El juego del Sim
En 2014 la editorial RBA me propuso escribir el último libro de la excelente colección de divulgación de las matemáticas El mundo es matemático, en la cual ya había escrito los libros La cuarta dimensión (2010) y El sueño del mapa perfecto (2010), y les propuse escribir un libro sobre las matemáticas de los juegos, un tema apasionate y que me ha interesado desde hace tiempo. Así, el libro número 50 de la colección El mundo es matemático fue mi libro sobre matemáticas y juegos que la editorial tituló Del ajedrez a los grafos, la seriedad de las matemáticas de los juegos.
Uno de los juegos de los que hablé en este libro, en el capítulo dedicado a la combinatoria, fue el juego del Sim, un sencillo juego relacionado con la teoría de Ramsey.
El juego de Sim, perteneciente a la familia de juegos con “lapiz y papel”, es un sencillo juego que encierra una gran riqueza matemática. Fue inventado por el matemático estadounidense, experto en criptografía, Gustavus J. Simmons, mientras trabajaba en su tesis doctoral en teoría de grafos e inspirado en el estudio matemático de los números de Ramsey. El juego aparece en su artículo On the game of Sim (Journal of Recreational Mathematics, 1969).
![](http://culturacientifica.com/app/uploads/2017/04/imagen-1a-640x284.jpg)
Situación inicial del juego de Sim, con los seis vértices del hexágono, y el grafo completo de seis vértices asociado K6, con los 15 posibles segmentos que unen los 6 puntos dos a dos
Las reglas del juego son las siguientes. Se consideran los seis puntos que determinan los vértices de un hexágono regular, pintados sobre una hoja de papel. Hay 15 formas distintas de pintar un segmento que una dos vértices de la figura (como se ve en la imagen anterior), que en conjunto forman lo que se llama el grafo completo de seis puntos, K6. El juego de Sim es un juego para dos jugadores, cada uno de los cuales utiliza un lápiz de un color (por ejemplo, azul y rojo) para pintar, por turnos, un segmento que une dos puntos cualesquiera de la figura. Pierde el jugador que primero forme un triángulo monocolor, del color de su lápiz, siendo sus vértices puntos de la figura inicial.
![](http://culturacientifica.com/app/uploads/2017/04/imagen-2a-640x306.jpg)
Simulación de una partida en la que el primer jugador pinta con el color azul y el segundo con el rojo. En cada instantánea se observan los dos movimientos de cada turno de ambos jugadores. Pierde el primer jugador, puesto que en el séptimo movimiento, indistintamente del segmento que pinte –en gris en la imagen- formará un triángulo azul con tres vértices del hexágono
Una característica interesante del juego de Sim (el nombre parece ser que se le ocurrió a un compañero de su creador, por SIMple SIMmons y porque además recordaba al famoso juego Nim) es que no puede terminar en tablas, como demostró el propio Simmons en su artículo, haciendo uso de del conocido principio del palomar.
En este punto es recomendable recordar qué es el principio del palomar, lo cual se puede leer, con varios ejemplos y aplicaciones en las entradas del Cuaderno de Cultura Científica siguientes:
a) El principio del palomar, una potente herramienta matemática (parte 1)
b) El principio del palomar, una potente herramienta matemática (parte 2)
La demostración es la siguiente. Consideremos el grafo completo de seis puntos K6 completamente coloreado con los dos colores, es decir, los dos jugadores han continuando pintando segmentos de forma alternada hasta completar el grafo. Tomemos un vértice cualquiera v0. Como hay cinco líneas que pueden unir ese vértice del hexágono con los otros cinco (v1, v2, v3, v4, v5 en la siguiente imagen), por el principio del palomar generalizado, al menos tres de ellas son del mismo color, por ejemplo, azul.
Si alguno de los tres segmentos que unen los vértices finales de esos tres segmentos azules, fuese también azul, entonces formaría un triángulo azul con los correspondientes segmentos azules que empiezan en el vértice v0. Pero si por el contrario, ninguno de esos tres segmentos es azul, entonces los tres son rojos y forman un triángulo rojo. Por lo tanto, siempre existe un triángulo monocolor, ya sea azul o rojo. Lo cual completa la demostración.
Como consecuencia del anterior razonamiento, no existe la posibilidad de empate en el juego del Sim y alguno de los dos jugadores ganará si juega correctamente. Sin embargo, el problema de quien de los dos jugadores tiene una estrategia ganadora y cuál es esta, es bastante complejo. De hecho, Simmons no lo incluía en su artículo, y solo después de un exhaustivo análisis con ordenadores descubrió que es el segundo jugador quien tiene una estrategia ganadora, aún así, esta no es fácil de llevar a la práctica, como ocurre con otras estrategias ganadoras que han ido descubriendo los matemáticos. De las más sencillas sería la que aparece en el artículo Another strategy for SIM (Mathematics Magazine, 1978), de Leslie E. Shader.
Pero volvamos a la invención del juego de Sim. La idea que subyace al mismo se enmarca dentro de la Teoría de Ramsey, esa teoría matemática del campo de la combinatoria que viene a decirnos que el desorden completo es imposible, y más concretamente está relacionada con los números de Ramsey.
El matemático, filósofo y economista inglés Frank Plumpton Ramsey (1903-1929) demostró el resultado (conocido como Teorema de Ramsey) que es la base de la teoría que lleva su nombre en su artículo “On a problem of formal logic” (Proceedings of the London Mathematical Society, 1930) en el que estudiaba “el problema de encontrar un procedimiento para determinar la verdad o falsedad de una fórmula lógica dada”, y para ello estudiaba algunas cuestiones de combinatoria. De hecho, el famoso teorema no era más que un resultado instrumental, un lema, del artículo. Sin embargo, fueron realmente los matemáticos húngaros Paul Erdös (1913-1996) y George Szekeres (1911-2005) quienes introdujeron en 1933, trabajando en un problema geométrico, la teoría de Ramsey para grafos y la popularizaron dentro de la comunidad matemática.
Para definir los números de Ramsey recordemos que el grafo completo de n puntos Kn es el grafo con n puntos que contiene todas las aristas que unen dos de esos n puntos, y además, vamos a colorear el grafo, es decir, vamos a asignarle un color a cada arista (en general se pueden etiquetar las aristas de diferentes formas).
Dados dos números naturales r y s, se define el número de Ramsey R(r,s) como el mínimo entero n para el cualquier coloración con dos colores, por ejemplo, rojo y azul, del grafo completo de n puntos Kn, contiene un subgrafo completo Kr con todas sus aristas rojas o un subgrafo completo Ks azul.
![](http://culturacientifica.com/app/uploads/2017/04/imagen-4-1.jpg)
Coloración del grafo completo de 8 puntos K8 que contiene varios subgrafos K3 rojos y un subgrafo K5 azul, formado por los puntos 1, 2, 3, 5 y 6
El juego de Sim está relacionado con el número de Ramsey R(3,3). La demostración de Simmons de la no existencia de tablas en el juego de su invención, es realmente una demostración de que R(3,3) ≤ 6, es decir, cualquier coloración con dos colores del grafo completo con seis puntos K6 (y existen 215 = 32.768 coloraciones dicromáticas) admite siempre un subgrafo completo de tres puntos, un triángulo, monocromático, ya sea, rojo o azul.
Una demostración alternativa de este resultado, que hace uso de otra interesante herramienta de la combinatoria, el conteo doble, permite obtener un resultado algo más fuerte, de hecho, al menos existen dos triángulos
Demostración: Dada una coloración dicromática, con los colores rojo y azul, del grafo completo de seis puntos, vamos a contar el número de triples de vértices x, y, z tales que el segmento (xy) es rojo y el segmento (yz) es azul.
Por una parte, para cada vértice tenemos tres opciones:
i) que todas las aristas conectadas a él sean de un solo color, luego ese vértice no será el punto medio de ninguno de esos triples;
ii) que una de las aristas sea de un color y la otras cuatro del otro, de forma que ese punto podría ser el vértice central de 4 de esos triples;
iii) que dos aristas fuesen de un color y tres del otro, de forma que podría haber 6 de esos triples.
Teniendo en cuenta que hay seis vértices, habrá como mucho 6 x 6 = 36 triples x, y, z tales que el segmento (xy) es rojo y el segmento (yz) es azul.
Por otra parte, para cada triángulo de vértices x, y, z que no sea monocromático, es decir, que tenga aristas de los dos colores, hay precisamente dos de los anteriores triples. Como hay 20 triángulos en el grafo completo de seis puntos, si ninguno de ellos fuese monocromático habría 40 triples de los que estamos buscando. Sin embargo, no puede haber más de 36, entonces existirán al menos dos triángulos monocromáticos. Y queda probada la afirmación.
![juego del Sim](http://culturacientifica.com/app/uploads/2017/04/imagen-5.jpg)
Coloración dicromática del grafo completo de cinco puntos que no admite triángulos monocromáticos
Si al hecho de que R(3,3) ≤ 6, le añadimos que existe una coloración con dos colores del grafo completo de cinco puntos K5 (véase la anterior imagen), entonces R(3,3) > 5, y se obtiene el siguiente resultado.
Teorema (Greenwood, Gleason, 1955): R(3,3) = 6.
Este resultado se conoce también como el teorema de los amigos y extraños, puesto que se puede reformular de la siguiente forma:
En cualquier reunión con seis personas, o bien tres de ellas son conocidas (se conocen dos a dos), o bien tres de ellas son completos extraños (son desconocidas dos a dos).
Para terminar, vamos a contar una pequeña anécdota sobre el número de Ramsey R(4,4). En el libro The Princeton Companion to Mathematics (2008) se cuenta la siguiente historia del sociólogo húngaro Sandor Szalai (1912-1983). En el curso de una investigación sobre la amistad entre jóvenes, observó que para grupos de 20 jóvenes siempre podía encontrar cuatro jóvenes que fueran amigos entre sí, es decir, amigos dos a dos, o cuatro jóvenes que no fuesen amigos. Tras reflexionar sobre las posibles justificaciones sociológicas de esta observación, pensó que este parecía más un fenómeno de tipo matemático, que sociológico, y se puso en contacto con un grupo de matemáticos húngaros, entre los que estaba Erdös, quienes le confirmaron sus sospechas. Se había encontrado con la versión del teorema de los amigos y extraños correspondiente al número de Ramsey R(4,4). Su descubrimiento implicaba que R(4,4) ≤ 20. De hecho, se puede demostrar que R(4,4) = 18.
Para quienes estéis interesados en conocer más sobre los números de Ramsey podéis consultar el libro mencionado Del ajedrez a los grafos sobre las matemáticas de los juegos o el libro de combinatoria How to count, an introduction to combinatorics, que aparecen en la bibliografía.
Bibliografía
1.- Raúl Ibáñez, Del ajedrez a los grafos, la seriedad matemática de los juegos, colección El mundo es matemático, RBA, 2015.
2.- Gustavus J. Simmons, On the game of Sim, Journal of Recreational Mathematics 2 (n. 2), 1969, p. 66.
3.- Frank Plumpton Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society 30, 1930, p. 264-286.
4.- Timothy Gowers, June Barrow-Green, Imre Leader, The Princeton Companion to Mathematics, Princeton University Press, 2008.
5.- R. B. J. T. Allenby, Alan Slomson, How to count, an introduction to combinatorics, CRC Press, 2011.
El artículo El juego del Sim se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Mens sana… ondo elikatutako gorputzean
Zahartzearekin batera garuna txikitzen da eta horrek, noski, funtzio kognitiboetan ere eragiten du. Osasunari lotutako beste gaietan ohikoa denez, bizimoduek eragin handia izan dezakete garunaren osasunean. Eta elikadura izan daiteke, hain justu, bizimodu osasuntsuaren oinarrietako bat. Hala agintzen du senak, baina azken urteotan ideia hori indartzen duten ikerketak pilatzen hasiak dira.
Horietako azkena Neurology aldizkarian plazaratu dute. Oraingoan, dieta mediterraneoa eta garun osasuntsu baten arteko erlazio estua dagoela iradoki dute zientzialariek. Ikerketak sei urte baino gehiago iraun ditu, eta zientzialariek ehunka lagunen bizi ohiturak eta garunen azterketak baliatu dituzte. “Dieta mediterraneoarekiko gertuago egotearen eta garuneko atrofia gutxiago izatearen arteko erlazioa dagoela aurkitu dugu”, diote egileek artikuluan.
![](http://zientziakaiera.eus/app/uploads/2017/04/vegetables-752153_1280-640x438.jpg)
Ikerketaren egile nagusiak azalpen gehiago eman ditu. “Zehartzen garen heinean, garuna uzkurtzen da eta ikasketan zein oroimenean eragina izan dezaketen neuronak galtzen ditugu. Ikerketa hau dieta mediterraneoak garunaren osasunean eragin positiboa duela dioten ikerketetara batzen da orain”, esan du Edinburgoko Unibertsitateko psikologo Michelle Lucianok Ameriketako Neurologia Akademiak zabaldutako ohar batean.
Ondo ezagutzen den taldeaGuztira, egileek 843 lagunen elikadura ohituren inguruko informazioa eskuratu zuten. 70 urte inguru zituztenean, parte-hartzaileek elikaduraren inguruko galdetegi bat erantzun zuten. Horri esker, zientzialariek jakin ahal izan zuten zer jaten zuten eta zein maiztasunarekin. Elikaduraren inguruko datuak jakinda, ikertzaileek bi talde ezberdindu zituzten: dieta mediterraneotik gertuagoko elikadura zutenak eta halakorik ez zutenak.
Hiru urte geroago, 73 urte ingururekin, garuneko eskanerra egin zieten 562 laguni. Beste hiru urte pasata, 401 lagun berriro aurkeztu ziren, eta bigarren eskaner bat egin ahal izan zieten. Era horretan, zientzialariek datu zehatz eta fidagarriak izan dituzte eskura. Eskanerretan garunaren datu bolumetrikoak eskuratu ziren baina, horrez gain, parte-hartzaileek ebaluazio kognitiboak finkatzeko erabili ohi diren galdetegiak bete zituzten.
Proba hauek guztiez gain, erabilitako taldea oso ondo ezagutzen dute ikertzaileek. Izan ere kohorte baten partaide dira. Kohorteak ezaugarri zehatzak eta ezagunak dituzten banakoen multzoak dira eta, horregatik, mota askotako ikerketetan erabiltzen dira. Kohorteak maiz agertzen dira medikuntzari loturiko lanetan, batez ere ikerketa epidemiologikoetan.
Zehazki, orain erabili duten kohortea 1936ko “Lothian” izenekoa izan da. Guztira, 1.091 lagunek osatzen dute taldea, eta Edinburgoko eskualdean (Eskozia) urte horretan jaioak dira. Gehienek gaitasun mentalak neurtzeko froga egin zuten 11 urte zituztenean (1947ko Eskoziako Inkesta Mentala) eta bizitza osoan zehar beste azterketa askotan parte hartu dute, bai osasunari loturiko neurketetan zein bizimoduei dagozkienetan. Beraz, horien inguruko azterketa kognitiboak egiteko talde aproposa osatzen dute.
![](http://zientziakaiera.eus/app/uploads/2017/04/2_Wesley_Reynolds_neurologoa-640x457.jpg)
Behin datu guztiak eskutan izanda, estatistikaren ordua iritsi da. Ikertzaileek ondorioztatu dutenez, dieta mediterraneoari gertuagoko elikadura ohitura duten pertsonen garunek uzkurtze maila baxuagoa izan dute. Zehazki, talde osoaren batez besteko emaitzekin alderatuz, normala den uzkurduraren erdia izan dute.
Estatistika erabiltzen duen beste edozein ikerketarekin gertatu ohi den moduan, hemen ere zaila da aldagaien arteko loturak zehaztea eta, batez ere, egon daitezkeen alborapenak antzematea. Horregatik, inteligentzia maila ezberdinek edota hezkuntza bezalako aldagaiek emaitzetan eragina ez dutela ziurtatu dute zientzialariek. Adina, diabetesa edo hipertentsioa bezalako aldagaiak ere kontuan hartu dituzte, alborapenak ekidin aldera.
Faktore babesgarriakDieta honen osagaiak ezagunak dira: frutak, barazkiak, lekaleak, eta zerealak daude oinarrian. Arrainak eta esnekiak ere, baina, kopuru txikiagoan. Azkenik, hegazti haragiak eta haragi gorriak, hauek are kopuru askoz txikiagoan. Olibo olioa ere funtsezko osagaitzat jotzen da, eta otorduetan neurriz kontsumitutako ardo beltza era sartu ohi da dieta horretan. 2013an UNESCOk Gizateriaren Ondare Immateriala izendatu zuen elikadura mota hau.
![](http://zientziakaiera.eus/app/uploads/2017/04/The-brain-inevitably-shrinks-with-age-640x407.jpg)
Egileek onartu dutenez, dieta horretan garuna zertan laguntzen duen zehazterik ez dute izan. Baina badirudi arrainaren kontsumoa ez dagoela eragin horren atzean. Dieta eta garunaren osasunaren arteko korrelazioa badagoela dirudi beraz, baina atzean egon daitezkeen zio zehatzak, ordea, ez dira ezagutzen. Estatistikari jarraituz, ikertzaileek ondorioztatu dute arrain gehiago eta haragi gutxiago jateak berez ez duela eraginik emaitzetan. Gakoa, beraz, beste nonbaiten egon daiteke. “Baliteke dietaren beste osagarriak egotea harreman honen atzean, ala baliteke osagai guztien konbinaketaren emaitza izatea”, nabarmendu du Lucianok.
Ezaguna denez, oraingo hau ez da elikadura mediterraneoa eta osasun ona lotzen dituen lehen ikerketa. Aurretik ere, lotu izan da hainbat onurarekin. Besteak beste, bihotzekoak eta, oro har, heriotza goiztiarra ekiditeko, eta hipertentsioa zein kolesterola kontrolpean edukitzeko lagungarria omen da. Halere, adituek ohartarazten dutenez, elikaduraz gain, bestelako faktoreak ere kontuan hartu behar dira neuronak txukun mantendu nahi baditugu.
“Gure organismoan dauden beste osagaiek bezala, garunak ere gure bizimoduen eragina izaten du. Garuna osasuntsu mantentzeko lagungarria izan daiteke dieta mediterraneoa, baina ebidentziarik hoberenen arabera, bizimoduari lotutako beste hainbat faktore ere babesgarriak izan daitezke”, dio Jose Ramon Alonso neurozientzialariak Mapping Ignorance blogean. “Ez erretzea, fisikoki eta mentalki aktibo izatea, alkoholik ez edatea –edo neurriz egitea- eta odol presioa eta kolesterol mailak kontrolpean edukitzea”, dira adituak gomendatutako ohiturak.
Erreferentzia bibliografikoa:
Luciano M et alia. (2017) Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 88(5): 449-455. DOI: 10.1212/ WNL. 0000000000003559.
———————————————————————————-
Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.
———————————————————————————-
The post Mens sana… ondo elikatutako gorputzean appeared first on Zientzia Kaiera.
Corazones
La semana pasada me ocupé de los sistemas circulatorios, y especialmente de la circulación general humana. Pero la bomba de impulsión, aunque citada, no recibió atención ninguna. Vamos, pues, con los corazones y otros sistemas de bombeo.
Algunos animales han recurrido a los flagelos como mecanismo de impulsión de líquidos; es el caso de las esponjas, que los utilizan para impulsar el agua que pasa a través de sus poros, o de los erizos de mar, que consiguen de esa forma hacer circular el líquido de su cavidad celómica.
![](http://culturacientifica.com/app/uploads/2017/04/1024px-American_Bird_Grasshopper-640x401.jpg)
Saltamontes (Imagen: Wikipedia)
Otros han desarrollado dispositivos que provocan el movimiento de fluidos mediante el concurso de músculos o de elementos esqueléticos. Lo normal es que esa forma de impulsión se produzca solo cuando el animal se mueve. Cuando una estrella de mar utiliza su musculatura para mover sus brazos también provoca el movimiento de su líquido celómico. En muchos artrópodos, los movimientos de la musculatura del exoesqueleto y de la pared corporal ayudan a impulsar la hemolinfa; en los saltamontes, por ejemplo, el corazón principal solo late cuando están inactivos, porque cuando se mueven el movimiento de la musculatura extrínseca es suficiente para desarrollar la actividad de impulsión necesaria para alimentarla. En vertebrados también hay dispositivos basados en musculatura esquelética que impulsan la sangre. Un ejemplo es el corazón caudal de los peces bruja (mixinos), al que me referiré más adelante. Y similar a ese dispositivo es el de las venas de las extremidades inferiores humanas, que ayudan a que la sangre venosa ascienda hasta el corazón.
![](http://culturacientifica.com/app/uploads/2017/04/Peristalsis.gif)
Persitaltismo (Fuente: Auawise, Wikipedia)
Otra modalidad de impulsión se basa en el peristaltismo. La impulsión peristáltica se produce cuando una musculatura propia del conducto (vaso sanguíneo u otro tubo) se contrae y esa contracción se desplaza en una dirección determinada. El desplazamiento de la contracción empuja el contenido del tubo en esa dirección y lo desplaza. Cuando ese dispositivo se encuentra en secciones especializadas de los vasos, se les denomina corazones peristálticos. Es la forma de bombeo de muchos anélidos, como los gusanos de tierra, y de bastantes artrópodos.
Y por último tenemos los corazones musculares camerales, que son los más conocidos. Consisten en cámaras provistas de una musculatura específica que al contraerse desplaza el líquido contenido en su interior. Son, normalmente, las bombas de impulsión principales en todos los vertebrados y muchos artrópodos y moluscos. Las cámaras necesitan de sendas válvulas en los dos extremos para garantizar el flujo de la sangre en una dirección. El corazón de los artrópodos es monocameral (consta de una sola cámara), pero en la mayoría de los moluscos y todos los vertebrados tiene, al menos, dos cámaras, una aurícula, que recibe el líquido que retorna al corazón, y un ventrículo que es el que genera la fuerza primaria para impulsar la sangre que se dirige al resto del organismo.
![](http://culturacientifica.com/app/uploads/2017/04/CG_Heart-640x480.gif)
Vista interna de un corazón humano (Imagen: Jana Oficial, vía Wikipedia)
Los corazones de los vertebrados fueron originariamente bicamerales, pero ese esquema se modificó con la aparición de los primeros peces capaces de respirar en aire. A partir de ese momento empezó a desarrollarse un segundo circuito, el de la circulación pulmonar, que conecta el corazón con los pulmones. Las dos cámaras originales se empezaron a subdividir mediante paredes internas. De esa forma, un lado de la aurícula recoge la sangre procedente del cuerpo y el otro lado la procedente de los pulmones; y a la vez, un lado del ventrículo envía la sangre al conjunto del organismo y el otro lo hace a los pulmones. Ese proceso de separación se completa en aves y mamíferos, que tienen corazones cuatricamerales, aunque en realidad podría hablarse de dos bombas diferentes, aunque funcionando de manera acompasada, cada una con su aurícula y su ventrículo.
![corazones](http://culturacientifica.com/app/uploads/2017/04/Latidos.gif)
Función de las válvulas
En aves y mamíferos la arteria aorta es la vía de salida del ventrículo izquierdo hacia la circulación sistémica y las venas cava, las de retorno al corazón -a su aurícula derecha-; esa sangre es a continuación impulsada por el ventrículo izquierdo, a través de las arterias pulmonares, a los pulmones, y retorna del órgano respiratorio a la aurícula izquierda a través de las venas pulmonares. Un completo sistema de válvulas en puntos clave es el que garantiza la correcta dirección del flujo sanguíneo.
Como ya se ha indicado, además del corazón principal, en muchos animales hay bombas auxiliares de impulsión. Los gusanos de tierra, por ejemplo, tienen numerosos vasos peristálticos además de los vasos dorsales especializados como corazones peristálticos principales. También los insectos disponen de corazones auxiliares en la base de patas, alas y antenas.
Los cefalópodos, que son los únicos moluscos con un sistema circulatorio cerrado, tienen dos corazones branquiales auxiliares además del corazón principal; esos dos corazones impulsan la sangre a través de las branquias. Es posible que gracias a ellos consigan pulpos y calamares impulsar a través de sus órganos respiratorios una sangre de gran viscosidad debido a su elevada concentración de hemocianina, necesaria, a su vez, para satisfacer la demanda metabólica tan alta que generada su muy activo modo de vida.
![](http://culturacientifica.com/app/uploads/2017/04/2114_Skeletal_Muscle_Vein_Pump-640x560.jpg)
Bomba venosa muscular (Imagen: OpenStax College, vía Wikipedia)
Los mixinos tienen varios corazones auxiliares. El más importante es el corazón caudal, que está formado por dos cámaras alargadas entre las cuales hay una estructura cartilaginosa flexible que se comba alternativamente a derecha e izquierda siguiendo el movimiento de la cola. Al combarse comprime una de las dos cámaras y distiende la otra, succionando y expulsando, respectivamente, la sangre contenida en su interior. Sendas válvulas colocadas en los extremos anterior y posterior de cada cámara determinan que el flujo sea unidireccional. Por otro lado, los dispositivos con que cuentan las venas de nuestras piernas cumplen una función similar (ver imagen superior). Ayudan a impulsar la sangre venosa de vuelta al corazón al ser presionadas y comprimidas por los músculos que las rodean; el retorno de la sangre al corazón se produce gracias a la presencia de válvulas en esas venas, que evitan el flujo sanguíneo hacia abajo y desplazan la sangre hacia arriba. Por eso no es aconsejable estar de pie durante mucho tiempo sin mover las piernas.
Para concluir, disfruten de este notable pasaje de una de las mejores películas españolas, Amanece que no es poco.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Corazones se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Un viaje a través del sistema circulatorio humano
- Corazones cámbricos
- La distribución del agua animal y el curioso caso del potasio
Las transmutaciones de van Helmont (2)
La teoría química de van Helmont es una mezcla muy curiosa de lo más avanzado con lo más arcaico. Muchos en el siglo XVII aceptaban como transmutación el hecho de que los metales se disolviesen en ácido; obviamente, el concepto de moderno de disolución no estaba establecido. También se aceptaba como transmutación el hecho de que una herradura de hierro dejada en un arroyo cercano a minas de cobre (y, por tanto, rico en sales de cobre disueltas) terminase recubierto por una capa de cobre. Sin embargo, para van Helmont estos dos fenómenos claramente no eran transmutaciones, pero eso no impedía que siguiese creyendo en la posibilidad.
De hecho, dejó escrito una anotación en la que relataba lo que el creía sinceramente que había sido una transmutación de 8 onzas de mercurio en oro conseguida mediante la adición de un cuarto de grano (el grano era una medida de peso equivalente al peso medio de un grano de trigo, equivalente a 0,0648 g) de un polvo amarillo suministrado por un extraño (véase el paralelismo con la presunta transmutación de Helvetius).
Es difícil saber con los datos proporcionados qué presenció van Helmont en realidad. El mercurio es conocido por su capacidad para combinarse formando amalgamas y compuestos, por lo que podría haber incorporado algún tipo de material de color amarillo metálico y volverse sólido al hacerlo. Con todo, no es fácil encontrar algún producto que tenga ese efecto en unas cantidades tan pequeñas para 8 onzas de mercurio. Pero recordemos que en esta época los alquimistas estafadores se habían vuelto realmente sofisticados y, por ejemplo, nada impide que el extraño no solo diese el polvo amarillo sino que lo entregase en un recipiente en el que debía realizarse la mezcla para que no se perdiese parte en el trasvase, y que fuese este recipiente el que aportase realmente la parte que efectivamente hacía que la reacción ocurriese.
Y así van Helmont osciló entre revolucionario y reaccionario toda su vida. Rechazó los cuatro elementos aristotélicos (jugándose, literalmente, el cuello) y los tres principios de Paracelso, pero los reemplazó por aire y agua, señalando la creación de los cielos y el agua en el segundo día del Génesis como fundamento. El aire era solamente un medio físico, por lo que , en última instancia, todo se reducía a agua. Pero, por otro lado, hizo un uso intensivo de la balanza y como consecuencia de él llegó al convencimiento de que nada se crea o se destruye en una reacción química (la ley de conservación de la materia es anterior a Lomonósov o Lavoisier), aunque no lo expresó explícitamente.
Su famoso experimento del sauce ilustra perfectamente sus planteamientos y, significativamente, el tipo de experimentación que llevaría en última instancia al surgimiento de la química como ciencia. En este experimento pesó una plántula de sauce y la sembró en una cuba con exactamente 200 libras de tierra previamente desecada; cubrió la cuba para impedir que el polvo o cualquier otra cosa se añadiese a la tierra. Después de regarla con agua destilada y verla crecer durante 5 años, sacó el pequeño sauce de la tierra con gran cuidado y lo volvió a pesar. Encontró que el árbol había incrementado su peso sustancialmente pero que la tierra pesaba muy poco menos de 200 libras. Hasta aquí el experimento y los datos. Su interpretación es otra cosa. De ellos van Helmont extrajo la conclusión de que el agua aportada se había convertido en madera de sauce.
Obviamente el experimento carece de otros controles mínimos, como llevar un registro del peso de agua aportada, de las pérdidas por evaporación o filtrado fuera de la cuba o posibles derrames. Ni que decir tiene que van Helmont no tenía idea del papel que juega el dióxido de carbono del aire en la biología de la planta, ni de que ésta emitía oxígeno. Pero la idea básica está ahí: la cantidad de materia hay que controlarla con la balanza. Lo que fuese que se introdujese en una reacción tenía que aparecer en los resultados de una forma u otra.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Las transmutaciones de van Helmont (2) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Jan van Helmont, filósofo por el fuego (1)
- El siglo de la esquizofrenia química
- Libavius y el primer libro de texto químico
Ikertzaile euskaldunak eta euskara ikerkuntzan: gogoetarako abiapuntu bat
Topaketaren izena ez zen ausazkoa. Koldo Garcia Etxebarria genetikan doktore eta zientzia-dibulgatzaileak sarritan bere blogean erabiltzen duen zientziaren kafepintxo izaera zuen oinarri. Hau da, zientziaz hitz egin daiteke kafe bat eta pintxo bat hartzen dugun bitartean. Zientziaz aritu gaitezke aisialdian, laborategitik kanpo gaudenean; izan ere, zientziak hezi egiten gaitu, bai, baina entretenitu eta dibertitu ere bai. Gainera, hori guztia euskaraz egin daitekeela badakigu, eta euskaraz egin behar dela aldarrikatzen dugu.
![](http://zientziakaiera.eus/app/uploads/2017/04/Kafetapintxo-640x542.png)
Ikertzaile euskaldunok, ordea, trumoi-hotsak ere entzuten ditugu sarritan. Topaketan, euskaraz egiten den —edo egin beharko litzatekeen— ikerkuntzari buruz ere hitz egin zen, kezkak, gabeziak eta beharrak azaleratzeko. Ikertzaile eta zientziazale euskaldunen komunitateari idazten diogun gutun ireki honetan, Kafetapintxo Topaketan jasotako gogoetak, kezkak eta galderak bildu ditugu, plazara jalgi daitezen.
Euskararen hutsuneak Arabako campuseanArabako campusaren kasuan euskarak bizi duen egoera goibela da; izan ere, euskararen hutsuneak anitzak dira oraindik. UPV/EHUko euskal ikasle- zein irakasle-komunitateak gero eta handiagoak dira eta, ondorioz, gero eta zabalagoa da euskarazko ikasketa-eskaintza. Hala ere, ibilbide akademiko osoa euskaraz egiteko aukera ez da bermatzen eta euskara maila egokia ez da ziurtatzen. Horretaz gainera, Euskal Herriko Unibertsitatean oso murritza da euskarazko masterren eskaintza eta ugariak doktore-tesia euskaraz egiteko oztopoak.
Bestalde, euskara gero eta gutxiago azaltzen da Arabako campuseko eguneroko harremanetan eta, oro har, ez da unibertsitateko euskara maila zaintzen. Ohikoa da euskarazko ohar-taula eta mezuetan akatsekin topo egitea. Irakasleen prestakuntza da egunerokotasunari eragiten dion beste kontu bat. Irakasle elebidunen kontrataziorako euskara-agiriak aurkeztea nahikoa da, administrazioan ohikoa den moduan. Alabaina, inork ez du egiaztatzen irakasle izango den horrek euskaraz komunikatzeko duen gaitasuna eta, ondorioz, —praktikan egiaztatzen denez— zalantzagarria da euskarazko ikasgaien arduradun diren zenbait irakasleren adierazpen-maila adierazpen maila. Gaztelaniaz edo ingelesez onartuko ez liratekeen akatsak onartu egiten dira euskararen kasuan.
![](http://zientziakaiera.eus/app/uploads/2017/04/kafetapintxo-640x499.jpg)
Ikasleen kasuan ere, antzekoa gertatzen da. Graduetan kreditu kopuru jakin bat euskaraz gaindituz gero, ikasleek euskarazko C1 maila eskuratzen dute. Hala ere, ez dago zehaztuta kreditu horietan euskara maila neurtzeko eta baloratzeko irizpideak edota arduradunak zeintzuk diren. Kasu horretan ere, zalantzagarria da zenbait ikasleren benetako euskara maila C1 ote den.
Unibertsitateko giro euskalduna desagertzen ari dela antzematen dugu. Zenbait kasutan, ezinezko gertatzen da harreman formalak euskaraz aurrera eramatea. Campuseko zerbitzuetako langile asko ez dira gai euskaraz komunikatzeko eta, gainera, bada euskara erasotzat ulertzen duenik ere. Era berean, irakasle zein ikasleen arteko harreman informaletan gaztelania da nagusi: gero eta ezohikoagoa da korridoreetan eta kafetegietan euskara entzutea.
Euskara: aukerak eta zailtasunakZientziaren esparrura etorriz, geure iritziz, argi dago euskara jakiteak aukera gehiago ematen dituela ikertzeko, dibulgatzeko eta, oro har, komunikatzeko. Ikerkuntzaren ekoizpenari dagokionez, oro har, euskarak balio erantsi bat ematen digu ikertzaileoi —jakintza arloaren arabera aukera horiek zabalagoak edo murritzagoak izan badaitezke ere—. Horregatik, ez zaigu diskriminazio positiboaren terminoa gustatzen eta, horren ordez, gakoa euskarak ematen duen balio erantsia aitortzea dela aldarrikatzen dugu.
Euskara ez da tokian tokikoa eta euskal zientzia-ekoizpena ere ez. Euskara munduko aniztasunaren atal bat da, gainontzeko hizkuntz komunitateen gisara. Kontuan hartu behar dugu euskal hiztunak munduan zehar daudela eta, beraz, euskara hainbat unibertsitate euskaldunen arteko zubi-hizkuntza dela, hots, euskara Euskal Herriaz harago, munduan zehar ere badagoela, batzuetan oso kontziente ez bagara ere.
Euskarak erantzukizunak ere sortzen dizkigu ikertzaileoi. Militantzia hutsagatik tesia euskaraz idazten dugu, ikasmaterialak argitaratzen ditugu, zientzia-terminologia garatzen laguntzen dugu, eta abar. Esan bezala, militantziagatik egiten da sarritan, eta ez etekina ateratzeagatik; izan ere, kasu askotan lan bikoitza eskatzen du jarduera horrek. Hala ere, guztion ahaleginei esker euskara aberasten goaz, pixkanaka-pixkanaka. Ekarpen horiek aitorpen murritza hartzen badute ere, lan hori ezinbestekotzat jotzen dugu. Nolanahi ere, zientzia euskaraz ekoiztea sustatu behar dela aldarrikatzen dugu. Bestetik, zaila da erreferentziak eta terminologia egokia aurkitzea. Halere, lan handia egin da azken urteotan arazo horiek saihesteko, eta bide horretan jarraitzea ezinbestekotzat jotzen dugu. Bestalde, garrantzitsua da zientzia-komunitate euskaldunari informazio-iturri horien berri ematea, zenbaitetan ikertzaileek ez baitakite non eta nola egin bilaketa horiek. Azken batean, euskarazko materialen hartzaile ugari ditugu eta euskalduna den publiko espezifiko zaindua dugu. Euskarazko ekoizpenaren normalizazioak, hortaz, terminologiaren ohikotasuna eta estandarizazioa bultzatuko ditu eta euskara hizkuntza akademiko moduan errotzea nahi dugu.
Euskararen egoera ikerketa-taldeetanUnibertsitateko ikerketa-taldeetan euskararen egoera ez da izan beharko lukeena bezain ona. Oro har, euskara da ikertzaile euskaldunen arteko harreman-hizkuntza, baina egoer erabat desberdina da administrazioari idatzizko eskaerak egin behar zaizkionean. Askok oztopo anitz topatzen ditugu administrazio publikoen aldetik —baita erakunde euskaldunetan ere—. Ikerketa-egitasmoak eta bestelako eskaerak euskaraz aurkezteko aukera ematen bada ere, gehienetan lana bikoiztu egiten da euskaraz egitea erabakitzen bada —ebaluatzaile euskaldunen gabeziagatik, esaterako—.
![](http://zientziakaiera.eus/app/uploads/2017/04/kafetapintxo2-640x480.jpg)
Bestalde, akreditazio-agentziek ikerkuntzarekin lotzen dituzte ibilbide akademikoarekin jarraitu ahal izateko baldintzak eta irizpideak. Hein handi batean ikerketa-egitasmoak eta zientzia-artikuluak baloratzen dira, eta artikulu horiek eragin-faktore altuko nazioarteko aldizkarietan argitaratutakoak izan behar dira. Hortik dator ikerkuntzan ingelesak duen nagusitasuna, eta ikertzaile gehienek euskarazko ekoizpena alboratzea.
Ikerkuntza munduan hasten diren ikertzaile euskaldun gehienak zalantzatan dabiltza tesia gaztelaniaz, euskaraz edo ingelesez idatzi behar ote duten. Nahia ez da beti nahikoa izaten. Aukeratutako ikerketa-taldean edo gaiaren inguruan adituak diren kideen artean tesi-zuzendari euskaldunak aurkitu behar dira eta hori ez da beti posible izaten. Irtenbide arruntena hizkuntza aldatzea izaten da. Tesiaren defentsarako epaimahai euskalduna osatzea ere zaila izaten da zenbaitetan. Gainera, euskaraz egindako bide horretan argitaratutako euskarazko lanei ez zaie inolako aitorpenik ematen. Alabaina, zenbait alde positibo ere nabarmendu behar dira; izan ere, azken urteotan badira zenbait pizgarri —gutxi— tesiak euskaraz idazteko. Nolanahi ere, geure ama hizkuntzan idatzi ahal izatearen gogobetetzea da pizgarririk eraginkorrena. Alor horretan euskarak etorkizun hobea edukiko duela uste dugu, geroz eta ikertzaile euskaldun gehiago baitaude unibertsitatean. Hala ere, pizgarrien politikan aurrera egitea eta ahal den neurrian areagotzea proposatzen dugu, atzerapausoak egon ez daitezen.
Zientzia-dibulgazioa euskarazAitortua dugu bada eskasa dela euskaraz ekoitzitako zientzia, eta areago hutsaren hurrengoa dela de facto zientzia esperimentalen ekoizpena. Hori dela eta, pentsa dezakegu zientzia-dibulgaziora baztertuta dagoela euskara. Zinez, bertan behera utzi behar dugu ikuspegi hori. Alde batetik, dibulgazioa ez da bigarren mailako zientzia —ikerkuntzaren pareko garrantzia du, helburua da desberdina—, eta bestetik, euskarazko ekoizpena antzeko arazoekin topatzen delako esparru horretan ere. Garrantzitsua da zientzia euskaraz dibulgatzea eta ikerketen emaitzak euskaraz jendarteratzea; izan ere, kontatzen ez den zientzia egiten ez denaren parekoa da.
Zientzia-dibulgazioan aritzea lan neketsua da ikertzailearentzat —are gehiago euskaraz egiten denean—, ahalegin handia egin behar delako zientzia aditu ez direnei azaltzeko. Alabaina, ekoizpen horiek ez dute inolako aitorpenik eta, hortaz, ikertzaileon mundu lehiakor honetan, nork hartuko du musu-truk dibulgatzen aritzeko lanaren ardura? Ezinbestekoa da dibulgatu nahi duten ikertzaileei haien lana egokiro aitortzea; izan ere, jendarteratu egin behar da unibertsitateetako laborategietan diru publikoari esker. Hori egiteko behar etiko eta morala dugu zientzialariok. Gainera, euskaraz egitearen garrantzia azpimarratu nahi dugu. Ikerkuntzarekin gertatzen den gisara, dibulgazioa euskaraz egitea ez litzateke militantzia kontu hutsa izan beharko. Euskaraz dibulgatzeko pizgarriak behar dira, eta bai egindako lanaren aitorpen duina ere.
![](http://zientziakaiera.eus/app/uploads/2017/04/kafetapintxo3-640x853.jpg)
Egia da azkenaldi honetan, euskarazko dibulgazioaren loraldi txiki bat bizi dugula eta, oro har, azpiegiturak eta baliabideak nahiko ezagunak dira —arloan arloko baliabideak behintzat—. Jakina, arlo bakoitzak dituen dibulgazio moduak oso desberdinak dira —gizarte-zientzietan zaila da narratiba eta dibulgazioa bereiztea, esaterako—. Nolanahi ere, kontuan hartu beharrekoa da gizarte-sareek zeharo aldatu dituztela komunikatzeko moduak. Gizarte-sare hauek eta Interneten dauden baliabideek arrisku bat ere ekarri dute: edonork edozer esan dezake. Horregatik, informazio egokiaren hedapena bermatzeko, garrantzitsua da ikertzaileei zientzia dibulgatzen erakustea eta dibulgatzaile profesionalak prestatzea. Ikertzaileei kazetariengana hurbiltzen erakutsi behar zaie —eta alderantziz—. Zeharo ezinbestekoa da askotan zeharo bananduak diruditen bi mundu horien artean zubiak eraikitzea, zientzia-dibulgazioaren bitartez gizartearen kultura zientifikoa hedatzeko. Gainera, hori guztia euskaraz egin behar da, zailtasunak zailtasun.
Gogoetarako abiapuntuaHemen luzatzen dizkizuegu, bada, Kafetapintxo Topaketan jasotako gogoetak, kezkak eta galderak, ikertzaile eta zientziazale euskaldunen komunitateari idazten diogun gutun ireki honetan. Zailtasunak zailtasun, ikertzaile euskaldunen sarea trinkotzen joan nahi dugu eta aurrerantzean gogoeta egiteko bidea ireki nahi dugu. Amaitzeko, euskaldun izateak ematen digun nortasuna azpimarratu nahi dugu. Gizartea ulertzeko gure moduak euskarari eta euskal kulturari garrantzia ematen dio. Horrela, pixkanaka bada ere, euskal komunitate zientifikoa finkatzearen aldeko apustua egin nahi dugu. Euskaraz badu lekua ikerkuntzan eta dibulgazioan eta horren alde lan egiten jarraituko dugu. Zuen laguntzarekin bada, hobe.
—————————————————–
Dokumentuaren sinatzaileak:
- Gorka Etxebarria. Historia Garaikidean doktoregaia. UPV/EHU.
- Itziar Eseberri. Nutrizioa eta Obesitatea ikerketa taldeko ikertzailea. UPV/EHU.
- Rakel Gamito. Hezkuntza arloko doktoregaia. UPV/EHU.
- Eñaut Izagirre (@Ernatio), Glaziologiako masterduna eta zientzia-dibulgatzailea.
- Idoia Larretxi, Glutena aztertzeko UPV/EHUko laborategiko ikertzailea.
- Josu Lopez-Gazpio (@Josu_lg), Kimikan doktorea eta zientzia-dibulgatzailea.
- Itziar Txurruka, Farmazia eta Elikagaien Zientziak saileko kidea. UPV/EHU.
———————————————————————————-
The post Ikertzaile euskaldunak eta euskara ikerkuntzan: gogoetarako abiapuntu bat appeared first on Zientzia Kaiera.
Científicos y estudiantes se encuentran a través de Internet
Ángela Monasor
“¿Qué haces cuándo te confundes?, ¿Crees que en el futuro viviremos en ciudades submarinas?, Cuando descubrís algo nuevo, ¿a quién se lo contáis?, Dedicándose a la ciencia, ¿se liga igual? ” Estas son algunas de las preguntas que estudiantes de 11 a 18 años de todo el territorio español envían a los investigadores participantes de Somos Científicos, ¡sácanos de aquí!.
En Somos Científicos, los estudiantes desafían a científicas y científicos a través de CHATS de texto, les PREGUNTAN todo lo que se les ocurra, y VOTAN para que el científico o científica que quieran gane 500 € destinados a divulgar su trabajo. Todo esto ocurre a través de Internet en somoscientificos.es
Diferentes informes apuntan a que para mejorar la comprensión pública de la ciencia es más importante facilitar la comprensión del proceso científico – cómo funciona la revisión por pares, cómo se ponen a prueba las hipótesis, cómo surge el consenso científico… – que explicar hechos concretos. De esta manera, y en las palabras de uno de los científicos participantes, Daniel Gómez Domínguez, «Somos Científicos acerca la forma de pensar en ciencia, a través del científico.»
Los estudiantes comprueban que quienes se dedican a la investigación científica son personas normales, ven cómo lo que aprenden en clase se aplica en la vida real, y sus aspiraciones científicas aumentan.
Somos Científicos llega a donde otras actividades no pueden. Al tratarse de un proyecto online, alcanza centros educativos que los científicos no suelen visitar; como el CP Amescoas, en Zudaire (localidad de 200 habitantes a 60 minutos en coche de la ciudad más próxima), o el IES Miguel Fernández, en Melilla. Investigadores como José Miguel Rodríguez Espinosa astrofísico en la pequeña isla de la Palma o Daniel Pastor Galán, estudiando terremotos en Japón, se comunican con estudiantes en una experiencia imposible de manera presencial.
Pero los límites van más allá de la geografía. El hecho de que la participación sea anónima y que cada estudiante decida sobre qué quiere hablar, dentro de un entorno seguro, iguala el terreno de juego de cada clase; beneficiando a quienes no siempre tienen la confianza para hablar en público.
Tan importante es favorecer la diversidad de estudiantes, como del personal investigador. Para ello implantamos cuotas de género en nuestra selección de participantes, un modelo de rol para cada estudiante. En este sentido, Somos Científicos parece tener mayor impacto positivo en cómo ven la ciencia las chicas. Pensamos que esto puede estar relacionado con la naturaleza social de la actividad; las chicas hacen más preguntas y suelen decantarse por cuestiones personales; como las motivaciones para dedicarse a la ciencia, los retos de futuro o las dificultades del día día.
No sólo pensamos en las clases. Cada vez hay más evidencias de que el personal investigador se beneficia de comunicarse con la sociedad. Ben Still, uno de los primeros participantes de la versión británica de Somos Científicos lo describió como «el mejor curso intensivo de comunicación de ciencia». Ceri Brenner, otra participante, presume de haber acuñado la definición de su investigación que hoy utiliza como presentación en cenas con amigos, comités científicos, o solicitudes de becas, durante la actividad.
Somos Científicos sirve como plataforma de lanzamiento de divulgadores: anima a los investigadores a divulgar y les ayuda a mejorar sus habilidades comunicativas, obtener una nueva visión de su trabajo y descubrir lo que los jóvenes piensan acerca de la ciencia y de quienes se dedican a ella.
Es por esto que seleccionamos nuevos participantes para cada actividad. Desde abril de 2016, hemos puesto en contacto a 35 científicos con 3500 estudiantes. Nuestra siguiente actividad será del 8 al 19 de mayo, y tras ella esperamos aumentar las cifras hasta 55 científicos y 5000 estudiantes.
Aquí puedes ver quiénes protagonizarán “Somos Científicos” en mayo, y puedes seguir todas nuestras actualizaciones en el Twitter de @S_Científicos y en la etiqueta #SCientíficos.
Si te ha picado el gusanillo y quieres participar en siguientes ediciones, apúntate ya:
- Si eres docente: somoscientificos.es/profesores/
- Si investigas: somoscientificos.es/inscripcion-de-cientificos/
Si necesitamos convencerte un poco más, echa un vistazo a nuestro vídeo:
Estos son los participantes del País Vasco que estarán en “Somos Científicos” mayo 2017:
Como investigadores, participarán Eder Amayuelas López, estudiante de doctorado de la Facultad de Ciencia y Tecnología de la Universidad del País Vasco, e Isabel García Barón, estudiante de doctorado de la Fundación AZTI.
Entre los centros educativos participantes están el IES Saturnino De La Peña, de Sestao; el Colegio La Salle, de Bilbao y el Colegio Summa Aldapeta de San Sebastián.
Sobre la autora: Ángela Monasor es farmacéutica y se doctoró con una tesis sobre señalización molecular en el Centro Nacional de Investigaciones Oncológicas. Dirige Somos Científicos, ¡sácanos de aquí! a través de Kialo Comunicación y Divulgación Innovadora.
El artículo Científicos y estudiantes se encuentran a través de Internet se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Científicos a examen
- Ciencia para todos a través del cine y la literatura de ciencia ficción
- Por qué los estudiantes de más éxito no tienen pasión por el colegio
El test de Allen a examen
Un Trabajo Fin de Grado de la UPV/EHU duda sobre la fiabilidad y validez del test de Allen practicado en servicios de urgencias médicas y unidades de cuidados intensivos (UCI). La maniobra busca relacionar la calidad de la circulación sanguínea de la mano con el riesgo de isquemia (falta de riego sanguíneo) y se efectúa siempre antes de una punción arterial o colocación de un catéter sobre la arteria radial de la mano. Este trabajo, realizado por el graduado en Enfermería Oscar Romeu Bordas, ha sido dirigido por Sendoa Ballesteros Peña, profesor de la Facultad de Medicina y Enfermería.
Antes de realizar una punción arterial en la mano o colocar un catéter radial, el personal sanitario debe comprobar la calidad de la circulación sanguínea. De esta manera, se intenta predecir la falta de riego sanguíneo (isquemia) que podría desembocar en una complicación grave como la muerte de los tejidos de la mano (necrosis). De forma rutinaria, se utiliza la maniobra de Allen. El procedimiento es el siguiente: con la palma boca arriba, se cierra la mano en un puño. Se presiona con los dedos y al mismo tiempo las arterias radial y cubital a ambos lados de la muñeca para comprobar que la palma adquiere un color pálido. Se libera la presión sobre la arteria cubital, pero se mantiene sobre la radial. Con esta técnica se simula el efecto que tendrá una punción o la colocación de un catéter y valora la capacidad de la arteria cubital para asumir la totalidad del riego sanguíneo de la mano. Cuando pasan 10-15 segundos y no se ha restablecido la coloración normal de la palma de la mano se considera que constituye una contraindicación para la punción de la arteria radical por el elevado riesgo de isquemia debido a un déficit en la circulación colateral de la mano.
La técnica del test de Allen, descrita inicialmente en 1929 por el médico Edgar Allen, se realiza, por tanto, desde hace casi 90 años; y, aunque es habitual sobre todo en los servicios de Urgencias y UCIs, ni el propio creador pudo verificar la validez del test.
Oscar Romeu Bordas, en su investigación, ha revisado y analizado todos los ensayos realizados hasta la actualidad en inglés y español sobre la validez del test de Allen. En concreto, acudió a seis bases de datos (Medline, Scopus, Web of Science, EMBASE, Cochrane plus y CINAHL) donde se localizaron 14 estudios pertinentes. Estos artículos comparan los resultados de la técnica de Allen y la ecografía Doppler para evaluar la circulación colateral palmar y evalúan las complicaciones isquémicas tras punciones de la arterial radial.
Tras el análisis, el graduado en Enfermería concluye que la prueba no permite asegurar al 100% cuál es la calidad de la circulación sanguínea de la mano, ni prevenir la aparición de una isquemia tras la punción arterial. Además, el Trabajo Fin de Grado sugiere que esta técnica se puede eliminar de los protocolos y manuales asistenciales, porque, además, podría limitar de manera innecesaria técnicas terapéuticas de primera elección, como un cateterismo radial.
Referencia:
Romeu-Bordas O, Ballesteros-Peña S. Validez y fiabilidad del test modificado de Allen: una revisión sistemática y metanálisis. Emergencias. 2017;29:126-35.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo El test de Allen a examen se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Test de personalidad matemático
- Máquinas inteligentes (I): Del molino de viento al test de Turing
- Científicos a examen
Historiaren gordailu bitxiak, hondar zementatuzko formazioak
![](http://zientziakaiera.eus/app/uploads/2017/04/Reunion_Saint-Leu_Beachrock-640x459.jpg)
Nikole Arrieta Irazabal ikertzaileak ‘The study of an unusual temperate latitude beachrock formation. Characterization of the Azkorri beach and Tunelboka cove locations’ doktorego-tesia gauzatu du UPV/EHUko Zientzia eta Teknologia Fakultateko Kimika Analitikoa Sailean. Ikerketa honetan, besteak beste, Bizkaiko kostaldean dauden beachrockak aztertu ditu. Formazio hauek jarduera metalurgikoko hondakin industrialak barruan gordetzen dituzten hondar zementatuak dira. Garapen industrialaren inpaktuaren eta kostaldean izan duen eraginaren lekuko dira harri berezi horiek.
“Zenbait fenomeno geologikoren ikerketak ingurumen-iragana berreraikitzen eta gizakiak izan duen eragina zehazten laguntzen digu, dena erregistratuta geratzen baita. Klima-aldaketak izan ditzakeen eraginei aurre egiteko ere informazio baliotsua eman dezakete”, azaldu du Nikole Arrietak, beachrockak aztertzen dituen ikerketa-lanaren egileak. Marearteko eremuetan sortzen diren harri-egiturak dira beachrockak. Normalean, eremu tropikal eta subtropikaletan sortzen dira. Hala ere, Bizkaiko kostaldean ere badira halakoak. Aztertutako beachrockak egitura berriak dira, eta, Nerbioi-Ibaizabal estuarioaren eskuinaldean egonik, giza jardueraren eragin handia jasan dute. “Oso arraroa da gurea bezalako latitude epeletan aurkitzea; munduan 8-10 kasu daude”, gehitu du Arrietak. Egitura sedimentario horiek zementu karbonatatuen (CaCO3) pikor arteko prezipitazioaren ondorioz sortuak dira. “Sedimentuen artean, zementua sortu da. Hala, hondarra ez dago solte, beste hondartzetan bezala, eta harri horiek sortzen diru”, azaldu du Arrietak. Edonola ere, beachrockak osatzen dituzten zementuak karbonatatuak izan ohi diren arren, gure kostaldeko egitura geologikoek burdin zementuak dituzte. Egitura zementatuetan harrapatutako zepek disoluzio-prozesuak izan dituzte meteorizazio-prozesu edo prozesu atmosferikoen ondorioz (euri azidoa, esaterako), eta berriz prezipitatzen dira poroetan, burdin gatz disolbaezin gisa.
![](http://zientziakaiera.eus/app/uploads/2017/04/Beachrock-640x428.jpg)
Argitaratutako lanean egindako ikerketaren ardatza zementu horien karakterizazioa da. Alde batetik, zementu-motak aztertzeko, teknika espektroskopiko berritzaileak erabili dira. “Eskala mikroskopikoan, zenbait zementu-kapa agertzen dira, eta haietako bakoitzak informazio bat ematen du prezipitatu diren garaiari buruz, zer kondizio zeuden, etab.”. Bestalde, zementu horietan harrapatuta dauden materialak aztertu dituzte, eta “industria-iraultzaren garaiko galdaketa-zepak aurkitu ditugu, bai eta Europako enpresa batzuen zigiluak dituzten hondakinak ere; barkuetan etorri, eta hemen botatzen zituzten zepak. Horregatik, teknofosilak edo giza jardueraren aztarnak aurkitu ditugu hondartzetan; kasu honetan, nazioarteko enpresen hondakin industrialek beachrockaren adina zehazten laguntzen digute”.
Guztia, Antropozenoaren garai geologikoaren erregistro geologikoaren adibide bat izan liteke. Gaur egun, mundu osoko espezialisten arteko eztabaidagaia da Antropozenoa. Izendapen horren aldeko zientifikoek diotenez, Lurra garai geologiko berri batean dago, “gizakiaren eran”; giza jarduerak aldaketa handiak eragiten ditu, eta horrek aztarna uzten du Lurraren geruza geologikoetan. Izendapenaren kontrakoek, berriz, argudiatzen dute kontu politikoa dela zientifikoa baino gehiago. Aro geologiko horrek Kuaternarioaren periodo berriena hartuko luke, eta mundu osoko adituen interesa erakartzen ari da gaur egun. “Tunelbokan, ikerketa egin den estuarioaren eskuinaldeko kala batean, dauden geruzak mundu mailan aztertu dira, Antropozenoaren ebidentzia gisa”, aipatu du Arrietak. Izan ere, mundu mailan latitude epeletan fenomeno hau duten eremu gutxi izateaz gainera, “are gutxiago dira hemengoen ezaugarriak dituztenak; barnean duten zepa-kantitatea sekulakoa da. Estatu Batuetako eta Australiako unibertsitate batzuetako ikertzaile entzutetsuekin lankidetzan aritu naiz, eta zur eta lur gelditzen dira guztiak argazkiak edo materialak ikusten dituztenean”.
Erreferentzia bibliografikoa:
Arrieta, N., Iturregui, A., Martínez-Arkarazo, I., Murelaga, X., Baceta, J.I., de Diego, A., Olazabal, M.A., Madariaga, J.M.. Characterization of ferruginous cements related with weathering of slag in a temperate anthropogenic beachrock. Science of The Total Environment, 581-582, 49-65 (2017). DOI: http://dx.doi.org/10.1016/j.scitotenv.2016.12.132.
Iturria:
UPV/EHUko komunikazio bulegoa: Gure historia industriala harri bihurtuta.
The post Historiaren gordailu bitxiak, hondar zementatuzko formazioak appeared first on Zientzia Kaiera.
Domesticados
Los seres humanos nos hemos relacionado intensa y cordialmente con los perros a lo largo de gran parte de nuestra historia. Convivimos desde hace miles de años. La prueba más sólida de asociación entre ambas especies –restos caninos enterrados junto a restos humanos- data de hace 15.000 años, pero es muy probable que nuestra relación “amistosa” comenzase bastante antes. Seguramente los perros se empezaron a asociar con nuestros antepasados cuando estos todavía eran cazadores-recolectores. Y sin embargo, es mucho lo que desconocemos de los canes.
Como cuentan Raymond Coppinger y Lorna Coppinger (2016) en What is a dog? (¿Qué es un perro?), en Norteamérica, Europa y otros países desarrollados viven alrededor de ciento cincuenta millones de perros. Son sobre todo mascotas, animales de compañía. De ellos depende un importante sector de actividad económica, que incluye cría, venta y entrenamiento, así como cuidados sanitarios, alimentación, libros y revistas; son, indudablemente, un claro producto del mundo desarrollado. Casi todas las mascotas son perros de raza: dogo, pastor alemán, galgo, pointer, chihuahua, pequinés o cualquier otra; sus rasgos han sido seleccionados de forma artificial por el sencillo y eficaz procedimiento de controlar su reproducción. Sin embargo, en el mundo hay muchísimos más perros: son del orden de mil millones. En otras palabras, los de raza sólo representan un 15% de todos los canes. Quienes esto lean se preguntarán, perplejos, por el 85% que falta. Pues bien, los que faltan, la gran mayoría, son esos a los que llamamos chuchos, perros callejeros o, como se denominan en algunos países por sus hábitos alimenticios, perros de basurero.
La mayoría de la gente piensa que los chuchos son la variedad de perro que surge cuando los de raza se cruzan entre sí, cuando, por las razones que fuere, se reproducen al margen del control de sus dueños. Pero eso no es así. En los países occidentales no es habitual encontrarse con un chucho por la calle. Es fácil adivinar el porqué. Pero abundan en los barrios y basureros de las grandes ciudades de muchos países. No pertenecen a nadie. Se encuentran cerca de la gente porque es así como se alimentan. Y no han surgido de ningún cruce entre perros de raza. Se parecen mucho unos a otros, tanto como una persona se parece a otra, aunque vivan en las antípodas. Pero si no son el resultado de cruces de perros de raza, ¿de dónde han salido? ¿cómo han surgido? Y la respuesta es muy sencilla: los perros callejeros proceden de los cánidos que empezaron a asociarse con los seres humanos hace decenas de miles de años. Durante milenios la selección natural ha propiciado la aparición de rasgos que les permiten vivir como lo hacen, alimentándose de los recursos que desechamos y que, de forma directa –dándoselos- o indirecta – en vertederos- ponemos a su disposición. Son los herederos de los cánidos que acompañaban a los seres humanos que empezaron a desechar alimento, probablemente a partir del desarrollo de la agricultura y la ganadería, en el Neolítico.
Los chuchos se han adaptado perfectamente al medio en el que viven. Y en esa adaptación hay un elemento especialmente significativo. Aunque lobos, coyotes, chacales y dingos también frecuentan basureros en busca de comida, sólo lo hacen cuando no hay gente cerca. Ese es quizás el rasgo más valioso de los perros: su capacidad para convivir con nosotros, para vivir en nuestro mismo entorno y, lo que es más importante, para ser de nuestro agrado. Gran parte de su éxito obedece a que los perros nos caen bien. Y es que, en cierto modo, somos nosotros los domesticados.
—————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————
Una versión anterior de este artículo fue publicada en el diario Deia el 20 de noviembre de 2016.
El artículo Domesticados se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Asteon zientzia begi-bistan #150
Landareek nitrogenoa behar dute hazteko. Ohiko ongarritzeak nitratoan oinarrituak daude eta ingurumen-arazo larriak eragiten ditu; esaterako, azaleko eta lur azpiko uren kutsadura eta berotegi-efektuko gasak isurtzea. Izan ere, lurreko mikroorganismoen eraginez, oxido nitrosoa aireratzen dute eta hau berotegi-efektu handiko gas bat da. Arazoari aurre egiteko asmoz, gutxiago kutsatzen duten amonio-oinarria duten ongarriak aztertu dituzte UPV/EHUko eta Nafarroako Unibertsitate Publikoko ikertzaileek. “Bestelako ongarritzeak bultzatu nahian dabiltza, adibidez, amonio eta nitrifikazioaren inhibitzaile bidezko ongarritzea. Inhibitzaileen bidez, amonioak lurrean luzeago irautea lortzen da, eta, hala, gutxitu egiten da bai nitratoen lixibiazioa bai nitrogeno-oxidoen emisioa”, azaldu du Daniel Marinok, UPV/EHUko NUMAPS ikerketa-taldeko ikertzaileak.
Hegazti batzuek 6.000 metro baino askoz ere altuera handiagoetan egin dezakete hegan. Gyps rueppelliik, esaterako, lau hemoglobina desberdin ditu odolean, eta bakoitzak oxigenoarekiko kidetasun desberdina du. Hemoglobina horiei HbA, HbA’, HbD eta HbD’ izenak eman dizkiete; HbAk dauka oxigenoarekiko kidetasunik baxuena eta HbD’k kidetasunik altuena. Haren odolak, hemoglobina multzo horri esker, oxigeno-tentsio oso desberdinetan garraia dezake oxigenoa. Testuan ere aipatzen dira altuera handietan hegan eginez migratzen duten ur-hegazti batzuk, hala nola Antzara indiarrak Everest mendikatearen gainetatik migratzen du; 9.000 metrotik gora hegan egiten ikusi izan dira espezie honetako banakoak (altuera horretan itsas mailakoaren herena da O2-aren presio partziala).
Aste honetan, Nature aldizkarian plazaratu den ikerketan, zientzialariek ondorioztatu dutenez, gantz azido asegabeek harren bizitza luzatzeko ahalmena dute. Oraingoan ere Caenorhabditis elegans izeneko nematodoa erabili dute. “Bizitza laburra duen harra da, 23-30 egunekoa, eta, horregatik, haren bizitza luzera era azkarrean iker daiteke”, azaldu du Harvardeko Osasun Publikorako Unibertsitateko (AEB) ikertzaile Carlos Silva Garciak. Azaltzen duen legez, normalean gantzak arazo kardiobaskularrei eta metabolikoei lotuta azaldu ohi dira, baina ikerketan azpimarratzen da gantz guztiak ez direla kaltegarriak. Ikertzaileak noizbait gizakiengan aplikatzeko esperantza agertu du.
HizkuntzalaritzaBadira euskarazko zientzia izena duten animaliak, landareak, proteinak eta baita Marteko lekuak ere. Edu Lartzangurenek batzuk bildu ditu artikulu interesgarri honetan. Horien artean, ‘Musturzabalsuchus’ krokodiloa agertzen du. 1990eko hamarkadan topatu zituzten horren lehen zantzuak Trebiñuko Lañu herribatzarreko lurretan. Masailezurra eta baraila baino ez direnez aurkitu, horrek definitu du animalia genero osoa. ‘Papilloderma altonagai’ barea da euskaratik edan duen beste izen bat. Animalia hau oso berezia da bi arrazoirengatik: bizkarrean konkor bat du, maskorraren aztarna; eta Kepa Altonaga zoologoaren izena jarri zioten. Izan ere, Altonagak berak aurkitu zuen Kantabriako Puerto de las Alisasen eta Asturiasko Covadongako santutegian (Espainia). A. Wiktor aditu poloniarrak deskribatu zuen, eta hark eman zion altonagai izena, aurkitzailearen omenez. Artikulu osoa irakurtzea gomendatzen dizuegu!
Erantzunen kalifikazio automatikoari buruzko artikulua duzue irakurgai honetan. Arlo horretako oinarrizko teknikak eta sistemak deskribatzen dira: bai esaldi-antzekotasunean oinarritzen direnak, baita testu-inferentzian oinarritzen direnak ere. Horiek biak dira testu ulermena lantzeko erabiltzen diren estrategia nagusiak. Alde batetik, hainbat zientzia-domeinutatik erauzitako ikasle-erantzunei kalifikazio egokiak esleitzea da helburu. Bestalde, testu-ulermen teknikak egoera berri batean erabilgarriak diren ebaluatzen dute. Oro har, galdera irekien erantzunak guztiz zuzen kalifikatuko dituen sistemarik ez dago egun, baina horretan dihardute ikertzaileek.
EboluzioaAzkenaldian, antropologoek, tresna berri bat izan dute eskura eboluzioaren azterketa egiteko: genomika. Genomika izakien genomen sekuentzien azterketa egiten duen genetikaren atala da. DNA molekulen sekuentziaren azterketa, bai gaur egungo laginei, bai indusketetan aurkitutako aztarna arkeologikoei egin dakieke. Aztarna horien DNAren sekuentziazioak, nabarmen lagundu du gizakiren eboluzioaren ezagutzan. Abantaila asko ditu. Batetik, ez da lagin askorik behar, eta hezur txiki batetik ateratako DNA, nahiko izan daiteke espezie baten inguruko informazio anitz lortzeko. Bestetik, DNAren azterketak, denboraren berri ematen digu. DNAn gertatzen diren aldaketak, hau da mutazioak noiz gertatu ziren estima daiteke eta aldaketa horien garrantzi ebolutiboa ere finka daiteke kasu batzuetan. DNAk populazioen arteko gene-elkartruke edo gene-fluxua neurtzeko ere balio du. Areago, aztarnak egungo gizakien genomekin konparatuz, ondo beha daitezke gure eboluzioaren aztarnak, galdu eta irabazitako sekuentziak, beste espezieetako DNA arrastoak, eta espezie horiekin zenbateko nahastura izan genuen finka daiteke. Argitu gizakiaren historia artikulu argigarri honen bitartez!
MikrobiologiaGiza odoleko biroma –birus eta genoma hitzen arteko batuketa da, eta giza gorputzean dagoen birus bildumari egiten dio erreferentzia– arruntak zer ezaugarri dituen aztertu dute AEBtako ikertzaile batzuek. Hemeretzi giza birusen sekuentziak identifikatu dituzte; herpesbirusak, batez ere. Erabat osasuntsu dauden 8.240 lagunen odolaren genomaren sekuentziazio datuak izan dituzte abiapuntu ikerketa honetarako. Gizabanakoen %42ari detektatu dizkiote hemeretzi birus horietakoren bat edo batzuen sekuentzia ugariak. Laginaren %14-20ari herpesbirusak topatu dizkiote, eta %9ari, anellobirusak. Aipatzekoa da adina, jatorria eta sexua kontuan izan dituztela azterketa honetan. Honi jarraiki, ikusi dute parte hartzaile gazteenen odolean maizago identifikatu dituztela birus horiek.
———————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxue Razkin Deiako kazetaria da.
———————————————————————–
The post Asteon zientzia begi-bistan #150 appeared first on Zientzia Kaiera.
#Naukas16 Te vamos a salvar la vida
Ignacio López Goñi nos habla de patógenos en esta charla digamos que virulenta y, ¿por qué no?, poliexplosiva, que hizo las delicias del público asistente.
Ignacio López Goñi: ''Te vamos a salvar la vida''Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 Te vamos a salvar la vida se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- #Naukas13 Una entre billones, la variable que sustenta la vida
- #Naukas16 ¿Cómo saber si tu funeraria te estafa?
- #Naukas16 La ciencia de la pasión
Ezjakintasunaren kartografia #155
Gutxi gorabehera hamar lagun eskuineko ezker bat dago. Baina zerk egiten gaitu eskuin ala ezker? Daniel Morenok azalpena ematen digu eta horretarako maila molekularreraino jaisten da: About lefties and righties.
Botika berrien garapena oso konplexua izan daiteke. Isabel Pérez Castrok farmakoen garapenean dihardu modu profesionalean eta Kaposi sarkomaren kasua hartzen du adibidetzat, botika bat nola garatzen den erraz azaltzeko: How drug discovery works: finding new strategies against Kaposi’s sarcoma.
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #155 appeared first on Zientzia Kaiera.
La hipertricosis del guanche que inspiró a la Bestia
No hace mucho que se estrenó la nueva versión del clásico de Disney, La Bella y la Bestia, en la que los dibujos animados dejan paso a los actores y actrices de carne y hueso y a las imágenes generadas por ordenador, y como ha ocurrido en anteriores ocasiones, está siendo todo un éxito en pantalla.
La historia que cuenta Disney en la Bella y la Bestia se basa en el cuento homónimo de la escritora francesa Jeanne-Marie Leprince de Beaumont (La Belle et la Bête), que a su vez se basó en el relato que escribió Gabrielle-Suzanne Barbot de Villeneuve, también francesa. ¿Pero en que se inspiró esta última para idear el cuento? Pues parece estamos ante una narración basada en hechos reales.
![](http://culturacientifica.com/app/uploads/2017/04/01.-IMG_2389-640x640.jpg)
Las dos versiones originales del texto en que se basa La Bella y la Bestia
El protagonista real de la historia se llamaba Pedro González, supuestamente el hijo del jefe de una tribu guanche, natural de Tenerife, donde vino al mundo en el año 1537. Si no fuera por el detalle de que nació con una característica que no pasaba precisamente desapercibida, y que hizo que fuera abandonado en un orfanato en la isla, hubiera llevado una vida bastante normal, pero su cuerpo estaba recubierto completamente de pelo.
A esta condición se le llama hipertricosis, aunque en ocasiones se usa un nombre más llamativo, como es síndrome del hombre lobo o síndrome de Ambras. Este último nombre se debe a varias pinturas de Pedro González que se encuentran en el Castillo Ambras, en Innsbruck, Austria, donde están representados tanto él, como su esposa y también dos de sus hijos.
![](http://culturacientifica.com/app/uploads/2017/04/02.-PetrusGonsalvus-512x1024.jpg)
Retrato de Pedro González
La hipertricosis es una condición muy poco frecuente, que destaca por provocar un aumento considerable de la cantidad de pelo en el cuerpo, pudiendo ser localizada en zonas específicas, como ocurre con la hipertricosis auricular, o en todo el cuerpo, como ocurre en la hipertricosis general. En este último caso, las personas que la padecen suelen estar cubiertas completamente de vello, a excepción de las palmas de las manos y de los pies. Los casos de este tipo son tan extraños y llamativos, y dependen de tantos mecanismos diferentes, que es difícil generalizar sobre ella, pero en concreto del tipo de hipertricosis que vamos a hablar a continuación, y que se supone que tenía Pedro González, sólo se han documentado unos cincuenta casos desde la Edad Media hasta la actualidad.
Pedro González nació ya con esta condición, que también puede aparecer a lo largo de la vida, cuando no es congénita. Pero entre las formas congénitas nos encontramos una extensa clasificación, partiendo principalmente de las localizadas y las generalizadas.
– Las localizadas son las siguientes: Nevus congénito, nevus de Becquer, hamartoma de músculo liso, hipetricosis nevoide, neurofibromas, hipertricosis cubital, hemihipertrofia, malformaciones pilosas en palmas y en plantas, hipertricosis auricular, disrafismo espinal e hipertricosis anterior cervical.
– Las generalizadas son las siguientes: hipertricosis lanuginosa congénita o síndrome de Ambras, hipertricosis congénita generalizada o ligada al X, fibromatosis gingival asociada a hipertricosis, osteocondrodisplasia asociada a hipertricosis, síndrome de Landrach-de Lande, síndromes por teratógenos, lipoatrofia, mucopolisacaridosis, síndrome de piel tiesa, síndrome de Winchester, síndrome de Rubinstein-Taybi, síndrome de Schinzel-Giedion, síndrome de Barber-Say, síndrome de Coffin-Siris, displasia hemimaxilofacial, disostosis craneofacial, hipomelanosis de Ito y síndrome MELAS.
![](http://culturacientifica.com/app/uploads/2017/04/03.-174158_original-640x658.jpg)
Jesús “Chuy” Aceves, un mexicano con hipertricosis
Probablemente Pedro González tenía una hipertricosis lanuginosa, en la que el cuerpo del bebe nace cubierto completamente de lanugo. Este término alude al vello corporal muy fino, que crece sobre la piel en ausencia de grasa, para que pueda servir como aislante térmico. Está presente en los fetos durante el desarrollo embrionario normal y se suele perder aproximadamente a las 40 semanas de edad gestacional. En el caso de Pedro, el lanugo permaneció más tiempo, siendo sustituido poco a poco por vello corporal y terminal, que permanecieron cubriendo su cuerpo durante toda su vida.
Por dejar claro la diferencia entre lanugo, vello y pelo terminal, podemos decir que el lanugo es el mas fino y delgado, y no presenta color ni médula en su interior; los pelos vellosos, vellos o intermedios son cortos, poco pigmentados y producidos por folículos se encuentran en la dermis papilar, con presencia variable de médula; mientras que los pelos terminales son producidos por folículos que se encuentran en la dermis reticular, siendo estos últimos grandes, pigmentados y siempre con médula.
![](http://culturacientifica.com/app/uploads/2017/04/04.-estructura-foliculo-piloso_1-640x561.jpg)
Estructura de un folículo piloso
A los 10 años de edad, siendo un niño tan llamativo, Pedro González fue enviado como regalo desde Canarias hasta Bruselas, donde la intención es que fuera recibido por el emperador Carlos V y su tía, que era la gobernadora de los Países Bajos, pero durante el viaje en barco, un grupo de corsarios franceses asaltó el navío y capturó al pequeño niño peludo, el cual obsequiaron al rey de Francia, Enrique II de Valois.
A pesar de que hay variantes de esta historia, Pedro González acabo en la corte francesa, donde incluso empezó a usar el nombre latinizado de Petrus Gonsalvus. Un diplomático italiano en palacio, Giulo Alvarotto, fue una de las primeras personas en dar cuenta de la gran curiosidad que levantó el niño cuando llegó a París, y lo describió de la siguiente manera:
“Su cara y su cuerpo está recubierta por una fina capa de pelo, de unos cinco dedos de largo (unos 9 cm), de color rubio oscuro, más fina que la de una marta cibelina, (Martes zibellina, un mustélido muy apreciado en peletería) y de buen olor, si bien la cubierta de pelo no es muy espesa, pudiéndose apreciar bien los rasgos de su cara”.
Esta descripción coincide bastante bien con la hipertricosis lanuginosa y aunque esta rara condición fue la causante de que Pedro saliera de su Canarias natal, probablemente también lo salvó de una muerte segura o un castigo peor a cargo de los piratas que lo capturaron.
A pesar de su aspecto salvaje, Pedro González había recibido una buena educación, y el propio Enrique II se encargó de que aún mejorara más su formación para “civilizarlo” todo lo posible, puesto que por aquellas fechas el mito de los hombres salvajes hacía pensar que Pedro fuera medio persona, medio animal. Así le proporcionó formación en latín y otras lenguas y le inculcó las refinadas costumbres sociales del momento. Poco a poco en la corte parisina, comenzó a ser conocido como “el salvaje de Canarias”, pero tuvo en todo momento la protección del rey, y pasó a formar parte de su servidumbre, al ir creciendo. Sus primeros trabajos fueron como ayuda de cámara, y era parte de los criados que llevaban la comida al rey, con la diferencia de que él tenía que mostrarse al monarca y a sus invitados cuando éste se lo pidiera. También parece que hizo de catador de la comida del rey. A pesar de ser parte de la servidumbre, era llamado Don Pedro González, se supone que por ser descendiente de un jefe guanche.
![](http://culturacientifica.com/app/uploads/2017/04/05.-photo-3-1489832687987_RPbS5iI-640x850.jpg)
Interpretación moderna de Pedro González y su familia
De esta manera, nuestro protagonista se convirtió en el primero de los escasos casos de hipertricosis lanuginosa congénita registrados hasta el momento, aunque si hay al menos otros cien casos de hipertricosis congénita generalizada en la literatura científica y en medios de comunicación. Relacionado con estas afecciones, se encuentra también el hirsutismo, que es mucho más común. Este último se da aproximadamente en el 10 % de las mujeres comprendidas entre las edades de 18 y 45 años, y consiste en un crecimiento anómalo y desmesurado del vello corporal en las mujeres, siguiendo un patrón de distribución masculino producido por un aumento de los niveles o respuestas de las hormonas androgénicas.
El lanugo característico que recubría toda la piel de Pedro González fue sustituyéndose poco a poco por vello y pelo definitivo, coincidiendo el comienzo del cambio, probablemente la adolescencia, ya que se relaciona con el momento en que los folículos pilosos de axilas e ingles se convierten en folículos pilosos definitivos. En los casos de hipertricosis ocurre lo mismo en zonas donde normalmente no crece vello o no se produce este tipo de pelo definitivo. En la literatura científica se sugieren básicamente tres mecanismos que producen la hipertricosis:
- La conversión de vello en pelo terminal. La producción de andrógenos en la adolescencia provoca que los folículos de axilas, ingles, pecho y espalda, crezcan tanto en longitud como en profundidad, convirtiéndose en folículos terminales. La hipertricosis muchas veces incluye el mismo proceso de conversión de vellos a pelos terminales en regiones del cuerpo que normalmente no tienen estos últimos. De todas maneras, se desconoce todavía mucho sobre el funcionamiento de este mecanismo.
- Cambios en el ciclo del crecimiento del pelo. El ciclo del pelo incluye tres fases: Fase anágena, que es la fase de crecimiento activo; fase catágena, en la que se detiene el crecimiento y presenta apoptosis, es decir, muerte celular programada de las células del folículo; y fase telógena en la que ocurre la caída.
![](http://culturacientifica.com/app/uploads/2017/04/06.-ciclo-del-pelo-640x406.jpg)
Fases del ciclo del pelo
El pelo largo se forma cuando permanece mayor tiempo en la fase anágena, mientras que el pelo de mayor densidad se debe a una disminución en la caída de cabello como resultado de un menor porcentaje de folículos en fase telógena. Las áreas del cuerpo con pelo más largo y de mayor densidad, como el cuero cabelludo, tienen un mayor porcentaje de pelos en fase anágena.
De nuevo estamos ante un mecanismo bastante desconocido, y el control de la alteración del ciclo del pelo apenas está empezando a entenderse. Cada folículo presenta su propio patrón de crecimiento, que puede ser alterado por influencias hormonales diversas, como andrógenos, hormonas tiroideas y hormona del crecimiento. Si los folículos permanecen mas tiempo en su fase anágena puede aparecer la hipertricosis.
- Incremento en la densidad de los folículos pilosos. La densidad de los pelos es muy variable en la piel normal, donde nos encontramos desde folículos pequeños hasta otros mucho más grandes, como en el cabello. Algunos casos de hipertricosis presentan un número total de folículos mayor de lo normal para el lugar anatómico donde se encuentran dichos pelos.
Pedro pasó su adolescencia, comenzó a sufrir este cambio, y se hizo adulto viviendo en la corte parisina, hasta el fallecimiento de Enrique II, momento en que su mujer, la reina Catalina de Médici, decidió concertar un matrimonio para “el salvaje de Canarias”. Para ello eligió a Catherine, una joven noble de su corte de gran belleza. El mito de la Bella y la Bestia comenzaba a gestarse aquí. Supongo que para la reina fue una situación divertida y no dejó que la joven viera a Pedro hasta el momento de la boda, por lo que parece que ésta quedó horrorizada al descubrir a su pretendiente. Por el contrario, es de suponer que él estaba encantado. Catherine accedió a casarse por obediencia a su reina, y en contra de lo que la mayoría de la gente esperaba, congeniaron bastante bien y no hubo problemas en el matrimonio.
![](http://culturacientifica.com/app/uploads/2017/04/07.-joris-hoefnagel-animalia-rationalia-et-insecta-ignis-plate-i-ca-1575-1580-640x498.jpg)
Pedro González y su esposa Catherine
Genéticamente hablando, la hipertricosis lanuginosa congénita puede ser causada por una mutación de las bandas 8q12;q22.1 y 8p11.2;q22.2 del cromosoma 8, concretamente una inversión paracéntrica, es decir los genes que cambian su orden no afectan al centrómero del cromosoma. Una mutación espontánea podría producir esta afectación, y por lo tanto no sería necesario que ningún antepasado hubiera tenido hipertricosis para que Pedro González la padeciera. En cualquier caso, la condición, una vez que aparece, es autosómica dominante, y la probabilidad de que los hijos la hereden es alta, como podemos comprobar con sus hijos.
![](http://culturacientifica.com/app/uploads/2017/04/08-cromos-640x470.jpg)
Cromátida del cromosoma 8 humano
La hipertricosis congénita generalizada, sin embargo tiene un patrón de herencia dominante ligada al sexo y se ha relacionado con las regiones Xq24 y Xq27 del cromosoma X. De esta manera, siendo la Catherine de genotipo no afectado y padeciendo Pedro hipertricosis, si esta hubiera sido de tipo congénita generalizada, la probabilidad de que sus hijos la tuvieran sería del 50 %, pero variaría en cuestión de sexos, estando el 100 % de sus hijas afectadas por la hipertricosis, y no estando ninguno de sus hijos varones, datos que no cuadran con la descendencia de nuestro protagonista.
![](http://culturacientifica.com/app/uploads/2017/04/09-crom-640x533.jpg)
Estructura del cromosoma X humano
Del matrimonio entre Pedro y Catherine nacieron seis hijos, tres niños y tres niñas: Madeleine, Enrique, Françoise, Antonietta, Horacio y Ercole, cuatro de los cuales heredaron la hipertricosis de su padre. Tanto los niños Enrique y Horacio, como las niñas Madeleine y Antonietta, tenían el cuerpo y la cara cubiertos de pelo como su padre. Este hecho coincide y sobrepasa las probabilidades de heredar esta condición, si es autosómica dominante, como la hipertricosis congénita lanuginosa, y no está en los cromosomas sexuales.
![](http://culturacientifica.com/app/uploads/2017/04/10.-gonzalez_familia-640x826.jpg)
La familia González. De arriba a abajo y de izquierda a derecha: Pedro, Catherine, Madeleine y Enrique
En ese caso la probabilidad esperada sería del 50 % de los hijos con hipertricosis y el otro 50 % no afectados. Pedro tuvo 4/6 hijos con la afectación, es decir 2/3 o 66,66 %. También hay datos de que algunos de los nietos de Pedro González heredaron esta condición, pero los datos y las pistas sobre los González se diluyen a partir de la tercera generación.
![](http://culturacientifica.com/app/uploads/2017/04/11.-XlinkDominantY.jpg)
Herencia autosómica dominante de la hipertricosis lanuginosa congénita en el caso del padre afectado
![](http://culturacientifica.com/app/uploads/2017/04/12.-3fb2c8852ff6f8991c7d9f4c7948bd7c.jpg)
Herencia ligada al cromosoma X de la hipertricosis congénita generalizada
Con Pedro González muy mayor, pero aun con vida, un médico llamado Marcus Antonius Ulmus, publicó en 1602, Physiologia barba humanae, un libro de trescientas páginas que recopilaba las opiniones e investigaciones de los “médicos y filósofos ilustres” de muchos siglos atrás sobre el pelo y las barbas. Al igual que otros autores médicos de su época, Ulmus asociaba el crecimiento del vello facial con la potencia sexual, por lo que no se habría sorprendido de que Pedro fuera padre de al menos seis niños.
Otro médico, Felix Platter, de Basilea, escribió sobre la familia de González en su obra, Observationes, hablando sobre la inexistencia de salvajes cubiertos de pelo en islas o países remotos, y nombrando a nuestros protagonistas como un ejemplo de personas normales que simplemente tenían un problema de crecimiento de pelo no deseado en muchas zonas de su cuerpo.
Podemos imaginar que el aspecto que presentaba toda la familia, fue durante mucho tiempo la comidilla de los círculos nobles y muchos acudían para verlos como si fueran animales. De hecho existen varias representaciones artísticas tanto de Pedro como de toda la familia, debido a que algunos reyes, príncipes o nobles que no podían verlos, mandaban a hacer un retrato, que después contemplaban y exhibían en sus palacios. Lo mismo ocurría con los médicos que los examinaban, que solían dejar registro pictórico de tan extraordinarias personas.
![](http://culturacientifica.com/app/uploads/2017/04/13.11372498476_8fbde030e3_b1.jpg)
Enrique González. Uno de los hijos de Pedro que tenía también hipertricosis
Cuando Catalina de Médici falleció, la peculiar familia al completo fue entregada como un presente a Margarita de Austria, gobernadora de Flandes y duquesa de Parma, y de sus manos, posteriormente pasaron por herencia al hijo de ésta, Alejandro Farnesio. Como se puede deducir, la vida de los González no estuvo exenta de lujos, pero fueron pasando de un lugar a otro, donde fueron exhibidos como animales salvajes, a pesar de su fina educación y preparación.
Los propios hijos de Pedro fueron separados y dados como regalos a diferentes nobles, una vez que se establecieron en Italia. De esta manera, por ejemplo, era descrita Antonietta en algunos documentos de la época:
“La cara de la chica era totalmente velluda en su parte frontal, a excepción de las ventanillas de la nariz y de los labios. Los pelos de su frente eran más largos y más ásperos en comparación con los que cubría sus mejillas, aunque éstos eran más suaves al tacto que los del resto de su cuerpo. El pelo de su espalda era amarillento y más erizado que en otras zonas, y llega hasta las ingles.”
![](http://culturacientifica.com/app/uploads/2017/04/14.-1925076_454386131358785_1236630688_n.jpg)
Antonietta González, otra de las hijas de Pedro que también tenía hipertricosis
Pedro González falleció en 1618 en Capodimonte, en la región de Lacio, en Italia, y a pesar de haber llevado una vida tan inusual, murió cuando tenía 80 años, algo también bastante extraño para su época. Este hombre nunca pasó desapercibido, y no son pocos los historiadores e investigadores que piensan que su historia fue la que inspiró el cuento de la Bella y la Bestia, como adelantábamos al principio.
![](http://culturacientifica.com/app/uploads/2017/04/15LA-B1-640x640.jpg)
Ilustración de la Bella y la Bestia, de Brent Hollowell
En la Bella y la Bestia nos encontramos a un joven príncipe mimado y caprichoso que es convertido en una bestia por una maldición. El aspecto de la Bestia, una vez transformado, recuerda mucho al que tenía Pedro González, con el cuerpo y la cara cubierto de pelo.
Evidentemente hay otras características de Bestia que no cuadran con el noble canario, o con otras personas con hipertricosis, pero hay algunas que sí. Por ejemplo, la Bestia tiene grandes y amenazadores dientes, lo que puede relacionarse con la hiperplasia gingival, o crecimiento desmedido de las encías y los dientes. A veces, esta condición aparece junto a la hipertricosis terminal, lo que probablemente también ayudó a dar origen al mito del Hombre Lobo, puesto que al aspecto ya de por sí extraño de una persona cubierta de pelo, se le suma una dentadura y una encía grandes con unos dientes alargados. En algunos casos de hipertricosis lanuginosa congénita también puede haber dismorfia o deformaciones faciales y dentales.
![](http://culturacientifica.com/app/uploads/2017/04/16.-P1010023a-640x480.jpg)
Hiperplasia gingival
![](http://culturacientifica.com/app/uploads/2017/04/17.-5890011bad5cd34c8aed5b2f_o_u_v1-640x360.jpg)
La Bestia rugiendo
La cornamenta de Bestia no tiene nada que ver ni con la hipertricosis ni con la hiperplasia gingival, pero también se da el caso en algunas personas reales de la aparición de pequeños cuernos, que en raras ocasiones alcanzan un tamaño tan grande como los de Bestia, debido a una tumoración en algunas zonas de la piel. Los cuernos cutáneos, pueden formarse a partir de tumores de las células epidérmicas que se queratinizan. Esta acumulación de queratina hace que el tumor adquiera una forma cónica típica de un cuerno que sobresale de la piel.
![hipertricosis](http://culturacientifica.com/app/uploads/2017/04/18.-20110804-104256-640x360.jpg)
Los cuernos de la Bestia
Los tumores que dan lugar a los cuernos cutáneos pueden ser benignos, pero en un 20 % de los casos son malignos, o se malignizan. Un tumor de células escamosas puede ser la causa más común de aparición de estos cuernos, debido sobre todo a la exposición excesiva a la luz solar (de hecho hay datos de que 70% de éstos se ha localizado en áreas fotoexpuestas), pero también a partir de cicatrices de quemaduras o por virus tipo Herpes.
![](http://culturacientifica.com/app/uploads/2017/04/19.-IMG_2394-640x640.jpg)
Algunos cuernos cutáneos
En cuanto a la estatura de la Bestia, no es inalcanzable para un ser humano, ya que basándonos en la comparación de alturas de los dos personajes principales del cuento cuando están juntos, podemos deducir cuanto mide la Bestia. En el cuento original no hay datos de las estaturas, y en la película de animación podríamos hacer una estimación, pero con la película en imagen real lo tenemos más fácil, puesto que sabemos que Emma Watson, la actriz que interpreta a Bella, mide 1,67 m, de lo que podemos estimar que la Bestia mide un poco más de 2 metros, altura que una persona puede alcanzar sin tener que recurrir a ninguna condición o enfermedad.
![](http://culturacientifica.com/app/uploads/2017/04/20.-BeautyAndTheBeast-film-dance-Belle-with-beast-640x853.jpg)
La altura de Bella y Bestia
Pasemos ahora a la forma de las patas y la presencia de cola, que parece que están basadas en las extremidades y cola de un lobo, según fuentes de la propia compañía Disney. Para las patas nos tenemos que fijar en las extremidades posteriores de los cánidos, que tienen el metatarso alargado, apoyando solo los dedos en el suelo para desplazarse, al contrario que los humanos que apoyamos todo el pie. Según el alargamiento del metatarso, en ciertos personajes ficticios, como faunos o demonios, o la propia Bestia, puede dar la sensación de que la articulación de la rodilla está al revés, pero se trata del tobillo que se sitúa más alejado del suelo.
Es raro encontrar algo así en humanos, pero hubo un caso muy llamativo, de una muchacha que nació en 1870, y cuyo nombre era Ella Harper. Esta chica era conocida como “la chica camello”, debido a una patología ortopédica que hacía que sus piernas estuvieran curvadas hacia atrás, por lo que tenía que ayudarse de las manos para caminar. Como mucha gente con deformidades extrañas y llamativas, Ella trabajó como fenómeno de circo hasta los 16 años, pero tras después decidió dejarlo, estudiar y llevar una vida lo más normal posible, lo que consiguió hasta que falleció a causa de un cáncer de colón pasados los 40 años.
![](http://culturacientifica.com/app/uploads/2017/04/21.-2E4E381B502A4DC06A72264DC06A65-640x678.jpg)
La cola y las patas de lobo de la Bestia
![](http://culturacientifica.com/app/uploads/2017/04/22.-1523732_886_-625x1024.jpg)
Ella Harper
Para explicar la cola de Bestia, tenemos que recurrir a lo que se suele llamar cola humana verdadera o cola vestigial. Los casos de cola vestigial también son escasos y se conocen menos de 100 en todo el mundo para lo que se puede catalogar como una rareza fenotípica, y que está producida por la activación de genes que en nuestros antepasados producían la cola. Estos genes, hacen que la cola crezca en la zona final del sacro, a continuación del cóccix, estando normalmente compuesta por tejido conectivo, músculos, vasos sanguíneos, nervios y piel, en la mayoría de ocasiones. A veces también tiene vértebras y cartílago.
A la poca frecuencia de nacimientos con esta condición, hay que añadir que cuando un niño nace con cola, se le suele extirpar a los pocos días, puesto que no tiene ninguna funcionalidad y estéticamente puede resultar un problema para esa persona en el futuro. En el caso de la Bestia, la cola vestigial además estaría cubierta de pelo debido a la hipertricosis referida anteriormente.
![](http://culturacientifica.com/app/uploads/2017/04/23.-4_22_01_13_11_10_12-640x365.jpg)
Cola vestigial humana
En la versión clásica en dibujos animados de La Bella y la Bestia, este personaje tiene además de las características descritas, una poblada melena parecida a la de un león, que también se ve en la versión en imagen real de 2017, aunque quizás esté un poco menos poblada. Es curioso como en documentos en los que se habla de Pedro González y su familia son descritos a veces como “el hombre-león”, o “las chicas con cara de perro”, y curiosamente, por su condición de cortesanos del Renacimiento, visten gorgueras, encajes, ropajes nobles y vestidos caros, de forma muy parecida a como los lleva la Bestia. Las coincidencias entre la realidad y la ficción son muchas.
![](http://culturacientifica.com/app/uploads/2017/04/24.-img-3-small480.jpg)
Madeleine González. Otra de las hijas de Pedro con hipertricosis
El pelo de Pedro y el de sus hijos a menudo fue comparado con el de algunos animales. Por ejemplo, recordemos que una de las primeras descripciones del joven Pedro en París, que mencionamos al principio, hablaba de su pelo de color rubio claro, muy fino y delicado, y en algunas transcripciones directamente decían como el pelaje de un sable. El término sable, proviene del francés sable, y éste del germánico sabel, que se usaba para nombrar a la marta, Martes zibellina. El manto de la marta cibelina suele ser pardo, pero las pieles de marta más apreciadas, y por tanto más caras, eran las de color negro. De ahí viene el llamar color sable al negro en heráldica. También de una de las hijas de Pedro, Antonietta, se llegó a decir que es “Una mujer peluda de veinte años, cuya cabeza recuerda a la de un mono, pero que no es peluda en el resto de su cuerpo.”
![](http://culturacientifica.com/app/uploads/2017/04/25.-sobel-martes-zibellina-640x438.jpg)
Martes zibellina
Este aspecto medio humano y medio animal, que también posee Bestia, hace que en la película de La Bella y la Bestia, Gastón tenga argumentos para convencer a la gente del pueblo para que marchen contra el castillo donde se oculta, para acabar con tan demoniaco ser, a pesar de haberse convertido en un hombre bondadoso tras haber sufrido la penitencia de vivir convertido en monstruo. Cabe suponer que Pedro González sufriría muchos episodios parecidos a lo largo de su vida, y a pesar de ser un gentilhombre, muchos coetáneos probablemente lo tildaran de bestia.
De hecho por aquella época también hubo otros casos dignos de mención que tienen mucho que ver con la escena del linchamiento de la Bestia, como por ejemplo el de Gilles Garnier, “el hombre lobo de Dole”, que fue acusado de licantropía y de haber perpetrado terribles crímenes, como mutilaciones, canibalismo y asesinatos de niños. Según los jueces y cronistas de la época, había cometido esos crímenes en su forma de lobo. En la actualidad nadie dudaría de la psicopatía y del sadismo de semejante criminal, pero para los tribunales de entonces, todas las acusaciones eran demasiado horribles para ser consideradas realizadas por humanos, por lo que no se dudó de la teoría de licantropía. Garnier fue condenado a ser quemado en la hoguera, donde murió en el año 1583. Es de suponer que cuando esa noticia llegó a las gentes que habían visto alguna vez a Pedro González, se imaginaran a Garnier con un aspecto parecido, a pesar de que no hay constancia de que “el hombre lobo de Dole” tuviera hipertricosis o ninguna condición parecida.
![](http://culturacientifica.com/app/uploads/2017/04/26.-missedinhistory-podcasts-wp-content-uploads-sites-99-2015-10-GillesGarnier-P-600x350-640x374.jpg)
Representación de Gilles Garnier, el hombre lobo de Dole
Hay muchos otros casos de gente con hipertricosis que ha pasado a la historia, como Barbara Urselin, nacida en 1629 en Kempten, Alemania, y que fue exhibida desde muy pequeña por sus padres y posteriormente por su marido a cambio de dinero, como “La Mujer Cubierta de Pelo” (The Hairy-Faced Woman). También está Adrian Jeftichejev, conocido como “El Hombre Salvaje de los Bosques de Kostroma” que era exhibido como el fruto de las relaciones entre un oso y una campesina. Adrian tuvo un hijo llamado Fedor, que sería posteriormente conocido como Theodore Petroff o “Jo-Jo, el Niño con Cara de Perro“. Este último trabajó en el circo, y tras su fallecimiento en 1904, buscaron un sustituto, que fue Stephan Bibrowski, que era conocido como “Lionel, el Hombre León“.
Julia Pastrana, una mujer mexicana que nació en 1834, era bajita y tenía una gran hipertrofia gingival, además de una frente muy peluda y bigotes y barba muy llamativos. Normalmente era llamada “La Mujer Oso” y de nuevo se culpó de su nacimiento a las relaciones entre un humano y una osa. Vivía de exhibirse en espectáculos y su mánager se aprovechó de ello, explotándola incluso después de fallecer. Su muerte ocurrió tras el parto en el que dio luz a un niño con hipertricosis, que falleció a los pocos días. Krao era una niña nacida en Bangkok, con un pelo corporal negro, lacio y brillante, además de prognatismo facial, nariz chata y orejas grandes, ágil de movimientos y muy flexible, que también fue exhibida por Europa y Estados Unidos.
Al igual que otras personas de características similares fue exhibida desde 1883 por Europa y EEUU como “La Mujer Simio” contando una historia falsa que la colocaba como un “eslabón perdido”. Y terminamos con la mujer cántabra, Joaquina López, conocida como “La Osa de Ándara“, de la que se decía que tenía pelo crespo, de frente aplastada y estrecha, nariz chata, pómulos prominentes y labios con forma de hocico.
![](http://culturacientifica.com/app/uploads/2017/04/27.-IMG_2399-640x640.jpg)
De arriba a abajo y de izquierda a derecha: Bárbara Urselin, Theodore Petroff, Joaquina López y Julia Pastrana
Como conclusión volvemos a los protagonistas y podemos terminar diciendo que tanto Pedro González, como Bestia, son dos buenos ejemplos de hipertricosis en humanos, una congénita lanuginosa, y la otra producida por un hechizo, cuya característica principal es la presencia de pelo por todo el cuerpo. Sabemos clasificar las hipertricosis, basándonos en si son congénitas o adquiridas; generalizada o localizadas, pero aún estamos lejos de conocer todos los mecanismos que están implicados en ellas.
Sabemos también que lejos de ser una cuestión meramente estética o presentarse como un signo de diversas enfermedades, también pueden acarrear otros problemas, afectando por completo a la forma de vivir o de comportarse de los que la padecen; sino que le pregunten a Pedro González, o a Bestia. Al igual que el guanche ha servido para esclarecer el patrón de herencia de esta enfermedad, quizás hubiera sido interesante que el cuento de la Bella y la Bestia hubiera tenido un final diferente, y Bella se hubiese quedado con su príncipe en forma de Bestia, como hizo Catherine. Sus hijos probablemente hubieran servido para inspirar otra buena historia.
![](http://culturacientifica.com/app/uploads/2017/04/28.-eu_batb_flex-hero_header_r_430eac8d-640x288.jpg)
La Bella y la Bestia
Este post ha sido realizado por Carlos Lobato (@Biogeocarlos) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
Referencias y más información:
– Sigall, D. A., Alanís, J. C. S., Beirana, A., & Arenas, R. Hipertricosis: sus causas, formas clínicas y manejo.
– https://es.wikipedia.org/wiki/Petrus_Gonsalvus
– http://orff.uc3m.es/bitstream/handle/10016/8658/sindrome_pedraza_LITERATURA_2008.pdf?sequence=1
– http://www.laprovincia.es/cultura/2017/03/17/bestia-bella-guanche/919077.html
– https://apparences.revues.org/1283
– http://medtempus.com/archives/extravagancias-fenotipicas-ii-el-sindrome-del-hombre-lobo/
– https://supercurioso.com/la-historia-de-ella-harper-la-nina-camello/
– http://idd0073h.eresmas.net/public/artic11/artic11_04.html
– https://en.wikipedia.org/wiki/Gingival_enlargement
– https://es.wikipedia.org/wiki/Lanugo
– https://en.wikipedia.org/wiki/Hypertrichosis
El artículo La hipertricosis del guanche que inspiró a la Bestia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El libro que inspiró al más grande
- 666, el número de la Bestia (1)
- 666, el número de la Bestia (y 2)
Usue Pérez-López: “Elikagaien antioxidatzaile kopurua areagotzea da ikertzaileen helburua” #Zientzialari (70)
Animali zein landareetan aurkitzen diren konposatu organikoak dira antioxidatzaileak. Esate baterako, fruitu edo landareei kolore gorria, berdea edo laranja ematen dieten pigmentuak konposatu antioxidatzaileak dira. Sarri esaten da hauen kontsumoak osasuntsu mantentzen laguntzen gaituela. Hala baieztatu dute gainera azken urteetan egin diren hainbat ikerketa epidemiologikok. Baina zer dira zehatz-mehatz konposatu hauek eta zein funtzio betetzen dute izaki bizidunetan?
Galdera hauei erantzuna bilatzeko, Usue Pérez-López UPV/EHUko Zientzia eta Teknologia fakultateko irakaslearekin izan gara. Bere esanetan, konposatu antioxidatzaileen kontsumoak minbizia edota gaixotasun kardiobaskularren intzidentzia murriztu dezake.
‘Zientzialari‘ izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.
The post Usue Pérez-López: “Elikagaien antioxidatzaile kopurua areagotzea da ikertzaileen helburua” #Zientzialari (70) appeared first on Zientzia Kaiera.
El camino al gran descubrimiento
La palabra en la mente de un científico cuando inicia el camino hacia un descubrimiento no es ‘Eureka’, como la leyenda de Arquímedes pudiera hacer pensar: es más bien ‘Pero ¿qué rayos?’, o incluso algo más contundente. Porque el camino al descubrimiento científico empieza con algo que no funciona como debería: algo que no responde como se esperaba o no está donde o cuando se pensaba. El camino al descubrimiento empieza con una pregunta, y las preguntas más interesantes, valiosas y potentes surgen de una anomalía. O, en el mejor de los casos, del fracaso de una teoría en explicar un fragmento de la realidad observada. El tipo de observación que hace exclamar: ‘Pero ¿qué diablos?’.
En la ciencia de llenar los huecos, la que Thomas Kuhn llamaba ‘ciencia normal’, se trabaja dentro de un marco y los experimentos que se realizan tienen una respuesta esperada. El paradigma indica en qué dirección hay que mirar y el resultado está más o menos cantado. Se trata de ir llenando las casillas de un formulario preimpreso; un trabajo importante y necesario, pero que no hace saltar consensos por los aires ni impulsa carreras meteóricas. El juego va de afinar las medidas un orden de magnitud, o de completar la serie estratigráfica, o de ensamblar los elementos faltantes de la cadena genética o metabólica. En este tipo de ciencia se trabaja mucho la metodología, el diseño de experimentos y el instrumental; es la ciencia de andar por casa, la de todos los días. La que hacen la mayoría de los científicos.
Y lo es porque los paradigmas, cuando solidifican, son estructuras intelectuales muy sólidas que cubren un amplio espacio. No sólo ayudan a explicar lo que antes no se entendía, sino que permiten entender mejor lo que ya se comprendía antes. Su poder es tal que pronto aparecen en todos los rincones de sus disciplinas, e incluso desbordan a las cercanas; a menudo resultan ser capaces de fertilización cruzada con paradigmas vecinos, creando nuevas y potentes combinaciones explicatorias. Muchas carreras científicas pueden hacerse, y de hecho se hacen, dentro de un paradigma, haciendo ciencia normal. Hay mucho trabajo que hacer dentro de un paradigma, explorando sus rincones y utilizando sus capacidades hasta el máximo.
Lo que no quita que el momento excitante se produzca con el ‘Pero ¿qué diablos?’; con el resultado inesperado y contradictorio, el feo e insignificante dato que contradice la hermosa y redonda teoría, la anomalía que se sale de lo esperado. Lo excitante empieza en el punto en el que el paradigma cede porque hay una realidad que no puede encajarse dentro.
Ése es el momento por el que vive un científico: el momento ‘Pero ¿qué leñe?’ cuando comprende que lo que acaba de presencia no tiene encaje en el paradigma, que su descubrimiento se sale de la ciencia normal y entra en el escurridizo, excitante, creativo y peligroso mundo del reemplazo de paradigmas.
Porque los paradigmas no son sólo estructuras intelectuales; también son redes reales que vinculan personas, carreras e instituciones. El acceso a becas y plazas, los premios y puestos en sociedades científicas, las decisiones editoriales en revistas, libros de texto e incluso que los edificios de los campus lleven uno u otro nombre a largo plazo dependen de esas redes. Los cambios de paradigma no son un tranquilo tránsito intelectual, un cerebral y frío relevo de una idea caduca por otra más moderna y mejor; son verdaderas carnicerías con enemistades personales, bloqueos, trampas y navajazos en los que no son desconocidos los golpes por debajo de la cintura ni las rupturas de amistades de décadas. En teoría la ciencia debe despojar la razón de la pasión; en la practica los científicos son humanos y confunden como el que más las ideas con las personas que las defienden. El resultado no es bonito; un viejo refrán dice que los viejos paradigmas jamás son rechazados, simplemente el ultimo de sus defensores se jubila o muere.
De modo que la carrera de un debelador de paradigmas no es un jardín de rosas. Implica enfrentarse a la resistencia, al principio completa y de toda la especialidad, más tarde esporádica; implica sacrificios (de amistades, de apoyos, de respaldo) y en general implica una vida profesional mucho menos cómoda que dentro de la ciencia normal. En algún momento del camino todo científico que ha tenido ese momento ‘Pero ¿qué porras?’ lo ha debido maldecir; ha debido desear nunca haber tropezado con ese inconveniente hecho, ese dato insignificante y anodino que lo puso todo en marcha.
Pero la recompensa es dulce cuando se obtiene el éxito. Porque matar un paradigma implica hacer nacer otro que llevará para siempre el nombre y la descendencia intelectual de su creador. A la larga significará honor, reconocimiento, premios; más respaldo a la investigación del que jamás se soñó, un espacio permanente en los libros de texto a partir de esa generación, reconocimiento social. El cambio, además, suele ser tan brusco como para provocar vértigo; según el chascarrillo las tres fases de aceptación de una nueva teoría en ciencia son
1.- Eso es imposible
2.- Eso es teóricamente posible pero extremadamente improbable
3.- Ya lo sabía yo
Ese ‘Ya lo sabía yo’ por parte de amigos, enemigos y mediopensionistas es el mayor honor al que puede aspirar un científico: significa que las aportaciones realizadas tienen solidez, que su trabajo y los trabajos que ha tenido que pasar en su carrera tienen sentido, que sus ideas y conceptos no serán olvidados. Y el camino hacia el ‘Ya lo sabía yo’ no arranca en un ‘Eureka’, sino en un ‘Pero ¿esto qué &/%%/&% es?
Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.
El artículo El camino al gran descubrimiento se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La ciencia y la duda
- Rutherford: la radiactividad y el descubrimiento del núcleo atómico, por El zombi de Schrödinger
- Consolider-Gran Telescopio Canarias: Cómo comunicar Astrofísica
Zeruraino iristen diren hegaztiak
![](http://zientziakaiera.eus/app/uploads/2015/07/animaliean-aferak_phixr-1_phixr.jpg)
———————————————————————————————————–
Txoriak eta saguak atalean ikusi dugunez, arnas aparatuaren egitura eta funtzionamenduari eta bihotzaren tamainari esker ari daitezke txoriak normaltasunez 6.000 metroko altueretan. Altuera horietan oxigeno gutxi dago, baina txorietan oxigenoa eskuratzeko eta ehunetara eramateko sistemak oso eraginkorrak dira, eta horri esker gaindi ditzakete altuerak eragindako hipoxiaren ondorioak.![](http://zientziakaiera.eus/app/uploads/2017/04/Gyps-rueppellii-640x427.jpg)
Hegazti batzuek, baina, askoz ere altuera handiagoetan egin dezakete hegan. Gyps rueppellii izen zientifikoa duen saiaren banako batek, esaterako, 11.277 metrora zebilen hegazkin batekin talka egin zuen 1973. urtean, eta espezie horretako banakoak behin baino gehiagotan ikusi izan dira 10.000 metrotik gora doazen hegazkinetatik. Nekez lor liteke horren altuera handitan hegan egitea, arnas pigmentu berezirik eduki gabe.
Gyps rueppelliik ez du, ez, hemoglobina arruntik. Izan ere, lau hemoglobina desberdin ditu odolean, eta bakoitzak oxigenoarekiko kidetasun desberdina du. Hemoglobina horiei HbA, HbA’, HbD eta HbD’ izenak eman dizkiete; HbAk dauka oxigenoarekiko kidetasunik baxuena eta HbD’k kidetasunik altuena. Gyps saiaren odolak, hemoglobina multzo horri esker, oxigeno-tentsio oso desberdinetan garraia dezake oxigenoa.
Aipatzekoak dira altuera handietan hegan eginez migratzen duten ur-hegazti batzuk ere. Antzara indiarrak (Anser indicus) Everest mendikatearen gainetatik migratzen du; 9.000 metrotik gora hegan egiten ikusi izan dira espezie honetako banakoak (altuera horretan itsas mailakoaren herena da O2-aren presio partziala). Oxigenoarekiko kidetasun handiko hemoglobina dauka hegazti honek ere; argi dago, beraz, horri zor diola, neurri handi batean behintzat, hain altuera garaietan hegan egin ahal izatea. Andeetako antzara (Chloephaga melanoptera) ere toki altuetan bizi da (6.000 metrotik gora) eta, antzara indiarrak bezala, oxigenoarekiko kidetasun handiko hemoglobina du.
Ikusi ahal izan dugunez, beren bihotzen eta biriken ezaugarriei esker, hegazti guztiak dira toki altuetan hegan egiteko gai. Alabaina, hori baino gehiago behar dute planetan dauden toki altuenetan bizi eta mendi altuen tontorretatik gora hegan egiten duten hegaztiek. Arnas pigmentu bereziak eta hemoglobina bereziak behar dituzte. Horiei esker iristen dira zeruraino.
—————————————————–
Egileez: Juan Ignacio Pérez Iglesias (@Uhandrea) eta Miren Bego Urrutia Biologian doktoreak dira eta UPV/EHUko Animalien Fisiologiako irakasleak.
—————————————————–
Artikulua UPV/EHUren ZIO (Zientzia irakurle ororentzat) bildumako Animalien aferak liburutik jaso dugu.
The post Zeruraino iristen diren hegaztiak appeared first on Zientzia Kaiera.
El estaño beta es como el grafeno pero en 3D
![estaño beta](http://culturacientifica.com/app/uploads/2017/04/Sn-Alpha-Beta-640x394.jpg)
Estaño alfa (izquierda) y estaño beta (derecha)
El estaño es un metal que se conoce al menos desde hace 5.000 años, desde la Edad del Bronce. Con ese tiempo transcurrido debería haber pocas cosas ya que nos sorprendieran, pero las hay y son muy interesantes.
Cuando decimos que el estaño es un metal, realmente lo que estamos es refiriéndonos a una de las dos formas en las que el estaño organiza sus átomos, la que llamamos estaño-beta. El estaño-beta o estaño blanco es estable a temperaturas medias y altas, y presenta las características de un metal: entre otras cosas es maleable y conduce la electricidad. Podemos acuñar monedas con él, por ejemplo.
Pero si la temperatura baja demasiado (por debajo de 13 ºC) el estaño cambia su estructura cristalina por la del diamante, volviéndose quebradizo y deja de ser conductor. Este llamado estaño-alfa o estaño gris ha dejado de tener las características de un metal. De hecho este cambio de características es lo que se conoce como peste o lepra del estaño. Lo entenderemos mejor si vemos este vídeo en el que un trozo de estaño alfa si se mantiene a -40 ºC durante 20 horas, convirtiéndose en estaño beta; no ocurre ninguna reacción química (el vídeo dura 30 segundos):
Damos un salto a la vanguardia de la ingeniería de materiales. Los llamados semimetales topológicos de Dirac presentan las propiedades electrónicas del grafeno pero, mientras que en éste están confinadas a 2 dimensiones, en los semimetales topológicos de Dirac aparecen en 3D. Hasta ahora los dos únicos semimetales topológicos de Dirac conocidos eran muestras de al menos dos elementos. Ahora un grupo de investigadores encabezado por Cai-Zhi Xu, de la Universidad de Illinois en Urbana-Champaign (EE.UU.), ha descubierto el comportamiento de un semimetal topológico de Dirac precisamente en el estaño alfa con solo aplicarle un poquito de tensión.
En el grafeno, y materiales 2D relacionados, la estructura de bandas electrónica alberga una regiones que tienen forma de cono, en las que los estados electrónicos se comportan como si careciesen de masa. Estos estados, excitaciones de baja energía llamadas fermiones de Dirac, están confinados de forma característica a dos dimensiones, como la dada por una lámina de grafeno o por la superficie de un aislante topológico. Pero en los semimetales topológicos de Dirac los fermiones pueden moverse en tres dimensiones. Esta libertad de movimientos abre todo un abanico de propiedades interesantes, como una gigantesca magnetorresistencia lineal y un patrán característico en las oscilaciones cuánticas de la resistencia. Hasta ahora solo se conocían dos semimetales topológicos de Dirac: Na3Bi y Cd3As2.
![](http://culturacientifica.com/app/uploads/2017/04/PhysRevLett.118.146402.png)
Estructura electrónica del estaño beta bajo tensión en la que se aprecian los conos de Dirac.
Existían estudios recientes que indicaban que el estaño alfa podría presentar fermiones de Dirac si se sometía a una tensión mecánica. Xu y sus colegas muy ingeniosamente hicieron crecer capas de estaño alfa en una superficie de antimoniuro de indio, que tiene casi la misma estructura de diamante que el estaño alfa. La pequeña diferencia entre las dos estructuras produce una tensión negativa (una compresión) en el estaño. Usando espectroscopía de fotoemisión el equipo pudo comprobar que, efectivamente, existían regiones con forma de cono indicando que estaban ante un semimetal topológico de Dirac. Los cálculos teóricos indican que un cambio de la tensión de negativa a positiva convertiría el estaño en un aislante topológico.
Una primera prueba de principio, en un producto barato y fácil de obtener, con unas características con un gran potencial que puede que veamos concretarse en aplicaciones dentro de unos años.
Referencia:
Cai-Zhi Xu et al (2017) Elemental Topological Dirac Semimetal: α-Sn on InSb(111) Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.146402
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo El estaño beta es como el grafeno pero en 3D se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Fermiones de Weyl experimentales: como el grafeno, pero en 3D
- El óxido de grafeno que se mueve como una oruga y coge cosas como una mano
- Buscando conos de Dirac (que no estén en el grafeno)
El investigador fantasma: ¿P=NP?
Le chercheur fantôme –El investigador fantasma– de Robin Cousin es un tebeo publicado a principios de mayo de 2013 por Éditions Flblb. En 2015 recibió el premio en la categoría de ficción científica otorgado por la asociación S[Cube] y, en 2016, la editorial mexicana La Cifra publicó su traducción al castellano.
Los comentarios que siguen se refieren a la publicación original en francés; las traducciones de los textos que aparecen debajo son de la autora de esta breve reseña.
En la contraportada se puede leer la siguiente presentación del libro:
La Fundación para el estudio de los sistemas complejos y dinámicos acoge a veinticuatro investigadores en residencia y les proporciona medios ilimitados para llevar a cabo su trabajo. Una noche, tres investigadores, Louise, Stéphane y Vilhem, descubren que en su edificio hay un cuarto residente que nadie ha visto nunca. Trabajaba en el problema “P = NP“.
– ¿Qué es exactamente P = NP?
– Es un problema de la teoría de complejidad computacional. La mayoría de los matemáticos piensan que P es diferente de NP. Plantea un límite teórico a la capacidad de los ordenadores…
– ¿Y si se prueba que P y NP son iguales?
– Revolucionaría las matemáticas modernas, transformaría la investigación científica.
– Ah.
El libro comienza con la llegada del nuevo director de la Fundación, Martin Sorokin. En su nuevo despacho, visiona un mensaje grabado por su predecesor, Alan Bateson: Bateson, el tercer director de la Fundación, se despide tras permanecer siete años en este puesto. Martin Sorokin es, de este modo, el cuarto responsable de la Fundación, y el primer residente en el momento de su llegada.
El mensaje que le ha dejado Bateson es el siguiente –cada salto de línea corresponde a un cambio de viñeta–:
Buenos días. Soy Alan Bateson, investigador en sociología sistémica y director Fundación no. 3. Si está mirando este video, es que como yo hace siete años, ha sido seleccionado por el programa. Es Vd. el primer residente y por lo tanto el director de la Fundación no. 4.
A la hora en la que le hablo la Fundación no. 3 está terminando…[…]
No se impresione por lo que está viendo. Es el desarrollo normal de un final de ciclo.
Como todo sistema dinámico, la Fundación tiende hacia la entropía, hacia un comportamiento caótico.
Es por ello que cada tres meses, el programa seleccionará un nuevo residente para ‘reequilibrar’ el sistema.
Como Vd., los nuevos residentes serán investigadores en una de las áreas de aplicación la teoría sistémica.
Sistemas biológicos, informáticos, financieros, neuronales…
Al cabo de seis años, los veinticuatro laboratorios estarán ocupados y el sistema estará entonces en el momento de su apogeo.
A lo largo del séptimo y último año, las investigaciones de los residentes deberían empezar a dar resultados. Este periodo verá también como se disgrega el sistema.
Su papel será entonces el de retrasar la llegada del caos.[…]
Su papel es el de guiar a los residentes, pero también el de mejorar el programa.
El conjunto de mis resultados está aquí…
Tras terminar de escuchar el mensaje de su predecesor, Sorokin lee el inquietante final del informe de Bateson:
Día 2.555 (último día)
– investigaciones terminadas (en total: 7 sobre 24)
– muertes: 1
– 2 incendios suplementarios.
– llegada del equipo de cierre.
![](http://culturacientifica.com/app/uploads/2017/04/El-investigador-fantasma-2-640x493.png)
Algunos de los personajes del tebeo.
Tras esta introducción para entender los propósitos de la Fundación, la historia prosigue seis años más tarde. Martin Sorokin comprueba que –comparando su situación al principio del séptimo año con la vivida por la Fundación no. 3– el caos está apareciendo demasiado pronto. Tiene la esperanza de que la llegada del último residente –el número veinticuatro, Stéphane Douasy (ver [1])– consiga equilibrar el sistema. Douasy es físico y su investigación en la Fundación se centrará en el estudio de las formas de los vegetales, en particular en cómo la formación de las yemas influye en la geometría de las hojas (ver [2]).
![](http://culturacientifica.com/app/uploads/2017/04/El-investigador-fantasma-3.png)
Fragmento de la página 15 del tebeo.
Tras visitar al director, Stéphane se dirige al edificio en el que debe trabajar y vivir, el edificio F. Nada más llegar conoce a Louise Franç, lingüista que había trabajado en un software capaz de aprender nuestra lengua. Su programa detectaba las formas recurrentes en la estructura de las frases para poder reproducirlas después. Había comenzado a obtener resultados prometedores, pero llegó Google y al poner en funcionamiento el programa Cleverbot –que, según Louise, repite lo que miles de internautas dicen, pero en realidad no habla– ella no pudo competir con él. Desde entonces se encuentra bloqueada, sin nuevas ideas para proseguir con sus investigaciones (ver [3]).
La otra persona que convive con ellos es el informático Vilhem (ver [4]): trabaja en un programa informático que debería predecir sus acciones y gestos en un futuro cercano. Aunque –debido a su conocimiento de la teoría del caos– sabe que cualquier evento es la consecuencia de una infinidad de causas imposibles de observar por completo, Vilhem ‘busca los guiones’ que tienen más probabilidades de suceder. Sólo observa los parámetros más significativos: los personales –recuerdos de su infancia, sus características físicas, el acontecer de su día a día,…– y los de su entorno –la Fundación, los residentes y sus investigaciones,…–. No consigue que sus predicciones tengan sentido.
En realidad, existe otro investigador en el edificio F al que sus compañeros apodan el investigador fantasma, ya que nunca lo han visto. Es el informático Vianiy Paniandy con el que no se debe interactuar ‘por órdenes superiores’. Paniandy trabaja en la resolución del problema de informática teórica P vs NP, uno de los Problemas del Milenio. Paniandy había publicado en 2005 una prueba de que P≠NP, pero la comunidad matemática descubrió una serie de errores en su prueba, y le volvió la espalda (ver [5]).
Paniandy trabaja precisamente en el problema del viajante, que es NP-completo. Se basa en el plano de la Fundación (ver [6]): o bien debe probar que no existe ningún algoritmo que lo resuelva –en cuyo caso P≠NP, como él pensaba– o bien debe encontrar el algoritmo que permita llegar de manera óptima, sin tanteos, de un lugar a otro de la Fundación –en cuyo caso P=NP, con lo que ese algoritmo permitiría resolver cualquier problema ‘decidible’–.
![](http://culturacientifica.com/app/uploads/2017/04/El-investigador-fantasma-4.png)
Fragmento de la página 44 del tebeo.
Paniandy se horroriza al encontrar ese famoso algoritmo: empiezan a producirse accidentes y muertes entre los demás residentes. El caos empieza a reinar cuando Paniandy introduce su algoritmo en las investigaciones de algunos de sus colegas. El final será inesperado y terrible…
![](http://culturacientifica.com/app/uploads/2017/04/El-investigador-fantasma-5-640x444.png)
Fragmento de la página 47 del tebeo.
El investigador fantasma es un ‘thriller’ y al mismo tiempo una metáfora de la investigación básica, que pasa desapercibida para la mayor parte de la población, a pesar de su gran importancia para el avance científico.
Además de la trama y el suspense, Cousin introduce numerosos conceptos científicos: además de los ya citados, se habla, por ejemplo, del aún no resuelto problema del sofá o la sorprendente influencia de la geometría (ver [7]) de las yemas de los vegetales en la forma final de las hojas…
Notas:
[1] Su nombre es prácticamente el del físico Stéphame Douady (CNRS, París), con el que Robin Cousin mantuvo varias entrevistas para preparar el cómic. Douady trabaja –entre otros temas– en filotaxis. De allí el paralelismo con el último residente, investigador en morfogénesis, centrado durante su estancia en la Fundación en el estudio de sistemas vegetales.
[2] Douasy representa la pasión por el conocimiento.
[3] A través de Louise se denuncian las presiones de la sociedad de consumo sobre el mundo académico.
[4] Vilhem simboliza la obsesión provocada en algunas ocasiones por la actividad investigadora.
[5] La situación de Paniandy representa el poder de la comunidad científica sobre los investigadores, que deben recibir su aprobación para dar por válidas sus teorías.
[6] La Fundación está situada en un paraje con bosques y edificios, y está organizada siguiendo la sucesión de Fibonacci.
[7] Douasy –en el tebeo– utiliza la papiroflexia en su investigación. El equipo del físico Stéphane Douady –el científico que inspira el personaje del tebeo– usa el origami y kirigami para entender la geometría de las hojas según los pliegues de las yemas.
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo El investigador fantasma: ¿P=NP? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- “Miguel Odriozola: un investigador adelantado a su tiempo” por José María Odriozola
- Un convite matemático ‘de altura’
- Incendios, los grafos de visibilidad y la conjetura de Collatz
Birusak zainetan
Gure odolak mikrobio ugari ditu. Horrek ez du esan nahi gaixo gaudenik, baina komenigarria da ahalik eta ondoen jakitea zer daramagun gure zainetan. Horretan ekarpena egin berri dute AEBtako Human Longevity zentroko ikertzaile batzuek, giza odoleko biroma arruntak zer ezaugarri dituen aztertu baitute. Zer da, baina, giza biroma? Birus eta genoma hitzen arteko batuketa da, eta giza gorputzean dagoen birus bildumari egiten dio erreferentzia. Azterketa hau baliagarria izan daiteke, odol transfusioen segurtasuna areago bermatzeko, bai eta patogeno berriak identifikatzeko ere. PLOS Pathogens aldizkarian argitaratu dute artikulua.
Erabat osasuntsu dauden 8.240 lagunen odolaren genomaren sekuentziazio datuak izan dituzte abiapuntu ikerketa honetarako. Informazio gehientsuena erreferentziazko giza genomarekin bat dator, baina sekuentzia datuen %5 inguru baztertuta geratzen da: giza DNAri berez ez dagokion zatia da. Hain zuzen, baztertutako informazio hori da gakoa, hor baitaude gure odoleko biromaren ezaugarriak.
![](http://zientziakaiera.eus/app/uploads/2017/04/Birusak.jpg)
Guztira, 94 birusen sekuentziak identifikatu dituzte lagin horietan guztietan. Birus horietatik 75 laborategiko produktuek edo ingurumen faktoreek kutsatuta sortu dira, eta azterketatik kanpo geratu dira, beraz. Ikertzaileek artikuluan aitortu dutenez, kanpo kutsadura horrek nahasmena eta arazo teknikoak ekar ditzake, giza patogeno berriak identifikatzeko erronka zailtzen baitute. Hala ere, detektatu dituzten gainerako hemeretzi giza birusak badira aztertzekoak eta fidagarriak, gure odoleko biroma xehatze aldera.
Gizabanakoen %42ari detektatu dizkiote hemeretzi birus horietakoren bat edo batzuen sekuentzia ugariak. Laginaren %14-20ari herpesbirusak topatu dizkiote, eta %9ari, anellobirusak. Badira proportzio txikiagoetan (%1etik behera) topatu dituzten bestelako birus batzuen sekuentziak ere: papilomaren birusa, B19 parbobirusa, poliomabirusa… bai eta Giza Immunoeskasiaren Birusa ere, besteak beste. Hala ere, azpimarratzekoa da DNA sekuentziei buruz ari garela, eta ez derrigor infekzioa dakarren zerbaiti buruz.
![](http://zientziakaiera.eus/app/uploads/2017/04/Odola-640x480.jpg)
Bestalde, adina, jatorria eta sexua kontuan izan dituzte ikerketa honetan. Hala, ikusi dutenez, parte hartzaile gazteenen odolean maizago identifikatu dituzte birus horiek. Jatorri geografikoa ere faktore epidemiologiko garrantzitsua izan daitekeela ondorioztatu dute, birus motan eta haren prebalentzian eragina izan dezakeela. Generoari dagokionez, oro har, birusen zirkulazioak prebalentzia handiagoa du gizonen artean emakumeengan baino, ikertzaileok artikuluan adierazi dutenez.
Lan honetako emaitzek ekarpen handia egin dezakete odol transfusioen segurtasunari dagokionez. Esaterako, gaur egun, odola ematen dugunean, GIBaren, HTLVaren, B eta C hepatitisen, Mendebaldeko Niloko birusaren eta Zikaren probak egiten zaizkigu; odolaren bitartez kutsatu daitezkeen birus patogenikoak direlako. Bada, giza biromaren azterketa honetan identifikatutako birus batzuk ere odolaren bidez transmititu daitezke; giza papilomaren birusa edo Merkel zelulen poliomabirusa, kasu. Nahiz eta DNA sekuentziak besterik ez izan eta printzipioz infekziorako arriskurik egon ez, komenigarria izan liteke halakoei ere bereziki behatzea etorkizunean.
Erreferentzia bibliografikoa:
Ahmed Moustafa et al. The blood DNA virome in 8,000 humans. PLOS Pathogens. 13(3): e1006292. DOI:10.1371/journal.ppat.1006292
———————————————————————————-
Egileaz: Amaia Portugal (@amaiaportugal) zientzia kazetaria da.
———————————————————————————
The post Birusak zainetan appeared first on Zientzia Kaiera.
Un viaje a través del sistema circulatorio humano
En reposo, un corazón humano típico bombea 70 ml en cada latido y late alrededor de 70 veces por minuto. Por lo tanto, el corazón bombea, aproximadamente, 5 litros de sangre por minuto. Hoy vamos a examinar algunas características del sistema de vasos que recorre esa sangre tras ser impulsada por el corazón.
Muchos animales tienen sistemas circulatorios. Son dispositivos que permiten comunicar las diferentes partes del organismo para transportar entre ellas nutrientes, deshechos, gases respiratorios, calor e información. Un sistema cardiovascular -como también se le llama- consta de una o varias bombas de impulsión –o corazones- y de un conjunto de conductos, a los que llamamos vasos sanguíneos, que llevan la sangre desde el corazón hasta los tejidos y, de vuelta, desde los tejidos al corazón. Hay dos tipos de sistemas circulatorios, abiertos y cerrados. En los sistemas abiertos los vasos que proceden del corazón se van ramificando hasta que se abren a los espacios y cavidades internas del organismo, vertiendo en ellos la sangre que portan. Posteriormente, esa sangre es recogida por las venas, que la conducen hasta el corazón. Los moluscos bivalvos, por ejemplo, tienen un sistema abierto. Su configuración no permite un control muy estricto sobre los flujos que bañan de sangre unos y otros tejidos. Además, son sistemas de baja presión, lo que tiene diversas consecuencias, de las que nos ocuparemos en otro momento.
Los sistemas cerrados conducen la sangre a través de los tejidos por un sistema de capilares y de esa misma forma retorna al sistema venoso y de ahí al corazón. No obstante, a su paso por los tejidos, parte del plasma sanguíneo se filtra al espacio intersticial llevando consigo sustancias disueltas con destino a las células, y del mismo modo retorna a los capilares, con sustancias de deshecho procedentes de aquellas. Estos son sistemas de alta presión hidrostática.
En los metazoos hay una variedad enorme de sistemas circulatorios. Pueden tener uno o varios corazones, aunque en este segundo caso lo más habitual es que uno de ellos sea el principal y los otros sean auxiliares. Y la arquitectura del conjunto del sistema así como la configuración de los vasos puede ser también muy diferente.
El sistema cardiovascular humano está constituido por dos circuitos, el de la circulación pulmonar por un lado y el de la general o sistémica por el otro. Su corazón tiene cuatro cámaras. Con cada contracción, la sangre es impulsada, desde el ventrículo derecho hacia los pulmones (circulación pulmonar) y desde el ventrículo izquierdo hacia el resto de órganos y tejidos (circulación sistémica), y retorna de los pulmones y del resto del organismo hasta la aurícula izquierda y la aurícula derecha, respectivamente. En lo sucesivo me referiré a la circulación sistémica.
Solemos considerar siete tipos de vasos sanguíneos en el sistema circulatorio general: arteria aorta, arterias, arteriolas, capilares, vénulas, venas, y venas cava. Pero en realidad hay ciertas dosis de arbitrariedad en esta clasificación, pues la ramificación de los vasos hasta llegar a los capilares y su posterior reagrupamiento hasta confluir en las venas cava es gradual y las fronteras son imprecisas entre unos y otros.
Al transitar desde la arteria aorta a través del sistema arterial hasta los capilares, la sangre va circulando cada vez más lentamente, porque el flujo se mantiene constante a lo largo de todo el circuito, pero al irse ramificando las arterias, la sección superficial del conjunto aumenta. O sea, el mismo volumen de sangre que circula por unidad de tiempo lo hace más lentamente cuando la sección superficial total de los vasos aumenta. La sangre sale del corazón a través de la aorta (radio interno: 1,2 cm; sección superficial: 4,5 cm2) a una velocidad1 de unos 30 cm s-1. Conforme se ramifican las arterias y la sección aumenta (hasta llegar a unos 500 cm2 del conjunto de las arteriolas), la velocidad disminuye hasta 1,5 cm s-1. A lo largo de los capilares (varios miles de millones con sección superficial agregada de entre 3500 y 4500 cm2) la velocidad se reduce hasta mínimos de 0,02 cm s-1. Pero al transitar hacia vénulas y venas, vuelve a aumentar, pues la sección superficial de estas es menor; llega a reducirse a 100 cm2 en las venas de grosor intermedio, a 30 cm2 en las grandes venas y a algo menos de 10 cm2 en las venas cava. Como consecuencia de ello, la velocidad se eleva hasta los 6 cm s-1, aproximadamente, con que reingresa en el corazón. Como puede comprobarse, la velocidad de la sangre por el sistema venoso es significativamente inferior a la del sistema arterial.
Para hacernos una idea del tiempo que tarda la sangre en desplazarse por las diferentes partes del sistema, se puede estimar que un eritrocito tarda 3 s en llegar del corazón a la muñeca, por ejemplo mientras que para atravesar un capilar de 0,5 mm de longitud, ese mismo eritrocito tarda 1 s, tiempo suficiente para intercambiar O2 y CO2. Ha de tenerse en cuenta que en caso de que haya una elevada demanda metabólica (por una mayor actividad), el número total de capilares abiertos aumenta de forma importante, lo que permite ampliar la sección superficial total y dar cabida así al mayor flujo de sangre que bombea el corazón, sin que el tránsito a través de los tejidos se tenga por qué acelerar o lo haga de forma moderada.
Por último, si nos fijamos en la distribución de la sangre, el sistema venoso es el que en todo momento alberga un mayor volumen en su seno. Considerando la que circula por el circuito sistémico (y descontando el corazón), las venas contienen entre un 60 y un 70% de la sangre, entre un 20 y un 30% se halla en las arterias, y el resto, el 10% se encuentra en arteriolas, capilares y vénulas. O sea, a pesar del elevado número y la gran sección superficial agregada de estos minúsculos vasos, son de longitud tan corta que su capacidad para albergar sangre es mínima. El sistema venoso no es solo el que más sangre alberga, sino que es también el que más variaciones de volumen sufre cuando el volumen total de sangre en el organismo varía.
Nota:
1 Los manuales de fisiología suelen dar ese o valores superiores de velocidad en la aorta, aunque no especifican las condiciones en que han sido determinados. El cálculo a partir de un flujo de sangre típico de condiciones de reposo (gasto cardíaco, Vb: 5 ml min-1) y de la sección superficial de 4,5 cm2, arroja un valor de 18 cm s-1. No obstante, no hay que perder de vista varios elementos. Por un lado, el flujo sanguíneo a través de la aorta es laminar pulsátil. Es pulsátil porque la velocidad de la sangre varía en función del momento en que se encuentre el corazón en su ciclo de contracciones, ya que solo recibe sangre durante durante la fase sistólica del ventrículo izquierdo (que en reposo puede llegar a alcanzar una velocidad de 90 cm s-1 ), pudiendo haber un leve reflujo durante la diastólica. Además, en condiciones de flujo laminar, como es el caso, no todo el fluido va a la misma velocidad, aunque en este caso el perfil de velocidades no es tan marcado como en los vasos donde el flujo es laminar continuo. Y por supuesto, si el nivel de actividad se eleva, aumenta el flujo y a la vez, la velocidad de la sangre.
Agradecimiento:
Mi compañero y amigo Jon Irazusta (@irazusta_jon) me ha ayudado a aclarar algunas discrepancias entre los datos de la literatura relativos a los elementos tratados en la nota anterior.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Un viaje a través del sistema circulatorio humano se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Las cartas de Darwin: ¿Dejamos que el chaval se vaya de viaje?
- El sistema de la difusión social de la ciencia: Catalizadores del sistema y consideraciones finales
- A mayor tamaño, mayor complejidad