Ciencia de culto

Naukas Bilbao 2017. Foto: Xurxo Mariño
Entre el 5 y el 8 de septiembre de 2005 el Donostia International Physics Center (DIPC) celebró el centenario del annus mirabilis de Einstein mediante la programación en San Sebastián de una serie de conferencias a cargo de grandes científicos, algunos de ellos ganadores del Nobel, abiertas al público general. Cuatro años después, el CIC-Nanogune y el DIPC organizaron otro gran festival científico, esta vez tomando como tema principal la nanociencia. Atom by atom –esa fue su denominación- se celebró los días 28, 29 y 30 de septiembre, y una vez más, los protagonistas fueron científicos de muy alto nivel. Al siguiente año y para celebrar su décimo aniversario, el DIPC organizó un nuevo evento de gran formato, esta vez bajo la denominación genérica Passion for Knowledge; en esta ocasión, a las grandes figuras de la ciencia se sumaron representantes de otros campos de la cultura. Las conferencias de Passion for Knowledge fueron después emitidas por la web amazings.es, lo que les proporcionó una difusión aún mayor. Esos tres festivales se celebraron en el Palacio Kursaal, al que asistían en cada jornada alrededor de 800 personas. El mismo esquema se reprodujo en 2013, año en que se celebró el centenario del modelo atómico de Bohr bajo la denominación Quantum 13, y en 2016, con ocasión de la capitalidad cultural europea de San Sebastián. Estos dos festivales se celebraron en el Teatro Victoria Eugenia, un magnífico escenario en el centro de la ciudad.
Con un planteamiento muy diferente, la plataforma de divulgación científica hoy denominada Naukas, que se había constituido en 2009 con el nombre Amazings, empezó en el otoño de 2010 a preparar la celebración de un gran evento de divulgación. Un acuerdo con la Cátedra de Cultura Científica de la UPV/EHU permitió utilizar a tal efecto la sala Mitxelena (450 asientos) del edificio Bizkaia Aretoa en pleno paseo de Abandoibarra en Bilbao, así como facilitar la participación en el evento de un buen número de divulgadores, colaboradores la mayoría de ellos de la plataforma. La primera edición se celebró el último fin de semana de septiembre de 2011. En los momentos de máxima asistencia se congregaron en la sala alrededor de 400 personas en aquella primera ocasión. Ese festival en dos actos -viernes y sábado- sin apenas cobertura mediática tuvo un gran impacto en internet, en parte por la intensa actividad en las redes sociales de colaboradores y asistentes, y en parte porque la radiotelevisión pública vasca, eitb, emitió en directo el festival en su totalidad por su canal a la carta. Las sesiones se celebraron de diez de la mañana a ocho de la tarde (con una interrupción al mediodía), y por el escenario de la sala Mitxelena pasaron cerca de 50 divulgadores que impartieron sendas charlas de 10 minutos de duración. El festival Naukas se ha repetido desde entonces todos los años en la misma sede hasta 2016. La afluencia de público, el seguimiento a través de internet y su impacto no han dejado de crecer. Además, cada vez más científicos de gran nivel participan como invitados y son entrevistados en el escenario.
En paralelo, también en otros escenarios se han organizado festivales de ciencia con el sello Naukas. El primero fue Amazings Atapuerca, en el Museo de la Evolución Humana de Burgos, en junio de 2012. En mayo de 2013 se organizó en Bilbao, en Bizkaia Aretoa (UPV/EHU), El universo en un día. En marzo de 2014 se celebró una jornada en el congreso CocinArte, en Pamplona. Más tarde, mayo de 2014, vino La ciencia en el aula, en Toledo, que tuvo una segunda edición en abril de 2015. En febrero de 2016 se presentó el sello editorial Naukas en la sesión vespertina Naukas-Madrid: Virus y pandemias. El 26 de mayo de ese mismo año y en el marco del congreso KAUSAL sobre seguridad alimentaria se celebraron dos sesiones Naukas, matutina (para escolares) y vespertina (para público general) en Vitoria. El 11 de junio, en el Teatro Rosalía de Castro, La Coruña, se celebró la primera edición de Naukas Coruña, con doble sesión, matutina y vespertina, sobre neurociencia; fue iniciativa de Museos Científicos Coruñeses en colaboración con el Ayuntamiento de la ciudad. La segunda edición del festival coruñés se ha celebrado el 25 de febrero de este año, y ya se está preparando la de 2018. Y el pasado 30 de septiembre en el Teatro Calderón de Valladolid -otro magnífico escenario- se ha celebrado la hasta ahora última entrega de esta serie de festivales. Además, los antes citados Quantum13 y Passion for Knowledge 2016 contaron con sesiones Naukas a lo largo de su desarrollo. Y todo hace indicar que en los próximos meses nuevos escenarios se unirán a esta corriente. Cada vez son más las ciudades en las que hay agentes interesados en acoger festivales científicos con el sello Naukas y, por lo tanto, con la participación de sus colaboradores.
En paralelo se han desarrollado otras iniciativas. Desgranando Ciencia es otro festival de divulgación científica; se ha celebrado en Granada en 2013, 2014 y 2016, y próximamente vendrá la edición de 2017. SciFest se celebró en Cuenca en noviembre de 2014 y consistió en un evento de conferencias científicas que sirvió para presentar en sociedad el proyecto Principia. En Junio de 2014 nació Ciencia Jot Down en Sevilla. Desde entonces ha habido una edición anual alrededor del verano, la última en septiembre de este año. En 2015 la Cátedra de Cultura Científica de la UPV/EHU programó un primer festival en el que se combinaba la ciencia con el bertsolarismo tradicional del País Vasco en una sesión denominada Jakinduriek Mundue erreko dau!; esa sesión se repitió en 2016, y en 2017 se ha celebrado en cuatro localidades vizcaínas. En abril de 2016 la Universidad de Santiago de Compostela organizó la primera Regueifa de Ciencia, que es un debate a cuatro voces ante numeroso público sobre un tema científico que genera controversia social; desde entonces se han realizado 5 sesiones. El 10 de febrero de este mismo año, la Asociación de Divulgación Científica de Asturias, la Universidad de Oviedo y el Ayuntamiento de la ciudad organizaron el Club de la Ciencia en el Teatro Filarmónica; consistió en una sesión vespertina de 10 charlas de 10 minutos. El 17 de septiembre pasado la plataforma Scenio organizó en Bilbao su propio festival. Y el pasado sábado se estrenó BCNspiracy en Barcelona, un evento de divulgación organizado por la asociación del mismo nombre.
Dejo para el final el que a mi juicio ha sido el hito más significativo en la trayectoria descrita en las líneas anteriores. Tras comprobar que en 2016 las instalaciones de Bizkaia Aretoa (UPV/EHU) se habían quedado pequeñas para albergar al público que año tras año abarrotaba la sala Mitxelena, Naukas Bilbao ha dado el salto y se ha trasladado al Palacio Euskalduna. Ha crecido así en duración (ha pasado a celebrarse de jueves a domingo), diversidad de formatos (Naukas Pro: charlas sobre líneas de investigación de 30 min, Naukas: charlas de 10 minutos al estilo Naukas tradicional, Naukas Kids: actos para adolescentes y talleres para niños y niñas) y, sobre todo, en aforo. Durante los días 15 y 16 de septiembre el Auditorium del palacio Euskalduna, con algo más de 2.000 localidades estuvo a punto de llenarse en su totalidad. Ver la sala principal del Palacio llena de gente atendiendo a charlas de contenido científico es, en sí mismo, todo un espectáculo.
La trayectoria que he descrito en estas líneas da cuenta de un nuevo fenómeno. La ciencia se ha convertido en espectáculo para un sector quizás reducido pero significativo de la población. El formato de charlas cortas, normalmente muy bien preparadas, con chispas de ingenio y a veces humor se ha revelado un gran acierto. Y al calor de ese formato original han crecido otros similares, que van extendiendo por diferentes localidades españolas el virus de la divulgación científica amena, cercana y, en ocasiones, espectacular. Los eventos son seguidos por centenares de personas in situ, y por miles a través de internet. Las charlas se graban y se difunden posteriormente, y de esa forma su impacto aumenta de manera considerable.
La ciencia se ha convertido en objeto de culto. Los espectadores acuden a los festivales y, muy especialmente, a la cita anual en Bilbao como se asiste a una celebración que cuenta con su propio ritual. El fenómeno se asemeja, en cierto modo, a los conciertos de rock de la década de los setenta, a los que miles de personas acudían porque eran de asistencia obligada para las personas de una generación y un entorno cultural, era algo que había que hacer. Quien ha seguido por internet un festival de ciencia con el sello Naukas, quiere asistir en directo. Y quien asiste en directo, quiere repetir. Algunas personas de las que se suben al escenario -las más dotadas para la puesta en escena- son lo más parecido que, en divulgación científica y aledaños, hay a una estrella. Es ciencia espectáculo, desde luego, pero creo que no exagero si digo que, además, se trata de ciencia de culto. Ha nacido un nuevo género de divulgación y lo ha creado Naukas.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Ciencia de culto se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- ¿Puede ser culto alguien de Letras?
- Vídeo ganador del premio especial del jurado de Ciencia Clip: “Nanotecnología”
- Ciencia Clip: un concurso de vídeos de ciencia para jóvenes estudiantes
Sistemas respiratorios: animales que respiran en agua

Arcos branquiales soportando las branquias en un lucio
Hay animales que, como vimos aquí, no precisan de estructuras especializadas para respirar. Son organismos de muy pequeño tamaño o cuya organización corporal permite que todas las células se encuentren a muy poca distancia del medio respiratorio. Es el caso, por ejemplo, de los protozoos y de los metazoos de los filos Porifera y Cnidaria, así como de otros grupos como el de los gusanos planos. Pero las especies de la mayoría de grupos de metazoos tienen un tamaño y una anatomía que impide respirar mediante difusión directa de O2 y CO2.
En esta anotación nos ocuparemos de los animales acuáticos. Hemos utilizado el medio respiratorio como criterio porque sus características condicionan de forma determinante la función respiratoria. El medio acuático es, por comparación con el aéreo, muy denso y viscoso (850 veces más viscoso), por lo que su movimiento resulta mucho más difícil y costoso, y eso es un problema a la hora de hacerlo circular. Pero por otro lado, esa alta densidad permite que ciertas estructuras biológicas de similar densidad puedan flotar, sin que sus características estructurales se vean alteradas.
Algunos animales, aunque muy pocos, intercambian sus gases a través del tegumento sin recurrir a estructuras especializadas; aunque en ellos la transferencia de O2 a las células y la de CO2 a la superficie corporal se produce con la intermediación del sistema circulatorio. En sentido estricto no tienen órgano respiratorio, pero sí cabe hablar de un sistema en el que los intercambios con el exterior ocurren a través del tegumento, y la transferencia a y desde las células, a través del sistema vascular. Es el caso de algunos pequeños animales acuáticos, como rotíferos, y también de algunos anélidos, incluyendo, por ejemplo, a ciertos oligoquetos que, aunque viven en el medio terrestre, necesitan estar recubiertos de agua para respirar. Estos animales provocan la renovación del medo respiratorio en torno a ellos gracias a su propio desplazamiento o a la impulsión provocada por el batido de cilios situados en su superficie corporal, aunque también los hay que, simplemente, se encuentran en un lugar donde el agua circula de manera permanente por tratarse de corrientes naturales.
La mayor parte de los animales que respiran en agua poseen branquias. Las branquias son proyecciones hacia el exterior o evaginaciones del tegumento, que adoptan formas diversas, desde una estructura arborescente, como la de ciertos poliquetos, hasta dispositivos con una configuración muy regular sobre la base de numerosas subunidades muy similares que se repiten, como las de los bivalvos o los peces. Muchos gasterópodos acuáticos y crustáceos también respiran a través de branquias. Su interior se encuentra muy vascularizado, densamente poblado por capilares sanguíneos. Esa configuración permite generar grandes superficies de intercambio entre el exterior y el medio interno o la sangre, lo que, en virtud de la ley de Fick, aumenta mucho la difusión de los gases.
Las branquias son estructuras muy delicadas, con un fino epitelio; mantienen su estructura y una gran superficie apta para la función respiratoria gracias a que su densidad y la del agua son muy similares. En el medio terrestre las branquias colapsarían al agruparse los filamentos por efecto de la gravedad. Por esa razón la mayor parte de los animales acuáticos no pueden respirar en aire, porque la superficie efectiva para el intercambio gaseoso se reduce considerablemente fuera del agua.

Nembrotha kubaryana, un nudibranquio, comiendo
Hay animales con branquias exteriores, sin apenas protección, como las de ciertos anélidos. Otras, como las de los moluscos nudibranquios (gasterópodos conocidos como babosas de mar), disponen de nematocistos, células con productos tóxicos que adquieren, comiéndolos, de los cnidarios; de hecho, los nudibranquios son los únicos animales de los que se tiene constancia que coman cnidarios. La mayor parte de los animales con branquias las protegen en el interior de alguna estructura rígida, como los bivalvos (en el interior de las valvas), algunos crustáceos (en el interior de la cámara branquial), o los peces (entre la cavidad bucal y la cavidad opercular, y protegidas por el opérculo).
Todos los animales que respiran en agua mediante branquias protegidas en el interior de alguna estructura han de impulsar el medio respiratorio que, como hemos comentado antes, es mucho más denso y viscoso que el aire. Cada uno de ellos utiliza un dispositivo diferente. Los bivalvos bombean el agua gracias al batido de los miles de cilios con que cuentan sus branquias. Los cefalópodos recurren al flujo de agua que genera el sistema de propulsión a chorro que utilizan para desplazarse. Los peces se valen de la acción muscular que provoca el movimiento de la base de la cavidad bucal y de los opérculos, de manera que generan efectos, alternativamente, de succión y de impulsión de la masa de agua que entra por la boca y sale por la apertura opercular. El característico movimiento de apertura y cierre de la boca de los teleósteos es de carácter respiratorio, y nada tiene que ver con la ingestión de agua o de alimento. El agua circula a través de las branquias, que separan las dos cavidades, bucal y opercular. Una excepción a este procedimiento es la de los túnidos, que aunque son los teleósteos más activos y, por lo tanto, los de mayores necesidades respiratorias, han perdido la musculatura respiratoria, ya que es su propio desplazamiento ininterrumpido el que mantiene el flujo de agua por las cavidades bucal y opercular a través de las branquias.
El sistema branquial de los teleósteos es el más sofisticado de los metazoos. Consiste en arcos branquiales, que son las estructuras que dan soporte físico a una serie doble de filamentos branquiales, cada uno de los cuales dispone de una fila de lamelas (laminillas) secundarias a cada lado. Lo normal es que haya cinco pares de arcos, y la unidad básica respiratoria es la laminilla. Las lamelas son finísimas, y su interior se encuentra muy irrigado con capilares sanguíneos. La sangre circula en sentido contrario al del agua, de manera que se produce así lo que se conoce como intercambio contracorriente; se trata de una disposición que favorece de forma notable el intercambio, en este caso de gases respiratorios entre la sangre y el agua.
Hay otros enclaves anatómicos en los que se produce intercambio de gases respiratorios en animales acuáticos, como el manto de ciertos moluscos o el árbol respiratorio de las holoturias. Pero sin duda son las branquias las estructuras más comunes y mejor conocidas. La asociación entre ellas y los sistemas circulatorios resultan eficaces para superar las limitaciones al intercambio de gases respiratorios que vimos en la anotación anterior.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Sistemas respiratorios: animales que respiran en agua se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Sistemas respiratorios: los límites a la difusión de los gases
- Las actividades animales
- La distribución del agua animal y el curioso caso del potasio
Otras predicciones del modelo cinético. Movimiento browniano
Nuestro modelo cinético para un gas permite realizar más predicciones cuantitativas interesantes además de la ley del gas ideal.
Sabemos por experiencia (por ejemplo, cuando inflamos una rueda de bicicleta muy rápidamente) que cuando un gas se comprime o condensa rápidamente su temperatura cambia. ¿Cómo explica nuestro modelo este fenómeno?
Tal y como veíamos cuando hablábamos del gas ideal, las moléculas rebotan en todas direcciones entre las paredes del contenedor. Cada una de las colisiones con la pared es perfectamente elástica, por lo que las moléculas rebotan sin pérdida de energía cinética. Supongamos ahora que la fuerza externa que mantiene a la pared en su sitio aumenta de repente. Al comprimir el gas se realiza trabajo sobre las partículas, y como el trabajo no es más que una forma de transferencia de energía, esto se traduce en un aumento de la energía cinética de las partículas. Pero sabemos ya que la temperatura de un gas es proporcional a la energía cinética promedio de sus moléculas, por lo que al comprimir un gas su temperatura sube.

La expansión de un gas (previamente licuado) es lo que produce el enfriamiento en un frigorífico (en azul en la imagen). Después el compresor efectúa trabajo, comprimiéndolo de nuevo (zona roja), lo que genera un aumento de la tempertaura, por lo que el calor debe eliminarse a través de un intercambiador en la parte posterior (líneas verticales en negro).
Si, por el contrario, la fuerza externa sobre la pared disminuye en vez de aumentar, ocurre justo al revés. Mientras la pared se mantuvo quieta las partículas no efectuaban trabajo sobre ella y la pared no efectuaba trabajo sobre las partículas. Si la pared tiene ahora libertad para moverse hacia fuera, esto es, en el mismo sentido que la fuerza que ejercen sobre ella por las partículas al chocar, la cosa cambia. Dado que las partículas al colisionar ejercen una fuerza sobre la pared y la pared se mueve en la dirección de la fuerza, podemos afirmar que las partículas están realizando trabajo sobre la pared. La energía necesaria para realizar este trabajo debe venir de alguna parte. La única fuente de energía aquí es la energía cinética de las partículas. Por lo tanto la energía cinética de las partículas debe disminuir, es decir, rebotan con menos velocidad. Esto implica, de forma automática, que la temperatura del gas debe disminuir. Que es exactamente lo que ocurre cuando aumenta el volumen del contenedor de un gas, y es la base del funcionamiento de los sistemas de refrigeración.
Existen muchas pruebas experimentales que apoyan estas conclusiones y, por tanto, apoyan la teoría cinético molecular de los gases y, por extensión, la teoría cinético molecular de la materia en general.
Quizás la prueba definitiva, porque explica cosas que no se podían explicar de ninguna otra manera, es el movimiento de partículas muy pequeñas pero visibles a través de un microscopio, cuando están suspendidas en un gas o líquido. Las moléculas de gas o líquido son demasiado pequeñas para ser vistas directamente, pero sus efectos sobre una partícula más grande (por ejemplo, una partícula de humo o un grano de polen) se pueden observar a través del microscopio.
En cualquier momento, enjambres de moléculas moviéndose a velocidades muy diferentes están golpeando la partícula más grande por todos los lados. Participan tantan moléculas que su efecto total casi se cancela. Eso sí, cualquier efecto neto cambia en magnitud y dirección de un momento a otro. Por lo tanto, el impacto de las moléculas invisibles hace que las partículas visibles parezcan “bailar” aleatoriamente en el campo de visión del microscopio. Cuanto más caliente esté el gas o el líquido (por tanto, con más energía cinética las moléculas), más animado el movimiento.
Esta observación se conoce como movimiento browniano. El nombre hace referencia al botánico inglés, Robert Brown, que en 1827 observó el fenómeno mientras observaba una suspensión de granos microscópicos del polen. El mismo tipo de movimiento de partículas suspendidas (“movimiento térmico”) existe en líquidos y sólidos, aunque en éstos el movimiento de las partículas está muchísimo más limitado.
El origen del movimiento browniano fue un misterio durante muchos años, hasta que en 1905 Albert Einstein, usando la teoría cinética, predijo que ese movimiento debía ocurrir y estableció qué variables lo determinaban. La comparación entre sus predicciones detalladas y las observaciones del movimiento browniano por Jean Perrin en 1908 fueron la pieza que terminó de convencer a la mayoría de los escépticos restantes hasta ese momento sobre la realidad de los átomos. Este fenómeno, que es simple de montar experimentalmente y fascinante de ver, da una prueba visual sorprendente de que las partes más pequeñas de toda la materia en el Universo están realmente en un perpetuo estado de movimiento animado y aleatorio.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Otras predicciones del modelo cinético. Movimiento browniano se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La ley del gas ideal a partir del modelo cinético
- Una cuestión de movimiento
- Un modelo simple de gas
Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”
Las Islas Canarias fueron uno de los lugares del mundo donde más zifios quedaban varados por el uso de sónares militares antisubmarinos, una técnica que se emplea para detectar naves en profundidad utilizando la propagación del sonido bajo el agua.
En el año 2003, un estudio liderado por la Universidad de Las Palmas de Gran Canaria estableció una relación entre la utilización de los sónares con la muerte de estos cetáceos y en 2004, el Gobierno español estableció una moratoria al uso de sónares a 12 millas náuticas alrededor de Canarias para mejorar la conservación de los zifios. Desde entonces, no se han vuelto a registrar varamientos masivos anómalos en aguas canarias.
Nadie mejor para hablarnos de los zifios y de la importancia de la biología de la conservación que Natacha Aguilar de Soto, responsable de investigación en cetáceos y bioacústica marina del grupo de investigación BIOECOMAC de la Universidad de La Laguna (Tenerife).

Natacha Aguilar es bióloga marina y responsable de investigación en Cetáceos y Bioacústica Marina del Grupo de Investigación BIOECOMAC (ULL)
Los zifios son una familia de cetáceos que habitan aguas profundas de los océanos. Según explicó Aguilar de Soto en su participación en la segunda jornada de Naukas en Bilbao, el zifio es “un animal misterioso” que raramente vemos en superficie, por lo que para muchos es aún un desconocido. Estos mamíferos marinos de mediano tamaño realizan proezas de buceo que igualan e incluso superan las del titánico cachalote: los zifios pueden aguantar hasta dos horas bajo el agua y llegar a tres kilómetros de profundidad, después de permanecer durante cinco minutos en la superficie para almacenar en sus músculos el oxígeno necesario para su inmersión.
Una vez bajo el agua, aproximadamente a 500 metros de la superficie, comienzan a emitir chasquidos de ecolocalización (un bio-sonar que ha evolucionado separadamente en murciélagos y cetáceos), para buscar y localizar a la presa idónea. Ya seleccionada, los cetáceos emiten zumbidos, que son una serie de chasquidos producidos muy rápidamente que les permiten seguir a su presa con mayor precisión para finalmente cazarla.

Zifio. (Autor: Circe)
Entre los buceos profundos, los zifios realizan periodos de recuperación, de alrededor de 1 a 1,5 horas, en los que realizan buceos más someros de hasta 400 metros de profundidad y 10-20 minutos de duración, separados por tan solo 2 minutos en la superficie marina entre buceos consecutivos. Son precisamente estos momentos los que Natacha y su equipo aprovechan para colocar con ventosa un dispositivo similar a un teléfono móvil en el lomo de los cetáceos, la DTAG.
Este dispositivo permite a los investigadores obtener información precisa y detallada del comportamiento y movimientos de los cetáceos, desde la profundidad y duración de los buceos hasta detalles de la frecuencia de coleteo, las reacciones ante estímulos del medio, comunicación acústica e incluso datos fisiológicos, como la tasa de respiración de la que se extrae la tasa metabólica. “Ahora estamos trabajando para detectar la frecuencia cardíaca de los zifios, en colaboración con las universidades de St Andrews (Escocia), Aarhus (Dinamarca) y el Moss Landing Institute (EEUU)”, explica Natacha.
Los zifios, como el resto de cetáceos, son especies protegidas que requieren medidas para su conservación; son animales longevos con una estrategia de la “K”, que significa que tienen un ritmo reproductivo bajo y se involucran en los cuidados de sus pocas crías. “Cada vez que se extrae un animal importa”, asegura Natacha. “Si disfrutamos tanto de los misterios de la mar, necesitamos conservarlos. Cada especie es única, y no se va a cuidar sola si seguimos la inercia de alterar su hábitat marino con nuestras actividades humanas”, continúa.
En este sentido, la investigadora recalcó en Naukas la importancia de la Biología de la Conservación y la necesidad de proteger todas las especies del impacto de la actividad humana. Al igual que muchos cetáceos, los zifios también han sufrido la contaminación de los plásticos en el mar; recientemente apareció en Noruega un zifio muerto con el estómago colapsado por 30 bolsas de plástico. Esto originó una amplia movilización social y un documental de SKY TV en el que participó en equipo de la ULL en sus trabajos de investigación de zifios en El Hierro.

Perfil de buceo de los zifios.
Por eso es tan necesaria la biología de la conservación, una ciencia multidisciplinar que requiere de conocimientos científicos de la biodiversidad y del hábitat, además de conocimientos sociales sobre las interrelaciones entre las especies y el ser humano.
El objetivo principal de esta ciencia es precisamente mantener la biodiversidad del planeta. Para ello, y según explica Natacha, es necesario armonizar los usos humanos con las necesidades de la fauna y la flora. “Solo tenemos un planeta y cada vez somos más seres humanos; tenemos que organizarnos bien y tener responsabilidad hacia los otros seres vivos con los que compartimos este barco planetario”, asegura.
Gracias a la biología de la conservación, se aplican en el medio ambiente diversas medidas de corrección para que las actividades humanas tengan el menor impacto posible sobre la biodiversidad, promoviendo desarrollos tecnológicos que permitan que estas acciones generen menos residuos, consuman menos energía y sean lo más eficientes posible.
Una medida ejemplar de esta ciencia es la prohibición que en algunos lugares del mundo, como Nueva Zelanda o Nigeria, se está haciendo de la minería de fondos marinos profundos, que consiste en la extracción de nódulos ferromagnéticos y costras de poliminerales que existen en los fondos marinos; una actividad que moviliza tóxicos y destruye comunidades biológicas que han tardado miles de años en desarrollarse.
Natacha lo tiene claro; la biología de la conservación es vital y así lo constató en la entrevista que protagonizó en la segunda jornada de Naukas. “Las actividades humanas alcanzan cada vez más los fondos profundos de los océanos y mares, y es necesario que tomemos una posición activa para protegerlos; es decir, ser animales responsables”, explica Natacha. “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”, corrobora la bióloga.
Sobre la autora: Iraide Olalde, es periodista en la agencia de comunicación GUK y colaboradora de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté” se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Matemáticas del Planeta Tierra (MPE2013), en Bilbao
- Conferencias plenarias #Quantum13 también en Bilbao
- Equilibrio tautomérico en un sistema modelo de gran interés biológico
Memoria de forma en polímeros

(a) Se produce un daño en la superficie a 22.9ºC, (b) estado tras aumentar la temperatura a 36ºC, (c) a 43ºC, (d) a 46ºC, (e) a 51ºC, (f) enfriamiento (superficie recuperada)
En un mundo cada vez más automatizado, la ciencia juega un papel muy importante en la investigación y desarrollo de sistemas capaces de actuar por sí mismos. Cada vez es más habitual el estudio y desarrollo de materiales inteligentes, que modifican alguna de sus propiedades al ser sometidos a un estímulo concreto. Ejemplo de ello son los polímeros con memoria de forma, capaces de cambiar de forma bajo la acción de un estímulo, como, por ejemplo, la temperatura.
Partiendo de anteriores investigaciones llevadas a cabo en el Departamento de Química Física de la Facultad de Ciencia y Tecnología de la UPV/EHU relacionadas con el policicloocteno —un polímero semicristalino comercial—, la investigadora del departamento Nuria García Huete ha desarrollado diferentes sistemas poliméricos que han dado como resultado materiales versátiles que podrían tener múltiples aplicaciones en diversos campos.
Los investigadores del equipo sabían que el policicloocteno presenta memoria de forma cuando se encuentra entrecruzado. La investigadora hace un símil para explicar su estructura: “Podríamos imaginar un polímero como un plato de espaguetis, donde cada espagueti sería una cadena individual del polímero. El entrecruzamiento consiste en una serie de uniones entre cadenas, lo que equivaldría a nudos entre nuestros espaguetis, de forma que no sería posible tomar un solo espagueti del plato, ya que se encuentra unido a otros tantos sin poderlos separar”. Este polímero entrecruzado utilizando peróxido de dicumilo recupera su estructura original, una vez deformado, aplicándole calor.
García-Huete ha comprobado que esta propiedad se puede aprovechar para restaurar un objeto que ha sido dañado de manera superficial (dañado, pero sin llegar a romper) con sólo aplicarle calor. Asimismo, demostraron que construyendo una estructura superficial, basada en micropilares, la recuperación de forma se conservaba y se conseguía cambiar el ángulo de contacto de la superficie. Para ello, utilizaron una gota de agua y constataron que el agua adoptaba diferentes ángulos con la superficie, en función de la deformación de la muestra.
Debido a que los peróxidos acaban degradándose, la investigadora ha encontrado una alternativa para conseguir el entrecruzamiento, utilizando radiación gamma, y de esta forma ha obtenido materiales no citotóxicos que podrían tratar de emplearse en un futuro para aplicaciones biomédicas. Tras caracterizar las propiedades mecánicas y térmicas, ha analizado el comportamiento de memoria de forma y, en colaboración con otros expertos, han conseguido relacionar la memoria de forma con el volumen libre (espacio libre intermolecular) del polímero.
En busca de nuevos horizontes, los investigadores han querido saber cómo obtener materiales que además de tener memoria de forma, que permite recuperar deformaciones, puedan autorrepararse (es decir, reparar rupturas en el propio material). En colaboración con la Universidad Tecnológica de Delft (Países Bajos) consiguieron mezclas de policicloocteno con otro tipo de polímeros, llamados ionómeros, con las que obtuvieron materiales que conservan el efecto de memoria de forma y que además poseen capacidad de autorreparación con sólo calentarlos, lo que favorece la prolongación de la vida útil de los materiales.
El conjunto de los estudios realizados y los resultados obtenidos abren la posibilidad de aplicación de estos polímeros en diversos campos científico-tecnológicos, con el objetivo de satisfacer las exigencias y comodidades del día a día. La investigadora ve la posibilidad de trasladar estos resultados a la escala industrial, “porque desde un inicio toda la investigación se ha enfocado precisamente en poder llevarlo a nivel industrial, desde el polímero empleado hasta la elección de las investigaciones, pasando por el tamaño de las muestras realizadas y las técnicas escogidas”. Mientras tanto, la investigación sigue su curso, ya que ha quedado probado que “partiendo de un mismo polímero se pueden obtener diferentes propiedades”, concluye García-Huete.
Referencias:
García-Huete, N., Laza, J.M., Cuevas, J.M. et al. (2014) Shape memory effect for recovering surface damages on polymer substrates J Polym Res 21: 481. doi: 10.1007/s10965-014-0481-9
García-Huete N, Laza JM, Cuevas JM, Vilas JL, Bilbao E, León LM (2014) Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties. Radiat Phys Chem 102:108–16. doi: 10.1016/j.radphyschem.2014.04.027
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Memoria de forma en polímeros se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El deterioro de la memoria con la edad es selectivo
- Un nexo cannabinoide entre mitocondrias y memoria
- Polímeros conductores, el futuro del camuflaje
El ingenio de los pájaros, de Jennifer Ackermann
Juan Ignacio Pérez Iglesias, lector
Jennifer Ackermann ha escrito un muy buen libro de divulgación científica. Trata, como su título indica, de pájaros. Es un repaso muy completo de los comportamientos de las aves que dan cuenta de las capacidades cognitivas de estos animales. La otra palabra del título, genio, está muy bien escogida. Porque no cabe hablar de inteligencia. Si ya es difícil a veces saber de qué hablamos cuando nos referimos a la inteligencia humana, mucho más lo es si de lo que se trata es de otras especies, aves en este caso. Genio es una buena palabra para reflejar el contenido del libro.
Por el libro de Ackermann pasan todo tipo de comportamientos. Se ocupa de la capacidad de aprendizaje de las aves y de su posible relación con el tamaño encefálico. Comenta, por ejemplo, que en su evolución el cuerpo se redujo mucho más que el encéfalo, por comparación con los dinosaurios de los que proceden. De manera que los pájaros, en contra de la creencia popular, tienen un encéfalo de tamaño relativo bastante grande. Hay aves que fabrican instrumentos, aves que juegan, otras son capaces de posponer la gratificación a una tarea bien completada en espera de una mejora, cuervos que reconocen personas y las recuerdan durante mucho tiempo.
La autora hace un repaso de las extraordinarias capacidades vocálicas de algunas especies. Y también se ocupa del canto, una habilidad que en algunos pájaros resulta, por su ejecución, casi increíble. Repasa la relación que hay entre la actividad y capacidad canora y el desarrollo del alto centro vocal (HVC), un área encefálica implicada en el aprendizaje y la generación del canto. Es impresionante el caso de una especie cuyos machos han de aprender un canto nuevo en cada época de apareamiento; pues bien, el tamaño de esa región aumenta en la primavera y se encoge al final del verano, y eso ocurre porque varía el número de neuronas en los circuitos del canto. También se ocupa de los pergoleros, esas aves cuyos machos fabrican en medio de la selva australiana unas pérgolas de gran complejidad estructural y cromática, y que forman parte de su técnica para poder aparearse.
Las migraciones y la cuestión de los mecanismos implicados en la orientación ocupan una parte importante del libro. Valora las diferentes hipótesis que se han barajado para explicar la enorme capacidad de orientación que tienen algunas especies. Magnetismo terrestre, claves visuales, olores, o la combinación de inputs de diferente naturaleza podrían estar en la base de su capacidad de navegación. Ackermann, en los compases finales del libro, manifiesta su preocupación por el riesgo de desaparición en que se encuentran muchas especies debido al efecto de la acción humana sobre los ecosistemas y, concretamente, por la subida de temperaturas que ya está desplazando a algunas especies hacia el norte, hacia la cumbre de las montañas o modificando peligrosamente sus calendarios de cría.
Al finalizarlo uno no puede dejar de pensar que la razón por la que nos resulta tan difícil entender a otros animales, entender las bases y alcance de sus capacidades cognitivas, es porque buscamos en ellos habilidades humanas, sin reparar en el hecho de que esas otras especies tienen una diferente configuración encefálica y estructura mental por la sencilla razón de que han evolucionado bajo presiones selectivas diferentes y han de hacer frente a problemas diferentes.
El libro está muy bien documentado. La autora no solo ha consultado a numerosos especialistas. También presenta una extensa bibliografía. En algún momento puede dar la impresión de un cierto desorden, pero creo que esa sensación proviene de la dificultad, también para el lector, de gestionar mentalmente tanta y tan interesante información como ha manejado Ackermann. El texto tiene el ritmo y las dimensiones adecuadas. Y las anécdotas que narra dejan al lector boquiabierto.
Este libro solo tiene, a mi juicio, un pero: la traducción es mala, algo a lo que, desgraciadamente, ya nos tienen acostumbrados la mayoría de editoriales españolas. Para muestra, un botón: traduce ecologist (ecólogo) como ecologista. He cotejado las dos versiones (inglés en formato electrónico y castellano en papel) y el resultado ha sido penoso. Recomiendo vivamente su lectura en inglés. Es una delicia.
Ficha:
Autora: Jennifer Ackermann
En español:
Título: El ingenio de los pájaros
Editorial: Ariel (Planeta)
Año: 2017
En inglés:
Título: The Genius of Birds
Editorial: Penguin Random House LLC, Nueva York
Año: 2016
En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.
El artículo El ingenio de los pájaros, de Jennifer Ackermann se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Libros para enamorarse
- La cara más emocionante, humana y filosófica de la ciencia
- El caso de “Los Pájaros”
Ciencia a presión: Evolución de la imagen de la ciencia en la prensa española
La expresión publish or perish (publica o perece) es de sobra conocida en el ámbito científico. Quiere expresar la importancia que tienen las publicaciones en los currículos del personal investigador. En ciencia no basta con hacer observaciones, obtener unos resultados y derivar conclusiones. Hay, además, que hacerlo público y, a poder ser, en medios de la máxima difusión internacional. La ciencia que no se da a conocer, que no se publica, no existe. El problema es que de eso, precisamente, depende el éxito profesional de los investigadores, sus posibilidades de estabilización y de promoción. De ahí la conocida expresión del principio.
El mundo de la comunicación tiene también sus normas. En comunicación se trata de que lo que se publica sea consumido. De la misma forma que la ciencia que no se publica no existe, en comunicación tampoco existen los contenidos que no se consumen: o sea, no existen los artículos que no se leen, los programas de radio que no se oyen, los de televisión que no se ven o los sitios web que no se visitan. En comunicación valdría decir “sé visto, oído o leído, o perece”.
Ambas esferas tienen ahí un interesante punto en común. Y por supuesto, en comunicación o difusión científica el ámbito de confluencia se aprecia en mayor medida aún. Confluyen aquí ambas necesidades, la de hacer públicos los resultados de investigación y, además, conseguir que lleguen a cuantas más personas mejor.
El problema es que la presión por publicar y por tener impacto comunicativo puede conducir tanto a unos como a otros profesionales, a adoptar comportamientos deshonestos, contrarios a la ética profesional e, incluso, a desvirtuar completamente el fin de la ciencia y de su traslación al conjunto del cuerpo social. Y también puede conducir, y de hecho ha conducido, a que se haya configurado un sistema de publicaciones científicas con patologías.
De todo esto se trató el pasado 31 de marzo en “Producir o perecer: ciencia a presión”, el seminario que organizarono conjuntamente la Asociación Española de Comunicación Científica y la Cátedra de Cultura Científica de la UPV/EHU.
6ª Conferencia. Ana Victoria Pérez Rodríguez, directora de la Agencia DiCYT: Evolución de la imagen de la ciencia en la prensa española
Evolución de la imagen de la ciencia en la prensa españolaEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Ciencia a presión: Evolución de la imagen de la ciencia en la prensa española se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Ciencia a presión: Ciencia abierta vs. ciencia cerrada
- Ciencia a presión: Ciencia patológica y patología editorial
- Ciencia a presión: Científicos que avalan patrañas
Las herramientas de edición genética CRISPR y los ratones avatar

CRISPR y los ratones avatar
Quiero dedicar este primer artículo que publico en la web de la cátedra de cultura científica de la UPC/EHU a un concepto nuevo y, creo, interesante, que nos ha cambiado la vida en nuestro laboratorio y en muchos otros laboratorios internacionales de biomedicina. Me refiero a los ratones avatar, a los nuevos modelos animales para investigar enfermedades raras de base genética que podemos ahora generar fácilmente gracias a las herramientas CRISPR de edición genética. Ellos fueron también los protagonistas de mi primera incursión divulgadora en la última reunión Naukas17, patrocinada por esta cátedra, celebrada en Bilbao hace pocos días.
En mi laboratorio del Centro Nacional de Biotecnología, en Madrid, y también gracias a nuestra participación en el Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) nos dedicamos a investigar sobre la genética de las enfermedades raras. ¿Qué mutaciones y en qué genes son los causantes de estas enfermedades raras? Y, naturalmente, también investigamos sobre qué podemos hacer para aliviar o resolver estas condiciones genéticas de baja prevalencia en la población. Las enfermedades raras son aquellas que afectan a menos de 5 de cada 10,000 personas (o menos de 1 de cada 2,000). Conocemos más de 7,000 enfermedades raras. Cada una de ellas afecta a un reducido número de personas, aunque globalmente suponen una parte importante de la población (3 millones de personas en nuestro país, según estimaciones recientes).
En concreto nosotros investigamos sobre una de estas condiciones genéticas raras: el albinismo, causado por mutaciones en alguno de los 20 genes asociados, que dan lugar a otros tantos tipos de albinismo. En el albinismo lo que se ve (pérdida de pigmentación) no es lo más relevante (déficit visual). La discapacidad visual severa (con una agudeza visual inferior al 10%, es decir, con ceguera legal) es pues lo más característico de las personas con albinismo. El albinismo afecta aproximadamente a 1 de cada 17,000 personas, unas 3,000 personas en nuestro país. Hasta el momento habíamos podido aproximarnos a esta condición genética a través de modelos animales utilizando alguna de las técnicas de modificación genética, que conocemos desde hace más de 30 años. Son tecnologías muy poderosas pero no exentas de limitaciones y, generalmente, sofisticadas y muy caras de aplicar. Sin embargo, como no conocíamos otras técnicas, nos parecían estupendas y ello nos ha permitido, a nosotros y a muchos otros laboratorios en todo el mundo, generar numerosos modelos animales para el estudio de enfermedades raras, como el albinismo.
Todo cambió en 2013. En enero de ese año descubrimos la existencia de unas nuevas herramientas para la edición genética de los genomas, denominadas CRISPR (acrónimo en inglés de secuencias repetidas, palindrómicas, regularmente intercaladas y agrupadas), descritas muchos años antes por microbiólogos en bacterias. A principios de la década de los años 90 Francisco Juan Martínez Mojica (Francis Mojica), microbiólogo de la Universidad de Alicante, se dio de bruces con ellas al secuenciar el genoma de unas arqueas (otro grupo de microorganismos procariotas, similares pero no idénticos a las bacterias) que habitaban en las salinas de Santa Pola (Alicante). Publicó sus resultados en 1993.
No fue el primero en descubrirlas en bacterias, pero si fue el primero en percatarse de su relevancia y en decidir dedicar su carrera profesional a entenderlas. Lo consiguió unos 10 años más tarde, al percatarse de que se trataba de una estrategia innovadora de defensa, un verdadero sistema inmune adaptativo, que usaban las bacterias para zafarse de las infecciones de los virus que les acechaban. A diferencia de nuestro sistema inmune, las bacterias son capaces de transmitir su inmunidad frente a determinados patógenos a su descendencia, porque aquella tiene una base genética. Algo insólito e inesperado que le costó casi tres años publicarlo, hasta conseguir que lo aceptarán en una revista científica modesta, en 2005. Y precisamente ese artículo pionero es el que ha le ha permitido, años más tarde, ser premiado por diversas instituciones (Jaime I, Fundación BBVA-Fronteras del Conocimiento, Lilly, Albany, etc…) y es muy probable que le asegure plaza en una terna del premio Nobel de Medicina (o de Química), caso de que en Estocolmo decidan próximamente premiar el descubrimiento de las CRISPR y/o sus aplicaciones de edición genética, las que constituyen una verdadera revolución en biología.
Los descubrimientos básicos de Francis Mojica, y de los investigadores que le siguieron, permitieron describir cómo funcionaba el sistema CRISPR en bacterias y definir sus componentes. Esencialmente una molécula de ARN guía y una enzima capaz de cortar las dos cadenas del ADN (una nucleasa). Estas tijeras moleculares de alta precisión atacan el genoma del virus invasor en las bacterias inmunes a ese patógeno, y, a su vez, en células animales, pueden realizar una función similar, cortando el gen que nosotros le indiquemos al sistema, según la guía utilizada. Estos cortes en el genoma deben repararse de inmediato, para que las células sobrevivan y no pierdan material genético, que podría tener consecuencias fatales. Los sistemas de reparación los tenemos ya en todas nuestras células y son de dos tipos. El sistema reparador que actúa por defecto progresa añadiendo y eliminando letras (bases del genoma, A, G, C ó T) hasta que logra generar una cierta complementariedad (la G siempre se aparea con la C, y la T con la A) que finalmente es sellada y resuelta la cicatriz en el genoma. La inserción y eliminación de bases en el genoma normalmente conlleva la inactivación del gen cortado. Nunca antes había sido tan fácil inactivar un gen. Sencillamente dirigimos una herramienta CRISPR específica contra el gen que deseamos silenciar, el sistema CRISPR corta el ADN en el gen, y el sistema de reparación lo inactiva durante el proceso reparador.
Existe otro sistema de reparación, más sofisticado, que puede reparar el corte en el ADN a partir de secuencias molde externas, con ciertas similitudes a ambos lados del corte, pero con secuencias nuevas internas. Es decir, podemos inducir la introducción de secuencias previamente no existentes, lo cual permite tanto incorporar mutaciones específicas como corregirlas. Sorprendente y muy versátil. A este proceso le llamamos edición genética, aprovechando la similitud con la edición de textos realizada con un programa de ordenador, que permite localizar la palabra equivocada y corregirla, substituirla o eliminarla.
Mediante el uso de las herramientas CRISPR de edición genética es ahora posible inducir la incorporación de mutaciones específicas en genes determinados, a voluntad del investigador. Tanto en células en cultivo como en modelo animales, como son los ratones, los peces cebra o las moscas de la fruta (Drosophila). En ratones, desde principios de los 80, hemos generado miles de mutantes específicos de muchos de los más de 20,000 genes que tenemos tanto los roedores como nosotros, los primates.
Sin embargo, estas mutaciones generadas usando las técnicas clásicas eran relativamente groseras. Por ejemplo, la mayoría de ratones mutantes específicos de cada gen portan la eliminación de una parte importante del gen, frecuentemente el primero de los exones (las partes en las que se subdivide la zona de un gen que codifica información genética. Esta modificación genética tan relevante asegura prácticamente la inactivación de un gen. Sin embargo, tiene un problema. Al diagnosticar que tipo de mutaciones genéticas aparecen en la población humana nos damos cuenta que apenas existen este tipo de mutaciones entre los pacientes. Es decir, no hay apenas personas a quienes les falte el primero de los exones de un gen. Por el contrario, lo que encontramos al diagnosticar genéticamente a los pacientes afectados por alguna enfermedad congénita son pequeñas substituciones, eliminaciones o duplicaciones, a veces de hasta una sola base, de una sola letra. Son cambios mucho más sutiles que no obstante pueden tener consecuencias severas para la persona portadora de tales cambios en su genoma. Hasta hace poco, con los métodos disponibles, no era nada sencillo (y generalmente era imposible) reproducir estos diminutos cambios en el gen para investigar la enfermedad en células o animales modelo.
Las herramientas CRISPR han solventado la limitación que teníamos. Ahora es posible usar reactivos CRISPR para inducir, específicamente, el cambio, substitución, eliminación o duplicación de una o pocas bases en células o animales. Es pues ahora relativamente sencillo generar ratones portadores, exactamente, de la misma mutación que previamente hemos diagnosticado en pacientes. Estos ratones que llevan la misma modificación genética que los pacientes son los denominados ratones avatar. Cada uno de esos ratones reproduce los efectos de la mutación de la persona de la que derivan. De la misma manera que en la famosa película de ciencia ficción de James Cameron las criaturas azules están conectadas a las personas también aquí estos ratones avatar están asociado a la persona de la que portan la misma mutación.
Los ratones avatar representan un cambio conceptual en la generación de modelos animales para el estudio de enfermedades humanas. En medicina se dice que no hay enfermedades, sino enfermos, teniendo en cuenta que cada enfermo presenta síntomas ligeramente distintos y no siempre los mismos ni con la misma intensidad, lo que ha dado pie a la medicina personalizada. De la misma manera ahora, gracias a las herramientas CRISPR de edición genética, podemos generar los ratones avatar que representan modelos animales personalizados, específicos, que sin duda nos ayudarán a entender mejor cómo se establecen y desarrollan las enfermedades (y qué podemos hacer para detener o corregir la aparición de los síntomas de las mismas). Estos modelos animales avatar podrán ahora ser usados para validar propuestas terapéuticas innovadoras, y así poder asegurar los parámetros de seguridad y eficacia antes de saltar al ámbito clínico, antes de trasladar los posibles tratamientos a los pacientes. Esta es, sin duda, una de las aplicaciones más espectaculares de las herramientas CRISPR, que ni tan siquiera hubiéramos podido soñar hace apenas cuatro años. Felicitémonos y aprovechemos estos adelantos tecnológicos para mejorar el desarrollo de terapias avanzadas. El futuro ya está aquí.
Este post ha sido realizado por Lluis Montoliu (@LluisMontoliu) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo Las herramientas de edición genética CRISPR y los ratones avatar se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La inminente revolución de la ingeniería genética basada en el sistema CRISPR/Cas
- Ratones, peces y moscas, un modelo a seguir
- Sobre la predisposición genética a padecer enfermedades (II)
Ciencia, política y hechos

Donald J. Trump: “El concepto de calentamiento global fue creado por y para los chinos con objeto de hacer no competitiva la industria estadounidense” 6 de noviembre de 2012.
El objetivo de la política es estar a cargo de la gestión de grandes grupos de humanos para cambiar el mundo; el objetivo de la ciencia es conocer el universo. En este sentido la política se parece más a una tecnología, dado que lo que pretende es actuar sobre la realidad y cambiarla, mientras que la ciencia sólo intenta conocer lo que existe con la mayor precisión posible. Esta es una más de las razones por las cuales ciencia y política jamás se han llevado y nunca se podrán llevar demasiado bien: porque sus fines están en curso de colisión, siempre lo han estado y siempre lo estarán.
Para la ciencia los hechos son sagrados, porque son la base misma de cualquier explicación del cosmos. Para poder aspirar siquiera a comprender lo que hay es necesario empezar por describirlo con la mayor precisión posible, por lo que los datos son esenciales, básicos y (a ser posible) inmutables. Es cierto que se pueden cometer errores, a veces sistemáticos, en otras ocasiones incluso deliberadamente torticeros, aunque los más perniciosos y difíciles de erradicar son los inconscientes, por su propia naturaleza. Cuando los hechos recogidos son falaces, cuando se falsifican deliberadamente o a veces cuando simplemente cuando se clasifican mal, la ciencia puede llegar a descarrilar de modo espectacular. A nadie le agrada pasar su vida y su carrera profesional defendiendo y enseñando teorías basadas en hechos erróneos, por lo que la ciencia como actividad ha desarrollado con el paso del tiempo métodos ingeniosos para eliminar en la medida de lo posible los errores de los datos.
Las interpretaciones, las hipótesis y las teorías son discutibles; idealmente los datos no, aunque en la realidad se discuten continuamente para poner a prueba su resistencia y solidez. La ciencia respeta el poder del dato; como dice el proverbio muchas bellas e ingeniosas teorías se han venido abajo por culpa de un feo, insignificante e incluso repugnante dato. La más hermosa de las teorías no es capaz de resistir si no puede explicar un dato comprobado.
En política, sin embargo, los datos son una herramienta para modificar la realidad, como todo lo demás. La ciencia, sus teorías y sus datos pueden ser utilizadas en un momento dado, pero ése no es el obvetivo de la política, que no pretende describir sino prescribir: modificar la realidad para hacerla más cercana a un modelo preconcebido. De modo que si la ciencia es útil, se usa, pero si las teorías o los datos resultan ser inconvenientes no hay problema ninguno: se ignoran, se tergiversan, se niegan o se retuercen como convenga en cada caso. Si para convencer a suficientes humanos de que nos apoyen hay que negar que el sol sale por el este o afirmar que la luna está hecha de queso todo vale, por mor de la causa. Si para obtener la ventaja táctica a corto plazo hay que comprometer el futuro a largo plazo no importa, porque al fin y al cabo los votantes o partidarios futuros aún no están aquí mientras que las elecciones son inminentes.
Por eso política y ciencia al final no pueden ser otra cosa que antagónicas. Los científicos, como personas que son, tienen todo tipo de ideas políticas, desde las razonables (esas que cada uno estamos pensando ahora mismo) hasta las más descabelladas (que usted y yo sabemos cuáles son). Pero por deformación profesional los científicos acaban respetando los hechos y los datos, de modo que a la larga todos ellos acaban siendo decepcionados por los políticos y sus ‘hechos maleables’.
Quien respeta lo que hay no puede por menos que perder el respeto a quien es capaz de negar lo evidente con tal de rascar un poco de poder, justificándolo en que es mejor que gobierne él mismo que el de enfrente, que es peor. Por eso ninguna relación entre ciencia y política es estable a largo plazo. Y por eso resulta, una vez más, risible imaginar que la ciencia forma parte de las estructuras de poder. Cuando no puede haber nada más antagónico en el mundo de la política que el respeto reverencial (y crítico) al dato sobre la emoción; a la realidad que es sobre la realidad que debería ser. Y por eso ciencia y poder, al final, no se pueden llevar bien.
Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.
El artículo Ciencia, política y hechos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Ciencia y política: el papel de la verdad
- Teorías, hechos y mentes
- Ciencia, ideología y práctica política
Computación cognitiva de espectros infrarrojos

Copyright Philipp Marquetand / Universität Wien
Los avances en inteligencia artificial y las noticias acerca de ellos parecen estar por todas partes. Desde vehículos autónomos, a buscadores de Internet o filtros de spam, los algoritmos que hemos dado en llamar inteligencia artificial son tremendamente versátiles. En IBM llaman, quizás más apropiadamente, “computación cognitiva” a lo que los demás llamán inteligencia artificial. Y es que las máquinas no poseen una inteligencia, artificial, sino que realizan lo que hacen mejor, computar, de otra forma, cognitivamente.
De hecho, esta es pues otra noticia sobre un avance en computación cognitiva, pero probablemente uno del que no oirás hablar en otra parte. Se trata de algo importante y muy útil, pero que no es tan espectacular como para alcanzar un informativo de televisión, por ejemplo. Sin embargo, ilustra perfectamente la capacidad de complementar (no necesariamente sustituir) la inteligencia humana que esos algoritmos pueden tener.
La espectroscopia infrarroja es uno de los métodos experimentales más útiles para conocer el mundo de las moléculas. Se basa en cómo las moléculas de las sustancias responden a la radiación infrarroja, vibrando y rotando. Los espectros infrarrojos son, por tanto,huellas químicas que proporcionan información sobre la composición y las propiedades de las sustancias y los materiales.
En muchos casos, estos espectros son muy complejos y, si se quiere realizar un análisis detallado, las simulaciones por ordenador se hacen indispensables. Mientras que los cálculos químico-cuánticos teóricamente permiten una predicción extremadamente precisa de los espectros infrarrojos, llevarlos a cabo en la práctica se hace difícil, si no imposible, por el enorme coste computacional que tienen. Por esta razón, los espectros infrarrojos fiables sólo pueden calcularse para sistemas químicos relativamente pequeños.
Y aquí es donde entra la computación cognitiva. Un grupo de investigadores de las Universidades de Viena y Gotinga ha encontrado una forma de acelerar estas simulaciones utilizando lo que se llama aprendizaje máquina, una forma de computación cognitiva. Para este propósito han utilizado redes neuronales artificiales, modelos matemáticos que se basan en el funcionamiento del cerebro humano. Estas redes son capaces de aprender las complejas relaciones mecano-cuánticas que son necesarias para el modelado de los espectros de infrarrojo a partir de solo algunos ejemplos. De esta manera, los científicos pueden llevar a cabo simulaciones en pocos minutos, unas simulaciones que con técnicas estándar necesitarían literalmente miles de años incluso con los superordenadores modernos, y todo ello sin sacrificar la fiabilidad.
Es tal la potencia del nuevo método, que no parece osado predecir que se implantará rápidamente tanto en los laboratorios de investigación (científica y criminal) como en los de control de calidad, y que mejoras sucesivas lo harán una herramienta indispensable en el futuro.
Referencia:
Michael Gastegger,Jörg Behlerb and Philipp Marquetand (2017) Machine learning molecular dynamics for the simulation of infrared spectra Chemical Science doi: 10.1039/C7SC02267K
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Computación cognitiva de espectros infrarrojos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Un minuto eterno: pares de Majorana y computación cuántica
- Digitalización universal de la computación cuántica analógica en un chip superconductor
- Activa Tu Neurona – Física Teórica y Computación Cuántica
Una conjetura sobre ciertos números en el ‘sistema Shadok’
Los Shadok son los personajes de una serie de animación francesa creada por Jacques Rouxel (1931-2004).

Imagen 1: Una de las imágenes del Doodle dedicado al 48 aniversario (29 de abril de 2016) de la primera emisión en televisión de Les Shadoks (29 de abril de 1968). En la etiqueta: ¡¿Por qué hacerlo simple cuando puede hacerse complicado?!
Los Shadok son seres antropomorfos, con la apariencia de pájaros ‘redondos’, con largas piernas y alas diminutas. Son bastante crueles y tontos; por ejemplo, se dedican a construir máquinas absurdas, que nunca funcionan.
La lengua shadok solo posee cuatro fonemas de base: GA, BU, ZO, MEU. En efecto, su cerebro está constituido por cuatro casillas, y no puede contener más sílabas… de hecho, los Shadok solo son capaces de hacer cuatro cosas; para aprender una nueva, deben olvidar otra…
Estos personajes pueden construir palabras usando las sílabas GA, BU, ZO y MEU… pero la lengua shadok es incomprensible, ya que las palabras son polisémicas. Así, todo Shadok puede emitir cualquier palabra y su interlocutor comprenderá lo que mejor le convenga… aunque intercambian ideas entre ellos. Por ejemplo, ZoGa significa ‘bombear’, ZoBuGa denota ‘bombear con una bomba pequeña’ y ZoBuBuGa representa ‘bombear con una bomba grande’. GaMeu es la noche, BuBu el mar y BuGa la tierra.
Estos cuatro fonemas sirven también para contar: GA (0), BU (1), ZO (2) y MEU (3), y cualquier número se construye a partir de estos cuatro por un sistema de numeración por posición, que es sencillamente la base 4:

Imagen 2: Base decimal versus base shadok.
Existen incluso páginas web destinadas a convertir números del sistema de numeración decimal al sistema shadok y viceversa. Por ejemplo, el número 100 se escribe en el sistema shadok:
BU-ZO-BU-GA.
El pasado domingo, en Blogdemaths (ver [1]) su autor escribía un artículo describiendo algunas propiedades interesantes de los números
Ga-Bu-Zo-Meu-Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu,
donde Ga-Bu-Zo-Meu se repetía n veces.
Los primeros valores de estos números son:

Imagen 3: Los primeros números de la forma Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu, en base 10 y su descomposición en factores primos. Extraído de [1].
A la vista de esta serie de valores, el autor del blog establece la siguiente conjetura:Conjetura: La descomposición en factores primos de los números
Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu
es el producto de una potencia de 3 por un entero libre de cuadrados.
Intentando probar esta conjetura (o encontrar un contraejemplo para ella), el autor obtiene una expresión general para estos números:
Así, para encontrar los divisores de Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu, basta con encontrar los divisores de 28n-1, que es un número de Mersenne.
Usando el teorema de Euler, el autor demuestra que
Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (42 veces)
es divisible por 49… así que su conjetura es falsa. A partir de allí encuentra más contraejemplos a su conjetura, para
Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (n veces)
con n = 54, 110, 120, 156,… todos ellos números pares.
La conjetura es falsa, pero el autor se pregunta a continuación, ¿quizás no existe un contraejemplo a su conjetura para
Ga-Bu-Zo-Meu-[…]-Ga-Bu-Zo-Meu (n veces)
con n impar? La respuesta es negativa; esta vez, usando números de Mersenne y números primos de Wieferich, es capaz de encontrar un contraejemplo con n impar a su conjetura, y lo descubre para n=91.
Aún es posible hacerse más preguntas, y el autor, efectivamente, las plantea: ¿es n=91 el menor contraejemplo impar a su conjetura?
Referencias
[1] GaBuZoMeu…GaBuZoMeu, Blogdemaths, 24 de septiembre de 2017
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Una conjetura sobre ciertos números en el ‘sistema Shadok’ se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Incendios, los grafos de visibilidad y la conjetura de Collatz
- La conjetura de Goldbach
- La conjetura de Poincaré-Perelman-Miander
Sistemas respiratorios: los límites a la difusión de los gases
La mayor parte de los animales necesitan oxígeno para vivir. Es el aceptor final de electrones en la cadena respiratoria, por lo que sin su concurso no sería posible la síntesis de ATP que tiene lugar en el interior de las mitocondrias. Es, pues, la molécula clave para poder degradar las sustancias carbonadas que proporcionan la energía necesaria para el funcionamiento de los sistemas orgánicos. El catabolismo de esas moléculas, además de energía en forma de ATP, rinde CO2, sustancia que ha de ser expulsada al exterior, pues su acumulación en los medios interno o intracelular, daría lugar a peligrosas elevaciones del pH[1]. Llamamos respiración interna o respiración celular a los procesos metabólicos que tienen lugar en las mitocondrias y que, utilizando O2, dan lugar a la obtención de ATP y la producción de CO2 a partir de moléculas carbonadas.

Esquema de la respiración interna
El oxígeno se encuentra en el medio externo y ha de ser transferido al interior de las mitocondrias. Y, como se ha dicho, el CO2 ha de ser expulsado al exterior. Denominamos respiración externa al conjunto de procesos implicados en esas transferencias. Debemos, para empezar, considerar las limitaciones que afectan a la difusión de los gases respiratorios para, a continuación, analizar los dispositivos específicos que han permitido la superación de tales limitaciones.

Intercambio de gases en un alveolo pulmonar
La difusión es el proceso clave y universal mediante el que se produce el intercambio de gases entre el medio respiratorio y el organismo. Se produce de acuerdo con la denominada ley de Fick que, aplicada a los gases, establece que la tasa o velocidad a que se produce es directamente proporcional al denominado coeficiente de difusión (que depende de la permeabilidad para con cada gas de la barrera que hay que traspasar), a la superficie disponible para el intercambio, y al gradiente de presiones parciales del gas existente entre los dos compartimentos; y es inversamente proporcional a la distancia que ha de superar.
Llegados a este punto, conviene introducir la noción de presión parcial pues desde el punto de vista de la actividad biológica de los gases, es a ese parámetro al que hemos de atenernos y no a la concentración. A nivel del mar la presión atmosférica total es de 1 atm (atmósfera) o 760 mmHg (milímetros de mercurio). A dicha presión contribuyen todos los gases que hay en la mezcla y principalmente el N2 y el O2. El oxígeno representa un 21% del volumen del gas, por lo que su presión parcial (pO2) es de 159 mmHg. La del CO2 es de tan solo 0,03 mmHg. Si en vez de tratarse de un gas en la atmósfera, nos referimos a uno disuelto en agua o en alguna disolución fisiológica (medio interno, sangre, etc.), su presión parcial se define como la presión de ese mismo gas en una atmósfera con la que la disolución se encontrase en equilibrio.
Las configuraciones respiratorias más simples son aquellas en las que los gases pasan de un enclave a otro a través de procesos de difusión únicamente. A partir de cálculos teóricos basados en niveles metabólicos y requerimientos de O2 considerados “moderados” y dada una pO2 ambiental de 159 mmHg, la distancia de difusión –o distancia crítica– no debería superar el valor de 1 mm. Esta es una consecuencia de las características del proceso de difusión y supone, de hecho, una importante limitación fisiológica de partida. Hay animales en los que tal limitación no llega a operar. Son los más simples: organismos de muy pequeño tamaño –unicelulares incluso, como los paramecios u otros protozoos- o aquellos cuya anatomía permite que las células se encuentren en contacto con el medio externo o muy próximas a este, como esponjas, cnidarios o gusanos planos.
Sin embargo, la limitación anterior sí actúa sobre la mayor parte de los animales porque, como vimos aquí, en el curso de la evolución su tamaño ha tendido a crecer, además de haber aumentado también su complejidad. También han surgido grupos con muy altas demandas metabólicas (peces escómbridos, insectos voladores, aves y mamíferos). Y por otra parte, prácticamente todos o casi todos los enclaves acuáticos o terrestres de nuestro planeta -incluyendo zonas de muy diversa disponibilidad de oxígeno– han sido colonizados por algún grupo animal. Por todas esas razones, en el curso de la evolución todos esos animales se han dotado de dispositivos específicos que, actuando sobre los términos de la ley de Fick antes citados, facilitan el intercambio de gases respiratorios. Esos dispositivos son el aparato respiratorio, cuya función es realizar los intercambios directos con el exterior, y el sistema cardiovascular, que se ocupa de la transferencia interna (aquí vimos algunas características del sistema circulatorio humano, y aquí una panorámica de las bombas de impulsión). Veamos esto con cierto detalle.
El coeficiente de difusión es propio del gas y de la naturaleza de la barrera que separa el medio respiratorio del medio interno; obviamente, la selección natural no puede actuar sobre las características del gas, pero sí puede hacerlo sobre el epitelio que separa ambos medios. Por ello, los epitelios respiratorios y las paredes de los capilares sanguíneos presentan una alta permeabilidad para con los gases objeto de intercambio.
El área superficial también está sometida a la acción de la selección natural, y lo está en dos niveles. El primero corresponde a los órganos respiratorios, que consisten generalmente en múltiples pliegues del epitelio que se encuentra en contacto con el medio externo, llenos en ocasiones de infinidad de recovecos. A título de ejemplo valga el dato de que la superficie interna del total de alveolos pulmonares de un ser humano es de 100 m2. Cuando los pliegues se proyectan hacia el exterior del organismo en forma de evaginaciones, los órganos respiratorios reciben el nombre de branquias; son característicos de animales acuáticos. Y cuando consisten en invaginaciones reciben el nombre de pulmones; son característicos de animales terrestres. Los insectos, con sus tráqueas, constituyen un grupo aparte, aunque en rigor también su sistema traqueal es un sistema de invaginaciones. El segundo nivel corresponde a los enclaves en los que el sistema cardiovascular se halla en contacto con los tejidos. En este, la irrigación de los tejidos a cargo de variables (y en caso de ser necesarios, grandes) números de capilares sanguíneos ofrece enormes posibilidades para modificar la superficie de transferencia en la vía final de difusión a las células, incluyendo la posibilidad de aumentarla de manera considerable.
La selección natural también actúa sobre los dispositivos implicados en el intercambio de gases, de un modo tal que tienden a mantenerse gradientes de presiones parciales de la suficiente magnitud. También en este caso, son dos los enclaves implicados, órgano respiratorio y sistema circulatorio. Los gradientes amplios se consiguen en el aparato respiratorio impulsando el medio (aire o agua) a su través, de manera que su renovación permite mantener elevada la presión parcial de O2 y, por lo tanto, el gradiente. Lo opuesto vale para el CO2. Llamamos ventilación a la actividad que consiste en hacer circular el medio respiratorio sobre la superficie de los epitelios.
El mismo mecanismo sirve para la transferencia interna a través del sistema circulatorio, ya que la renovación de la sangre o medio interno que irriga o baña los tejidos permite mantener la pO2 relativamente alta y la pCO2 relativamente baja, lo que favorece el intercambio de esos gases con las células. De la misma forma se facilita la captación de O2 desde el medio respiratorio por la sangre, así como la cesión de CO2. En este caso es la bomba de impulsión del sistema circulatorio la que genera el movimiento, cuya velocidad puede también modificarse en función de las necesidades. Y además de lo anterior, muchos animales cuentan con unas sustancias de naturaleza proteica, a las que denominamos pigmentos respiratorios, que se combinan con el O2 y CO2, de manera que se reduce la presencia de dichos gases en la sangre en forma disuelta y por lo tanto, su presión parcial. El efecto de dichos pigmentos es muy importante; al reducir la pO2 en la sangre que irriga el órgano respiratorio, ayuda a mantener un gradiente entre los medios externo (respiratorio) e interno (sangre o hemolinfa) que facilita la transferencia de O2. Y lo mismo ocurre con el CO2 en los tejidos, aunque en este caso, los procesos implicados en su transporte interno son más complejos.
Por último, también la distancia de difusión está sometida a la actuación de la selección natural. Por un lado, los epitelios (respiratorio y capilar) a través de los cuales se produce difusión de gases son muy finos, por lo que la distancia de difusión se minimiza. Por el otro, la misma existencia de sistemas circulatorios equivale, en realidad, a una reducción funcional de la vía de difusión. Y por último, en los animales con sistemas circulatorios abiertos, no existen barreras a la difusión en la vía final, dado que el medio interno baña directamente las células.
Hasta aquí la descripción de los elementos funcionales que participan en los intercambios de gases respiratorios, así como del modo en que actúa la selección natural sobre los procesos representados por los términos de la ecuación de Fick. En posteriores anotaciones nos ocuparemos de otros aspectos de la respiración y de una descripción de la diversidad de órganos respiratorios.
Nota:
[1] Además de disolverse, el CO2 se combina con el agua para dar ácido carbónico, lo que potencialmente genera una elevación del pH.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Sistemas respiratorios: los límites a la difusión de los gases se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Sistemas nerviosos: el sistema central de vertebrados
- Sistemas nerviosos: el tálamo y el hipotálamo
- Sistemas nerviosos: el tronco encefálico y el cerebelo
La ley del gas ideal a partir del modelo cinético
Tras exponer nuestro modelo simple del gas ideal, incorporar la distribución de las velocidades de las moléculas de Maxwell y tener en cuenta el efecto del tamaño de las moléculas, ya lo tenemos todo para ver cómo se deriva a partir del modelo cinético una ley a la que se ha llegado por estudios macroscópicos y fenomenológicos, la ley del gas ideal.
Según estableció Bernoulli, en la teoría cinética la presión de un gas es el resultado de los impactos contínuos de las partículas del gas contra las paredes del contenedor. Esto explica por qué la presión es inversamente proporcional al volumen (ley de Boyle) y directamete proporcional a la densidad: cuanto más pequeño sea el volumen o mayor la densidad, mayor será el número de partículas que colisionan con la pared en un momento dado. Pero la presión tambien depende de la energía cinética de las partículas (Ec)y, por tanto, de su velocidad, v, ya que Ec = 1/2 m·v2. Esta velocidad determina no solo la fuerza que se ejerce sobre la pared durante cada impacto, sino también la frecuencia de estos impactos.
Si las colisiones con la pared son perfectamente elásticas, la ley de conservación del momento lineal describe perfectamente el resultado del impacto. Un átomo que rebota e una pared sufre un cambio de momento lineal. Como el momento lineal es el producto de la masa por la velocidad, este cambio de momento se traduce en un cambio de velocidad, ya que asumimos que la masa es constante para la partícula (aquí habría que recordar que la velocidad es un vector). Pero si hay un cambio de momento lineal es porque se ha ejercido una fuerza sobre la partícula durante el impacto, como sabemos por las leyes de Newton. Por estas mismas leyes, para esa fuerza que ha hecho rebotar a la molécula de gas debe existir una fuerza de reacción que se aplica sobre la pared: esta fuerza es la contribución del impacto de la partícula a la presión.
Aplicando las mecánica de Newton a nuestro odelo simple de gas llegamos a la conclusión, para las tres dimensiones del movimiento, de que la presión P está relacionada con el promedio de la velocidad de los átomos al cuadrado, (v2)pr, y con el volumen, V, y la masa de la molécula de gas, m, según la expresión P = m· (v2)pr / 3V.
La derivación de esta expresión es muy sencilla y un magnífico ejemplo de la aplicación de las leyes de Newton en un dominio en el que el propio Newton no se aventuró.
Tenemos ahora dos expresiones para la presión de un gas. Una derivada de datos experimentales macroscópicos, P· V = k ·T y otra derivada de las leyes de Newton aplicadas a nuesto modelo simple, P = m· (v2)pr / 3V. Si ambas describen la misma realidad, entonces debe ocurrir que k · T = m · (v2)pr / 3. De aquí se deduce que la temperatura, T = 2/(3k) · m ·(v2)pr /2, es decir, la temperatura de un gas es proporcional a la energía cinética promedio de sus moléculas.
Ya teníamos alguna indicación de que aumentar la temperatura de un material afectaba de alguna manera al movimiento de sus “pequeños componentes”. También éramos conscientes de que cuanto mayor es la temperatura de un gas, más rápido se movían sus moléculas. La novedad es que ahora tenemos una relación cuantitativa precisa derivada del modelo cinético y de las leyes experimentales. Por fin podemos afirmar no solo que el calor no es algún tipo de fluido u otra sustancia, sino también que es solo la energía cinética de las partículas (átomos, moléculas) que constituyen el material*.
Nota:
* Para ser precisos, eso que estamos llamado calor, y que ya dejamos claro que es energía térmica, no solo es movimiento de las partículas, también es energía radiante. Pero baste esta forma de expresarse para los fines de esta serie.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo La ley del gas ideal a partir del modelo cinético se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La ley del gas ideal y la tercera ley de la termodinámica
- Un modelo simple de gas
- Los antecedentes de la teoría cinética
Ignacio López-Goñi: “El sistema de defensa de las bacterias es el mejor editor de genomas que existe”
Las bacterias también se vacunan. Bajo esta premisa comenzó la ponencia que el microbiólogo navarro Ignacio López-Goñi, catedrático en la Universidad de Navarra, ofreció en la primera jornada del evento de divulgación científica Naukas, que este año cumple su séptima edición en el Palacio Euskalduna de Bilbao.
“Las bacterias no piensan, pero son muy listas”, anunció López-Goñi ante una audiencia apasionada de la ciencia que abarrotó el Auditorio del Palacio Euskalduna. Y es que, según avanzó el divulgador, cuando un virus infecta a una bacteria, la bacteria es capaz de coger parte de ese DNA e incluirlo en su genoma. “Así, en la siguiente infección, la bacteria es capaz de reconocer el virus y aniquilarlo. Así se vacunan las bacterias contra los virus”, explicó el científico en su ponencia.

El microbiólogo Ignacio López-Goñi el pasado 15 de septiembre en su intervención en Naukas Bilbao 2017. (Autor imagen: Iñigo Sierra)
Se trata de un avanzado sistema de defensa heredable mediante el cual las bacterias y sus descendientes guardan en su memoria una primera infección para hacer frente a las posteriores. Un sistema de defensa que “ha permanecido oculto durante millones de años”, según explicó López-Goñi, hasta que entró en juego la labor del microbiólogo español Francis Mojica, de la Universidad de Alicante.
Todo comenzó cuando el alicantino comenzó a estudiar el genoma de la arquea Haloferax mediterranei, un microorganismo que habita en las salinas de Santa Pola (Alicante) y que requiere de altas concentraciones de sal para vivir.
Fue entonces cuando descubrió unas secuencias de ADN que se repetían en el genoma del microorganismo; unas secuencias a las que denominó con las siglas CRISPR, o lo que es lo mismo, repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (Clustered Regularly Interspaced Short Palindromic Repeats, por sus siglas en inglés).
Estas secuencias repetidas hicieron al investigador recapacitar sobre la función que estas pudieran tener en la célula. Años más tarde, Mojica encontró la respuesta, y descubrió el maravilloso sistema de defensa que esta secuencias representaban para la bacteria.
En concreto, las procariotas son capaces de incorporar a su genoma un fragmento del ADN invasor que le sirve de guía para evitar futuras invasiones. Es decir, la secuencia del virus queda almacenada como información en el genoma de la bacteria y sus descendientes. Las bacterias quedan “vacunadas”.

Ignacio López-Goñi explicó en Naukas Bilbao 2017 que las bacterias también se vacunan. (Autor imagen: Iñigo Sierra)
A partir de 2012, y gracias a las investigaciones del español, la bioquímica francesa Emmanuelle Charpentier y la química estadounidense Jennifer Doudna demostraron que el mecanismo CRISPR descubierto por el alicantino se puede emplear como una herramienta para editar cualquier genoma; un auténtico “editor” genético que permite cortar y pegar trozos de ADN.
Se trata de una técnica de edición que, como si de un procesador de texto se tratara, y de una manera “sencilla, barata y precisa”, permite quitar y poner genes, además de estudiar y corregir mutaciones de los mismos. “El sistema de defensa de las bacterias ha resultado ser el mejor editor de genomas que existe”, aseguró en su ponencia el navarro López-Goñi.
Se trata de una técnica muy utilizada en los laboratorios de todo el mundo. Mediante este sistema, los microbiológicos y científicos son capaces de obtener plantas resistentes a plagas, animales con más masa muscular o mosquitos que no transmiten la malaria o el dengue. “Incluso puede servir para terapia génica y para la investigación de enfermedades raras e infecciosas”, explicó el científico.
Sin ir más lejos, este verano la técnica CRISPR se ha utilizado en Estados Unidos para modificar embriones con una enfermedad genética, eliminando de forma selectiva las secuencias de ADN no deseadas.
Ahora, más de 20 años después de que el microbiólogo alicantino descubriera las secuencias repetidas y el sistema de defensa de aquellas bacterias de Santa Pola, Francis Mojica es nuestro próximo candidato al Nobel de Medicina y Química.
Sobre la autora: Iraide Olalde, es periodista en la agencia de comunicación GUK y colaboradora de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Ignacio López-Goñi: “El sistema de defensa de las bacterias es el mejor editor de genomas que existe” se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Bacterias emisoras de rayos X
- Viscosidad negativa con bacterias
- ¿Dónde van las bacterias marinas en invierno?
Estroncio en la leche
El estroncio (Sr) es un elemento que en caso de accidente nuclear se vierte de forma mayoritaria a la atmosfera. El comportamiento químico del estroncio es similar al del calcio y se puede acumular en el suelo, en vegetales y en animales (especialmente en los huesos). Se trata de un elemento con dos principales radioisótopos (90Sr y 89Sr) que tienen una vida efectiva biológica relativamente alta para el ser humano, y debido a su fijación en los huesos, acaba impartiendo una dosis de radiación a lo largo de muchos años.
El Organismo Internacional de Energía Atómica (OIEA) ha propuesto, entre otros muchos, un método de detección rápida de Sr radiactivo en leche para casos de emergencia o accidente nuclear. Sin embargo, este tipo de métodos no es válido para su aplicación en medidas de rutina medioambientales, en los que los límites de detección son mucho menores que en los casos de emergencia nuclear. Es por ello que en un estudio llevado a cabo por el grupo de investigación Seguridad nuclear y radiológica del Departamento de Ingeniería Nuclear y Mecánica de Fluidos de la UPV/EHU ha obtenido las condiciones y los parámetros con los que convertir el método rápido propuesto por la OIEA en un método utilizable en los planes de vigilancia radiológica integrados en estudios medioambientales rutinarios.
El laboratorio del grupo de investigación Seguridad nuclear y radiológica es un laboratorio de medidas de baja actividad, que además de dedicarse a la investigación también realiza medidas de vigilancia radiológica para diferentes entidades como el Consejo de Seguridad Nuclear. En opinión de la doctora Raquel Idoeta, investigadora del grupo, “se trata de un método rápido, con rendimientos buenos y relativamente fácil y económico de adaptar”.
En el estudio han llevado a cabo tanto medidas experimentales como simulaciones numéricas para determinar los parámetros y condiciones de adaptación; asimismo, según explica Idoeta, han hecho una valoración económica “para ver qué facilidades pueden tener otro laboratorios para adaptarlo”. Y añade que “cualquier laboratorio medioambiental que tenga equipos de detección de partículas beta o que realice determinaciones de estroncio no requiere apenas de nada para integrar este método. Un laboratorio que aplicase este método de forma rutinaria, aunque adaptando en este caso los volúmenes y tiempos de medida, según lo determinado en nuestro estudio para alcanzar las exigencias en materia medioambiental, no tendría mayores problemas en aplicarlo debidamente en caso de una emergencia para dar una respuesta rápida a la determinación de estroncio radiactivo en leche”.
Referencia:
M. Herranz, R. Idoeta, S. Rozas, F. Legarda (2017) “Analysis of the use of the IAEA rapid method of 89Sr and 90Sr in milk for environmental monitoring”. Journal of Environmental Radioactivity. DOI: 10.1016/j.jenvrad.2017.06.003.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Estroncio en la leche se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Un espectrómetro Raman portátil mide el punto óptimo de maduración del tomate
- La teoría de bandas de los sólidos se hace topológica
- Todo lo que se puede medir en un río
La cara más emocionante, humana y filosófica de la ciencia
Fernando del Álamo, lector

“¿Está Ud. de broma, Sr. Feynman?”, Richard P. Feynman, 1985, Alianza Editorial
Debía correr el año 1989, siendo yo estudiante, y charlando con el catedrático de física (del que decían que “libro que caía en sus manos, libro que leía”) me comentó:
– ¿No conoce Ud. a Richard Feynman?
– No.
– Sí hombre, fue Premio Nobel de Física y declarado deficiente mental por el ejército.
– ¡Ostrás!
– Hay un libro maravilloso titulado “¿Está Ud. de broma, Sr. Feynman?” donde habla de estas y otras cosas. Léalo, hombre, que le gustará.
Localicé el libro, lo compré y, literalmente, me enganché. No pude dejarlo hasta el final. En él narra las peripecias de su vida, había trabajado en el Proyecto Manhattan (donde, entre otras cosas, se dedicaba a reventar cajas fuertes). Lo interesante es que cuando empecé el libro pensé “este tío está un poco loco” y cuando lo finalicé pensé “¡claro! ¡tiene razón!”. No es un libro técnico, en absoluto, sino la visión de la ciencia y la vida que tiene una mente privilegiada como la suya.

“¿Qué te importa lo que piensen los demás?”, Richard P. Feynman, 1988, Alianza Editorial
Posteriormente, me enteré de la existencia de su segundo libro: “¿Qué te importa lo que piensen los demás?”, en el que explica las investigaciones posteriores a la explosión del Challenger y cómo lo pasó con la enfermedad de su esposa. Da gusto ver cómo mientras otros iban de reunión en reunión, él se iba a hablar con los ingenieros.

“El arco iris de Feynman”, Leonard Mlodinow, 2003, Editorial Booket, Colección Drakontos bolsillo
Leídos estos dos libros, aquel mismo catedrático me enseño un tercer libro titulado “El arco iris de Feynman”, de Leonard Mlodinow. Me volvió a decir: “¿Ha leído Ud. esto? Es maravilloso”.
Con un apellido como ese me quedé un tanto escéptico. Pero si aquel catedrático me lo recomendaba, por algo iba a ser. Y no se equivocaba. El autor explica que era un joven físico, estudioso de Teoría de Cuerdas al que le dieron un despacho en un pasillo en el que había otros dos despachos con otros dos físicos: Murray Gell-Mann y el citado Richard Feynman. Ambos Premios Nobel, ambos mayores, ambos famosos; y Feynman con un cáncer que le estaba consumiendo.
¿Cómo puedo abordar a ese par de gigantes? Pensaba el autor. Y acercándose a ambos y dada una serie de circunstancias empieza a conocer la forma de ser y ver la vida de cada uno de ellos. Es maravilloso leer en esas páginas el cambio de mentalidad ante la vida y a qué dedicarse, llegando a abandonar la Teoría de Cuerdas para dedicarse, entre otras cosas, a escribir libros. ¡Y qué libros! Y, curiosamente, la mayoría sobre lo que es el ser humano más que libros especializados en física.

“El andar del borracho”, Leonard Mlodinow, 2008, Editorial Crítica, Colección Drakontos
“El andar del borracho”, en el que nos explica cómo, sin darnos cuenta, el azar tiene mucho que ver en nuestras vidas (me recordó mucho, aunque con un estilo totalmente diferente a “El hombre anumérico” del matemático John Allen Paulos). La importancia de los estudios como en el que se dieron cuenta de que en Londres moría más gente ajusticiada que no de hambre, cuando había muchísimos mendigos por las calles. O la forma en que estadísticamente Poincaré desenmascaró el fraude de poner menos masa de pan como media en las barras.

“Subliminal”, Leonard Mlodinow, 2012, Editorial Crítica, Colección Drakontos
“Subliminal”, por ejemplo, donde nos explica cómo nuestro subconsciente tiene más importancia de la que pensamos. Llega a citar situaciones reales como juicios a personas en las que el subconsciente jugó un papel clave para que lo condenaran viéndose posteriormente que era inocente.

“Las lagartijas no se hacen preguntas”, Leonard Mlodinow, 2016, Editorial Crítica, Colección Drakontos
“Las lagartijas no se hacen preguntas”, libro dedicado al recuerdo de su padre, desde un suceso en el campo de concentración de Auschwitz en la que había en juego un mendrugo de pan por una curiosidad. El autor prometió a su padre que escribiría un libro sobre por qué tenemos esas ansias de conocer, de saber. Y este es el libro, pero para ello tiene que explicar la historia de la humanidad desde los inicios viendo cómo poco a poco se va llegando a lo que somos hoy día.
Todos sus libros reflejan cultura, ciencia, conocimiento y, sobre todo, emoción. Son libros que tienen grandes momentos que marcan y hacen reflexionar. No son libros técnicos y lo que escribe está al alcance de cualquier persona.
Y en este artículo, quería mostraros precisamente esto: la cara más emocionante, humana y filosófica de la ciencia de la mano de estos dos hombres, de Richard Feynman y de Leonard Mlodinow. Recomiendo leer los libros en el orden en que los he ido citando. Espero que los disfrutéis.
En Editoralia personas lectoras, autoras o editoras presentan libros que por su atractivo, novedad o impacto (personal o general) pueden ser de interés o utilidad para los lectores del Cuaderno de Cultura Científica.
El artículo La cara más emocionante, humana y filosófica de la ciencia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Ciencia a presión: ¿Periodismo científico o periodismo de “papers”?
La expresión publish or perish (publica o perece) es de sobra conocida en el ámbito científico. Quiere expresar la importancia que tienen las publicaciones en los currículos del personal investigador. En ciencia no basta con hacer observaciones, obtener unos resultados y derivar conclusiones. Hay, además, que hacerlo público y, a poder ser, en medios de la máxima difusión internacional. La ciencia que no se da a conocer, que no se publica, no existe. El problema es que de eso, precisamente, depende el éxito profesional de los investigadores, sus posibilidades de estabilización y de promoción. De ahí la conocida expresión del principio.
El mundo de la comunicación tiene también sus normas. En comunicación se trata de que lo que se publica sea consumido. De la misma forma que la ciencia que no se publica no existe, en comunicación tampoco existen los contenidos que no se consumen: o sea, no existen los artículos que no se leen, los programas de radio que no se oyen, los de televisión que no se ven o los sitios web que no se visitan. En comunicación valdría decir “sé visto, oído o leído, o perece”.
Ambas esferas tienen ahí un interesante punto en común. Y por supuesto, en comunicación o difusión científica el ámbito de confluencia se aprecia en mayor medida aún. Confluyen aquí ambas necesidades, la de hacer públicos los resultados de investigación y, además, conseguir que lleguen a cuantas más personas mejor.
El problema es que la presión por publicar y por tener impacto comunicativo puede conducir tanto a unos como a otros profesionales, a adoptar comportamientos deshonestos, contrarios a la ética profesional e, incluso, a desvirtuar completamente el fin de la ciencia y de su traslación al conjunto del cuerpo social. Y también puede conducir, y de hecho ha conducido, a que se haya configurado un sistema de publicaciones científicas con patologías.
De todo esto se trató el pasado 31 de marzo en “Producir o perecer: ciencia a presión”, el seminario que organizarono conjuntamente la Asociación Española de Comunicación Científica y la Cátedra de Cultura Científica de la UPV/EHU.
5ª Conferencia.
Ángela Bernardo, redactora de ciencia en Hipertextual: ¿Periodismo científico o periodismo de “papers”?
¿Periodismo científico o periodismo de “papers”?Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Ciencia a presión: ¿Periodismo científico o periodismo de “papers”? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Ciencia a presión: Ciencia abierta vs. ciencia cerrada
- Ciencia a presión: Ciencia patológica y patología editorial
- Ciencia a presión: Científicos que avalan patrañas
Catástrofe Ultravioleta #19 ASTEROIDE

Catástrofe Ultravioleta #19 ASTEROIDE
¿Estamos realmente preparados para enfrentarnos a las amenazas del espacio? En Catástrofe Ultravioleta nos preguntamos si, utilizando solamente la tecnología que disponemos en la actualidad, podríamos detener un asteroide en rumbo de colisión con la Tierra. Repasamos la ciencia tras los asteroides en todas sus facetas, desde su detección y prevención, hasta su futura explotación en busca de recursos.
Agradecimientos: Josep M. Trigo (Institute of Space Sciences CSIC-IEEC), Víctor Manchado (Radio Skylab), Daniel Marín (Eureka), Álvaro Peralta (Centro español de láseres pulsados CLPU), Rafael Harillo (Consultoría Stardust), Pablo F. Burgueño (Abanlex), Faustino, Leonor y Fernando del Observatorio de la Hita, Jose María Madiedo (Universidad de Huelva).
* Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el patrocinio parcial de la Cátedra de Cultura Científica de la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.
El artículo Catástrofe Ultravioleta #19 ASTEROIDE se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Preparados para una Catástrofe Ultravioleta
- Catástrofe Ultravioleta #01 Expedición
- Catástrofe Ultravioleta #13 LEVIATÁN
Los rangos de la percepción
Los seres humanos somos sensibles a diversas magnitudes, tanto externas como internas. De entre ellas recibimos información de dos tipos de ondas: las de presión en el aire que nos rodea (sonido), y ondas electromagnéticas que llegan a nuestros ojos (luz). Para poder hacerlo disponemos de unos detectores considerablemente sofisticados. Tantos los oídos como los ojos poseen unas prestaciones verdaderamente notables, pero limitadas a unos determinados rangos de frecuencias. Si consideramos la amplitud de los espectros electromagnético y sonoro, podemos llegar a pensar que somos prácticamente sordociegos, como dice una figura que ha dado muchas vueltas por internet (figura 1). ¿Es esto realmente así?

“En la gran perspectiva de las cosas somos prácticamente sordociegos”. Esta figura ha dado muchas vueltas por las redes sociales (originalmente publicada en Abtruse Goose)
Hay tres características de la propagación del sonido que hay que tener en cuenta para comprender el interés evolutivo de percibir un rango particular de ondas sonoras. Por una parte, la atenuación del sonido es mayor cuanto más alta es la frecuencia o, visto al revés, los sonidos de bajas frecuencias son capaces de viajar distancias mayores. En segundo lugar tenemos que la reflexión del sonido es eficaz cuando choca con objetos del tamaño de la longitud de onda del mismo (o mayores). Por último, la capacidad de las ondas de rodear obstáculos (la difracción) también ocurre cuando las longitudes de onda y los obstáculos son de tamaños parecidos.
Así pues, los animales como murciélagos o delfines que utilizan el eco para localizar objetos (ecolocalización) tendrán que utilizar ondas de altas frecuencias (pequeñas longitudes de onda, por tanto) de forma que puedan resolver objetos pequeños y no verse afectados por la difracción. En cambio, los animales que utilicen el sonido para advertir la presencia de depredadores podrán beneficiarse de la difracción, de forma que les llegue información del peligro aunque haya obstáculos en el camino (piedras, matorrales, etc). Finalmente, hay animales que han desarrollado sistemas de comunicación a muy larga distancia, y para ello necesariamente han de emplear ondas de frecuencias muy bajas.
A lo anterior hay que añadir que los tamaños de los dispositivos para producir y recibir sonidos también están en proporción con la longitud de onda de los mismos. Así, solo animales grandes podrán acceder a los sistemas de transmisión a largas distancias, ya que las ondas de bajas frecuencias tienen longitudes de onda grandes. Es el caso de los elefantes y algunos cetáceos. Por el contrario, animales pequeños que usan la ecolocalización, como los murciélagos, perciben sonidos en un rango de 20 a 200 kHz. Sus sonidos más graves a nosotros nos resultan imperceptibles por ser demasiado agudos.
Se suele considerar que el intervalo audible para los humanos se extiende entre los 20 y los 20.000 Hz, aunque en condiciones de laboratorio algunos individuos perciben un rango algo más extenso; y en condiciones normales no pasamos de los 15.000, especialmente los adultos. Si nos fijamos en las longitudes de onda que corresponden a dicho intervalo (figura 2), vemos que está centrado en los tamaños de las personas, extendiéndose desde los 17 mm a los 17 m. Este intervalo es muy adecuado para controlar el entorno en un radio de unos 20 m. Resulta especialmente valiosa la difracción que permite que podemos oír personas en otra habitación aunque no podamos verlas.

Espectro sonoro.
En el caso del intervalo visible, las restricciones son más severas, y de hecho las variaciones entre distintos animales son mucho más pequeñas que en el caso del sonido. El intervalo visible del espectro electromagnético está determinado por tres condicionantes. En primer lugar, es el principal componente de la radiación que nos envía el Sol. Nuestra estrella emite un espectro de radiación correspondiente al de la emisión de un cuerpo negro a 5900K que tiene pequeñas partes de ultravioleta e infrarrojo, flanqueando el grueso de su emisión, que es visible (figura 3).

Espectro solar.
En segundo lugar, la atmósfera que recubre nuestro planeta es opaca a la mayoría del espectro electromagnético (figura 4). Si tomamos el rango de longitudes de onda que va desde un nanómetro hasta un kilómetro, catorce órdenes de magnitud, solo hay dos ventanas de transparencia. Una es para las ondas de radio (entre un centímetro y veinte metros, aproximadamente); y otra es en el visible y el infrarrojo, aunque con muchos altibajos debidos a la absorción de los distintos gases de la atmósfera. Es decir, de los catorce órdenes de magnitud considerados, solo dos y medio atraviesan la atmósfera. De hecho, cuando hemos querido observar el cosmos en otras zonas del espectro, ha sido necesario colocar los correspondientes telescopios en satélites. La observación terrestre se limita al visible y la radio (y las ondas de radio son demasiado grandes para que puedan resultar aprovechables por los animales).

Opacidad de la atmósfera
Por último, la energía de los fotones del rango visible es compatible con las moléculas orgánicas que componen los seres vivos. Energías mayores (ultravioleta y más allá) rompen enlaces e impiden la estabilidad molecular; mientras que energías menores interaccionan poco, y es difícil imaginar detectores basados en estas moléculas, como sí ocurre con el visible.
Tras estas consideraciones, podemos poner en perspectiva la figura del comienzo. Es verdad que en el universo hay ondas a las que no somos sensibles, pero o bien no las hay en la superficie del planeta, o bien son muy poco relevantes para animales como los humanos. Al menos así ha sido durante miles de años, hasta que en las últimas décadas la ciencia y la tecnología nos han permitido medirlas. A día de hoy disponemos de instrumentación capaz de extender el rango original de nuestros sentidos y hacerlo prácticamente ilimitado.
Este post ha sido realizado por Joaquín Sevilla (@Joaquin_Sevilla) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo Los rangos de la percepción se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Televisión y radar
- Cuántica y relatividad por todas partes
- Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
La educación no es la materia prima de la mano de obra
Steven Fesmire
Cuando se trata de debates actuales en política y políticas, incluso una defensa estridente de las humanidades, como la de George Anders “You Can Do Anything: The Surprising Power of a ‘Useless’ Liberal Arts Education” [Puedes hacer cualquier cosa: el sorprendente poder de una educación “inútil” en humanidades] o la de Randall Stross “A Practical Education: Why Liberal Arts Majors Make Great Employees” [Una educación práctica: ¿Por qué los grados en humanidades hacen grandes empleados?], tiende a aceptar que el empleo remunerado es el principal objetivo de la educación.
Como especialista en el filósofo y educador del siglo XX John Dewey, he estado observando estos debates con interés. El filósofo académico más citado del siglo XX, Dewey hizo, posiblemente, las contribuciones más significativas del siglo pasado al desarrollo del pensamiento educativo. Entre otras cosas, criticó influyentemente la educación concebida como “mera preparación para la vida posterior“.
Recordar a Dewey plantea preguntas pertinentes sobre la misión fundamental de la educación hoy en día. ¿Es el objetivo principal de la educación proporcionar un yugo acolchado para la población activa preexistente en el estado? ¿O es, en conjunto, mejorar nuestras vidas?
El propósito de la educación
En el siglo XIX, la defensora de los derechos de las mujeres Margaret Fuller criticó la práctica de educar a las niñas solo para ser esposas y madres. “Un ser de alcance infinito”, escribió, “no debe tratarse con una visión exclusiva para relación alguna. Dé al alma el curso libre … y el ser será apto para cualquiera y cada una de las relaciones para las que pueda ser llamado “.
En mi opinión, la política educativa en los Estados Unidos hoy en día es de una manera tangible tan restrictiva como la que criticó Fuller hace más de 150 años. Para muchos, la misión de primaria, secundaria y de la educación superior es, en palabras tristemente famosas del gobernador de Wisconsin Scott Walker, “desarrollar los recursos humanos que satisfagan las necesidades de población activa del estado“.
Sea lo que sea que uno pueda pensar en la política de Walker, su perspectiva general no es extraña. Tipifica la opinión de que la educación es principalmente una manera de alimentar a la industria con mano de obra cualificada, y está en tensión con el objetivo de preparar a los estudiantes “para cualquiera y cada una de las relaciones para las que pueda[n] ser llamado[s]”.
En lugar de educar a personas completas para el crecimiento a lo largo de toda la vida, este “modelo industrial” trata la educación tan solo como otro sector de la economía. Desde este punto de vista, el trabajo de la educación es fabricar mano de obra cualificada, y se espera que lo haga de una manera que sea lo más eficiente posible. El conocimiento es visto como una mercancía, los maestros y profesores son vehículos de entrega de contenido y los estudiantes son ya consumidores ya productos manufacturados.
Las instituciones educativas que siguen el modelo industrial son vistas como mercados en los que adquirir y entregar contenido. Y cuando hay matrícula de por medio, ésta es simplemente el precio justo para acceder a ese contenido.
¿Qué pierde la sociedad?
Cuando se describe de esta manera, parece un enfoque frío e inhumano de la educación. Sin embargo, los dos principales partidos políticos estadounidenses parecen haber adoptado el modelo industrial. Los partidos pueden estar en desacuerdo sustancial sobre los detalles de cómo proporcionar la educación, pero (en lo principal) los valores no económicos no merecen su atención demasiado a menudo.
Afirmo que algo se pierde cuando tratamos la educación como nada más que un sector de la economía industrial.
En primer lugar, el modelo industrial profundiza nuestros problemas sociales.
Es cierto que muchos objetivos específicos de la educación están, y deben estar, definidos por nuestra infraestructura económica, como la demanda de un énfasis curricular en STEM [véase nota 1]. Pero eso no significa que nuestro objetivo educativo primordial debe centrarse en esto. Capacitar a los estudiantes exclusivamente para ajustarse a las especificaciones existentes no sólo ahoga la imaginación y la innovación, sino que también dirige a los estudiantes por los mismos canales que están implicados en nuestros problemas sociales, económicos, ambientales y geopolíticos. Creo que esto sacrifica nuestra mejor esperanza de hacer las cosas mejor.
Y así llegamos a John Dewey. De niño, realizaba tareas habitualmente en la granja de su abuelo en las afueras de Burlington, Vermont. Posteriormente, lamentría que esos productivos suplementos ocupacionales a la educación formal estuvieran eclipsados casi completamente por la urbanización y la mecanización. Buscó maneras de llevar la vida diaria al aula para que la educación pudiera hablar a la vida.
Pero hay que hacer una distinción importante. En un enfoque, puedes infundir educación con contenido que hable de salidas potenciales – la llamada “vida real”. Por otro lado, podrías permitir que la infraestructura económica existente sea la única fuerza impulsora tras la práctica educativa. Esto último, en palabras de Dewey, convierte a estudiantes y profesores en “instrumento [s] en la realización del dogma feudal de la predestinación social”.
El primero es lo que la mayoría de los educadores esperan: estudiantes que se convierten en participantes en la redirección inteligente de la sociedad.
Culturas de imaginación, crecimiento y realización
No sólo el modelo industrial de educación debilita la acción social inteligente, sino que también sacrifica el enriquecimiento personal.
Una institución educativa es capaz de capacitar a más estudiantes con menos maestros o peor pagados, igual que un sector industrial puede producir más ropa, automóviles o proteína animal para satisfacer las demandas del mercado con menores costos generales. Estos productos se pueden comprar a un precio relativamente bajo y se utilizan para, o se ponen a trabajar para producir, más cosas.
¿Pero qué otra cosa producimos involuntariamente cuando la educación (o la industria, para el caso) se hace “eficiente” de esta manera? Por ejemplo, ¿hacemos que las vidas sean más pobres? ¿En palabras de Dewey, hacemos la vida más “congestionada, apresurada, confusa y extravagante“?
Tal y como se ve a través de una estrecha lente utilitario-industrial, simplemente no está claro cómo la educación podría abordar el crecimiento personal, la comunidad y la calidad de vida. Si no se aborda, creo que corremos el riesgo de marginar estos aspectos del enriquecimiento individual.
Democracia y educación
La democracia, insistía Dewey, no es una herencia estática de la que simplemente podamos vivir, sino un ideal que cada generación debe lograr a través del esfuerzo activo. Las escuelas son nuestros principales medios culturales para educar a ciudadanos libres que puedan participar de manera inteligente y creativa en este esfuerzo. La educación es cómo invertimos en el futuro de nuestra democracia.
Bajo las condiciones económicas y sociales de hoy, ¿qué significa si la “educación para la mano de obra del estado” es la principal misión de las escuelas? ¿Sacrifica la calidad de la vida presente de un estudiante en aras de un bien prometido? ¿Apoya un sistema de privilegios estático, un consumo frenético e insostenible y una eficiencia que amortece?
Dewey argumentó, en oposición, que todos deberían tener la oportunidad de una educación reflexiva críticamente y rica en ocupaciones que enfatice el crecimiento, el desarrollo emocional, el compromiso imaginativo, la vitalidad estética, la responsabilidad social y el cuidado. Desde primaria y secundaria a la universidad, esta educación puede ayudar a establecer las condiciones para el enriquecimiento personal, la investigación crítica y la participación democrática.
Nota del traductor:
[1] STEM es un acrónimo para ciencia, tecnología, ingeniería y matemáticas, por sus siglas en inglés.
Sobre el autor:
Steven Fesmire es profesor visitante de filosofía en el Middlebury College (Vermont, EE.UU.)
Texto traducido y adaptado por César Tomé López a partir del original publicado por The Conversation el 31 de agosto de 2017 bajo una licencia Creative Commons (CC BY-ND 4.0)
El artículo La educación no es la materia prima de la mano de obra se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Las ideas erróneas sobre educación entre el profesorado: prevalencia, causas y soluciones
- Crónica de la jornada “Las pruebas de la educación”
- Cine y ciencia de la mano