S'abonner à flux Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Mis à jour : il y a 14 min 21 sec

El infanticidio íbero que no fue

mar, 2024/11/12 - 11:59

Los bebés de la cultura íbera (VIII-I a. C.) que aparecen inhumados en contextos domésticos habrían muerto por causas naturales, como complicaciones en el parto o prematuridad, y no por prácticas rituales.

infanticidioEntierro de un individuo con muerte perinatal del yacimiento de la Fortaleza de Els Vilars (Arbeca, Lleida). Fuente: ARQHISTEC-GIP, UdL

La cultura ibérica habitó las regiones costeras orientales y meridionales de la península Ibérica durante la Edad del Hierro (siglos VIII-I a. C.). El ritual funerario más común de los íberos era la cremación de los difuntos y posterior depósito de los restos en urnas que se enterraban en necrópolis. Pero los arqueólogos han descubierto también entierros con restos de recién nacidos, que no habían sido quemados, en áreas destinadas a vivienda o producción. Tres tipos de hipótesis podían explicar este hecho: que fuesen muertes por causas naturales, infanticidio o sacrificios rituales.

Un nuevo estudio aporta ahora evidencias muy precisas a favor de la hipótesis de que estos recién nacidos enterrados en contextos domésticos murieron principalmente por causas naturales y que, por lo tanto, son un reflejo de la elevada mortalidad infantil durante el primer año de vida en el mundo íbero.

Los autores han llegado a esta conclusión después de estudiar 45 esqueletos de bebés de cinco yacimientos arqueológicos de época íbera en Cataluña: Camp de les Lloses (Osona), Olèrdola (Alt Penedès), Puig de San Andreu e Illa d’en Reixac (Baix Empordà) y la Fortaleza de Els Vilars d’ Arbeca (Lleida).

infanticidioReconstrucción digital del aspecto de la Fortaleza de Els Vilars d’ Arbeca (Lleida). Fuente: Universitat de Lleida.

El equipo de investigación ha aplicado una metodología innovadora, basada en el análisis histológico y elemental (tejido y composición química) de los dientes deciduos o temporales (dientes de leche) presentes en los esqueletos de los bebés. El estudio ha permitido visualizar mediante microscopia óptica las líneas de crecimiento de la corona dental que se generan al formarse los dientes durante la vida intrauterina y hasta poco después del nacimiento, e identificar así la presencia de la línea neonatal que se produce en el momento de nacer. De esta manera los investigadores han podido identificar el momento del nacimiento de los individuos y su supervivencia, así como determinar con mucha precisión la edad cronológica en el momento de la muerte. La edad cronológica se refiere al tiempo transcurrido desde el nacimiento y no el desarrollo biológico del esqueleto.

Muertes perinatales naturales

Casi la mitad de los bebés murieron durante el periodo perinatal, concretamente entre la semana 27 de gestación y la primera semana de vida. La gran mayoría de las muertes perinatales no sobrevivieron al momento del nacimiento, y muchos de estos bebés murieron a causa de nacimientos prematuros. «Estos datos refuerzan la hipótesis de que la mayoría de muertes perinatales fueron causadas por factores naturales, como complicaciones en el parto o problemas de salud asociados a la prematuridad, y no por prácticas culturales como infanticidios o sacrificios rituales, tal como algunas hipótesis habían sugerido», señala Xavier Jordana, profesor de la Unidad de Antropología Biológica del Departamento de Biología Animal, de Biología Vegetal y de Ecología de la UAB.

Los investigadores han observado también que de la veintena de bebés que sobrevivieron más allá de la primera semana de vida, el más longevo solo llegó a los 67 días. «En los yacimientos estudiados no se ha identificado ningún entierro de un bebé más allá de los dos meses de vida. Esto nos hace pensar que probablemente podría obedecer a una práctica cultural, que sería la de enterrar en los espacios domésticos a los bebés que morían en las etapas más tempranas», apunta Assumpció Malgosa, investigadora de la UAB y coautora del estudio.

Una técnica única para precisar el nacimiento y la muerte

El análisis histológico que han aplicado los investigadores es una innovación importante para calcular con mucha precisión la edad a la muerte de los individuos a partir del estudio de la corona de los dientes. Los dientes temporales se empiezan a formar durante la vida intrauterina y acaban de formarse en la etapa postnatal, alrededor del nacimiento, un periodo en el que graban su crecimiento debido a la propiedad singular de formar líneas de crecimiento. Estas líneas pueden formarse diariamente, pero también se pueden formar líneas más gruesas por un hecho puntual y estresante. Una de las líneas puntuales que se pueden visualizar con microscopia óptica en los dientes de los niños que han sobrevivido al nacimiento es la línea neonatal, que se forma por el estrés fisiológico resultante del cambio brusco de la vida intrauterina a la extrauterina.

infanticidioLínea neonatal en el diente incisivo central de un bebé del yacimiento de Olèrdola (Alt Penedès). Fuente: Unidad de Antropología Biológica, UAB.

«La técnica que hemos empleado es única, porque permite identificar el momento del nacimiento y calcular la edad cronológica en restos esqueléticos. Las técnicas convencionales estiman la edad biológica del individuo a partir del crecimiento y desarrollo esquelético, por lo que tienen una gran variabilidad en la determinación de la edad, y no permiten identificar el momento del nacimiento», señala Ani Martirosyan, investigadora predoctoral de la UAB y primera autora del artículo.

La innovación metodológica les ha permitido diferenciar los individuos que murieron en el nacimiento de los que sobrevivieron. De los que murieron al nacer, han identificado los que fueron a término (entre la semana 37 y 42 de gestación) y los que fueron prematuros (antes de la semana 37). También han podido determinar la edad cronológica de los bebés que sobrevivieron.

El papel del zinc y la luz sincrotrón

Los investigadores han confirmado la precisión de su técnica en dientes actuales en los que se conoce la edad cronológica de muerte del individuo. Además, han empleado también microfluorescencia de rayos X a partir de luz sincrotrón en el Sincrotrón ALBA (Cerdanyola del Vallès), concretamente en la línea de luz Xaloc, para analizar la composición elemental a la línea neonatal, y en particular la cuantificación de zinc en los casos en los que la visualización histológica de la línea era incierta.

«El zinc es un elemento importante en el momento del nacimiento, relacionado particularmente con el inicio de la lactancia materna, pero por su bajo contenido no se pueden detectar por microscopia electrónica variaciones de concentración en el esmalte y la dentina. La luz sincrotrón nos permite aplicar un haz de rayos X de solo diez micras para analizar diferentes elementos en el esmalte y la dentina en concentraciones extremamente bajas», señala Judit Molera, investigadora de la UVic-UCC y también coautora de la investigación. Los resultados del experimento han mostrado un aumento de la cantidad de zinc y una disminución del calcio, un elemento principal del esmalte dental, coincidiendo con la presencia de la línea neonatal, lo que ha servido a los investigadores para corroborar los resultados histológicos.

«Los datos de nuestro estudio aportan información mucho más detallada y concreta que la que teníamos hasta ahora para establecer el patrón de mortalidad infantil en las poblaciones íberas y contribuyen a descifrar aspectos importantes de su historia de vida y prácticas culturales. Confiamos en que la metodología que hemos aplicado sirva para continuar desvelando otros misterios que todavía quedan por conocer en poblaciones antiguas», concluye Xavier Jordana.

Referencia:

Ani Martirosyan, Carolina Sandoval-Ávila, Javier Irurita, Judith Juanhuix, Nuria Molist, Immaculada Mestres, Montserrat Durán, Natàlia Alonso, Cristina Santos, Assumpció Malgosa, Judit Molera, Xavier Jordana (2024) Reconstructing infant mortality in Iberian Iron Age populations from tooth histology Journal of Archaeological Science doi: 10.1016/j.jas.2024.106088

Edición realizada por César Tomé López a partir de materiales suministrados por la Universitat Autònoma de Barcelona

El artículo El infanticidio íbero que no fue se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Miranda, ¿otro mundo océano?

lun, 2024/11/11 - 11:59

Miranda es uno de los satélites más misteriosos de nuestro sistema solar, quizás porque todavía sabemos muy poco sobre este -solo ha sido visitado por la Voyager 2- y su aspecto nos evoca una tortuosa historia en la que su superficie nos recuerda al cascarón de un huevo agrietado y reconstruido a partir de remiendos de su propia cáscara. Y sin una misión en el horizonte que nos permita volver a visitarlo y tomar datos más detallados, nuestra única alternativa para conocerlo un poco mejor es la reinterpretación de los datos de nuestra única visita y la confección de modelos numéricos cada vez más avanzados para explicar a lo que vemos.

Este satélite de Urano ostenta el título de ser el más pequeño de los satélites “esféricos” del planeta y uno de los más pequeños -tiene tan solo un radio de 236 kilómetros- de todo el Sistema Solar que probablemente haya alcanzado el equilibrio hidrostático. Algo a lo que probablemente haya ayudado su composición, que se estima podría superar el 60% de hielo de agua.

Figura 1. mosaico de imágenes de Miranda en la que podemos apreciar perfectamente la presencia de zonas más antiguas -y cubiertas de cráteres- y otras más recientes, con muchos menos cráteres, indicando procesos de rejuvenecimiento de la superficie del satélite. Cortesía de NASA/JPL/USGS.

Con toda esta cantidad de hielo de agua cabría preguntarse si Miranda podría albergar -o albergó en el pasado- un océano subterráneo, al igual que otros cuerpos de nuestro Sistema Solar exterior, a pesar de que su tamaño hace muy difícil, al menos en principio, albergar un océano capaz de aguantar sin congelarse una gran cantidad de tiempo. La primera pista de que esta puede ser una posibilidad real es que, si hacemos un esfuerzo y miramos con detalle su superficie, observaremos que hay zonas de su superficie más antiguas y más modernas, algo que reconocemos por el número y tamaño de sus cráteres, entre otras cosas de las que ahora hablaremos.

Este hecho nos indica que Miranda habría sufrido un proceso, o quizás procesos, de rejuvenecimiento activo de su superficie con la capacidad suficiente de cambiar su aspecto desde dentro y borrar o transformar los cráteres y otras formas del relieve, indicándonos la existencia de una cierta dinámica que a su vez apuntaría a la posibilidad de la presencia de un océano subterráneo como correa de transmisión de la energía interna del satélite hacia el exterior.

Aunque vamos a centrarnos en las pistas más puramente geológicas, este año, Hemingway et al. (2024) han propuesto usar las libraciones para comprobar si los satélites de Urano albergan un océano subterráneo. Las libraciones son un movimiento de oscilación y bamboleo que muestran algunos cuerpos celestes, como nuestra Luna, cuando los observamos desde un punto “fijo” como puede ser la superficie de nuestro planeta. Este fenómeno es el que nos permite, desde la Tierra, ver parte de la “cara oculta” de nuestra Luna.

Pues bien, analizando la amplitud de estas oscilaciones, podríamos conocer mejor la distribución de masas en el interior de los satélites de Urano, de tal manera que podríamos inferir detalles como, por ejemplo, si el núcleo está en estado sólido o líquido o si hay un océano subterráneo, entre otros.

Figura 2. Detalle de la superficie de Miranda en el entorno de Verona Rupes, uno de los acantilados más altos de todo el Sistema Solar. Cortesía de NASA/JPL.

En el caso de Miranda (también en el de Ariel y Umbriel), si la capa de hielo que hay por encima del océano subterráneo tiene unos 30 kilómetros de espesor o potencia, la amplitud de las libraciones en el ecuador superarían los 100 metros y cuanto más fina fuese la capa de hielo que sirve como corteza, más precisa podrá ser la detección de un posible océano.

Y cuanto menos “profundo” sea el océano, más difícil será de detectar mediante las libraciones, por lo que habría que usar también datos como las medidas del campo gravitatorio, que permitan complementar los modelos y dar una respuesta fiable a la pregunta de si hay un océano bajo el hielo de la superficie o no. Este caso sería aplicable a los satélites que tengan ya un océano en proceso de congelación. Cabe decir que tanto las libraciones como las medidas del campo gravitatorio habría que hacerlas in situ, desde el propio sistema de Urano.

Pero volvamos a las pruebas geológicas que apuntarían a la existencia de un océano subterráneo: En Miranda se han observado unas formas circulares u ovaladas sobre su superficie que conocemos como coronas -también observadas en planetas como Venus- y que son unas regiones que muestran una intensa actividad geológica marcada por sistemas de fracturas concéntricos.

En Miranda hay al menos tres de estos sistemas: Arden Corona, Inverness Corona y Elsinore Corona, identificados gracias a las imágenes tomadas en 1989 por la Voyager 2 y que muestran algunas diferencias morfológicas entre sí, aunque en el fondo podrían representar un mismo mecanismo de formación.

¿Y qué tienen que ver las coronas con los océanos subterráneos? Los científicos proponen dos posibles orígenes para estas. Por un lado, procesos diapíricos en los cuales materiales más calientes y menos densos -como un hielo a mayor temperatura que el que compone la corteza- asciende a través de la corteza, deformándola y provocando la formación de los sistemas de fracturas. La convección de las aguas dentro del océano podría facilitar este tipo de fenómenos.

Por otro lado, si el océano se congeló -o está en proceso de congelación actualmente- el aumento de volumen que sufriría tendría la capacidad de generar unos importantes esfuerzos en la corteza helada de Miranda y, de nuevo, dando lugar a los sistemas de fracturas que vemos.

Figura 3. Detalle de la superficie de Miranda donde podemos apreciar tipos de terreno diferentes: Uno más rugoso y antiguo con cráteres en distintos grados de preseveración y otro más reciente y con menos cráteres. Cortesía de NASA/JPL.

Si echamos un vistazo al artículo publicado por Strom et al. (2024), los resultados de los modelos de estos autores sugieren que la corteza es bastante delgada, de 30 kilómetros o menos de espesor y que ha existido un océano de unos 100 kilómetros -una barbaridad, ya que supondría ocupar casi la mitad del radio del satélite- de potencia en los últimos 100 a 500 millones de años.

Y, si es un cuerpo con esta elevada proporción de hielo en su composición, ¿Cómo es posible que haya estado a una temperatura suficiente para sostener un océano de agua líquida a lo largo del tiempo geológico? Pues esto podría explicarse por las interacciones gravitatorias entre Miranda y el resto de grandes satélites, que podrían generar suficiente fricción en su interior como para elevar la temperatura y fundir parte del hielo de Miranda. Y este proceso podría haberse repetido varias veces desde la formación del Sistema Solar.

Es posible que hoy día ese mecanismo haya dejado de funcionar y el interior de Miranda esté casi totalmente congelado, aunque todavía podría quedar un pequeño océano atrapado entre la corteza y su núcleo algo que, como ocurre en estos casos, eleva mucho el interés astrobiológico de este satélite.

Pero de momento, y hasta que nuevas misiones sean capaces de llegar al sistema de Urano, tendremos que seguir esperando para conocer si Miranda – y quizás alguno de los otros satélites- alberga un océano subterráneo incluso hoy en día.

Referencias:

Hemingway, D. J., & Nimmo, F. (2024). Looking for Subsurface Oceans Within the Moons of Uranus Using Librations and Gravity. Geophysical Research Letters, 51(18), e2024GL110409. doi: 10.1029/2024GL110409

Leonard, E. J., Beddingfield, C. B., Elder, C. M., & Nordheim, T. A. (2023). Unraveling the Geologic History of Miranda’s Inverness Corona. The Planetary Science Journal, 4(12), 235. doi: 10.3847/PSJ/ad0552

Strom, C., Nordheim, T. A., Patthoff, D. A., & Fieber-Beyer, S. K. (2024). Constraining Ocean and Ice Shell Thickness on Miranda from Surface Geological Structures and Stress Modeling. The Planetary Science Journal, 5(10), 226. doi: 10.3847/PSJ/ad77d7

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo Miranda, ¿otro mundo océano? se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Una aldea global en Marte, con escala en la Luna

dim, 2024/11/10 - 11:59

Colonizar nuestro satélite será el primer paso para llegar a Marte y más allá. Cultivar sus propias verduras allí arriba será una de las cosas que harán los astronautas gracias a proyectos como el español Green Moon. Pero ese no será el único reto al que tendrán que enfrentarse.

MarteIlustración artística de una posible colonización futura de la Luna. / ESA

“Queremos convertir a la especie humana en una especie interplanetaria”, dice Jorge Pla García, investigador en el Centro de Astrobiología (CAB-INTA-CSIC). “El próximo paso es explorar Marte. La idea es usar antes la Luna como entrenamiento y aprendizaje para dar el salto a otros planetas”.

En eso está la misión Artemis, una colaboración de la NASA con la Agencia Espacia Europea (ESA), la japonesa JAXA, la canadiense CSA, la israelita ISA y la australiana ASA, que en su tercera fase propone llevar al polo sur de nuestro satélite a la primera mujer y al próximo hombre en septiembre de 2026. Su objetivo, sentar la bases para que las empresas privadas afiancen una economía lunar y hacer lo mismo en Marte a partir de 2033.

Es un objetivo arraigado en la comunidad astrocientífica, que desde hace un década acaricia el sueño de una aldea lunar global. El concepto de Moon Village, introducido en 2015 por Jan Woerner, director general de la ESA, se centra en la cooperación entre países y actores privados. “No es un único proyecto, ni un plan fijado con un calendario definido. Es una visión para una iniciativa comunitaria internacional. Su naturaleza abierta permitirá que muchas nacionalidades vayan a la luna, dejando atrás, en Tierra, sus diferencias de opiniones”, dijo Woerner.

Irresistible instinto colonizador

Pero si tenemos la Tierra, que es cómoda y tiene todo lo que necesitamos, ¿por qué tanto ímpetu –y tantos recursos– en colonizar el espacio? “Queremos seguir expandiendo nuestras fronteras”, recalca Pla. Y las razones son muchas.

Por una parte, en el campo de la exploración y la investigación, “cuanto más conocemos los planetas rocosos del sistema solar, mejor conocemos el nuestro. Por ejemplo, las atmósferas de Venus o Marte parece que son similares a la de la Tierra primitiva, pero los tres se han transformado de formas muy diferentes. Entender esto nos ayuda a comprender cómo evolucionará la Tierra”, apunta Pla. En este sentido, “nuestros robots están muy limitados y no pueden hacer el mismo trabajo que hace un astronauta”, añade.

Primera pisada del hombre en la Luna, con la misión Apolo. / NASA

En opinión de este experto, “dentro de dos o tres décadas, las sondas que ahora enviamos al espacio más allá de Marte podrán ir tripuladas por humanos. La experiencia nos dice que la ciencia ficción termina convirtiéndose en realidad”.

Por otro lado, está el poderoso tema económico, que mueve montañas y cohetes: “la Luna, Marte, los asteroides y los cometas son fuente de recursos muy valiosos para nuestro avance como sociedad. Poseen metales preciosos, minerales de tierras raras que son escasos en la Tierra”, indica Pla. Nuestro satélite, sin ir más lejos, es rico en helio-3, un isótopo de este elemento que se forma cuando el Sol interacciona con el suelo lunar –algo que no pasa en la Tierra porque nuestra atmósfera actúa como escudo–. Y resulta que el helio 3 que campa por toneladas sobre la superficie de la Luna, promete ser un supercombustible: su reacción en centrales de fusión produciría grandes cantidades de energía; encima, sin emitir radiaciones peligrosas.

“Estos elementos críticos se podrían extraer y traer a la Tierra o empezar a emplearse in situ, en el espacio”, observa este investigador, a quien no le cuesta visualizar asentamientos humanos fuera de nuestro planeta, con sus propias necesidades energéticas y tecnológicas.

Otra necesidad básica de los intrépidos colonos espaciales será comer. No solo los alimentos disecados y empaquetados que vemos en las películas, sino también una ensalada de lechuga recién cortada y cultivada en un huerto extraterrestre. Es la idea que inspira el proyecto español Green Moon, formado en 2016 por tres estudiantes malagueños y hoy integrado por científicos de los campos de la ingeniería espacial, la geología planetaria y la biología vegetal. Algunos de ellos, como Pla, su coordinador técnico y científico, ya han participado en varias misiones de la NASA.

Invernaderos extraterrestres

Por el momento, la única planta que ha conseguido crecer en un cuerpo celeste distinto al nuestro es una especie de algodón que germinó en la Luna, como parte de la misión china Chang´e 4, en 2019. “Estaba dentro de una microsfera, pero el instrumento no realizó bien el control térmico y el brote murió en 24 horas. La idea era buena, pero pretenciosa. Proponían que la planta generara el oxígeno que consumían unas larvas de mosca y, a cambio, los desechos producidos por estas proveerían del CO2 a la planta”, nos comenta Pla.

En la cápsula-huerto diseñada por los investigadores de Green Moon, las plantitas estarían a salvo de las inclemencias del tiempo. Han probado diferentes productos hortofrutícolas, “de porte pequeño y ciclos cortos, que germinan en 24-72 horas desde que se humedece la semilla, para ver cuáles pueden germinar en esas condiciones extraterrestres”, explica a SINC Eva Sánchez, coordinadora biológica del proyecto. Entre ellas, distintas variedades de lechugas, pimiento, tomate, rábano o zanahoria.

Experimento con plantas sobre un simulante del suelo lunar, con condiciones ambientales controladas en la cápsula Green Moon. / Green Moon Project

Salvando las distancias, será como un invernadero. Tendrá regulada la luz que recibe, el suministro de agua y el rango de temperatura (constante entre 15ºC y 28ºC) y estará protegida de las radiaciones solares y cósmicas. La electricidad para mantener en funcionamiento todos esos procesos la lleva incorporada. “Nuestra cápsula es muy adaptable. Se puede incluir en cualquier tipo de misión y, aunque es autosuficiente porque incluye sus propios paneles solares, puede aprovechar cualquier tipo de de fuente de energía”, apunta Pla.

Una cuestión de suelo

Por si el reto fuera pequeño, las plantas de Green Moon también tendrán que sobrevivir en el suelo de la Luna, cuya tierra arenosa y estéril recibe el nombre de regolito. Para ensayar, el equipo buscó un suelo parecido a la muestra que trajo a la misión Apolo 14. Lo encontraron en Lanzarote: procesando restos volcánicos, han elaborado un ‘simulante lunar’, que coincide en un 99,5% con el suelo de nuestro satélite.

“Por su composición, tiene unas características muy complicadas para que crezca cualquier planta. Posee gran cantidad de metales pesados y apenas nada de nitrógeno y fósforo, indispensables para la vegetación”, nos explica Eva Sánchez, que también es directora y fundadora, desde hace nueve años, de la empresa granadina de investigación agrícola Innoplant.

Es aquí donde entran en juego ciertas bacterias de suelo extremófilas, capacitadas para sobrevivir en condiciones muy hostiles. Algunas, por ejemplo, fueron aisladas del suelo de las minas de Riotinto, en Huelva. “Colaboramos para eso con la empresa española de fertilizantes Herogra, que nos ha suministrado los microorganismos. Los hemos probado de forma individual y combinados, para ver cómo podían fertilizar la tierra. De la batería inicial de 20 cepas candidatas, hemos detectado tres que, cuando se ponen juntas, tienen un efecto positivo. A través de su metabolismo, digieren esos metales pesados y generan nitrógeno y fósforo”, explica Sánchez.

La siguiente fase sería aportar materia orgánica al suelo, que funcione como una especie de estiércol. “Queremos usar algo que esté presente en las bases lunares. Para eso, tenemos que hacer un estudio sobre las características de los residuos que encontraremos allí”, observa. Además, partiendo de la misma idea de los chinos con sus brotes de algodón, se podría lograr, por qué no, un aprovechamiento circular de los gases vitales para las plantas y los humanos, de forma que el oxígeno que desprenden las primeras en la fotosíntesis fuera desviado a la microatmósfera donde vivan las personas y, al revés, el CO2 que exhalan los astronautas sirviera de sustento a las plantas.

¿Y de dónde van a sacar el agua para regarlas? El proyecto plantea un sistema de hidroponía para necesitar cantidades mínimas. Además, “la propia planta, por su transpiración, permite hacer un mecanismo cerrado de agua, que se puede reaprovechar. Del agua que se aporta a un vegetal, el 95 % lo pierde o lo transpira a la atmósfera”, afirma esta científica.

Otro detalle con el que tendrán que enfrentarse las lechugas y las zanahorias será la microgravedad de la Luna, que es un sexto de la que tenemos en la Tierra. ¿Cómo alterará su metabolismo? Para dar una respuesta, los científicos tienen que simular esas mismas condiciones, algo que puede hacerse con los vuelos parabólicos, cuando sobrepasan las capas altas de la atmósfera. “Lo malo es que es en un tiempo muy corto y son muy caros: uno puede costar 40.000”, nos dice Sánchez. Luego están los ciclostatos, unos aparatos que reproducen la microgravedad. “Necesitamos llegar a un acuerdo con alguno de los centros privados que los tienen para meter ahí dentro las plantitas y ver cómo crecen”.

Por lo pronto, los investigadores tienen sus propias hipótesis y ya hay algo de literatura científica al respecto, con algunos experimentos que se han hecho con una especie no hortícola muy versátil, la Arabidiopsis thaliana. “Creemos que van a crecer más alto, porque no hay gravedad que las retenga. Y más rápido, porque es lo que pasa en situaciones de estrés. Si la lechuga tiene un ciclo de 45 días, igual crece en 28. A nivel metabolico, en cuanto a su sabor color, nutrientes… también cambiarán, aunque no sabemos cómo. Eso es lo que queremos estudiar”, señala.

También aprovechable en la Tierra

Para Eva Sánchez, los beneficios de implementar cápsulas como la que están desarrollando en Green Moon van más allá del cultivo de hortalizas en la Luna o en Marte. Su invento se podría utilizar para cultivar en zonas extremas donde apenas hay agua, como los desiertos. De igual manera, la misma combinación de bacterias fertilizantes sería una opción interesante para tratar suelos que han sufrido una erupción volcánica, como La Palma. “Se acortaría mucho el tiempo de regeneración”, apunta.

Para pasar de ser un modelo digital en 3D a una realidad, por el momento, lo único que le falta a la cápsula de Green Moon es financiación. En concreto, nada menos que un millón de euros. “La construcción sería por parte de empresas privadas especializadas en instrumentación espacial”.

Buen viaje a Marte

Cuando el ser humano esté preparado para la aventura de pisar el planeta rojo, tendrá que aprovechar una ventana óptima de lanzamiento que, según Pla, ocurre cada dos años. Será, además, una travesía de casi dos años, si contamos la ida y la vuelta. Los retos más acuciantes serán la radiación procedente del Sol –“habrá que apantallar bien y protegerse con escudos, como el agua o la vegetación”, dice Pla– y la radiación cósmica que proviene de protones cargados energéticamente, expelidos por la muerte de estrellas. “La probabilidad de contraer cáncer debido a esta radiación obliga a reducir el tiempo de las misiones. La solución que tenemos por ahora es la protección pasiva”, añade. Sin embargo, la ciencia no deja de investigar. Por ejemplo, “hemos descubierto que, cuanto mayor es la edad del astronauta, menos es su posibilidad de desarrollar tumores”.

Esquema del proyecto Green Moon para cultivar plantas en la Luna y planetas fuera de la Tierra. / J.M. Ortega et al / Resources, Environment and Sustainability

Son escollos que afectarán a las personas, pero también a las plantas. En este sentido, en el invernadero del Centro de Astrobiología (CAB-CSIC), un equipo liderado por el biólogo molecular Eduardo González Pastor está estudiando cómo modificar genéticamente la Arabidiopsis thaliana con genes de microorganismos resistentes a las radiaciones. Por el momento, se está probando su efectividad en simuladores de radiación espacial y de microgravedad, con resultados muy prometedores. Es algo que, en opinión de Pla, quizá podría algún día hacerse con los astronautas.

Mientras, lo que ya se está haciendo es la medición y evaluación del clima marciano, una fase previa importante porque, cuanto mejor conozcamos el entorno al que pensamos enviar humanos en el futuro, mejor podrán minimizarse los riesgos. “El Centro de Astrobiología es líder en meteorología planetaria”, recalca Pla. Y es que, en la actualidad, las únicas estaciones meteorológicas que hay en suelo del planeta rojo, REMS y MEDA, son españolas.

“Nos sirven para entender las temperaturas de Marte, la presión, la humedad atmosférica, la radiación que llega al suelo… Y, sobre todo, para estudiar el actor principal de su atmósfera, el polvo, que tiene un papel clave en los cambios de sus condiciones meteorológicas. Además, es un polvo fino y tóxico, que puede penetrar en los instrumentos y estropearlos, o enfermar a los astronautas”, apunta.

Llegar hasta allí será, sin duda, una epopeya con lucha contra los elementos incluida. Aunque Pla insiste en que, tal vez, la prueba más difícil será la psicológica. “Al final, de una forma u otra puedes generar oxígeno, alimentarte, protegerte de la radiación… pero pasar tanto tiempo en soledad en el espacio es algo a lo que los astronautas les cuesta acostumbrarse”.

El espacio no es un plan B

En opinión de este astrobiólogo, el motivo que subyace a todas estas aventuras conquistadoras del espacio no es encontrar un nuevo hogar para salvarnos de un cataclismo inevitable en el nuestro. “Marte no es un plan B”, recalca. “Hay que proteger lo que tenemos y, al mismo tiempo, seguir explorando”.

No seremos nosotros quienes terminemos con la Tierra, dice, que “estará aquí hasta que el Sol se inflé y acabe engulléndola, dentro de por lo menos 5.000 millones de años. Lo que sí puede pasar si seguimos así, aumentando la temperatura, es que muchas especies desaparezcan. Pero la edad de nuestro planeta será más larga que la de nuestra especie, a no ser que nos convirtamos en una especie interplanetaria”.

¿Y después de Marte? El próximo escalón son las lunas heladas de Júpiter y Saturno: Europa, Encelado, Titán. “Desde el punto de vista biológico, las probabilidades de encontrar actividad biológica allí son mucho más altas que en Marte, que es una roca estéril flotando en el sistema solar en comparación”, apunta. Y es que los satélites de Júpiter tienen agua líquida en sus océanos internos, bajo una gruesa capa de hielo. Además, es agua en movimiento, que tiene actividad, como demuestran los géiseres que fueron captados por primera vez en Europa, en 2013, por el telescopio espacial Hubble.

Y el agua, como sabemos, es un ingrediente fundamental para la vida –aunque no el único–. Por el momento, están a punto de despegar varias misiones no tripuladas: Europa Clipper de la NASA este mes de octubre, Dragon Fly, también de la NASA, partirá hacia Titán en julio de 2028 y la misión Juice de la ESA planea llegar a Júpiter en 2031 para explorar Ganímedes, Calisto y Europa…

Según Pla, es solo el inicio. “Conociendo su capacidad de progreso, el ser humano también llegará hasta allí en persona, seguro. Hemos conseguido explorar todos los rincones del planeta, desde el Polo Norte al Polo Sur, pasando por las Américas y todas las islas de los océanos. No solo se trata de crear nuevas vías comerciales, sino de conocer nuestro entorno mejor”.

Por ahora, como señala Eva Sánchez, antes de soñar con Marte y más allá, “tenemos que pisar bien la Luna, que ya es mucho”.

Sobre la autora: Laura G. De Rivera es periodista especializada en ciencia

Una versión de este artículo apreció originalmente en SINC el 1 de noviembre de 2024

El artículo Una aldea global en Marte, con escala en la Luna se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Naukas Pro 2024: PLASTeMER: microplásticos en compartimentos ambientales incluyendo la biota

sam, 2024/11/09 - 11:59

 PLASTeMER

Los últimos avances en el ámbito de las energías renovables marinas o la proliferación de los microplásticos fueron algunos de los temas que componen la última edición de NAUKAS PRO. Una cita en la que el personal investigador se sube al escenario del Euskalduna Bilbao para hablar de las investigaciones más destacadas del momento en un ámbito concreto.

En esta ocasión el personal investigador de la Universidad del País Vasco, de la Estación Marina de Plentzia (PiE-UPV/EHU), AZTI, Tecnalia o el CSIC acercaron las últimas investigaciones relacionadas en el ámbito marítimo.

La conferencia PLASTeMER: microplásticos en compartimentos ambientales incluyendo la biota corre a cargo de Nerea-García Velasco, investigadora de la Estación Marina de Plentzia-Plentziako Itsas Estazioa.



Si no ve correctamente el vídeo, use este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Pro 2024: PLASTeMER: microplásticos en compartimentos ambientales incluyendo la biota se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

¿Somos una persona distinta cuando hablamos otro idioma?

ven, 2024/11/08 - 11:59
idiomaFoto: Ling App on Unsplash

¿Alguna vez se ha preguntado cómo influye el idioma que hablamos en nuestras emociones y en la forma en que percibimos la realidad? Según diversos estudios en psicolingüística, psicología cognitiva y antropología lingüística, las lenguas que utilizamos no solo nos permiten comunicarnos, sino que también moldean nuestra percepción del mundo y de nosotros mismos.

En la actualidad, más de la mitad de la población mundial utiliza dos o más lenguas en su vida cotidiana. Ya sea por motivos de educación, inmigración o antecedentes familiares, el bilingüismo y el multilingüismo son fenómenos cada vez más comunes en nuestra sociedad globalizada.

¿Cómo afecta conocer dos o más lenguas a la manera en que procesamos las emociones? Investigaciones recientes apuntan a que cada lengua puede hacer a los hablantes percibir la realidad de maneras diferentes. Incluso, estos pueden sentir que ellos mismos cambian al alternar la lengua que emplean.

Otros estudios han demostrado que los individuos bilingües pueden comportarse de manera diferente dependiendo de qué lengua estén usando; también son percibidos de manera diferente por sus interlocutores según la lengua que utilicen.

El peso de las emociones en las lenguas

Los hablantes bilingües procesan las palabras que definen o describen emociones de forma diferente en su lengua materna (o aquella que aprende el ser humano desde la infancia y que funciona como su instrumento de pensamiento y comunicación) y en su segunda lengua o meta (lengua que ha sido objetivo de un aprendizaje, en un contexto formal o natural). La lengua materna suele tener una ventaja emocional sobre la segunda lengua: los hablantes bilingües sienten una mayor intensidad emocional cuando usan la lengua materna, especialmente al recordar experiencias vividas en ese idioma.

Por ejemplo, algunos estudios han demostrado que, al revivir recuerdos de la infancia, las personas los describen con más detalle y emoción si lo hacen en su lengua materna, ya que fue la lengua en la que etiquetaron esas experiencias. En contraste, la segunda lengua puede facilitar cierta distancia emocional, lo que permite a los hablantes reducir la ansiedad o el pudor al comunicarse en situaciones complejas, como pueden ser aquellas que impliquen la expresión de enojo o de disculpa.
Dicho de otro modo, perciben la lengua materna como una lengua más rica emocionalmente, mientras que ven la segunda lengua como más práctica, pero menos expresiva. Como consecuencia de ello, la expresión emocional en lengua materna se percibe más intensamente independientemente de que la emoción sea positiva o negativa.

¿Soy la misma persona?

La elección de la lengua en la que se comunican los bilingües no solo afecta a la intensidad emocional, sino también a la forma en que las personas se perciben a sí mismas y a los demás. Usar uno u otro idioma puede influir en la construcción del discurso y revelar aspectos culturales y sociales propios de las comunidades lingüísticas a las que pertenecen.

En un estudio realizado con hablantes bilingües chino-inglés en EE. UU., los participantes indicaron que se sentían más cómodos al expresar sus emociones en inglés (su segunda lengua) debido a las menores restricciones sociales, pero experimentaban una mayor intensidad emocional en mandarín (su lengua materna).

Así, la segunda lengua puede ofrecer algunas ventajas en contextos donde los hablantes prefieren mantener distancia emocional, tanto por cuestiones personales como socioculturales. Al expresar emociones en una lengua menos emocionalmente conectada las personas pueden reducir sentimientos de vergüenza, ansiedad o implicación personal. Especialmente cuando hablamos una lengua materna que pertenece a una cultura en la que se da mayor valor a lo colectivo y hay menos tradición de compartir sentimientos.

Dominio del idioma y entorno en el que lo aprendimos

También influye mucho el nivel de dominio de la segunda lengua: los progenitores prefieren la lengua materna para expresar emociones cuando hablan con sus hijos –por ejemplo, para una reprimenda– si esta es la lengua que mejor dominan; sin embargo, si tienen una segunda lengua que también dominan, pueden optar por ella para contenido emocional.

Asimismo, el entorno en el que se aprendió la segunda lengua puede ser determinante. En aquellos casos en los que el aprendizaje se ha producido en un contexto formal o académico en lugar de familiar, los hablantes reportan más ansiedad al comunicarse en público, a pesar de ser competentes.

Emoción, identidad y aprendizaje de lenguas

Nuestras experiencias de vida, la edad de adquisición de los idiomas y el contexto de uso influyen en cómo procesamos y expresamos nuestras emociones en diferentes lenguas. Comprender estas dinámicas no solo enriquece nuestro conocimiento sobre el lenguaje y la mente humana, sino que también nos ayuda a mejorar la comunicación intercultural y la comprensión emocional en un mundo cada vez más diverso y conectado.

Las implicaciones para la enseñanza de segundas lenguas son también importantes. Que los estudiantes se sientan o no felices y satisfechos con la percepción que tienen de sí mismos en la lengua que están aprendiendo, es decir, con la identidad construida en esa lengua, será clave para saber si se sienten extraños o diferentes cuando hablan en esa lengua. El papel del enseñante será, en cualquier caso, contribuir a que el alumnado se sienta menos extraño en la lengua que está aprendiendo.

La actitud hacia el idioma que se aprende es, por lo tanto, determinante: influye en cómo evaluamos nuestras experiencias con el idioma, lo que impacta en cómo afrontamos los retos, cómo nos vemos a nosotros mismos y cómo creemos que nos ven los demás. A mejor actitud, habrá también una mayor satisfacción en el proceso y una mejor conexión emocional con la lengua. El resultado será una identidad más sólida en el nuevo idioma y, por lo tanto, un aprendizaje más profundo y efectivo.The Conversation

Sobre las autoras: Mari Mar Boillos Pereira, Profesora contratada doctora de la Facultad de Educación de Bilbao, Universidad del País Vasco / Euskal Herriko Unibertsitatea y Ana Blanco Canales, Profesora Titular de Lengua Española, Universidad de Alcalá

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿Somos una persona distinta cuando hablamos otro idioma? se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Dinosaurios petroleros

jeu, 2024/11/07 - 11:59

Recientemente he visto en la televisión el anuncio que ha preparado una empresa energética, principalmente enfocada en el procesado de petróleo, para anunciar su cambio de nombre, debido a su futura estrategia de búsqueda de nuevas fuentes de energía. En dicho anuncio, varias personas se despiden de una serie de dinosaurios y un reptil volador, en clara alusión a dejar atrás los combustibles fósiles. De esta manera, se refuerza esa creencia popular de que los hidrocarburos proceden de los restos de reptiles extintos hace millones de años. Pero, como no podía ser de otra manera, aparezco por aquí para acabar con ese bonito mito que nos acompaña desde nuestra infancia.

Los hidrocarburos son unos compuestos que, como su propio nombre indican, están formados por la combinación de átomos de hidrógeno y carbono. Esta composición química es la que les capacita para ser empleados como combustibles, ya que liberan energía térmica (calor) al ser quemados, aunque este proceso también provoca la expulsión de dióxido de carbono (CO2) gaseoso a la atmósfera. Los hidrocarburos más conocidos, y empleados, por el ser humano son el gas natural, el petróleo y, en menor medida, el asfalto natural. Y todos ellos tienen el mismo origen, que es el asunto que nos ocupa en este momento.

Estos materiales proceden de la descomposición de grandes cantidades de materia orgánica, animal y vegetal, que se acumuló en el fondo de ambientes acuáticos como mares, lagos, márgenes de ríos, pantanos y otros humedales hace millones de años. Y aquí es donde viene la confusión, porque estos restos bióticos no proceden de grandes animales como los dinosaurios, sino de organismos microscópicos que forman parte del plancton, es decir, que se encuentran nadando en el agua, y del bentos, que son aquellos que habitan en el fondo acuático, y que tienen nombres tan fáciles de recordar como foraminíferos, cocolitofóridos, diatomeas u ostrácodos, así como de algas, polen, semillas, tallos y otros restos de vegetación, tanto marina como continental.

Proceso de formación de hidrocarburos. A) Ilustración de un fondo marino en el que se van acumulando los restos orgánicos de los microorganismos acuáticos. B) Tras millones de años, el enterramiento de la materia orgánica ha provocado su transformación química convirtiéndola en petróleo y gas natural, que se encuentran depositados en el subsuelo. Imagen modificada del Proyecto Ciudad Ciencia del IGEO-CSIC.

Después de que estos restos orgánicos cayeran al fondo acuático, mezclándose con el lodo, se fueron cubriendo poco a poco por nuevas capas de arena y barro que acabaron enterrándolos, cada vez, a mayor profundidad. Según aumentaba el enterramiento, también aumentaba la presión y la temperatura a la que se sometían los materiales, lo que provocó que diese comienzo una transformación química de la materia orgánica que se conoce como maduración. En realidad, es como si se cocinase a fuego lento, perdiendo los gases y la humedad que tuviera durante su enterramiento, transformándose en una sustancia viscosa de color oscuro llamada kerógeno. Si continúa el enterramiento y es sometido a más presión y temperatura, el kerógeno se transforma primero en petróleo líquido y, a mayor profundidad, en gas natural. Pero la materia orgánica no es la única que sufre una transformación al soterrarse, porque el lodo en el que se encontraba inicialmente acabó convirtiéndose en una roca sólida a la que llamamos “roca madre”, ya que es aquella en la que se han originado los hidrocarburos.

Estos hidrocarburos no se van a quedar quietecitos en su roca madre. Se trata de líquidos y gases, por lo que van a tender a migrar hacia la superficie aprovechando la porosidad de las rocas, deteniéndose únicamente cuando encuentren una barrera que frene su avance, tales como capas de rocas impermeables (llamadas “roca sello”), fracturas que corten los materiales o estructuras geológicas como los pliegues y los diapiros. Entonces, el petróleo o el gas natural quedarán contenidos en una “roca almacén” y aprisionados en una “trampa de hidrocarburos” en el interior del terreno. Por eso es necesario tener un conocimiento geológico preciso del subsuelo para poder localizar estas zonas de acumulación de los combustibles fósiles y poder extraerlos mediante sistemas de perforación. Y, una vez sacados a superficie, se llevan a las refinerías para que sean procesados, obteniendo así una serie de materiales sólidos, líquidos y gaseosos que podemos utilizar en nuestros hogares, medios de transporte o como materiales de construcción.

Proceso de migración y acumulación de hidrocarburos. 1) Roca madre en la que se han formado los hidrocarburos. 2) Migración de los hidrocarburos a través de los materiales geológicos. 3) Roca almacén porosa. 4) Depósito del petróleo y el gas natural en una “trampa”. 5) Roca impermeable que hace de tapón o “sello”, impidiendo que los hidrocarburos sigan migrando.

Reconozco que el anuncio ha quedado bastante chulo y tiene buenos efectos especiales y que siempre me ha gustado la idea de que mis dinosaurios de juguete están hechos con un plástico que procede de dinosaurios de verdad, pero ya hemos descubierto que esto no es real. Los hidrocarburos tienen su origen en unos pequeños bichitos que no vemos a simple vista pero que, también hoy en día, nos rodean por millones cuando nos damos un bañito en el agua del mar e, incluso, nos los podemos comer sin darnos cuenta si el bocata se nos llena de arena en la playa. En lo que sí estoy de acuerdo es que hay que reducir al máximo posible el uso de los combustibles fósiles, porque la transformación de la materia orgánica en petróleo o gas natural tarda millones de años en producirse y no se trata de recursos infinitos, aparte de que su utilización provoca la contaminación atmosférica por gases de efecto invernadero. Así que dejemos ir de nuestras vidas a los grandes reptiles mesozoicos y, poco a poco también, a los hidrocarburos.

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo Dinosaurios petroleros se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

El problema del puente y la linterna

mer, 2024/11/06 - 11:59

El problema del puente y la linterna es un rompecabezas de lógica que involucra a cuatro personas, un puente y una linterna.

puenteFuente: Freepik

 

Pertenece a la familia de los conocidos como puzles de cruce de ríos en los que una serie de objetos deben moverse a través de un río sometidos a determinadas restricciones.

Planteamiento del problema

Cuatro personas —Ángela (A), Boris (B), Carmen (C) y Damián (D)— viajan durante la noche. En cierto momento, deben cruzar un río. El puente que cruza el río es muy estrecho y solo puede sostener a dos personas a la vez. Además, el grupo dispone de una única linterna que necesitan utilizar aquellas personas que van a cruzar el puente.

Las personas A, B, C y D pueden cruzar el puente en 1, 2, 5 y 8 minutos, respectivamente. Todas las parejas de cruzan el puente se desplazan al ritmo de la persona más lenta.

Además, la linterna solo tiene pilas para 15 minutos.

¿Podrán Ángela, Boris, Carmen y Damián cruzar el puente?

Solucionando el problema

Una estrategia que parece lógica es que Ángela, la persona más rápida, acompañe a cada uno de sus compañeros a través del puente. Pero esta táctica requiere demasiado tiempo. En efecto:

  1. Al principio A, B, C y D se sitúan en la entrada del puente.
  2. A y B cruzan el puente en 2 minutos.
  3. A regresa en un minuto al lugar de origen (han transcurrido en total 3 minutos).
  4. A y C cruzan en 5 minutos (han transcurrido en total 8 minutos).
  5. A regresa en un minuto al lugar de origen (han transcurrido en total 9 minutos).
  6. A y D cruzan en 8 minutos (han transcurrido en total 17 minutos).

La linterna se agota antes de conseguir terminar de cruzar el puente. Por lo tanto, esta estrategia no es válida.

Una solución correcta es aquella que minimiza el tiempo de recorrido. Reflexionando brevemente por la estrategia fallida se observa que el problema es que las dos personas más lentas han cruzado el puente en distintos viajes.

La realidad es que se ahorra tiempo si las dos personas más lentas atraviesan el puente juntas. En efecto, una solución a este problema pasa por usar esta estrategia:

  1. Al principio A, B, C y D se sitúan en la entrada del puente.
  2. A y B cruzan el puente en 2 minutos.
  3. B regresa en 2 minutos al lugar de origen (han transcurrido en total 4 minutos).
  4. C y D cruzan en 8 minutos (han transcurrido en total 12 minutos).
  5. A regresa en un minuto al lugar de origen (han transcurrido en total 13 minutos).
  6. A y B cruzan en 2 minutos (han transcurrido en total 15 minutos).

Una solución alternativa a la anterior es la siguiente:

  1. Al principio A, B, C y D se sitúan en la entrada del puente.
  2. A y B cruzan el puente en 2 minutos.
  3. A regresa en 1 minuto al lugar de origen (han transcurrido en total 3 minutos).
  4. C y D cruzan en 8 minutos (han transcurrido en total 11 minutos).
  5. B regresa en 2 minutos al lugar de origen (han transcurrido en total 13 minutos).
  6. A y B cruzan en 2 minutos (han transcurrido en total 15 minutos).
puenteLas dos soluciones al problema del puente y la linterna. El eje vertical indica el tiempo, s el inicio del puente, f el final del puente y T la linterna. Las letras A, B, C y D representan a las personas que cruzan. Fuente: Wikimedia Commons.

 

Nota

Según el matemático Torsten Sillke, el problema del puente y la linterna apareció en 1981, en el libro Super Strategies For Puzzles and Games. En la versión que aparece en esta publicación, las personas que desean cruzar el puente tienen como límite de tiempo 60 minutos, y A, B, C y D tardan en atravesarlo 5, 10, 20 y 25 minutos, respectivamente. La estrategia empleada para encontrar la solución es la misma que en la versión que hemos dado.

Sillke ha investigado la historia de este problema y en su página web ha coleccionado sus hallazgos y referencias sobre el tema hasta 2001. Así, no menciona esta divertida versión de 2022 con unos zombis mutantes que obligan a cuatro personas a cruzar un puente en un tiempo escaso para conseguir escapar…

Existen generalizaciones de este rompecabezas para un número cualquiera de personas con tiempos de cruce arbitrarios. Por ejemplo, en Crossing the Bridge at Night se analiza (suponiendo que la capacidad del puente sigue siendo de dos personas) completamente el problema mediante métodos de teoría de grafos. Como sucede en tantas ocasiones, un sencillo juego de lógica puede dar lugar a interesantes teoremas matemáticos.

Referencias

 

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y editora de Mujeres con Ciencia

El artículo El problema del puente y la linterna se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

¿Cómo pasan el último pársec los agujeros negros supermasivos en fusión?

mar, 2024/11/05 - 11:59

Los agujeros negros gigantes en los centros de las galaxias no deberían poder fusionarse, pero lo hacen. Los científicos sugieren que una forma inusual de materia oscura puede ser la solución.

Un artículo de Jonathan O’Callaghan. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

https://culturacientifica.com/app/uploads/2024/11/FinalParsecProblemCOMP.mp4 En esta simulación, se ven corrientes de gas de colores brillantes alrededor de un par de agujeros negros supermasivos en órbita. Fuente: Luciano Combi et al. (2022) ApJ 928 187

A lo largo de la historia cósmica, las galaxias se han ido fusionando para formar estructuras cada vez más grandes. Cuando las galaxias se fusionan, los agujeros negros supermasivos que se encuentran en sus centros también deben fusionarse, formando un agujero negro aún más gigantesco.

Sin embargo, durante décadas, una pregunta ha desconcertado a los astrofísicos: ¿cómo pueden los agujeros negros supermasivos acercarse lo suficiente para rotar en espiral y fusionarse? Según los cálculos, cuando los agujeros convergentes alcanzan el llamado pársec final (una distancia de aproximadamente un pársec, o 3,26 años luz), su progreso se detiene. En teoría deberían orbitarse indefinidamente.

“Se pensaba que los tiempos de permanencia en espiral podían alcanzar… la edad del universo”, explica Stephen Taylor, astrofísico de la Universidad Vanderbilt. “A la gente le preocupaba que no pudieran obtenerse fusiones de agujeros negros”.

Se han acumulado evidencias de que sí se fusionan. El año pasado, las observaciones de los movimientos sutiles de las estrellas pulsantes, conocidas como matriz de sincronización de púlsares, revelaron un zumbido de fondo de ondas gravitacionales en el universo: ondulaciones en el tejido del espacio-tiempo. Es muy probable que estas ondas gravitacionales provengan de agujeros negros supermasivos que se orbitan muy cerca, a un pársec de distancia entre sí y que están a punto de fusionarse. “Esta fue nuestra primera evidencia de que los sistemas binarios de agujeros negros superan el problema del pársec final”, narra Laura Blecha, astrofísica de la Universidad de Florida.

Entonces, ¿cómo lo hacen?

Los astrofísicos tienen una nueva sugerencia: la materia oscura podría absorber el momento angular de los dos agujeros negros y acercarlos.

Gonzalo Alonso-Álvarez, físico de la Universidad de Toronto, cree que un tipo viscoso de materia oscura podría ser la solución al problema del parsec final. Foto cortesía de Gonzalo Alonso-Álvarez

Materia oscura es el término que se utiliza para designar el 85% de la materia del universo, aún no descubierta. Podemos ver sus efectos gravitacionales sobre las galaxias y la estructura cósmica, pero por el momento no podemos determinar qué es. Las partículas hipotéticas más simples que podrían componer esta forma invisible de materia no ayudarían a facilitar las fusiones de agujeros negros. Pero este verano, un grupo de físicos en Canadá argumentó que algo más complejo llamado materia oscura autointeractuante sí podría. Estas partículas podrían arrastrar a los agujeros negros supermasivos lo suficiente como para dejarlos a un pársec de distancia entre sí. Si esta explicación es correcta, “te dirá que la materia oscura no es tan simple como pensábamos”, afirma Gonzalo Alonso-Álvarez, físico teórico de la Universidad de Toronto y uno de los autores.

Luego, en septiembre, un grupo independiente de físicos señaló que otro candidata a materia oscura, a veces llamado materia oscura difusa, también podría funcionar.

A lo largo de los años también se han propuesto soluciones más prosaicas al problema. En medio de esta multitud de opciones —algunas mundanas, otras exóticas— los científicos se están planteando formas de poner a prueba unas posibilidades frente a otras.

“A estas alturas, la mayoría de la comunidad prácticamente da por sentado que el problema del pársec final está resuelto”, afirma Sean McWilliams, astrofísico teórico de la Universidad de Virginia Occidental que ha estudiado varias soluciones al problema. “La única pregunta es: ¿cuál es la solución más eficiente?”

Dos para bailar un tango

Los agujeros negros pequeños —objetos del tamaño de una estrella tan densos que su gravedad atrapa todo lo que se acerca demasiado, incluso la luz— están dispersos por todas las galaxias. Se forman a partir del colapso gravitacional de estrellas individuales. Pero los agujeros negros supermasivos que se encuentran en los centros de las galaxias, que pueden ser tan pesados ​​como miles de millones de soles, son más misteriosos e influyentes. De alguna manera dirigen la formación y evolución de la galaxia que los rodea.

Cuando dos galaxias se fusionan, las interacciones gravitacionales con las estrellas, el gas y la materia oscura hacen que los dos agujeros negros supermasivos caigan lentamente uno hacia el otro. Los astrofísicos describieron por primera vez este proceso, llamado fricción dinámica, en 1980. “Se cree que esta es la principal forma en que los agujeros negros se acercan”, explica Dan Hooper, astrofísico de la Universidad de Wisconsin, Madison.

Sin embargo, en un punto determinado (que técnicamente oscila entre una fracción de pársec y unos pocos pársecs, dependiendo de las masas de los agujeros negros), la fricción dinámica “resulta que deja de ser muy efectiva”, explica Hooper. Aquí, en el centro de las galaxias en fusión, los dos agujeros negros comen material y lo arrojan lejos, creando un hueco. Como resultado, la densidad de estrellas y gas cae drásticamente, dejando a los agujeros negros en un espacio relativamente vacío. Sin cosas a su alrededor que los frenen, deberían orbitar uno alrededor del otro casi sin fin.

“La Tierra está orbitando alrededor del Sol y no estamos cayendo la una contra el otro”, dice Alonso-Álvarez, y lo mismo debería ser cierto para dos agujeros negros. “Hay una conservación del momento angular en la órbita que evita que caigan, a menos que haya algo que esté extrayendo esta energía”.

La materia oscura autointeractuante podría desempeñar este papel, como propusieron Alonso-Álvarez y sus colegas en Physical Review Letters en julio. Este tipo difiere de la llamada materia oscura fría, el tipo más simple de partículas hipotéticas de materia oscura, en que serían pesadas, lentas e inertes. La materia oscura fría no interactuaría con nada excepto a través de la gravedad, por lo que la influencia gravitatoria de los agujeros negros debería expulsarla de la vecindad mucho antes de que los agujeros negros alcancen el pársec final.

Sin embargo, la materia oscura que interactúa consigo misma está formada por partículas ligeras que tienen al menos una fuerza actuando entre ellas. Como las partículas de materia oscura autointeractuantes se desplazan unas de otras como bolas de billar sobre una mesa, no se dispersarían tan fácilmente y, en cambio, interactuarían con los agujeros negros, ralentizándolos. “Se quedan ahí y generan fricción”, continúa Alonso-Álvarez. “Tiene algún tipo de viscosidad”. Esa fricción podría entonces dar lugar a una fusión dentro de 100 millones de años, resolviendo el problema del pársec final.

La materia oscura “ultraligera” o “difusa” estaría formada por partículas con masas extremadamente pequeñas que se unirían para formar ondas inmensas. Estas partículas también se concentrarían en el centro galáctico y experimentarían fricción con los agujeros negros, lo que permitiría que la materia oscura difusa “se llevara eficientemente su momento angular y la energía orbital”, explica Jae-Weon Lee, cosmólogo de la Universidad Jungwon en Corea del Sur y coautor de un artículo de septiembre en Physics Letters B que describe la idea. Los agujeros negros harían que esta materia oscura vibrara como una campana en lugar de dispersarse.

La navaja de Occam

No todo el mundo está convencido de que necesitemos recurrir a una física tan exótica para explicar cómo se fusionan los agujeros negros supermasivos. “Yo no diría que necesitamos materia oscura autointeractuante”, afirma Priyamvada Natarajan, astrofísico teórico de la Universidad de Yale.

Otra posibilidad es que las estrellas pasen de largo a los agujeros negros que se están fusionando y extraigan suficiente momento angular para unirlos. Tal vez las estrellas se vean arrojadas aleatoriamente en la dirección de los agujeros negros desde otras partes de la galaxia a través de interacciones con otras estrellas. “Si tienes un montón de estas estrellas que se acercan a los dos agujeros negros supermasivos centrales, entonces puedes extraer cada vez más momento angular”, apunta Fabio Pacucci, astrofísico teórico de la Universidad de Harvard.

Laura Blecha, astrofísica de la Universidad de Florida, sostiene que un tercer agujero negro podría ser la clave. Foto: John Hames

Sin embargo, los modelos han demostrado que es difícil dispersar suficientes estrellas hacia los agujeros negros para resolver el problema del pársec final.

Otra alternativa es que cada agujero negro tenga un pequeño disco de gas a su alrededor, y que estos discos absorban material de un disco más amplio que rodea la región vacía excavada por los agujeros. “Los discos que los rodean se alimentan del disco más amplio”, explica Taylor, y eso significa, a su vez, que su energía orbital puede filtrarse hacia el disco más amplio. “Parece una solución muy eficiente”, afirma Natarajan. “Hay mucho gas disponible”.

En enero, Blecha y sus colegas investigaron la idea de que un tercer agujero negro en el sistema podiese proporcionar una solución. En algunos casos en los que dos agujeros negros se han estancado, otra galaxia podría comenzar a fusionarse con las dos primeras, trayendo consigo un agujero negro adicional. «Puede haber una fuerte interacción de tres cuerpos», explica Blecha. «Puede quitar energía y reducir en gran medida la escala de tiempo de la fusión». En algunas circunstancias, el más ligero de los tres agujeros es expulsado, pero en otras los tres se fusionan.

Pruebas en el horizonte

La tarea ahora es determinar cuál solución es la correcta, o si hay múltiples procesos en juego.

Alonso-Álvarez espera probar su idea buscando una señal de materia oscura autointeractuante en los próximos datos de la matriz de sincronización de púlsares. Una vez que los agujeros negros se acercan más allá del último pársec, pierden momento angular principalmente al emitir ondas gravitacionales. Pero si la materia oscura autointeractuante está en juego, entonces deberíamos ver que absorbe parte de la energía a distancias cercanas al límite del pársec. Esto, a su vez, generaría ondas gravitacionales menos energéticas, explica Alonso-Álvarez.

Hai-Bo Yu, físico de partículas de la Universidad de California en Riverside y defensor de la materia oscura autointeractuante, sostiene que la idea es plausible. “Es una vía para buscar características microscópicas de la materia oscura a partir de la física de ondas gravitacionales”, dice. “Creo que es simplemente fascinante”.

La sonda espacial LISA (Laser Interferometer Space Antenna) de la Agencia Espacial Europea, un observatorio de ondas gravitacionales cuyo lanzamiento está previsto para 2035, podría darnos aún más respuestas. LISA captará las fuertes ondas gravitacionales emitidas por la fusión de agujeros negros supermasivos en sus últimos días. “Con LISA veremos realmente la fusión de agujeros negros supermasivos”, cuenta Pacucci. La naturaleza de esa señal podría revelar “rasgos particulares que muestran el proceso de desaceleración”, resolviendo el problema del pársec final.

 

El artículo original, How Do Merging Supermassive Black Holes Pass the Final Parsec?, se publicó el 23 de octubre de 2024 en Quanta Magazine.

Traducido por César Tomé López

El artículo ¿Cómo pasan el último pársec los agujeros negros supermasivos en fusión? se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

La pitón ajusta el tamaño del corazón a su dieta

lun, 2024/11/04 - 11:59

Las serpientes pitón practican la estrategia depredadora conocida como “siéntate y espera”. Se trata de permanecer inmóvil y esperar a que una presa se ponga al alcance de sus mandíbulas, algo que sucede muy de tarde en tarde. Esta estrategia requiere que en los largos periodos de ayuno se reduzca drásticamente el metabolismo, y que las presas sean suficientemente grandes para compensar esos periodos.

pitónFigura 1. Pitón de Birmania (Python bivittatus). Foto: NPSPhoto, R. Cammauf, dominio público

La pitón de Birmania (Python bivittatus) es una serpiente que alcanza los cuatro metros de longitud (Figura 1). Es capaz de permanecer durante meses sin alimentarse, pero cuando captura una presa y comienza a digerirla, su metabolismo se multiplica por diez. En 2005 se descubrió que en las 48 horas posteriores a la ingesta se producía un aumento del 40% en el tamaño del corazón. El crecimiento no se producía por proliferación de las células musculares cardiacas (los cardiomiocitos), sino por un incremento en la síntesis de proteínas, sobre todo las del aparato contráctil, lo que llevaba a un aumento del tamaño de los cardiomiocitos. Se trataba, por tanto, del proceso conocido como hipertrofia cardiaca.

Una vez terminada la digestión, al cabo de 7-10 días, el metabolismo de la pitón vuelve a reducirse al mínimo y el corazón disminuye de tamaño hasta regresar a su volumen inicial. Este rápido proceso de aumento y disminución del tamaño cardiaco en cuestión de días resultaba excepcional, no se había observado nada parecido en otros animales.

En los humanos, una hipertrofia cardiaca reversible puede inducirse por el ejercicio prolongado y también ocurre de forma natural durante el embarazo, pero se trata de fenómenos mucho más lentos. También existe hipertrofia y remodelación cardiaca en respuesta a situaciones patológicas (infarto, hipertensión), pero suele ser irreversible. Por ello, el fenómeno observado en las pitones de Birmania cobraba un potencial interés clínico.

pitónFigura 2. La captura de una presa provoca un rápido crecimiento del corazón (hipertrofia) que responde al fuerte aumento del metabolismo. Finalizada la digestión, el corazón regresa a su tamaño normal en el plazo de 7-10 días tras la ingesta. La hipertrofia cardiaca puede ser inducida en pitones en ayunas mediante la inyección de plasma de pitón recién alimentada o de una combinación de ácidos grasos (mirístico, palmítico y palmitoleico).

Un equipo de investigación de la Universidad de Colorado (EE.UU.) descubrió en 2011 que la hipertrofia cardiaca era inducida por factores circulantes en la sangre de la pitón. Después de analizar los compuestos del plasma tras la ingesta de alimento, se seleccionaron como candidatos algunos ácidos grasos (mirístico, palmítico, palmitoleico). Bastaba la inyección de estos tres ácidos grasos en la sangre de la pitón para inducir un aumento del tamaño del corazón similar al provocado por la ingesta de una presa (Figura 2). Se observó incluso un aumento en la masa del ventrículo izquierdo de ratones tras la inyección de estos ácidos grasos.

Aclarado este punto, el grupo de investigación se aplicó al estudio de la rápida disminución del tamaño del corazón al volver a la fase de ayuno. Sus resultados acaban de ser publicados en la revista PNAS. Registrando cambios en la expresión génica durante la fase regresiva, se observó la activación de un conjunto de genes regulados por el factor de transcripción FoxO1. Como ya hemos comentado anteriormente en esta serie de artículos, los factores de transcripción se unen al ADN activando o reprimiendo a otros genes.

FoxO1 es bien conocido por su papel en múltiples procesos fisiológicos, como la regulación de la adipogénesis, los niveles de glucosa, el ciclo celular o la respuesta inmune. Más recientemente se ha descrito un papel importante de los factores FoxO en el proceso llamado autofagia, consistente en la degradación controlada de proteínas, orgánulos y otros elementos celulares. La autofagia es necesaria cuando la célula tiene que adaptarse al ayuno, o cuando debe reciclar orgánulos y proteínas deteriorados o que se han vuelto innecesarios. Se trata de un proceso conocido desde hace relativamente poco tiempo. De hecho, el Premio Nobel 2016 en Medicina y Fisiología fue otorgado al japonés Yoshinori Ohsumi por sus estudios pioneros sobre la autofagia.

pitónFigura 3. La adición de plasma de pitón recién alimentada al medio de cultivo provoca la hipertrofia de cardiomiocitos de rata recién nacida. Estos cardiomiocitos revierten a su tamaño normal después de un cambio a medio de cultivo sin plasma, debido a un proceso de autofagia (degradación de proteínas y otros componentes celulares). Si este medio contiene un inhibidor farmacológico del factor FoxO1, se evita el proceso de autofagia y los cardiomiocitos mantienen su gran tamaño. Por el contrario, si se fuerza la expresión de FoxO1 mediante vectores adenovirales, se bloquea la hipertrofia en presencia de plasma de pitón

En el caso de la serpiente pitón, el papel de FoxO1 en los cardiomiocitos consistía en desencadenar un proceso de autofagia. A partir del sexto día tras la ingesta, FoxO1 activa la degradación de proteínas y otros elementos celulares en los cardiomiocitos, provocando una drástica reducción de tamaño. Para demostrarlo, se utilizó un modelo de cardiomiocitos neonatales de rata cultivados con un 3% de plasma de pitón recién alimentada (Figura 3). El equipo confirmó que aumentaban de tamaño 24 h después del tratamiento, y regresaban a su tamaño normal 48 h tras el cambio a un medio de cultivo normal. Pero cuando se desactivó FoxO1 en los cardiomiocitos hipertrofiados mediante un inhibidor farmacológico, estos mantuvieron su gran tamaño en condiciones de ayuno. Por otro lado, cardiomiocitos en los que se forzó la expresión de FoxO1 mediante adenovirus no se hipertrofiaron a pesar de ser cultivados con plasma de pitón recién alimentada.

En conclusión, tanto los mecanismos de activación de la hipertrofia cardiaca como los implicados en la rápida reducción del corazón han quedado desvelados en la pitón de Birmania. Será muy importante saber si este nuevo conocimiento ayudará a comprender mejor la inducción y la reversión de la hipertrofia cardiaca humana en condiciones normales (embarazo, ejercicio) o patológicas.

Referencias

Andersen, J.B., Rourke, B.C., Caiozzo, V.J. et al. (2005) Postprandial cardiac hypertrophy in pythons. Nature. doi: 10.1038/434037a.

Martin, T.G., Hunt, D.R., Langer, S.J. et al. (2024) Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.2408719121.

Riquelme, C.A., Magida, J.A., Harrison, B.C. et al. (2011) Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science. doi: 10.1126/science.1210558.

Sobre el autor: Ramón Muñoz-Chápuli Oriol es Catedrático de Biología Animal (jubilado) de la Universidad de Málaga

 

El artículo La pitón ajusta el tamaño del corazón a su dieta se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Por qué hoy el Titanic no se habría hundido

dim, 2024/11/03 - 11:59
El Titanic durante su construcción. Foto:Robert John Welch (1859-1936) / Wikimedia Commons

 

La falta de un conocimiento adecuado en ciencia e ingeniería de materiales, así como priorizar otros intereses, ha contribuido a algunos de los mayores desastres tecnológicos de la historia. Son ejemplos icónicos la tragedia del transbordador espacial Challenger; los dramáticos accidentes del Havilland Comet, el Columbia y los buques Pendleton y Fort Mercer, además de la caída del puente Hasselt Road en Bélgica. Sin olvidarnos del desastre del Titanic.

Todas estas catástrofes se habrían evitado con los avances en materiales que conocemos hoy.

La fragilidad del acero del Titanic

El 1 de septiembre de 1985, Robert Ballard encontró el Titanic a 3 700 m en el fondo del océano Atlántico. El barco se había dividido en dos secciones principales, separadas por unos 600 m. La colisión había creado aberturas en el casco por un total de 1 115 m².

Durante una expedición a los restos del naufragio en el Atlántico Norte el 15 de agosto de 1996, los investigadores trajeron acero del casco del barco para realizar análisis metalúrgicos. El minucioso análisis desveló que el acero tenía una alta temperatura de transición dúctil-frágil, lo que le hacía inadecuado para el servicio a bajas temperaturas. En el momento de la colisión, la temperatura del agua era –2° C.

Hoy, la calidad de estos aceros se ha multiplicado exponencialmente.

El error se mantuvo en los Liberty ships

Durante la Segunda Guerra Mundial, Estados Unidos construyó más de 6 000 buques Liberty ships para apoyar a Gran Bretaña. Una de las peculiaridades en su fabricación fue que la planchas de acero del casco estaban soldadas y no unidas por remaches. Cuando tres de estos buques se partieron literalmente por la mitad, la razón pareció estar clara en un primer momento y se responsabilizó a la soldadura de las planchas. Sin embargo, la verdadera causa estaba relacionada con la fragilidad del acero a bajas temperaturas.

rotura del casco del SS SchenectadyEn 1943 el petrolero SS Schenectady estaba amarrado en el muelle de prueba de Swan Island. El casco se agrietó casi por la mitad.
Wikimedia commons

Estos buques, junto con el SS Schenectady y los Pendleton y Fort Mercer, soportaron temperaturas próximas a -2⁰ C , como las que sufrió el Titanic al hundirse en el Atlántico Norte en 1912

A esas temperaturas, el acero utilizado en los cascos se volvía frágil, rompiéndose con facilidad. La clave del problema radica en la temperatura que determina cuándo un material pasa de ser dúctil a frágil (DBTT). Este cambio de comportamiento no se descubrió hasta años después y ha supuesto un reto para la investigación metalúrgica en la última mitad de siglo.

Los avances en metalurgia del siglo XX han permitido modificar la composición del acero para que no ocurra una transición tan brusca y poder reducir este riesgo. Hoy en día sabemos que la relación entre los elementos que forman el acero es clave para optimizar su comportamiento, y también que esto influye en su sensibilidad a las bajas temperaturas y su susceptibilidad a la formación de grietas.

Con algunos cambios en la composición del acero, muchos desastres se habrían evitado. Y no solo el hundimiento de barcos.

Challenger: el efecto de la temperatura

La tragedia del Challenger en 1986 fue uno de los desastres más impactantes del siglo XX. Este vuelo de la NASA tenía una relevancia especial, ya que a bordo iba Christa McAuliffe, una profesora seleccionada para el programa Teachers in Space, promovido por el gobierno de Ronald Reagan.

Se esperaba que el lanzamiento reavivara el interés en los viajes espaciales, mostrando su creciente seguridad. Sin embargo, 73 segundos después del despegue el Challenger se desintegró a 14,6 kilómetros de altura, causando la muerte de los siete tripulantes.

La investigación reveló que el accidente fue causado por un fallo en las juntas tóricas de los propulsores de combustible sólido. Estas juntas, fabricadas con fluoroelastómeros (FKM), tenían pérdida de elasticidad a bajas temperaturas.

La mañana del lanzamiento, la temperatura era de -3⁰ C, lo que impidió que las juntas se sellaran adecuadamente. Esto permitió la fuga de gases calientes que provocaron la ruptura del propulsor derecho, desatando el desastre.

En 1986 ya sabía que las juntas tóricas eran vulnerables a bajas temperaturas, y varios expertos sugirieron posponer el despegue. Pero la presión por el éxito de la misión prevaleció, ignorando las advertencias sobre el comportamiento del material en condiciones adversas.

Havilland Comet y la fatiga del metal

El Havilland DH.106 Comet fue el primer avión comercial a reacción y marcó un hito en la aviación cuando comenzó a operar en 1949. Propulsado por turbinas, volaba a mayor altitud y con menos turbulencias, lo que mejoraba la comodidad para los pasajeros. Su diseño aerodinámico, con alas en flecha y motores empotrados, lo hacía más eficiente.

Sin embargo, entre 1953 y 1954 el Comet sufrió una serie de accidentes, incluido el vuelo G-ALYV, que se desintegró sobre Calcuta.

Inicialmente, se pensó que las causas eran climáticas. Pero la investigación reveló un problema en el diseño estructural del avión: las ventanas cuadradas.

Detalle de las ventanas del Havilland DH Comet que provocaban la ruptura del avión.
Wikimedia commons, CC BY

Estas ventanas actuaban como concentradores de tensiones, lo que generaba grietas debido a los ciclos de presión durante los vuelos. Con cada ciclo, las fisuras aumentaban hasta provocar una descompresión explosiva, causando la desintegración del avión.

Este descubrimiento resultó clave para la industria de la aviación, que adoptó las ventanas ovaladas que ahora vemos en los aviones para evitar la concentración de tensiones y reducir el riesgo de fatiga del metal.

Trasbordador espacial Columbia: la corrosión

El 1 de febrero de 2003, el transbordador espacial Columbia se desintegró durante su reingreso a la atmósfera, causando la muerte de sus siete tripulantes.

El desastre se debió a un daño en el ala izquierda, causado por una pieza de espuma aislante que se desprendió durante el lanzamiento, afectando las planchas de protección térmica. Este daño expuso la estructura interna del transbordador a los gases calientes de la atmósfera, lo que debilitó la nave y causó su desintegración.

Uno de los factores fue la corrosión de los materiales metálicos, que se agrava en el espacio debido a la exposición al oxígeno elemental altamente reactivo en las capas superiores de la atmósfera. Desde entonces, las inspecciones de seguridad han prestado mayor atención a la corrosión de los materiales, que ya no se pasa por alto, lo que evita futuros accidentes.

La apuesta por la ciencia e ingeniería de materiales

Los desastres mencionados resaltan la importancia de la ciencia e ingeniería de materiales en la seguridad y el éxito de las tecnologías modernas.

Entender cómo se comportan los materiales en diferentes condiciones es fundamental para prevenir fallos catastróficos. Figuras como Elon Musk han destacado la importancia de esta disciplina, alentando a estudiar carreras en ciencia e ingeniería, cruciales para el desarrollo de la industria espacial y otros campos. Y, como hemos visto, para evitar terribles accidentes en la historia futura.The Conversation

 

Sobre la autora: Paula Alvaredo Olmos, Profesora Titular en Ciencia e Ingeniería de Materiales, Universidad Carlos III

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Por qué hoy el Titanic no se habría hundido se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Naukas Pro 2024: Corrientes oceánicas y submarinos amarillos

sam, 2024/11/02 - 11:59

submarinos

Los últimos avances en el ámbito de las energías renovables marinas o la proliferación de los microplásticos fueron algunos de los temas que componen la última edición de NAUKAS PRO. Una cita en la que el personal investigador se sube al escenario del Euskalduna Bilbao para hablar de las investigaciones más destacadas del momento en un ámbito concreto.

En esta ocasión el personal investigador de la Universidad del País Vasco, de la Estación Marina de Plentzia (PiE-UPV/EHU), AZTI, Tecnalia o el CSIC acercaron las últimas investigaciones relacionadas en el ámbito marítimo.

La conferencia Corrientes oceánicas y submarinos amarillos corre a cargo de Anna Rubio Company, investigadora del Centro de Investigación Marina y Alimentaria AZTI.



Si no ve correctamente el vídeo, use este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Pro 2024: Corrientes oceánicas y submarinos amarillos se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Desimetrización enantioselectiva de ciclobutanos

ven, 2024/11/01 - 11:59

Los sistemas vivos están basados en biomoléculas que son asimétricas. El Grupo de Investigación en Catálisis metálica y Organocatálisis liderado por el catedrático de la Universidad del País Vasco José Luis Vicario ha conseguido, en colaboración con la Universidad Rovira i Virgili, “sintetizar moléculas con una asimetría esquiva utilizando una novedosa metodología que abre una nueva vía a un tipo de estructuras moleculares nunca conseguidas hasta el momento, que potencialmente podrían utilizarse como fármacos, entre otras cosas”.

El grupo de la Facultad de Ciencia y Tecnología de la UPV/EHU, que trabaja en síntesis asimétrica de moléculas orgánicas de pequeño tamaño, ha conseguido “sintetizar moléculas cíclicas intrínsecamente asimétricas empleando catálisis. Hemos desarrollado una metodología eficaz y directa, utilizando pequeñas cantidades de un catalizador derivado del cobre, un metal abundante y no nocivo”, señala el Catedrático de Química Orgánica de la UPV/EHU.

La gran mayoría de moléculas orgánicas (basadas en una estructura de carbono) no son planas, tienen geometría tridimensional. Dependiendo de la manera en que los átomos se ordenan dentro de cada molécula se pueden obtener resultados. En algunos casos una molécula y su imagen especular (es decir, dos moléculas simétricas que guardan la misma relación que la que tiene un objeto con su imagen en un espejo) pueden tener propiedades totalmente diferentes.

Utilicemos el símil de las manos para explicarlo: nuestras manos son las imágenes especulares una de la otra; se puede decir que son idénticas. Sin embargo, cuando se dispone una mano sobre la otra (no en disposición de juntar las palmas, sino superponiendo una mano a la otra), la posición de los dedos no es la misma. Ocurre lo mismo con algunas moléculas, la organización de los átomos no coincide. Cada una de las imágenes especulares de una molécula que no son superponibles se llama enantiómero.

Simétricas pero con propiedades muy diferentes

“En la naturaleza y en farmacología existen muchísimos ejemplos en los que los dos enantiómeros tienen propiedades dispares. Es el caso de la talidomida (un fármaco administrado como sedante y calmante de las náuseas durante los tres primeros meses de embarazo, que provocó miles de casos de malformaciones congénitas), uno de los enantiómeros tiene propiedades analgésicas y el otro produce malformaciones —explica el doctor de la UPV/EHU Efraim Reyes, uno de los autores principales del trabajo—. Eso ocurre porque las dianas terapéuticas no interaccionan de la misma manera con un enantiómero u otro. Por tanto, es fundamental controlar la síntesis de este tipo de moléculas, para conseguir únicamente uno de los dos enantiómeros”.

La investigadora predoctoral Josebe Hurtado ha sido capaz de construir selectivamente una de las dos moléculas enantioméricas de un grupo de ciclobutanos (moléculas cíclicas que contienen esencialmente átomos de carbono e hidrógeno), “mediante la desimetrización; es decir, rompiendo la simetría planar y convirtiéndolas en bloques sintéticos elementales de moléculas más complejas”, explica su director de tesis Efraim Reyes.

Este logro responde a un gran reto actual y un área de investigación de interés creciente. “Hemos conseguido sintetizar moléculas con una asimetría axial (sustentada en un eje), que no tiene precedente en la naturaleza y que abre una puerta al estudio de un nuevo tipo de moléculas, que pueden servir también para desarrollar nuevas vías terapéuticas”, añade Vicario. Además, a través de un estricto control de las reacciones “hemos roto la simetría planar para convertirla en asimetría axial y a continuación en asimetría puntual (sustentada en un punto)”, explica el profesor catedrático de la UPV/EHU. Esto demuestra “que existe una posibilidad real de que las biomoléculas con asimetría puedan tener también un origen común”.

La desimetrización espontánea, origen de la vida

Este hallazgo recuerda a una de las teorías relacionadas con el origen de la vida, que se basa en que mediante una desimetrización espontánea de la simetría se formaron las moléculas que dieron lugar a la vida. “Una de las teorías del origen de la vida, muy aceptada, dice que originalmente solo había moléculas simétricas y que por un proceso de desimetrización espontánea surgieron moléculas asimétricas, que son evidentemente el origen de la vida, porque todo nuestro organismo y los sistemas vivos están basados en biomoléculas que son asimétricas y solo contienen uno de los dos enantiómeros”, concluye Reyes.

Referencia:

Josebe Hurtado, Nerea Iragorri, Efraim Reyes, Jose L. Vicario, Elena Fernández (2024) Cu-Catalyzed Enantioselective Borylative Desymmetrization of 1-Vinyl Cyclobutanols and Axial-to-Point Chirality Transfer in a Diastereoconvergent/Stereoretentive Allylation Scenery Angewandte Chemie International Edition doi: 10.1002/anie.202411232

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Desimetrización enantioselectiva de ciclobutanos se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Amianto, una historia de terror

jeu, 2024/10/31 - 11:59

Basta pronunciar la palabra amianto, o asbesto, para que a muchos —y, sobre todo, a los propietarios de las casas de los programas de reformas— se nos pongan los pelos de punta. Utilizada desde la Antigüedad en numerosos ámbitos, las propiedades de esta fibra mineral son ampliamente conocidas desde entonces, algunas muy útiles, de ahí su popularidad, y otras muy dañinas. Aun así, no fue hasta 2005 cuando la Unión Europea prohibió completamente su uso —algunos países miembros ya lo habían empezado a eliminar mucho antes—. Pero ¿qué es exactamente el amianto?, ¿para qué se ha utilizado a lo largo de la historia?, ¿por qué es tan peligroso? Para empezar, hasta que se empezaron a estudiar sus nocivos efectos sobre la salud, fue el material del futuro, un compuesto milagroso a prueba de todo… y con aplicaciones para casi todo.

Fibras de amianto (tremolita, en este caso) sobre un mineral de muscovita. Créditos: Dominio Público/Aram Dulyan

El amianto es un grupo de seis minerales fibrosos de origen metamórfico compuestos de silicatos —los de mayor abundancia en la naturaleza—: grunerita (o amosita, para la variante fibrosa), crisotilo, riebeckita (crocidolita), tremolita, bisolita (actinolita) y antofilita. La combinación de este origen mineral y que se presente en forma de fibras largas, flexibles y resistentes es lo que le otorga tanto sus propiedades como su versatilidad. Estamos ante un material ignífugo, con excelentes propiedades aislantes tanto eléctricas como térmicas, una gran durabilidad, resistencia química y mecánica, y, sobre todo, abundante y barato. Su ligereza y que se presente en forma de fibras posibilita, además, manipularlo con facilidad, pero también es lo que lo convierte en un peligro para la salud.

Microfibras de amianto (amosita), vistas a través de un microscopio electrónico de barrido. El pequeño tamaño que pueden alcanzar hace que puedan inhalarse sin detectarse. Una vez alojadas en los pulmones, el cuerpo tiene mucha dificultad para eliminarlas. Créditos: CC BY-SA 3.0/Ravaka

La inhalación de fibras microscópicas de amianto, que pueden encontrarse flotando en el ambiente en cualquier entorno en el que se esté trabajando con él, puede provocar graves patologías. Estas se quedan alojadas en los pulmones durante largo tiempo, dada la dificultad del cuerpo para eliminarlas, lo que, a largo plazo, acaba produciendo inflamación y daño celular. Aparecen así enfermedades como la asbestosis, que causa fibrosis pulmonar, o ciertos tipos de cáncer como el de pulmón y el mesotelioma, que afecta a la pleura o el peritoneo.

Que las personas que trabajaban con amianto enfermaban se sabe desde casi los orígenes de su uso. Existen testimonios incluso de Plinio el Viejo, que ya habló del padecimiento pulmonar de los esclavos que manipulaban habitualmente amianto, y en 1899, se documentó clínicamente en Londres el primer caso de fibrosis pulmonar de una trabajadora del amianto de 33 años por inhalación de estas fibras. Las primeras regulaciones del trabajo con amianto, dada su alta peligrosidad, se remontan a los años treinta, por eso sorprende que no haya sido hasta hace relativamente poco cuando por fin se han tomado medidas. Y no solo eso: la locura comercial y la mayor expansión de la industria del amianto se produjo, incluso sabiendo esta información, durante la década de los años cuarenta, con su pico durante los cincuenta y los sesenta.

A lo largo de la historia de la ciencia ha sido habitual que, ante la llegada de un nuevo descubrimiento o adelanto tecnológico, este se haya visto como una especie de santo grial o piedra filosofal que iba a solucionar todos nuestros problemas. Sucedió con la electricidad, con la radiactividad —recordemos todos aquellos productos de uso cotidiano que llevaban radio, como pastas de dientes—, e incluso puede que esté sucediendo ahora con la inteligencia artificial. El amianto no se quedó atrás, pero con la diferencia de que, en su momento de mayor auge, como hemos comentado, sí se conocían los riesgos que su uso implicaba.

La mayoría de aplicaciones del amianto son de sobra conocidas. En la construcción se ha usado como aislamiento, revestimiento, para aumentar la durabilidad y resistencia de los suelos… En la industria automotriz, era un material habitual en pastillas de freno y embragues, pero las aplicaciones más espeluznantes fueron, probablemente, en el ámbito textil, para la confección de ropa ignífuga. Se utilizó incluso en electrodomésticos, sobre todo en aquellos que generan calor, como calentadores, hornos y secadores. Lo que tal vez muchos no sepan es que, durante mucho tiempo, se promovió muchísimo su uso en objetos mucho más cotidianos. Y, para muestra, este documento de 1942:

Cortinas, fundas, manteles… también mantas, guantes de cocina, bolsas, cuerdas… incluso el tejido para confeccionarlos uno mismo se anunciaba como maravilloso. Todos estos productos se vendían con total, demasiada, normalidad. Por ejemplo, para los fanáticos de la Navidad que ya estén pensando en la decoración de su árboles y belenes existía incluso nieve artificial hecha de amianto.

Nieve decorativa de amianto y mica. Créditos: Flickr/Asbestorama fuck you

Parece que del mismo tipo que la que le cayó a Dorothy, el Espantapájaros y el León de camino a Oz.

La nieve artificial que se usó en El mago de Oz en 1939 eran fibras de amianto. Créditos: Metro Goldwyn Mayer

Solo cabe hacerse una pregunta cuando la historia nos pone en situaciones similares: ¿cuál es nuestra prioridad? ¿El beneficio económico o el beneficio humano? El uso de amianto, a diferencia de lo que sucedió con el radio y sus efectos, no se promovió desde la ignorancia.

Bibliografía

The Mesothelioma Center. (s. f.). History of asbestos. Asbestos.com. https://www.asbestos.com/asbestos/history/

Asbestorama. Perfil de Flickr. https://www.flickr.com/photos/asbestos_pix/asbestos

Rare Historial Photos (s. f.). Vintage photos show how asbestos products were once marketed, 1930s-1970s. Rare Historial Photos. https://rarehistoricalphotos.com/asbestos-vintage-advertisements/

Tweedale, G. (2000). Magic mineral to killer dust. Oxford University Press.

.
Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.

El artículo Amianto, una historia de terror se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Fibonacci está en todas partes (y III)

mer, 2024/10/30 - 11:59

Esta es la última jornada de un paseo por algunos lugares de lo más curiosos e inesperados, en los que aparecen los números de Fibonacci. Durante la primera jornada, recogida en la entrada del Cuaderno de Cultura Científica titulada Fibonacci en todas partes (I), visitamos espacios destacados como el árbol genealógico de un zángano (abeja macho), los paseos de una abeja por un panal de dos filas de celdas o los embaldosados con fichas de dominó, mientras que para la segunda jornada, Fibonacci en todas partes (II), reservamos la visita a lugares de interés como la óptica de la luz, unas escaleras que se suben, o se bajan, de una en una o de dos en dos, y las sumas de números con unos y doses.

númerosGirasole (en italiano), acrílico sobre lienzo, 60 x 70 cm, del artista suizo Eugen Jost. Obra perteneciente a la exposición Everything is numberPintando un edificio de apartamentos

Con el problema de pintar un edificio de apartamentos con dos colores distintos iniciamos la tercera jornada de este paseo. El enunciado de este clásico problema dice así.

Problema: Si un edificio de apartamentos de n plantas va a ser pintado de azul y amarillo, de manera que cada planta esté pintada de un color y no haya dos plantas adyacentes pintadas ambas de amarillo, ¿de cuántas formas es posible hacerlo?

Para resolver este problema, podemos empezar de forma experimental, viendo qué ocurre para los edificios con un número pequeño de plantas. Para un edificio de apartamentos con una sola planta, existen solo dos opciones (2), pintar esa única planta de azul o de amarillo. Para dos plantas, hay tres opciones (3), pintar las dos plantas de azul, ambas de amarillo no es posible, o pintar cada planta de un color, lo cual se puede hacer de dos formas distintas, como se observa en la siguiente imagen. Mientras que para un edificio de tres plantas pueden pintarse todas de azul, puede pintarse una de amarillo, que puede ser la primera, la segunda o la tercera planta, o pueden pintarse dos plantas de amarillo, que por la condición de que no haya plantas amarillas contiguas, solo puede hacerse de una manera, en las plantas de los extremos, en total cinco formas distintas (5).

 númerosManeras de pintar un edificio de apartamentos de una, dos o tres plantas de azul y amarillo, si el color amarillo no lo pueden compartir plantas contiguas

 

Si ahora consideramos un edificio de cuatro plantas, puede pintarse todo de azul, con una planta amarilla y hay cuatro plantas, o con dos plantas amarillas, que puede hacerse de tres formas diferentes sin que coincidan de amarillo plantas adyacentes, pero no es posible que tres o cuatro plantas estén pintadas de amarillo. En total, hay ocho (8) maneras de pintar el edificio de apartamentos.

númerosFormas de pintar un edificio de apartamentos de cuatro plantas de azul y amarillo, si el color amarillo no lo pueden compartir plantas contiguas

 

Como observamos los números que nos salen son 2, 3, 5 y 8, que son números de la sucesión de Fibonacci. Veamos que es la sucesión de Fibonacci, empezando en 2 y 3, viendo que satisface la condición recursiva, que la cantidad de maneras de pintar un edificio de n plantas se puede obtener a partir de las de n – 1 y n – 2 plantas. Para ello, observemos qué ocurre con el caso de n = 4 (cuatro plantas).

Si tomamos los edificios de 3 plantas (n – 1, en general) y consideramos una planta más, por encima de las otras, pintada de azul, generaremos algunos de los casos posibles para un edificio de 4 plantas (n, en general), tantos como las formas de pintar un edificio de 3 plantas (n – 1 plantas en general), que son 5 maneras distintas. Observemos que no podemos pintar de amarillo en todos los casos puesto que en algunos la última planta está pintada de amarillo, por lo que coincidirían dos plantas amarillas, mientras que los casos en los que la última planta es azul, aunque sí podríamos pintar la siguiente de amarillo, ese caso va a estar considerado en los casos que se derivan del edificio de n – 2 plantas (2 plantas en nuestro ejemplo), que veremos a continuación. Recíprocamente, si tomamos las maneras de pintar un edificio de 4 plantas (n, en general) en las cuales su última planta es azul, son todas las de 3 plantas (n – 1), a las que le añadimos una última planta azul.

númerosLas distintas maneras de pintar un edificio de 4 plantas, en las cuales su última planta es azul, son todas las posibles para 3 plantas, a las que le añadimos una última planta azul

 

Si tomamos los edificios de 2 plantas (n – 2, en general) y consideramos dos plantas más, por encima de las otras, pintadas de amarillo y azul (de arriba a abajo), generaremos algunos de los casos posibles para un edificio de 4 plantas (n, en general), tantos como las formas de pintar un edificio de 2 plantas (n – 2 plantas en general), que son 3 maneras distintas. Observemos que no podríamos pedir pintar esas dos plantas superiores de azul y amarillo, ya que podrían coincidir dos plantas adyacentes amarillas, además los casos en los que sí se pueda, ya que la última planta de las anteriores es azul, ya está considerado en el caso anterior. Más aún, así cubrimos todos los casos de un edificio de 4 plantas (n, en general) en las cuales su última planta es amarilla.

númerosLas distintas maneras de pintar un edificio de 4 plantas, en las cuales su última planta es amarilla, son todas las posibles para 2 plantas, a las que le añadimos dos plantas más, por encima de las otras, pintadas de amarillo y azul (de arriba a abajo)

 

En consecuencia, hemos demostrado que se cumple la misma propiedad recursiva que para la sucesión de Fibonacci, Fn = Fn – 1 + Fn – 2. Por lo tanto, el número de formas distintas de pintar un edificio de apartamentos de n plantas, pintado de azul y amarillo, de manera que cada planta esté pintada de un color y no haya dos plantas adyacentes pintadas ambas de amarillo, es Fn + 2.

Palabras de n-bits

Empecemos por lo elemental. Una palabra de n-bits es una cadena de n bits, donde un bit –acrónimo de bi[nary digi]t / dígito binario– es la unidad mínima de información y se corresponde con un dígito del sistema de numeración binario, 0 ó 1. Así, 1001001 sería una palabra de 7-bits o 1010101110110 una palabra de 13-bits.

Si lo pensamos un momento, resulta que la cuestión anterior de pintar de dos colores (azul y amarillo) un edificio de n plantas es equivalente al siguiente resultado.

Teorema: El número de palabras de n-bits que no contengan dos 1s consecutivos es igual a Fn + 2.

Veamos en la siguiente tabla, las palabras de n-bits para longitudes n pequeñas.

númerosNúmero de palabras de n-bits que no contengan dos 1s consecutivos

La demostración del teorema anterior es la misma que la de las maneras de pintar un edificio. Si se consideran las palabras de n-bits, las que terminan en 1 (por la derecha) son las palabras de (n – 1)-bits a las que se les añade un 1 por la derecha, mientras que las palabras que terminan en 0 son las palabras de (n – 2)-bits a las que se les añade 10 por la derecha.

Lanzar una moneda

Llegados a este punto del paseo, nos podemos plantear una visita extra a un lugar que es un problema de probabilidad.

Problema: Si lanzamos una moneda n veces (sea n la cantidad que queramos), ¿cuál es la probabilidad de que no haya dos lanzamientos adyacentes que sean ambos cara?

Empecemos recordando que la probabilidad de que un evento ocurra se calcula dividiendo “el número de casos favorables” entre “el número de casos posibles” (pueden leerse las entradas relacionadas con la probabilidad, La probabilidad en el banquillo de los acusados o El cuento de la ruleta rusa ). Así, dada una determinada familia con dos “hijos”, si nos preguntamos cuál es la probabilidad de que los dos sean chicas, tendríamos que calcular primero el espacio muestral, es decir, el espacio de todos los casos posibles. En esta ocasión, habrá cuatro posibles casos (chica, chica), (chica, chico), (chico, chica) y (chico, chico), donde el orden en el par expresa el orden cronológico de nacimiento. Como solo uno de los cuatro es favorable, son dos chicas, la probabilidad de que los dos “hijos” sean chicas es 1/4 = 0,25, es decir, una probabilidad del 25%.

Escena de la película No es país para viejos (2007), dirigida por Joel Coen y Ethan Coen, e interpretada por Tommy Lee Jones, Javier Bardem y Josh Brolin, entre otros, en la cual el personaje interpretado por Javier Bardem, un asesino a sueldo, decide si deja vivir al dependiente de una gasolinera lanzando una moneda al aire

Para analizar nuestro problema, si lanzamos una moneda al aire puede salir cara (que vamos expresarlo, para simplificar, pero también para disponer de una notación simple, con un 1) o puede salir cruz (que lo expresaremos con un 0). De esta manera, si lanzamos una moneda n veces, la representación de un posible resultado es un n-bit. Por ejemplo, si hablamos de lanzar la moneda 5 veces, entonces 10011 representa la posibilidad de que salga cara / cruz / cruz / cara / cara, mientras que 00101 sería cruz / cruz / cara / cruz / cara.

Por lo tanto, ya estamos en condiciones de calcular la probabilidad de que, si lanzamos una moneda n veces, no haya dos lanzamientos adyacentes que sean ambos cara. En primer lugar, calculemos el número de casos posibles. Estos son, teniendo en cuenta la descripción anterior de los posibles lanzamientos, todas las palabras de n-bits, que son 2n, ya que cada vez que lanzamos la moneda hay dos posibilidades, cara (1) o cruz (0), en un total de n lanzamientos. Y ahora toca calcular el número de los casos posibles, que, por la descripción anterior, son las palabras de n-bits para las que no hay dos 1s consecutivos, que ya hemos calculado y que es igual al número de Fibonacci Fn + 2.

Por lo tanto, la probabilidad de que, si lanzamos una moneda n veces, no haya dos lanzamientos adyacentes que sean ambos cara, es igual a:

Por ejemplo, si lanzamos una moneda 5 veces, la probabilidad de que no haya dos lanzamientos consecutivos que sean cara es 13 / 32 = 0,40625, es decir, un 40,625 por ciento. Si vamos realizando cada vez más lanzamientos, nos podemos plantear si esa probabilidad aumenta o disminuye. Si lo pensamos un poco, intuitivamente es bastante claro que esa probabilidad irá disminuyendo, ya que con más lanzamientos será más fácil que salgan dos caras seguidas. Veamos qué pasa con las primeras cantidades de lanzamientos.

Efectivamente, la probabilidad va disminuyendo, como intuíamos. Esto se debe, matemáticamente, a que la sucesión de las potencias de 2 crece más rápido que la sucesión de los números de Fibonacci.

Subconjuntos alternados

Vamos a terminar este paseo con un problema propuesto por el matemático francés Olry Terquem (1782-1862), del que ya hablamos en la entrada La circunferencia de los nueve puntos.

Un subconjunto del conjunto {1, 2, 3, …, n – 1, n} se dice que es alternado si sus elementos, cuando se colocan en orden creciente, siguen el patrón impar, par, impar, par, etcétera. Por ejemplo, los conjuntos {4}, {3, 6} o {1, 2, 5, 6} son subconjuntos alternados de {1, 2, 3, 4, 5, 6}, mientras que {2, 4, 5} o {1, 2, 3, 5} no lo son. El problema que se planteó Terquem fue calcular el número de subconjuntos alternados del conjunto {1, 2, 3, …, n – 1, n}. Veamos qué ocurre para los primeros casos.

Cantidad de subconjuntos alternados del conjunto {1, 2, 3, …, n}, para n = 1, 2, 3, 4, 5, 6

Por lo tanto, el número de subconjuntos alternados del conjunto {1, 2, 3, …, n – 1. n} es igual al número de Fibonacci Fn + 2.

Podemos llegar a la sucesión de Fibonacci de muchas otras maneras, pero esas os las dejo para quienes os animéis a indagar sobre este tema.

Coyote Breath / Aliento de coyote (2016), monotipo de la artista estadounidense Holli Marmon

Bibliografía

1.- Alfred S. Posamentier, Ingmar Lehmann, The Fabulous Fibonacci Numbers, ‎ Prometheus Books, 2007.

2.- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.

 

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Fibonacci está en todas partes (y III) se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Un magnetómetro de tamaño atómico

mar, 2024/10/29 - 11:59

Si colocas unos cuantos átomos de hierro en fila sus espines magnéticos pueden organizarse en un patrón antiferromagnético alterno. O, mejor dicho, patrones. Debido a su naturaleza cuántica los átomos se encuentran en una superposición de dos estados antiferromagnéticos. Normalmente, la fila de átomos oscila rápidamente entre los dos estados. Pero un equipo de investigadores acaba de demostrar que es posible llevar una cadena corta de átomos de hierro a un punto diabólico, con el efecto de alargar espectacularmente el tiempo que la cadena pasa en un estado u otro. Este efecto podría ser la base sobre la que fabricar un magnetómetro de tamaño atómico.

magnetómetroA la izquierda diábolo, figura geométrica (véase el texto). Fuente: Elbertse et al. (2024). A la derecha, diábolos, juguetes. Fuente: StoatBringer / Wikimedia Commons

El punto diabólico recibe su nombre del diábolo, un yoyó chino cuyas dos mitades cónicas opuestas se unen en un cuello estrecho. Si se representa gráficamente la energía de una cadena de espín antiferromagnética frente a la fuerza del campo magnético aplicado se obtiene una forma similar: un cono que apunta hacia arriba es el estado fundamental, mientras que el cono que apunta hacia abajo es el primer estado excitado. En su unión (el punto diabólico), los dos estados están degenerados.

magnetrómetroElbertse et al. (2024)

Para crear su punto diabólico los investigadores colocaron cinco átomos de hierro sobre una superficie de nitruro de cobre a baja temperatura y en un vacío ultraalto. Encontraron que un campo magnético aplicado en paralelo a la superficie tenía el valor justo para crear unos estados fundamental y excitado casi degenerados.

Midiendo el giro del átomo central con un microscopio de efecto túnel los investigadores descubrieron que, en el punto diabólico, el patrón antiferromagnético cambiaba de dirección aproximadamente cada 10 segundos. Al variar el campo paralelo y aplicar un campo perpendicular adicional puediron crear un mapa de las condiciones alejadas del punto diabólico. A la distancia más grande, el tiempo de cambio de dirección se redujo en 3 órdenes de magnitud.

Los investigadores afirman que la sensibilidad del tiempo de cambio de dirección al campo magnético local podría aprovecharse para construir un magnetómetro de tamaño atómico.

Referencias:

R. J. G. Elbertse, D. Borodin, J. Oh, T. Ahn, J. Hwang, J. C. Rietveld, A. J. Heinrich, F. Delgado, S. Otte, and Y. Bae (2024) Long-Lived Magnetization in an Atomic Spin Chain Tuned to a Diabolic Point Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.166703

C. Tomé López (2017) Defeating spin decoherence Mapping Ignorance ISSN 2529-8992

C. Day (2024) Diabolical Nanomagnets Physics 17, s118

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Un magnetómetro de tamaño atómico se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

¿Procede la Luna de un intercambio de parejas planetario?

lun, 2024/10/28 - 11:59

La Tierra, nuestro planeta, tiene un único satélite natural. Esta obviedad, que a veces queda en un segundo plano por la llegada de pequeños “satélites” temporales, es algo más que una mera curiosidad. Si echamos un vistazo a los planetas interiores -Mercurio, Venus, la Tierra y Marte- dos de ellos carecen de satélites y Marte tiene dos cuya diferencia de tamaños con el planeta es de alrededor de 2,5 órdenes de magnitud menores, tan pequeños en comparación con el planeta que no fueron descubiertos hasta la segunda mitad del siglo XIX.

Sin embargo, si nos fijamos en los planetas exteriores -Júpiter, Saturno, Urano y Neptuno- estos cuentan con un extraordinario rebaño de satélites, lo que nos lleva a hacernos la siguiente pregunta, ¿Por qué los gigantes gaseosos y de hielo tienen tantos satélites, pero no pasa lo mismo con los planetas terrestres? ¿Es más difícil la formación de satélites alrededor de planetas pequeños? ¿O quizás, si se forman, van perdiéndose a lo largo del tiempo a causa de distintos procesos?

Existen tres grandes mecanismos que dan origen a los satélites: acreción, captura y grandes impactos. En el caso de la acreción, los satélites se forman a partir del material que queda “sobrante” tras la formación de un planeta. Es parecido a como los planetas se forman alrededor de las estrellas, solo que en este caso ocurre alrededor de un planeta. Muy probablemente este fue el proceso dominante en los gigantes gaseosos y de hielo de nuestro Sistema Solar.

satélitesFigura 1. Tritón, el satélite de Neptuno, observado en 1989 por la Voyager 2. Imagen cortesía de NASA/JPL/USGS.

El mecanismo de captura de un satélite ocurre cuando un objeto, a veces un asteroide -en sensu lato– o un sistema binario es atrapado por el campo gravitatorio de un planeta, como podría ser el caso de Tritón, el satélite de Neptuno o incluso los dos satélites de Marte, Fobos y Deimos.

También se pueden formar satélites a partir de grandes impactos, cuando dos cuerpos colisionan y se expulsa una gran cantidad de materia a la órbita de uno de estos. Lentamente todos esos materiales pueden ir coalesciendo formando uno o varios satélites. Esta es la teoría dominante desde hace décadas sobre la formación de nuestra Luna.

Pero un nuevo estudio publicado por Williams et al. (2024) en The Planetary Science Journal propone una nueva alternativa: La captura por intercambio binario, un proceso por el cual un planeta puede capturar uno de los cuerpos de un sistema binario, parejas de objetos que orbitan uno alrededor del otro.

Los sistemas binarios son un fenómeno común en el universo: Parejas de objetos que están unidos gravitatoriamente el uno al otro. Los vemos en la población de asteroides, e incluso en el cinturón de Kuiper donde, por ejemplo, el sistema formado por Plutón y Caronte podría ser considerado como binario ya que el centro de gravedad del sistema no cae dentro de Plutón.

Pero, ¿qué novedad propone realmente este artículo? El mecanismo de captura por intercambio binario sugiere que si tuviésemos un encuentro cercano con un sistema binario -valga la redundancia-, las interacciones gravitatorias entre los tres cuerpos podrían romper el vínculo de los que forman el sistema binario pudiendo uno de ellos entrar en órbita alrededor del otro planeta.

satélitesFigura 2. Imagen de Deimos, uno de los dos satélites de Marte. ¿Se formó en el entorno del planeta rojo o es un asteroide capturado? Imagen cortesía de NASA/JPL-Caltech/University of Arizona.

Para llegar a esta conclusión, los científicos han realizado una serie de simulaciones en las cuales ocurren distintos encuentros entre un planeta del tamaño de la Tierra y distintos sistemas binarios con el objetivo de observar si estos encuentros son capaces por sí solos de dejar un satélite del tamaño de nuestra Luna alrededor de un planeta como la Tierra.

Los resultados hablan por sí solos, ya que satélites de entre 0.01 y 0.1 veces la masa de la Tierra (es decir, de la masa de la Luna y más pequeños) podrían ser capturados por un planeta como el nuestro bajo unas condiciones adecuadas. De hecho, un encuentro lento y más directo entre el sistema binario y el planeta incrementaría las posibilidades del intercambio.

Pero a esta teoría le surge un problema: La órbita del nuevo satélite tiene que ser estable para mantenerse durante miles de millones de años y no acabar colisionando con el planeta. Y en el caso de nuestra Luna, también es importante explicar cómo puede haber conseguido tener una órbita tan circular, ya que la órbita resultante de la captura sería muy excéntrica.

Las interacciones gravitatorias y en especial las fuerzas de marea -las mismas que provocan las mareas en nuestros océanos- podrían hacer que este satélite capturado adquiriese una órbita cada vez más circular y volviéndola estable durante miles de millones de años.

satélitesFigura 3. ¿Cómo se formó nuestra Luna? ¿Fue a través de un gran impacto o por un intercambio binario? Imagen cortesía de NASA/JPL/USGS.

Obviamente hay muchos puntos que solucionar en esta teoría: para capturar un satélite de esta manera tuvo que existir un sistema binario en las proximidades de la Tierra y encontrarnos con una geometría y velocidad muy concretas. Pero independientemente de nuestro caso, Tritón, el satélite de Neptuno, podría ser uno de esos satélites capturados mediante este proceso.

Todavía quedan muchas páginas por escribir sobre la formación de nuestra Luna y de todos los satélites del Sistema Solar, así que este nuevo mecanismo añade un nuevo proceso que complementa a las otras teorías sobre como se forman los satélites de los planetas y al mismo tiempo arroja algo de luz a como podrían haber sido esas primeras etapas caóticas de la formación de nuestro sistema planetario.

¿Vendrá esta nueva teoría para quedarse o nos servirá para explicar el origen de otros satélites de nuestro Sistema Solar y más allá? El tiempo lo dirá, pero sin duda, nos ayudará a comprender mejor la dinámica de nuestro Sistema Solar, especialmente en sus primeras etapas tras la formación planetaria.

Referencias:

Williams, Darren M, and Michael E Zugger (2024) Forming Massive Terrestrial Satellites through Binary-Exchange Capture. The Planetary Science Journal, vol. 5, no. 9, 1 Sept. 2024, pp. 208–208, doi: 10.3847/psj/ad5a9a

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo ¿Procede la Luna de un intercambio de parejas planetario? se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

El muelle de la Tierra

dim, 2024/10/27 - 11:59

Edward Page Mitchell (1852-1927) fue un periodista norteamericano especialmente reconocido por los relatos de ciencia ficción que publicó en el diario The Sun de Nueva York, del que llegó a ser editor jefe hasta su jubilación en 1926. En 1973 se publicó una antología de 30 de sus primeras narraciones (1874-1886) bajo el título “The crystal man” [1], que correspondía con uno de sus más sugerentes relatos sobre la invisibilidad y que fue publicado en 1881, 16 años antes de que la famosa novela de H. G. Wells viera la luz.

Diez historias de Mitchell fueron traducidas y publicadas en castellano [2], en las que -además del hombre invisible- se tratan cuestiones como el viaje en el tiempo, el cerebro artificial (superior a la máquina analítica de Babbage) o la teleportación. De estos diez excelentes relatos de ciencia ficción, mi favorito no tiene que ver con las posibles tecnologías cuánticas o la infame IA, que tan a menudo se citan hoy día incorrectamente. Se trata del Taquipompo.

El Taquipompo

Una pareja enamorada pide permiso para casarse, pero el obstáculo principal se encuentra en que el novio demuestre su verdadero merecimiento para entrar en una familia matemática insigne. Sin entrar en más detalles del relato, cuya lectura recomiendo efusivamente, mostraremos a continuación algunas resoluciones matemáticas y físicas del artilugio protagonista.

Para transportar objetos rápidamente debemos usar tierra, mar o aire, y además gastar mucha energía. De forma mucho más eficiente, mucho más rápida y sin gasto de energía usamos el Taquipompo. ¿Cómo funciona el Taquipompo en la Tierra?

Para hacer cálculos, a los físicos nos gusta establecer hipótesis simplificadoras, como la famosa vaca esférica en el vacío. En este caso supondremos que podemos hacer un agujero desde Auckland (Nueva Zelanda) a Ronda (España). Como son ciudades antípodas una de la otra y suponemos que nuestro planeta es una esfera, el túnel pasa por el centro de la Tierra. Supondremos además que la densidad de la Tierra es constante y que el agujero lo vaciamos de aire. Esto es el Taquipompo, como lo ilustramos en la Figura 1.

TaquipompoFigura 1. Transporte rápido de mercancías entre antípodas. Fuente: Sketchfab globo-terráqueo-mapa-físico modificado CC Commons

 

Cómo funciona

Tenemos que hacer un envío urgente desde Auckland a Ronda así que directamente tiramos el paquete por el agujero. La ley de gravitación universal nos dice que hacia el exterior del planeta su fuerza gravitatoria es inversamente proporcional al cuadrado de la distancia, pero ¿qué pasa por dentro del túnel mientras cae la pieza que hemos enviado? Los cálculos no son difíciles, pero tampoco son triviales, porque la aceleración no es constante sino dependiente de la distancia del objeto al centro de la Tierra.

Si utilizamos la Ley de Gauss aplicada al campo gravitatorio, y calculamos el volumen de la esfera cuyo radio es la distancia del objeto al centro de la Tierra, podemos demostrar que la aceleración (y la fuerza sobre dicho objeto) desciende linealmente con la distancia al centro de la Tierra. De esta manera resulta muy sencillo calcular la constante de proporcionalidad de la fuerza sobre el cuerpo que hemos enviado por el Taquipompo, que depende de la densidad del planeta y de la constante de gravitación universal.

En la Figura 2 ilustramos la fuerza gravitatoria que la Tierra ejerce sobre el objeto, sea por dentro del túnel como en el espacio exterior. El cambio radical se produce en la superficie del planeta. Dentro del Taquipompo esta fuerza proporcional a la distancia es idéntica a la Ley de Hooke para los muelles, lo cual nos indica que la Tierra se comporta como un resorte.

TaquipompoFigura 2. Fuerza de atracción de la Tierra sobre el objeto, en función de su posición respecto del centro del planeta

 

Nos encantan a los físicos los osciladores armónicos, que aparecen en los vaivenes de los muelles, en los instrumentos musicales o en todo tipo de ondas, con las que queremos explicar todo el Universo. En el humilde caso del Taquipompo lo que esto nos dice es que el paquete urgente que mandábamos de Auckland a Ronda caerá al centro de la Tierra con aceleración linealmente descendente, superará el punto medio a máxima velocidad, y simétricamente llegará a Ronda. Si no recogemos el paquete en Ronda, éste volverá a caer y llegará de vuelta a Auckland; y tanto la ida como la vuelta sin gastar energía.

Cifras del Taquipompo en el planeta Tierra

¿Cuánto tarda el transporte desde una localidad a la otra? Un sencillo cálculo integral -usando la constante de gravitación universal G (6,67 10-11 N m2/kg2) y la densidad de la Tierra (5520 kg/m3)- nos permite deducir que al Taquipompo le bastan 2530 segundos para colocar el envío en su destino (es decir: poco más de 42 minutos), y da igual que el paquete sea pesado o ligero.

En términos del movimiento armónico simple este tiempo es la mitad del período de oscilación, luego el período de este movimiento armónico son T=5060 segundos (viaje de ida y vuelta). La frecuencia en Hercios (Hz) de esta oscilación es el inverso del período.

El Taquipompo es mucho más rápido que cualquier otro medio de transporte de los que disponemos hoy día. Si calculamos el pico de velocidad que adquiere el artilugio en el centro de la Tierra, éste resulta ser 7910 m/s para cualquier paquete que enviemos, y no gastamos combustible ni electricidad. Esperamos que este logro fuera de suficiente entidad como para que la feliz pareja del relato de Edward P. Mitchell demostrara su merecimiento.

Referencias

[1] Sam Moskowitz (Ed.) (1973) The Crystal Man: Stories by Edward Page Mitchell. Doubleday Science Fiction ISBN: 978-0385031394

[2] Edward Page Mitchell (2015) El espectroscopio del alma. Orciny Press ISBN: 978-8494318115

Sobre el autor: Victor Etxebarria Ecenarro es Catedrático de Ingeniería de Sistemas y Automática en la Universidad del País Vasco (UPV/EHU)

El artículo El muelle de la Tierra se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Naukas Pro 2024: Deduciendo paleoclimas a partir de sedimentos marinos

sam, 2024/10/26 - 11:59

paleoclimas

Los últimos avances en el ámbito de las energías renovables marinas o la proliferación de los microplásticos fueron algunos de los temas que componen la última edición de NAUKAS PRO. Una cita en la que el personal investigador se sube al escenario del Euskalduna Bilbao para hablar de las investigaciones más destacadas del momento en un ámbito concreto.

En esta ocasión el personal investigador de la Universidad del País Vasco, de la Estación Marina de Plentzia (PiE-UPV/EHU), AZTI, Tecnalia o el CSIC acercaron las últimas investigaciones relacionadas en el ámbito marítimo.

La conferencia Deduciendo paleoclimas a partir de sedimentos marinos corre a cargo de Aitor Payros Agirre, investigador del Departamento de Geología de la UPV/EHU



Si no ve correctamente el vídeo, use este enlace.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Naukas Pro 2024: Deduciendo paleoclimas a partir de sedimentos marinos se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Un algoritmo para aumentar la resolución de los mapas de áreas quemadas

ven, 2024/10/25 - 11:59

Utilizando datos de dos satélites que recogen imágenes ópticas y de otros cuatro satélites que miden las altas temperaturas causadas por los incendios, un equipo de investigadoras propone un algoritmo para obtener la cartografía global de las áreas quemadas con una mayor resolución.

algoritmoFuente: Bastarrika et al (2024)

La obtención de información precisa y actualizada de las zonas afectadas por el fuego es fundamental para comprender mejor la calidad del aire, los ciclos biogeoquímicos o el clima, así como para contribuir a la gestión de los incendios. Hace unas décadas, la cartografía o mapeo de las áreas quemadas se realizaba a partir del estudio de las zonas rurales pero, desde el lanzamiento de satélites para la observación de la Tierra, la teledetección se ha convirtido en una opción más práctica para localizar las zonas quemadas, ya que los satélites facilitan la medición de la cobertura de los incendios, tanto a escala regional como mundial.

El problema de las zonas cartografiadas mediante satélites se encuentra en la resolución. De hecho, hasta ahora la resolución de las observaciones globales ha sido mala. “El error de omisión en los productos actuales es muy grande: muchas zonas que están realmente quemadas no se identifican como tales”, señala Aitor Bastarrika, investigador de la UPV/EHU. “Los sistemas actuales utilizan un tamaño de píxel de entre 250 y 500 metros, por lo que no detectan incendios que no alcancen los 250 metros. Y en algunos ecosistemas son muy frecuentes los incendios de esas dimensiones”.

El estudio liderado por Aitor Bastarrika ha desarrollado un algoritmo para lograr una mayor resolución, utilizando datos de seis satélites diferentes. Por un lado, han aprovechado las imágenes captadas por los dos satélites ópticos de la constelación Sentinel-2: ofrecen una buena resolución espacial, de 10-20 metros, pero con una baja frecuencia temporal, ya que solo se obtienen imágenes de un lugar determinado cada 5 días. Por otro lado, se han aprovechado los productos MODIS (derivados de los satélites Terra y Aqua) y VIIRS (derivados de los satélites Suomi NPP y NOAA-20) que detectan incendios activos: detectan estos puntos de alta temperatura con una resolución espacial baja de 375-1000 metros, pero con una frecuencia alta, ya que recogen datos todos los días.

Un algoritmo probado en cientos de áreas

El algoritmo desarrollado por el equipo de Bastarrika utiliza los datos de los dos productos para la detección de incendios activos y con ellos entrena un sistema de imágenes ópticas de cara a desarrollar un sistema de clasificación. Posteriormente proporciona predicciones sobre lo que se ha quemado y lo que no. “Además, estas previsiones se han probado en 576 áreas de todo el mundo, es decir, el algoritmo se ha analizado en todos los ecosistemas en los que las zonas quemadas son significativas”, explica Bastarrika.

El algoritmo desarrollado por el equipo de Bastarrika no es el único, hay otras propuestas similares. Sin embargo, la aportación de los investigadores de la UPV/EHU es especialmente importante porque el algoritmo está preparado para ser aplicado a escala global y para obtener resultados con una resolución media. “Ya existen algoritmos para cartografiar zonas concretas con una resolución media, pero nuestra propuesta sirve para cartografiar áreas quemadas de todo el mundo, lo hace con una resolución aceptable y está lista para ser utilizada”.

De cara al futuro, el objetivo es crear nuevos productos con este algoritmo desarrollado. “Así como hasta ahora están preparados para usar sistemas de baja resolución, a partir de ahora el objetivo es crear productos que ofrezcan resultados con un nivel de resolución medio. Pasar de baja a media resolución supondría una gran contribución a la hora de identificar algunos ecosistemas y de estudiar el clima”, ha afirmado Bastarrika.

Referencia:

Aitor Bastarrika, Armando Rodriguez-Montellano, Ekhi Roteta, Stijn Hantson, Magí Franquesa, Leyre Torre, Jon Gonzalez-Ibarzabal, Karmele Artano, Pilar Martinez-Blanco, Amaia Mesanza, Jesús A. Anaya, Emilio Chuvieco (2024) An automatic procedure for mapping burned areas globally using Sentinel-2 and VIIRS/MODIS active fires in Google Earth Engine ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2024.08.019

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Un algoritmo para aumentar la resolución de los mapas de áreas quemadas se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

¿Por qué la llaman piedra si quieren decir roca?

jeu, 2024/10/24 - 11:59

La banda italiana de heavy metal Wind Rose acaba de lanzar un nuevo disco que incluye una canción titulada “Rock and Stone” (roca y piedra), sumándose así a la apasionante discusión sobre qué término es el correcto, si son o no sinónimos o cuándo hay que usar una palabra o la otra. Por suerte (o desgracia, ya veremos), la Real Academia Española (RAE) de la Lengua ha acudido en nuestro rescate, añadiendo unas definiciones precisas para piedra y roca que pueden (o no) aclararnos todas estas dudas. Veamos lo que nos dicen.

Habrá quien las llame piedras, pero son rocas. Foto: Sean Stratton / Unsplash

La RAE tiene varias acepciones para la palabra piedra, pero si nos fijamos en la primera, a priori la más importante, definen este término como “sustancia mineral, más o menos dura y compacta”. Por su parte, la primera definición de roca es “piedra, o vena de ella, muy dura y sólida”. Vamos, que parece que lo que diferencia ambos conceptos es la dureza que presentan: si es muy dura, se trata de una roca, mientras que si es más blandita, sería una piedra. Y aquí es donde se nos erizan los pelos de la nuca a todas las personas profesionales de la Geología.

La dureza es una propiedad de los minerales que se refiere a su resistencia mecánica a sufrir una fractura o alteración permanente en la superficie al aplicarles un objeto u otro mineral. Aunque la más conocida es la de Mohs, existen diversas escalas que ordenan los minerales de acuerdo a su dureza, y en ninguna de ellas encontramos una división en dos grandes grupos que nos diga “de aquí hasta aquí son piedras y a partir de aquí son rocas”. Entonces, ¿de dónde se ha sacado la RAE que el criterio diferenciador entre ambos conceptos es la dureza? Pues de una malinterpretación de una vulgarización geológica.

Me explico. Como en cualquier otra ciencia, en Geología nos encanta hacer clasificaciones de absolutamente todo y ponerle nombres a cuál más complicado a cada uno de los subgrupos definidos. Y una de estas clasificaciones se fundamenta en el tamaño de grano del sedimento, es decir, en el diámetro de las partículas que son erosionadas, transportadas y depositadas en la superficie terrestre, antes de su enterramiento y litificación. Así se ha definido la escala granulométrica de Udden-Wentworth, que incluye tres grandes grupos: lodo, que alberga las partículas con diámetros inferiores a 0,063 mm; arena, que se refiere a los materiales con diámetros comprendidos entre 0,063 mm y 2 mm; y grava, para sedimentos de diámetros superiores a 2 mm. Estos son los nombres oficiales, los que encontraréis en los libros de texto y en las publicaciones científicas de índole geológica. Pero, ¿sabéis cómo los nombramos en privado las y los geólogos? Barro, arena y piedras.

Escala granulométrica de Udden-Wentworth donde se detallan los tres grandes grupos de sedimentos, con los valores límites del diámetro de las partículas y los subgrupos que podemos encontrar en cada uno de ellos. Imagen modificada de Setiawan, B., Antonie, S. y Adhiperdana, B. (2019). Grain-size characteristics of Aceh’s coastal deposits. IOP Conference Series: Materials Science and Engineering. 523.

Aquí es donde encontramos la palabra que buscábamos, en una denominación informal que hace referencia a pequeños fragmentos de roca, generalmente de menos de 20 o 30 cm de diámetro, que podemos coger con la mano y meterlos en la mochila cuando estamos en el campo. Pero esta definición de piedra es el secreto mejor guardado de las personas que nos dedicamos a la Geología, jamás diremos en público que usamos estos términos para referirnos a los materiales sedimentarios. Por eso la RAE ha errado en su definición, ya que no tenían toda la información: el tamaño de grano no tiene nada que ver con la dureza de los materiales.

Piedra es roca alterada

Pero no todo va a estar mal en el diccionario de la lengua española. Si prestamos atención a la cuarta y última acepción del término roca, veremos que dice “material sólido de origen natural formado por una asociación de minerales o por uno solo, que constituye una parte importante de la corteza terrestre”. Esa definición es casi perfecta, parece directamente sacada de un manual de Geología. ¿Y en el caso de piedra? Pues en la segunda entrada pone “trozo de piedra que se usa en la construcción”, mientras que la tercera alude a “piedra labrada con alguna inscripción o figura”, entendiendo en ambas el término piedra como esa “sustancia mineral, más o menos dura y compacta”. De nuevo, ambas entradas dan en el clavo. Porque la verdadera diferencia entre los conceptos roca y piedra, mundialmente aceptada en el ámbito geológico y que debería permear en la sociedad en general, es que una roca es un material sólido natural, mientras que una piedra es una roca que ha sido alterada de alguna manera por el ser humano (cortada, pulida, tallada, etc.). De esta manera, cuando vamos a una cantera encontraremos un afloramiento de rocas que van a ser explotadas y, en cuanto cortamos un nivel para sacar unas losas con las que trabajar, tendremos en nuestras manos unas piedras ornamentales.

A) Afloramiento de roca caliza, material sólido natural. B) Ejemplo de piedra caliza, una roca transformada por el ser humano como elemento decorativo.

Así que, aunque las personas profesionales de la Geología nos enfademos con el resto del mundo cuando usa la palabra piedra, no podemos decir nada si se están refiriendo a la encimera de la cocina, a la baldosa de la acera o a una punta de flecha encontrada en una excavación arqueológica. Pero seguiremos corrigiendo a la gente si llama piedra a un guijarro que se encuentre en el margen del cauce de un río, porque eso, aunque sea pequeña, es una roca, ya que es un material natural que no ha sufrido ninguna manufactura humana. Y permitidme un último consejo, no os quedéis solo con la primera entrada de la definición de una palabra cuando la busquéis en el diccionario, porque ya hemos visto que, a veces, son las últimas las que te dan la descripción correcta.

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo ¿Por qué la llaman piedra si quieren decir roca? se ha escrito en Cuaderno de Cultura Científica.

Catégories: Zientzia

Pages