo gene hauek hobeto ezagutzeko hainbat datu-baseen garatzea.

geneen1. irudia: gene guztien funtzioa ezagutzea puzzle erraldoi bat da. (Argazkia: qimono – Pixabay lizentziapean. Iturria: pixabay.com)

Garatu berri den datu-base batean kalkulatu egin da gene bakoitzetik zenbat den jakina. Horretarako, oso erabiliak diren bi datu-baseren datuak erabili dituzte. Datu-base batek espezie ezberdinetan parekoak diren geneak biltzen ditu, hau da, eboluzioan zehar jatorri berdina duten gene-taldeen informazioa biltzen du. Beste datu-baseak hamabi espezieren –gizakiaren eta hamaika organismo ereduren– geneen funtzioak biltzen ditu. Funtzio horiek egituratutako terminoen bidez adierazten dira eta sistema berdina erabiltzen da espezie guztietan, informazioak sendotasun handia lortzen du horrela.

Lehenengo, datu-baseko gene talde bakoitzarentzat, bigarren datu-basean jasota dauden funtzioak bilatu ziren, gene taldeko gene bakoitzari funtzio horiek esleituz. Zenbat eta funtzio jakin gehiago izan gene batek, gene hori ezagunagoa dela ondorioztatu zuten lanaren egileek. Hala ere, egileak jakitun dira hurbilketa hori sinple samarra dela eta geneen funtzioari buruzko ebidentzien sendotasuna ez dela berdina. Egileek beren irizpideak erabili badituzte ere ebidentzia bakoitzari sendotasun bat esleitzeko, balio horiek aldatu egin daitezke datu-baseko erabiltzaile bakoitzak bere irizpideak erabil ditzan. Hala, erabiltzaile bakoitzak zerrendatu dezake geneen ezagumendua bere irizpideak erabilita.

geneen2. irudia: fruituaren eulian esperimentuak egin dira gene batzuen funtzioa ezagutzeko. (Argazkia: nuzree – Pixabay lizentziapean. Iturria: pixabay.com)

Datu-basearen egileek hainbat kalkulu egin zituzten sortutako balioekin eta ikusi zuten hoberen ezagutzen diren geneek garapenean eta zelularen funtzioan parte hartzen dutela. Gutxien ezagutzen diren geneek, aldiz, beste datu-base batzuetan funtzio ezezaguna dutela ikus daiteke. Izan ere, literatura zientifikoan geneek duten aipu kopuruak korrelazioa du gene-zerrenda horren balioekin. Hau da, ezagunak diren geneei buruz lan asko argitaratzen dira eta ezezagunak direnei buruz oso gutxi. Gainera, egileek espero dute denborarekin datu-basea murrizten joatea, geneen funtzioei buruz gehiago ikertuko baita. Edo, behintzat, itxaropen hori dute. Egin dituzten kalkuluak kontuan hartuta, azken hamar urteetan gutxien ezagutzen diren gene taldeak %43tik %23ra pasa dira.

Datu-basearen erabilgarritasuna probatzeko, gizakian ezagutza gutxien duten geneak hartu zituzten eta fruituaren eulian pareko geneak ote zeuden aztertu zuten. Gene horietatik, duten funtzioa aztertzeko esperimentuak egiteko aukera ote zegoen aztertu zuten eta, azkenean, 260 generen funtzioa aztertu zuten fruituaren eulian. Hala, ikusi zuten horietako 62 gene ezezagunek eragina zutela garapenean; hau da, ezinbestekoak zirela eulia bideragarria izan dadin. Beste 59 genek eragina izan zuten emankortasunean, ehunen garapenean eta hazkundean, proteinen kalitatean, estresaren aurreko erantzunean eta mugikortasunean.

geneen3. irudia: gene guztien funtzioa ezagutzea bide malkartsua dirudi. (Argazkia: aitoff – Pixabay lizentziapean. Iturria: pixabay.com)

Lanaren egileek uste dute argi geratu dela ezezagunak ziren gene horiek ez zutela merezi ahaztuta egotea. Egin dituzten esperimentuek eta lana egiten zuten bitartean argitaratu diren beste hainbat lanek berretsi egin dute gene ezezagun horiek funtzio garrantzitsuak betetzen dituztela. Egileek espero dute garatu duten datu-basea lagungarria izatea geneei buruzko ezjakintasuna detektatzeko eta gene horiek aztertzen hasteko. Hala ere, jakitun dira arriskuak ekar ditzakeela gutxi ikertu diren geneak ikertzeak eta, ondorioz, uste dute lankidetza dela bidea halako geneak aztertzeko.

Laburbilduz, geneen funtzioari buruzko ezjakintasuna neurtzeak ahalbidetu egin du garrantzitsuak diren baina ahaztuta geratu diren geneak identifikatzea. Hala, bide berriak ireki daitezke hainbat gaixotasunetan interesgarriak izan daitezkeen geneen ezaugarriak zehazteko eta funtzio biologiko berriak ezagutzeko. Edo, behintzat, ikerketa horiek abiatzeko oinarria izan daitezen eta ezezaguna dena ezagutzen joateko.

Erreferentzia bibliografikoa:

Rocha, João J.; Arcot Jayaram, Satish; Stevens, Tim J.; Muschalik, Nadine; Shah, Rajen D.; Emran, Sahar; Robles,Cristina; Freeman, Matthew; Munro,Sean (2023). Functional unknomics: Systematic screening of conserved genes of unknown function. PLoS Biol, 21(8). DOI: 10.1371/journal.pbio.3002222

Egileaz:

Koldo Garcia (@koldotxu), genetikan doktorea, Biodonostia Osasun Ikerketa Institutuko Dibulgazio eta Kultura Zientifikoko arduraduna da eta Edonola gunean genetika eta genomika jorratzen ditu.

The post Funtzio jakinik gabeko geneen bilduma appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Eris, de planeta enano a planeta “blandito”

Cuaderno de Cultura Científica - Al, 2023-12-11 11:59

Aunque un gran desconocido para el público, Eris es el segundo planeta enano más grande de nuestro Sistema Solar, solo por detrás de Plutón. Fue descubierto en 2005, trayendo la discordia y un fuerte debate al mundo de la astronomía que obligó a repensar a que llamábamos planeta.

Esta disputa concluiría con la aparición de una nueva categoría -la de planeta enano- que nos devolvió a un Sistema Solar de ocho planetas… pero en el que ya hay nueve planetas enanos de los cuales -salvo en los casos de Ceres y Plutón- hemos podido ver muy poco debido a las enormes distancias que nos separan y el exiguo número de misiones dedicadas a estos cuerpos.

A pesar de las dificultades que impone la distancia y el tamaño de estos cuerpos, las observaciones de Eris realizadas desde los mejores telescopios nos permiten conocer algunos detalles interesantes que nos dan una idea sobre como podía ser este planeta enano.

ErisSecuencia de imágenes donde se descubrió Eris en 2005 tomadas desde el observatorio del Monte Palomar, en California. Imagen Cortesía de NASA/JPL/Caltech.

Estos datos apuntan a una superficie muy blanca y reflectante -refleja el 96% de la luz solar- algo que contrasta con la de Plutón, que refleja mucha menos luz y que -a grandes rasgos-es de un color bastante rojizo, algo que podría indicar que el hielo que cubre Eris se renueva -ahora mismo sería difícil de saber si por procesos internos o externos- y que, por lo tanto, existe cierta dinámica activa en el planeta.

Eris tiene un satélite llamado Disnomia, con un diámetro aproximado de 615 kilómetros, lo que viene a ser una cuarta parte del de Eris, y que orbita a una distancia de este de unos 37.000 kilómetros. La existencia de este satélite fue la que permitió a los científicos calcular la masa de Eris con gran precisión y empezar a hacer asunciones sobre su composición y estructura interna.

Pues bien, un nuevo estudio publicado en la revista Science Advances ha analizado la relación orbital entre Eris y Disnomia para arrojar algo de luz sobre la estructura interna de Eris o, al menos, para construir una serie de modelos muy interesantes que nos permitan conocer más detalles sobre su interior y evolución, algo que a su vez nos daría pistas sobre una posible dinámica interna.

Para hablar de las conclusiones de este estudio, tenemos que remontarnos prácticamente a la formación del Sistema Solar, hace unos 4500 millones de años. En esta infancia de nuestro sistema planetario, Eris habría sufrido un gran impacto, bien arrebatándole una gran cantidad de materia de su manto -en torno a un 15%- o bien, debido al enorme calor generado por el impacto, se podría haber perdido un porcentaje importante de los elementos volátiles que lo componían. Este impacto resultaría en la formación de Disnomia.

ErisImagen tomada por el telescopio espacial Hubble donde se puede apreciar a Eris y a Disnomia, junto con una escala para hacernos a la idea de la distancia. Cortesía de NASA, ESA y M. Brown.

La consecuencia más inmediata para Eris sería el haberse convertido en un planeta enano más denso y que destaca tanto con respecto a Plutón, por ejemplo, y otros objetos, ya que ese calor habría sublimado o evaporado un gran volumen de elementos volátiles y alterado la proporción hielo/roca del planeta.

Pero hay más: Disnomia se habría formado mucho más cerca de Eris de lo que lo está ahora, provocando importantes mareas sobre Eris (y viceversa). Esta energía generada por las mareas se transformaría, en primer lugar, en calor, pudiendo alimentar fenómenos criovolcánicos y el rejuvenecimiento de la superficie e incluso, quién sabe, si la formación de un océano de agua líquida debajo de su corteza al poder mantener unas temperaturas más elevadas que las que podría haber hoy en día.

Pero esta disipación de la energía generada por las mareas también tendría un componente digamos que… astronómico, capaz de alterar, por un lado, la órbita de Disnomia, que progresivamente se ha ido alejando de Eris y, por otro, provocando el acoplamiento de mareas entre ambos cuerpos.

Este acoplamiento provoca que Eris y Disnomia siempre se “vean” la misma cara, ya que el periodo de rotación de ambos cuerpos y el de traslación de Disnomia están sincronizados, como ocurre con nuestra Tierra y la Luna. Aunque nos parezca algo extraño, es bastante común en nuestro sistema planetario.

ErisImpresión artística del sistema Eris-Disnomia. Cortesía de NASA/JPL-Caltech.

Este detalle sugiere que el sistema ha alcanzado una configuración estable a lo largo de millones -probablemente miles de millones- de años y que Eris es un cuerpo que es capaz de disipar una gran cantidad de energía generada por su interacción con Disnomia, lo que hace pensar a los científicos que no es un cuerpo totalmente rígido, sino que todavía podría sufrir cierta convección en su capa intermedia de hielo gracias al calor de generado por la disipación de la energía de mareas y también de la desintegración de elementos radioactivos que todavía podrían quedar en su núcleo rocoso, que transferiría ese calor hacia la superficie. De aquí la broma del título de planeta “blandito”.

Precisamente, esta mayor disipación también apuntaría a que Eris sería un cuerpo totalmente diferenciado, es decir, formado por distintas capas -en este caso probablemente una corteza más rígida de hielo en la superficie, un manto de hielo en estado viscoso y en convección y por último un núcleo rocoso- como ocurre en nuestro planeta, en vez de ser una mezcla más o menos homogénea de roca y de hielo como se piensa que podrían ser otros planetas enanos.

Conocer la estructura de estos cuerpos podría ayudarnos en el futuro a estudiar detalles sobre su habitabilidad -presente y pasada- o a reconstruir su historia, algo muy valioso de cara a comprender la compleja dinámica de nuestro Sistema Solar, especialmente durante sus primeras etapas.

Referencias:

Nimmo, F. and Brown, M.E. (2023) The internal structure of Eris inferred from its spin and Orbit Evolution Science Advances doi: 10.1126/sciadv.adi9201

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo Eris, de planeta enano a planeta “blandito” se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

«Deabru» ikusezina antzeman dute supereroale arraro batean

Zientzia Kaiera - Al, 2023-12-11 09:00

Fisikariek denbora luzez susmatu dute metal zati batzuk modu berezian, ia ikusezinean, bibratu lezaketela. Orain, fisikariek «modu deabrutu» horiek antzeman dituzte.

1956an, Davide Pines-ek fantasma bat formulatu zuen. Uhin elektrikoen itsasoak zeudela iragarri zuen, elkarren artean neutralizatu zitezkeenak eta ozeano osoa geldi utz zezaketenak, bai eta banakako olatuak sortzen eta birsortzen zirenean ere. Bitxikeria hori (Pinesen deabrua izena jarri zioten) elektrikoki neutroa izango litzakete, eta, ondorioz, argitara ikusezina: antzematen zaila denaren definizioa.

fisikariek1. irudia: fisikariek elektroien uhin «deabrutu» bat antzeman dute, ikusezina erradiazio elektromagnetikoaren aurrean. (Ilustrazioa: Kristina Armitage. Iturria: Quanta Magazine)

Hamarkadetan zehar, fisikariek deabruen aldaerak igarri zituzten. Baina inor ez zen konturatu Pinesen jatorrizko deabruaz, bloke metalikoetako elektroietatik abiatuta naturalki sortuko zenaz.

Orain, itxura denez, Illinoiseko (Urbana-Champaign) Unibertsitateko fisikari talde batek Pinesen deabrua antzeman du. Elektroiak, material bat jotzen dutenean, doitasunez miatzeko teknika bat hobetu ondoren, taldeak aldizkako uhin batzuk sortu eta detektatu zituen, elektroi multzoen bidez hedatzen direnak. Fisikariek moduak deitzen dituzten uhin horiek bat datoz, neurri handi batean, Pinesen kalkuluekin. Ikertzaileek abuztuko Nature aldizkarian eman zituzten aurkikuntzaren xehetasunak.

«Modu horiek ez ziren 70 urtetan ikusi», adierazi du Piers Coleman Rutgers Unibertsitateko fisikari teorikoak. Baina esperimentu berri horrek, nola edo hala, «modu deabrutu horiek jasotzen ditu».

Imajina itzazu deabruak

1950eko hamarkada goieneko aldia izan zen metaletako elektroien ikerketan. Fisikariek, ordurako, teoria sinplista bat garatu zuten, zeinak alde batera uzten zuen elektroiek elkarrengandik urruntzeko zuten joera, eta elektroiak multzoan tratatzen zituzten, nahierara isurtzen den gas moduko bat osatuko balute bezala. 1952an, Pinesek eta haren doktorego tesiaren zuzendari David Bohm-ek urrats bat gehiago egin zuten. “Elektroien gasaren” teoriari elektroien elkarrekintza gehitu ondoren, ohartu ziren elektroiak leku batzuetan multzokatu eta beste batzuetan sakabana zitezkeela. Multzokatutako elektroi horiek txandaka dentsitate handiagoko eta txikiagoko uhinak sortzen zituzten (eta, ondorioz, karga elektriko handiagoko eta txikiagoko eremuak).

fisikariek2. irudia: dentsitate handiko eta txikiko eremu txandakatuak dituen elektroi uhin bat (urdina). (Argazkia: Merrill Sherman. Iturria: Quanta Magazine)

Ondoren, Pinesek are urrunago eramango zuen teoria berria. Bi gaseko material bat imajinatu zuen, bakoitza partikula kargatu ezberdin batez osatuta. Zehazki, elektroi «astunak» eta elektroi «arinak» zituen material bat irudikatu zuen. (Elektroi guztiak berdin-berdinak dira teorian, baina, mundu errelean, haien propietate neurgarriak ingurunearen araberakoak dira). Pinesek antzeman zuen lehenengo gasaren uhinek bigarrenaren uhinak neutraliza zitzaketela; elektroi astunak multzokatzen ziren eremuan, elektroi arinak murriztu egiten ziren. Ondoren, elektroi astunen multzoak sakabanatu egiten ziren neurrian, elektroi arinagoak bildu egiten ziren gutxien okupatutako eremuak betetzeko. Gas bat bestea desegiten zen leku berean trinkotzen zenez, bi moten baterako dentsitate elektroniko osoa (eta, ondorioz, karga eta eremu elektriko osoa) modu neutral eta aldaezinean mantenduko litzateke. «Gauzak mugitu egin daitezke, nahiz eta ez dirudien mugitzen ari direnik», azaldu du Los Angeleseko (Kalifornia) Unibertsitateko materia kondentsatuaren arloko fisikari Anshul Kogar-ek.

fisikariek3. irudia: bi elektroi moten uhin gainjarriak (urdina eta urre kolorekoa). Kolore bakoitzaren dentsitatea aldatu egiten da, baina partikulen dentsitate orokorrak bere horretan jarraitzen du leku guztietan. (Argazkia: Merrill Sherman. Iturria: Quanta Magazine)

Argia karga elektronikoa modu aldakorrean banatuta duten objektuetan baino ez da islatzen; hortaz, Pinesen bibrazioaren neutraltasunak ikusezin egiten zuen. Argia fotoiak izeneko energia paketeetan etortzen da eta Pinesek bere uhinen energia paketeei «deabru» izena jarri zien. Izena James Clerk Maxwell-en esperimentu mental deabrutuari egindako keinu bat zen. Pinesen ustez, Clerk Maxwell fisikari aitzindaria goizegi bizi izan zen partikula edo uhin batek bere izena eraman zezan. «Maxwellen omenez, eta hemen elektroiek mugimendu zehatzeko kasu batekin (edo DEM, ingeleseko siglengatik) lanean ari garelako eszitazio berri horiei deabru deitzea iradokitzen dut», idatzi zuen Pinesek 1956an.

Hamarkadetan zehar, fisikariek uhin deabrutuak ikusi zituzten askotariko materialetan. 1982an, Bell Laborategietako ikertzaileek aurkako uhinak atzeman zituzten galio artseniuroko ondoz ondoko xafletan. Eta aurten, Berkeleyko (Kalifornia) Unibertsitateko talde batek, Feng Wang-en zuzendaritzapean, esperimentu bat deskribatu zuen, zeinetan grafeno xafla batean positiboki kargatutako partikulen antzeko objektuen uhin zertxobait meheagoekin sinkronian taupaka ari ziren elektroien uhin ia ikusezinak harrapatu zituen.

fisikariek4. irudia: David Pinesek iragarri zuen uhin «deabru» ikusezin bat sor zitekeela bi elektroi mota dituzten materialetan. (Argazkia: Minesh Bacrania, SFIrentzat. Iturria: Quanta Magazine)

Baina ikuskatze horiek, neurri handi batean, bi dimentsioko sistemetan gertatu ziren, non ezaugarri deabrutu definitzaile bat ez zen hain deigarria. Dimentsionaltasunaren berezitasun bat dela eta, 2Dn karga uhin bat eragin dezakezu, nahi bezain ahalegin txikia eginda. Baina 3Dn, uhin bati hasiera emateak gutxieneko energia kopurua eskatzen du, elektroi asozialak multzoka daitezen. Elektronikoki neutroak diren deabruek 3D energia tarifa hori aurrezten dute. «Deabrua hiru dimentsioko solido batean ikustea berezi samarra da», dio Kogarrek, bere doktorego ikerketa Urbana-Champaigneko taldearekin egin zuenak.

Hemen deabruak daude

Urbana-Champaigneko taldea, Peter Abbamonte-k zuzendutakoa, ez zen deabrurik bilatzen ari. Pinesen deabrua laborategian bertan azaldu zitzaien.

2010ean, Abbamonteren taldea elektroien multzoen bidez hedatzen ziren dardara txikiak detektatzeko teknika bat garatzen hasi zen. Elektroiak jaurtitzen zituzten material baterantz eta zehaztasunez jasotzen zuten horiek garraiatzen zuten energia eta errebotatzean egiten zuten bidea. Errebote horien xehetasunetan oinarrituta, taldeak ondorioztatu ahal izan zuen nola erantzuten zuen materialak talkarekiko, eta horrek, aldi betean, talkaren eraginez sortutako uhinen propietateak agerian jarri zituen. Errazago imajinatzeko: bainuontzi bat urez, eztiz edo izotzez beteta dagoen zehazteko ping-pongeko pilotak botatzea bezalakoa litzateke.

5. irudia: Peter Abbamonte, Illinoiseko (Urbana-Champaign) Unibertsitateko fisikaria, ez zebilen Pinesen deabruaren atzetik. Taldeak aurrez aurre topatu zuen materialak aztertzeko modu berri bat bilatzen ari zela. Argazkia: Illinoiseko Unibertsitatea. Iturria: Quanta Magazine)

Duela urte batzuk, ikertzaileek estrontzio rutenato izeneko supereroale batean jarri zuten arreta. Haren egitura kobrezko oinarriko kupratozko supereroaleen mota misteriotsu batenaren antzekoa da, baina modu garbiagoan fabrikatu daiteke. Taldeak ez zituen kupratoen sekretuak deskubritu, baina materialak Ali Husain-ek (bere doktoregoan teknika hobetu zuen fisikaria) ulertzen ez zuen moduan erantzun zuen.

Husainek deskubritu zuen errebotatzen zuten elektroiek energia eta momentua galtzen zutela, eta, beraz, estrontzio rutenatoan energia drainatzen zuten uhinak sortzen ari zirela. Baina uhin horiek bere espektatibak desafiatzen zituzten: soinu uhinak baino 100 aldiz arinago mugitzen ziren (horiek nukleo atomikoen bidez hedatzen dira), eta karga uhinak baino 1000 aldiz motelago, metalaren azalera lauan zehar hedatuta. Gainera, oso energia kopuru txikia zuten.

«Artefaktu bat izango zela uste nuen», azaldu zuen Husainek. Orduan, beste lagin batzuk jarri, beste tentsio batzuk frogatu, eta neurriak beste kide batzuek ere hartzeko eskatu zuen.

6. irudia: Ali Husainek errebotatzen duten elektroien energiak eta ibilbideak zehaztasunez neurtzeko modu bat garatu zuen; behaketa horiek modu demoniatuak agerrarazi zituzten estrontzio rutenatoan. (Argazkia: Mateo Mitrano. Iturria: Quanta Magazine)

Identifikatu gabeko bibrazioek han jarraitzen zuten. Kalkuluak egin ondoren, taldea konturatu zen uhinen energiak eta momentuak bat zetozela Pinesen teoriarekin. Taldeak bazekien estrontzio rutenatoan elektroiak atomo batetik bestera mugitzen zirela hiru kanaletako baten bidez. Ondorioztatu zuten kanal horietako bitan elektroiak sinkronizatu egiten zirela besteen mugimendua neutralizatzeko, Pinesen jatorrizko azterketako elektroi «astunen» eta «arinen» rola betez. Pinesen deabruari eusteko ahalmena zuen metal bat aurkitu zuten.

«Egonkorra da estrontzio rutenatoan», adierazi zuen Abbamontek. «Hor dago beti».

Hala ere, ondulazioak ez datoz guztiz bat Pinesen kalkuluekin. Hortaz, Abbamontek eta bere kideek ezin dute bermatu bibrazio ezberdin eta konplikatuago bat ez denik. Baina, oro har, beste ikertzaile batzuen iritziz, taldeak argumentu sendoak aurkeztu ditu Pinesen deabrua harrapatu dutela pentsatzeko.

«Egin ditzaketen fede onezko egiaztapen guztiak egin dituzte», esan du Sankar Das Sarma-k, Marylandeko Unibertsitateko materia kondentsatuaren arloko teorialari eta bibrazio deabrutuen azterketan aitzindari denak.

Deabru askeak

Orain ikertzaileek uste dute deabrua metal errealetan egon daitekeela, eta ezin diote pentsatzeari utzi ea mugimendu geldiek efekturik ote duten mundu errealean. «Ez lukete arraroak izan behar, eta gauzak egin litzakete.»

Adibidez, sare metalikoen bidez hedatzen diren soinu uhinek elektroiak lotzen dituzten moduak supereroankortasunera darama, eta 1981ean fisikarien talde batek iradoki zuen bibrazio deabrutuek supereroankortasuna sor dezaketela antzeko moduren batean. Abbamonteren taldeak estrontzio rutenatoa hautatu zuen haren supereroankortasuna ezohikoa delako. Agian deabrua tartean izango da.

«Momentuz ez daukagu argi deabruak zerikusirik duen edo ez», azaldu du Kogarrek, «baina tartean den beste partikula bat da» (fisikariek partikula esaten diete propietate jakin batzuk dituzten uhinei).

Alabaina, ikerketaren nobedade nagusia efektu metaliko desiratuaren detekzioa da. Materia kondentsatuaren arloko teorialarientzat aurkikuntza hori oso asebetegarria da duela 70 urte hasi zen historiari begira.

«Elektroi gasaren historia goiztiarraren posdata interesgarria da», adierazi du Colemanek.

Eta Husainen iritziz, zeinak bere karrera 2020. urtean amaitutzat jo eta orain Quantinuum enpresan lan egiten duen, ikerketak iradokitzen du metalak eta beste material batzuk bibrazio arrotzez beteta daudela, baina egungo fisikariek ez dutela horiek ulertzeko moduko tresnarik.

“Hor daude, besterik gabe”, esan zuen, “norbaitek deskubritzeko zain”.

Jatorrizko artikulua:

Charlie Wood (2023). Invisible ‘Demon’ Discovered in Odd Superconductor, Quanta Magazine, 2023ko urriaren 9a. Quanta Magazine aldizkariaren baimenarekin berrinprimatua.

Itzulpena:

UPV/EHUko Euskara Zerbitzua.

The post «Deabru» ikusezina antzeman dute supereroale arraro batean appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Comunismo originario en la prehistoria ibérica

Cuaderno de Cultura Científica - Ig, 2023-12-10 11:59

Al leer el libro que les traigo hoy, he tenido la impresión de estar ante un (breve y muy bien escrito) tratado de arqueología de la Prehistoria Reciente.

prehistoria

El tratado comienza con unas consideraciones acerca de la naturaleza de la historia como disciplina. El autor quiere indagar acerca del origen de las desigualdades y las relaciones de dominación. Le interesan las sociedades en las que no habían surgido estados y en las que las relaciones entre sus miembros no eran de dominación. Y se remite –para glosar brevemente sus obras– a los autores de los siglos XVII, XVIII y XIX, aunque sus aportaciones no sean hoy consideradas fuentes fidedignas, sino que han de ser valoradas por las preguntas que se hicieron, las ideas que empezaron a hacer circular y por seguir siendo fuente de inspiración.

Dominación y desigualdad

En una de sus primeras aseveraciones, el autor, Rodrigo Villalobos García, sostiene que la dominación y la desigualdad no son relaciones sociales necesarias, eternas o inevitables, sino consecuencia de circunstancias históricas concretas. La afirmación me llamó la atención porque hacía unos pocos años había leído Against the grain: A Deep History of the Earlier States, de James C. Scott, y hace unos meses, The Dawn of Everything: A New History of Humanity, de David Graeber y David Wengrow. En ambos libros se sostienen, expresadas de forma diferente, tesis similares.

Si se me permite un inciso, la obra de Scott, aunque menos conocida en España que la de Graeber y Wengrow, y no tan extensa, me pareció más profunda y mejor documentada. Creo que no está traducida al español (la de los dos David, sí lo está). Scott estudia los albores del sedentarismo y las primeras aldeas en el Creciente Fértil, sobre todo en Mesopotamia.

Su conclusión es que lo que conocemos como neolitización no fue algo lineal, que hubiese obedecido a una trayectoria preestablecida (como se nos enseñó en la escuela), sino que fue un proceso irregular, con idas y vueltas, en el que las sociedades cambiaron de unas formas de vida a otras. Los cereales, su cultivo y las posibilidades de ser almacenados, generando excedentes, fue lo que, según el autor, acabó conduciendo a la aparición de las desigualdades estructurales y los estados.

Graeber y Wengrow no difieren demasiado –al menos para las entendederas de un humilde fisiólogo de animales– de lo que sostiene Scott, pero basan su análisis, sobre todo, en los pueblos originarios de Norteamérica y, en especial, de la costa Oeste. Me pareció que incurrieron en un cierto cherry picking. Sea como fuere, todos ellos, Scott, Graeber y Wengrow, y Villalobos García, vienen a coincidir en esa idea fundamental. Hasta aquí el inciso.

Comunismo originario en la Prehistoria

Tras la introducción de las nociones fundamentales, Villalobos García aborda la noción del comunismo originario (que califica de esquiva) y caracteriza los diferentes tipos de sociedades sin gobierno: igualitarias, de rango y estratificadas, que no deben entenderse como peldaños en una escalera que conduce a sociedades con estados. A continuación se ocupa de los orígenes de la familia (el patriarcado), la propiedad privada y el estado. Sostiene que los estados arcaicos han sido menos poderosos, jerarquizados, desiguales y patriarcales que muchos otros estados desarrollados con posterioridad, aunque las semillas de esas desigualdades ya se encontraban en aquellos.

En ciertas sociedades sin estado los recursos se gestionan de forma colectiva, el trabajo se desempeña mediante asociación libre, hay democracia directa y aplican el principio «de cada uno según sus capacidades y a cada cual según sus necesidades»; esto es, se cumplen los requisitos para ser consideradas sociedades comunistas, aunque haya gran diversidad entre ellas. Pero, por otro lado, otras sociedades sin estado son patriarcales, explotan a parte de sus integrantes y practican la conquista. En otras palabras, la ausencia del estado no conlleva ausencia de opresión.

No hay sociedades naturales

Concluye el autor el capítulo dedicado al comunismo originario con una idea muy poderosa: no hay sociedades naturales. Añade: «Nunca las ha habido. Si acaso habrá una base de instintos biológicos que se pueden manifestar de distintas maneras en distintas personas de una sociedad y que, según el caso, pueden ser fomentados o desincentivados por condicionantes medioambientales varios, así como, también, por la propia cultura o subcultura en cada caso.»

Este aspecto me interesa especialmente porque, en efecto, los seres humanos no estamos dotados de serie con unos rasgos que nos hacen comportarnos de una u otra forma. Y, por lo tanto, las sociedades que conformamos no son consecuencia de decisiones o actuaciones condicionadas por esos rasgos. La falacia naturalista, también en aspectos como este, ha sido fuente de inspiración para estudiosos (y para muchos amateurs). No hay una sociedad natural. Y si la hubiera, no tendría por qué ser la buena.

Bipolos como generosidad/egoísmo, belicosidad/pacifismo, individualismo/colectivismo, y cualesquiera otros que se nos puedan ocurrir se encuentran en diferente grado en todas o casi todas las personas. Y si bien es cierto que hay personas más inclinadas a la compasión que a la indiferencia, por ejemplo, también lo es que la situación en que nos encontramos es el factor que más suele influir en nuestro comportamiento y, por tanto, el que inclina el bipolo hacia uno de los componentes. Las sociedades son, en consecuencia, una amalgama diversa de las interacciones entre personas entre las que suele haber bastante diversidad.

No hay una sociedad natural. Aunque también podría decirse que todas las sociedades humanas lo son. En otras palabras, la naturaleza no aboca a un único modelo social.

La observación manchada de teoría

La arqueología, durante las últimas décadas, ha actualizado su arsenal metodológico, incorporando técnicas propias de las ciencias naturales. Esa transición, no obstante, no ha modificado el carácter básico de la disciplina. Sus practicantes, en función de su particular visión de la realidad, formulan modelos explicativos que pretenden dar cuenta de las observaciones (hallazgos) poniéndolas en un contexto narrativo coherente. En otras palabras, en arqueología hacen algo muy parecido a lo que hacemos en ciencias experimentales y naturales.

En estas disciplinas, en muchas ocasiones, hacemos experimentos en los que controlamos las condiciones y fijamos potenciales fuentes de variación para determinar la existencia e intensidad de los efectos cuya existencia pretendemos establecer, pero en otras ocasiones trabajamos como la haría un historiador. De hecho, hay disciplinas –en geología y biología, principalmente–que son intrínsecamente históricas.

Por otro lado, en determinadas ciencias experimentales y naturales, la visión de la realidad, las teorías en que se enmarcan los estudios, las hipótesis de las que parten las investigaciones, también influyen en los modelos que proponemos para explicar las observaciones. Esto extrañará a más de uno de mis colegas, pero es así. La observación (prácticamente) siempre está manchada de teoría.

Interpretando la Prehistoria

En el cuarto capítulo se describen las principales líneas de pensamiento que durante el siglo XX han interpretado la Prehistoria reciente –en especial la de Occidente–, a cargo de autores como Childe, Renfrew, Gimbutas y Sherratt. Me ha alegrado ver el nombre de Colin Renfrew entre los autores de referencia, porque siendo estudiante universitario (a caballo entre los setenta y los ochenta del pasado siglo) leí un artículo suyo en Investigación y Ciencia que no he olvidado: trataba de la expansión simultánea, de carácter démico, de las lenguas indoeuropeas y el Neolítico por Europa.

Por fin en el último capítulo, cuyo título es el del libro, se presentan y discuten los hallazgos arqueológicos más relevantes y lo que de ellos cabe inferir sobre las relaciones de poder entre hombres y mujeres, entre clases sociales y entre grupos humanos, en la península Ibérica durante la Prehistoria Reciente.

Finaliza el autor remarcando la idea de que no hay trayectorias históricas prefijadas, y que, dado que en el pasado el futuro estuvo abierto, igualmente abierto lo está en la actualidad. En otras palabras, las sociedades no están condenadas a transitar por cauces preestablecidos. El autor deja clara su posición ideológica –lo que es de agradecer–, sin que esa posición sesgue el contenido de un texto que me ha parecido muy interesante.

Ficha:

Título: Comunismo originario y lucha de clases en la Iberia prehistórica. Arqueología social del neolítico, Calcolítico y Bronce Antiguo

Autor: Rodrigo Villalobos García

Ed. Sabotabby Press, 2022.

 

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

Una versión de este texto apareció anteriormente en Lecturas y Conjeturas (Substack).

El artículo Comunismo originario en la prehistoria ibérica se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Asteon zientzia begi-bistan #464

Zientzia Kaiera - Ig, 2023-12-10 09:00

Asteon zientzia begi-bistan igandeetako gehigarria da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna jaso eta laburbiltzea da gure helburua.

distira

Ingurumena

UPV/EHUko Ibai ekologia ikerketa taldeak gidatutako ikerketa batean ikusi dute araztegi-urek ibai-ekosisteman eragiten dutela, ondo tratatuta egon arren. Ondorio horretara iristeko, zenbait urte iraun zituen esperimentu berritzaile bat diseinatu zuten. Ikusi zuten asko diluitutako hondakin-urek ere alga eta materia organiko gehiago pilatzea eragiten dutela, eta horrek ornogabeen dibertsitatea murriztea. Horrela, sare trofiko osoan hedatzen da eragina. Ikertzaileen esanetan, ur kutsatuak tratatzeko ahaleginak areagotu behar dira. Informazio gehiago Zientzia Kaieran.

Kimika

Antzinako Egipton momifikazio-prozesuan erabilitako baltsamo baten kopia egin dute. Erregeen Haranean bi txarro aurkitu ziren 1900. urtean, eta frogatu zen Senetnay emakume noblearen birika eta gibel baltsamatuak gorde zirela bertan. Organoak jada ez zeuden txarroetan, baina bai horiek baltsamatzeko erabili ziren substantzien arrastoak. Hala, txarroetatik ateratako laginei analisi kimikoak egin ostean, ikertzaileek ikusi zuten erretxina-motako esentziak erabili zituztela organoak baltsamatzeko prozesuan, baita konposatu aromatiko eta fenolikoak ere. Azalpen guztiak Zientzia Kaieran: Momien usaina berreskuratzen.

Geologia

Mineral bakoitzak ezaugarri fisiko eta kimiko berezi batzuk ditu, eta ezaugarri horiek erabiltzen dira identifikazio eta sailkapen irizpide gisa. Ezaugarri horietako bat da distira. Lurreko mineral guzti-guztiek dute distira, baina bi talde handitan banatu daitezke duten distiraren arabera: distira metalikoa edo ez metalikoa duten mineralak, hain zuzen. Lehen taldean sartzen dira pirita eta galena, esaterako, eta bigarren taldean, berriz, diamantea, sufrea edo igeltsua. Gai honen inguruko informazio gehiago Zientzia Kaieran: Distira duten mineralak.

Bioteknologia

Bihotzaren egitura islatzen duen organoide bat sortu dute IMBA Bioteknologia Molekularraren Institutuan, Austrian. 2021ean, institutu berean, bihotzaren lehen eredu sinple bat sortu zuten, giza zelula ama pluripotente induzituekin. Hortik aurrera, bihotz-egitura bakoitzaren organoideak sortzen joan dira, eta azkenik denak elkartu dituzte. Hori egitean, ikusi dute egituren arteko koordinazioa gertatzen dela, eta seinale elektriko bat hedatzen dela, benetako bihotzean bezalaxe. Ikertzaileek uste dute aurrerapen honek aukera emango duela bihotzaren garapena hobeto ulertzeko eta gaixotasunak ikertzeko, beste abantaila batzuen artean. Azalpen guztiak Elhuyar aldizkarian.

Mikrobiologia

GIBaren infekzioak zahartzea eragiten du, eta horren zergatiak azaldu ditu ikerketa berri batek. Gaixotasun hori pairatzen dutenek zahartze goiztiarra eta hari lotutako patologiak izaten dituzte askotan, eta pentsatzen zen antirretrobiralengatik gertatzen zela. Alabaina, aurkikuntza honen egileek ikusi zuten GIBa zuten pertsonen odolean miR-21-5p molekularen maila ohikoa baino askoz ere altuagoa zela. Molekula hori hanturarekin eta estres oxidatzailearekin erlazionatuta dago, eta, prozesu horiek zahartze goiztiarra eragiten dute. Informazio gehiago Elhuyar aldizkarian.

Elikadura

UPV/EHUko Erizaintza Saileko ikertzaileek aztertu dute ea Deustu auzoan nola eragiten duen hiri-inguruneak auzokideen elikaduran. Parte-hartzaileek auzoko elikadura-ingurunea deskribatzen zuen mapa-kontzeptuala osatu zuten. Mapa horren bitartez ikertzaileek hainbat ondorio lortu zituzten auzokideen portaera osasungarrien inguruan, hala nola, harreman sozialek garrantzia zutela portaera horietan edota aspektu kulturalek ere eragin handia zutela. Egileen esanetan ikerketa hau bereziki interesgarria da auzokideak ere beren ohituren jakitun bihurtzen direlako. Datuak Zientzia Kaieran: Nola baldintzatzen du hiri-inguruneak herritarren elikadura?

Egileaz:

Irati Diez Virto Biologian graduatu zen UPV/EHUn eta Plentziako Itsas Estazioan (PiE-UPV/EHU) tesia egiten dabil, euskal kostaldeko zetazeoen inguruan.

The post Asteon zientzia begi-bistan #464 appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Aulas virtuales o LMS en la educación presencial

Cuaderno de Cultura Científica - La, 2023-12-09 11:59

La jornada Las Pruebas de la Educación tuvo lugar con el objetivo de analizar la validez de las estrategias educativas puestas en marcha durante los últimos años. El enfoque STEAM o las clases virtuales fueron analizados desde la evidencia científica por un grupo de expertos y expertas que se reunió en la Facultad de Educación de Bilbao de la Universidad del País Vasco. La jornada, fruto de la colaboración entre la Cátedra de Cultura Científica de la Universidad del País Vasco y la facultad de Educación de Bilbao, tuvo lugar el 27 de octubre pasado.

Esta sexta edición volvió a estar dirigida a profesionales del ámbito de la educación y a quienes, en un futuro, formarán parte de este colectivo. Su objetivo ha sido reflexionar, desde la evidencia científica, sobre la validez de las estrategias utilizadas hoy en día. El seminario ha contado, una vez más, con la dirección académica de la vicedecana de Investigación y Transferencia de la Universidad Autónoma de Madrid, Marta Ferrero González.

La decana de la facultad de Educación de Bilbao de la UPV/EHU, Urtza Garay Ruiz, doctora en psicodidáctica e investigadora en tecnología educativa, habla en esta charla de cómo usar de forma responsable y eficaz las aulas virtuales cuando la educación es presencial.

Edición realizada por César Tomé López

El artículo Aulas virtuales o LMS en la educación presencial se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Ezjakintasunaren kartografia #472

Zientzia Kaiera - La, 2023-12-09 09:00


T zelulen aitzindarien leuzemia linfoblastiko akutua ez da oso ohikoa. T linfozitoen aitzindariak tumore-zelula bihurtzen dira eta hezur-muinari eta odolari eragiten die. Ohiko terapiekiko erresistentea den minbizi oldarkorra da eta, beraz, beste batzuk aztertzen ari dira, hala nola, immunoterapiak. Baina, aurretik, mekanismo molekularrak ulertu behar dira, tratamendurako dianak aurkitzeko. Adibidez, p21 is a target for phagocytosis-mediated cellular immunotherapy in acute leukemia, Marta Irigoyenek egina.

Irudikatu soka batzuk hiru dimentsioko zurrunbilo bat osatuz biratzen, eta orain egitura horietako pila bat toro bat osatuz. Beno, imajinatzen duzun hau hopfion magnetikoa izeneko egitura topologiko baten deskribapen oso zakarra da. Eta esperimentalki detektatu berri dute. First experimental evidence of hopfions in crystals.

Zer egiten duzu adimen artifiziala entrenatzeko erabili dituzun datu estatistikoak zaharkituta geratzen direnean, aipatzen duten biztanleria aldatzen delako? BCAMekoei deitu, jakina. A new approach to covariate shift adaptation

Nola ahuldu lotura kimiko bat modu kontrolatuan? Malguki optomekaniko bat erabiliz. Harry Potterren sorginkeria dirudiela? Egun batzuetan DIPCk Hogwarts dirudi, A giant optomechanical spring effect in plasmonic nanocavities

Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.

 

The post Ezjakintasunaren kartografia #472 appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

¿Las tecnologías digitales están corrompiendo la educación obligatoria?

Cuaderno de Cultura Científica - Or, 2023-12-08 15:45

Desde que el mundo es mundo, la tecnología ha estado presente en nuestro día a día. En el paleolítico inferior el Homo habilis empezó a utilizar herramientas de piedra: a partir de ahí, la humanidad no ha parado de generar nuevos objetos a base de los elementos que iba encontrando en su entorno más cercano. No debemos olvidar que la tecnología es todo aquello creado por el hombre, que no se puede encontrar por sí mismo en la naturaleza.

Esos elementos han supuesto un cambio en la manera en que hacemos las cosas, mejorando notablemente nuestra calidad de vida. Pero no todo ha sido de color de rosa. Toda innovación tecnológica ha tenido detractores. La época actual no iba a ser diferente y existe una corriente, cada vez más generalizada, dispuesta a achacar a los avances tecnológicos todos los males de esta sociedad. En el terreno educativo, el foco del debate se ha puesto en la siguiente pregunta dicotómica, a mi juicio, tendenciosa: ¿debemos usar los ordenadores en el aula?

Toda tecnología tiene implícitas unas ventajas y unos inconvenientes. En Educación, se traducen en ayudas y en riesgos para enseñar, para aprender y para la salud. No existe estudio que niegue rotundamente esa cuestión, ni lo habrá. Por lo tanto, la pregunta inicial no debiera ser esa. El debate no gira en usar o no usar tecnología digital en las aulas.

tecnologíasFoto: Tianyi Ma / UnsplashLas tecnologías no van a desaparecer

Los avances tecnológicos vienen para quedarse y posicionarnos a favor o en contra no aporta nada a la educación. Además, algunas personas lo plantean como un versus entre lo digital y lo analógico, una pelea en la que debe ganar una de las dos tecnologías. Olvidan que el libro de texto impreso también es una tecnología, sujeta a ventajas e inconvenientes, igual que esos ordenadores, pantallas, móviles y demás aparatos digitales que demonizan.

Vivimos tiempos convulsos, un periodo de grandes transformaciones sociales que influyen constantemente en las nuevas políticas educativas. Eso genera confusión, tanto en los docentes como en los estudiantes y las familias, respecto a la formación del ciudadano del siglo XXI que deseamos fomentar en nuestras escuelas. Sin embargo, la importancia de desarrollar la competencia digital en nuestro alumnado sigue siendo una constante inalterable.

En España, desde la promulgación de la Ley Orgánica de Educación en 2006 hasta la más reciente Ley Orgánica de Mejora de la Ley Orgánica de Educación en 2020, el foco de la formación en la etapa obligatoria ha sido promover un alumnado “multialfabetizado”.

Esa visión implica que, además de adquirir habilidades en lectoescritura, matemáticas y un conocimiento básico en áreas como idiomas, ciencias sociales, naturales, artísticas y culturales, los estudiantes deben ser capaces de enfrentarse a los retos de la sociedad de la información y la comunicación.

Cinco áreas clave

La iniciativa DigComp (Digital Competence Framework), impulsada por la Comisión Europea en 2013 y actualizada de forma continua desde entonces, ha obligado a los sistemas educativos a nivel nacional y autonómico a tomar diversas medidas para asegurar, entre su alumnado, múltiples competencias en cinco áreas clave.

Se busca que el ciudadano que salga de la escuela sea capaz de:

  1. Buscar, evaluar y organizar información.
  2. Comunicarse, colaborar y participar en entornos digitales.
  3. Crear, editar y publicar contenido digital.
  4. Protegerse de los riesgos asociados al uso de la tecnología y garantizar su privacidad.
  5. Identificar, analizar y resolver problemas típicos relacionados con el uso de las herramientas tecnológicas.

Lamentablemente, la práctica común de algunos sistemas educativos ha sido tomar medidas para la consecución de la multialfabetización de su alumnado mediante una implementación irreflexiva e indiscriminada de tecnología en las escuelas. En ese modo de actuar subyace una idea errónea basada en las bondades per se de la tecnología digital en los procesos educativos, no respaldada por evidencia alguna.

La literatura científica no ha aceptado la hipótesis de que a más tecnología en el aula se produzcan mejores resultados académicos. Por lo tanto, no se puede afirmar que exista una relación directa, lineal y automática entre esas dos variables, más allá del efecto causal hacia la mejora de la competencia digital del alumnado.

En el campo de la tecnología educativa destinada a estudiar el uso de diferentes herramientas y recursos tecnológicos para mejorar los procesos de enseñanza-aprendizaje existe una máxima que todos los investigadores asumen: la cuestión no es tecnológica, sino pedagógica. Cualquier herramienta o recurso que integrar en educación debe ser analizado desde el prisma del objetivo a lograr. Por lo tanto, la pregunta que nos tenemos que hacer es qué queremos conseguir.

El discente medio no existe

Si hablamos de la educación obligatoria, debemos tener en cuenta la necesidad de responder a la diversidad del alumnado existente en nuestras aulas. Los últimos avances en neurociencias derivados por estudios científicos nos informan de esa variabilidad en la manera de aprender.

No obstante, se puede simplificar el aprendizaje a través de un modelo denominado Diseño Universal para el Aprendizaje basado en tres redes neuronales interdependientes:

  1. Una red afectiva que regula la implicación del alumnado en su aprendizaje.
  2. Una red de reconocimiento que permite procesar la información que se requiere.
  3. Una red estratégica que garantiza la acción y la expresión de lo aprendido.

Ese modelo propugna la utilización de diferentes opciones, estrategias y recursos. Y es en esa diversidad de soportes donde podemos encontrar la respuesta a nuestro dilema. Las pantallas, los ordenadores e internet tienen cabida junto a una gran diversidad de otras herramientas sobre la base de una reflexión previa y un diseño que acepte la variabilidad de nuestro alumnado y no intente buscar lo imposible, una planificación para un discente medio que no existe.

Lo importante en nuestras escuelas de educación obligatoria es programar actividades que utilicen una selección variada de herramientas, incluidas las digitales, que garantice a todo el alumnado, sin excepción e independientemente de sus características individuales, su motivación y compromiso, un procesamiento propio de la información y una puesta en práctica de lo aprendido.

A modo de conclusión, es importante subrayar que las tecnologías digitales no están corrompiendo la educación, pero tampoco podemos decir que la estén mejorando por el simple hecho de que se hayan naturalizado en nuestras aulas. Solo con una planificación sosegada hacia una escuela para todos nos puede llevar a un desenlace positivo en su integración.

Sobre el autor : Daniel Losada es Profesor Titular de Universidad en el Departamento de Didáctica y Organización Escolar. Facultad de Educación, Filosofía y Antropología, UPV/EHU

Una versión de este texto apareció originalmente en campusa.

El artículo ¿Las tecnologías digitales están corrompiendo la educación obligatoria? se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Alice King Chatham, hegan egiteko kaskoak diseinatu zituen eskultorea

Zientzia Kaiera - Or, 2023-12-08 09:00

Bigarren Mundu Gerran abiazioak aurrerapen oso garrantzitsuak izan zituen. Gero eta azkarrago eta gero eta gorago hegan egiteko gai ziren hegazkinak diseinatu eta eraikitzeko arazoa ebazteaz gain, ingeniariek eta zientzialariek pilotua bizirik eta funtzionatzen mantentzeko zailtasunak gainditu behar izan zituzten.

Gora igotzen den heinean, presio atmosferikoa murriztu egiten da eta aireak gero eta dentsitate txikiagoa du (oxigeno edukia txikitzen da). Altitudean gora egin ahala airearen presioa txikitzeko arazoa pilotuaren kabina presurizatuta lortu zen. Aldiz, pilotuari oxigenoa hornitzeko zailtasunak honela labur daitezke: 10.000 oinera arte (3.000 metro inguru) pilotuak aire atmosferikoa arnas dezake; 40.000 oinera arte oxigeno purua arnas dezake musuko batekin; 50.000 oinera oxigeno purua arnas dezake musuko presurizatu batekin eta 63.000 oinera airearen presioa eta giza gorputzean disolbatutako gasen lurrunaren presioa berdinak direnez, nahikoa da pilotuaren gorputzeko berotasuna haren odolak irakiteko.

Alice King Chatham

Alice King Chatham (1908–1989) Dayton Art Institute (Ohio) museoko eskultore ezaguna zen. 1943an Aireko Indarren Aeromedical Laboratory laborategiko antropologia unitatean hasi zen lanean, artista eta eskultore gisa ulertzen baitzuen giza gorputza. Eskultorearen esperientzia behar zuten helburu garrantzitsu baterako: aho eta sudurretarako oxigeno-musuko bat perfekzionatzen laguntzea, 20.000 oinetik gora ibiltzen ziren pilotuentzat. Hainbat diseinu eta prototiporen ondoren egin zen Bigarren Mundu Gerran Estatu Batuetako pilotuen artean hainbeste ikusten zen musukoa.

Alice King1. irudia: Alice King Chatham eskultorea. (Iturria: Mujeres con Ciencia)

Altura handian arnasa hartzeko arazoei, gero eta zakarragoko maniobrek eragindakoak gehitu behar zitzaizkien. Biratze itxienetan indar zentrifugo motakoak agertzen dira, pilotuaren oinetan dute eragina eta odolak burua eta garuna utz ditzake. Ikusmena lausotu egiten da (ikusmen beltza izenez ezagutzen dena) eta pilotuak kontzientzia gal dezake. Horrentzako irtenbidea anti-g suits jantziak dira; jantzi doitu horiek goma-kamerak dituzte eta gasarekin puzten direnean, kanpo-presioa egiten diote pilotuaren abdomenari eta oinei, eta garuneko odola ezin izaten da gorputzaren beheko aldeetara joan.

Musukoetatik kasko presurizatuetara

Gerra ondoren, Aireko Indarrek ikertzen jarraitu zuten eta are altuera handiagoan hegan egiteko gai ziren hegazkinak egin zituzten. Adibidez, Bigarren Mundu Gerran hegazkin bonbaketari aurreratuenak 30.000 oinetan ibiltzen ziren. Handik bi urtera, 1947an, el Bell X-1 hegazkinak soinuaren langa gainditu zuen lehenengoz 45.000 oinetara. Ondorengo hamarkadan X-15 350.000 oinetara iritsi zen (eta soinuaren abiadura sei aldiz gainditu zuen).

Argi dago garaiera horiek arazoak berekin zituztela: kabinak presurizatuta zeuden, baina presurizazio horrek edozein arrazoiren ondorioz porrot eginez gero, pilotua egoera zailean izango zen. Hain arazo larria oso ezohikoa izan daitekeela uste arren, gogoan izan behar da tresna esperimentalak ordura arte ez bezalako baldintzetan zebiltzala, eta ondorioz, uste baino sarriago izaten ziren arazo horiek, zoritxarrez.

1943az geroztik Hego Kaliforniako Unibertsitateak (USC) zentrifugagailu bat zuen anti-g trajeak aztertu eta garatzeko. USCko langileetako batek, James Henry delakoak, potentzial handia ikusi zuen anti-g trajeen aire-kameraren edo maskuri-puzgarriaren printzipioan, traje presurizatu bat egin ahal izateko. David Clark-ekin harremanetan jarri zen, pilotuentzako arropa-enpresa bate jabea baitzen, eta garaiera handietan erabiltzeko traje bat egiten laguntzea iradoki zion. Clarkek beste konpromiso batzuk zituen, ordea, Itsas Armadarekin eta ezetz esan zion baina materiala eman zion: hari berezia, josteko makina industriala eta, garrantzitsuena, jostun nagusiarekin, Julia Greene-rekin, harremanetan jarri zuen eta harekin lan egin zuen azkenean.

Alice King2. irudia: Elmendorf baseko pilotuak, anti-g suits jantziekin. (Argazkia: U.S. Air Force photo/Tech. Sgt. Keith Brown – domeinu publiko argazkia. Iturria: Wikimedia Commons)

1946an amaitu zuten Henryk eta Greenek garaiera handietarako trajea; presio partzialeko traje bat zen (PPS) pilotuaren gorputza leporaino, eskumuturretaraino eta orkatiletaraino baino ez baitzuen estaltzen. S-1 izena jarri zioten eta Henry-ren PPS hark maskuri puzgarri bat zuen barnean, horma bikoitzekoa, eta horrek gorputz-enborra eta abdomen aldea presionatzen zituen, besoen eta oinen presioa hazten zuten kanpoko hodi batzuen bidez, trajea doituz eta estutuz behar zenean. Laborategian arrakastaz erakutsi zituen S-1 haren onurak. Patroiak sortuta eta materiala moztuta zegoenez, dena josten hasi ziren. Gurutzatutako josturarik egongo ez zenez, jostura frantsesa erabiltzea erabaki zen, lan handiagoa zuen arren, eta Greenek jostorratzarekin zuen trebezia funtsezkoa izan zen beste behin.

Pieza bat falta zen jantzia osatzeko: kaskoa. Diseinatzeko, Alice King-engana joan zen Henry, musukoak diseinatzen esperientzia handia baitzuen. Iturri batzuen arabera, Kingek diseinatu zuen Chuck Yeagerrek lehenengo hegaldi transonikoan erabili zuen kaskoa, aldiz, Yeagerrek elkarrizketaren batean esan zuen berak diseinatu zuela tankeetako kasko moztu bat eta hegan egiteko larruzko kasko bat oinarri hartuta. Alicerena dela esaten da 1946ko hegaldietako presio-trajeen bertsioa hobetu zuen kasko presurizatu berriaren garapena eta belarrien kontrapresiorako gailu berezien garapena ere bai.

Women in Space libururako Davis Shayler eta Ian Moule historialariek bilaketa bat egin zuten garai bateko Wright Field hartako telefono-gidetan eta A. King laborategi aeromedikoko ingeniaritza ataleko langilea zela agertzen zen. 1951n atalaren izena aldatu eta Fisiologiako Adarra izena hartu zuen eta 1954an Ingeniaria eta Garapen Adarra. A. King garai hartan desagertu zen telefonoko gidatik, beharbada ezkondu eta senarrak zituen osasun-arazoengatik; ez da A. Chatham ere ageri (senarraren abizena Chatham zen).

NASAko urteak

Garai hartan sartu zen Alice NASA sortu berrian. Zientzialariek Alicerengana jo zuten kasko mota desberdinetarako irizpide-zerrenda batekin: bata, arnasa hartzeko hodiarekin, mikrofono batekin eta elikagai likidoentzako irekiera batekin. Hainbat hilabetez aritu zen modelo esperimentalak egiten kautxuarekin, plastikoekin eta oihalekin.

King Chathamen laborategiko usaina zooetakoen oso antzekoa zen askotan. Oxigeno-ekipoak instalatu zizkien probetan hegan joan ziren animalia askori, hala nola akuriei, untxiei, txerriei eta San Bernardo arrazako zakur bati ere bai. King Chathamek tximinoentzako arropak ere egin zituen, presio-traje txikiak eta kaskoak jarri zizkien Aerobee koheteentzat Lurraren inguruan 80 km ingurura ibili baitziren.

Mercury proiekturako, gizakiek tripulatutako NASAren lehen hegaldi programatua, astronauten kaskoak egiteko agindu zitzaion, haien buruen molde perfektuak oinarri hartu eta argizarizko modeloak eginda. Horren bidez, erabat ahokatzen zen kasko pertsonalizatua lortuko zuen.

1960ko hamarkadan Santa Monicako (Kalifornia) Douglas Aircraft Company enpresan aritu zen eta ekipoaren erosotasunerako diseinuari osagarriak egin zizkion bakarra izan zen. Gauza guztiak kontuan izan behar izan zituen, «espazioko kapsula batean “logela zerbitzurik” ez baitago».

Espazioko eta aireko berrikuntzei egindako ekarpen zehatzak ezagutzen ez diren arren, argi dago King Chathamek espazioko eskultore gisa egindako ibilbidea oso inspiratzailea izan zela. King Chatham Los Angelesen hil zen 81 urte zituela. Bere hilberriaren arabera, Dayton Art Instituten erakutsi ziren haren lehenengo eskultura artistikoak.

Bruce Hess-en esanetan, aireko indarren Wright-Patterson baseko historialaria, «Alicek zehatz-mehatz egin zuena eztabaidagarria da, baina argi dago tripulaziodun espazioko hegaldien eta esplorazioaren lehen urratsetan sartuta egon zela».

Iturriak: Egileaz:

Marta Bueno Saz (@MartaBueno86G) Salamancako Unibertsitatean lizentziatu zen Fisikan eta Pedagogian graduatu. Gaur egun, neurozientzien arloan ari da ikertzen.

Jatorrizko artikulua Mujeres con Ciencia blogean argitaratu zen 2023ko abuztuaren 15ean: Alice King Chatham, la escultora que diseño cascos para volar más alto y más rápido.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Alice King Chatham, hegan egiteko kaskoak diseinatu zituen eskultorea appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

I lava (que no magma) you

Cuaderno de Cultura Científica - Og, 2023-12-07 11:59
lavaFoto: Martin Sanchez / Unsplash

Aunque parece que, de momento, no vamos a tener una nueva erupción en Islandia, voy a aprovechar que sigue siendo noticia para traer, una semana más, algunas curiosidades volcánicas.

Una de las cosas que más nos llama la atención de los volcanes, hasta quedarnos mirándolos de manera hipnótica, es ver salir la lava del cráter y deslizarse como si fuese un enorme río de fuego por el terreno, arrasando todo lo que se pone en su camino. Pero, ¿qué es la lava?

Para responder a esta pregunta tenemos que viajar al interior de la Tierra. En concreto, al manto superior y la base de la corteza. Es ahí donde se forma el magma, un material compuesto por rocas fundidas muy calientes y gases. Pero, al contrario de lo que podemos pensar, el magma de nuestro planeta es muy escaso, menos de un 6% de las rocas del manto están fundidas, ya que para que pierdan su componente sólida y los minerales que las forman alcancen el punto de fusión tiene o bien que aumentar la temperatura, o que bajar la presión a la que están sometidas o hay que incorporar agua y/o gases disueltos a la ecuación, y esto solo sucede en contextos geológicos muy concretos, como los límites de las placas tectónicas.

De acuerdo a su composición, los magmas se pueden clasificar en dos grandes grupos. Los magmas ácidos, que son muy ricos en sílice (SiO2) y pobres en ferromagnesianos (minerales que incluyen hierro y magnesio en su composición), tienen una temperatura relativamente baja que permite que cristalicen algunos minerales y son muy viscosos. Y los magmas básicos, pobres en sílice y ricos en ferromagnesianos, de temperatura más elevada y menos viscosidad, por lo que son más fluidos.

¿Y qué tiene que ver todo esto con la lava? Pues muy sencillo. Cuando el magma asciende hacia la superficie y consigue salir al exterior a través de un volcán, pierde los gases. A ese material fundido desgasificado es a lo que denominamos lava y sus propiedades van a depender de las características del magma del que procede.

Cuando la lava discurre por el terreno forma lo que se conoce como colada de lava, una acumulación de materiales volcánicos que cubren la superficie como una especie de costra que ha crecido sobre el suelo. Y, de acuerdo al aspecto exterior y la morfología que adquieren, podemos diferenciar tres tipos de coladas de lava, cuyos nombres son una chuleta que nos permiten acordarnos fácilmente de sus características y propiedades:

Por una lado tenemos las coladas de tipo aa (del hawaiano ‘A’ā, que significa áspero), que tienen una superficie irregular, rugosa y afilada. Se forman a partir de lavas viscosas y de temperaturas no demasiado elevadas (inferiores a 900-1000°C) que avanzan lentamente (a escalas de metros por minuto) formando frentes de coladas que alcanzan decenas y cientos de metros de altura. Es habitual que la parte externa de estas coladas se enfríe rápidamente y empiece a solidificarse, lo que provoca que el avance de la lava aún fundida de su interior genere la caída de bloques volcánicos en el frente, dando lugar a un característico sonido de cristales rotos. Por este motivo también se las denomina coladas en bloques. Y en Canarias se las conoce con el nombre de malpaís porque es difícil caminar sobre ellas una vez enfriadas, además de que es muy costoso trabajar estos terrenos.

lavaLavas aa o en bloques del volcán Kilauea, en la isla de Hawaii. Fotografía del Servicio Geológico de Estados Unidos (USGS) / Wikimedia Commons

Por el otro lado nos encontramos las lavas pahoehoe (también procedente del hawaiano, pāhoehoe, y que significa suave), que son todo lo contrario a las anteriores, ya que adquieren una superficie exterior mucho más lisa. En este caso son producidas por lavas más fluidas y calientes (con temperaturas por encima de los 1000°C) que avanzan con rapidez (en velocidades de metros por segundo). Incluso pueden adoptar unas morfologías similares a cuerdas o cordones entrelazados a las que se llama lavas cordadas.

lavaLavas pahoehoe del volcán Kilauea, en la isla de Hawaii. Fotografía de J.D. Griggs (Servicio Geológico de Estados Unidos, USGS) / Wikimedia Commons

Y el tercer tipo son las lavas almohadilladas, o pillow lavas en inglés. Estas son particulares, ya que se forman en erupciones submarinas donde la lava se enfría rápidamente al entrar en contacto con el agua dando lugar a formas redondeadas ligeramente cilíndricas que recuerdan a las almohadas.

lavaLavas almohadilladas (pillow lavas) recogidas en Enekuri (Bizkaia) y expuestas en el paseo geológico del Arboretum del Campus de Leioa de la Universidad del País Vasco (UPV-EHU). Se formaron a finales del Cretácico Inferior (hace unos 100 millones de años) debido al vulcanismo submarino provocado durante la apertura del Golfo de Bizkaia. Fotografía de Ane García Artola (Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV-EHU).

Ya veis que, en Geología, no nos comemos mucho la cabeza a la hora de darle nombre a las cosas y siempre buscamos denominaciones muy sencillas, directas, gráficas y, sobre todo, fáciles de recordar, que bastantes cosas tenemos ya en la cabeza como para aprender nombres raros de más. Pero lo que tampoco espero que olvidéis es la diferencia entre magma, un fundido gaseoso depositado en el interior de la Tierra, y lava, el fundido que ha perdido los gases al salir a superficie. Por eso, por mucho que estudiemos las rocas volcánicas y cojamos muestras de lava tras una erupción, nunca podremos reconstruir por completo las características originales del magma del que procede, ya que hemos perdido los gases. Aunque lo que nunca perderemos será la infantil admiración ante una erupción volcánica.

Para saber más:

Montañas y mitos
La Geología según Heracles
Los volcanes submarinos de Bizkaia y Gipuzkoa

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo I lava (que no magma) you se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Nola baldintzatzen du hiri-inguruneak herritarren elikadura?

Zientzia Kaiera - Og, 2023-12-07 09:00

Ohikoak bihurtzen ari dira hiri-osasunari buruzko ikerketak, hiriek eta auzoek pertsonen bizi-ohituretan eta osasunean duten eragina aztertzeko. Herritarren osasunarekin harremana duten faktoreen artean elikadura da ohitura aldagarririk nabarmenena. Izan ere, mundu mailan ematen diren 5 heriotzetatik 1 ekidin daiteke dietaren kalitatea hobetzen baldin bada. Baina elikadura osasuntsuak modu eraginkor batean sustatu ahal izateko ezinbestekoa da ohitura ez-egokien arrazoiak ezagutzea.

Hainbat ikerketek datu kuantitatiboak biltzen dituzte elikadura-inguruneari buruz, hala nola, elikagaien eskuragarritasuna, janariak prestatzeko eta kontsumitzeko ohiturak… Hala ere, biztanleriaren elikatzeko modua baldintzatzen duten faktoreak identifikatzeko biderik onena haien esperientzia jasotzea da. Zehazki, herritarren zientzian oinarritutako metodologietan bizilagunak ikerketa-prozesuaren parte bilakatzen dira, eta informazio-iturri hori elikadura-ingurunea bertokoen ikuspegitik ulertzeko baliagarria da.

Hiri-inguruneak aztertzeko Photovoice metodologia (komunitatearen argazkiaren eta zuzeneko jardueraren bidez errealitate komunitario bat irudikatzeko tresna parte-hartzailea) sarritan erabili da. 2017. urtean Bilboko maila sozioekonomiko altua duen Deustu auzoan egindako ikerketan, tokiko elikadura-ingurunea ezagutzeko herritarrak parte-hartzera gonbidatuak izan ziren. Photovoice teknikaren arabera, partaideak bost saioetan zehar bildu ziren, bertan haiek ateratako argazkiei buruz eztabaidatu zuten. Azkenik auzoko elikadura-ingurunea deskribatzen zuen mapa-kontzeptuala osatu zuten. Auzotarrek adierazitako kategoria eta azpi-kategorietan oinarrituz ikertzaileek gai zabalagoak atera zituzten, eta horrela komunitate zientifikora plazaratzeko moduko informazioa eskuratu zen.

PhotovoiceIrudia: Photovoice eztabaida-saioetatik sortutako mapa kontzeptuala: kategoriak eta azpikategoriak. (Iturria: Ekaia aldizkaria)

Elikadura-inguruneei buruz egindako aurreko ikerketek herritarren dietan eragina izan dezaketen hainbat alderdi deskribatu dituzte, hala nola, faktore fisikoak, sozialak, ekonomikoak, kulturalak, etab. Deustun burututako Photovoice azterlanean aurkitutako emaitzetan ere halakoak nabarmendu ziren.

  • Auzoko azpiegiturei dagokienez merkataritzaren eraldaketa adierazi zen, besteak beste: farmazietan dietetika produktuen salerosketa, birziklatzeko edukiontzien kudeaketa, eta auzoko merkatuan produktu freskoak eskuratzeko erraztasuna.
  • Harreman sozialen garrantzia hainbat adibiderekin islatu zen: lagunarteko zein familia bilerak egiteko txokoak izatea, pintxoak aitzakiatzat hartuta elkarrekin egotea, ospakizunetan postre azukredunak kontsumitzea, eta gazteen taldeak asteburuetan janari azkarreko establezimenduetan batzea.
  • Baliabide ekonomikoekin lotutako determinatzaileak zeharka agertu ziren: elikagai ez-osasungarri eta hiperkalorikoen promozioak, esaterako.
  • Aspektu kulturalek elikadura jokabideetan duten eragina hainbat modutan jorratu zen: ohitura txarrak zein ohitura osasungarriak deskribatu ziren. Gainera, auzoan kultura-aniztasunaren eraginez kanpoko produktuen kontsumoaren gorakada azaleratu zen.

Emaitza hauek hiriko ingurumen faktoreek biztanleriaren elikaduran izan dezaketen eraginari buruzko ebidentzia zientifiko berria gehitzen dute. Horrez gain, erabilitako metodologiari esker, herritarren parte-hartzea sustatzen da, ahalduntze indibiduala bermatuz. Azkenik, hiri-inguruneei buruzko ikerketek pisu handia izan behar lukete osasun publikoaren arloan eraginkorrak diren neurri politikoak diseinatzeko orduan. Bilbon egindako azterlanaren kasuan, auzotarren iritzia eta haiek proposatutako gomendioak kontuan hartuz, elikadura-ingurunea hobetzeko txosten politiko bat garatu zen. Izan ere, populazioen osasuna hobetzeko estrategiek, herritarren beharrizanetan oinarritutako politika publikoak lehen lerroan izan behar lituzkete.

Artikuluaren fitxa:
  • Aldizkaria: Ekaia
  • Zenbakia: 44
  • Artikuluaren izena: Photovoice tresna elikadura-ingurunearen azterketa kualitatiborako.
  • Laburpena: Inguruneko ezaugarriek eragina izan dezakete herritarron portaera osasungarrietan. Badirudi bizi garen tokiaren eta gure elikadura-ohituren artean erlazioa dagoela. Beraz, ingurunea bizilagunen ikuspegitik ezagutzea beharrezkoa da biztanleriaren elikaduran eragina duten determinatzaileak baloratzeko. Ikerketa gutxik aztertu dituzte hiri-inguruneak herritarren ikuspuntutik. Horregatik, azterlan honen helburua Bilboko auzo bateko elikadura-ingurunearen diagnostiko komunitarioa egitea izan zen, eta horretarako Photovoice Partaidetza-Ekintza Ikerketa metodologia erabili zen. Proiektu honetarako parte-hartzaileak Auzo Elkarteen bidez bildu ziren. Photovoice-rako, inklusio-irizpideak betetzen zituzten gizon eta emakumeez osaturiko talde heterogeneoa sortu zen. 2017ko apiriletik uztailera, aukeratutako 6 auzotarrek bi orduko iraupeneko 5 talde-saiotan parte hartu zuten, eta haiek ateratako argazkiei buruzko eztabaida kritikoak egin ziren. Auzoko elikadura-ingurunea deskribatzeko 30 argazki batu ziren guztira. Adostasun-prozesu baten ondoren, parte-hartzaileek 9 kategoria identifikatu zituzten eta horiei lotutako 13 argazki adierazgarri aukeratu zituzten. Amaitzeko, emaitza horietan nabarmendutako ezaugarriak 6 gai kontzeptualetan batu ziren: 1) Ohitura txarrak, 2) Kultura-aniztasuna, 3) Harreman sozialak, 4) Iraunkortasuna, 5) Merkataritzaren eraldaketa, 6) Ohitura osasungarriak. Herritarrek beren elikadura-ingurunea hobetzeko proposatutako gomendioak Bilboko arduradun politikoei aurkeztu zitzaizkien. Photovoice proiektuaren bitartez herritarrek beren elikadura-inguruneari buruz zuten ikuspegia ezagutu zen. Auzotarren eskutik lortutako ondorioak lagungarriak izan daitezke tokian tokiko politika eta esku-hartzeak gidatzeko, elikadura-ingurune osasungarriagoak sustatzeko helburuarekin.
  • Egileak: Ainara San Juan, Irrintzi Fernández, Amets Jauregi, Irati Ayesta, Silvia Caballero, Julia Fernández eta Leyre Gravina
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua
  • ISSN: 0214-9001
  • eISSN: 2444-3255
  • Orrialdeak: 63-80
  • DOI: 10.1387/ekaia.22804
Egileez:
  • Ainara San Juan, Irrintzi Fernández, Amets Jauregi, Irati Ayesta, Silvia Caballero, Julia Fernández eta Leyre Gravina UPV/EHUko Medikuntza eta Erizaintza Fakultateko Erizaintza Saileko ikertzaileak dira.
  • Ainara San Juan, Irrintzi Fernández, Silvia Caballero eta Leyre Gravina Biocruces Bizkaia Osasun Ikerketarako Institutuko ikertzaileak dira.

Ekaia aldizkariarekin lankidetzan egindako atala.

The post Nola baldintzatzen du hiri-inguruneak herritarren elikadura? appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Herta Taussig Freitag: «Quiero convertirme en una buena profesora de matemáticas»

Cuaderno de Cultura Científica - Az, 2023-12-06 11:59

Por fin he encontrado una materia en la que no necesito memorizar, sino que puedo pensar por mí misma: las matemáticas. (1921).

Quiero ser profesora de matemáticas. No sé si seré suficientemente buena (Poco tiempo más tarde).

No quiero ser simplemente profesora de matemáticas. Quiero convertirme en una buena profesora de matemáticas. (Seis años más tarde).

Diario de Herta Taussig

HertaHerta Taussig Freitag. Fuente: Hollins Digital Commons.

Herta Taussig nació el 6 de diciembre de 1908 en Viena, Austria. Era hija de Paula Caroline Sara Taussig y Josef Heinrich Israel Taussig. Herta tenía un hermano mayor, Walter Adolf Taussig, nacido también en 1908, el 9 de febrero. La pasión de Walter era la música; se dedicó a ella profesionalmente llegando a ser director de varias orquestas, al principio en Europa y posteriormente en Canadá y Estados Unidos.

Persiguiendo su sueño de convertirse en profesora de matemáticas (que plasmó en varias ocasiones en su diario), Herta ingresó en la Universidad de Viena con la intención de recibir formación para dedicarse después a la docencia en un gymnasium (centro de enseñanza secundaria).

Recibió el título de Magister Rerum Naturalium en matemáticas y física en la Universidad de Viena en 1934. Allí se cruzó con Kurt Gödel (1906-1978), quien había defendido su tesis en 1930 y trabajaba como Privatdozent desde 1933.

Taussig consiguió enseñar en la Universidad de Viena como Gymnasium Professor entre 1934 y 1938.

Huyendo a Reino Unido

Su vida cambió drásticamente a principios de marzo de 1938, cuando las tropas de la Alemania nazi invadieron Austria. Su padre era el editor del periódico Die Neue Frei Presse y había escrito varios artículos advirtiendo sobre los peligros del nazismo. Perdió su trabajo. Walter estaba de gira por Estados Unidos, allí no corría peligro. El resto de la familia se refugió en una casa de verano en las montañas intentando planificar sus desplazamientos posteriores para huir de la amenaza nazi.

Solicitaron refugio en Reino Unido. Pero este país no deseaba una inmigración a gran escala de profesionales que podían poner en peligro los empleos de los ciudadanos británicos. Aunque necesitaban empleadas domésticas, así que Herta solicitó uno de esos empleos para atender a dos mujeres mayores en Sussex. Unos meses más tarde, sus padres se pudieron reunir con ella. Herta pasó seis años en Inglaterra esperando poder emigrar con sus padres a Estados Unidos; trabajó como empleada doméstica, institutriz, camarera y finalmente como profesora de matemáticas. Su padre falleció en 1943. Herta y su madre obtuvieron finalmente un visado para entrar en Estados Unidos; en abril de 1944 se reunieron finalmente con Walter.

Estados Unidos como destino final

Herta consiguió trabajo en el Greer School, una escuela privada en el norte del estado de Nueva York. Allí enseño entre 1944 y 1948 y conoció al profesor de matemáticas Arthur Henry Freitag (1898-1978) con quien se casó en 1950.

En 1948 Herta comenzó a enseñar en una universidad privada para mujeres, el Hollins College en Roanoke, Virginia. Consiguió crear un Departamento de Matemáticas, alternando la docencia en el centro con su trabajo preparando su tesis doctoral en la Universidad de Columbia. Allí estuvo particularmente influenciada por los matemáticos Edward Kasner (1878-1956) y Howard Eves (1911-2004). Defendió su tesis doctoral en 1953 con la memoria titulada The Use of the History of Mathematics in its Teaching and Learning on the Secondary Level (El uso de la historia de las matemáticas en su enseñanza y aprendizaje en secundaria).

Junto a su marido, Arthur Freitag, escribió varios artículos conjuntos y la monografía The Number Story (National Council of Teachers of Mathematics, 1960).

Herta se jubiló anticipadamente en 1971 para cuidar de Arthur que había caído enfermo; él falleció siete años más tarde. Y, al quedarse sola, volvió a dar clases, a impartir conferencias en escuelas locales y a publicar numerosos artículos en revistas de educación matemática. De hecho, la mayor parte de su trabajo sobre los números de Fibonacci lo realizó tras su jubilación.

Publicó más de treinta artículos en Fibonacci Quarterly a partir de 1985. Esta revista matemática le dedicó su número de noviembre de 1996, cuando Herta cumplía 89 años, “en reconocimiento a sus años de destacado servicio y logros en la comunidad matemática a través de la excelencia en la enseñanza, la resolución de problemas, la docencia y la investigación”. La elección de la fecha no se decidió al azar: recordemos que 89 es el decimosegundo elemento de la sucesión de Fibonacci (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …).

Uno de sus colegas, recordando las palabras de Carl Friedrich Gauss (“Las matemáticas son la reina de las ciencias y la teoría de números es la reina de las matemáticas”), proclamó a Herta Freitag como la “reina de The Fibonacci Association”. Este “nombramiento” agradecía la constancia de esta matemática, que había presentado una ponencia en todas las conferencias internacionales de la Asociación desde la primera realizada en 1984, y había contribuido con numerosos artículos en la revista Fibonacci Quarterly.

Herta Taussig Freitag falleció el 25 de enero de 2000, tenía 91 años. Consiguió, sin duda, cumplir esos deseos que, de niña, anotó reiteradamente en su diario.

Referencias

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Herta Taussig Freitag: «Quiero convertirme en una buena profesora de matemáticas» se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Distira duten mineralak

Zientzia Kaiera - Az, 2023-12-06 09:00

Mineralek, egitura kristalinoetan antolatutako elementu kimikoz osatutako substantzia solido natural horiek, ezaugarri fisiko eta kimiko batzuk dituzte, bakarrak eta berezkoak. Horri esker, identifikazio eta sailkapen irizpide gisa erabil ditzakegu.

Beste era batera esanda, eta pixka bat sinpleago. Mineralen konposizio kimikoa eta elementu kimiko horien barne egitura dela eta, mineral bakoitzak ezaugarri jakin batzuk ditu, begi hutsez ikus daitezkeenak eta berezkoak direnak, eta, horri esker, azkar identifika ditzakegu, eta besteengandik bereizi. Gizakiekin parekatuz gero, pertsona bat beste batekin nahastu gabe deskribatzeko balio duten ezaugarri heredatu horiek lirateke, hala nola ilearen eta begien kolorea, azalaren tonua, altuera, oreztak edo orinak izatea edo gure ahotsaren maila.

Horrek joko handia ematen digu geologia dibulgazioko jarduerak antolatzen ditugunean, mineralak identifikatzeko tailerrak plantea baititzakegu oso modu errazean eta tramankulu askorik gabe, hala nola toska zati bat, labana bat edo beira bat. Horrek bertaratutakoen arreta erakartzen du. Eta aipatzen ditugun propietate fisiko eta kimiko gehienak azaltzeko eta ulertzeko errazak diren arren, baten bat jendeari trabatzen zaio. Distiraz ari naiz.

DistiraIrudia: A) Galena alea, metal distira duen minerala. B) Kuartzozko kristalak, distira ez metalikoa duen minerala.

Definizio azkar batean, mineral baten gainazalak argia islatzen duenean hartzen duen itxura da distira. Eta hortik dator nahasmena. Argia islatzeaz hitz egiten dugunean, uhin argitsuak mineralaren aurpegiaren kontra indarrez errebotatzen eta igorpen iturrira itzultzen imajinatzen ditugu, argi sorta berri bat balitz bezala. Ia mineral hori berez igorle bihurtu eta distira argitsua sortuko balu bezala. Horixe ikusten dugu, adibidez, eguzkiak metalezko objektu batean eragiten duenean kalean, eta horren isla distira bihurtzen da, bere posizioa zehatz-mehatz markatzen diguna, eta min ematen diguna hari adi-adi begiratuz gero. Horrek pentsarazten digu distira egiten duten mineralak -argi efektu hori sortzen dutenak, alegia-, eta distirarik ez duten mineralak -horien artean sartuko genituzke distira hori eragiten ez duten guztiak- daudela.

Hori da guztiok egiten dugun akatsa mineralen propietate optiko hori deskribatu behar dugun lehen aldian; izan ere, planetako mineral guzti-guztiek dute distira. Hain zuzen ere, aurreko paragrafoan aipatu dizuedan eta guztiz intuitiboa den ikusizko hautemate horrek ahalbidetzen digu mineralen distira mota sailkatzea, bi talde handi bereizita. Alde batetik, argiak eragiten dienean metal baten itxura distiratsua duten mineralek distira metalikoa dutela esaten dugu. Kolore ilun eta opakuko mineralak dira, hau da, argiak zeharkatzen uzten ez dietenak, esaterako, pirita (burdin sulfuroa, FeS2) edo galena (berun sulfuroa, PbS). Eta, bestalde, distira ez metalikoko mineralak ditugu, kolore argikoak eta gardenak edo zeharrargiak direnak; eta, beraz, argia transmititzen dute, neurri batean edo guztiz.

DistiraTaula: mineraletan ohikoenak diren distira motak (metalikoa eta ez metalikoa) eta azpimotak (diamantezkoa, koipetsua, matea, nakar itxurakoa, perla itxurakoa, erretxinatsua, zeta antzekoa eta beirazkoa) sailkatuta, zenbait adibide bereizgarrirekin. (Minerales de Visu / Alacanteko Unibertsitateko jatorrizkoaren irudi aldatua)

Distira ez metalikoa duten mineralen barruan hainbat azpibanaketa edo taldekatze aurki ditzakegu, hala nola beira distirakoak, leiho bateko beirak duen distira gogorarazten baitigute. Hori da, esaterako, kuartzoari gertatzen zaiona (silizio dioxidoa, SiO2); nakar distirakoak, kasu honetan perletan sortzen diren irisazioen antzekoa dena eta talkoaren bereizgarria dena (magnesio hidratatuaren silikatoa, Mg3Si4O10(OH)2). Baina, oro har, mineralak beren distiraren arabera sailkatzeko orduan ez gara hainbeste xehetasunetan sartzen, distira metalikoa edo distira ez-metalikoa dutela esaten dugu.

Badakit testuan zehar askotan errepikatu dudala distira hitz gakoa, baina nahita izan da, erabat argi uzteko mineral guztiek propietate hori dutela eta sailkatzeko oinarrizko ezaugarri fisikoetako bat dela. Horrela, mineralak identifikatzeko dibulgazio tailer zoragarri bati aurre egiten diozuenean, distira metalikoaren eta distira ez metalikoaren arteko aldea jakingo duzue, eta haren propietateekin jolasten jarraitu ahal izango duzue eskuan duzuen alearen izen zuzena asmatu arte.

Esker ona:

Eskerrak eman nahi dizkiot Ana Rodrigo Espainiako Geologia eta Meatzaritza Institutuko (IGME-CSIC) Geominero Museoko zuzendariari, artikulu hau idazteko ideia emateagatik. Gure geologia dibulgazioko jarduerak hobetzeko moduari buruzko elkarrizketa interesgarri baten ondoren, mineralen ezaugarri bereizgarrietako batzuk ulertzeko orduan jendeak oro har dituen arazoak azpimarratzeagatik.

Egileaz:

Blanca María Martínez (@BlancaMG4) Geologian doktorea da, Aranzadi Zientzia Elkarteko ikertzailea eta UPV/EHUko Zientzia eta Teknologia Fakultateko Geologia Saileko laguntzailea.

Jatorrizko artikulua Cuaderno de Cultura Científica blogean argitaratu zen 2023ko irailaren 28an: Minerales con brillo.

Itzulpena: UPV/EHUko Euskara Zerbitzua.

The post Distira duten mineralak appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

La nueva búsqueda para controlar la evolución

Cuaderno de Cultura Científica - Ar, 2023-12-05 11:59

Los científicos modernos no se contentan con predecir la evolución de la vida. Quieren darle forma.

Un artículo de C. Brandon Ogbunu. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

James O’Brien para Quanta Magazine

La evolución es algo complicado. Gran parte de la biología evolutiva moderna busca reconciliar la aparente aleatoriedad de las fuerzas tras el proceso (cómo ocurren las mutaciones, por ejemplo) con los principios fundamentales que aplican a toda la biosfera. Generaciones de biólogos han albergado la esperanza de comprender lo suficiente la lógica de la evolución como para poder predecir cómo sucede.

Pero si bien la predicción sigue siendo un objetivo relevante, los científicos ahora se están centrando en otro mucho más ambicioso: el control sobre cómo sucede.

Esto puede parecer ciencia ficción, pero los mejores ejemplos de este esfuerzo están en nuestro pasado. Consideremos el proceso de selección artificial, término acuñado por Charles Darwin: hace miles de años, los humanos comenzaron a identificar plantas y animales con rasgos preferibles y a criarlos selectivamente, lo que amplificó esos rasgos en su descendencia. Este enfoque nos dio la agricultura, uno de los inventos culturales más transformadores de la historia de la humanidad. Posteriormente, la selección artificial en animales y plantas nos ayudó a comprender la genética y cómo evolucionan los genes en las poblaciones. Pero a pesar de lo eficaz que ha sido, la selección artificial sigue estando bastante limitada.

Esto es diferente de la selección natural, la fuerza que impulsa la evolución adaptativa en la Tierra, donde no hay ningún actor intencional que realice la selección. El actor seleccionador no es un criador humano, sino la naturaleza misma, que selecciona las variantes con mayor “aptitud”: aquellas con mayor probabilidad de sobrevivir y producir descendencia sana. Y cuando la naturaleza es la que selecciona, los resultados pueden ser difíciles de predecir.

Ahora los biólogos esperan establecer cómo ocurre la evolución a nivel molecular y ejercer tanto control directo sobre el proceso reproductivo como el que tenemos en los cultivos agrícolas. ¿Podemos orquestar la evolución, mutación a mutación, hacia el resultado que prefiramos?

Sorprendentemente, ya estamos a mitad de camino. El Premio Nobel de Química de 2018 reconoció el trabajo sobre un método llamado evolución dirigida, que permite a los científicos diseñar nuevas biomoléculas. Una de las ganadoras, Frances Arnold, fue pionera en una forma de mutar proteínas en el laboratorio y luego medir su funcionalidad (por ejemplo, lo bien que una enzima metaboliza el azúcar). Es entonces posible aislar las proteínas candidatas de interés, mutarlas y seleccionarlas más, hasta que generemos una proteína con función mejorada (en este caso, una enzima que metabolice el azúcar de manera muy eficiente). En este sentido, los químicos actúan como los criadores de perros, pero sin depender de la reproducción sexual para generar la descendencia proteica. Más bien, generan una población diversa de proteínas y miden sus propiedades en cuestión de horas. Y al seleccionar lo que quieren, controlan cómo ocurre la evolución.

A partir de este ejemplo queda claro que controlar la evolución (dirigirla hacia ciertos resultados) requiere el conocimiento de cómo ocurrirá la evolución junto con la tecnología para intervenir. Así que podemos pensar en el problema a través de la lente de una ecuación simple: Control = predicción + ingeniería.

Este control puede ser más sutil que el enfoque de Arnold. Un estudio de 2015 sugirió el uso de antibióticos en un orden determinado para evitar que la evolución cree patógenos resistentes a los antibióticos. Y algo similar está sucediendo con el tratamiento del cáncer: los oncólogos están tratando de aprovechar nuestra comprensión molecular del cáncer para dirigir las células cancerosas hacia la susceptibilidad a ciertos medicamentos. Esto es posible porque sabemos que cuando una célula cancerosa desarrolla resistencia a un fármaco puede volverse más susceptible a otros. Este concepto de “sensibilidad colateral” se basa en los principios fundamentales de las compensaciones en los sistemas biológicos: en general, no hay “almuerzos gratis” en la evolución, y la adaptación a menudo conlleva costes.

En trabajos más recientes, los científicos han generalizado estos enfoques. Utilizando ideas de la física cuántica, un equipo multidisciplinar (que incluye médicos, informáticos y físicos) ha aplicado un método llamado conducción contradiabática para llevar a una población hacia objetivos predeterminados. Por ejemplo, las infecciones causadas por algunas cepas de parásitos de la malaria son más fáciles de tratar que otras. Los investigadores podrían intentar «dirigir» las poblaciones de parásitos hacia cepas más fáciles de tratar.

Se están aplicando ideas similares a otros sistemas, como el microbioma, donde los biólogos evolutivos ahora utilizan la evolución dirigida para controlar comunidades microbianas como las que viven en nuestra piel y en nuestro intestino. Para ello, están utilizando el conocimiento de cómo ciertos microbios interactúan entre sí junto con nuevas técnicas microbianas que nos permiten introducir ciertos microbios en una población de otros microbios. La esperanza es que podamos utilizar este conocimiento para algún día dirigir la composición del microbioma hacia una que se asocie con mejores resultados de salud.

Estos avances demuestran que, de alguna forma, el control evolutivo es una cosa del presente, no del futuro. Pero los ejemplos de más éxito han tenido lugar en un pequeño número de entornos: microbios, comunidades microbianas y proteínas. Y lo que es más, los esfuerzos existentes se centran en el control durante períodos de tiempo cortos: ningún científico razonable pretende ser capaz de controlar la evolución molecular que actuando durante décadas o siglos (aparte de la selección artificial que ha tenido lugar durante milenios). El verdadero control sobre el proceso evolutivo sigue estando estrictamente limitado por nuestro conocimiento y herramientas actuales.

Si bien los desafíos técnicos del control evolutivo siguen siendo sustanciales, las barreras éticas también son notables. Los problemas se superponen con los relacionados con los organismos genéticamente modificados. Cuando diseñamos una mutación en una variedad de maíz que le confiere la capacidad de crecer incluso en ambientes estresantes, influimos en las generaciones futuras de esa variedad de maíz. Además, la selección de embriones en humanos puede parecerse a la selección artificial, dándonos la capacidad de controlar la aparición de rasgos humanos en poblaciones futuras. En general, las aplicaciones demasiado entusiastas de estas tecnologías pueden estar impulsadas por una especie de determinismo genético: la visión ingenua de que las diferencias significativas entre organismos dentro de una población pueden explicarse (principalmente) por su composición genética.

Si alguna vez intentáramos ingenuamente dirigir la evolución de los humanos y otros organismos en una escala temporal más larga, seríamos víctimas de una especie de determinismo evolutivo, que sostiene que podemos y debemos tener control total sobre cómo evoluciona la vida en el futuro. En última instancia, estas ambiciones están fuera de lugar. Subestiman el capricho de la evolución biológica: la dificultad de considerar todas las fuerzas que dan forma a cómo funciona y florece de la vida. Algunos podrían concebir que la inteligencia artificial puede ayudar a resolver estas incertidumbres. Pero la IA no es una panacea para la ignorancia. Es más eficaz cuando ya comprendemos las sutilezas del sistema que intentamos modelar y predecir. La biología evolutiva no cumple del todo con este estándar, al menos no todavía.

Podemos (y debemos) al mismo tiempo entusiasmarnos con la ambición de la biología moderna y tener la presencia de ánimo para reconocer nuestros límites. Por ejemplo, el movimiento eugenésico sugirió que la raza humana podría mejorarse utilizando el tipo de métodos que nos dieron animales y cultivos domesticados. Ahora entendemos que fue intolerante y se basó en una mala biología. Ejemplos como estos son advertencias y deberían enseñarnos que los intentos descuidados de controlar fuerzas tempestuosas como la evolución están destinados a fracasar.

 

El artículo original, The New Quest to Control Evolution, se publicó el 29 de noviembre de 2023 en Quanta Magazine.

Traducido por César Tomé López

El artículo La nueva búsqueda para controlar la evolución se ha escrito en Cuaderno de Cultura Científica.

Kategoriak: Zientzia

Momien usaina berreskuratzen

Zientzia Kaiera - Ar, 2023-12-05 09:00

Argitaratu berri den ikerketa baten emaitzak oinarri hartuta, Danimarkako museo batean erakusgai jarri dute Antzinako Egipton momifikazio-prozesuan erabilitako baltsamo baten kopia. Horretarako, Erregeen Haranean aurkitutako bi txarro kanopikotatik hartutako laginak aztertu dituzte. Txarro horietan Senetnay emakume noblearen birika eta gibel baltsamatuak gorde ziren eta, txarroan gelditzen diren arrastoen analisi kimikoari esker, baltsamoa berregiteko ahalegina egin dute.

Antzinako Egipton ohikoak ziren heriotzarekin lotutako hainbat erritu eta Egiptoko kulturan garrantzi berezia zuten heriotza-errituek. Kultura horren baitan, berebiziko garrantzia zuen hil ostean gorpuari egiten zitzaion prozesu guztia, alegia, momifikazioa. Egiptoko kasua alde batera utzita, momifikazio-prozesu konplexu horiek munduko oso leku gutxitan dokumentatu dira –Txilen eta Txinan ere badago kasurik–. Naturako baldintza oso zehatzetan gerta daitekeen momifikazio naturalaren kasuan ez bezala, Egiptoarrek egiten zuten momifikazio artifizialaren kasuan, gorpua prestatu egiten zuten momifikatzeko, hainbat substantzia erabiliz. Momifikazio-prozesuaren baitan, birikak, gibela, hesteak eta urdaila kentzen ziren gorputik, prozesu bereiztu baten bitartez baltsamatzeko eta txarro kanopikoetan gordetzeko. Organoen baltsamatzea ohikoa zen arren, ez zen beti egiten. Ikuspuntu kimikotik, organoak kentzean hobetu egiten zen gorpuaren lehorketa-prozesua; izan ere, bakterioen hazkuntza murrizten zen horrela.

TxarroIrudia: Antzinako Egipton garrantzi handikoak ziren heriotza-errituak. (Argazkia: aitoff – domeinu publikoko irudia. Iturria: pixabay.com).

Argitaratu berri den ikerketa baten emaitzek momifikazio-prozesuan erabilitako substantzietan jarri dute fokua. Max Planck Geoantropologia Institutuko B. Huber-ek eta bere lankideek organoak baltsamatzeko erabilitako substantziak ikertzen aritu dira, hain zuzen ere. Ikerketa Erregeen Harana delako Antzinako Egiptoko nekropolian aurkitu ziren txarroekin burutu dute. Aztertutako txarroak Senetnay izeneko emakume noblearen birikak eta gibela gordetzeko erabili ziren eta, gaur egun, Hanover-eko (Alemania) August Kestner Museoan daude. Txarroak Howard Carter arkeologo ingelesak aurkitu zituen 1900. urtean, baina ez zen horregatik ospetsu egin, baizik eta 1922an Tutankamonen hilobia aurkitzeagatik.

Senetnayren txarroetara itzuliz, momifikatutako organoak galdu egin ziren arren, txarro hutsak ondo gordeta egon dira urte hauetan guztietan zehar. Hain hutsak ez daude, gainera; izan ere, momifikazioan erabilitako baltsamoen arrastoek oraindik diraute txarroen barruko geruzetan eta txarroa egiteko erabili ziren material porotsuetan.

Egipton momifikazioak 4.000 urtean baino gehiagoan egin ziren arren, ez dira garai hartako idatzi asko berreskuratu –adibide ospetsuenetakoa Baltsamatzearen Errituala delako papiroa da– eta berreskuratu direnetan ez dira aipatzen zeintzuk ziren baltsamoetan erabilitako osagai guztiak. Horrexegatik, Kimika Analitikoaren tresna garrantzitsuenetakoak diren gas-kromatografia eta masa-espektrometria erabiliz hainbat ikerlan egin dira osagai horiek zeintzuk izan zitezkeen jakiteko. Kasu honetan, Huberrek eta bere lankideek Senetnayren bi txarro kanopiko horietatik hartutako laginak aztertu dituzte. Txarro bakoitzaren azpialdetik lagin bana eta barneko paretetatik bina lagin aztertu dituzte, guztira sei laginekin egin da lan. Analisi kimikoa egiteko erauzketa eta disoluzio pausoak egin zituzten eta, jarraian, laginaren banaketa egin zuten likido- zein gas- kromatografia bidez, azkenik masa espektrometro batekin detektatu zuten.

Aurkitutako substantzien artean, aipatzekoa da hainbat triterpenoide detektatu direla. Erretxina-motako esentziak erabili zituztela frogatzen du horrek. Konposatu aromatiko eta fenolikoak ere aurkitu dituzte; esate baterako, banilla usaina duen kumarina edo kontserbagarri funtzioa duen azido bentzoikoa –bi konposatuok gaur egungo kosmetikan ere erabiltzen dira–. Huberren taldeak frogatu du informazio oso baliagarria lor daitekeela txarro kanopikoen arrastoetatik eta, agian, etorkizunean posible izango da baltsamoak nolakoak ziren guztiz zehaztea. Oraingoz, baltsamoa berregin egin dute ikerketan lortutako informazioa abiapuntu gisa hartuta. Betiereko Esentzia deitu diote eta urriaren 13an zabaldu den Danimarkako Moesgaard Museoan aurkeztu da berregindako baltsamoa.

Oraingoz oso zaila da jakitea berregindako baltsamo horren usaina zein neurritan den Egiptoarrek erabilitakoaren berdina; izan ere, ikertzaileek diotenez, zaila da jakitea gaur egun detektatu diren substantziak berdinak izango ote ziren duela 3.500 urte. Hain zuzen ere, substantziek degradazio-prozesuak jasaten dituzte denboran zehar eta baldintzen arabera, eta zaila da, noski, horiek nola gertatzen diren aurresatea. Hala eta guztiz ere, egindako ahalegina hurbilpen egokia izan daitekeela pentsatzen da. Ikerketa honek modu nabarmenean erakusten du nola erabili daitezkeen analisi kimikoak geure historian arakatzeko eta antzinako informazioa lortzeko. Beti izango dugu zalantza zein neurritaraino lortu dugun benetako informazioa, baina horixe da zientzia: zalantzak argitzen joatea eta informazio ahalik eta osatuena lortzea.

Erreferentzia bibligrafikoa:

Huber, B.; Hammann, S.; Loeben, C.E.; Jha, D.K.; Vassao, D.G.; Larsen, T.; Spengler, R.N.; Fuller, D.Q.; Roberts, P.; Devièse, T. eta Boivin, N. (2023). Biomolecular characterization of 3500‑year‑old ancient Egyptian mummification balms from the Valley of the Kings. Scientific Reports, 13, 12477, DOI: 10.1038/s41598-023-39393-y

Informazio gehiago:

Andrew Zeilstra (2023). The scent of the afterlife unbottled in new study of ancient Egyptian mummification balms, eurekalert.org, 2023ko abuztuaren 31.

Egileaz:

Josu Lopez-Gazpio (@Josu_lg), Kimikan doktorea, irakaslea eta zientzia dibulgatzailea da. Tolosaldeko Atarian Zientziaren Talaia atalean idazten du eta UEUko Kimika sailburua da.

The post Momien usaina berreskuratzen appeared first on Zientzia Kaiera.

Kategoriak: Zientzia

Orriak