Cuaderno de Cultura Científica jarioa-rako harpidetza egin
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Eguneratua: duela ordu 1 49 min

Nuestros ancestros asesinos

Al, 2017-10-09 17:00

Las proporciones y forma de la mano de los homínidos se seleccionaron, entre otras razones no excluyentes entre sí, para convertirla en un arma peligrosa para golpear al rival en las peleas, y hacerlo preferentemente en la cara, según la hipótesis de David Carrier, de la Universidad de Utah. Golpear con los puños es, seguro, uno de los métodos de violencia más antiguo de nuestra especie. Si la mano, nuestro signo de ser Homo, es, demás, un arma, es razonable plantear la hipótesis de que el rostro, el blanco principal para los golpes, también ha evolucionado para resistirlos. Así, las manos y el rostro de nuestra especie ha evolucionado para participar en peleas, hacer daño y protegerse del daño que nos inflijan.

Virginia Hill: El puño como sistema de convivencia

Nunca mató a nadie, pero vivió rodeada y mantenida por los tipos más duros de la Mafia americana de la posguerra. Disfrutó de una vida desmesurada e intensa y murió cómo y cuándo quiso: se suicidó a los 49 años en Salzburgo, Austria. La edad le robó sus encantos y la que, en un tiempo, fue conocida como Reina de los Gangsters decidió que no podía vivir así. Hay quien afirma que no se suicidó, que la asesinaron. Poco antes de su muerte había recibido la visita de uno de sus antiguos amantes, el boss de la familia Genovese de Nueva York, Joe Adonis, que declaró que había acompañado, junto con sus guardaespaldas, a Virginia hasta la puerta de su casa. Ya ha pasado el tiempo suficiente como para que sepamos que el enigma de su muerte no se va a aclarar, y para siempre quedará como un suicidio.

Virginia Hill nació en Bessemer, Alabama, en 1917, en una familia con diez hermanos. Después de trasladarse a Marietta, Georgia, su madre la echó de casa y, con 17 años, marchó a Chicago donde esperaba encontrar trabajo durante la celebración de la Feria Mundial de 1933. Ella declaró que, hasta esa edad, nunca había llevado zapatos. Acabó empleada de camarera y prostituta ocasional, y así conoció al gangster Joe Epstein,contable y experto en evasión de impuestos, de la banda de Jack Guzik, político corrupto del grupo de Al Capone. La hizo su amante y, también, su correo para mover fondos, incluso con viajes a Suiza para depositar dinero en cuentas secretas. Años más tarde declaró que “cuando esta chica se mete bajo tu piel es como el cáncer, es incurable”. En esa época, Virginia le compró una casa a su familia en Marietta y pagó los 11000 dólares del precio al contado, sacando uno a uno los billetes de cien, arrugados, de su bolso. Y fue por entonces, en sus viajes como correo del dinero de la Mafia, cuando conoció y fue amante de destacados mafiosos como Frank Costello, Frank Nitti, Charles Fischetti o Joe Adonis.

También transportaba dinero de las apuestas de las carreras de caballos, casi siempre amañadas, lo que le permitía tener buenos “soplos” y ganar un buen dinero apostando por su cuenta. Cuando marchó a Nueva York, se presentó como la heredera de un imperio petrolífero en Georgia y daba las fiestas más espectaculares de la ciudad. Apareció en la prensa como la “chica glamurosa de Manhattan” y declaraba, con orgullo, que era la mujer con más abrigos de piel del país. Esto ocurría en 1941 y, quizá en otro mundo, se luchaba en la Segunda Guerra Mundial.

También conoció a Bugsy Siegel, uno de los jefes de la banda de Nueva York conocida como Bugsy & Meyer, este último por Meyer Lansky, ambos gangsters judíos, amigos desde niños y compañeros de fechorías de Lucky Luciano. Asesino, psicópata, guapo e insaciable en el sexo, Siegel y Virginia basaban su relación en tremendas peleas a puñetazos, con intentos de suicidio incluidos, pero en los que ella devolvía golpe por golpe y que acababan siempre en más sexo salvaje. En 1937, Virginia Hill y Bugsy Siegel comenzaron sus viajes a California, con el encargo para Siegel de organizar la extorsión, el tráfico de drogas y demás actividades para conseguir dinero en torno a la cada vez más poderosa y rica industria del cine en Hollywood.

“Bugsy” Siegel, llamado al nacer Benjamin Siegelbaum, procedía de una familia judía pobre que venía de Letychiv, en la actual Ucrania. Benjamin había nacido en Brooklyn el 28 de febrero de 1906. Con 14 años organizó una banda de “protección” de los comerciantes del barrio que pronto se unió a la de otro joven judío, Meyer Lansky, y ampliaron el negocio al juego y al robo de coches. En la banda, Lansky era la cabeza y Siegel el tipo duro. A los 21 años ya era culpable de secuestro, robo, asalto, tráfico de drogas, trata de blancas, violación, evasión de impuestos, juego, extorsión y numerosos asesinatos. No era de los que ordenaba un asesinato; era de los que participaba en el asesinato.

En 1929 se casó con Esta Krakower, su novia desde niños y hermana de otro de los tipos duros de la banda, Whitey Krakower. Tanto Siegel como Krakower fueron miembros de Crimen, S.A., el grupo de asesinos volante que mataba, por todo el país, a quien les ordenaban los jefes de la Mafia. Por cierto, ya en California, Whitey intervino, con Siegel, en el asesinato de un confidente y fue, a su vez, asesinado por su cuñado para que no declarase en contra.

En 1930, la banda Bugs & Meyer se une al futuro de la moderna Mafia de Lucky Luciano, Frank Costello o Albert Anastasia. Varios de ellos serían amantes de Virginia Hill. Es el nacimiento del crimen organizado a nivel continental, con ramificaciones en Europa y en el Caribe.

Bugsy Siegel era un mujeriego sin remedio. Convirtió a Virginia en su amante permanente, a pesar de que nunca se divorció de su mujer de siempre. Siegel, que vivía en California con las dos hijas del matrimonio, se empeñaba en llevar a la cama a todas las aspirantes a actriz que conocía, y eran muchas. Se llegó a decir que se había casado con Virginia en 1947 en México. En aquella época, comenzó a llamar a Virginia The Flamingo, el Flamenco, por sus largas piernas. Años más tarde, este apodo sería la causa de su muerte.

Virginia, con dinero abundante y una gran mansión en Hollywood, seguía ingresando dinero de las bandas con su labor como correo y, además, organizaba suntuosas fiestas que, a su vez, le proporcionaban información valiosa para chantajear a las estrellas de Hollywood con secretos inconfesables de su vida privada.

La buena vida y la fortuna de Siegel le llevaron a su proyecto más ambicioso, y el futuro demostraría que era el sueño de un visionario genial. Siegel fue uno de los creadores de Las Vegas. Vio la cercanía entre el dinero de California, sobre todo de Hollywood, y el Estado de Nevada, uno de los pocos en que el juego era legal. Y eligió un pueblo, Las Vegas, para construir el casino más lujoso de América. Le llamó The Flamingo, en honor de su amante Virginia Hill. El dinero vino, sobre todo, de Nueva York, de la familia Genovese y de Meyer Lansky, la otra mitad de la banda Bug & Meyer. Pero el asunto se complicó y el casino se convirtió en un pozo sin fondo donde desaparecían millones de dólares de la Mafia, de unos inversores que no eran precisamente famosos por su paciencia con los morosos.

Es posible que parte del dinero fuera a parar a los bolsillos de Siegel, y que Virginia fuera el correo que lo llevaba a Suiza en sus frecuentes viajes a Europa. El 10 de junio de 1947 viajó a París, se dijo que para recuperarse de una paliza particularmente brutal. Diez días después, Siegel fue asesinado con una carabina .30-.30 en la sala de la mansión que Virginia tenía en Hollywood. Le dispararon nueve tiros; dos le alcanzaron en la cabeza y otros dos en el pecho. La muerte fue instantánea. Virginia volvió de París inmediatamente, horrorizada y asustada; o, por lo menos, eso parecía. Ante la policía negó que fuera amante de Siegel y aseguró que desconocía su relación con los Genovese de Nueva York. Pero las continuas palizas a Virginia que, no hay que olvidar, era o fue la amante de los más importantes capos de la Mafia, más el dinero que desaparecía en The Flamingo quizá fueron las razones para ordenar la muerte de Siegel. Nunca se ha sabido con certeza, y nadie fue juzgado por ello. No conocemos quién, por qué y por orden de quien fue asesinado Benjamin “Bugsy” Siegel.

Otro dato a añadir a lo escrito más arriba es que, después de la muerte de Siegel, su amigo Lansky se entrevistó con Virginia y le pidió el dinero que había llevado, por encargo del asesinado, a las cuentas secretas de Suiza. Virginia lo devolvió y la cúpula de la Mafia quedó tranquila. Hasta su muerte, Virginia hablaría con cariño de Bugsy pero, siempre, sin criticar a los gangsters que había amado en otra época. Por cierto, Meyer Lansky, el gran colega y socio, desde niños, de Siegel, murió en su cama, en su mansión de Florida, en 1983, a los 81 años.

En realidad, Bugs Siegel era capaz de convertir el día más tranquilo en un lío parecido, a veces, a las películas de los Hermanos Marx. En cierta ocasión, se alojaron a la vez en el Flamingo cuatro de sus amantes: Virginia, que le daba sexo y broncas a tope; la actriz de cine británica Wendy Barrie, que era el glamour; la italiana Dorothy Taylor, Condesa DiFrazzo, que aportaba la clase; y otra actriz, Mary McDonald, a la que apodaban The Body. Y claro, así como por casualidad, Hill y Barrie se cruzaron por los pasillos del lujoso casino; la actriz británica salió del encuentro con la mandíbula casi desencajada.

En otra ocasión, en 1939, Bugs viajó a Italia con la Condesa DiFrazzo con la intención de vender explosivos para el ejército de Mussolini. Mientras negociaba con el gobierno fascista, se alojaba en el palazzo de su amante. Y allí recibieron la visita de jerarcas nazis como Hermann Goering o Jospeh Goebbels. El pobre judío de Nueva York conoce a los antisemitas nazis por medio de una condesa fascista. Conociendo el temperamento de Bugsy, no es difícil suponer que de inmediato quisiera matarlos. Su querida Condesa le disuadió y la historia pudo seguir su curso.

En 1950, el Senado de los Estados Unidos decidió organizar una Comisión Especial de Investigación sobre el Crimen y, para presidirla, se eligió al senador por Tennessee, Estes Kefauver. Ocupó el puesto desde el 10 de mayo de 1950 hasta el 1 de mayo de 1951. Además, formaron parte de la Comisión Herbert O’Connor, de Maryland; Lester Hunt, de Wyoming; Alexander Wiley, de Wisconsin; y Charles Tobey, de New Hampshire. En marzo de 1951, la Comisión tuvo ocho días de audiencias en Nueva York y, a una de las sesiones, fue llamada a declarar Virginia Hill.

Ya tenía 35 años, una vida muy agitada y un hijo de su matrimonio con Hans Hauser, un instructor de esquí al que había conocido durante unas vacaciones en Sun Valley. Era su cuarto marido; de los otros tres, destaca un bailador de rumbas mejicano.

Virginia había intentado ser actriz en Hollywood, pero nunca le dieron un buen papel (que sepamos, solo participó en una película, Alta tensión, en 1941, y ni siquiera aparecía su nombre en los créditos). Aunque su tren de vida todavía era lujoso, había disminuido desde que parecía haber perdido el contacto con sus antiguos amigos gangsters. Además, la había investigado el Departamento del Tesoro que, a partir de un cálculo de sus gastos, valoró que no había pagado impuestos para unos ingresos de unos 500000 dólares. Fue entonces cuando se casó con Hauser y marchó a Europa. El Tesoro embargó y subastó su casa y demás propiedades. Pero siempre recibió dinero, una especie de pensión, por parte de Joe Epstein, aquel gangster de Chicago que fue su primer amante de la Mafia. También es cierto que sus frecuentes viajes de ida y vuelta entre Estados Unidos y Europa hacían sospechar que seguía con su antiguo trabajo de correo del dinero de la Mafia.

El mismo Kefauver cuenta que su belleza ya no era lo que había sido, pero iba vestida con clase. Sin embargo, en las fotografías que se publicaron de su declaración ante la Comisión, se la ve hermosa y relajada, aunque demostró su carácter e, incluso y aunque intentó disimularlo haciéndose la tonta, quedó claro que era muy inteligente. Y con sentido del humor. Los senadores estaban convencidos de que recibía o, por lo menos, había recibido, dinero, y mucho, de la Mafia. Virginia lo negó varias veces y afirmó que de ese dinero no sabía nada de nada; es más, llegó a decir que aquellos amigos suyos, por lo visto tan famosos, ni siquiera eran gangsters. Al final, el senador Tobey le preguntó por qué le daban dinero. Virginia le desafió a si de verdad quería saberlo. Tobey contestó que sí, y entonces Virginia le respondió que “Pues entonces le voy a decir por qué. ¡Porque soy la mejor mamona de la ciudad!” Esta respuesta, disimulada con todo tipo de eufemismos, apareció en toda la escandalizada prensa de Nueva York.

Virginia Hill vivió en Europa hasta su muerte en 1966, en compañía de su hijo Peter Houser, de profesión, camarero.

Farrah Fawcett en “The burning bed” interpretando a Francine Hughes, una mujer real maltratada.

La estadística nos dice que es la cabeza el principal blanco de los golpes, con el 53% de los hematomas, el 66% de las heridas, o el 85% de las fracturas, según un estudio publicado en 1990 en Gran Bretaña. Además, la mayoría de las peleas son entre hombres., como en otros grandes primates, con porcentajes que van del 68% al 92% según dicen las encuestas publicadas. Todo esto desde hace millones de años, desde los australopitecos, y con antecedentes en los primates.

Nuestra violencia es muy antigua. Desde tiempo inmemorial, una violencia brutal acompaña a la humanidad. Los arqueólogos han encontrado restos de huesos humanos con marcas de haber muerto a golpes desde hace, por lo menos, 200000 años. Es lo que algunos han llamado la guerra anterior a nuestra civilización con sus conflictos más o menos establecidos y violentos. O sea, más violencia y más muertes. Es en Provenza, en el sur de Francia, donde se fechó hace 200000 años un grabado en una roca con una figura humana con flechas o lanzas clavadas en su cuerpo.

Con la llegada de lo que llamamos la civilización se ha conseguido, en parte, controlar la violencia entre individuos, pero la violencia entre grupos, la guerra y sus variantes, ha prosperado y mejorado en métodos, técnicas y número de muertos. Ahora se mata más, mejor y con más precisión.

La capacidad de nuestra especie para destruir a otros miembros de la especie, a otras especies y a ecosistemas enteros no tiene precedentes en la historia del planeta. Conocemos y somos conscientes de la violencia y de sus bases evolutivas, biológicas y sociales como nunca antes y, sin embargo, el futuro cercano de nuestra especie parece que seguirá lleno de violencia y muerte.

Además, seguimos batiendo marcas. Hace no muchos días se publicó lo que se considera el asesinato más antiguo de la historia. Fue en Atapuerca donde un grupo de investigación, liderado por Nohemí Sala, publicó el estudio del Cráneo 17 y lo tituló como “Violencia interpersonal letal en el Pleistoceno Medio”, hace 430000 años. Encontraron los restos de este cráneo en la Sima de los Huesos, en el yacimiento de Atapuerca. Tiene dos fracturas producidas perimortem en el hueso frontal, provocadas por un instrumento romo, en un enfrentamiento cara a cara con un diestro que le golpeó en la parte izquierda de la cabeza. Y nadie da esos golpes sin intención de hacer daño, incluso de matar.

Imagen: Fundación Atapuerca

Cráneo 17: Nuestro antepasado

Le acompañaban en su tumba, por lo menos, otros 27 individuos, antepasados de los neandertales. Era en la Sima de los Huesos, con su caída vertical de 13 metros, en Atapuerca, y, en total, los paleontólogos recogieron en su interior unos 6800 fragmentos de huesos. Nuestro protagonista, el Cráneo 17, es el resultado de la reconstrucción del rompecabezas formado por 52 fragmentos de hueso recolectados, clasificados y archivados durante 20 años de trabajo, de 1990 a 2010.

Murió joven y llegó a la Sima hace unos 430000 años. Su cráneo tiene dos perforaciones en el hueso frontal, hacia la izquierda y casi encima de la órbita ocular. Los dos golpes tienen una forma parecida, lo que demuestra que fueron producidos por el mismo objeto, casi seguro de piedra, quizá de madera, y ya que no hay remodelación del hueso, las heridas se produjeron perimortem. Las trayectorias de los golpes son ligeramente diferentes por lo que no parece que se produjeran al caer a la Sima de los Huesos, con su altura de 13 metros, porque allí lo arrojaron o se despeñó por accidente. Lo golpearon y luego lo tiraron a la Sima. Es, por tanto, un crimen de quien le golpeó, y, además, con dos golpes, quizá para asegurarse.

Fue hace, como decía, 430000 años, y es el crimen más antiguo conocido. Es nuestro reencuentro con Caín y Abel, por ahora y hasta que encontremos otro asesinato todavía más antiguo. Así fuimos, somos, los homínidos.

Además, en la Sima de los Huesos había otros 27 individuos y, de ellos, por la reconstrucción que hacen los autores, otros ocho cráneos presentan traumas perimortem. Había 1850 fragmentos de huesos y, de ellos, 560 pertenecían a cráneos. Se reconstruyeron 17 cráneos y, de su análisis detallado, los autores encuentran que las heridas de los Cráneos 5 y 11 pudieron causar su muerte y, ser, como en el Cráneo 17, víctimas de asesinato.

Sin embargo, hay que tener en cuenta que las fracturas perimortem, quizá con el resultado de muerte y asesinato, en estos 28 cráneos, son solo el 4% del total. Son los que tienen las características típicas de un ataque criminal.

Podemos acercarnos más en el tiempo y buscar más restos humanos con marcas de violencia. Por ejemplo, en Jebel Sahaba, en el actual Sudán del Norte, se ha encontrado un enterramiento, de hace 13000 años, con 59 cuerpos y por lo menos la mitad han muerto con armas, sobre todo flechas cuyas puntas se encuentran entre los restos. Incluso los niños han sido ejecutados con flechas lanzadas a corta distancia. O, hace unos 10000 años, en Nataruk, en la cuenca del lago Turkana, en Kenia, con el hallazgo de restos de 27 individuos, y 10 de ellos con evidencias de muerte violenta, con golpes, fracturas y heridas de flecha. Dos individuos, por la postura que tenían al morir, fueron maniatados y ejecutados. Son dos grupos de cazadores recolectores que tuvieron una dura y violenta disputa.

Fue en 1974 cuando Sarah Hrdy, de la Universidad de Harvard, propuso que, en primates, los machos dominantes mataban a las crías del anterior macho dominante cuando le ganaban en la lucha por el control y acceso a las hembras. Y, ahora, sabemos que más de 40 especies de primates cometen infanticidio cuando se convierten en el macho dominante. Conseguían que las hembras, una vez muertas sus crías, entraran en celo y copularan con el nuevo macho. Y, además, los genes del macho anterior no pasaban a la siguiente generación, solo lo hacían los del nuevo macho.

Parecidos cementerios como el que he descrito en el Sudán del Norte se han encontrado en Alemania y Francia, demostrando que este tipo de violencia exterminadora era habitual en nuestros antepasados más cercanos.

En estas luchas se utilizaban armas que ya se usaban para la caza desde hace, por lo menos, más de 400000 años y que, también, servirían para atacar a otros homínidos. Solo hay que recordar la obra de un gran creador, Stanley Kubrick, y la primera parte de 2001, una odisea en el espacio. El arma que se utiliza para cazar, tapires en este caso, pronto se utiliza para masacrar a otra tribu de la misma especie de homínido.

Es más, en una publicación reciente, un estudio demostraba que algunas de las herramientas de piedra que fabricaba nuestra especie, en este caso con forma de esfera y que aparecieron hace 1.8 millones de años, se podían utilizar como proyectiles y arrojar con precisión hasta unos 25 metros. Seguro que se utilizaron para cazar pero, también, como armas en las luchas entre grupos de nuestros antepasados. Todavía son abundantes en yacimientos fechados hace 70000 años.

La historia escrita, con textos e imágenes de Egipto, Grecia, India, Roma o en América, es testigo del uso de la violencia desde antiguo y habitual en nuestra especie. Quizá podríamos suponer que, cuando nuestra especie dejó el nomadismo del cazador recolector y se estableció en poblados permanentes con la agricultura y la ganadería, disminuyó la violencia. Pero no fue así y no tardaron mucho en aparecer las fortificaciones para proteger los poblados y los esfuerzos para mejorar la tecnología de las armas.

En fin, la violencia actual no es ni mucho menos un fenómeno nuevo. Nos acompaña en nuestra historia evolutiva desde hace millones de años. Los datos sobre violencia letal en mamíferos indican, de media, un 2% de víctimas como porcentaje que parece se mantiene y, por tanto, se selecciona en la filogenia del grupo. Además, el número de muertes es mayor en luchas dentro de la misma especie, cuando hay grupos sociales establecidos y una territorialidad a defender, o conquistar, en la especie implicada. Por tanto, nuestra especie entraría en ese grupo de especies con más víctimas mortales.

Es mayor el número absoluto de víctimas, en nuestra especie, en la actualidad que entre nuestros ancestros. Ahora hay más población, más grupos en disputa, más cercanos geográficamente y, también, estructuras organizadas permanentes para las luchas como son ejércitos, naciones, estados, alianzas y demás.

En fin, quien más mata a sus conespecíficos es el que forma parte de un grupo, creado por altruismo y empatía, pero solo hacia los nuestros, no hacia los otros.

Un ejemplo de la violencia del grupo, quizá hacia otros o hacia alguien del grupo que es condenado, es el ejemplo de las cabezas cortadas encontradas, en las excavaciones del Poblado de La Hoya, en Laguardia, por Armando Llanos. Uno de los cadáveres es un varón joven, de 1.65 metros de altura, y su cabeza, con signos de decapitación, apareció a unos 11 metros de distancia. Es violencia organizada, propia de un grupo, que, aunque hay menos violencia en general, los tipos de violencia social y grupal se mantienen y, a menudo, se disfrazan de ceremoniales (se calcula que la Inquisición ejecutó a una cifra de entre 3000 y 10000 personas).

Somos una especie violenta por naturaleza, tal como afirma David Bueno, de la Universidad de Barcelona. Los conflictos están en las conductas de todos los seres vivos. Las disputas son por recursos o por la reproducción. La lucha puede ser entre individuos o entre grupos. Además de una inevitable base cultural de la violencia, también hay una base genética que, en las conductas agresivas, llega al 40%, con enormes variaciones según el género, el estrés y la regulación de esos genes por influencia del entorno, incluyendo la sociedad, la cultura y la educación.

Somos violentos porque somos agresivos, como tantas especies animales, pero, además, y esto es solo nuestro, somos creativos, tenemos imaginación, lo que es típico de nuestra especie. Quizá no nos hace más violentos, pero sí nos convierte en más crueles. Es el deseo de imponerse en el conflicto unido a la imaginación para prever cómo conseguirlo. La agresividad viene de nuestros ancestros pero, la creatividad solo en parte, el resto tiene que ver con el entorno social. No podemos dejar de ser violentos, pero debemos atenuar sus consecuencias con la empatía y, de nuevo con el entorno social y la educación.

Para terminar, la violencia interpersonal tiene su interés si se estudia en la prehistoria, entre nuestros antepasados, pues así se abre un enfoque distinto sobre las relaciones sociales en nuestra especie, hace miles de años, y con cierta sencillez se puede relacionar con problemas actuales de subsistencia como la escasez de recursos, el aumento de población o la defensa del territorio. No hay que olvidar que una de las críticas al estudio de la conducta agresiva en primates y a su base genética se basa en la idea de que biológico, evolutivo o genético es equivalente a fijo o inmutable. Pero la violencia humana no es inalterable y, precisamente, conocer sus bases biológicas ayudará a predecirla y mitigarla.

Alamut según un códice persa del s. XV

Hassan-i Sabbah: Un pionero

En el Diccionario de la Lengua, asesino tiene dos acepciones, ambas como adjetivo, y la primera lo define “Que asesina”, y la segunda como “Ofensivo, hostil, dañino”, y vienen del árabe “hassasin”, adictos al cáñamo indio. Por cierto, hachís, en nuestro Diccionario, viene del árabe “hassis” y, de esta manera, en nuestro idioma, asesino y hachís tienen el mismo origen. No está claro, quizá debemos a los cruzados el por qué derivaron el nombre de una secta musulmana de una hierba considerada como narcótico y, más bien, agradable de consumir. A los miembros de la secta se les suponía un valor suicida en el cumplimiento de sus misiones y, es posible, que los cruzados atribuyesen su arrojo al uso de la droga.

La historia nos cuenta que los “hassashashin” eran los componentes de la secta que fundó y dirigió Hassan-i Sabbah y que utilizaban el asesinato como estrategia política. Fue el primero, por lo menos en nuestro idioma, que legó su nombre a los asesinos. Nació en la ciudad sagrada de Qom, hoy en Irán, en 1034 o en 1050, según fuentes diversas, y murió el 12 de junio de 1124 en Alamut, en la fortaleza de la Secta de los Asesinos, situada al norte de Irán, en la región al sur del Mar Caspio. Los mongoles la destruyeron en 1256 y, con su castillo, desapareció toda la documentación sobre la Secta de los Asesinos y sobre su jefe, Hassan-i Sabbah, también conocido como “El Viejo de la Montaña”.

No voy a entrar en las creencias religiosas de Hassan-i Sabbah dentro de la religión musulmana, ni tampoco en sus peleas sectarias, ni en sus viajes para aprender y, después, para enseñar y conseguir adeptos, pero me gustaría conocer, y no conozco, sus argumentos para su propuesta del asesinato como método en política, que de siempre ha tenido muchos seguidores en nuestra especie (esto me recuerda el asesinato como una de las Bellas Artes, según la sugerencia de Thomas De Quincey).

Parece que fue en Egipto, hacia 1078, donde comenzó a organizar la Secta de los Asesinos. Años después, en 1090, ya conquistaba aldeas y castillos y establecía centros de los Asesinos. En aquellos días, conquistó Alamut y decidió que era la base segura que buscaba para organizar y enviar misiones de enseñanza y conquista por todo Oriente.

La vida en Alamut, y seguramente en otros centros de los Asesinos, era dura y disciplinada. Hassan incluso ordenó la ejecución de dos de sus hijos por contravenir las reglas de la secta.

Su vida fue, desde luego, la de un sabio. Estudió, además de los textos de su religión, matemáticas, astronomía, alquimia, medicina y arquitectura. Fue un revolucionario, un sacerdote, un líder, alguien al que sus propias convicciones le daban el orgullo de ser el más ortodoxo de sus correligionarios. Su fama, y la de su Secta de Asesinos, se extendieron por todo el Oriente, entre Irán y Siria, y llegó a Europa a través de los cruzados que, a menudo, no distinguían entre la crónica y la leyenda. Y, no podía ser de otra manera, una herramienta eficaz en apoyo de su fama y poder fue el asesinato de otros estudiosos, de imanes y de nobles que no pensaban como Hassan-i Sabbah.

Una de sus primeras víctimas fue Seljuq, en Bagdad y en 1092, y siguen los asesinatos hasta la muerte de “El Viejo de la Montaña” en 1124, e incluso después como, por ejemplo, el emir de Aleppo, asesinado en 1126.

Hay algo que se sabe y mucho que se cuenta de la Secta, con ritos de iniciación e ingreso que incluían un elevado riesgo de morir pero, también, el uso de drogas y la visita al paraíso, con huríes incluidas, y la presencia de Hassan-i Sabbah como enviado divino.

Referencias:

Anger, K. 1985. Hollywood Babilonia. Tusquets Eds. Barcelona. 395 pp.

Bartlett, T.Q. et al. 1993. Infant killing in primates: A review of observed cases with specific reference to the sexual selection hypothesis. American Anthropologist 95: 958-990.

Bueno, D. 2010. Aggressivity, violence, sociability and conflicto resolution: What genes can tell us. Journal of Conflictology 1, 2, Campus for Peace. UOC.

Carrier, D.R. & M.H. Morgan. 2014. Protective buttressing of the hominin face. Biological Reviews doi: 10.1111/brv.12112

Daftary, F. 2001 (1994). Introduction. En “The Assassin Legends: Myths of the Isma’ilis”. I.B. Tauris. London. P. 1-7.

Daumis, F. (Ed.). 1974. Los gangsters. Historia de la criminalidad organizada. Ed. Sedmay. Madrid. P. 112-116 ; 117-120.

Fernández, L. 2014. Una especie violenta por naturaleza. El Mundo. 9 marzo.

García, J.E. 2015. El comportamiento criminal desde un punto evolucionista. Persona 18: 27-46.

Gómez, J.M. et al. 2016. The phylogenetic roots of human lethal violence. Nature 538: 233-237.

Gribben, M. 2010. Virginia Hill: Girlfriend of the Mob.

Gragg, L. 2010. The powerful mythology surrounding Bugsy Siegel. Center for Gaming Research Occasional Papers Series 2: 9 pp.

Hrdy, S.B. 1974. Male-male competition and infanticide among the langurs (Presbytis entellus) of Abu, Rajasthan. Folia Primatologica 22: 19-58.

Kefauver, E. 1960. El crímen en América. Luis de Caralt Eds. Barcelona. 302 pp.

Kelly, R.C. 2005. The evolution of lethal intergroup violence. Proceedings of the National Academy of Sciences USA 102: 15294-15298.

Llanos, A. 2007-2008. El rito de las cabezas cortadas, en el Poblado de La Hoya (Laguardia, Alava). Veleia 24-25: 1273-1281.

Marlin, B. 2002. Virginia Hill. http://everything2.com/title/Virginia+Hill

Mirazón Lahr, M. et al. 2016. Inter-group violence among early Holocene huntert-gatherers of West Turkana, Kenya. Nature 529: 394-398.

Moya Albiol, L. 2011. La violencia: la otra cara de la empatía. Mente y Cerebro 47: 14-21.

Reouven, R. 1976. Diccionario de los asesinos. DOPESA. Barcelona. 386 pp.

Safron, L. 2011. My great uncle, the Jewish gangster. http://www.oychicago.com

Sala, N. et al. 2015. Lethal interpersonal violence in the Middle Pleistocene. PLOS ONE 10: e126589

Sala, N. et al. 2016. The Sima de los Huesos Crania: Analysis of the cranial breakage patterns. Journal of Archaeological Science 72: 25-43.

Turkus, B.B. & S. Fidler. 1966. Crímen, S.A. Ed. Bruguera. Barcelona. 671 pp.

Varela, F. 2006. Orígenes ancestrales de la agresividad humana. Revista Central de Sociología 1: 127-150.

Wilson, A.D. et al. 2016. A dynamical analysis of the suitability of prehistoric spheroids from the Cave of Hearths as thrown projectiles. Scientific Reports 6: 30614

Wilson, M.L. & R.W. Wrangham. 2003. Intergroup relations in chimpanzees. Annual Review of Anthropology 32: 363-392.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Nuestros ancestros asesinos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Los asesinos
  2. Historias de la malaria: El charlatán y caballero Sir Robert Talbor
  3. Ingredientes para la receta: El conejo
Kategoriak: Zientzia

Zurdos prehistóricos

Al, 2017-10-09 11:59

Eder Domínguez. Foto: Nuria González. UPV/EHU.

“Los útiles prehistóricos -explica Eder Dominguez, del Departamento de Geografía, Prehistoria y Arqueología de la UPV/EHU – constituyen una fuente de información muy valiosa para conocer cómo era la vida de nuestros antepasados, pero también para entender cómo se comportaban y cómo pensaban. Debido a que es la mente la que crea el útil, podemos tratar de obtener información sobre la cognición humana a través del estudio de las industrias líticas”. Así, el estudio de los útiles prehistóricos se puede completar con análisis que incluyan enfoques etológicos y cognitivos, que permitan extraer información adicional a la que se obtiene de un estudio puramente tipológico. Siguiendo ese razonamiento, en las últimas décadas se han incrementado los estudios que analizan la lateralidad de las poblaciones prehistóricas a través de la industria lítica.

La lateralidad es una cualidad que presentan algunas especies y que consiste en asignar roles diferentes a cada lado del cuerpo en el momento de realizar una tarea determinada, otorgando a uno de ellos mayor dominancia. “Estos estudios tratan de aportar información al conocimiento de las asimetrías cerebrales y al desarrollo del lenguaje durante nuestra evolución, ya que guardan una fuerte relación con la lateralidad”, comenta el nuevo doctor.

El estudio llevado a cabo por este investigador parte del análisis de sociedades prehistóricas del Neolítico y Calcolítico (sociedades productoras), “que permiten analizar cómo influyen los factores culturales de la lateralidad poblacional”, para continuar estudiando sociedades formadas por neandertales, ya en el Paleolítico (sociedades cazadoras-recolectoras). Para realizar la investigación, ha desarrollado dos métodos. “El primero nos ha permitido deducir la lateralidad de un productor de hachas a partir de la morfología del corte de un hacha pulida, aplicable a materiales neolíticos y calcolíticos; el segundo, nos ha permitido establecer la lateralidad del tallista a partir de lascas, mediante el análisis de unas fracturas que en ocasiones se desarrollan en torno al punto de percusión, denominadas fracturas parabólicas (parabolic crack). A partir de esos métodos, hemos establecido los niveles poblacionales de lateralidad en diferentes momentos de la prehistoria, y su comparación con los niveles poblacionales actuales de diferentes sociedades, que nos han permitido entender mejor las asimetrías cerebrales, su evolución y su relación con el lenguaje”, indica el investigador de la UPV/EHU.

Para el Neolítico y Calcolítico se han estudiado una gran cantidad de útiles pulimentados de diversos yacimientos ubicados en Bizkaia, Álava y Navarra. En total, se han analizado los restos de 36 yacimientos (14 en Bizkaia, 21 en Álava y uno en Navarra), siendo en los yacimientos del Embalse de Urrunaga, en Legutiano (Álava), y el del Pico Ramos, en Muskiz (Bizkaia), donde más cantidad de hachas prehistóricas se han estudiado (24 y 10, respectivamente). En cuanto a los restos arqueológicos paleolíticos, el investigador Eder Dominguez analizó los niveles musterienses del abrigo de Le Moustier (40.000 años), y del nivel VII de Grotte Vaufrey (200.000 años aprox.), así como la secuencia completa del abrigo de Axlor (Dima, Bizkaia).

En el caso de las sociedades productoras, períodos Neolítico y Calcolítico, se estudiaron 100 hachas pulimentadas, y en las sociedades cazadoras-recolectoras, Paleolítico, se analizaron 690 lascas (412 en Le Moustier, 28 en Grotte Vaufrey y 250 en Axlor). Los resultados obtenidos indican que “los niveles poblacionales de lateralidad para sociedades cazadoras-recolectoras son de una ratio zurdo/diestro de 3/7, mientras que en las sociedades productoras estarían ligeramente más lateralizadas con una ratio zurdo/diestro 2,7/7,3, con una proporción de diestros algo mayor”, apunta.

Estas ratios distan algo de los de sociedades industrializadas, donde el porcentaje de personas zurdas varía entre un 5% y un 15%, dependiendo del nivel de industrialización. En cambio, son similares a los de sociedades cazadoras-recolectoras actuales. “A pesar de que existe un control genético de la lateralidad manual, cuestiones como la cultura, el estado socio-económico o incluso el sexo y la edad, influyen fuertemente en los niveles poblacionales y en la propia dominancia manual del individuo. Incluso el tipo de tarea que utilicemos para medirla, su naturaleza y su complejidad, influye sobre el sentido e intensidad de nuestra dominancia manual. Por lo tanto, debemos comparar con cautela la lateralidad manual de una población prehistórica con la de las actuales, y tener cuidado al contrastar las tareas con las que hoy en día se mide la dominancia manual (p. e. la escritura) con las que pudieran realizar nuestros antepasados”, aclara Domínguez.

Así, en base a los niveles de lateralidad detectados en las sociedades prehistóricas, formadas por individuos homo neandertales, “podemos deducir que su organización cerebral era adecuada a la producción del lenguaje articulado. Pero, aunque se conoce la relación entre la lateralidad y el lenguaje, no puede afirmarse que los individuos de las poblaciones estudiadas poseían lenguaje, únicamente puede decirse que existe evidencia de una organización cerebral capaz de poseerlo”, explica Eder Dominguez.

En un futuro, este método permitirá, mediante el estudio de más niveles arqueológicos, conocer la lateralidad en las poblaciones del pasado y su evolución a lo largo del paleolítico, para entender cómo han ido evolucionando las asimetrías cerebrales y aportar información al origen y desarrollo del habla en nuestro género.

Referencias:

Eder Dominguez-Ballesteros & Alvaro Arrizabalaga (2015) Laterality in the first Neolithic and Chalcolithic farming communities in northern Iberia Laterality: Asymmetries of Body, Brain and Cognition Vol. 20 , Iss. 3 doi: 10.1080/1357650X.2014.982130

EderDominguez-Ballesteros & Alvaro Arrizabalaga (2015) Flint knapping and determination of human handedness. Methodological proposal with quantifiable results Journal of Archaeological Science: Reports doi: 10.1016/j.jasrep.2015.06.026

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Zurdos prehistóricos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La lateralidad del tallista neolítico
  2. Migrantes nocturnos y radares meteorológicos
  3. Sistemas nerviosos: evolución de la estructura encefálica
Kategoriak: Zientzia

El cielo sobre nuestras cabezas

Ig, 2017-10-08 11:59

Near Earth Asteroid 2012 TC4 fotografiado con el instrumento FORS2 del Very Large Telescope de la ESO.

El próximo día 12, jueves, el asteroide 2012TC4 pasará a 44.000 km de nuestro planeta. Es un objeto de tamaño similar (15-30 m) al meteorito del que surgió el superbólido que impactó en la zona de Chelyábinsk, Rusia, en 2013. 2012TC4 es uno de los miles Near Earth Objects (NEO, objeto cercano a la Tierra) que surcan los cielos.

Aunque el Sol acapara el 99,85% de la masa del sistema solar, numerosísimos objetos están sometidos a sus efectos gravitatorios, por lo que forman parte de su sistema. Vimos aquí los planetas con sus lunas, pero además de ellos, hay infinidad de pequeños y no tan pequeños objetos.

Los planetas enanos son cuerpos de menor tamaño que los planetas. Los reconocidos oficialmente hasta ahora son -ordenados por su distancia al Sol- Ceres (473 km de radio medio), Plutón (1.190 km), Haumea (620 km), Makemake (715 km) y Eris (1.163 km), aunque se cree que hay algunos cientos de objetos de similares características en zonas no exploradas aún del Sistema Solar.

De entre los considerados cuerpos menores, los asteroides son los de mayor tamaño. Se denomina así a los cuerpos rocosos que giran alrededor del Sol en órbitas interiores a las de Neptuno y que son menores que un planeta enano. Los cuerpos inferiores a 1 m se denominan meteoroides. La mayoría de los asteroides, cerca de dos millones, se encuentra entre las órbitas de Júpiter y Marte en el llamado “cinturón de asteroides”. Otros son los troyanos, asteroides que comparten la órbita de un planeta, aunque a distancia de aquel. La mayoría está en la órbita de Júpiter, en los puntos de Lagrange, dos regiones (una en cada punto) denominadas campo griego y campo troyano. Y otros asteroides, aunque muchos menos, cruzan las órbitas de los planetas.

Los cometas están constituidos por rocas, polvo y hielo. Orbitan el sol siguiendo trayectorias diferentes, la mayoría elípticas y muy excéntricas, lo que hace que cada mucho tiempo se acerquen al Sol. Como una parte de sus materiales sublima al aproximarse a la estrella, ya desde tan lejos como las órbitas de Júpiter o incluso Saturno, empiezan a generar una atmósfera -llamada coma o cabellera- y a medida que se acercan al Sol, el viento solar azota la coma y se produce la cola característica de esos cuerpos.

Además de los vistos hasta aquí, hay otros cuerpos menores. Los centauros tienen características intermedias entre asteroides y cometas, y sus órbitas son inestables. También están los objetos –formados por hielo, principalmente- del cinturón de Kuiper, que se encuentran más allá de Neptuno. Y otros, de los que apenas se conoce su existencia, más lejos aún, en los confines del sistema solar.

Algunos de esos objetos son, en un sentido muy real, parte del cielo que se encuentra sobre nuestras cabezas. Son los NEOs, como 2012TC4, y representan un cierto peligro para nosotros. Conocemos la existencia de 13.095 NEOs de más de 30 m de longitud. Cada cierto tiempo alguno de ellos alcanza nuestro planeta. Se estima que algo más de 50.000 rocas de más de 1 kg penetran en la atmósfera cada año. Muchos de esos objetos se destruyen en contacto con ella, arden o explotan por el calor generado debido al rozamiento. Pero 4.600 meteoritos de más de 1 kg alcanzan la superficie terrestre todos los años. No es de extrañar, por ello, que las agencias espaciales hayan puesto en marcha sistemas de detección de asteroides, ni que el único temor de los galos de la aldea de Asterix fuese que algún día el cielo cayese sobre sus cabezas.

—————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————

Una versión anterior de este artículo fue publicada en el diario Deia 24 de septiembre de 2017.

El artículo El cielo sobre nuestras cabezas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sobre simetrías y cabezas
  2. Los planetas solares
  3. Ojos chinos en el cielo
Kategoriak: Zientzia

Naukas Pro 2017: Carlos Briones y el origen de la vida

La, 2017-10-07 11:59

El pasado 14 de septiembre de 2017 se celebró la primera edición de Naukas Pro, en el que Centros de Investigación, Laboratorios, científicos de renombre o equipos de trabajo contaron con 20 minutos para explicar a un público general en qué consiste su trabajo.

1ª Conferencia: Carlos Briones, investigador del Centro de Astrobiología (CAB-INTA/CSIC)

Carlos Briones explica los detalles de su trabajo en astrobiología

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Pro 2017: Carlos Briones y el origen de la vida se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El universo en un día: El origen de la vida, por Carlos Briones
  2. Naukas Pro, en directo
  3. El origen de la vida desde la nanociencia, por José Ángel Martin Gago
Kategoriak: Zientzia

Diomedes y los albatros

Or, 2017-10-06 12:00

La mitología griega es fuente de bellas historias dignas de ser contadas al calor del fuego y en buena compañía. Nos referimos a ese tipo de historias antiguas que se escuchaba en todo el mundo, a veces llevadas por los marinos de puerto en puerto y de taberna en taberna. No es raro pensar, que en ese mundo sin tecnología, en el que el conocimiento se encontraba solo en los libros y la transmisión era fundamentalmente oral, muchas de estas historias estuvieran relacionadas con el mar, con los marineros y con los seres que pueblan este medio.

La historia de hoy vuelve a unir la mitología con la biología, la leyenda con la ciencia, la fábula con la nomenclatura, y a los antiguos marineros griegos con las aves actuales. Para conocerla empecemos presentando a los personajes principales de esta narración. Será una historia no muy larga, pero que recordaremos por quedar anclada al nombre científico de una de las aves más emblemáticas de nuestro planeta.

Nuestro protagonista principal es Diomedes, un héroe griego, hijo de Tideo, que era rey de Etolia, una región montañosa en la costa norte del Golfo de Corinto, y de Deípile, princesa de Argos. Si pensamos que el incesto es un invento de series modernas en las que terminan por juntarse un sobrino con su tía, ya en esta historia clásica, Diomedes se desposó con su tía Egialea, aunque en otros relatos se habla de que era su prima. Importantes obras como la Ilíada de Homero o Las Metamorfosis de Ovidio dan cuenta de algunas de las aventuras de este héroe, como siempre rodeadas de épica, guerra y viajes.

Pero ¿por qué hemos elegido a Diomedes para protagonizar esta anotación? La respuesta la hallamos en la nomenclatura de los seres vivos, donde muchos nombres homenajean a personajes mitológicos, ya sean dioses, monstruos o héroes, y este es el caso de nuestro Diomedes. Existe una familia de aves, la familia Diomedeidae, que incluye a algunas de las aves más impresionantes de nuestro planeta, como son los comúnmente llamados albatros. Dentro de esta familia nos encontramos con cuatro géneros en los que se incluyen entre 13 y 22 especies, según diversos criterios taxonómicos. La UICN (la Unión Internacional para la Conservación de la Naturaleza) reconoce 22 especies en la actualidad. El nombre común, albatros, viene del portugués alcatraz, que en la actualidad da nombre a las aves el género Morus. La famosa prisión homónima situada en la isla también del mismo nombre fue bautizada así por las colonias de estas aves que allí habitaban, cuando el explorador español Juan Manuel Ayala la bautizó en 1775. Alcatraz a su vez viene del árabe al-câdous o al-ġaţţās, que significa pelícano o también buceador. Es posible que algunas aves marinas se puedan confundir entre sí, sobre todo para los profanos en la materia, pero el nombre alcatraz se aplicaba antiguamente a las fragatas, unas preciosas aves de color negro y buche rojo pertenecientes al género Fregata. La transformación de la palabra alcatraz en albatros, se debió probablemente a la inclusión del término albus, que significa blanco, para diferenciar a los albatros de las fragatas, puesto que ambas aves tienen colores opuestos.

Los albatros son unas magníficas aves que se encuentran entre las mayores voladoras de nuestro planeta, teniendo algunas especies la mayor envergadura alar entre las especies existentes en la actualidad. El mayor de todos es el albatros viajero, Diomedea exulans, que además fue el primer albatros en ser descrito, como no, por el gran Carl Von Linneo en 1758. Los albatros pueden alcanzar más de 1,30 m de altura, y cuentan con una increíble envergadura alar de entre 2,5 y 3,5 m, siendo 3,1 m el valor medio de la especie. Estas extraordinarias aves habitan en todos los océanos D. exulans habita en todos los océanos del hemisferio sur. Su dieta basada en pescado y marisco, hace que prefieran pescar en alta mar.

Pero volvamos al héroe Diomedes, que participó en varias guerras, ayudando entre otros a su abuela Eneo a defender Calidón, o a su padre a conquistar Tebas, pero su verdadero mito como guerrero se forjó en una batalla más conocida: la guerra de Troya. Diomedes fue el encargado de ir a buscar a Aquiles a la isla de Esciro junto a Ulises y ambos lo trajeron de vuelta. Aportó muchas naves al ejército y combatió junto a Aquiles, siendo uno de los protagonistas de esta historia y participando en mil conspiraciones que implicaban a personajes como Agamenon, Príamo, Menelao y Filoctetes. Fue uno de los guerreros que iba en el interior del famoso Caballo de Troya, y una vez dentro de la ciudad, eliminó a un montón de soldados enemigos.

En la narración que hace Homero en la Ilíada, Diomedes era un fiero luchador que fue capaz de luchar contra dos de los mejores guerreros troyanos a los que venció, e incluso se atrevió con la diosa Afrodita a la que hirió en combate. Solo la intervención de Apolo, que intercedió por la diosa y por los troyanos, los salvó de la ira de Diomedes. Y en el fragor de la batalla también se enfrentó al temible Ares, al que consiguió herir con la ayuda de Atenea, que estaba de su parte. Diomedes hirió en el costado a Ares, lo que hizo que el dios se retirara al Olimpo. A partir de ese momento, Zeus prohibió a los dioses intervenir en las disputas de los hombres. En la Divina Comedia, de Dante, concretamente en el Infierno, Diomedes y Ulises aparecen como condenados por, entre otras cosas, haber urdido el plan del Caballo de Troya, y haber convencido a Aquiles de participar en la guerra a sabiendas de que éste iba a morir.

Parece por la obra de Dante que nuestro héroe y Ulises eran dos buscavidas que terminaron ardiendo en el infierno por sus múltiples pecados. Entre Ulises y Diomedes debía haber una relación de amistad bastante entrañable, rozando la simbiosis, por usar un término biológico. Por extraño que nos pueda parecer, las aves del género Diomedes también pueden establecer una relación beneficiosa con otros organismos, aunque la pareja formada sea bastante extraña. Los peces luna del género Mola mola, pueden alcanzar tamaños bastante espectaculares, pero suelen ser bastante vulnerables a los parásitos. Se han visto albatros de Laysan localizando y persiguiendo activamente a estos peces, para arrancar de su piel crustáceos con los que alimentarse cuando los alcanzan. El ave Diomedes obtiene así comida, mientras que el pez Ulises, consigue una limpieza desparasitadora por parte de su compañero.

Nuestro Diomedes aviano, el albatros viajero o errante, Diomedea exulans, es un ave de plumaje blanco en los machos adultos y con las plumas primarias negras. Su pico es largo, de color amarillento-rosado, y sus patas son palmeadas. Las hembras son más pequeñas, y tienen algunas plumas color café. Las crías tienen un plumaje en general más pardo. El Diomedes héroe no cuenta con muchas descripciones, pero podemos imaginar que era un hombre fornido y de buena planta. Se dice de él, que su protectora, Atenea, le infundió valor y audacia y provocó que de su casco y de su escudo saliera una incesante llama parecida al sol de otoño.

Una de las características por la que se conoce a los albatros es por ser monógamos de por vida. No es algo excepcional en las aves, pero el caso de los albatros tiene matices que hacen que lo incluyamos entre los monógamos más notorios de la naturaleza. En el caso de fallecimiento de un miembro de la pareja, el otro decidirá no reproducirse hasta formar una nueva pareja, pudiendo tardar varios años para ello. Se reproducen cada dos años, alcanzando la madurez sexual cuando cuentan con unos 10 años de edad. Los albatros suelen anidar en islas donde construyen un nido con plumas, musgo y excrementos en áreas separadas entre sí más de 20 m. La hembra pone un único huevo, que ambos padres cuidan y empollan con sumo cuidado hasta su eclosión, 80 días más tarde. Cuando tienen que volver a aparearse y se produce una nueva puesta, es habitual que lo hagan en el mismo nido, que puede servir a este propósito durante toda su vida.

En cuestiones de fidelidad, por lo visto Diomedes era un hombre bastante íntegro, que a pesar de sus muchos viajes y la gran cantidad de tiempo que pasaba entre una y otra aventura, era fiel a su esposa, Egialea. Con ella tuvo dos hijos llamados Diomedes y Amphinomus, pero a pesar de ello, los relatos no hablan de una correspondencia al mismo nivel de su esposa. No nos debe extrañar que los textos antiguos, y no tanto, culparan a la mujer de los males de los hombres, y en cuestiones de fidelidad el aura de héroe de Diomedes no se vio empañada, y la culpa recayó en la esposa. Se cuenta que tras la guerra de Troya, Diomedes llegó a Libia por accidente, debido a una tormenta, donde fue capturado y estuvo a punto de ser sacrificado a Ares por el rey Lycus. La hija del rey, Callirrhoe, prendada de los encantos del héroe le ayudo a escapar, intentando con ello ganárselo, pero Diomedes, no quiso engañar a su esposa, y la dejó sola, marchándose del lugar sin llevarla. La muchacha desilusionada terminó suicidándose tras el desengaño.

Mientras nuestro héroe luchaba en las guerras de Troya, su esposa estaba esperándolo, pero la mujer terminó por sucumbir y engañó a Diomedes con varios hombres. Según algunos relatos, en realidad la fidelidad de Egialea era inquebrantable, como supuestamente de los albatros, pero la diosa Afrodita, en venganza por las heridas que recibió del marido durante la batalla, engatusó a la mujer encendiendo la pasión por otros hombres en su corazón, de tal manera que terminó por engañar a Diomedes bajo los efectos del hechizo de la diosa. Y no quedó ahí la venganza de Afrodita, ya que cuando Diomedes llegó de vuelta a Argos a buscar a su esposa, se encontró con que su ésta había vuelto a toda la población en su contra, e incluso tuvo que refugiarse en un templo para evitar ser asesinado. Por culpa de Afrodita, o no, la mujer era la mala de esta historia, siendo Diomedes el pobre marido caído en desgracia víctima de la infidelidad, pero fijémonos de nuevo en los Diomedes avianos, puesto que entre ellos no es nada raro ser infiel. Un momento, ¿no habíamos hablado antes de monogamía? Efectivamente, una cosa no quita la otra. De acuerdo con un estudio, más del 10 por ciento de los polluelos de albatros observados habían sido engendrados por otros machos diferentes a los de las parejas reproductoras. En otro estudio se encontró que algunas hembras tuvieron relaciones sexuales con más de 40 machos diferentes en un período de siete semanas, y que en los machos se daba un índice parecido de promiscuidad. Eso sí, cada ejemplar se queda comprometido a ayudar a su pareja a criar a los polluelos, incluso aquellos que han sido engendrados por otros albatros.

No se habla en ningún lugar de los relatos de Diomedes de si alguna vez tuvo alguna conducta homosexual, pero entre las aves y sobre todo entre los albatros, no es raro que se formen parejas del mismo sexo. Concretamente en la isla hawaiana de Oahu se encontró que un 31 por ciento de las parejas que habitan allí eran asociaciones hembra-hembra. Es cierto que la proporción de machos es mucho menor, por lo que de esta manera las hembras consiguen emparejarse para criar a los pollos juntas.

La tradición cultural ha representado siempre a Diomedes como un hombre excepcional, fiel, recto, bastante inteligente y astuto, y lleno de virtudes. Entre esas virtudes heroicas se encuentran unas habilidades de combate sobresalientes, gran valentía, tácticas de guerra, capacidad de liderazgo, humildad y autocontrol, además de contar con la protección y el consejo de la diosa Atenea. Los albatros de nuestro mundo real son unas aves excepcionales también en muchos sentidos. Al contrario que otras aves del mismo orden cuentan con dos narinas tubulares a ambos lados del pico, que les permiten tener un sentido del olfato muy desarrollado, algo poco habitual entre las aves. Como les ocurre a otras aves marinas, los albatros necesitan bajar el contenido de sal que se acumula en su cuerpo, debido a que ingieren agua de mar mientras se alimentan. El órgano encargado de ello es la glándula de la sal, que se sitúa encima de sus ojos y vierte en las fosas nasales. Sus patas también son diferentes a las de otras aves, puesto que no tienen un dedo opuesto en la parte posterior, y los tres dedos anteriores están totalmente unidos por una membrana interdigital, que facilita que puedan nadar, posarse o despegar en el agua. Estas extremidades también son extremadamente fuertes para que estos animales puedan desplazarse perfectamente en tierra firme, puesto que se trata de aves de más de 10 kg de peso.

Pero, ¿qué relación justifica este post y el hecho de que la familia y el género de los albatros lleve el nombre de este héroe mitológico? Pues buceando en estas historias antiguas podemos encontrarnos varios finales diferentes a la vida de Diomedes. En uno de ellos se cuenta que este personaje nunca llegó a volver a Argos en busca de su esposa, ya que algunos de sus compañeros de viaje fueron transformados en aves marinas que lo atormentaron continuamente con sus picotazos, impidiendo su vuelta. La artífice de esta transformación mágica fue Afrodita, convertida aquí en la bruja mala del cuento, que seguía pensando en la venganza por las heridas sufridas en batalla. Esta claro que esas aves marinas en las que fueron convertidos los compañeros de Diomedes eran albatros, aves de gran porte, surgidas la transformación de unos humanos castigados a torturar a su compañero por haber osado enfrentarse a una diosa.

Otro final más bonito nos lo encontramos en la isla San Nicola, en el archipiélago Tremiti, donde hay una tumba del período helénico llamada Tumba de Diomedes. Asociada a ella está la leyenda de que la diosa Afrodita, aquí bondadosa y benevolente, viendo a los hombres de Diomedes llorar tan amargamente cuando este falleció, los transformó en pájaros, en albatros, para que pudieran estar de guardia en la tumba de su héroe. Hay una película de Federico Fellini, Ocho y medio (8½), en la que un personaje vestido de cardenal le cuenta esta historia al actor Marcello Mastroianni. Entre los marineros se piensa que los albatros son un ave de buen augurio y el hecho de matar o dañar a uno de ellos podría significar un desastre o una desgracia para quien lo haga, puesto que se supone que contienen las almas de los marineros muertos en el mar.

Pero antes de fallecer, Diomedes y según el final más amable, vivió una larga vida, ya fuera como un valeroso héroe o como un rey, aunque no sabemos exactamente cual fue su longevidad. En el mundo de los albatros, la longevidad es otra de las características propias de estas majestuosas aves. En 2013, una hembra de albatros de la especie Phoebastria inmutabilis saltó a la prensa al descubrirse que aún ponía huevos y criaba polluelos a los 63 años. Se piensa que en general estas aves alcanzan los 60 años, e incluso los 70.

La mitología de pueblos antiguos, como los griegos, homenajea a estas aves en sus relatos, pero otras culturas muy diferentes también los tuvieron en cuenta de otras maneras. Los maorís usaban huesos de las alas de los albatros para grabar sus típicos tatuajes ceremoniales y también para tallar flautas. En nuestra cultura podemos encontrar referencias a los albatros en el famoso poema Rime of the Ancient Mariner (Balada del viejo marinero), de Samuel Taylor Coleridge o en el poema de Charles Baudelaire titulado El albatros. Pero a pesar de todo ello, los albatros no se han librado de la presión humana. Polinesios y aleutas los cazaron hasta hacerlos desaparecer de sitios como la Isla de Pascua, lo mismo que los marineros europeos, que los mataban y se los comían, puesto que dejar pasar un ave de semejante tamaño no era una opción en momentos de hambre, a pesar de los mitos que comentábamos antes. Lo peor es que también los cazaban por simple diversión o morían como víctimas del comercio de plumas. Tres de las especies de albatros actuales están en peligro crítico de extinción: el albatros de Ámsterdam (Diomedea amsterdamensis), el albatros de Tristán (Diomedea dabbenena) y el albatros de las Galápagos (Phoebastria irrorata). Los dos primeros pertenecen al genero en homenaje al héroe protagonista de este post, pero el último pertenece al género Phoebastria, otra ofrenda taxonómica a la mitología.

Phoebe, o Febe, era una princesa de Troya, hermana de la famosa Helena de Troya, que aparece en algunos relatos mezclada con Diomedes. Se supone que Héctor quería usar a la chica, de gran belleza, para casarla con algún rey griego, y así desalojar a los soldados que asediaban la ciudad. Recordemos que Diomedes era hijo de la princesa de Argos, por lo que con el tiempo acabo convirtiéndose en rey de esta ciudad griega. El rey Príamo de Troya arregló el matrimonio de Phoebe con Diomedes, y aunque este se llevó a cabo, este no se llegó a consumar, y Diomedes volvió a Argos, habiendo desposado una reina que se quedó tras los muros de Troya. En esta historia Diomedes no es tan fiel como los albatros, pues no dudo en casarse a pesar de tener otra esposa esperándolo en Argos.

El género Phoebastria, incluye cuatro especies además del albatros de las Galápagos, P. irrorata, el albatros de cola corta, P. albatrus, el albatros de patas negras, P. nigripes, y el albatros de Laysan, P. immutabilis. También hay otro género con dos especies que repite homenaje a la bella Phoebe, Phoebetria, con dos especies de albatros, el albatros oscuro, P. fusca, y el albatros tiznado, P. palpebrata.

No quedan aquí los homenajes mitológicos, puesto que el último de los géneros de albatros que nos queda por analizar, Thalassarche, saca su nombre de una antigua deidad marina, Talasa, o Thalasa, hija de Éter y Hemera, y personificación del Mar Mediterráneo. El equivalente latino de su nombre era Mare, de donde viene la palabra mar. Son cinco las especies de albatros que se incluyen en él: el albatros clororrinco, T. chlororhynchos, el albatros cabecigrís, T. chrysostoma, el albatros de Buller, T. bulleri, el albatros ojeroso, T. melanophris, y el albatros frentiblanco, T. cauta.

Diomedes es el nombre del héroe griego por excelencia, que debido a sus hazañas ha sido recordado en mitos y leyendas e incluso homenajeado en la nomenclatura binomial de los seres vivos. Pero todo depende de la historia que escuchemos o la fuente que leamos. Diomedes podía ser un héroe griego, o el rey de Argos, o uno de los pretendientes de Helena de Troya. También podía ser el marido de su tía o de la princesa Phoebe; un héroe para sus hombres o un incordio para los dioses, incluso hay un monstruo mitológico, anterior a nuestro Diomedes, que lleva el mismo nombre, un terrible gigante hijo de Ares que tenía cuatro caballos devoradores de hombres, que tuvieron que ser atrapados por Hércules en su octavo trabajo. No importa, en nuestro caso nos ha servido de excusa para hablar de unas majestuosas aves que pueblan nuestro cielo, los albatros, unas gaviotas inmensas que con su envergadura nos recuerdan que los seres vivos de nuestro planeta son maravillosos. Los cielos de la antigüedad estaban llenos de héroes y dioses, mientras los nuestros, aún hoy en día, afortunadamente siguen poblados de estas aves, que casi sin importar su tamaño consiguieron dominar el arte de volar.

P.D. No hemos nombrado durante la historia a uno de los compañeros de Diomedes en sus viajes y aventuras, Rhetenor, que da nombre a otro grupo de seres vivos, un género de arañas saltícidas, pero eso ya es historia para otro post mito-biológico.

Este post ha sido realizado por Carlos Lobato (@BiogeoCarlos) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

Referencias científicas y más información:

– Young, L. C., Vanderwerf, E. A., Smith, D. G., Polhemus, J., Swenson, N., Swenson, C., … & Conant, S. (2009). Demography and natural history of Laysan Albatross on Oahu, Hawaii. Wilson Journal of Ornithology, 121(4), 722-729.

– Jouventin, P., Charmantier, A., DUBOIS, M. P., Jarne, P., & Bried, J. (2007). Extra‐pair paternity in the strongly monogamous Wandering Albatross Diomedea exulans has no apparent benefits for females. Ibis, 149(1), 67-78.

– Jones, M. G. W., Techow, N. M., & Ryan, P. G. (2012). Dalliances and doubtful dads: what determines extra-pair paternity in socially monogamous wandering albatrosses?. Behavioral ecology and sociobiology, 66(9), 1213-1224.

– Zuk, M., & Bailey, N. W. (2008). Birds gone wild: same-sex parenting in albatross. Trends in ecology & evolution, 23(12), 658-660.

– Elie, J. E., Mathevon, N., & Vignal, C. (2011). Same-sex pair-bonds are equivalent to male–female bonds in a life-long socially monogamous songbird. Behavioral Ecology and Sociobiology, 65(12), 2197-2208.

http://www.viajeroerrante.com/historia-de-alcatraz/

https://es.wikipedia.org/wiki/Diomedea_exulans

https://en.wikipedia.org/wiki/Wandering_albatross

https://es.wikipedia.org/wiki/Morus_(animal)

http://www.seo.org/wp-content/uploads/tmp/docs/vol_41_1_primero.pdf

http://universofeliu.blogspot.com.es/2013/05/diomedes-heroe-de-los-aqueos-en-la.html

http://portalmitologia.com/diomedes

https://en.wikipedia.org/wiki/Aegiale_(wife_of_Diomedes)

https://en.wikipedia.org/wiki/Metamorphoses

https://en.wikipedia.org/wiki/Iliad

http://insolitanaturaleza.blogspot.com.es/2013/05/albatros-errante-o-albatros-viajero.html

https://books.google.es/books/about/The_Trojan_War.html?id=7X5oO-H4DakC&redir_esc=y

http://www.spaceyserver.com/troybios/phoebe.html

http://www.theoi.com/Protogenos/Thalassa.html

https://es.wikipedia.org/wiki/Thalassarche

http://www.albatrospedia.com/curiosidades/

http://mitosyleyendascr.com/mitologia-griega/diomedes/

El artículo Diomedes y los albatros se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Parkinsonia parkinsoni
  2. Los rangos de la percepción
  3. Las cartas de Darwin: ¡La geología por encima de todo!
Kategoriak: Zientzia

El triaje de la verdad: no aceptes la opinión de los expertos pasivamente

Og, 2017-10-05 17:00

Julian Baggini

“Ahora, imaginate a tí mismo…”. Foto cortesía de NASA/JPL/Caltech

La sed de conocimiento es uno de los más nobles apetitos de la humanidad. Nuestro deseo de saciarlo, sin embargo, a veces nos lleva a tragar falsedades embotelladas como verdad. La llamada Edad de la Información es con demasiada frecuencia una Edad de la Desinformación.

Hay tanto que no sabemos que renunciar a los expertos sería ir más allá de nuestra propia competencia. Sin embargo, no todo el que se afirma ser un experto es uno, por lo que cuando no somos expertos nosotros mismos, podemos decidir quién cuenta como experto solo con la ayuda de las opiniones de otros expertos. En otras palabras, tenemos que elegir en qué expertos confiar para decidir en qué expertos confiar.

Jean-Paul Sartre capturó la inevitable responsabilidad que esto nos impone cuando escribió en L’existentialisme est un humanisme (1945): “Si buscas consejo, por ejemplo de un sacerdote, has seleccionado a ese sacerdote; y en el fondo ya sabías, más o menos, lo que aconsejaría.”

La interpretación pesimista de esto es que el recurso a la pericia es, por tanto, una farsa. Los psicólogos han demostrado repetidamente el poder del razonamiento motivado y del sesgo de confirmación. Las personas seleccionan las autoridades que apoyan lo que ya creen. Si la opinión de la mayoría está de su parte, citarán la cantidad de pruebas que las respaldan. Si la mayoría está en contra de ellas, citarán la calidad de las pruebas que las respaldan, señalando que la verdad no es una democracia. Este es el paraíso de un escéptico: todo se puede dudar, nada es seguro, a todo se le puede dar la vuelta.

Pero puede que no todo esté perdido. No tenemos que arrojarnos a lo que René Descartes describió como un torbellino de dudas. He aquí una simple heurística de tres pasos que he denominado “El Triaje de la Verdad” que nos puede dar una forma de decidir a quién escuchar acerca de cómo es el mundo. Al igual que un sistema de triaje en la unidad de accidentes y emergencias de un hospital, está diseñado para llevarte a la persona adecuada para estado en el que te encuentras. No es infalible; no es una alternativa a pensar por ti mismo; pero al menos debería impedir que cometiésemos algunos errores evitables.

El triaje plantea tres preguntas:

· ¿Hay expertos en este campo?
· ¿Qué tipo de expertos en esta área debo elegir?
· ¿Qué experto en particular vale la pena escuchar aquí?

La primera etapa pregunta si el área es una en la que pueda existir algún tipo de pericia.. Si no eres religioso, por ejemplo, entonces ningún teólogo o sacerdote puede ser un experto en la voluntad de Dios.

Si hay la posibilidad de una pericia genuina, la segunda etapa es preguntar qué tipo de experto es fiable en ese área. En salud, por ejemplo, hay médicos con formación médica estándar, pero también herboristas, homeópatas, quiroprácticos, curanderos reiki. Si tenemos buenas razones para descartar cualquiera de estas modalidades entonces podemos descartar a cualquier practicante en concreto sin necesidad de hacerles una evaluación personal.

Una vez que hemos decidido que hay grupos de expertos en un área, la tercera etapa de triaje es preguntarnos de quiénes fiarnos en concreto. En algunos casos, esto es bastante fácil. Cualquier dentista cualificado debe ser lo suficientemente bueno, y es posible que de todos modos no podamos permitirnos ponernos quisquillosos y elegir. Cuando se trata de albañiles, sin embargo, algunos son claramente más profesionales que otros.

Las situaciones más difíciles son aquellas en las que el área admite diferencias significativas de opinión. En medicina, por ejemplo, hay un montón de pericia genuina, pero el estado incompleto de la ciencia nutricional, por ejemplo, significa que tenemos que tomar muchos consejos con un poco de escepticismo, incluyendo lo grande que debe ser ese poco.

Este triaje es un proceso iterativo en el que cambios de opinión en un nivel conducen a cambios en otros. Nuestras creencias forman complejas redes holísticas en las que las partes se apoyan mutuamente. Por ejemplo, no podemos decidir aisladamente si se puede existe la pericia en algún área determinada. Tendremos inevitablemente en cuenta las opiniones de los expertos en los que ya confiamos. Cada nueva juicio retroalimenta, alterando el siguiente.

Tal vez el principio más importante a aplicar a lo largo del triaje es la máxima del filósofo escocés del siglo XVIII David Hume: “Un hombre sabio … proporciona su creencia a las pruebas.” La confianza en los expertos siempre tiene que ser proporcionada. Si mi electricista me advierte de que tocar un cable me electrocutaría, no tengo ninguna razón para dudar de ella. Cualquier pronóstico económico, sin embargo, debe ser visto como indicador de una probabilidad en el mejor de los casos, una conjetura con cierta base en el peor.

La proporcionalidad también implica conceder solo tanta autoridad como haya dentro del área de un experto. Cuando un eminente científico opina sobre ética, por ejemplo, está excediendo su ámbito profesional. Lo mismo podría decirse de un filósofo que habla de economía, así que ten cuidado también con parte de lo que he escrito.

Este triaje nos da un procedimiento, pero no un algoritmo. No nos dispensa de la necesidad de hacer juicios, simplemente proporciona un marco para ayudarnos a hacerlo. Para seguir adecuadamente el mandato ilustrado de Immanuel Kant “Sapere aude” (Atrévete a saber), debemos fiarnos tanto de nuestro propio juicio como del el juicio de otros. No debemos confundir pensar para nosotros mismos con pensar por nosotros mismos. Tomar la opinión de los expertos en serio no es pasar la pelota. Nadie puede decidir por ti, a menos que decidas dejar que lo hagan.

Aeon counter – do not removeSobre el autor: Julian Baggini es escritor y el editor fundacional de The Philosophers’ Magazine.

Texto traducido y adaptado por César Tomé López a partir del original publicado por Aeon el 2 de octubre de 2017 bajo una licencia Creative Commons (CC BY-ND 4.0)

El artículo El triaje de la verdad: no aceptes la opinión de los expertos pasivamente se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Algoritmos de triaje para readmitidos en urgencias
  2. Ciencia y política: el papel de la verdad
  3. Estudiar más que conocer, buscar más que encontrar la verdad
Kategoriak: Zientzia

Puedes presumir de tener la mejor piel del mundo.

Og, 2017-10-05 11:59

Sintetizamos piel con fines médicos y para testar productos cosméticos y farmacológicos. Hasta el siglo XX los injertos se realizaban exclusivamente con piel del propio paciente (autoinjertos) o piel de donantes (aloinjertos). El testado de productos se hacía sólo in vitro o con voluntarios. En los años 80 comenzamos a dar los primeros pasos en la síntesis de piel artificial. Hoy en día tenemos impresoras 3D capaces de fabricar piel humana.

  • Cómo es la piel

La piel es el órgano más extenso del cuerpo. Está formada por tres capas: epidermis, dermis e hipodermis. La parte más superficial de la epidermis es el estrato córneo, formado por unas células denominadas corneocitos. Estas células son el resultado de la transformación de células vivas en células estructurales. Este proceso de transformación se denomina queratinización, ya que los orgánulos de estas células se disuelven y su interior queda lleno de queratina.

La epidermis está compuesta por diferentes queratinocitos. No contiene ningún vaso sanguíneo, así que consigue oxígeno y nutrientes de las capas más profundas de la piel. En la parte inferior de la epidermis existe una membrana muy fina, llamada lamina basal, cuyo componente más importante es el colágeno.

Por debajo está la dermis, compuesta principalmente de fibroblastos. Esta capa contiene vasos sanguíneos, nervios, raíces de pelo y glándulas sebáceas. Debajo de la dermis se extiende una capa grasa llamada hipodermis que se adhiere firmemente a la dermis mediante fibras de colágeno.

  • Las primeras pieles sintéticas

La primera piel sintética fue inventada por John F. Burke, jefe de Traumatología del Hospital General de Massachusetts, e Ioannis V. Yannas, profesor de química en el Massachusetts Institute of Technology (MIT) [1]. Burke había tratado a muchas víctimas de quemaduras y se dio cuenta de la necesidad de un reemplazo de piel humana. Yannas había estado estudiando el colágeno. En la década de los 70 lograron sintetizar un biopolímero poroso utilizando fibras de colágeno y azúcares, dando como resultado algo similar a la piel. Este material, colocado sobre heridas, estimulaba la regeneración.

Burke y Yannas crearon la primera piel artificial usando polímeros de cartílago de tiburón y colágeno de piel de vaca dispuestos en una fina membrana. Esta se protege superficialmente con una capa de silicona que se comporta como una epidermis humana, permitiendo la eliminación de desechos y la permeabilidad farmacológica. A medida que la piel se iba regenerando, la piel artificial se iba absorbiendo por el cuerpo. En 1979 emplearon este material por primera vez con una paciente humana, víctima de grandes quemaduras. No sufrió rechazo, ni infecciones, y su piel se regeneró en tiempo récord [1].

A partir de los hallazgos de Burke y Yannas se desarrollaron nuevas tecnologías que utilizaban cartílago, colágeno y silicona como andamiaje y protección. Así, en 1981 se creó la piel ‘Integra’ [2] o el llamado ‘Graftskin’ [1], un equivalente de piel viva hecho de colágeno bovino sobre el que se siembran células dérmicas del propio paciente.

  • La piel sintética de ahora

Actualmente, la síntesis de piel in vitro (en laboratorio) se basa en generar las dos capas, dermis y epidermis de forma manual. Primero se reconstruye la dermis a partir de colágeno, glicosaminas y fibroblastos; al mismo tiempo se aíslan queratinocitos de la epidermis del propio paciente y se multiplican por medio de técnicas de cultivo específicas, haciéndolas crecer sobre la dermis reconstruida. Este tipo de piel sintética se llama equivalente dermo-epidérmico bicapa[3][4].

La piel sintética también se utiliza para investigación dermatológica. Por ejemplo, el testado de productos cosméticos y fármacos tópicos se hace in vitro, con voluntarios o utilizando piel artificial. Ningún cosmético comercializado en la Unión Europea se testa en animales [5], por lo que la piel sintética ha resultado ser un gran aliado.

La mayor productora de piel por el método manual está en Lyon [6]. La técnica se basa en utilizar piel que proviene de tejidos donados principalmente por pacientes de cirugía plástica, trocear ese tejido hasta liberar las células, alimentarlas con una dieta especial patentada y hacerlas crecer en un entorno que imita el cuerpo humano. Cada muestra mide un centímetro cuadrado de ancho y hasta un milímetro de espesor, y tarda aproximadamente una semana en formarse.

De las más de 100.000 muestras de piel (de nueve variedades de todas las edades y razas) que la empresa produce anualmente, la mitad se utiliza para ensayar cosméticos de la empresa propietaria y la otra mitad se vende a las compañías farmacéuticas y a competidores. Actualmente estos laboratorios ya producen alrededor de cinco metros cuadrados de piel al año.

  • La piel sintética de mañana

En 2015 se hizo pública la primera alianza entre una empresa de cosmética y una empresa especializada en la impresión 3D de tejidos [7]. La intención era llegar a producir más muestras de piel artificial en menos tiempo.

En 2016 la idea de imprimir piel se hizo realidad. La impresión de piel se hace con impresoras 3D, las mismas que imprimen objetos tridimensionales utilizando plástico. En el caso de la impresión 3D de piel, en lugar de plástico los cartuchos contienen “biotintas”, una mezcla de células y otras sustancias que sirven de andamios y que controlan el correcto desarrollo. Un ordenador es el que da las órdenes a la impresora para que ésta coloque la mezcla en placas donde se va produciendo la piel, que luego se introduce en una incubadora a una temperatura controlada [8].

El principal obstáculo con el que se encontraron fue escoger los andamios donde la impresora iría colocando las células[9]. En la Universidad Carlos III de Madrid y el CIEMAT, en una investigación liderada por Nieves Cubo, utilizaron plasma sanguíneo como andamio, y fibroblastos humanos y queratinocitos que se obtuvieron a partir de biopsias de piel. Han sido capaces de generar 100 cm2 de piel en menos de 35 minutos. Esta piel impresa se analizó tanto in vitro como en trasplante (in vivo) obteniéndose una piel regenerada muy similar a la piel humana e indistinguible de la piel generada por el método manual de cultivo, el equivalente dermo-epidérmico bicapa.

Nieves Cubo

La impresora puede producir piel autóloga, es decir, creada a partir de células del propio paciente, necesaria para usos terapéuticos; o alogénica, que se fabrica a partir de bancos de células o donantes y que es la más indicada para testar fármacos o cosméticos.

Es una forma automatizada, rápida y de menor coste que la técnica manual, pero todavía tiene sus limitaciones. La piel que crea la bioimpresora no permite, de momento, la reproducción de las glándulas sebáceas presentes en la piel, los folículos pilosos o los melanocitos que la dotan de color.

Actualmente, el desarrollo se encuentra en fase de aprobación por distintas entidades regulatorias europeas, con el fin de garantizar que la piel producida sea apta para su utilización en trasplantes. Se prevé que a finales de 2017 la AEMPS permitirá su uso terapéutico [10].

  • Conclusiones

En los años 70 empezamos a regenerar piel a partir de polímeros de cartílago de tiburón y colágeno de piel de vaca. Más adelante le añadimos membranas de silicona porosa. Y comenzamos a cultivar piel en el laboratorio, a partir de células humanas.

Todavía seguimos cultivando piel. Es un método eficaz, pero es lento y costoso.

Ahora sabemos imprimir piel en minutos. Una piel simplificada, sin folículos ni glándulas, más blanca y aséptica. Más perfecta o más imperfecta, según se mire.

– ¿Te gusta lo que ves?

– ¿Qué quieres decir?

– ¿Hay algo que quieras mejorar?

– No. No quiero mejorar nada.

– ¿Entonces puedo darme por terminada?

– Sí. Y puedes presumir de tener la mejor piel del mundo.

– ¿Y ahora qué?

– Ahora voy a encenderme esta bolita de opio y me la voy a fumar.

*Conversación de Vera (Elena Anaya) y Robert (Antonio Banderas) en La piel que habito de Pedro Almodóvar.

Fuentes

[1] Medical Discoveries. Artificial Skin.

[2] Skin Grafts, by Dave Roos.

[3] Producción de equivalentes dermo-epidérmicos autólogos para el tratamiento de grandes quemados y cicatrices queloideas. Miguel Concha, Alejandra Vidal, Christian Salem Z. Cuad. Cir. 2002; 16: 41-47

[4] Artificial skin. Esp. Hans C. Ramos López, MSc. Antonio Gan Acosta, MSc. Jorge L. Díaz. Revista Colombiana de Tecnologías de Avanzada. Vol 2, número 8, 2006.

[5] Los cuatro casos que nos han hecho dudar de la seguridad de los cosméticos. Deborah García Bello. Dimetilsulfuro, 2016.

[6] L’Oréal se alía con Organovo para imprimir piel humana en 3D. Agencia Sinc, 2015.

[7] L’Oreal empezará a imprimir la piel donde probar sus cosméticos. Javier Penalva. Xataka, 2015.

[8] 3D bioprinting of functional human skin: production and in vivo analysis Cubo, Nieves Institute of Physics Biofabrication (2016), vol. 9, issue 1 (015006), pp. 1-12 Cubo, Nieves; García, Marta; Cañizo, Juan F. del; Velasco, Diego; Jorcano, José L., 2016.

[9] Imprimiendo piel humana. TEDxMadrid. Nieves Cubo.

[10] Vall d’Hebron podría aplicar la bioimpresión de piel sintética 3D a principios de año. Teresa Pérez. El Periódico, 2017.

Imagen de portada: Fotograma de La piel que habito de Pedro Almodóvar.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo Puedes presumir de tener la mejor piel del mundo. se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Así es la mejor crema antiedad según la ciencia
  2. El mejor lacón con grelos tiene su ciencia
  3. Tener o no tener (patas): la curiosa historia del ave del paraíso
Kategoriak: Zientzia

En la química del berkelio, la relatividad gana a la cuántica

Az, 2017-10-04 17:00

El color de estos cristales de oro se debe a efectos relativistas.

Que alguien se dedique a estudiar por primera vez con seriedad los iodatos de berkelio no debería ser en principio nada llamativo. Sin embargo, en los tres años que un numeroso equipo internacional de investigadores ha empleado en ellos, se ha puesto de manifiesto que en estos compuestos el berkelio se comporta de manera muy extraña, como si reglas muy establecidas de la mecánica cuántica no terminasen de aplicar. Y es que en la química del berkelio los efectos relativistas son más importantes que los cuánticos.

La mecánica cuántica es el conjunto de reglas que regulan la estructura y el comportamiento químico de la gran mayoría de los elementos de la tabla periódica. Pero conforme el número de protones en el núcleo supera un determinado nivel, que podemos establecer arbitrariamente en los 92 que tiene el uranio, hay que empezar a tener muy en cuenta los efectos que describe la teoría especial de la relatividad de Einstein.

El berkelio es un elemento transuránico sintetizado por primera vez en 1949. Tiene 97 protones en su núcleo y, por tanto, 97 electrones alrededor de él. Aquí se supone que deben aplicar las normas cuánticas estándar, como la regla de Hund, que viene a decir que cuantos más espines paralelos haya en un átomo multielectrónico, menor será su energía. En otras palabras, esta regla empírica dice que si la mitad de los asientos de un tren están en el sentido de la marcha, la gente irá ocupando los que están en el sentido de la marcha, hasta que las interacciones con los ocupantes de otros asientos sean tales que prefieran sentarse en el sentido contrario. Los electrones igual, ocuparán todos los orbitales de tal manera que sus espines sean paralelos. Esto explica la sensibilidad magnética del hierro, por ejemplo. Pero resulta que en el berkelio no se cumple la regla de Hund, ni otras.

Iodatos de berkelio

Los investigadores, tras varias simulaciones con varios modelos de las moléculas sintetizadas, llegaron a una explicación de este fenómeno. Era una cuestión de relatividad, algo ya conocido (por ejmplo, el color del oro se debe a efectos relativistas) pero que en el berkelio alcanza proporciones hasta ahora no observadas.

Según la teoría de la relatividad, cuanto más rápido algo con masa (como un electrón) se mueve, más pesado se vuelve. Debido a que el núcleo de estos átomos transuránicos tiene una carga eléctrica tan grande, los electrones se mueven a fracciones significativas de la velocidad de la luz. Esto hace que se vuelvan más pesados de lo normal, y las reglas empíricas, desarrolladas para elementos mucho más ligeros, que normalmente se aplican al comportamiento de los electrones comiencen a romperse.

Referencia:

Mark A. Silver et al. (2017) Electronic Structure and Properties of Berkelium Iodates, Journal of the American Chemical Society doi: 10.1021/jacs.7b05569

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo En la química del berkelio, la relatividad gana a la cuántica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cuántica y relatividad por todas partes
  2. Los materiales de los LEDs del futuro se diseñan con química cuántica
  3. Un minuto eterno: pares de Majorana y computación cuántica
Kategoriak: Zientzia

Uno, dos, muchos

Az, 2017-10-04 11:59

La siguiente cita es el inicio de un excelente libro de divulgación de las matemáticas, El hombre anumérico (Tusquets, 1999), de un gran divulgador, el matemático y escritor norteamericano John Allen Paulos:

Dos aristócratas salen a cabalgar y uno desafía al otro a decir un número más alto que él. El segundo acepta la apuesta, se concentra y al cabo de unos minutos dice, satisfecho: “Tres”. El primero medita media hora, se encoge de hombros y se rinde.

Es una especie de chiste surrealista, puesto que todas las personas que están leyendo esta entrada del Cuaderno de Cultura Científica no solo son capaces de decir un número mayor que el tres, 1.729 (que, por otra parte, es el conocido número de Hardy-Ramanujan), 2.187 (que además es un número vampiro) o 102.564 (que es un número parásito), sino que son capaces de mencionar números realmente grandes. Por ejemplo, el número

43.252.003.274.489.856.000

(cuarenta y tres trillones, doscientos cincuenta y dos mil tres billones, doscientos setenta y cuatro mil cuatrocientos ochenta y nueve millones, ochocientos cincuenta y seis mil), que es el número de configuraciones posibles del cubo de Rubik. E incluso podrían citar números mucho más grandes aún.

Por otra parte, en la entrada Los números deben estar locos, habíamos hablado de “pueblos primitivos” como “los bosquimanos del África austral, los zulúes y los pigmeos del África central, los botocudos del Brasil, los indios de Tierra de Fuego, los kamilarai y los aranda de Australia, los indígenas de las Islas Murray o los vedas de Ceilán” cuyos sistemas para contar eran muy básicos y que disponían de un lenguaje numérico muy limitado. Las lenguas de estos pueblos prácticamente solo contaban con palabras para los números “uno” y “dos”, mientras que los demás números que también podían nombrar los construían a partir de estos, por simple acumulación, así tres (3) de decía 2 + 1, cuatro (4) era 2 + 2, cinco (5) se expresaba como 2 + 2 + 1 o para el seis (6) se utilizaba 2 + 2 + 2, y así podían contar solo hasta números bastante bajos, como 6, 8 o 10. Este método se conoce como el método de contar por pares. Se pueden ver ejemplos concretos en las entradas Los números deben de estar locos o El gran cuatro o los números siguen estando locos.

Un ejemplo sencillo del método de contar por pares es el del pueblo de los Watchandie (Nhanda), de Australia. En la lengua de los Watchandie el número “uno” (1) se decía “co-ote-on” y el número “dos” (2), “u-ta-ura”. A partir de ellos, el número “tres” (3) se decía “u-tau-ra co-ote-on” (2+1) y el número “cuatro” (4) se decía “u-tau-ra u-tau-ra” (2+2). Los Watchandie no tenían nombres para números más altos que cuatro. A partir de ahí solo utilizaban las expresiones “bool-tha” para “muchos” y “bool-tha-bat” para “muchos más”.

Aunque pueda parecernos sorprendente, los Watchandie no eran capaces de nombrar números mayores que cuatro, a partir de ahí solo tenían las dos expresiones vagas que hemos mencionado, para “muchos” y “muchos más”.

Pero existieron pueblos “primitivos” tales que el número más grande que podían nombrar, de forma simple o compuesta, era más pequeño aún que el de los Watchandie, que como hemos visto era cuatro. Este es el caso, por ejemplo, de los Warlpiri, de Australia. La lengua warlpiri disponía de nombres para “uno” (1), que se decía “tjinta”, y para “dos”, que se decía “tjirama”, pero no podían nombrar ningún número mayor que dos, a partir de cual solamente tenían dos nombres inconcretos, “wirkadu” para “varios” y “panu” para “muchos”.

Un grupo de danza actual perteneciente al pueblo de los Warlpiri, de Australia

Otro ejemplo similar es el del pueblo de los Puri de Brasil. Los nombres que estos utilizaban para los números “uno” y “dos” eran “omi” y “curiri”, pero a partir del dos cualquier cantidad les parecía grande, y utilizaban la expresión “prica”, que significaba “muchos”.

Dibujo “Puris en sus bosques”, del italiano Giulio Ferrario (1767-1847)

Pero incluso han existido algunos ejemplos más extremos aún, en los que podemos afirmar que no tenían nombres concretos, y bien definidos, para los números, como los Pirahã, del Amazonas (Brasil) o los Xilixana, del norte del Amazonas (Brasil).

En la lengua pirahã existían dos palabras que podían tener el significado de “uno” y “dos”, que eran “hói” y “hoí”, sin embargo, su significado era muy vago. De hecho, según algunos estudiosos de la lengua Pirahã, las anteriores palabras eran utilizadas más bien con un significado poco concreto. La palabra “hói” como “una cantidad pequeña” y la palabra “hoí” como “una cantidad grande”, entendiendo aquí que los términos “pequeño” o “grande” se ajustan a lo que los Pirahã podían entender por esas cantidades vagas.

Miembros del pueblo Pirahã, del Amazonas (Brasil)

Bibliografía

1.- John Allen Paulos, El hombre anumérico, Tusquets, 1999.

2.- Georges Ifrah, Historia universal de las cifras, Espasa Calpe, 2002.

3.- Graham Flegg, Numbers through the ages, Macmillan, Open University, 1989.

4.- Harald Hammarström, Rarities in Numeral Systems, Rethinking universals: How rarities affect linguistic theory 45, 2010, p. 11-53.

5.- Raúl Ibáñez, Los números deben estar locos, Cuaderno de Cultura Científica, 2014.

6.- Raúl Ibáñez, El gran cuatro o los números siguen estando locos, Cuaderno de Cultura Científica, 2017.

7.- Raúl Ibáñez, La insoportable levedad del tres, o sobre la existencia de sistemas numéricos en base 3, Cuaderno de Cultura Científica, 2017.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Uno, dos, muchos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La insoportable levedad del TRES, o sobre la existencia de sistemas numéricos en base 3
  2. Una conjetura sobre ciertos números en el ‘sistema Shadok’
  3. El gran cuatro, o los números siguen estando locos
Kategoriak: Zientzia

Ciencia de culto

Az, 2017-10-04 08:00

Naukas Bilbao 2017. Foto: Xurxo Mariño

Entre el 5 y el 8 de septiembre de 2005 el Donostia International Physics Center (DIPC) celebró el centenario del annus mirabilis de Einstein mediante la programación en San Sebastián de una serie de conferencias a cargo de grandes científicos, algunos de ellos ganadores del Nobel, abiertas al público general. Cuatro años después, el CIC-Nanogune y el DIPC organizaron otro gran festival científico, esta vez tomando como tema principal la nanociencia. Atom by atom –esa fue su denominación- se celebró los días 28, 29 y 30 de septiembre, y una vez más, los protagonistas fueron científicos de muy alto nivel. Al siguiente año y para celebrar su décimo aniversario, el DIPC organizó un nuevo evento de gran formato, esta vez bajo la denominación genérica Passion for Knowledge; en esta ocasión, a las grandes figuras de la ciencia se sumaron representantes de otros campos de la cultura. Las conferencias de Passion for Knowledge fueron después emitidas por la web amazings.es, lo que les proporcionó una difusión aún mayor. Esos tres festivales se celebraron en el Palacio Kursaal, al que asistían en cada jornada alrededor de 800 personas. El mismo esquema se reprodujo en 2013, año en que se celebró el centenario del modelo atómico de Bohr bajo la denominación Quantum 13, y en 2016, con ocasión de la capitalidad cultural europea de San Sebastián. Estos dos festivales se celebraron en el Teatro Victoria Eugenia, un magnífico escenario en el centro de la ciudad.

Con un planteamiento muy diferente, la plataforma de divulgación científica hoy denominada Naukas, que se había constituido en 2009 con el nombre Amazings, empezó en el otoño de 2010 a preparar la celebración de un gran evento de divulgación. Un acuerdo con la Cátedra de Cultura Científica de la UPV/EHU permitió utilizar a tal efecto la sala Mitxelena (450 asientos) del edificio Bizkaia Aretoa en pleno paseo de Abandoibarra en Bilbao, así como facilitar la participación en el evento de un buen número de divulgadores, colaboradores la mayoría de ellos de la plataforma. La primera edición se celebró el último fin de semana de septiembre de 2011. En los momentos de máxima asistencia se congregaron en la sala alrededor de 400 personas en aquella primera ocasión. Ese festival en dos actos -viernes y sábado- sin apenas cobertura mediática tuvo un gran impacto en internet, en parte por la intensa actividad en las redes sociales de colaboradores y asistentes, y en parte porque la radiotelevisión pública vasca, eitb, emitió en directo el festival en su totalidad por su canal a la carta. Las sesiones se celebraron de diez de la mañana a ocho de la tarde (con una interrupción al mediodía), y por el escenario de la sala Mitxelena pasaron cerca de 50 divulgadores que impartieron sendas charlas de 10 minutos de duración. El festival Naukas se ha repetido desde entonces todos los años en la misma sede hasta 2016. La afluencia de público, el seguimiento a través de internet y su impacto no han dejado de crecer. Además, cada vez más científicos de gran nivel participan como invitados y son entrevistados en el escenario.

En paralelo, también en otros escenarios se han organizado festivales de ciencia con el sello Naukas. El primero fue Amazings Atapuerca, en el Museo de la Evolución Humana de Burgos, en junio de 2012. En mayo de 2013 se organizó en Bilbao, en Bizkaia Aretoa (UPV/EHU), El universo en un día. En marzo de 2014 se celebró una jornada en el congreso CocinArte, en Pamplona. Más tarde, mayo de 2014, vino La ciencia en el aula, en Toledo, que tuvo una segunda edición en abril de 2015. En febrero de 2016 se presentó el sello editorial Naukas en la sesión vespertina Naukas-Madrid: Virus y pandemias. El 26 de mayo de ese mismo año y en el marco del congreso KAUSAL sobre seguridad alimentaria se celebraron dos sesiones Naukas, matutina (para escolares) y vespertina (para público general) en Vitoria. El 11 de junio, en el Teatro Rosalía de Castro, La Coruña, se celebró la primera edición de Naukas Coruña, con doble sesión, matutina y vespertina, sobre neurociencia; fue iniciativa de Museos Científicos Coruñeses en colaboración con el Ayuntamiento de la ciudad. La segunda edición del festival coruñés se ha celebrado el 25 de febrero de este año, y ya se está preparando la de 2018. Y el pasado 30 de septiembre en el Teatro Calderón de Valladolid -otro magnífico escenario- se ha celebrado la hasta ahora última entrega de esta serie de festivales. Además, los antes citados Quantum13 y Passion for Knowledge 2016 contaron con sesiones Naukas a lo largo de su desarrollo. Y todo hace indicar que en los próximos meses nuevos escenarios se unirán a esta corriente. Cada vez son más las ciudades en las que hay agentes interesados en acoger festivales científicos con el sello Naukas y, por lo tanto, con la participación de sus colaboradores.

En paralelo se han desarrollado otras iniciativas. Desgranando Ciencia es otro festival de divulgación científica; se ha celebrado en Granada en 2013, 2014 y 2016, y próximamente vendrá la edición de 2017. SciFest se celebró en Cuenca en noviembre de 2014 y consistió en un evento de conferencias científicas que sirvió para presentar en sociedad el proyecto Principia. En Junio de 2014 nació Ciencia Jot Down en Sevilla. Desde entonces ha habido una edición anual alrededor del verano, la última en septiembre de este año. En 2015 la Cátedra de Cultura Científica de la UPV/EHU programó un primer festival en el que se combinaba la ciencia con el bertsolarismo tradicional del País Vasco en una sesión denominada Jakinduriek Mundue erreko dau!; esa sesión se repitió en 2016, y en 2017 se ha celebrado en cuatro localidades vizcaínas. En abril de 2016 la Universidad de Santiago de Compostela organizó la primera Regueifa de Ciencia, que es un debate a cuatro voces ante numeroso público sobre un tema científico que genera controversia social; desde entonces se han realizado 5 sesiones. El 10 de febrero de este mismo año, la Asociación de Divulgación Científica de Asturias, la Universidad de Oviedo y el Ayuntamiento de la ciudad organizaron el Club de la Ciencia en el Teatro Filarmónica; consistió en una sesión vespertina de 10 charlas de 10 minutos. El 17 de septiembre pasado la plataforma Scenio organizó en Bilbao su propio festival. Y el pasado sábado se estrenó BCNspiracy en Barcelona, un evento de divulgación organizado por la asociación del mismo nombre.

Dejo para el final el que a mi juicio ha sido el hito más significativo en la trayectoria descrita en las líneas anteriores. Tras comprobar que en 2016 las instalaciones de Bizkaia Aretoa (UPV/EHU) se habían quedado pequeñas para albergar al público que año tras año abarrotaba la sala Mitxelena, Naukas Bilbao ha dado el salto y se ha trasladado al Palacio Euskalduna. Ha crecido así en duración (ha pasado a celebrarse de jueves a domingo), diversidad de formatos (Naukas Pro: charlas sobre líneas de investigación de 30 min, Naukas: charlas de 10 minutos al estilo Naukas tradicional, Naukas Kids: actos para adolescentes y talleres para niños y niñas) y, sobre todo, en aforo. Durante los días 15 y 16 de septiembre el Auditorium del palacio Euskalduna, con algo más de 2.000 localidades estuvo a punto de llenarse en su totalidad. Ver la sala principal del Palacio llena de gente atendiendo a charlas de contenido científico es, en sí mismo, todo un espectáculo.

La trayectoria que he descrito en estas líneas da cuenta de un nuevo fenómeno. La ciencia se ha convertido en espectáculo para un sector quizás reducido pero significativo de la población. El formato de charlas cortas, normalmente muy bien preparadas, con chispas de ingenio y a veces humor se ha revelado un gran acierto. Y al calor de ese formato original han crecido otros similares, que van extendiendo por diferentes localidades españolas el virus de la divulgación científica amena, cercana y, en ocasiones, espectacular. Los eventos son seguidos por centenares de personas in situ, y por miles a través de internet. Las charlas se graban y se difunden posteriormente, y de esa forma su impacto aumenta de manera considerable.

La ciencia se ha convertido en objeto de culto. Los espectadores acuden a los festivales y, muy especialmente, a la cita anual en Bilbao como se asiste a una celebración que cuenta con su propio ritual. El fenómeno se asemeja, en cierto modo, a los conciertos de rock de la década de los setenta, a los que miles de personas acudían porque eran de asistencia obligada para las personas de una generación y un entorno cultural, era algo que había que hacer. Quien ha seguido por internet un festival de ciencia con el sello Naukas, quiere asistir en directo. Y quien asiste en directo, quiere repetir. Algunas personas de las que se suben al escenario -las más dotadas para la puesta en escena- son lo más parecido que, en divulgación científica y aledaños, hay a una estrella. Es ciencia espectáculo, desde luego, pero creo que no exagero si digo que, además, se trata de ciencia de culto. Ha nacido un nuevo género de divulgación y lo ha creado Naukas.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Ciencia de culto se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Puede ser culto alguien de Letras?
  2. Vídeo ganador del premio especial del jurado de Ciencia Clip: “Nanotecnología”
  3. Ciencia Clip: un concurso de vídeos de ciencia para jóvenes estudiantes
Kategoriak: Zientzia

Sistemas respiratorios: animales que respiran en agua

Ar, 2017-10-03 16:59

Arcos branquiales soportando las branquias en un lucio

Hay animales que, como vimos aquí, no precisan de estructuras especializadas para respirar. Son organismos de muy pequeño tamaño o cuya organización corporal permite que todas las células se encuentren a muy poca distancia del medio respiratorio. Es el caso, por ejemplo, de los protozoos y de los metazoos de los filos Porifera y Cnidaria, así como de otros grupos como el de los gusanos planos. Pero las especies de la mayoría de grupos de metazoos tienen un tamaño y una anatomía que impide respirar mediante difusión directa de O2 y CO2.

En esta anotación nos ocuparemos de los animales acuáticos. Hemos utilizado el medio respiratorio como criterio porque sus características condicionan de forma determinante la función respiratoria. El medio acuático es, por comparación con el aéreo, muy denso y viscoso (850 veces más viscoso), por lo que su movimiento resulta mucho más difícil y costoso, y eso es un problema a la hora de hacerlo circular. Pero por otro lado, esa alta densidad permite que ciertas estructuras biológicas de similar densidad puedan flotar, sin que sus características estructurales se vean alteradas.

Algunos animales, aunque muy pocos, intercambian sus gases a través del tegumento sin recurrir a estructuras especializadas; aunque en ellos la transferencia de O2 a las células y la de CO2 a la superficie corporal se produce con la intermediación del sistema circulatorio. En sentido estricto no tienen órgano respiratorio, pero sí cabe hablar de un sistema en el que los intercambios con el exterior ocurren a través del tegumento, y la transferencia a y desde las células, a través del sistema vascular. Es el caso de algunos pequeños animales acuáticos, como rotíferos, y también de algunos anélidos, incluyendo, por ejemplo, a ciertos oligoquetos que, aunque viven en el medio terrestre, necesitan estar recubiertos de agua para respirar. Estos animales provocan la renovación del medo respiratorio en torno a ellos gracias a su propio desplazamiento o a la impulsión provocada por el batido de cilios situados en su superficie corporal, aunque también los hay que, simplemente, se encuentran en un lugar donde el agua circula de manera permanente por tratarse de corrientes naturales.

La mayor parte de los animales que respiran en agua poseen branquias. Las branquias son proyecciones hacia el exterior o evaginaciones del tegumento, que adoptan formas diversas, desde una estructura arborescente, como la de ciertos poliquetos, hasta dispositivos con una configuración muy regular sobre la base de numerosas subunidades muy similares que se repiten, como las de los bivalvos o los peces. Muchos gasterópodos acuáticos y crustáceos también respiran a través de branquias. Su interior se encuentra muy vascularizado, densamente poblado por capilares sanguíneos. Esa configuración permite generar grandes superficies de intercambio entre el exterior y el medio interno o la sangre, lo que, en virtud de la ley de Fick, aumenta mucho la difusión de los gases.

Las branquias son estructuras muy delicadas, con un fino epitelio; mantienen su estructura y una gran superficie apta para la función respiratoria gracias a que su densidad y la del agua son muy similares. En el medio terrestre las branquias colapsarían al agruparse los filamentos por efecto de la gravedad. Por esa razón la mayor parte de los animales acuáticos no pueden respirar en aire, porque la superficie efectiva para el intercambio gaseoso se reduce considerablemente fuera del agua.

Nembrotha kubaryana, un nudibranquio, comiendo

Hay animales con branquias exteriores, sin apenas protección, como las de ciertos anélidos. Otras, como las de los moluscos nudibranquios (gasterópodos conocidos como babosas de mar), disponen de nematocistos, células con productos tóxicos que adquieren, comiéndolos, de los cnidarios; de hecho, los nudibranquios son los únicos animales de los que se tiene constancia que coman cnidarios. La mayor parte de los animales con branquias las protegen en el interior de alguna estructura rígida, como los bivalvos (en el interior de las valvas), algunos crustáceos (en el interior de la cámara branquial), o los peces (entre la cavidad bucal y la cavidad opercular, y protegidas por el opérculo).

Todos los animales que respiran en agua mediante branquias protegidas en el interior de alguna estructura han de impulsar el medio respiratorio que, como hemos comentado antes, es mucho más denso y viscoso que el aire. Cada uno de ellos utiliza un dispositivo diferente. Los bivalvos bombean el agua gracias al batido de los miles de cilios con que cuentan sus branquias. Los cefalópodos recurren al flujo de agua que genera el sistema de propulsión a chorro que utilizan para desplazarse. Los peces se valen de la acción muscular que provoca el movimiento de la base de la cavidad bucal y de los opérculos, de manera que generan efectos, alternativamente, de succión y de impulsión de la masa de agua que entra por la boca y sale por la apertura opercular. El característico movimiento de apertura y cierre de la boca de los teleósteos es de carácter respiratorio, y nada tiene que ver con la ingestión de agua o de alimento. El agua circula a través de las branquias, que separan las dos cavidades, bucal y opercular. Una excepción a este procedimiento es la de los túnidos, que aunque son los teleósteos más activos y, por lo tanto, los de mayores necesidades respiratorias, han perdido la musculatura respiratoria, ya que es su propio desplazamiento ininterrumpido el que mantiene el flujo de agua por las cavidades bucal y opercular a través de las branquias.

El sistema branquial de los teleósteos es el más sofisticado de los metazoos. Consiste en arcos branquiales, que son las estructuras que dan soporte físico a una serie doble de filamentos branquiales, cada uno de los cuales dispone de una fila de lamelas (laminillas) secundarias a cada lado. Lo normal es que haya cinco pares de arcos, y la unidad básica respiratoria es la laminilla. Las lamelas son finísimas, y su interior se encuentra muy irrigado con capilares sanguíneos. La sangre circula en sentido contrario al del agua, de manera que se produce así lo que se conoce como intercambio contracorriente; se trata de una disposición que favorece de forma notable el intercambio, en este caso de gases respiratorios entre la sangre y el agua.

Hay otros enclaves anatómicos en los que se produce intercambio de gases respiratorios en animales acuáticos, como el manto de ciertos moluscos o el árbol respiratorio de las holoturias. Pero sin duda son las branquias las estructuras más comunes y mejor conocidas. La asociación entre ellas y los sistemas circulatorios resultan eficaces para superar las limitaciones al intercambio de gases respiratorios que vimos en la anotación anterior.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Sistemas respiratorios: animales que respiran en agua se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sistemas respiratorios: los límites a la difusión de los gases
  2. Las actividades animales
  3. La distribución del agua animal y el curioso caso del potasio
Kategoriak: Zientzia

Otras predicciones del modelo cinético. Movimiento browniano

Ar, 2017-10-03 11:59

Nuestro modelo cinético para un gas permite realizar más predicciones cuantitativas interesantes además de la ley del gas ideal.

Sabemos por experiencia (por ejemplo, cuando inflamos una rueda de bicicleta muy rápidamente) que cuando un gas se comprime o condensa rápidamente su temperatura cambia. ¿Cómo explica nuestro modelo este fenómeno?

Tal y como veíamos cuando hablábamos del gas ideal, las moléculas rebotan en todas direcciones entre las paredes del contenedor. Cada una de las colisiones con la pared es perfectamente elástica, por lo que las moléculas rebotan sin pérdida de energía cinética. Supongamos ahora que la fuerza externa que mantiene a la pared en su sitio aumenta de repente. Al comprimir el gas se realiza trabajo sobre las partículas, y como el trabajo no es más que una forma de transferencia de energía, esto se traduce en un aumento de la energía cinética de las partículas. Pero sabemos ya que la temperatura de un gas es proporcional a la energía cinética promedio de sus moléculas, por lo que al comprimir un gas su temperatura sube.

La expansión de un gas (previamente licuado) es lo que produce el enfriamiento en un frigorífico (en azul en la imagen). Después el compresor efectúa trabajo, comprimiéndolo de nuevo (zona roja), lo que genera un aumento de la tempertaura, por lo que el calor debe eliminarse a través de un intercambiador en la parte posterior (líneas verticales en negro).

Si, por el contrario, la fuerza externa sobre la pared disminuye en vez de aumentar, ocurre justo al revés. Mientras la pared se mantuvo quieta las partículas no efectuaban trabajo sobre ella y la pared no efectuaba trabajo sobre las partículas. Si la pared tiene ahora libertad para moverse hacia fuera, esto es, en el mismo sentido que la fuerza que ejercen sobre ella por las partículas al chocar, la cosa cambia. Dado que las partículas al colisionar ejercen una fuerza sobre la pared y la pared se mueve en la dirección de la fuerza, podemos afirmar que las partículas están realizando trabajo sobre la pared. La energía necesaria para realizar este trabajo debe venir de alguna parte. La única fuente de energía aquí es la energía cinética de las partículas. Por lo tanto la energía cinética de las partículas debe disminuir, es decir, rebotan con menos velocidad. Esto implica, de forma automática, que la temperatura del gas debe disminuir. Que es exactamente lo que ocurre cuando aumenta el volumen del contenedor de un gas, y es la base del funcionamiento de los sistemas de refrigeración.

Existen muchas pruebas experimentales que apoyan estas conclusiones y, por tanto, apoyan la teoría cinético molecular de los gases y, por extensión, la teoría cinético molecular de la materia en general.

Quizás la prueba definitiva, porque explica cosas que no se podían explicar de ninguna otra manera, es el movimiento de partículas muy pequeñas pero visibles a través de un microscopio, cuando están suspendidas en un gas o líquido. Las moléculas de gas o líquido son demasiado pequeñas para ser vistas directamente, pero sus efectos sobre una partícula más grande (por ejemplo, una partícula de humo o un grano de polen) se pueden observar a través del microscopio.

En cualquier momento, enjambres de moléculas moviéndose a velocidades muy diferentes están golpeando la partícula más grande por todos los lados. Participan tantan moléculas que su efecto total casi se cancela. Eso sí, cualquier efecto neto cambia en magnitud y dirección de un momento a otro. Por lo tanto, el impacto de las moléculas invisibles hace que las partículas visibles parezcan “bailar” aleatoriamente en el campo de visión del microscopio. Cuanto más caliente esté el gas o el líquido (por tanto, con más energía cinética las moléculas), más animado el movimiento.

Esta observación se conoce como movimiento browniano. El nombre hace referencia al botánico inglés, Robert Brown, que en 1827 observó el fenómeno mientras observaba una suspensión de granos microscópicos del polen. El mismo tipo de movimiento de partículas suspendidas (“movimiento térmico”) existe en líquidos y sólidos, aunque en éstos el movimiento de las partículas está muchísimo más limitado.

El origen del movimiento browniano fue un misterio durante muchos años, hasta que en 1905 Albert Einstein, usando la teoría cinética, predijo que ese movimiento debía ocurrir y estableció qué variables lo determinaban. La comparación entre sus predicciones detalladas y las observaciones del movimiento browniano por Jean Perrin en 1908 fueron la pieza que terminó de convencer a la mayoría de los escépticos restantes hasta ese momento sobre la realidad de los átomos. Este fenómeno, que es simple de montar experimentalmente y fascinante de ver, da una prueba visual sorprendente de que las partes más pequeñas de toda la materia en el Universo están realmente en un perpetuo estado de movimiento animado y aleatorio.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Otras predicciones del modelo cinético. Movimiento browniano se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La ley del gas ideal a partir del modelo cinético
  2. Una cuestión de movimiento
  3. Un modelo simple de gas
Kategoriak: Zientzia

Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”

Al, 2017-10-02 17:00

Las Islas Canarias fueron uno de los lugares del mundo donde más zifios quedaban varados por el uso de sónares militares antisubmarinos, una técnica que se emplea para detectar naves en profundidad utilizando la propagación del sonido bajo el agua.

En el año 2003, un estudio liderado por la Universidad de Las Palmas de Gran Canaria estableció una relación entre la utilización de los sónares con la muerte de estos cetáceos y en 2004, el Gobierno español estableció una moratoria al uso de sónares a 12 millas náuticas alrededor de Canarias para mejorar la conservación de los zifios. Desde entonces, no se han vuelto a registrar varamientos masivos anómalos en aguas canarias.

Nadie mejor para hablarnos de los zifios y de la importancia de la biología de la conservación que Natacha Aguilar de Soto, responsable de investigación en cetáceos y bioacústica marina del grupo de investigación BIOECOMAC de la Universidad de La Laguna (Tenerife).

Natacha Aguilar es bióloga marina y responsable de investigación en Cetáceos y Bioacústica Marina del Grupo de Investigación BIOECOMAC (ULL)

Los zifios son una familia de cetáceos que habitan aguas profundas de los océanos. Según explicó Aguilar de Soto en su participación en la segunda jornada de Naukas en Bilbao, el zifio es “un animal misterioso” que raramente vemos en superficie, por lo que para muchos es aún un desconocido. Estos mamíferos marinos de mediano tamaño realizan proezas de buceo que igualan e incluso superan las del titánico cachalote: los zifios pueden aguantar hasta dos horas bajo el agua y llegar a tres kilómetros de profundidad, después de permanecer durante cinco minutos en la superficie para almacenar en sus músculos el oxígeno necesario para su inmersión.

Una vez bajo el agua, aproximadamente a 500 metros de la superficie, comienzan a emitir chasquidos de ecolocalización (un bio-sonar que ha evolucionado separadamente en murciélagos y cetáceos), para buscar y localizar a la presa idónea. Ya seleccionada, los cetáceos emiten zumbidos, que son una serie de chasquidos producidos muy rápidamente que les permiten seguir a su presa con mayor precisión para finalmente cazarla.

Zifio. (Autor: Circe)

Entre los buceos profundos, los zifios realizan periodos de recuperación, de alrededor de 1 a 1,5 horas, en los que realizan buceos más someros de hasta 400 metros de profundidad y 10-20 minutos de duración, separados por tan solo 2 minutos en la superficie marina entre buceos consecutivos. Son precisamente estos momentos los que Natacha y su equipo aprovechan para colocar con ventosa un dispositivo similar a un teléfono móvil en el lomo de los cetáceos, la DTAG.

Este dispositivo permite a los investigadores obtener información precisa y detallada del comportamiento y movimientos de los cetáceos, desde la profundidad y duración de los buceos hasta detalles de la frecuencia de coleteo, las reacciones ante estímulos del medio, comunicación acústica e incluso datos fisiológicos, como la tasa de respiración de la que se extrae la tasa metabólica. “Ahora estamos trabajando para detectar la frecuencia cardíaca de los zifios, en colaboración con las universidades de St Andrews (Escocia), Aarhus (Dinamarca) y el Moss Landing Institute (EEUU)”, explica Natacha.

Los zifios, como el resto de cetáceos, son especies protegidas que requieren medidas para su conservación; son animales longevos con una estrategia de la “K”, que significa que tienen un ritmo reproductivo bajo y se involucran en los cuidados de sus pocas crías. “Cada vez que se extrae un animal importa”, asegura Natacha. “Si disfrutamos tanto de los misterios de la mar, necesitamos conservarlos. Cada especie es única, y no se va a cuidar sola si seguimos la inercia de alterar su hábitat marino con nuestras actividades humanas”, continúa.

En este sentido, la investigadora recalcó en Naukas la importancia de la Biología de la Conservación y la necesidad de proteger todas las especies del impacto de la actividad humana. Al igual que muchos cetáceos, los zifios también han sufrido la contaminación de los plásticos en el mar; recientemente apareció en Noruega un zifio muerto con el estómago colapsado por 30 bolsas de plástico. Esto originó una amplia movilización social y un documental de SKY TV en el que participó en equipo de la ULL en sus trabajos de investigación de zifios en El Hierro.

Perfil de buceo de los zifios.

Por eso es tan necesaria la biología de la conservación, una ciencia multidisciplinar que requiere de conocimientos científicos de la biodiversidad y del hábitat, además de conocimientos sociales sobre las interrelaciones entre las especies y el ser humano.

El objetivo principal de esta ciencia es precisamente mantener la biodiversidad del planeta. Para ello, y según explica Natacha, es necesario armonizar los usos humanos con las necesidades de la fauna y la flora. “Solo tenemos un planeta y cada vez somos más seres humanos; tenemos que organizarnos bien y tener responsabilidad hacia los otros seres vivos con los que compartimos este barco planetario”, asegura.

Gracias a la biología de la conservación, se aplican en el medio ambiente diversas medidas de corrección para que las actividades humanas tengan el menor impacto posible sobre la biodiversidad, promoviendo desarrollos tecnológicos que permitan que estas acciones generen menos residuos, consuman menos energía y sean lo más eficientes posible.

Una medida ejemplar de esta ciencia es la prohibición que en algunos lugares del mundo, como Nueva Zelanda o Nigeria, se está haciendo de la minería de fondos marinos profundos, que consiste en la extracción de nódulos ferromagnéticos y costras de poliminerales que existen en los fondos marinos; una actividad que moviliza tóxicos y destruye comunidades biológicas que han tardado miles de años en desarrollarse.

Natacha lo tiene claro; la biología de la conservación es vital y así lo constató en la entrevista que protagonizó en la segunda jornada de Naukas. “Las actividades humanas alcanzan cada vez más los fondos profundos de los océanos y mares, y es necesario que tomemos una posición activa para protegerlos; es decir, ser animales responsables”, explica Natacha. “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”, corrobora la bióloga.

Sobre la autora: Iraide Olalde, es periodista en la agencia de comunicación GUK y colaboradora de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté” se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Matemáticas del Planeta Tierra (MPE2013), en Bilbao
  2. Conferencias plenarias #Quantum13 también en Bilbao
  3. Equilibrio tautomérico en un sistema modelo de gran interés biológico
Kategoriak: Zientzia

Memoria de forma en polímeros

Al, 2017-10-02 11:59

(a) Se produce un daño en la superficie a 22.9ºC, (b) estado tras aumentar la temperatura a 36ºC, (c) a 43ºC, (d) a 46ºC, (e) a 51ºC, (f) enfriamiento (superficie recuperada)

En un mundo cada vez más automatizado, la ciencia juega un papel muy importante en la investigación y desarrollo de sistemas capaces de actuar por sí mismos. Cada vez es más habitual el estudio y desarrollo de materiales inteligentes, que modifican alguna de sus propiedades al ser sometidos a un estímulo concreto. Ejemplo de ello son los polímeros con memoria de forma, capaces de cambiar de forma bajo la acción de un estímulo, como, por ejemplo, la temperatura.

Partiendo de anteriores investigaciones llevadas a cabo en el Departamento de Química Física de la Facultad de Ciencia y Tecnología de la UPV/EHU relacionadas con el policicloocteno —un polímero semicristalino comercial—, la investigadora del departamento Nuria García Huete ha desarrollado diferentes sistemas poliméricos que han dado como resultado materiales versátiles que podrían tener múltiples aplicaciones en diversos campos.

Los investigadores del equipo sabían que el policicloocteno presenta memoria de forma cuando se encuentra entrecruzado. La investigadora hace un símil para explicar su estructura: “Podríamos imaginar un polímero como un plato de espaguetis, donde cada espagueti sería una cadena individual del polímero. El entrecruzamiento consiste en una serie de uniones entre cadenas, lo que equivaldría a nudos entre nuestros espaguetis, de forma que no sería posible tomar un solo espagueti del plato, ya que se encuentra unido a otros tantos sin poderlos separar”. Este polímero entrecruzado utilizando peróxido de dicumilo recupera su estructura original, una vez deformado, aplicándole calor.

García-Huete ha comprobado que esta propiedad se puede aprovechar para restaurar un objeto que ha sido dañado de manera superficial (dañado, pero sin llegar a romper) con sólo aplicarle calor. Asimismo, demostraron que construyendo una estructura superficial, basada en micropilares, la recuperación de forma se conservaba y se conseguía cambiar el ángulo de contacto de la superficie. Para ello, utilizaron una gota de agua y constataron que el agua adoptaba diferentes ángulos con la superficie, en función de la deformación de la muestra.

Debido a que los peróxidos acaban degradándose, la investigadora ha encontrado una alternativa para conseguir el entrecruzamiento, utilizando radiación gamma, y de esta forma ha obtenido materiales no citotóxicos que podrían tratar de emplearse en un futuro para aplicaciones biomédicas. Tras caracterizar las propiedades mecánicas y térmicas, ha analizado el comportamiento de memoria de forma y, en colaboración con otros expertos, han conseguido relacionar la memoria de forma con el volumen libre (espacio libre intermolecular) del polímero.

En busca de nuevos horizontes, los investigadores han querido saber cómo obtener materiales que además de tener memoria de forma, que permite recuperar deformaciones, puedan autorrepararse (es decir, reparar rupturas en el propio material). En colaboración con la Universidad Tecnológica de Delft (Países Bajos) consiguieron mezclas de policicloocteno con otro tipo de polímeros, llamados ionómeros, con las que obtuvieron materiales que conservan el efecto de memoria de forma y que además poseen capacidad de autorreparación con sólo calentarlos, lo que favorece la prolongación de la vida útil de los materiales.

El conjunto de los estudios realizados y los resultados obtenidos abren la posibilidad de aplicación de estos polímeros en diversos campos científico-tecnológicos, con el objetivo de satisfacer las exigencias y comodidades del día a día. La investigadora ve la posibilidad de trasladar estos resultados a la escala industrial, “porque desde un inicio toda la investigación se ha enfocado precisamente en poder llevarlo a nivel industrial, desde el polímero empleado hasta la elección de las investigaciones, pasando por el tamaño de las muestras realizadas y las técnicas escogidas”. Mientras tanto, la investigación sigue su curso, ya que ha quedado probado que “partiendo de un mismo polímero se pueden obtener diferentes propiedades”, concluye García-Huete.

Referencias:

García-Huete, N., Laza, J.M., Cuevas, J.M. et al. (2014) Shape memory effect for recovering surface damages on polymer substrates J Polym Res 21: 481. doi: 10.1007/s10965-014-0481-9

García-Huete N, Laza JM, Cuevas JM, Vilas JL, Bilbao E, León LM (2014) Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties. Radiat Phys Chem 102:108–16. doi: 10.1016/j.radphyschem.2014.04.027

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Memoria de forma en polímeros se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El deterioro de la memoria con la edad es selectivo
  2. Un nexo cannabinoide entre mitocondrias y memoria
  3. Polímeros conductores, el futuro del camuflaje
Kategoriak: Zientzia

El ingenio de los pájaros, de Jennifer Ackermann

Ig, 2017-10-01 11:59

Juan Ignacio Pérez Iglesias, lector

Jennifer Ackermann ha escrito un muy buen libro de divulgación científica. Trata, como su título indica, de pájaros. Es un repaso muy completo de los comportamientos de las aves que dan cuenta de las capacidades cognitivas de estos animales. La otra palabra del título, genio, está muy bien escogida. Porque no cabe hablar de inteligencia. Si ya es difícil a veces saber de qué hablamos cuando nos referimos a la inteligencia humana, mucho más lo es si de lo que se trata es de otras especies, aves en este caso. Genio es una buena palabra para reflejar el contenido del libro.

Por el libro de Ackermann pasan todo tipo de comportamientos. Se ocupa de la capacidad de aprendizaje de las aves y de su posible relación con el tamaño encefálico. Comenta, por ejemplo, que en su evolución el cuerpo se redujo mucho más que el encéfalo, por comparación con los dinosaurios de los que proceden. De manera que los pájaros, en contra de la creencia popular, tienen un encéfalo de tamaño relativo bastante grande. Hay aves que fabrican instrumentos, aves que juegan, otras son capaces de posponer la gratificación a una tarea bien completada en espera de una mejora, cuervos que reconocen personas y las recuerdan durante mucho tiempo.

La autora hace un repaso de las extraordinarias capacidades vocálicas de algunas especies. Y también se ocupa del canto, una habilidad que en algunos pájaros resulta, por su ejecución, casi increíble. Repasa la relación que hay entre la actividad y capacidad canora y el desarrollo del alto centro vocal (HVC), un área encefálica implicada en el aprendizaje y la generación del canto. Es impresionante el caso de una especie cuyos machos han de aprender un canto nuevo en cada época de apareamiento; pues bien, el tamaño de esa región aumenta en la primavera y se encoge al final del verano, y eso ocurre porque varía el número de neuronas en los circuitos del canto. También se ocupa de los pergoleros, esas aves cuyos machos fabrican en medio de la selva australiana unas pérgolas de gran complejidad estructural y cromática, y que forman parte de su técnica para poder aparearse.

Las migraciones y la cuestión de los mecanismos implicados en la orientación ocupan una parte importante del libro. Valora las diferentes hipótesis que se han barajado para explicar la enorme capacidad de orientación que tienen algunas especies. Magnetismo terrestre, claves visuales, olores, o la combinación de inputs de diferente naturaleza podrían estar en la base de su capacidad de navegación. Ackermann, en los compases finales del libro, manifiesta su preocupación por el riesgo de desaparición en que se encuentran muchas especies debido al efecto de la acción humana sobre los ecosistemas y, concretamente, por la subida de temperaturas que ya está desplazando a algunas especies hacia el norte, hacia la cumbre de las montañas o modificando peligrosamente sus calendarios de cría.

Al finalizarlo uno no puede dejar de pensar que la razón por la que nos resulta tan difícil entender a otros animales, entender las bases y alcance de sus capacidades cognitivas, es porque buscamos en ellos habilidades humanas, sin reparar en el hecho de que esas otras especies tienen una diferente configuración encefálica y estructura mental por la sencilla razón de que han evolucionado bajo presiones selectivas diferentes y han de hacer frente a problemas diferentes.

El libro está muy bien documentado. La autora no solo ha consultado a numerosos especialistas. También presenta una extensa bibliografía. En algún momento puede dar la impresión de un cierto desorden, pero creo que esa sensación proviene de la dificultad, también para el lector, de gestionar mentalmente tanta y tan interesante información como ha manejado Ackermann. El texto tiene el ritmo y las dimensiones adecuadas. Y las anécdotas que narra dejan al lector boquiabierto.

Este libro solo tiene, a mi juicio, un pero: la traducción es mala, algo a lo que, desgraciadamente, ya nos tienen acostumbrados la mayoría de editoriales españolas. Para muestra, un botón: traduce ecologist (ecólogo) como ecologista. He cotejado las dos versiones (inglés en formato electrónico y castellano en papel) y el resultado ha sido penoso. Recomiendo vivamente su lectura en inglés. Es una delicia.

Ficha:

Autora: Jennifer Ackermann

En español:

Título: El ingenio de los pájaros

Editorial: Ariel (Planeta)

Año: 2017

En inglés:

Título: The Genius of Birds

Editorial: Penguin Random House LLC, Nueva York

Año: 2016

En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.

El artículo El ingenio de los pájaros, de Jennifer Ackermann se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Libros para enamorarse
  2. La cara más emocionante, humana y filosófica de la ciencia
  3. El caso de “Los Pájaros”
Kategoriak: Zientzia

Ciencia a presión: Evolución de la imagen de la ciencia en la prensa española

La, 2017-09-30 11:59

La expresión publish or perish (publica o perece) es de sobra conocida en el ámbito científico. Quiere expresar la importancia que tienen las publicaciones en los currículos del personal investigador. En ciencia no basta con hacer observaciones, obtener unos resultados y derivar conclusiones. Hay, además, que hacerlo público y, a poder ser, en medios de la máxima difusión internacional. La ciencia que no se da a conocer, que no se publica, no existe. El problema es que de eso, precisamente, depende el éxito profesional de los investigadores, sus posibilidades de estabilización y de promoción. De ahí la conocida expresión del principio.

El mundo de la comunicación tiene también sus normas. En comunicación se trata de que lo que se publica sea consumido. De la misma forma que la ciencia que no se publica no existe, en comunicación tampoco existen los contenidos que no se consumen: o sea, no existen los artículos que no se leen, los programas de radio que no se oyen, los de televisión que no se ven o los sitios web que no se visitan. En comunicación valdría decir “sé visto, oído o leído, o perece”.

Ambas esferas tienen ahí un interesante punto en común. Y por supuesto, en comunicación o difusión científica el ámbito de confluencia se aprecia en mayor medida aún. Confluyen aquí ambas necesidades, la de hacer públicos los resultados de investigación y, además, conseguir que lleguen a cuantas más personas mejor.

El problema es que la presión por publicar y por tener impacto comunicativo puede conducir tanto a unos como a otros profesionales, a adoptar comportamientos deshonestos, contrarios a la ética profesional e, incluso, a desvirtuar completamente el fin de la ciencia y de su traslación al conjunto del cuerpo social. Y también puede conducir, y de hecho ha conducido, a que se haya configurado un sistema de publicaciones científicas con patologías.

De todo esto se trató el pasado 31 de marzo en “Producir o perecer: ciencia a presión”, el seminario que organizarono conjuntamente la Asociación Española de Comunicación Científica y la Cátedra de Cultura Científica de la UPV/EHU.

6ª Conferencia. Ana Victoria Pérez Rodríguez, directora de la Agencia DiCYT: Evolución de la imagen de la ciencia en la prensa española

Evolución de la imagen de la ciencia en la prensa española

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Ciencia a presión: Evolución de la imagen de la ciencia en la prensa española se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia a presión: Ciencia abierta vs. ciencia cerrada
  2. Ciencia a presión: Ciencia patológica y patología editorial
  3. Ciencia a presión: Científicos que avalan patrañas
Kategoriak: Zientzia

Las herramientas de edición genética CRISPR y los ratones avatar

Or, 2017-09-29 12:00

CRISPR y los ratones avatar

Quiero dedicar este primer artículo que publico en la web de la cátedra de cultura científica de la UPC/EHU a un concepto nuevo y, creo, interesante, que nos ha cambiado la vida en nuestro laboratorio y en muchos otros laboratorios internacionales de biomedicina. Me refiero a los ratones avatar, a los nuevos modelos animales para investigar enfermedades raras de base genética que podemos ahora generar fácilmente gracias a las herramientas CRISPR de edición genética. Ellos fueron también los protagonistas de mi primera incursión divulgadora en la última reunión Naukas17, patrocinada por esta cátedra, celebrada en Bilbao hace pocos días.

En mi laboratorio del Centro Nacional de Biotecnología, en Madrid, y también gracias a nuestra participación en el Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) nos dedicamos a investigar sobre la genética de las enfermedades raras. ¿Qué mutaciones y en qué genes son los causantes de estas enfermedades raras? Y, naturalmente, también investigamos sobre qué podemos hacer para aliviar o resolver estas condiciones genéticas de baja prevalencia en la población. Las enfermedades raras son aquellas que afectan a menos de 5 de cada 10,000 personas (o menos de 1 de cada 2,000). Conocemos más de 7,000 enfermedades raras. Cada una de ellas afecta a un reducido número de personas, aunque globalmente suponen una parte importante de la población (3 millones de personas en nuestro país, según estimaciones recientes).

En concreto nosotros investigamos sobre una de estas condiciones genéticas raras: el albinismo, causado por mutaciones en alguno de los 20 genes asociados, que dan lugar a otros tantos tipos de albinismo. En el albinismo lo que se ve (pérdida de pigmentación) no es lo más relevante (déficit visual). La discapacidad visual severa (con una agudeza visual inferior al 10%, es decir, con ceguera legal) es pues lo más característico de las personas con albinismo. El albinismo afecta aproximadamente a 1 de cada 17,000 personas, unas 3,000 personas en nuestro país. Hasta el momento habíamos podido aproximarnos a esta condición genética a través de modelos animales utilizando alguna de las técnicas de modificación genética, que conocemos desde hace más de 30 años. Son tecnologías muy poderosas pero no exentas de limitaciones y, generalmente, sofisticadas y muy caras de aplicar. Sin embargo, como no conocíamos otras técnicas, nos parecían estupendas y ello nos ha permitido, a nosotros y a muchos otros laboratorios en todo el mundo, generar numerosos modelos animales para el estudio de enfermedades raras, como el albinismo.

Todo cambió en 2013. En enero de ese año descubrimos la existencia de unas nuevas herramientas para la edición genética de los genomas, denominadas CRISPR (acrónimo en inglés de secuencias repetidas, palindrómicas, regularmente intercaladas y agrupadas), descritas muchos años antes por microbiólogos en bacterias. A principios de la década de los años 90 Francisco Juan Martínez Mojica (Francis Mojica), microbiólogo de la Universidad de Alicante, se dio de bruces con ellas al secuenciar el genoma de unas arqueas (otro grupo de microorganismos procariotas, similares pero no idénticos a las bacterias) que habitaban en las salinas de Santa Pola (Alicante). Publicó sus resultados en 1993.

No fue el primero en descubrirlas en bacterias, pero si fue el primero en percatarse de su relevancia y en decidir dedicar su carrera profesional a entenderlas. Lo consiguió unos 10 años más tarde, al percatarse de que se trataba de una estrategia innovadora de defensa, un verdadero sistema inmune adaptativo, que usaban las bacterias para zafarse de las infecciones de los virus que les acechaban. A diferencia de nuestro sistema inmune, las bacterias son capaces de transmitir su inmunidad frente a determinados patógenos a su descendencia, porque aquella tiene una base genética. Algo insólito e inesperado que le costó casi tres años publicarlo, hasta conseguir que lo aceptarán en una revista científica modesta, en 2005. Y precisamente ese artículo pionero es el que ha le ha permitido, años más tarde, ser premiado por diversas instituciones (Jaime I, Fundación BBVA-Fronteras del Conocimiento, Lilly, Albany, etc…) y es muy probable que le asegure plaza en una terna del premio Nobel de Medicina (o de Química), caso de que en Estocolmo decidan próximamente premiar el descubrimiento de las CRISPR y/o sus aplicaciones de edición genética, las que constituyen una verdadera revolución en biología.

Los descubrimientos básicos de Francis Mojica, y de los investigadores que le siguieron, permitieron describir cómo funcionaba el sistema CRISPR en bacterias y definir sus componentes. Esencialmente una molécula de ARN guía y una enzima capaz de cortar las dos cadenas del ADN (una nucleasa). Estas tijeras moleculares de alta precisión atacan el genoma del virus invasor en las bacterias inmunes a ese patógeno, y, a su vez, en células animales, pueden realizar una función similar, cortando el gen que nosotros le indiquemos al sistema, según la guía utilizada. Estos cortes en el genoma deben repararse de inmediato, para que las células sobrevivan y no pierdan material genético, que podría tener consecuencias fatales. Los sistemas de reparación los tenemos ya en todas nuestras células y son de dos tipos. El sistema reparador que actúa por defecto progresa añadiendo y eliminando letras (bases del genoma, A, G, C ó T) hasta que logra generar una cierta complementariedad (la G siempre se aparea con la C, y la T con la A) que finalmente es sellada y resuelta la cicatriz en el genoma. La inserción y eliminación de bases en el genoma normalmente conlleva la inactivación del gen cortado. Nunca antes había sido tan fácil inactivar un gen. Sencillamente dirigimos una herramienta CRISPR específica contra el gen que deseamos silenciar, el sistema CRISPR corta el ADN en el gen, y el sistema de reparación lo inactiva durante el proceso reparador.

Existe otro sistema de reparación, más sofisticado, que puede reparar el corte en el ADN a partir de secuencias molde externas, con ciertas similitudes a ambos lados del corte, pero con secuencias nuevas internas. Es decir, podemos inducir la introducción de secuencias previamente no existentes, lo cual permite tanto incorporar mutaciones específicas como corregirlas. Sorprendente y muy versátil. A este proceso le llamamos edición genética, aprovechando la similitud con la edición de textos realizada con un programa de ordenador, que permite localizar la palabra equivocada y corregirla, substituirla o eliminarla.

Mediante el uso de las herramientas CRISPR de edición genética es ahora posible inducir la incorporación de mutaciones específicas en genes determinados, a voluntad del investigador. Tanto en células en cultivo como en modelo animales, como son los ratones, los peces cebra o las moscas de la fruta (Drosophila). En ratones, desde principios de los 80, hemos generado miles de mutantes específicos de muchos de los más de 20,000 genes que tenemos tanto los roedores como nosotros, los primates.

Sin embargo, estas mutaciones generadas usando las técnicas clásicas eran relativamente groseras. Por ejemplo, la mayoría de ratones mutantes específicos de cada gen portan la eliminación de una parte importante del gen, frecuentemente el primero de los exones (las partes en las que se subdivide la zona de un gen que codifica información genética. Esta modificación genética tan relevante asegura prácticamente la inactivación de un gen. Sin embargo, tiene un problema. Al diagnosticar que tipo de mutaciones genéticas aparecen en la población humana nos damos cuenta que apenas existen este tipo de mutaciones entre los pacientes. Es decir, no hay apenas personas a quienes les falte el primero de los exones de un gen. Por el contrario, lo que encontramos al diagnosticar genéticamente a los pacientes afectados por alguna enfermedad congénita son pequeñas substituciones, eliminaciones o duplicaciones, a veces de hasta una sola base, de una sola letra. Son cambios mucho más sutiles que no obstante pueden tener consecuencias severas para la persona portadora de tales cambios en su genoma. Hasta hace poco, con los métodos disponibles, no era nada sencillo (y generalmente era imposible) reproducir estos diminutos cambios en el gen para investigar la enfermedad en células o animales modelo.

Las herramientas CRISPR han solventado la limitación que teníamos. Ahora es posible usar reactivos CRISPR para inducir, específicamente, el cambio, substitución, eliminación o duplicación de una o pocas bases en células o animales. Es pues ahora relativamente sencillo generar ratones portadores, exactamente, de la misma mutación que previamente hemos diagnosticado en pacientes. Estos ratones que llevan la misma modificación genética que los pacientes son los denominados ratones avatar. Cada uno de esos ratones reproduce los efectos de la mutación de la persona de la que derivan. De la misma manera que en la famosa película de ciencia ficción de James Cameron las criaturas azules están conectadas a las personas también aquí estos ratones avatar están asociado a la persona de la que portan la misma mutación.

Los ratones avatar representan un cambio conceptual en la generación de modelos animales para el estudio de enfermedades humanas. En medicina se dice que no hay enfermedades, sino enfermos, teniendo en cuenta que cada enfermo presenta síntomas ligeramente distintos y no siempre los mismos ni con la misma intensidad, lo que ha dado pie a la medicina personalizada. De la misma manera ahora, gracias a las herramientas CRISPR de edición genética, podemos generar los ratones avatar que representan modelos animales personalizados, específicos, que sin duda nos ayudarán a entender mejor cómo se establecen y desarrollan las enfermedades (y qué podemos hacer para detener o corregir la aparición de los síntomas de las mismas). Estos modelos animales avatar podrán ahora ser usados para validar propuestas terapéuticas innovadoras, y así poder asegurar los parámetros de seguridad y eficacia antes de saltar al ámbito clínico, antes de trasladar los posibles tratamientos a los pacientes. Esta es, sin duda, una de las aplicaciones más espectaculares de las herramientas CRISPR, que ni tan siquiera hubiéramos podido soñar hace apenas cuatro años. Felicitémonos y aprovechemos estos adelantos tecnológicos para mejorar el desarrollo de terapias avanzadas. El futuro ya está aquí.

Este post ha sido realizado por Lluis Montoliu (@LluisMontoliu) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo Las herramientas de edición genética CRISPR y los ratones avatar se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La inminente revolución de la ingeniería genética basada en el sistema CRISPR/Cas
  2. Ratones, peces y moscas, un modelo a seguir
  3. Sobre la predisposición genética a padecer enfermedades (II)
Kategoriak: Zientzia

Ciencia, política y hechos

Og, 2017-09-28 11:59

Donald J. Trump: “El concepto de calentamiento global fue creado por y para los chinos con objeto de hacer no competitiva la industria estadounidense” 6 de noviembre de 2012.

El objetivo de la política es estar a cargo de la gestión de grandes grupos de humanos para cambiar el mundo; el objetivo de la ciencia es conocer el universo. En este sentido la política se parece más a una tecnología, dado que lo que pretende es actuar sobre la realidad y cambiarla, mientras que la ciencia sólo intenta conocer lo que existe con la mayor precisión posible. Esta es una más de las razones por las cuales ciencia y política jamás se han llevado y nunca se podrán llevar demasiado bien: porque sus fines están en curso de colisión, siempre lo han estado y siempre lo estarán.

Para la ciencia los hechos son sagrados, porque son la base misma de cualquier explicación del cosmos. Para poder aspirar siquiera a comprender lo que hay es necesario empezar por describirlo con la mayor precisión posible, por lo que los datos son esenciales, básicos y (a ser posible) inmutables. Es cierto que se pueden cometer errores, a veces sistemáticos, en otras ocasiones incluso deliberadamente torticeros, aunque los más perniciosos y difíciles de erradicar son los inconscientes, por su propia naturaleza. Cuando los hechos recogidos son falaces, cuando se falsifican deliberadamente o a veces cuando simplemente cuando se clasifican mal, la ciencia puede llegar a descarrilar de modo espectacular. A nadie le agrada pasar su vida y su carrera profesional defendiendo y enseñando teorías basadas en hechos erróneos, por lo que la ciencia como actividad ha desarrollado con el paso del tiempo métodos ingeniosos para eliminar en la medida de lo posible los errores de los datos.

Las interpretaciones, las hipótesis y las teorías son discutibles; idealmente los datos no, aunque en la realidad se discuten continuamente para poner a prueba su resistencia y solidez. La ciencia respeta el poder del dato; como dice el proverbio muchas bellas e ingeniosas teorías se han venido abajo por culpa de un feo, insignificante e incluso repugnante dato. La más hermosa de las teorías no es capaz de resistir si no puede explicar un dato comprobado.

En política, sin embargo, los datos son una herramienta para modificar la realidad, como todo lo demás. La ciencia, sus teorías y sus datos pueden ser utilizadas en un momento dado, pero ése no es el obvetivo de la política, que no pretende describir sino prescribir: modificar la realidad para hacerla más cercana a un modelo preconcebido. De modo que si la ciencia es útil, se usa, pero si las teorías o los datos resultan ser inconvenientes no hay problema ninguno: se ignoran, se tergiversan, se niegan o se retuercen como convenga en cada caso. Si para convencer a suficientes humanos de que nos apoyen hay que negar que el sol sale por el este o afirmar que la luna está hecha de queso todo vale, por mor de la causa. Si para obtener la ventaja táctica a corto plazo hay que comprometer el futuro a largo plazo no importa, porque al fin y al cabo los votantes o partidarios futuros aún no están aquí mientras que las elecciones son inminentes.

Por eso política y ciencia al final no pueden ser otra cosa que antagónicas. Los científicos, como personas que son, tienen todo tipo de ideas políticas, desde las razonables (esas que cada uno estamos pensando ahora mismo) hasta las más descabelladas (que usted y yo sabemos cuáles son). Pero por deformación profesional los científicos acaban respetando los hechos y los datos, de modo que a la larga todos ellos acaban siendo decepcionados por los políticos y sus ‘hechos maleables’.

Quien respeta lo que hay no puede por menos que perder el respeto a quien es capaz de negar lo evidente con tal de rascar un poco de poder, justificándolo en que es mejor que gobierne él mismo que el de enfrente, que es peor. Por eso ninguna relación entre ciencia y política es estable a largo plazo. Y por eso resulta, una vez más, risible imaginar que la ciencia forma parte de las estructuras de poder. Cuando no puede haber nada más antagónico en el mundo de la política que el respeto reverencial (y crítico) al dato sobre la emoción; a la realidad que es sobre la realidad que debería ser. Y por eso ciencia y poder, al final, no se pueden llevar bien.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

El artículo Ciencia, política y hechos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia y política: el papel de la verdad
  2. Teorías, hechos y mentes
  3. Ciencia, ideología y práctica política
Kategoriak: Zientzia

Computación cognitiva de espectros infrarrojos

Az, 2017-09-27 17:00

Copyright Philipp Marquetand / Universität Wien

Los avances en inteligencia artificial y las noticias acerca de ellos parecen estar por todas partes. Desde vehículos autónomos, a buscadores de Internet o filtros de spam, los algoritmos que hemos dado en llamar inteligencia artificial son tremendamente versátiles. En IBM llaman, quizás más apropiadamente, “computación cognitiva” a lo que los demás llamán inteligencia artificial. Y es que las máquinas no poseen una inteligencia, artificial, sino que realizan lo que hacen mejor, computar, de otra forma, cognitivamente.

De hecho, esta es pues otra noticia sobre un avance en computación cognitiva, pero probablemente uno del que no oirás hablar en otra parte. Se trata de algo importante y muy útil, pero que no es tan espectacular como para alcanzar un informativo de televisión, por ejemplo. Sin embargo, ilustra perfectamente la capacidad de complementar (no necesariamente sustituir) la inteligencia humana que esos algoritmos pueden tener.

La espectroscopia infrarroja es uno de los métodos experimentales más útiles para conocer el mundo de las moléculas. Se basa en cómo las moléculas de las sustancias responden a la radiación infrarroja, vibrando y rotando. Los espectros infrarrojos son, por tanto,huellas químicas que proporcionan información sobre la composición y las propiedades de las sustancias y los materiales.

En muchos casos, estos espectros son muy complejos y, si se quiere realizar un análisis detallado, las simulaciones por ordenador se hacen indispensables. Mientras que los cálculos químico-cuánticos teóricamente permiten una predicción extremadamente precisa de los espectros infrarrojos, llevarlos a cabo en la práctica se hace difícil, si no imposible, por el enorme coste computacional que tienen. Por esta razón, los espectros infrarrojos fiables sólo pueden calcularse para sistemas químicos relativamente pequeños.

Y aquí es donde entra la computación cognitiva. Un grupo de investigadores de las Universidades de Viena y Gotinga ha encontrado una forma de acelerar estas simulaciones utilizando lo que se llama aprendizaje máquina, una forma de computación cognitiva. Para este propósito han utilizado redes neuronales artificiales, modelos matemáticos que se basan en el funcionamiento del cerebro humano. Estas redes son capaces de aprender las complejas relaciones mecano-cuánticas que son necesarias para el modelado de los espectros de infrarrojo a partir de solo algunos ejemplos. De esta manera, los científicos pueden llevar a cabo simulaciones en pocos minutos, unas simulaciones que con técnicas estándar necesitarían literalmente miles de años incluso con los superordenadores modernos, y todo ello sin sacrificar la fiabilidad.

Es tal la potencia del nuevo método, que no parece osado predecir que se implantará rápidamente tanto en los laboratorios de investigación (científica y criminal) como en los de control de calidad, y que mejoras sucesivas lo harán una herramienta indispensable en el futuro.

Referencia:

Michael Gastegger,Jörg Behlerb and Philipp Marquetand (2017) Machine learning molecular dynamics for the simulation of infrared spectra Chemical Science doi: 10.1039/C7SC02267K

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Computación cognitiva de espectros infrarrojos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un minuto eterno: pares de Majorana y computación cuántica
  2. Digitalización universal de la computación cuántica analógica en un chip superconductor
  3. Activa Tu Neurona – Física Teórica y Computación Cuántica
Kategoriak: Zientzia

Una conjetura sobre ciertos números en el ‘sistema Shadok’

Az, 2017-09-27 11:59

Los Shadok son los personajes de una serie de animación francesa creada por Jacques Rouxel (1931-2004).

Imagen 1: Una de las imágenes del Doodle dedicado al 48 aniversario (29 de abril de 2016) de la primera emisión en televisión de Les Shadoks (29 de abril de 1968). En la etiqueta: ¡¿Por qué hacerlo simple cuando puede hacerse complicado?!

Los Shadok son seres antropomorfos, con la apariencia de pájaros ‘redondos’, con largas piernas y alas diminutas. Son bastante crueles y tontos; por ejemplo, se dedican a construir máquinas absurdas, que nunca funcionan.

La lengua shadok solo posee cuatro fonemas de base: GA, BU, ZO, MEU. En efecto, su cerebro está constituido por cuatro casillas, y no puede contener más sílabas… de hecho, los Shadok solo son capaces de hacer cuatro cosas; para aprender una nueva, deben olvidar otra…

Estos personajes pueden construir palabras usando las sílabas GA, BU, ZO y MEU… pero la lengua shadok es incomprensible, ya que las palabras son polisémicas. Así, todo Shadok puede emitir cualquier palabra y su interlocutor comprenderá lo que mejor le convenga… aunque intercambian ideas entre ellos. Por ejemplo, ZoGa significa ‘bombear’, ZoBuGa denota ‘bombear con una bomba pequeña’ y ZoBuBuGa representa ‘bombear con una bomba grande’. GaMeu es la noche, BuBu el mar y BuGa la tierra.

Estos cuatro fonemas sirven también para contar: GA (0), BU (1), ZO (2) y MEU (3), y cualquier número se construye a partir de estos cuatro por un sistema de numeración por posición, que es sencillamente la base 4:

Imagen 2: Base decimal versus base shadok.

Existen incluso páginas web destinadas a convertir números del sistema de numeración decimal al sistema shadok y viceversa. Por ejemplo, el número 100 se escribe en el sistema shadok:

BU-ZO-BU-GA.

El pasado domingo, en Blogdemaths (ver [1]) su autor escribía un artículo describiendo algunas propiedades interesantes de los números

Ga-Bu-Zo-Meu-Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu,

donde Ga-Bu-Zo-Meu se repetía n veces.

Los primeros valores de estos números son:

Imagen 3: Los primeros números de la forma Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu, en base 10 y su descomposición en factores primos. Extraído de [1].

A la vista de esta serie de valores, el autor del blog establece la siguiente conjetura:

Conjetura: La descomposición en factores primos de los números

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu

es el producto de una potencia de 3 por un entero libre de cuadrados.

Intentando probar esta conjetura (o encontrar un contraejemplo para ella), el autor obtiene una expresión general para estos números:

Así, para encontrar los divisores de Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu, basta con encontrar los divisores de 28n-1, que es un número de Mersenne.

Usando el teorema de Euler, el autor demuestra que

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (42 veces)

es divisible por 49… así que su conjetura es falsa. A partir de allí encuentra más contraejemplos a su conjetura, para

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (n veces)

con n = 54, 110, 120, 156,… todos ellos números pares.

La conjetura es falsa, pero el autor se pregunta a continuación, ¿quizás no existe un contraejemplo a su conjetura para

Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (n veces)

con n impar? La respuesta es negativa; esta vez, usando números de Mersenne y números primos de Wieferich, es capaz de encontrar un contraejemplo con n impar a su conjetura, y lo descubre para n=91.

Aún es posible hacerse más preguntas, y el autor, efectivamente, las plantea: ¿es n=91 el menor contraejemplo impar a su conjetura?

Referencias

[1] GaBuZoMeu…GaBuZoMeu, Blogdemaths, 24 de septiembre de 2017

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Una conjetura sobre ciertos números en el ‘sistema Shadok’ se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Incendios, los grafos de visibilidad y la conjetura de Collatz
  2. La conjetura de Goldbach
  3. La conjetura de Poincaré-Perelman-Miander
Kategoriak: Zientzia

Orriak