Ezjakintasunaren kartografia #181
Testosterona mailak eragina du erabaki hartze prozesuan, gizonengan… eta baita emakumeengan. José Ramón Alonsok azaltzen digu: Testosterone and bad judgments.
Eguzki energia elektrizitate bilakatzeko sistemetan hartzaile eta emailearen artean transferentzia elektroniko ona egon dadin, lotura kobalentearen beharraren suposizioa gezurtatu dute DIPCko kideek: Strong donor-acceptor coupling does not require covalent bonding
Argia modu egokian erabilita hierarkia sozialeko gailurreko posizioa eskura daiteke. Arratoien artean, bederen. José Ramón Alonsok du gakoa: Alpha by design.
Modan dagoen hitza da CRISPR, honengan oinarritutako Cas9 teknika hain iraultzaileari esker. Hain sinple ez izatea baliteke, hala ere. Rosa García-Verdugok gatz-apur bat botatzen dio gaiari: A pinch of salt for CRISPR research
Olefinen kimika gure inguruan dago (produktu naturalak, farmakoak, perfumeak, e.a.) eta garrantzi ekonomiko izugarria du. Hauen iturriak eta eskuratze-metodoak, ordea, pasa den mendekoak dira guztiz, gehiegi. Etorkizun handiko metodoa aurkeztu da, hainbeste, ezen Nature aldizkarian agertu den abizenik gabe. Pablo Ortiz, A new method to make valuable olefins from abundant carboxylic acids
Zelula ama hematopoietikoek ezberdintzeko gaitasuna berreskura dezakete. Zer suposatzen du honek zahartzea ulertzeko dugun moduan? Galderaren erantzuna Gerardo Ferrer ikertzaileak du: One year or one cell division older?
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #181 appeared first on Zientzia Kaiera.
Kim Jong-un, Donald Trump y la geología de la aniquilación
Es posible que nunca en la historia hayan existido dos mandatarios más antagónicos pero a la vez tan complementarios como son Donald Trump y Kim Jong-un. Y es que mientras uno fabrica sus primeras armas nucleares para decirle al mundo “aquí estoy”, el otro se toma cual chirigota las pruebas del avance inexorable del cambio climático. En cualquier caso, parece que los dos estén dándole cuerda al reloj del apocalipsis y que, en ese sentido, tengan muy buena sintonía.
Dejando los chascarrillos aparte, es cierto que estando tan cerca de Japón, muchas personas se hayan preguntado por la posibilidad de que Corea del Norte llegase a detonar un artefacto de estas características en algún volcán del archipiélago japonés y por los posibles efectos que esto podría tener.
En realidad, la idea de usar una explosión para dar el pistoletazo de salida a una erupción volcánica no es para nada innovadora. En 2015, el presidente de la Academia de Problemas Geopolíticos de Rusia, Konstantin Sivkov mencionó la posibilidad de usar armas de varios megatones sobre el “supervolcán” de Yellowstone para adelantar una erupción volcánica y hacer desaparecer a los Estados Unidos.
Pero pongámonos por una vez en el lado del mal y pensemos, ¿Dónde tendría mayor efectividad el lanzamiento de un arma nuclear sobre un volcán? Empecemos por el caso fácil. Imaginemos que somos capaces de lanzar y dirigir un cohete con cabeza nuclear hacia un volcán. Vamos a elegir uno que está cerca de Pyongang y que además sea un icono: El monte Fuji.
Una vez que la dejásemos caer sobre la cima, solo tendríamos una posibilidad de desencadenar la erupción: Si el magma estuviese ya muy cerca del cráter del volcán, cosa que ocurre justo antes de una erupción natural.
Los científicos ya sabrían que hay una erupción inminente, puesto que los volcanes emiten señales de alerta cuando el magma, los fluidos y los gases comienzan a moverse por sus conductos, a ascender por la corteza y a fracturar las rocas a su paso. El mayor efecto de la explosión sería “cosmético”, que podría llegar a reducir varios cientos de metros la estatura del volcán, y provocar deslizamientos que cambiasen su forma.
Pero, ¿Y si a alguien se le ocurriese desencadenar una erupción en Yellowstone?. Seguramente, lanzando una bomba sobre algún lugar del parque, la cámara magmática (estas son grandes reservas de magma que existen bajo la superficie de la Tierra) del supervolcán de Yellowstone que mide en la horizontal más de 100 kilómetros ni se enteraría y solo conseguiríamos formar un bonito cráter, ya que actualmente Yellowstone no muestra signos de una erupción inminente.
Cosa muy diferente ocurría si fuésemos capaces de transportar mágicamente un dispositivo nuclear de varios megatones al interior de las cámaras magmáticas que alimentan el volcán (y otros fenómenos como los géiseres o los lagos de aguas termales) de Yellowstone. Para hacernos una idea del tamaño del sistema de cámaras magmáticas, estas albergan aproximadamente 50.000 kilómetros cúbicos de roca fundida.
He dicho mágicamente porque los problemas logísticos de transportar un arma nuclear no solo a otro país, sino a introducirla en un lugar donde las presiones y las temperaturas son altísimas sin que ocurra un accidente o te pillen por el camino es ahora mismo una idea muy, pero que muy complicada.
Una vez conseguida la misión de colocar y hacer explotar esta arma en el interior de la cámara magmática, pensemos en los efectos: Si a la temperatura del magma le añadimos la que provoca la propia explosión, generaríamos en el interior un gran aumento de presión al convertir el magma en vapor de roca, probablemente haciendo saltar la cámara magmática por los aires, provocando una lluvia de lava incandescente a varios kilómetros a la redonda.
Pero en este caso, la lava no sería nuestro mayor problema si no estamos muy cerca, aunque si sería muy radioactiva. El problema es brutal cantidad de ceniza que se generaría en la explosión y que también tendría una radioactividad muy alta. Si pensamos en erupciones como la del Eyjafjalla, un volcán relativamente modesto, que fue capaz de poner en jaque a toda la aviación europea por la ceniza lanzada a la atmósfera, imaginemos una erupción capaz de generar varios ordenes de magnitud más ceniza, y además radioactiva. Todo un episodio apocalíptico que tendría repercusiones globales y probablemente muy duraderas gracias al eficiente transporte de esta que es capaz de realizar nuestra atmósfera.
Como hemos visto, provocar una erupción volcánica así no es tarea fácil… ¿Pero y si pudiéramos hacerlo entrar en erupción de una manera más discreta perforando hacia la cámara magmática como quien no quiere la cosa y dejando que el magma saliese violentamente a la superficie por un agujero hecho a conveniencia?
En los últimos años se han realizado distintas perforaciones hacia las cámaras magmáticas de distintos volcanes para poder conocer mejor estos sistemas y ayudarnos a predecir futuras erupciones, aunque también se hacen de una manera más o menos rutinaria para la extracción de energía geotérmica. Si bien puede resultar peligroso porque perforando podemos encontrar bolsas que contengan vapor y gases a alta presión y temperatura que puedan provocar explosiones al pincharlas como ha ocurrido en ocasiones, llegar hasta la cámara magmática no tiene ningún efecto. Es como si una pulga intentara pinchar un globo aerostático.
Y aunque la cámara magmática se encuentre en ese momento próxima a una erupción, al perforarla ocurriría lo siguiente: El agujero es tan pequeño que el magma comenzaría a ascender a través de él, enfriándose rápidamente y cerrando de nuevo el agujero como un tapón. Esto no es un caso hipotético, y ha ocurrido en países como Islandia o Japón durante distintas campañas de sondeo, con la consiguiente pérdida de parte del material usado en la perforación.
Pero siempre hay una excepción, y es cuando las cosas salen mal, realmente mal. Volvamos a Yellowstone. Este gigantesco sistema volcánico volverá a entrar en erupción en algún momento del futuro, provocando de manera natural consecuencias a escala planetaria, como un descenso brusco en la temperatura planetaria por efecto de la ceniza expulsada a la atmósfera y que probablemente dure varios años.
A finales de Agosto, salió a la palestra un antiguo miembro del Consejo Asesor de Defensa Planetaria de la NASA presentando un plan precisamente para evitar una erupción natural: Inyectar a través de una pequeña perforación agua para ir enfriando el magma que hay bajo Yellowstone, al mismo tiempo que recuperamos el vapor para generar energía eléctrica en turbinas… ¡Un plan redondo!
Pero esta idea tiene un fallo. Imaginemos por un momento que parte del vapor no consigue escapar y se comienza a acumuar en las rocas que rodean la cámara magmática, creando un aumento de la presión, convirtiendo el sistema volcánico en una gigantesca olla a presión, que superada la resistencia de las rocas que lo contienen, acabe saltando por los aires, en un fenómeno muy parecido al que pudo ocurrir en la erupción del Karakatoa de 1883 y que hizo desaparecer prácticamente la totalidad de esta isla. Es decir, que intentando evitar una erupción en realidad podemos provocar una mucho mayor y más devastadora.
Pero el bonus track, y el verdadero gordo de esta lista de maldades se lo lleva Donald Trump quién podría estar provocando, sin saberlo, un cambio en la actividad volcánica de nuestro planeta. En un acto de “soberanía nacional”, el actual presidente de los Estados Unidos sacó a su país del Acuerdo de París para luchar contra el calentamiento global. Si, el calentamiento global es un problema más poliédrico de lo que habíamos imaginado.
Bueno, si la lava de los volcanes ya está caliente, ¿Qué puede ir a peor con el calentamiento global?. Pues un estudio publicado en 2015 afirma que el deshielo de los casquetes de hielo y glaciares que cubren Islandia están provocando que la isla se eleve en algunas zonas hasta 3.5 centímetros al año por la descarga del peso de este hielo que cubría antes distintas partes de la isla.
Esto significa que los volcanes islandeses están sufriendo una gran disminución de presión sobre ellos que antes ayudaba a mantener confinadas las cámaras magmáticas, lo que podría incrementar el ritmo de las erupciones en esta isla. En el último periodo interglacial, hace unos 12000 años, la actividad volcánica de Islandia se multiplicó por 30, muy probablemente debido a la descarga del peso del hielo que había sobre los volcanes.
Pero esto no es todo, y es que este año se han descubierto 91 nuevos volcanes bajo el hielo de la Antártida. Si comenzara a sufrir un deshielo en cantidades importantes podría suponer un problema mucho más importante del que imaginábamos solo con el deshielo ya que tendríamos un caso parecido al de Islandia, pero agravando la cuestión, porque estas erupciones subglaciales podrían desestabilizar todavía más el casquete Antártico y acelerar su pérdida. Un ciclo que se retroalimenta (y no hablamos de las emisiones de gases de efecto invernadero, ni tampoco de la pérdida de la capa de ozono que esto podría significar) y que podría ser catastrófico para la humanidad.
Como habéis podido comprobar, hacer entrar en erupción un volcán no es tarea sencilla, y que a veces lo más efectivo para hacer el mal es simplemente no hacer nada.
Este artículo lo ha escrito Nahum Méndez Chazarra y es una colaboración deNaukas.com con la Cátedra de Cultura Científica de la UPV/EHU
Referencias científicas y más información:
Russian analyst urges nuclear attack on Yellowstone National Park and San Andreas fault line
NASA wants to prevent the Yellowstone super volcano from destroying the US
Kim Jong-un’s North Korea nuclear test mountain may collapse, let out ‘many bad things’
NASA’s ambitious plan to save Earth from a supervolcano
Scientists discover 91 volcanoes below Antarctic ice sheet
El artículo Kim Jong-un, Donald Trump y la geología de la aniquilación se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Gorka Orive: “Geroz eta intsulina seguruagoak eta eraginkorragoak sortzen ari dira” #Zientzialari (78)
Diabetesa gaixotasun metaboliko kroniko bat da. Gaitz hau pairatzen duten gaixoek intsulinaren jariaketan gabeziak jasaten dituzte eta horren ondorioz, odoleko glukosa maila ohi baino altuagoa izaten dute. Aski ezagunak dira eskasi horri aurre egiteko eriek periodikoki beren buruari ematen dizkieten intsulina injekzioak. Nola eragiten du ordea diabetesak gorputzeko beste ataletan? Zein diabetes mota daude? Zeintzuk dira sintomarik agerikoenak?
Diabetesaren inguruan gehiago jakiteko Gorka Orive UPV/EHUko Farmazia eta Farmazia-teknologia irakaslearekin izan gara. Bere esanetan, zientzialariak eta industria farmazeutikoa gaixoen bizi kalitatea hobetuko duten medikamentuak ikertzen ari dira, hala nola, intsulina etengabe jariatuko luketen injekzio bakarreko tratamenduak.
‘Zientzialari’ izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.
The post Gorka Orive: “Geroz eta intsulina seguruagoak eta eraginkorragoak sortzen ari dira” #Zientzialari (78) appeared first on Zientzia Kaiera.
El microondas es seguro, lo que hace es calentar
En Europa empezamos a comprar hornos microondas a finales de los años 80. En la actualidad es un electrodoméstico que encontramos en casi todos los hogares. Sin embargo, alrededor de este aparato circulan ciertas creencias, como que hace perder valor nutricional a los alimentos o que funciona con un tipo de radiación peligrosa para la salud.
El origen del horno microondas
En 1945 el ingeniero Percy Spencer descubrió, mientras investigaba sobre radares, que la radiación de microondas también servía para cocinar. En 1947 patentó su idea. Al principio eran aparatos grandes y costosos que necesitaban conectarse al agua. En los años 70 perfeccionó el diseño. Se cambió el sistema de agua por un sistema de ventilación con aire. Hasta que no mejoraron en funcionalidad y precio, no empezaron a formar parte de los electrodomésticos habituales.
Cómo funciona el microondas
Dentro del microondas hay un dispositivo llamado magnetrón que convierte la electricidad en radiación de microondas. Las microondas son un tipo de radiación de baja energía, similar a las ondas de radio. Las microondas se dirigen hacia el interior del horno a través de una abertura que es transparente a esta radiación y rebotan en las paredes metálicas, reflejándose hacia el alimento.
En los métodos de calentamiento convencionales el calor se aplica al exterior del alimento y se transfiere al interior por conducción, principalmente. Sin embargo, las microondas calientan a través de dos mecanismos llamados rotación dipolar y polarización iónica. La rotación dipolar se produce porque las moléculas polares (agua, proteínas, carbohidratos) intentan alinearse con la radiación de microondas. Para alinearse, las moléculas rotan con respecto a su posición original y se rozan unas con otras. Esa fricción es la que produce calor. Por su parte, la polarización iónica tiene lugar en alimentos con iones, como por ejemplo las sales. Los iones pueden ser positivos o negativos, y unos y otros se moverán en sentidos diferentes con respecto a la radiación microondas. Durante este desplazamiento colisionan con otras moléculas e iones y esto también genera calor.
Ambos procesos se producen muy rápido y es por eso por lo que los alimentos se calientan rápidamente. La desventaja es que se calientan de forma más heterogénea que con el calentamiento convencional y no alcanzan temperaturas suficientemente elevadas como para dorar la comida.
¿Afecta el uso del microondas a la calidad nutricional de los alimentos?
A lo largo del tiempo se han hecho multitud de estudios para comparar las diferentes formas de cocinar los alimentos y cómo influyen en su calidad nutricional. Los principales factores que afectan a la integridad de los nutrientes son: uso de agua de cocción, tiempo de cocinado y temperatura alcanzada.
Usar agua para cocer los alimentos afecta a su calidad nutricional porque algunos de sus nutrientes pasan al caldo de cocción. Cuanto más tiempo se cuezan, más cantidad de nutrientes perderemos. Por ejemplo, las vitaminas hidrosolubles como la B6 y la B12, son más vulnerables porque son solubles en agua, con lo que se pierden en una cocción en agua. Si hervimos espinacas al fuego, estas podrían perder hasta el 70% de su ácido fólico (vitamina B9). Si las cocinamos en el microondas con tan solo un poco de agua, estas retendrán casi todo su ácido fólico.
El tiempo de cocinado y la temperatura alcanzada producen que las proteínas se desnaturalicen, que algunos carbohidratos se caramelicen o que algunas vitaminas se echen a perder. Por ejemplo, la vitamina C de los tomates se pierde cuando lo freímos o lo asamos. Tostar en exceso los alimentos produce algunos compuestos que pueden resultar tóxicos. Por ese motivo se aconseja reducir los tiempos de cocinado y utilizar la temperatura mínima para conseguir el resultado deseado. En este sentido el microondas cumple con los dos requisitos, ya que los alimentos se cocinan más rápido y es infrecuente alcanzar temperaturas superiores a los 100oC.
La conclusión que podemos extraer de los estudios y metaestudios publicados sobre este tema es que las diferencias entre cocinar con el horno convencional, con la cocina de gas, eléctrica, de inducción o con el microondas, no produce diferencias significativas con respecto a la calidad y cantidad de los nutrientes. Al fin y al cabo, todas estas técnicas de cocina se fundamentan en lo mismo: calentar alimentos.
¿Puede la radiación de microondas afectar de algún modo a mi salud?
Con respecto a los alimentos que calentamos o cocinamos en el horno microondas, la respuesta es no, no afecta ni al valor nutricional del alimento si a su salubridad. Lo único que hace el microondas es calentar, igual que un horno convencional. Es igual que cuando calentamos al horno, debemos utilizar recipientes adecuados para cada técnica.
Con respecto a la radiación y a cómo ésta actúa sobre nuestro cuerpo hay que tener en cuenta dos consideraciones. La primera es que los hornos microondas sólo emiten radiación hacia el interior y están diseñados para que esta radiación no se escape. Tanto la puerta del horno como las paredes son de materiales que reflejan toda radiación hacia el interior. La segunda consideración es que, aunque la radiación escapase porque hay un agujero o la puerta no cierra correctamente, la radiación microondas haría sobre nuestro cuerpo lo mismo que sobre cualquier alimento: calentar.
La radiación de microondas es una radiación de baja energía. Si nos fijamos en el espectro electromagnético, que es una forma de organizar la radiación en función de su energía y de sus usos, veremos que la radiación de microondas es una radiación de muy baja energía, cercana a las ondas de radio, y del tipo no ionizante. Esto quiere decir que es un tipo de radiación demasiado débil como para ocasionar daños en las moléculas que forman nuestras células, por mucho tiempo que estuviésemos expuestos. En consecuencia, y en contra de lo que algunas voces alarmistas se empeñan en difundir, la radiación de microondas no puede producir cáncer.
El peligro del horno microondas es el mismo que el de un horno convencional: producir quemaduras.
Conclusión
Todos los hornos microondas sirven para calentar y solo para calentar. Con lo cual, afectan a la calidad de los alimentos o a nuestra salud de la misma manera que afecta un horno convencional. Es decir, no hay motivo para la preocupación.
Mientras para algunos siga resultando algo nuevo —por mucho que hayan pasado más de treinta años desde su comercialización en España— y su tecnología les siga pareciendo algo incomprensible, seguirán surgiendo voces que lo aprovechen para generar desconfianza e incluso negocios basados en ella. Ante la desinformación, y ante quien se aprovecha de ella, información y conocimiento.
Fuentes:
Efectos del tratamiento térmico de fórmulas infantiles y leche de vaca sobre la biodisponibilidad mineral y proteica. Instituto de nutrición y bromatología. Beatriz Sarria Ruiz. Centro mixto CSIC-UCM. Facultad de Biología. Universidad Complutense de Madrid. Madrid, 1998.
The effect of microwaves on nutrient value of foods. Gwendolyn A. Cross, Daniel Y. C. Fung & Robert V. Decareau. JournalC R C Critical Reviews in Food Science and Nutrition, 2009.
Campos magnéticos y cáncer: preguntas y respuestas. Asociación Española Contra el Cáncer, 2004.
Campos electromagnéticos y salud pública: hornos microondas. Hoja informativa. Organización Mundial de la Salud, 2005.
Microondas: verdades y mentiras. Pedro Gómez-Esteban González. Publicado en El Tamiz, 2008.
Mecanismos de transferencia de calor que ocurren en tratamientos térmicos de alimentos. M.E. Pérez y M. E. Sosa Morales. Departamento de Ingeniería Química, Alimentos y Ambiental. Universidad de las Américas Puebla, 2013.
El microondas, ¿perjudica a los alimentos? Julio Basulto. Publicado en Eroski Consumer, 2014
¿Quién inventó el microondas? Aurora Ferrer. Publicado en Quo, 2015.
Teléfono al microondas. Claudi Mans Teixidó. Publicado en Investigación y Ciencia, 2011
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo El microondas es seguro, lo que hace es calentar se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Dozena erdi ariketa 2017ko udarako (6): Balio bereko triangeluak
Gogoan izan ahalegina bera –bidea bilatzea– badela ariketa. Horrez gain tontorra (emaitza) lortzen baduzu, poz handiagoa. Ahalegina egin eta emaitza gurekin partekatzera gonbidatzen zaitugu. Ariketaren emaitza –eta jarraitu duzun ebazpidea, nahi baduzu– idatzi iruzkinen atalean (artikuluaren behealdean daukazu) eta irailean emaitza zuzenaren berri emango dizugu.
Hona hemen gure seigarren ariketa: Balio bereko triangeluak 6) Zenbat modutan jar daitzke 1etik 7rainoko zenbakiak irudiko zirkuluetan, triangelu gorrien erpinetako zenbakien baturak berdinak izan daitezen? ———————————————————————————-Ariketak “Calendrier Mathématique 2017. Un défi quotidien” egutegitik hartuta daude. Astelehenetik ostiralera, egun bakoitzean ariketa bat proposatzen du egutegiak. Ostiralero CNRS blogeko Défis du Calendrier Mathématique atalean aste horretako ariketa bat aurki dezakezu.
———————————————————————————-
The post Dozena erdi ariketa 2017ko udarako (6): Balio bereko triangeluak appeared first on Zientzia Kaiera.
Escaneando la Tierra con neutrinos solares
El Sol bombardea la Tierra con neutrinos, un bombardeo que no desaparece para los detectores en la superficie del planeta (en este caso superficie incluye unos pocos kilómetros de profundidad) cuando se oculta a la vista. Por la noche, los neutrinos solares atraviesan la Tierra, impactando en los detectores desde abajo. Al igual que los rayos X en un escáner médico, estos neutrinos que atraviesan el planeta podrían ofrecer información sobre el material por el que pasan. Nuevos cálculos teóricos indican que futuras instalaciones, como el Deep Underground Neutrino Experiment (DUNE), podrían caracterizar las diferentes capas existentes en el interior de la Tierra con la tomografía basada en neutrinos.
Los neutrinos son unas partículas subatómicas que, como su nombre indica, son neutras y tienen una masa inconcebiblemente pequeña, pero no cero. Al no tener carga no interaccionan con los campos electromagnéticos, pero sí con la fuerza nuclear débil, que es de cortísimo alcance, y con la gravedad, que tiene unos efectos muy pequeños a escala subatómica. Por estos dos motivos los neutrinos son capaces de atravesar la materia sin ser perturbados ni perturbarla (casi nunca): en estos momentos, apreciado lector, tu cuerpo está siendo atravesado por millones de ellos.
Los neutrinos habituales pueden tener tres “sabores” (electrónico, muónico y tauónico) definidos en el momento de ser creados o detectados, pero durante su propagación por el espacio pueden oscilar entre los tres sabores.
Los primeros experimentos con neutrinos solares, que datan de los años sesenta, descubrieron un déficit de la tasa de detección que más tarde se atribuyó a los neutrinos que se convertían de un sabor a otro. Estos estudios también encontraron pruebas de una asimetría día-noche, en la que la tasa de neutrinos de alta energía era un poco más alta durante la noche. La explicación es que los neutrinos nocturnos interactúan débilmente con la materia a medida que pasan a través de la Tierra, y esto hace que algunos de ellos se conviertan en neutrinos electrónicos, que es el sabor al que los detectores son más sensibles.
Las interacciones neutrino-materia dependen de la densidad del material, por lo que ciertas trayectorias a través de la Tierra deben producir un mayor exceso nocturno que otras. Ara Ioannisian, del Instituto de Física de Yerevan (Armenia), y sus colegas han calculado la tasa de neutrinos de alta energía utilizando un modelo de ocho capas de la Tierra en el que la densidad aumenta abruptamente en los límites entre capas. Estos “saltos” de densidad, especialmente los próximos a la superficie, tienen un efecto significativo sobre la señal nocturna. Los investigadores muestran, por ejemplo, que el exceso nocturno debe disminuir ligeramente cada vez que el Sol se encuentra a 10 grados bajo el horizonte (es decir, después del atardecer y antes del amanecer). Esta señal de inmersión, que ofrecería confirmación del modelo de capas, podría ser detectada por el proyecto DUNE, que planea instalar un detector de 40 kilotones en Dakota del Sur para 2027.
De confirmarse el modelo experimentalmente, tendríamos una forma de caracterizar el interior de nuestro planeta que complementaría los estudios con ondas sísmicas, proporcionando así un conocimiento sin precedentes no ya de su estructura sino de su evolución y de la del propio Sistema Solar.
Referencia:
A. N. Ioannisian, A. Yu. Smirnov, and D. Wyler (2017) Scanning the Earth with solar neutrinos and DUNE Physical Review D doi: 10.1103/PhysRevD.96.036005
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Escaneando la Tierra con neutrinos solares se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Un kilogramo de novelas y matemáticas
Las vacaciones de verano se han terminado y se inicia el nuevo curso escolar. Esto no quiere decir que debamos de guardar nuestras novelas, nuestros libros, y abandonar la lectura hasta las siguientes vacaciones. Leer es una actividad para todo el año.
En esta entrada del Cuaderno de Cultura Científica, en una mezcla de recomendaciones literarias y de búsqueda de nuevas lecturas para el otoño, vamos a traer algunas citas literarias relacionadas con las matemáticas.
Empezaremos con una recomendación para iniciar el curso escolar con una sonrisa, la novela que no os podéis perder, Los humanos, de Matt Haig (Roca Editorial, 2014).
Un matemático de la Universidad de Cambridge ha demostrado uno de los grandes problemas de las matemáticas, la hipótesis de Riemann, que está relacionada con la distribución de los números primos. Sin embargo, una civilización extraterrestre mucho más evolucionada que los humanos, los vonadorianos, piensan que este conocimiento es muy peligroso para el universo en manos de una especie tan violenta y primitiva como los humanos. Por esta razón, envían a un “agente extraterrestre” a eliminar todo rastro de dicha demostración de la hipótesis de Riemann, lo cual significa eliminar todos los papeles en los que pueda haber alguna pista de la prueba, así como a las personas que puedan tener algún conocimiento de la misma.
El extraterrestre hace desaparecer al matemático de la Universidad de Cambridge e inicia su misión disfrazado con su cuerpo, haciéndose pasar por él, tanto en la universidad, como en su casa, junto a su mujer y su hijo adolescente. Durante su misión acabará conociendo mejor a los humanos… pero ¿será capaz este agente extraterrestre de cumplir con su misión?
La primera cita se corresponde con el momento en el que el extraterrestre con el cuerpo del matemático de Cambridge le cuenta al hijo adolescente quien es él realmente y de dónde viene.
“–¿Cómo son las cosas allí?
– Muy distintas. Es todo distinto.
–Pero ¿en qué sentido?
– Pues… solo existir ya es distinto. Nadie muere, no hay dolor, todo es bonito y la única religión son las matemáticas. No hay familias: están los anfitriones (que son los que dan las órdenes) y todos los demás. El progreso de las matemáticas y la protección del universo son nuestras dos preocupaciones principales. No hay odio. No hay padres, ni hijos. No hay una línea divisoria clara entre la biología y la tecnología. Y todo es violeta.
–Suena estupendamente.
–Es aburrido. Es la vida más aburrida que puedas imaginarte. Aquí tenéis dolor y muerte, es el precio que debéis pagar, pero las recompensas pueden ser maravillosas.”
La segunda cita está hacia el final del libro, cuando el agente extraterrestre empieza a apreciar a la raza humana. Entonces, escribe una serie de “Consejos para los humanos”, que realmente son consejos para “su” hijo adolescente, exactamente 97 consejos, que empiezan así:
“1. La vergüenza son unos grilletes. ¡Libérate!
2. No te preocupes por tus habilidades: tienes la de amar, y con esa te basta y te sobra.
3. Sé amable con los demás: a escala universal, ellos son tú.
4. La tecnología no salvará a la humanidad: la salvarán los propios humanos.
5. Ríe, estás más guapo.
6. Sé curioso, cuestiónatelo todo: una realidad presente es una ficción futura.
7. La ironía está bien, pero no tanto como los sentimientos.
8. Los bocadillos de mantequilla de cacahuete ligan de maravilla con el vino blanco. Que nadie te diga lo contrario.
9. A veces, para ser tú mismo, tienes que olvidarte de ti y convertirte en otra persona. Tu personalidad no es algo inmutable. En ocasiones tienes que avanzar para no perder el paso.
10. La historia es una rama de las matemáticas, al igual que la literatura. La economía es una rama de la religión.
11. El sexo puede dañar al amor pero el amor no puede dañar al sexo
12. Los telediarios deberían abrir con noticias de matemáticas y seguir con poesía, y a partir de ahí, que hagan lo que quieran.”
Bueno, mencionemos un consejo más:
“59. Los números son bonitos. Los primos son bonitos. Ya lo entenderás.”
La segunda recomendación es Cásate conmigo, de Dan Rhodes (Alfaguara, 2014). Son una serie de pequeñas piezas narrativas, pequeñas historias, en clave de humor, sobre las relaciones de pareja, y más concretamente alrededor del matrimonio. En esta entrada traigo dos de esas piezas que de alguna manera están relacionadas con las matemáticas.
La primera de las micro-historias lleva el título “Porcentaje”:
“Mi mujer empezó a presentarme a la gente como “su actual marido”.
–Cielo –le dije sonriendo al ver que me llamaba así–, ¿a qué viene eso de “actual”? La gente pensará que estás deseando pasar página.
– No me lo había planteado –dijo–. Sí, supongo que podrían pensarlo… Aunque estarían al cien por cien equivocados.
Sentí que perdía el equilibrio.
– Y dime, ¿en qué porcentaje se equivocarían?
Se puso seria y se mordió el labio, hasta que su expresión se relajó.
– En un cero por ciento –dijo.”
El segundo pequeño relato que traemos a esta entrada se titula “Datos” y dice así:
“En la cena de ensayo de nuestra boda me levanté y pedí silencio en el salón haciendo tintinear mi copa. Les conté a los invitados que nada más conocer a Arnemetia supe que quería pasar el resto de mi vida con ella. Todos suspiraron al unísono y mi futura esposa se enjugó una lágrima de felicidad. Continué explicando que mi amor era tan fuerte que enseguida quise saberlo todo sobre ella. En ese punto empecé a proyectar algunos de mis hallazgos en una gran pantalla. Había un gráfico lineal donde se representaba la longitud de su pelo en el curso del tiempo; una serie de diagramas que mostraba los colores predilectos de su armario mes a mes, y un elaborado gráfico de conjuntos que documentaba la complejidad de sus cambios de humor. Ella no tenía ni idea de que yo había estado recabando esos datos, pero lamentablemente la sorpresa no le hizo mucha gracia.
– No sé si todo esto me parece romántico o repulsivo –dijo.
Les pidió a nuestros amigos y familiares que la ayudaran a decidir, y todos levantaron la mano para dar sus opiniones. Por desgracia, el ochenta y cuatro por ciento pensó que era repulsivo, mientras que sólo a un decepcionante dieciséis por ciento le pareció romántico. Un nuevo sondeo reveló que una mayoría comparable entendería perfectamente que la boda no siguiera adelante.”
Y la tercera recomendación es la novela Suma y sigue, de Toni Jordan (Maeva, 2010).
Esta novela se presenta como una comedia romántica sobre una mujer obsesionada por los números, y eso es decir poco, su protagonista cuenta o etiqueta con números absolutamente todo, los pasos a diferentes lugares, las letras de los nombres, las palabras, las cerdas de un cepillo, las veces que tiene que cepillarse los dientes o frotarse con jabón, las cucharadas para comer una tarta, las medidas de objetos o de su cuerpo,… absolutamente todo, pero Grace no habla de ello en un sentido negativo, sino que se refiere a su amor por los números. Vive bajo esa obsesión numérica y apoyada en el orden y en rutinas que no puede modificar, lo cual explica que dejara su trabajo y no se relacione prácticamente con nadie. Es una persona que padece una enfermedad, un trastorno obsesivo compulsivo (TOC), como consecuencia de un trauma de la infancia, como se irá descubriendo a lo largo de la novela. Pero esa obsesión está tratada con cariño, provocando en el lector muchas sonrisas mientras lee sus peripecias numéricas. El héroe de la protagonista es el inventor Nikola Tesla, a quien debemos la electricidad comercial y que también padecía TOC.
La cita que he elegido de este libro tiene que ver con una anécdota real del matemático británico Charles Babbage (1791-1871).
“El matemático e ingeniero Charles Babbage, inventor de la primera computadora, lo entendió. Y la lectura del poema de Tennyson, “La visión del pecado”, lo dejó muy contrariado.
Tan contrariado que le envió una carta a Tennyson, en la que decía:
“Cada minuto muere un hombre. Cada minuto nace otro”; no necesito recordarle que este cálculo implica que la suma total de la población del mundo se mantiene en estado de perpetuo equilibrio, mientras que es un hecho bien sabido que dicha suma está en constante incremento. Por tanto, me tomaré la libertad de sugerirle que, en la siguiente edición de su excelente poema, el cálculo erróneo al cual me refiero aparezca corregido de la siguiente forma: “Cada minuto muere un hombre y nace uno y un dieciseisavo”. Me permito añadir que la cifra exacta es 1,167, pero alguna concesión habrá que hacer, naturalmente, a las leyes de la métrica.
Me sé la carta de memoria y, mientras salgo del supermercado con Seamus, acompaño cada sílaba con los pasos que doy, aunque no los voy contando. No cuento durante todo el camino a casa. […]
Ciertamente Charles Babbage lo entendió. La mayoría de la gente no lo entiende. No entienden que los números mandan, y no solo en el macromundo, sino también en su pequeño mundo, en su mundo propio, en sus vidas.”
Los siguientes tres libros que vamos a mencionar en esta entrada del Cuaderno de Cultura Científica son fruto de una búsqueda de posibles libros interesantes y candidatos a convertirse en lecturas para el próximo otoño.
El primero es la novela La novia de papa, de Paloma Bravo (Plaza & Janés, 2010), que fue llevada al teatro en el año 2015. La protagonista y narradora de la novela es Sol, la directora creativa de una agencia publicitaria, una mujer libre e independiente, que se enamora y se va a vivir con Pablo, quien tiene dos hijas de 8 y 11 años, y por supuesto, una ex-esposa. Su vida cambiará radicalmente y la relación con las hijas de su pareja estará en el centro de la misma.
Traemos a esta entrada un par de citas que nos muestran el uso, quizás un poco a la ligera, pero sobre todo como una herramienta literaria, de la palabra “matemáticas” dentro de la novela. La primera aparición de este térmico es para darle un cierto dramatismo a una simple operación aritmética.
“Pablo tiene muchos hermanos. Dicho así, parece que son incontables: lo son. Unos ocho, todos con pareja, todos con hijos. Todos (o casi) cumplen años en primavera. Así que mayo y junio son meses de fiestas y tartas, tartas y fiestas. A mí me gusta la familia de Pablo, me gusta mucho, no es ése el problema: el problema son las matemáticas.
Ocho hermanos con pareja son dieciséis, más una media de tres hijos por familia, veinticuatro, más dieciséis, cuarenta, más los padres, cuarenta y dos. Ése es el número, cercan a cincuenta, de gente que saludo, beso y hablo durante cada día de cada fin de semana de esos dos meses. Ése, más “ene”, es cada una de esas tardes de celebración.”
Mientras que en la segunda cita se mencionan las matemáticas para referirse a las permutaciones/combinaciones de un número finito de elementos, en el texto cuatro elementos, los miembros de la nueva familia.
“–Mmmmmm.
–En serio, Pablo. Creo que en el tema de la depilación hice lo que tenía que hacer: abstenerme. Igual que otras veces intervengo porque no es una decisión de vida o muerte y no pasa nada, en este caso respeté a su madre. Pero, tío, entiende a Eva: tu nunca te has depilado y su madre es su madre, su eterna enemiga. ¿Quién le queda a Eva para consultar?
–Mmmmmm.
Conozco a Pablo; si sigo hablando, si mi retórica es demasiado elocuente, si insisto, si intento ganarle por goleada, perderé el partido y la guerra. Lo dejo estar. Le digo que aún llegamos al cine. Vamos cogidos de la mano. Volvemos besándonos. Y, al abrir la puerta de casa, concede:
–¿Sabes qué? Puede que tengas razón. Me encanta ver que gustas a mis hijas, que les das cosas que yo no puedo darles, que tenéis una relación sólida e independiente de mi. Y también me está doliendo perderlas. Entiéndeme, Sol, ¿me jode que hagas felices a las niñas! –Y ahora ya se ríe abiertamente de sí mismo.
–Son permutaciones.
–¿Qué?
– Sí, como en matemáticas: permutaciones de cuatro elementos tomados de dos en dos. Somos cuatro en casa y la relación de cada pareja quita tiempo a las otras posibles combinaciones. Somos una cantera inagotable para las combinaciones de celos.
– O sea, que dejando a un lado tus absurdas metáforas científicas, lo que quieres decir es que somos una familia.
– Más o menos.”
En realidad no se está refiriendo a las permutaciones de cuatro elementos, sino al número de formas de escoger dos elementos, una pareja, dentro de un grupo de cuatro, es decir, el número combinatorio “cuatro sobre dos”. Por cierto, ese número combinatorio es seis, es decir, hay seis formas de elegir dos elementos, o de formar parejas, en un grupo de cuatro.
El siguiente libro que traemos a esta entrada es Yosotros, de Raúl Quinto (Caballo de Troya, 2015). Este es un libro muy particular, formado por pequeñas historias que se entrelazan en una especie de particular novela coral, que a su vez son una reflexión del autor sobre el individuo.
En uno de los fragmentos de este curioso, e interesante, libro se utiliza la paradoja de Banach-Tarski para hablar de Dios y del ser humano. Para quienes estén interesados en conocer más sobre la paradoja de Banach-Tarski pueden leer el interesante artículo La paradoja de Banach-Tarski: como construir el sol a partir de un guisante, de Marta Macho. Esta es la cita:
“2. (La paradoja de Banach-Tarski)
El Uno es Dios, frente al resto que el lo múltiple que emana del Uno. Eso ha sido así siempre. Y sin embargo el dogma cristiano también dice que Dios es uno y trino, y que lo múltiple se puede dar dentro de la unidad absoluta e indivisible. Que ambas cosas puedan ser ciertas genera dudas, desconcierto y desasosiego racional. Una paradoja irresoluble. Y sin embargo las matemáticas, que están por encima de las arbitrariedades religiosas y se presentan como el dogma de la exactitud, ofrecen su propia versión en forma de otra paradoja, la de Banach-Tarski, según la cual una esfera se puede dividir en un rompecabezas de ocho piezas, y esas piezas combinadas de un modo preciso acaban produciendo inexorablemente dos esferas idénticas a la primera matriz. Podemos pensar que también esto es cuestión de fe, o hacer los cálculos necesarios.
Lo Uno Absoluto es divisible y múltiple en sí mismo.
Y si sucede esto con Dios y con la Esfera, que igualmente es Dios, qué no pensar de las formas secundarias, o qué acerca del ser humano. El hombre. Su continua indefinición entre sus propios límites y los límites del resto de los hombres. Entre el singular y el plural, o el estado intermedio. Acariciar los límites, o que se deshagan. Eso ha sido así siempre.”
El último libro es El hombre vacío, de Dan Simmons (Ediciones B, 2015). Su protagonista es un profesor de matemáticas que tiene la “capacidad” de leer la mente. Como dice en la sinopsis “conoce los pensamientos más secretos, los miedos y los deseos de los demás como si fueran los suyos propios”.
En la cita que hemos elegido de esta novela se comparan el amor y las matemáticas.
“De todos los conceptos nuevos que Jeremy me ha proporcionado, los dos más intrigantes son el amor y las matemáticas.
Estos dos conjuntos parece que tienen pocos elementos comunes, pero, en realidad, las similitudes saltan a la vista para alguien que no ha experimentado ninguna de las dos cosas. Tanto las matemáticas puras como el amor puro dependen por completo del observador (podemos decir que es el observador quien los genera), y aunque veo en la memoria de Jeremy la afirmación de unos pocos matemáticos como Kurt Gödel de que las entidades matemáticas existen independientemente de la mente humana, como las estrellas que siguen brillando aunque no haya astrónomos que las estudien, prefiero rechazar el platonismo de Gödel en favor del formalismo de Jeremy: es decir, los números y sus relaciones matemáticas son meramente un conjunto de abstracciones generadas por los humanos y las reglas con las que manipular esos símbolos. El amor me parece un conjunto similar de abstracciones y relaciones entre abstracciones, a pesar de su frecuente relación con cosas del mundo real (dos manzanas más dos manzanas son en efecto cuatro manzanas, pero las manzanas no son necesarias para que la suma sea cierta). Del mismo modo, el complejo conjunto de ecuaciones que gobierna el flujo del amor no parece depender de quien da o recibe dicho amor. En realidad he rechazado la idea platónica del amor, en su sentido original, en favor de un acercamiento formalista al tema.”
Feliz lectura…
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Un kilogramo de novelas y matemáticas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Duela lau mila urte iritsitako errainak mintzatu dira orain
Kanpai itxurako zeramikak, arkuak, aiztoak eta, zenbaitetan, anbarrez, brontzez edo urrez egindako objektuak. Hori da, funtsean, arkeologoek gehien topatzen dutena brontze aroko hilobi bat induskatzen dutenean. Hori, eta gorpuzkiak, noski. Horietan oinarrituta, iraganari buruzko irakaspen ugari atera daitezke, baina, ezagutza horrek, beti ere, berezko mugak ditu. Azken urteotan, ordea, iraganera hurbiltzeko bideak biderkatzen hasiak dira. Biologia eta kimika indartsu sartu dira aztarnategietan.
Horien bitartez, errazagoa da duela gutxira arte irudikaezina ematen zuen informazioa eskuratzea. Alemaniako zientzialariek egindako azken ikerketa horren adibide da. Duela lau mila urte inguru hilobiratutakoei mintzarazi egin diete. Familiaz eta jatorriaz galdetu diete, eta erantzunak lortu ere. Erantzun partzialak, behin-behinekoak, eta zalantzez beterikoak; baina erantzunak, azken finean. Antzineko DNAren eta isotopoen analisiaren bitartez eskuratu dituzte erantzun horiek. Emaitzak astelehenean ezagutzera eman dituzte PNAS aldizkarian.
Neolito eta Brontze aroen arteko trantsizioa nolakoa izan zen aztertzeko, Kristo aurreko hirugarren milurteko 84 hezurduren analisia egin dute. Bavariako (Alemania) Lech ibaiaren inguruan bilduta dauden zazpi aztarnategietan topatutako arrastoak baliatu dituzte ikerketa burutzeko. Azken bi hamarkadetan, eremu horretan arkeologoek ia 400 hilobi topatu dituzte.
DNA mitokondrialaren azterketaren bitartez, bertan hilobiratutako gizakien arteko familia loturak argitu dituzte. Duela 4500-3700 urteko tartean, boterearen transmisioan familiak zuen indarra egiaztatu dute: emaitza genetikoaren arabera, hilobiratze hatu handiak zituzten hiru hobietan lurperatutakoak senideak zirela ikusi dute.
Bestalde, 22 lagun kanpotik etorritakoak zirela argitu dute, eta, horietatik, 17 emakumezkoak ziren. Hortaz, ondorioztatu dutenez, behin bikotekidea ezagututa, garaiko emakumeak “senarraren” herrira bizitzera joaten ziren. Antropologoek patrilokalitate deitzen duten ohitura edo instituzioa zabalduta zegoela, alegia.
Estrontzioa, gakoJatorri hori azalarazteko, hezurretako isotopoen azterketa egin dute. Bereziki, estrontzio isotopoak bilatzeari ekin diote. Elementu kimikoen taula periodikoan kaltzioaren azpian dago estrontzioa. Horregatik, bizidunen hezurretan erraz barneratzen da. Baina naturan, egonkorrak diren estrontzioaren lau isotopo nagusi daude, eta horiek, ingurumenean dauden proportzio berdinean iristen dira hezurretara. Proportzio horiek, alta, ezberdinak dira eremu geografikoaren arabera. Hortaz, markagailu geografiko bikaina da hezurretan pilatutako estrontzioa: horren proportzioa jakinda, gutxi gorabehera, ondoriozta daiteke gizabanako bakoitzaren jatorri geografikoa.
Hortzen esmaltearen osagai nagusi den hidroxiapatitaren isotopoen analisia bereziki erabilgarria egin zaie zientzialariei. Horren zioa agerikoa da: hezurrak gizabanakoaren bizitzan zehar handitu eta aldatzen badira ere, hau ez da hortzen kasua. Hortzak bizitzaren lehen urteetan garatzen dira, baina gero ez dute aldaketa nabarmenik jasotzen. Hortaz, hortzetan geratzen da zizelkatuta, betiko, pertsona baten jatorria.
Heldu berriak ziren emakume horiek beren herri berrietan ondo txertatuta zeudela dirudi. Ikertzaileek, bederen, ez dute aparteko ezberdintasunik antzeman hilobiratzeetan. Guztiek zuten hezurdura tolestuta, eta, emakumeen kasuan, eskumara jarrita eta burua hegoalderantz. Gizonezkoak, aldiz, ezkerrerantz eta iparraldeari begira jartzen zituzten. Ezberdintasun horren zergatia, oraindik orain, misterioa da, baina, askotan, generoaren araberako lehen diskriminazio aztarnatzat jo izan da.
Izan ere, aurreko garaietan, megalitoetan egindako hilobiratzeetan antzeko ezberdintasunik ez omen zen igartzen. Hala ere, megalitoen garaiko ustezko berdintasun hau ere kolokan jarri izan da beste hainbat ikerketatan. Adibidez, Teresa Fernandez-Crespo eta Concepcion de la Rua EHUko ikertzaileek 2015ean proposatutakoaren arabera, Neolitoan hasi ziren generoaren araberako lehen bazterketak. Euskal Herriko eta Errioxako trikuharrietan egindako hilobiratzeetan topatutako aztarnen arabera egin zuten proposamena. Ikerketa horretan ere isotopoen analisia baliatu zuten, baina, kasu horretan, dietan oinarritu ziren, eta karbono eta nitrogeno isotopoak izan zituzten jomugan.
Oxigenoaren isotopoak aztertuz, bestetik, paleontologoak gai dira iraganeko klimaren inguruko zantzuak eskuratzeko. Izan ere, oxigenoaren bi isotopo egonkor nagusiak O16 eta O18 dira, eta horien proportzioa tenperaturaren arabera aldatzen dira. Ikerketa honetan teknika hori baliatu dute ere, emakume horien jatorria kokatzen saiatzeko. 60 kilometro ingurura kokatuta dagoen Nördlinger Ries eskualdea proposatu dute, baina Alpeak eta Bohemia ere aukeran dauden jaiolekuak dira, bertan dauden isotopoen arabera.
Migrazioetatik haragoGoi Neolitoren eta Brontze Aroaren arteko trantsizioan, ia Europa osora zabaldu zen zibilizazio baten zantzuak agertu ziren. Andrew Sherratt arkeologo britainiarrak idatzitakoaren arabera, “pixkanaka, baina etengabe, Europa epeleko gizarteak ideia komun batera abiatu ziren”. Egile horrek nabarmendu zuenez, estilo hori berdin mantendu zen, bai bakean zein gerran: europarrek borroka egiteko ezpata berdinak erabili zituzten, baina abegi ona erakusteko ere antzeko edalontzietan edan zuten.
Askotan iraganaren diskurtsoak gerren eta migrazio handien arabera berreraikitzen badira ere, ikerketa honen egileek nabarmendu nahi izan dute “norbanakoen mugikortasunaren garrantzia, batez ere, emakumeei dagokienean”. Are gehiago, migrazioen arabera azaldutako iragana berrikusteko beharra azpimarratu dute beren artikuluan. Kontzeptu hori ez omen da nahikoa azaltzeko III. milurtekoko Brontze Aroko gizarteek zuten mugikortasun konplexua. “Aitzitik, badirudi arkeologoek migraziotzat jo ohi dituztenak, benetan norbanakoen mugikortasunen ondorioak direla; mugimendu horiek instituzionalizatuta zeudela, eta sexu eta adinari lotuta egon zirela uste dugu”.
Erreferentzia bibliografikoa:
Knipper et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proceedings of the National Academy of Sciences. Online Early Edition (September 4, 2017 – September 8, 2017). DOI: 10.1073/pnas.1706355114
———————————————————————————-
Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.
———————————————————————————-
The post Duela lau mila urte iritsitako errainak mintzatu dira orain appeared first on Zientzia Kaiera.
Sistemas nerviosos: las áreas asociativas
Las áreas sensoriales y motoras ocupan menos de la mitad de la corteza cerebral humana. El resto de la corteza está ocupada por las áreas asociativas. Llamamos así a las regiones que, en primer lugar, procesan la información que reciben de las diferentes áreas sensoriales. Ese procesamiento consiste en la organización, identificación en interpretación de la información sensorial, generando, de esa forma, las percepciones, o sea, las representaciones que el encéfalo produce del entorno en el que se desenvuelve. La primera fase de toda esa panoplia de tareas consiste en la percepción, que es un proceso más activo que la recepción (que no es, por cierto, puramente pasiva, como suele creerse) pues en ella interviene la atención, las expectativas, la memoria y las emociones. Esos elementos contribuyen a dotar de significado a la información recibida. Y a partir de las percepciones, las áreas asociativas planifican, toman decisiones y adquieren habilidades motoras; también desarrollan capacidades cognitivas (pensamiento abstracto, lenguaje); y producen la mente consciente.
Los esfuerzos por entender los mecanismos neurológicos de las consideradas funciones superiores comenzaron hacia el final del siglo XIX, cuando el neuroanatomista alemán Franz Joseph Gall propuso que cada función mental concreta tenía una localización determinada en el cerebro. Antes se había empezado a tener constancia sistemática de los efectos que sobre determinadas funciones tenían los daños producidos en unas u otras regiones encefálicas. Es así como Pierre Paul Broca identificó el área que lleva su nombre, a la que nos referiremos más adelante. Ese mismo procedimiento se ha podido seguir utilizando, pero en la actualidad es posible recurrir además a la manipulación genética de animales modelo y estudiar cómo se ven modificadas determinadas habilidades (aprendizaje, memoria, y otras), y a técnicas de neuroimagen para las que se requiere un aparataje muy sofisticado.
Los lóbulos parietal, temporal y occipital -todos ellos ubicados en la zona posterior de la corteza- integran la información sensorial y la almacenada en la memoria. El lóbulo frontal o complejo de asociación prefrontal está implicado en la planificación de acciones, así como en el pensamiento abstracto. No obstante, por diferentes razones –de índole metodológica, epistemológica o simplemente por falta de conocimiento- no es posible delimitar con precisión el ámbito conceptual de tales fenómenos ni, por lo mismo, su sede en el cerebro. Además, los fenómenos asociativos reclutan fuentes encefálicas muy diversas, lo que quiere decir que intervienen muy diversos circuitos, no solo corticales. Baste recordar que los recuerdos (memoria) y las emociones intervienen de forma determinante en la generación de percepciones y en las elaboraciones posteriores a partir de ellas, como la toma de decisiones, la adquisición de creencias o la producción de ideas o e arte, en cualquiera de sus modalidades.
Las áreas asociativas se organizan en redes distribuidas. Cada red conecta áreas que se encuentran en zonas muy diversas de la corteza. Las redes pueden encontrarse en posiciones próximas o adyacentes unas a las otras, de manera que generan una serie compleja de redes entrelazadas entre sí. La organización específica de las redes asociativas se caracteriza en términos de interacciones, relaciones jerárquicas y competencia entre ellas.
El lenguaje es uno de los fenómenos asociativos que más atención ha recibido y por esa razón nos referiremos aquí a él a modo de ejemplo. Hay dos áreas -de Broca, antes citada, y de Wernicke, de las que sabemos desde el siglo XIX que intervienen en el procesamiento del lenguaje. El área de Broca se encuentra en el lóbulo frontal del hemisferio dominante (el izquierdo, normalmente) y ocupa las áreas de Bordmann 44 y 45; interviene en la producción del lenguaje. El área de Wernicke interviene en la comprensión del lenguaje hablado y escrito. Se encuentra en el área de Brodmann 22, que se localiza en la sección posterior del giro temporal superior del hemisferio dominante. Sin embargo, aunque las áreas citadas cumplen funciones esenciales en su producción y comprensión, el lenguaje es una capacidad de gran complejidad y no es posible circunscribir su procesamiento a esas dos áreas. Hoy sabemos que en los procesos citados intervienen otras áreas, incluyendo el lóbulo frontal, los ganglios basales, el cerebelo y el puente.
En definitiva, como se ha señalado antes, los procesos en los que intervienen las áreas asociativas son muy complejos. Además de lo intrincada que es la propia estructura de esas áreas a base de redes adyacentes y circuitos entrelazados, además, reclutan regiones encefálicas distintas de las corticales, por lo que su análisis y compresión son de suma dificultad.
Fuentes:
Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum & A. J. Hudspeth (2012): Principles of Neural Science, Mc Graw Hill, New York
Lauralee Sherwood, Hillar Klandorf & Paul H. Yancey (2005): Animal Physiology: from genes to organisms. Brooks/Cole, Belmont.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Sistemas nerviosos: las áreas asociativas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Los antecedentes de la teoría cinética
Recordemos brevemente dónde estamos. Hasta ahora la termodinámica que hemos visto se basa en la observación de máquinas térmicas, algunas gigantescas. En este estudio no nos ha importado, porque es irrelevante, que existan las moléculas o no. Pero ahora estamos intentando desarrollar esas mismas leyes termodinámicas precisamente suponiendo que existen las moléculas. Para ello hemos elegido el sistema más simple, un gas, para el que hemos descrito un modelo también muy simple y nos disponemos a ver qué podemos deducir de la hipótesis de que los moléculas no solo existen, sino que se mueven. Y todo con matemáticas de primaria, para centrarnos en los conceptos.
La idea básica de la teoría cinética de la materia es que la energía térmica está relacionada con la energía cinética de las moléculas en movimiento. Como veremos, esto es correcto. Esta idea se había sugerido frecuentemente antes de que resurgiera con fuerza a finales del siglo XIX. Sin embargo, hubo muchas dificultades que obstaculizaron su aceptación general. Algunas de estas dificultades merecen que las mencionemos brevemente. La teoría cinética es un ejemplo de una buena idea que no se acepta fácilmente por la comunidad científica o, si se prefiere, de sociología de la ciencia.
En 1738 Daniel Bernoulli demostró (era matemático y se lo podía permitir) que un modelo cinético podría explicar una propiedad de los gases muy conocida. Esta propiedad se describe como una variente de la ley de Boyle: siempre y cuando la temperatura no cambie, la presion del gas es proporcional a su densidad.
P ∝ D, si T es constante
Definimos la densidad, D, como la cantidad de masa (m) por unidad de volumen (V), D = m/V. Y, efectivamente, como habíamos expresado la ley de Boyle como P = a/V, si T es constante, entonces P = a D /m.
Bernoulli asumió que la presión de un gas es simplemente el resultado de los impactos de las moléculas individuales en la pared del contenedor. Si la densidad del gas fuera dos veces mayor, habría dos veces más moléculas por centímetro cúbico. Así, deducía Bernoulli, habría dos veces más moléculas golpeando la pared por segundo y por lo tanto la presión sería doble.
La propuesta de Bernoulli podría haber sido el primer paso hacia la moderna teoría cinética de los gases. Sin embargo, la idea fue ignorada (por no decir despreciada) por la comunidad científica en el siglo XVIII. Una razón no menor para ello fue que Newton había propuesto una teoría diferente en sus Principia (1687). Newton mostró que la ley de Boyle podría explicarse por un modelo en el cual las partículas en reposo ejercen fuerzas que repelen a las partículas vecinas. Newton no decía, en absoluto, que hubiese demostrado que los gases realmente están compuestos de esas partículas fijas mutuamente repulsivas. Pero eso daba igual. La mayoría de los científicos, impresionados por los descubrimientos de Newton, simplemente asumieron que su tratamiento de la presión del gas también era correcto.
Pero la idea era demasiado buena como para desaparecer así como así. La teoría cinética de los gases fue propuesta de nuevo en 1820 por el físico inglés John Herapath. Herapath, por su cuenta, redescubrió las conclusiones de Bernoulli sobre las relaciones entre la presión y la densidad, o el volumen, de un gas y las velocidades de las partículas. De nuevo, el trabajo de Herapath también fue ignorado por la mayoría de científicos.
La mayoría no son todos. James Prescott Joule vio el valor de la obra de Herapath. En 1848, leyó un artículo en la Sociedad Literaria y Filosófica de Manchester en el que trataba de revivir la teoría cinética. Este artículo, también, fue ignorado por otros científicos. Quizás a ello contribuyó el hecho de que los físicos no suelen buscar documentos científicamente relevantes en las publicaciones de una “sociedad literaria y filosófica”.
Sin embargo, las pruebas a favor de la equivalencia de calor y energía mecánica continuaban acumulándose. Como consecuencia varios otros físicos calcularon independientemente las consecuencias de la hipótesis de que la energía calorífica en un gas es explicada y dada por la energía cinética de sus moléculas.
Rudolf Clausius,a la sazón profesor en el Politécnico de Zúrich, publicó un artículo en 1857 en Annalen der Physik titulado “La naturaleza del movimiento que llamamos calor”, en el que desarrollaba un modelo cinético simple propuesto por Arthur Krönig. Este artículo estableció los principios básicos de la teoría cinética esencialmente en la forma aceptada hoy y lo cambió todo. Poco después, James Clerk Maxwell en Gran Bretaña y Ludwig Boltzmann en Austria desarrollarían los detalles matemáticos completos de la teoría.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Los antecedentes de la teoría cinética se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Bihotzik gabe, ezin
Jane Goodall: “Teknologia bakar-bakarrik ez da nahikoa. Bihotza ere jarri behar dugu”.
—————————————————–
Egileez: Eduardo Herrera Fernandez, Leire Fernandez Inurritegi eta Maria Perez Mena UPV/EHUko Letraz – Diseinu Grafikoko eta Tipografiako Ikerketa Taldeko ikertzaileak dira.
—————————————————–
Aipua eta irudia UPV/EHUko Zientzia Astea: Alfabetatze zientifikoa Alfabetización científica liburutik jaso dugu. Eskerrak eman nahi dizkiegu egileei eta UPV/EHUko Zientzia Astearen arduradunei, edukia blogean argitaratzeko baimena emateagatik.
The post Bihotzik gabe, ezin appeared first on Zientzia Kaiera.
Historias de la malaria: El mosquito
Ahora lo sabemos y, entonces, hace más de un siglo, se sospechaba. Hasta Laveran mencionó, casi como una curiosidad, en sus escritos, que malaria y mosquitos coincidían a menudo. Conocemos ya las fiebres y lo que las alivia, aunque no cura del todo, la quinina. Y se ha descubierto el parásito que las provoca: especies del protozoo Plasmodium según los estudios de Laveran y otros. El protozoo está en la sangre de los enfermos, sobre todo en sus glóbulos rojos. Pero, en aquellos años, se desconocía por completo cómo el Plasmodium pasaba de persona a persona y contagiaba la enfermedad.
Como escribe Wilhelm von Drigalski, el enfermo no contagiaba nunca a nadie con sus esputos, ni por contacto, ni al besar o con sus deposiciones, ni al frotar la piel de otra persona. Se sospechó del aire y del agua. Nadie pensó en los mosquitos, aunque algunos, como Laveran, lo sospechaban pero no se atrevían a plantearlo como hipótesis de trabajo. François Pagès definió la malaria como enfermedad “cerrada”, pues, de alguna manera, el parásito quedaba encerrado en el cuerpo del enfermo.
El primero que estudió la transmisión de enfermedades por picaduras de insectos fue Patrick Manson en China. Demostró que la filaria, el nematodo causante de la filariasis, se contagiaba por mosquitos, todo ello después de numerosas, difíciles y tediosas disecciones de mosquitos en busca del parásito. Publicó sus resultados en 1877 y 1878. Unos años más tarde, en 1893, y en Estados Unidos, Theobald Smith demostró que la fiebre de Texas del ganado se transmitía por picaduras de garrapatas.
En esos años, Patrick Manson convenció al médico militar inglés Ronald Ross de que el plasmodio descubierto por Laveran como causante de la malaria estaba confirmado. Le enseñó a encontrar el protozoo, a través del microscopio, en sangre fresca de enfermos. Ross, destinado en la India, un subcontinente maltratado por la malaria y, sobre todo, lo más importante para Manson, Ross y sus mandos en el ejército, la enfermedad afectaba a los soldados ingleses y a los miembros de la administración colonial. Ross comenzó a diseccionar, como había hecho Manson con la filariasis, mosquitos que habían picado a enfermos de malaria. El cuerpo de esos mosquitos, que Ross diseccionaba al microscopio, medía 6-7 milímetros de longitud y 2 milímetros de anchura, y buscaba en ellos un protozoo de 0.001-0.01 milímetros de diámetro.
En 1897 localizó los gránulos de pigmento negro típicos de la malaria en el estómago de un mosquito del género Anopheles. Fue el 20 de agosto cuando Ross encontró el protozoo en el estómago de la hembra del mosquito. Desde entonces, cada 20 de agosto se celebra el Día del Mosquito. Constató que, del estómago, los protozoos desaparecían en unas horas y, finalmente, los localizó en las glándulas salivares el 4 de julio de 1898. Solo las hembras pican y tienen glándulas salivares con anticoagulantes; los machos comen frutas y tienen glándulas salivares totalmente distintas. Así entendió cómo los mosquitos transmitían la malaria con la picadura.
El mismo año, 1897, demostró que los mosquitos del género Culex transmitían el Plasmodium en aves. Ross describió el ciclo vital del protozoo y telegrafió el descubrimiento a Manson en 1898 que, a su vez, lo comunicó a la British Medical Association en Edimburgo. También contactó con Laveran para explicarle su hallazgo.
Una de las dificultades que encontró Ross en su trabajo fue que entonces no se sabía que solo especies del género Anopheles transmitían la malaria. Además, desconocía por completo la taxonomía de los mosquitos y solo los distinguía con descripciones muy breves e imprecisas. Y, también, la región de la India donde investigó la intervención de los mosquitos en la malaria tenía pocas especies de Anopheles y la mayoría de ellos eran de los géneros Culex y Aedes.
La escuela italiana de estudio de la malaria, con el trabajo de Gian Battista Grassi, Amico Bignami y Giuseppe Bastianelli, demostró el ciclo vital del Plasmodium en las especies de mosquito del género Anopheles que transmiten la malaria humana. Grassi planteó que no todos los mosquitos transmitían la malaria y que uno de ellos sería el vector específico. Como era zoólogo, organizó la búsqueda de evidencias sobre ese vector desde su experiencia profesional: recorrió el país muestreando mosquitos en las zonas endémicas con malaria y en las regiones que no padecían la enfermedad. Para Grassi, las herramientas del zoólogo para resolver el enigma del vector de la malaria eran los habituales: la sistemática del grupo, es decir, de los mosquitos; y la distribución geográfica de las especies implicadas, o sea, del protozoo, de los enfermos de malaria y, por supuesto, de los mosquitos.
Después del estudio de los ejemplares recogidos y clasificados y de su relación con la malaria, concluyó que la especie que aparecía en todas las áreas con malaria era el Anopheles claviger. Recurrió a dos médicos del Hospital Santo Spirito de Roma, los doctores Bignami y Bastianelli, para probar su hipótesis.
El 28 de junio de 1898, soltaron sus Anopheles sobre algunos enfermos internados en el hospital y, uno de ellos contrajo la malaria, que curaron con quinina. Por tanto, Anopheles claviger puede contagiar la malaria. La comunicación de este experimento a la Academia del Lincei termina con la descripción del ciclo del Plasmodium en el cuerpo del Anopheles.
La contraprueba que propuso Grassi era para demostrar que, evitando las picaduras del Anopheles, no se enfermaba de malaria. Eligió Capaccio, en la provincia de Salerno, una zona con una peligrosa malaria endémica. Los voluntarios eran trabajadores del ferrocarril que vivían en diferentes estaciones con sus familias. La prueba se organizó para los meses entre junio y octubre, la época del año con más malaria.
Aisló con rejillas metálicas las casas y habitaciones donde dormían 112 trabajadores y sus familias, incluido el propio Grassi, para impedir que llegaran los mosquitos hasta ellos. Otros 415 trabajadores, que serían el control, siguieron con su conducta normal y sin aislamiento. Entre los voluntarios aislados, solo hubo cinco casos de malaria, además leve y, quizá, más bien recaídas de fiebres anteriores. Los 415 trabajadores sin aislamiento enfermaron.
Grassi culminó su investigación con su lema de que hay mosquitos sin paludismo, pero no hay paludismo sin mosquitos.
La prueba más contundente la presentaron Ross y Manson. Uno grupo de mosquitos Anopheles criados en el laboratorio picaron a un enfermo de malaria en Italia. Ross envió los mosquitos a Londres, dirigidos a Manson. Cuando recibió los mosquitos, expuso a su hijo a las picaduras. Así se contagió con la malaria, la alivió con quinina e, incluso, tuvo hasta tres recaídas. En 1902, Ronald Ross recibió el Premio Nobel.
En el ciclo vital del Plasmodium hay dos etapas esenciales y consecutivas. En primer lugar, el mosquito debe picar al enfermo de malaria cuando su sangre está cargada de gametocitos, por tanto, cuando el protozoo se ha multiplicado en los glóbulos rojos, los ha destruido y se ha liberado a la sangre. Es, entonces, cuando el acceso de fiebre ataca al enfermo. Y, en segundo lugar, el mosquito infectado debe picar a otra persona en algo más de 10 días, como mucho 13 días, que es el tiempo máximo que el Plasmodium permanece vivo en el cuerpo del mosquito.
Por otra parte, el enfermo de malaria tiene ciclos de fiebre, o de tener la sangre llena de gametocitos, cada 24 horas, y los mosquitos Anopheles pican de noche. Deben coincidir fiebre y noche, y se consigue con los ciclos de fiebre de 24 horas. Así el mosquito pica, se alimenta de la sangre del enfermo, culmina el ciclo vital del protozoo y, con nuevas picaduras, extiende la enfermedad.
Hay censadas 465 especies del género Anopheles y más de 50 todavía sin catalogar. De ellas, unas 70 pueden transmitir la malaria en la especie humana, y 41 de ellas con gran eficacia. Son las consideradas un problema de salud pública y se intentan controlar. Con datos de 2008 y 2009 se ha elaborado una mapa global de estas especies de Anopheles. Sin entrar en detalles, hay que destacar que ninguna de ellas tiene una distribución planetaria y que cada continente, subcontinente e, incluso, regiones geográficas menores, tienen unas especies concretas. Por ejemplo, en la Península Ibérica destaca Anopheles atroparvus, con A. labranchiae en la costa mediterránea. Son las especies que destacan pero hay más, casi siempre con una distribución más localizada o fragmentada. De hecho, en la Península hay citadas 15 especies, aunque su taxonomía está todavía en discusión.
Ahora Mathieu Nacher, de la Facultad de Medicina de Cayena, en la Guayana Francesa, se pregunta si los síntomas que la fiebre provoca en el enfermo atraen a los mosquitos a picar. La fiebre atrae al mosquito con el aumento de la temperatura de la piel, la secreción de lactato que provoca la temperatura y los temblores, la producción de dióxido de carbono con la hiperventilación del enfermo, la sudoración, además del cansancio y agotamiento del enfermo que impide la conducta instintiva de espantar a los mosquitos cuando se les oye su característico zumbido. Como ejemplo sirve que el aumento de dióxido de carbono en la respiración llega al mosquito hasta unos 20 metros, y atrae al doble de ejemplares de Anopheles gambiae si, a la vez, le llega el olor del cuerpo humano. Y la fiebre, la mayor temperatura de la piel y la secreción de sudor aumentan el flujo de sangre en la superficie del cuerpo y, así, hay más sangre para los mosquitos en sus picaduras.
Desde siempre, y es un saber popular, los mosquitos pican más a unas personas que a otras. Ignoramos cuál es la causa de estas preferencias. R.H Wright sugirió que era una combinación de humedad y temperatura adecuadas en la piel. Es la mayor temperatura y una gran humedad lo que atrae al mosquito y, de nuevo, es lo típico de una persona con fiebre. Y, de nuevo según Wright, hay algo más pues los mosquitos distinguen un cilindro metálico y el brazo de una persona aunque ambos tengan igual temperatura y humedad.
Un trabajo interesante para conocer esta característica de la piel que atrae al mosquito es el de Bart Knols, del Centro Internacional de Fisiología y Ecología de Insectos de Nairobi, en Kenia. Primero observa que, a una persona tumbada, durmiendo, con temperatura tropical, los mosquitos pican la piel que tiene al descubierto, sobre todo el rostro, pero si está sentada pican los pies y piernas. Knols conoce el famoso queso Limburger, originario de Bélgica, y nos recuerda que este queso huele parecido a los pies de algunas personas. Se pregunta si las bacterias de la piel tienen algo que ver. Es más, detecta que a los mosquitos les va este queso.
Cuando analiza las bacterias de los pies encuentra una especie Brevibacterium epidermis, que crece entre los dedos de los pies. Y, en el queso, encuentra la Brevibacterium linis, distinta especie, el mismo género y, por lo que sabemos, el mismo hedor. Así que pies y queso Limburger atraen por igual a los mosquitos. Por esta interesante investigación, Bart Knols recibió el Premio IgNobel de 2006.
Referencias:
Capanna, E. 2006. Grassi versus Ross: who solved the middle of malaria? International Microbiology 9: 69-74.
Coleman-Jones, E. 1999. Ronald Ross and the great malaria problem: historical reference in the biological sciences. Journal of Biological Education 33: 181-184.
Constantini, C. et al. 1996. Mosquito responses to carbon dioxide in a West African Sudan Savannah village. Medical and Veterinary Entomology 10: 220-227.
Dekker, T. et al. 1998. Selection of biting sites on a human host by Anopheles gambia s.s., An. arabiensis and An. quadriannulatus. Entomologia Experimentalis et Applicata 87: 295-300.
Dworking, J. & S.Y. Tan. 2011. Ronald Ross (1857-1932): Discoverer of malaria’s life cycle. Singapore Medical Journal 52: 466-467.
Earle, D.P. 1979. A history of malaria and its ironies. Transactions of the American Clinical and Climatological Association 90: 1-26.
Eldridge, B.F. 1992. Patrick Manson and the discovery age of vector biology. Journal of the American Mosquito Control Association 8: 215-220.
Enserink, M. 2002. What mosquito want: secrets of host attraction. Science 298: 90-92.
Knols, B.G.J. 1996. On human odour, malaria mosquitoes, and Limburger cheese. Lancet 348: 1322.
Laverdant, C. 2007. Le context scientifique contemporain de la découverte de Laveran. Bulletin de l’Academie nationale de medicine 191: 1227-1234.
Ledermann, W. & G. Valle. 2009. Ética e investigación en la historia de la malaria. Revista Chilena de Infectología 26: 466-471.
Martín Sierra, F. 1998. El papel de la sanidad militar en el descubrimiento del mosquito como agente transmisor del paludismo y de la fiebre amarilla. Sanidad Militar 54: 286-296.
Nacher, M. 2004. Charming the mosquito: do malaria symptons increase the attractiveness o the hosto for the vector? Medical Hypotheses doi: 10.1016/j.mehy.2004.08.030
Pagés, F. 1953. Le paludisme. Presses Universitaires de France. Paris. 113 pp.
Sinka, M.E. et al. 2012. A global map of dominant malaria vectors. Parasites & Vectors 5: 69.
Snowden, F.M. 2006. The conquest of malaria. Italy, 1900-1962. Yale University Press. New Haven and London.
Takken, W. & B.G.J. Knols. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annual Review of E ntomology 44: 131-157.
Villanueva-Meyer, M. 2015. Ronald Ross (1857-1932): Descubridor de la causa de la malaria y pionero en enfermedades tropicales. Galenus 52: 56-57.
von Drigalski, W. 1954. Hombres contra microbios. La victoria de la Humanidad sobre las grandes epidemias. Ed. Labor. Barcelona. 368 pp.
White, G.B. 1983. Malaria vector ecology and genetics. British Medical Bulletin 38: 207-212.
Wright, R.H. 1975. Why mosquito repellents repell. Scientific American July: 104-111.
Yoeli, M. 1973. Sir Ronald Ross and the evolution of malaria research. Bulletin of the New York Academy of Medicine 49: 722-735.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo Historias de la malaria: El mosquito se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:FINGER: estratificar a la población para optimizar el funcionamiento de los servicios sanitarios
Una investigación del departamento de Medicina Preventiva y Salud Pública de la Universidad del País Vasco/Euskal Herriko Unibertsitatea propone un programa de estratificación de la población con el objetivo de optimizar el funcionamiento de los servicios sanitarios durante los 12 meses siguientes.
Durante los últimos años, el número de pacientes con enfermedades crónicas ha aumentado, debido, entre otros factores, al envejecimiento poblacional. Además, muchos enfermos crónicos tienen más de un problema de salud. Algunos de estos pacientes tienen que acudir varias veces al año a su centro de salud y a consultas de especialistas, visitan reiteradamente los servicios de urgencias y son ingresados de manera repetida en hospitales. “Con frecuencia, se observan situaciones de falta de coordinación: se duplican algunas pruebas y se omiten otras, se producen interacciones entre los medicamentos que se les recetan y se les proponen planes de cuidados muy complicados, difíciles de comprender para el paciente. Todos conocemos situaciones de parientes a los que ven muchos especialistas al cabo del año y, a veces, es imposible seguir las recomendaciones de todos” afirma Jon Orueta, autor del estudio realizado en el Departamento de Medicina Preventiva y Salud Pública de la UPV/EHU. “Existe una opinión generalizada de que la organización de los sistemas de salud ha quedado obsoleta y son necesarios cambios profundos. La estructura de la pirámide de población actual nos lleva a pensar que en los próximos años vamos a atender a una población envejecida, que requerirá cuidados sanitarios complejos y que puede llegar a colapsar el sistema sanitario. Sin embargo, el sistema actual funciona bien para muchos de los pacientes. Por lo tanto, es necesario decidir a qué pacientes podemos seguir atendiendo con el modelo tradicional y para cuáles tenemos que buscar nuevas formas de atención sanitaria”, añade.
Jon Orueta ha desarrollado un sistema de estratificación que plantea la división de la población en estratos, es decir, grupos de personas con necesidades similares, para diseñar la atención sanitaria que, según las previsiones realizadas, requerirá cada estrato durante los 12 meses siguientes. De este modo, el sistema sanitario no se queda a la espera de que el paciente crónico empeore y tenga que acudir a las consultas o los hospitales, sino que se pueden planificar sus cuidados de manera anticipada e intervenir antes de que se produzcan descompensaciones.
Los sistemas de estratificación más conocidos fueron creados en Estados Unidos, y a pesar de las diferencias entre su sistema sanitario y nuestros servicios de salud, varias investigaciones han confirmado su validez. Orueta, que actualmente trabaja en la OSI Uribe de Osakidetza, dirigió el Programa de Estratificación Poblacional de la CAV durante cuatro años, y conoce de primera mano las dificultades para emplear estos sistemas. “Al intentar aplicarlos al mundo real, lo que hemos visto es que son modelos estadísticos muy complejos, que manejan muchas variables, y que a veces resultan difíciles de comprender para los médicos o para los gestores. Además, se trata de programas informáticos que requieren la compra de licencias anuales de uso. Por eso, hemos desarrollado un instrumento más fácil de entender, intuitivo, y que a pesar de su simplicidad no pierde demasiada capacidad explicativa respecto a los modelos americanos. Además, dado que se ha desarrollado aquí, no tendría costes de licencia”.
El sistema FINGER (Formación e Identificación de Nuevos Grupos de Estratificación de Riesgo) se basa en los diagnósticos de todos los problemas de salud por los que el paciente ha tenido contacto con los servicios de salud. Es claro y sencillo, pero “consigue identificar correctamente a una proporción importante de los pacientes que requerirán gran cantidad de recursos, necesitarán hospitalizaciones no programadas o que presentarán mayor riesgo de fallecimiento durante el año siguiente. De esa forma, cada paciente es asignado en el estrato más acorde a su situación futura, y recibe una mejor atención”.
Los modelos predictivos, por sí solos, “no mejoran la salud de las personas, ni evitan hospitalizaciones, ni disminuyen los costes, a menos que se acompañen de planes de intervención”, afirma Orueta. La aplicación de un sistema como FINGER y los subsiguientes planes de intervención podría proporcionar “una mejor atención, mejores cuidados, menos hospitalizaciones y menos descompensaciones. Y, lógicamente, si se utilizan menos los hospitales y las unidades de cuidados muy complejos, el coste se reducirá”. Pero el objetivo del sistema es proporcionar una mejor atención, “la reducción del gasto sanitario es una consecuencia de dicha aplicación” subraya Orueta.
Referencia:
Millán E, Lopez Arbeloa G, Samper R, Carneiro M, Pocheville E, Aurrekoetxea J, de Pablos I, Orueta J. (2015) Assessment of a Predictive Risk Model for Classifying Patients with Multimorbidity in the Basque Country Value Health. 18(7):A374. doi: 10.1016/j.jval.2015.09.773.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo FINGER: estratificar a la población para optimizar el funcionamiento de los servicios sanitarios se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:FINGER, osasun-arreta hobetzeko eredu estatistikoa
Jon Orueta medikuak UPV/EHUko Prebentzio Medikuntza eta Osasun Publikoa Sailean garatu duen ikerketari esker gaixo kronikoen arreta hobetu eta biztanleriaren osasun-beharrak aurreikusteko sistema bat garatu du. Geruzatze-sistema bat proposatu du ikertzaileak, hau da, populazioa antzeko beharrak dituzten pertsona-multzotan banatzea eta geruzetako bakoitzak hurrengo 12 hilabeteetan beharko duen osasun-arreta diseinatzea. Modu horretan, gaixo kronikoen zaintza aldez aurretik planifika daiteke, kontsulta edo ospitaleetara joateko zain egon beharrean. Funtsean, osasun-arretaren beharrak gertatu aurretik planifikatzeko baliabidea sortu du Jon Orueta medikuak. Honako baliabide batek zeregin garrantzitsua izan dezake, pertsona-multzo bakoitzak hurrengo 12 hilabeteetan beharko duen osasun-arreta diseinatzeko eta osasun-zerbitzuen funtzionamendua optimizatzeko unean.
“Uste zabaldua da osasun-sistemen antolakuntza zaharkituta gelditu dela, eta aldaketa sakonak egin behar direla. Gaur egungo populazio-piramidearen egitura ikusirik, uste dugu datozen urteetan populazio zahartua izango dugula. Beraz, zaintza sanitario konplexua eman beharko da, eta baliteke hori osasun-sistema kolapsatzera iristea. Edonola ere, gaur egungo sistemak ondo funtzionatzen du pazienteetako askorentzat. Horregatik, erabaki egin behar da zein paziente artatuko diren eredu tradizionalari jarraikiz, eta zeinentzat aurkitu behar ditugun osasun-arreta emateko modu berriak”, azaldu du Jon Oruetak.
Geruzatze-sistemarik ezagunenak Estatu Batuetan sortu ziren, eta haien osasun-sistemaren eta gure osasun-zerbitzuen arteko aldeak handiak izan arren, ikerketek baieztatu dute honako ere balio dutela sistema horiek. Gaur egun Oruetak Osakidetzako Uribeko ESIn (Erakunde Sanitario Integratua) egiten du lan, baina EAEko Populazioaren Geruzatze Programaren zuzendari izan zen lau urtez, eta ondo ezagutzen ditu halako sistemak erabiltzeko zailtasunak. “Mundu errealean aplikatzen saiatu garenean, ikusi dugu eredu estatistiko oso konplexuak direla, aldagai asko dituztela, eta, askotan, ulertzeko zailak direla medikuentzat edo kudeatzaileentzat. Gainera, programa informatikoak erabiltzeko, urteko erabilera-lizentzia erosi behar izaten da. Horregatik, ulertzeko errazagoa den tresna bat garatu dugu, intuitiboa, eta, sinplea izan arren, amerikar ereduekin alderatuta azalpen-gaitasun handirik galtzen ez duena. Gainera, hemen garatua denez, ez luke izango lizentzia-kosturik”.
FINGER, ‘made in Euskadi’FINGER sistemak, arriskuen geruzapenerako talde berriak osatzeko eta identifikatzeko sistema, gaztelaniazko izendapenetik hartzen du izena: Formación e Identificación de Nuevos Grupos de Estratificación de Riesgo. Pazienteak osasun-zerbitzuetan jasotako osasun-arazo guztien diagnostikoetan oinarritzen da sistema. Argia eta erabilerraza da, baina “ondo identifikatzen du hurrengo urtebetean baliabide asko beharko dituzten pazienteen, programatu gabeko ospitaleratzeak beharko dituztenen edo heriotza-arrisku handiena izango dutenen ehuneko handi bat. Hala, paziente bakoitzari geruza bat esleitzen zaio, haren etorkizuneko egoerari ondoena egokitzen zaiona, eta arreta hobea jasotzen du“.
Iragarpen-ereduek ez dute “beren kabuz jendearen osasuna hobetzen, ez eta ospitaleratzeak saihesten edo kostuak txikitzen ere, haiekin batera ekintza-plan batzuk martxan jarri ezean”, adierazi du Oruetak. FINGER sistema eta hari lotutako ekintza-planak abian jarriz gero, “arreta hobea eman ahal izango litzateke, zaintza hobea, ospitaleratze gutxiago, eta desoreka gutxiago. Eta, logikoa denez, ospitaleak eta zaintza konplexuen unitateak gutxiago erabiltzen badira, kostuak ere gutxitu egingo dira”. Baina sistemaren helburua arreta hobea ematea da; “osasun-gastua murriztea neurri horiek aplikatzearen ondorioa da”, azpimarratu du Oruetak.
Iturria:
UPV/EHUko komunikazio bulegoa: Biztanleriaren osasun-beharrak aurreikusteko eredu estatistiko bat
The post FINGER, osasun-arreta hobetzeko eredu estatistikoa appeared first on Zientzia Kaiera.
El Sol
El sistema solar se formó hace unos 4.600 millones de años a partir de una pequeña parte (alrededor de un 5%) de una gigantesca nube molecular formada principalmente por hidrógeno. La mayor fracción de ese 5% de materia –el 99,85%- colapsó formando el Sol, y el resto formó un disco protoplanetario que acabría dando lugar a los demás cuerpos del sistema (planetas, satélites, asteroides y demás).
El Sol es una esfera casi perfecta de plasma caliente cuyo diámetro es 109 veces el de la Tierra, y su masa, 330.000 veces la de nuestro planeta. Un 73% de la materia solar es hidrógeno y un 25%, helio; el 2% restante se lo reparten otros elementos. Tras su formación, la temperatura y la densidad de la masa central alcanzaron valores altísimos. El núcleo del sol -correspondiente a una esfera cuyo radio es la cuarta parte del total- se encuentra a una densidad que es 150 veces superior a la del agua y a una temperatura de 15,7 millones de kelvins. Bajo esas condiciones en su interior se producen de forma permanente reacciones nucleares de fusión, la inmensa mayoría consistentes en la conversión de hidrógeno en helio. Esas reacciones emiten rayos gamma -fotones de muy alta energía- que son absorbidos de manera inmediata por el plasma solar y liberados a continuación de nuevo, aunque con algo menos de energía. Ese proceso doble de absorción y reemisión se produce infinidad de veces antes de que los fotones lleguen a la superficie solar. Por ello, transcurren miles de años desde su emisión inicial hasta que alcanzan la superficie y salen al exterior: según estimaciones teóricas ese tiempo puede ir de 10.000 a 170.000 años. Y sin embargo, desde que un fotón sale del Sol hasta que excita una molécula fotorreceptora en una célula de nuestra retina, tan solo transcurren algo más de ocho minutos (aunque, lógicamente, para el fotón no ha pasado el tiempo).
Cada metro cuadrado de la superficie de la Tierra recibe de su estrella, en promedio, 1 kilovatio de potencia cuando se encuentra en su cénit en días despejados. A la superficie no llega toda la que penetra en la atmósfera, puesto que esta filtra e impide la llegada de radiaciones de ciertas longitudes de onda. Si no fuera por ese filtro, serían 1,37 kilovatios por metro cuadrado. El 50% de la energía que llega al exterior de la atmósfera lo hace en forma de radiación infrarroja, un 40% es luz visible y un 10%, radiación ultravioleta. Un 70% de esta última, en mayor proporción cuanto menor es la longitud de onda, no llega a la superficie terrestre.
El Sol no permanece estático. Da vueltas sobre sí mismo de manera que su ecuador completa una vuelta en 25,6 días, aunque ese tiempo es algo más prolongado en los polos (33,5 días), pues la velocidad de rotación no es homogénea, disminuye del ecuador hacia los polos. Y además de rotar, también describe un movimiento, prácticamente elíptico, de traslación alrededor del centro de la Vía Láctea. Tarda entre 225 y 250 millones de años en describir una órbita completa; o sea, eso es lo que dura nuestro año galáctico. Ese desplazamiento se produce a la increíble velocidad de 251 kilómetros por segundo. Viajamos, pues, por el espacio a lomos de un planeta que gira enloquecido alrededor de una estrella que, a su vez, se desplaza a una velocidad imposible de asimilar a nuestra escala, en torno al centro de la galaxia. Y esta, por su parte, tampoco se está quieta. No somos conscientes de ello, pero vivimos en un gigantesco torbellino cósmico.
—————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————
Una versión anterior de este artículo fue publicada en el diario Deia el 27 de agosto de 2017.
El artículo El Sol se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Udan ere zientzia begi-bistan #166
Genetika
CRISPR-Cas 9 izeneko teknika lehen lerrora bueltatu da udan. Horren bidez mutazio bat ezabatzea lortu dute giza enbrioietan. Nazioarteko ikerketa talde batek eman digu berria. Besteak beste, Ameriketako Estatu Batuetako, Txinako eta Hego Koreako adituak aritu dira batera. Ikertzaileen arabera, 58 enbrioi lortu zituzten teknika erabilita, eta 42k ez zuten gaitza eragiten duen mutazioa. Arrakasta %72koa dela nabarmendu dute, inoizko handiena.
Elhuyar aldizkariak eman digu horren berri ere. Gaixotasun genetiko batzuk ondorengoetara pasatzea saihesteko bide eraginkor eta seguru bat izan daitekeela ondorioztatu dute ikertzaileek, nahiz eta argi utzi duten oraindik asko hobetu behar dela klinikoki erabili ahal izateko. Ikertzaileek ondorioztatu dute CRISPR teknika in vitro ernalketarekin batera erabiltzea kardiomiopatia hipertrofikoa bezalako gaixotasun monogenikoak saihesteko bide eraginkorra izan daitekeela.
MedikuntzaKoldo Callado Hernando, medikuntza eta kirurgian doktorea, elkarrizketatu dute Berrian. Droga berrien eta klasikoen inguruan aritu da testu honetan. Droga mota berrien efektuak, oro har, psikoaktiboak eta pizgarriak direnez gehienak, jendeari euforia eragiten diote. “Asko oso lotuta daude jai giroarekin, eta logura murriztu eta gosea kentzen dute; jaiez jai gorputza martxan edukitzeko baliagarriak dira. Beste batzuek haluzinazioak edo barne munduko bidaiak eragiten dituzte”, azaltzen du. Berrien eta aspalditik dauden drogen arteko desberdintasunak azaltzen ditu tartean: “Droga ilegalen legezko alternatiba bihurtu dira droga berri horiek; denda espezializatuetan edo Internet bidez lor daitezke. Horixe da droga berrien arrakastaren gakoetako bat. Horiez gain, prezioz ere droga klasikoak baino merkeagoak dira, sintetizatzen ere errazagoak, eta odolean detektatzeko zailagoak dira”.
Antibiotikoekiko erresistentziaren ondorioz, desagertzear zeuden hainbat eritasun berrindartu egin dira. Automedikazioa, erabilera desegokia eta abeltzaintzako abusuak dira arazoaren motibo nagusiak, adituek diotenaren arabera. Gero eta nabarmenagoa da tuberkulosia, malaria eta halako eritasunen intzidentzia, bakterioen antibiotikoekiko erresistentziagatik. Hala ondorioztatu du Lierni Txintxurreta UPV/EHUko farmazia graduatuak (Donostia, 1994) bere gradu amaierako lanean. Ondorioei dagokienez, antibiotikoen erabilera normalizatu edo gehiegizkoak berekin ekar dezake infekzio batean medikamentu horien efektua baliogabetzea. Gauzak horrela, lehenago tratamendu bidez hiltzen ziren mikroorganismoek immunitatea dute zenbait antibiotikoren aurrean.
Zika birusak emakume haurdunen immunologia-sistema ahultzen duela frogatu dute Keck Medikuntza Fakultateko ikertzaileek (USC). Horretaz gain, ikusi dute birusak globulu zuri batzuk, CD14+ monozitoak, infektatzen dituela, eta M2 makrofago bihurtzen dituela. Makrofago horiek gorputzak patogenoa suntsitu duten seinale izaten dira; hortaz, gorputzak ez dio oztoporik jartzen hedatzeko eta ugaltzeko. Guztira, bi birus mota aztertu dituzte, Afrikakoa eta Asiakoa, eta ikusi dute bigarrenak kalte handiagoa egiten diela emakume haurdunei.
BiologiaGloriana Chaverri biologoari elkarrizketa interesgarria egin diote Berrian. Saguzarrei buruzko nazioarteko biltzar batean parte hartu du Donostian, eta horiei buruz zertzelada batzuk eman ditu. Animalia hauek ingurumenari egiten dioten ekarpena azaldu du, hala nola “izurria ekar dezaketen intsektuen kontrola, hazien zabalkundea, zona tropikaletan, saguzarrak asko elikatzen dira fruituez, eta, libratzen direnean, haziak eramaten dituzte. Landareak polinizatzen ere egiten dute lana. Saguzar banpiroak zuhaitz handien azpian bizi dira, eta, libratzen direnean, elikagaiak ematen dizkiete zuhaitzei”. Gainera, badugu gizakiok saguzarrengandik zer ikasi: “Elkartasun handiagoa izatea gure artean, kooperatiboagoak izatea”.
ArkeologiaArkeologoak Trebiñuko ‘Pozarrate’ izeneko aztarnategia arakatzen ari dira, duela 6.000 urteko sekretuak azaleratzeko. Zortzi urte eman ditu jada Andoni Tarriño geologoak aztarnategia arakatzen, baina iaz lortu zuen hiru kanpaina abiatzeko beharrezkoa duen laguntza ekonomikoa. CENIEH Espainiako Giza Eboluzioaren Zentroko ikertzailea da bera. Trebiñun, duela 6.000 urte inguru, Neolito garaiko gizakiek silexaren ustiaketa sistematikoari ekin zioten. Horregatik dabil baliabide horren arrastoaren atzetik. Harri puska horietatik abiatuz, duela 6.000 urteko gizartearen bizimodua argitu nahi dute. Modu antolatu batean joaten ziren. Baina Tarriñok aitortu du zaila izango dela meatzari horien herrixkak eta lantegiak topatzea.
FisikaKobalto aleazioak (kromozkoak, ruteniozkoak eta platinozkoak) eta baita kromo oxidozko aleazioak diseinatu, ekoitzi eta karakterizatu ditu Lorenzo Fallarinok egin duen ikerketan. Helburua? Ordenagailuetako grabazio magnetikoko memoria sistemak (disko gogorrak, USBak) hobetzeko material berriak bilatzea, baita material horien propietate magnetiko, fisiko, elektriko eta elastikoak ikertzea izan da.
IngurumenaGizakion jarduerak Lurraren tenperatura igotzea ekarri du (berotegi-efektua). Badira berotegi-efektuko gas ugari; ugariena CO2 da. Konposatu hori era naturalean sor daitekeen arren (jarduera bolkanikoan izan dezake jatorria, adibidez), karbonodun materialen erabilera antropogenikoaren ondorioz (energia-iturri fosilen errekuntzaz) bilakatu da klima-aldaketaren eragile nagusia. Karbono dioxidoaren isuriak atmosferan metatzen dira, eta horregatik beharrezkoa da horiek murriztea. Horri aurre egiteko hainbat estrategia planteatu dira. Adibidez, CO2-a bahitzea da. Artikulu osoa irakurtzea gomendatzen dizuegu.
Plastikoen erabilera asko handitu da. Prezio merkea, kalitate ona, edo prozesatzeko erraztasuna badute ere, ez dira biodegradagarriak eta iturri ez-berriztagarrietatik datoz. Hondakinen hazkundeari aurre egiteko, jatorri berriztagarri eta izaera biodegradagarria duten materialek bultzada handia jasan dute. Aipaturiko material hauen artean, baliabide naturaletatik sortutako biopolimeroak aurkitzen dira.
Ekainetik hona, troposferako ozonoaren kantitatea igotzen ari da eta behin baino gehiagotan gainditu ditu legezko mailak. Ibilgailu motordunek, trafikoak, autobideek eta industrialdeek handitzen dute ozonoaren kantitatea. Miguel Angel Ceballos Ekologistak Martxan-eko kideak azaltzen du ozono kontzentrazio handienak hiri handien kanpoalde eta landa eremuetan izaten direla. “Izan ere, ozonoa sortu ahal izateko beharrezkoak diren erreakzio fotokimikoek distantzia bat behar dute osagai kutsatzaileen iturrietatik”. Horretaz gain, itsasoaren hurbiltasunak ere badu bere eragina.
AstronomiaUPV/EHUko ikertzaile batzuek beste hainbatekin batera ezagutzera eman dute gaueko haizeak egunekoen desberdinak direla Artizarrean. Aurreikusi ezin diren haizeak, uhin geldikorrak eta laino aldakorrak topatu dituzte, ESAren Venus Express misioak hartutako datuei eta irudiak prozesatzeko teknika berriei esker. “Superrotazioa gauean zehar ere gertatzen da, baina mugimendu-aniztasun zabalagoa du, eta orain artean ikusi gabeko laino mota ezberdinak agertzen dira, egun batetik bestera aurreikusi ezin den moduan bortizki aldatzen diren lainoak”, dio Agustín Sánchez Lavega UPV/EHUko Zientzia Planetarioen Taldeko zuzendariak.
NeurozientziaKaliforniako Unibertsitateko neurozientzialariek hizketaren tonu-aldaketak nola detektatzen ditugun azaldu dute. Intonazioa da funtsa. Adibidez, esaldia neutroa edo galdera izan daiteke, eta hitz bat edo bestea indartzean ere esanahia aldatu egiten da. Ikerketan ikusi dute, gainera, ahotsak bereizten dituzten neuronek ahots bakoitzaren tonu absolutua detektatzen dutela, eta intonazioa bereizten dutenek berriz, tonu erlatiboa, alegia, hizlariaren ahotsak uneoro dituen tonu-aldaketak.
HizkuntzalaritzaZenbait ikerketen arabera, test informatikoek abantaila asko dauzkate paperean egiten direnen aldean; besteak beste, azterketa gehiago egin daitezke eta erantzunak ere azkarrago prozesatzen dira. Test informatizatu hauek ohikoak, hau da, azterketa egingo duten pertsona guztiek azterketa bera izango dute, edo egokigarriak izan daitezke. Test egokigarriak informatizatuak izaten dira eta item bakoitzak parametro batzuk eduki behar ditu, ondorioz, kalibraketa egitea ezinbestekoa da.
OsasunaZaldi haragia osasuntsuagoa da? Artikulu honetan topatuko dugu erantzuna. Zaldi haragia ezaugarritzeko asmotan, bere konposizio kimikoa eta gantz-azidoen profila aztertu dira. Ikusi da gantzaren kopurua desberdina dela ikusi dira herrialde ezberdinetan jasotako laginen artean. Halere, herrialde guztietako laginen batez besteko gantz kopuruak %3ren azpitik daude. Urtaroari dagokionez, bada beste desberdintasun bat: neguan jasotako laginen gantz-azido monoasegabeen ehunekoa (%32.3) udaberrikoena (%35.4) baino baxuagoa izan da. Hortaz, zaldi haragia koipe gutxi eta gantz-azidoen profil onuragarria duen haragia desiratzen duten kontsumitzaileentzat egokia izan daitekeen produktua da.
———————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxue Razkin Deiako kazetaria da.
———————————————————————–
The post Udan ere zientzia begi-bistan #166 appeared first on Zientzia Kaiera.
Ciencia a presión: Ciencia patológica y patología editorial
La expresión publish or perish (publica o perece) es de sobra conocida en el ámbito científico. Quiere expresar la importancia que tienen las publicaciones en los currículos del personal investigador. En ciencia no basta con hacer observaciones, obtener unos resultados y derivar conclusiones. Hay, además, que hacerlo público y, a poder ser, en medios de la máxima difusión internacional. La ciencia que no se da a conocer, que no se publica, no existe. El problema es que de eso, precisamente, depende el éxito profesional de los investigadores, sus posibilidades de estabilización y de promoción. De ahí la conocida expresión del principio.
El mundo de la comunicación tiene también sus normas. En comunicación se trata de que lo que se publica sea consumido. De la misma forma que la ciencia que no se publica no existe, en comunicación tampoco existen los contenidos que no se consumen: o sea, no existen los artículos que no se leen, los programas de radio que no se oyen, los de televisión que no se ven o los sitios web que no se visitan. En comunicación valdría decir “sé visto, oído o leído, o perece”.
Ambas esferas tienen ahí un interesante punto en común. Y por supuesto, en comunicación o difusión científica el ámbito de confluencia se aprecia en mayor medida aún. Confluyen aquí ambas necesidades, la de hacer públicos los resultados de investigación y, además, conseguir que lleguen a cuantas más personas mejor.
El problema es que la presión por publicar y por tener impacto comunicativo puede conducir tanto a unos como a otros profesionales, a adoptar comportamientos deshonestos, contrarios a la ética profesional e, incluso, a desvirtuar completamente el fin de la ciencia y de su traslación al conjunto del cuerpo social. Y también puede conducir, y de hecho ha conducido, a que se haya configurado un sistema de publicaciones científicas con patologías.
De todo esto se trató el pasado 31 de marzo en “Producir o perecer: ciencia a presión”, el seminario que organizaron conjuntamente la Asociación Española de Comunicación Científica y la Cátedra de Cultura Científica de la UPV/EHU.
3ª Conferencia
Joaquín Sevilla, profesor y responsable de divulgación del conocimiento de la Universidad Pública de Navarra: Ciencia patológica y patología editorial
Ciencia patológica y patología editorialEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Ciencia a presión: Ciencia patológica y patología editorial se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Una búsqueda celestial que ha durado 580 años
La astronomía en el Antiguo Oriente ha sido una cuestión importante durante miles de años. En Corea del Sur aún se conservan estructuras denominadas Cheomseongdae, que significa literalmente torre para observar estrellas. La construcción que veis en la imagen inferior se edificó a mediados del siglo VI después de Cristo, entre los años 632 y 637, y durante los siguientes siglos las diferentes dinastías que gobernaron la región se preocuparon de hacerse con un notable cuerpo de astrólogos que se encargaron de registrar lo que ocurría en el cielo. Esta temprana afición por anotar y describir lo que veían nos resultará muy útil en nuestro artículo de hoy.
Cuentan los documentos que se conservan que, en marzo de 1437, los astrólogos imperiales de la incipiente dinastía Joseon vieron aparecer una nueva estrella en el cielo, desde su “torre de las estrellas” en el palacio de Hanyang, la actual Seúl. Aquella nueva luz fue visible durante catorce días antes de desaparecer gradualmente del firmamento, mientras los sabios coreanos se afanaban por anotar su posición en algún lugar de “la cola” de la constelación de Escorpio.
De aquel fugaz resplandor, documentado hace ya 580 años, no se volvió a saber nada hasta hace tan solo unos días. La revista Nature publicó ayer mismo un artículo anunciando que, desde sus modernas atalayas, otro equipo de astrónomos ha localizado la luz que iluminó el cielo coreano en el siglo XV.
Por supuesto, por las descripciones del fenómeno que se conservan, los astrofísicos sabían desde hace tiempo que aquella luz observada en 1437 debía pertenecer a una nova, la cuestión era encontrarla… y no ha resultado fácil, de hecho, el autor principal del estudio Michael Shara, conservador del Departamento de Astrofísica del Museo Americano de Historia Natural, señalaba en un comunicado de prensa que “es la primera nova que se ha podido detectar con certeza basándose en los registros chinos, coreanos y japoneses de los últimos 2.500 años“.
Explicar con palabras sencillas qué es una nova en un sistema binario no es muy difícil. Tenemos dos estrellas en una combinación que resulta bastante habitual en el Universo: una enana blanca y una gigante roja, girando una alrededor de la otra. Como veis en la infografía en esa relación estelar se produce un traspaso de material, principalmente helio e hidrógeno, de la roja a la blanca… A medida que acumula material la temperatura también aumenta y, cuando la enana blanca alcanza el punto de fusión nuclear, explota violentamente dejando una brillo, bastante más tenue que una supernova, pero aún así visible incluso para los astrólogos coreanos del siglo XV.
El proceso de formación de una nova puede durar docenas de miles de años, mientras la enana blanca acumula material “robado” de su compañera, sin embargo, el desenlace final es visible en el cielo durante unas pocas semanas o meses… después de eso, se desvanece poco a poco dejando apenas una tenue “concha” como vago recordatorio de lo que fue y a ver quién es el guapo que la encuentra de nuevo.
La búsqueda de esa nova ha interesado durante años al autor principal del trabajo, Michael Shara que, junto con otros astrofísicos como Mike Bode, de la Universidad John Moores de Liverpool, han estado buscando material y documentación hasta llegar a una placa fotográfica realizada hace ya casi un siglo.
La placa (imagen superior) fue capturada desde la estación Boyden del Observatorio de Harvard, en Arequipa (Perú), en el año 1923, utilizando el telescopio Bruce Doublet de 24 pulgadas y con una exposición de 300 minutos. Se encontraba catalogada como “A12425” dentro del inmenso catálogo DASCH de la Universidad de Harvard, que recopila aproximadamente 200.000 placas fotográficas capturadas durante todo el siglo XX.
A esta primera placa de 1923, siguieron otras tantas del archivo DASCH, obtenidas ya en la década de 1940, con las que los investigadores por fin se encontraban en disposición para seguir la trayectoria de la nova. Ahora tan solo hacía falta apuntar uno de los modernos telescopios con los que contamos en la actualidad y… ¡voilá!
Llegamos finalmente a la imagen más clara de la nova observada en Seúl el 11 de marzo de 1437, (a la que me he permitido añadir las fechas). Lo que vemos corresponde a la concha expulsada en la explosión y fue tomada en junio del pasado 2016, por el telescopio Carnegie SWOPE de 1 metro en Chile usando un filtro que destaca el gas hidrógeno caliente de la concha. La estrella que produjo la concha nova está indicada con marcas rojas. Hoy está lejos del centro de la cáscara donde estalló. Sin embargo, su movimiento medido a través del cielo lo coloca en el “+” rojo en 1437. La posición del centro de la cáscara en 1437 está en el signo “+” verde.
Han sido necesarios casi seiscientos años desde la observación de aquellos atónitos ojos de los astrólogos coreanos que contemplaron un resplandor en el cielo, hasta llegar a la detección moderna de la nova y su evolución durante todo este tiempo. De las torres de piedra para mirar a las estrellas a los telescopios modernos, seis siglos en la Historia de la Humanidad… un suspiro en la vida del Universo.
Este post ha sido realizado por Javier Peláez (@irreductible) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
Referencias científicas y más información:
M. Shara, K. Iłkiewicz, J. Mikołajewska, A. Pagnotta, D. Zurek, et al. “Proper-motion age dating of the progeny of Nova Scorpii AD 1437” Nature 548, 558–560 (31 August 2017) doi:10.1038/nature23644
M. Shara, K. Iłkiewicz, J. Mikołajewska, A. Pagnotta, D. Zurek, et al. “Nova Scorpius 1437 A.D. is now a dwarf nova, age-dated by its proper motion” Solar and Stellar Astrophysics (astro-ph.SR) | arXiv:1704.00086 [astro-ph.SR]
American Museum of Natural History “Scientists Recover Nova First Spotted 600 Years Ago by Korean Astrologers” Comunicado de prensa
El artículo Una búsqueda celestial que ha durado 580 años se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Nekane Castillo: “Ingurumenaren eta gizartearen arteko elkarrekintza interesatzen zait”
Castillok dioenez, betitik gustatu izan zaizkio natura-zientziak, biologia eta halakoak, eta ez zuen asko pentsatu Ingurumen Zientziak aukeratzeko. “Biologia ere aukeratu nezakeen, baina Ingurumen Zientziek gizakia ere aintzat hartzen dute, eta gustuko dut ingurunearen eta gizakiaren arteko elkarrekintza“, zehaztu du.
Tesia egitea, aldiz, ez zuen aurreikusita. Haren esanean,”beti pentsatu izan dut tesia egitean denbora asko ematen dela gauza oso zehatz batean, eta ez nituen beste lau urte eman nahi ikasten. Baina gero masterrak egin nituen, ekosistemen kontserbazioan eta leheneratzean sakondu nahi bainuen, eta enpresetan aritu nintzen lanean eta praktiketan, enpresa pribatuan zein publikoan, eta azkenean Costa Rican bukatu nuen, ikerketa-zentro batean. Hiru hilabete baino ez ziren izan, baina han sartu zitzaidan tesia egiteko gogoa. Gainera, banituen tesia egiten ari ziren edo egin berri zuten lagunak ere, eta haiek ere aurretik animatu ninduten”.
Horrenbestez, tesia egiteko Eusko Jaurlaritzako beka eskatu, eta horretan ari da orain, UPV/EHUko Landare Biologia eta Ekologia Sailean, Miren Onaindia Olalde katedradunaren gidaritzapean. Azaldu duenez, ekosistemen zerbitzuen balorazio ekonomikoa da tesiaren ardatza: “Ekosistemen zerbitzuak dira naturak eskaintzen dizkigun onurak; eta ikerketaren helburua da, balorazio ekonomikoaren bitartez, informazio osagarria lortzea lurraldearen planifikazioa egokiagoa izan dadin. Nire taldeak azterketa biofisikoa egiten du, eta nik, berriz, balorazio ekonomikoa egiten dut, gizartearen lehentasunak eta desirak kontuan hartuta”.
Ikuspegi globala helburuAdibidez, Biosfera Erreserbaren izendapenak Urdaibaiko biztanlerian izan duen eragina aztertu dute. Zehazki, biztanleei izendapenak kalte ala mesede egin dien jakin nahi zuten, eta ikerketak erakutsi du onuragarria izan daitekeela.
Ondorio horretara iristeko, Castillok eta lankideek hiru aldagai-mota aztertu dituzte Busturialdean eta Uribe Kostan: lurraldearen erabilerari buruzkoak, sozioekonomikoak eta kulturalak. Ikusi dutenez, Biosfera Erreserbaren izendapenak ez du eragin kaltegarririk izan biztanleentzat; eskualdearen kontserbazioa bermatzen du, nahiz eta pinudiak baso autoktonoaz ordezkatu eta nekazaritza-jarduerak bultzatzea lehentasuna izan; eta, gainera, litekeena da eskualdearen garapen sozioekonomikoan eta kulturalean lagundu izana
Orokorrean, berriz, ikusi dute balorazio bakoitzak informazio-mota bat ematen duela. Horrenbestez, ekosistemetan esku-hartzeak planteatzean, uste du denak hartu behar direla aintzat, ikuspegi globala izateko: “Ezin da ikuspegi ekologikoan bakarrik oinarritu, edo ekonomikoan edo kulturalean bakarrik; dena hartu behar da kontuan. Hori da gure ondorio nagusia; eta, gainera, bat dator beste ikerketa batzuen ondorioekin”.
Lüneburgen, Urdaibaiko datuak aztertzen aritu da, eta, horretan bakarrik aritu bada ere, hango ikertzaileekin lanean aritzeko aukera izan du. Horri esker, lana egiteko beste modu batzuk ezagutu ditu, “eta ingelesa praktikatu dut”, gehitu du, barrez. Horretarako ere baliagarria izan omen zaio Alemaniako egonaldia; “esperientzia izugarri ona”, laburbildu du.
Tesian zailena zer egin zaion galdetuta, aukeratutako arloa, ingurumen-ekonomia, izan dela erantzun du. Izan ere, bere taldean berria da ikuspegi hori, eta, beraz, talde barruan nolabait bakarrik aritu da. “Baina nik aukeratu nuen gaia, ekosistemen eta gizartearen arteko elkarrekintza interesatzen baitzait, eta, gainera, Sarrikoko ekonomialari batekin ari gara lankidetzan. Hortaz, ez nago bakar-bakarrik ere”. Bestalde, gaur egun ekosistemen gaineko ikuspegi global hori gero eta zabalduago dagoela zehaztu du.
Aurrera begira, tesia bukatutakoan, ikerketan jarraitzeko gogotsu dagoela aitortu du, baina enpresa batean ere arituko litzatekeela dio. Garbi dauka: “Aukera guztietara irekita nago”.
Fitxa biografikoa:Nekane Castillo Eguskitza Bilbon jaio zen, 1988an. UPV/EHUn Ingurumen Zientzietan lizentziatu ostean (2010), Madrilgo Complutense Unibertsitatean eta Alcalako Unibertsitatean Kontserbazio Biologian eta Ekosistemen Lehengoratzean espezializatu zen, hurrenez hurren. Ingurumen aholkularitzetan, kluster eta ikerketa zentroetan praktiketan eta lanean aritua, 2015ean Urdaibaiko Biosfera Erreserbak eskaintzen dituen ekosistemen zerbitzuen inguruan tesia egiten hasi zen, gaurdaino.
———————————————————————————-
Egileaz: Ana Galarraga Aiestaran (@Anagalarraga1) zientzia-komunikatzailea da eta Elhuyar Zientzia eta Teknologia aldizkariko erredaktorea.
———————————————————————————-
Elhuyar Zientzia eta Teknologia aldizkariarekin lankidetzan egindako atala.
The post Nekane Castillo: “Ingurumenaren eta gizartearen arteko elkarrekintza interesatzen zait” appeared first on Zientzia Kaiera.
La ciencia y el ‘establishment’
Una de las más peculiares justificaciones que se dan para rechazar los datos científicos en campos como las terapias alternativas o la eficacia y seguridad de las vacunas es la acusación de que la ciencia pertenece al ‘establishment’, esa palabra contenedor que agrupa a los segmentos sociales de poder. En estos tiempos de rechazo a cualquier cosa que esté cerca del poder, sea político o económico, ser asociado con las estructuras que dominan el mundo es el beso de la muerte y una pérdida automática de credibilidad: si formas parte de ‘los de arriba’ cualquier cosa que digas es automáticamente sospechosa de servir tan sólo para mantener la injusticia. Este rechazo y desconfianza a todo lo que represente poder forma parte de las revoluciones populistas que nos han dado fenómenos como el Brexit o la presidencia Trump, y sin duda tiene su parte de razón: la propaganda y la mentira son herramientas de los poderosos para conseguir sus intereses y mantener sus privilegios. Lo que resulta poco menos que hilarante es acusar a la ciencia, como conocimiento o como actividad, de estar en ese grupo. Porque los científicos nunca han tenido poder.
Hasta tal punto es así que cuando algún científico profesional se dedica a la política a todos los efectos deja de ser científico, o no actúa en público como tal: Alfredo Pérez Rubalcaba es profesor universitario de Química, pero es una anécdota en su carrera política, al igual que Angela Merkel es doctora en físicoquímica sin que ello haya parecido afectar demasiado a su presencia pública. Mientras la mayoría de los políticos son o abogados o especialistas en política, como es razonable, y actúan como tales, los científicos que llegan a la política aparentemente se olvidan de su pasado. Lo cual nos dice mucho sobre la realidad de la ciencia en los círculos de poder: si fuese una característica positiva quienes la poseen presumirían de ella.
De hecho la ciencia como metodología y el poder son bastante incompatibles, dado que la una trabaja para superar constantemente el ‘statu quo’ mientras que una característica permanente de cualquier poder es la tendencia a mantener la estructura que lo soporta. Mientras que el sueño del ‘establishment’ es que las cosas permanezcan como están, con ellos mandando, el objetivo de la ciencia es siempre superar los conocimientos anteriores. Por eso en múltiples ocasiones a lo largo de la historia poderes de diferentes tipos, desde gobiernos autoritarios a regímenes religiosos, han intentado e intentan hoy en día limitar, coartar y controlar el avance científico. Y por eso es tan complicado conseguir que los científicos ejerzan ningún tipo de acción conjunta o se organicen en estructuras de cualquier tipo: entrenados como escépticos y críticos profesionales resulta casi imposible usar con ellos las técnicas habituales de microgestión política, como sabe bien quien haya sobrevivido alguna vez a una reunión de departamento universitario.
La vida cotidiana de los científicos profesionales también respalda esta falta de poder real: sometidos a burocracias aplastantes y limitados en sus fuentes de financiación y recursos sus sueldos no son particularmente elevados ni gozan de privilegios sociales. Si la ciencia de verdad formase parte del poder sus practicantes recibirían las prebendas asociadas con esa exaltada posición. La realidad del día a día del científico desmiente categóricamente esta idea.
Es cierto que las empresas usan, y abusan, de la ciencia para aumentar sus beneficios; y es cierto que lo gobiernos y las naciones aprovechan las ventajas en riqueza y poder militar que la ciencia les ofrece. En el proceso a veces la ciencia es retorcida, abusada y masacrada, a veces hasta convertirla en caricatura de sí misma como cuando se utilizó para justificar principios político-morales en contra de la evidencia como el llamado ‘racismo científico’ o el darwinismo social. Pero esto es tan culpa de la ciencia como pueda serlo de la religión o de la nación cuando se convierten estos conceptos en justificaciones de políticas absurdas: la idea que una ideología retuerce para justificarse no es culpable de esa manipulación. Ni los descubrimientos realizados por la actividad científica quedan invalidados por el hecho de que haya quien abuse del nombre y prestigio de la ciencia para hacer propaganda o llevar a cabo manipulaciones políticas.
No, la ciencia no forma parte del ‘establishment’, y jamás lo hará. La acusación es injusta y extraña, al menos hasta que no veamos a los científicos en activo cobrando sueldos millonarios, presumiendo de sus artículos en la tribuna del Congreso, dirigiendo programas de televisión e horario de máxima audiencia y volando en aviones del estado a sus congresos. Cuando el fichaje de un científico por una institución ocupe en los medios tanto espacio como las opiniones de un político o como la llegada de un futbolista podremos revisar esta idea. De momento estamos muy, muy lejos de ello.
Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.
El artículo La ciencia y el ‘establishment’ se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: