El modelo de Bohr-Sommerfeld y las propiedades químicas de los elementos

En el modelo de Bohr (1913) los átomos de los diferentes elementos difieren en la carga y la masa de sus núcleos y en el número y disposición de los electrones. En 1916 Arnold Sommerfeld generalizó el modelo modificando las órbitas electrónicas [1]: ahora ya no eran solo circulares, también podían ser elípticas; y ya no eran como una serie de anillos concéntricos en un plano, sino figuras geométricas en tres dimensiones. ¿Cómo explica este modelo de Bohr-Sommerfeld las propiedades químicas de los elementos?
Los elementos hidrógeno (número atómico Z = 1) y litio (Z = 3) son algo similares químicamente. Ambos tienen valencia 1. Ambos entran en compuestos de estructura similar, por ejemplo, cloruro de hidrógeno (HCl) y cloruro de litio (LiCl). También hay algunas similitudes en sus espectros. Todo esto sugiere que el átomo de litio se parece al átomo de hidrógeno en algunos aspectos importantes. Bohr especuló que dos de los tres electrones del átomo de litio están relativamente cerca del núcleo, en órbitas que se asemejan a las del átomo de helio (Z = 2), formando lo que se puede describir como una «capa» alrededor del núcleo. Pero el tercer electrón está en una órbita circular o elíptica fuera del sistema interno. Dado que este sistema interno consiste en un núcleo de carga +3e y dos electrones, cada uno de los cuales tiene carga –e, su carga neta es +e. Por lo tanto, el átomo de litio puede representarse aproximadamente con un núcleo central de carga +e. Alrededor de este núcleo gira un electrón, algo así como si fuera un átomo de hidrógeno. Esta estructura física similar sería entonces la razón del comportamiento químico similar de hidrógeno y litio.

El helio (Z = 2) es un gas noble, químicamente inerte [2]. Estas propiedades indican que el átomo de helio debe ser altamente estable y que tiene sus dos electrones estrechamente unidos al núcleo [3]. Parece sensato, entonces, considerar que ambos electrones se mueven en la misma «capa» más interna cuando el átomo no está excitado. Además, debido a que el átomo de helio es tan estable y químicamente inerte, podemos suponer razonablemente que esta capa no puede contener más de dos electrones. Esta capa se llama K [4]. El único electrón del hidrógeno también está en la capa K cuando el átomo no está excitado. El litio tiene dos electrones en la capa K, llenándola completamente; el tercer electrón inicia una nueva capa, llamada L [4]. Este único electrón externo y débilmente ligado es la razón por la cual el litio se combina tan fácilmente con el oxígeno, el cloro y muchos otros elementos.
El sodio (Z = 11) es el siguiente elemento en la tabla periódica que tiene propiedades químicas similares a las del hidrógeno y el litio. Esta similitud sugiere que el átomo de sodio también es similar al hidrógeno al tener un núcleo central sobre el que gira un electrón. Además, así como el litio sigue al helio en la tabla periódica, el sodio sigue al gas noble neón (Z = 10). Podemos suponer que dos de los diez electrones del neón están en la primera capa (K), mientras que los ocho electrones restantes están en la segunda capa (L). Debido a que es químicamente inerte [2] y la estabilidad del neón, podemos suponer además que estos ocho electrones llenan la capa L hasta su capacidad. Para el sodio, entonces, el undécimo electrón debe estar en una tercera capa, llamada la capa M [4].
Si pasamos al potasio (Z = 19), el siguiente elemento del mismo grupo de la tabla periódica, podemos volver a imaginar un núcleo interno y un solo electrón fuera de él. El núcleo consta de un núcleo con carga +19e. Hay dos, ocho y ocho electrones que ocupan las capas K, L y M, respectivamente. El decimonoveno electrón gira alrededor del núcleo en una cuarta capa, llamada N. El átomo del gas noble argón, con Z = 18, aparece justo antes del potasio en la tabla periódica. El argón nuevamente tiene una estructura de electrones firme y estable, con dos en la capa K, ocho en la capa L y ocho en la capa M.
Parece que tenemos un patrón y que la cosa funciona. ¿Podremos construir todo el sistema de periodos usando solo el modelo de Bohr-Sommerfeld?
Notas:
[1] También introdujo velocidades relativistas para el electrón y determinó que las capas posteriores a la primera pueden tener subcapas, lo que introduciría un nuevo número cuántico. Pero esto ya lo contaremos en otra parte.
[2] A todos los efectos prácticos que nos interesan aquí.
[3] Ya que la química depende del intercambio de electrones. Si el átomo no reacciona químicamente es porque no intercambia sus electrones y esto se debe a que el núcleo los agarra con fuerza. Esto es una sobresimplificación, pero, por ahora, nos sirve.
[4] Los nombres de las capas vienen de la espectroscopía. No les busques lógica porque no la tienen más allá del orden alfabético. Tienen historia, pero es irrelevante ahora.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo El modelo de Bohr-Sommerfeld y las propiedades químicas de los elementos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El modelo de Bohr explica las regularidades en el espectro del hidrógeno
- El modelo de Bohr explica la fórmula de Balmer
- El tamaño del átomo de hidrógeno
Kimika sukaldean: azukrea (eta II). Karamelizazioa

1. irudia: Karamelizazioaren ondorioz sakarosa eraldatu egiten da eta gogortu egiten da. Gainera, azukreari kolore arrea ematen dioten substantziak agertzen dira. (Argazkia: Free-photos – domeinu publikoko irudia. Iturria: pixabay.com)
Arretze-prozesuen ondorioz elikagaien kolorea aldatzen da, baina, baita zapore eta usaina ere. Prozesu horiek bi talde handitan banatzen dira: arretze entzimatikoak eta arretze ez-entzimatikoak. Arretze entzimatikoak fruta eta barazkietan gertatzen dira nagusiki, esaterako, sagarrek arretze entzimatikoaren ondorioz hartzen dute kolore marroixka erdibitzen direnean. Arretze ez-entzimatikoen kasuan, alde batetik Maillard erreakzioak daude eta bestetik karamelizazio erreakzioak. Maillard erreakzioa aminoazidoen eta azukreen arteko berotze-prozesuen ondorioz gertatzen diren erreakzioak dira. Barbakoetan, adibidez, Maillard erreakzioaren ondorioz lortzen dira hain zapore gozagarriak. Karamelizazioa, aldiz, azukreen pirolisiaren ondorioz gertatzen da.
Azukre ezagunenei dagokienez, glukosa 150 ºC-an urtzen da eta karamelizatzen hasten da. Fruktosa, aldiz, askoz tenperatura baxuagoan hasten da karamelizatzen: 105 ºC-an. Alabaina, fruktosaren gozotasuna erdira murrizten da 60 ºC-ra berotzen bada. Sakarosaren kasuan, urtzea 160 ºC-an hasten da -fusio-puntua 183 ºC-an dago– eta karamelizazioa, aldiz, 170 ºC-an. Esan bezala, karamelizazioa pirolisi prozesua da, alegia, tenperatura altuen eraginez gertatzen den deskonposaketa. Karamelizazioaren lehen pausoan, azukreak duen ura lurrundu egiten da. Horren ondoren, azukrea konposatu txikiagoetan deskonposatzen da. Sakarosaren kasuan, disakaridoa apurtu egiten da glukosa eta fruktosa emateko. Jarraian, Maillard erreakzioen kasuan gertatzen den bezala, molekulen kondentsazioa gertatzen da. Kondentsazioak molekulen elkartze berriak dira, kasu honetan, beste molekula batzuk eratzeko. Etapa horretan zehar, sakarosaren deskonposaketan agertzen diren molekulak haien artean erreakzionatzen hasten dira ehunaka konposatu aromatiko desberdin emanez. Konposatu horiei zor diegu karameluaren kolore, zapore eta usain berezia. Karamelizazio prozesua gehiegi luzatzen bada, edo tenperatura altuegiak lortzen badira, azukrea gehiegi oxidatuko da eta kolore beltza eta zapore mikatza izango du karameluak.
Azukreen deshidratazioaren ondorioz furfurala osatzen da, eta haren deribatu asegabeak polimerizatu egiten dira melanoidina izeneko pigmentuen makromolekulak osatuz. Prozesu horretan zehar, furanoak, furanonak, laktonak, pironak eta hainbat aldehido eta zetona agertzen dira karameluan. Sakarosaren karamelizazioaren kasuan, jakina da 160 ºC-tik aurrera deshidratazioa, hidrolisia eta lortutako produktuen dimerizazioa aldi berean gertatzen dela. Tenperatura handitzen den neurrian karamelana osatzen da -bi sakarosa elkartu eta lau ur molekula galduta-. Horren ondoren karamelenoa agertzen da -hogeita hamasei karbonoko molekula- eta, azkenik, karamelua berotzen jarraitzen bada karamelina sortzen hasten da, zapore desatsegina duen konposatua.
Deskribatutako erreakzio kimikoen ondorioz, hasiera batean zapore gozoa zuten sakarosa kristal sinpleak -koloregabe eta usaingabeak- sukaldean hainbat konposatu berri eta desberdin sortzen dira. Horietako batzuk garratzak dira, beste batzuk mikatzak eta beste hainbat oso aromatikoak. Sortutako beste zenbait konposatuk, aldiz, kolore arrearen erantzuleak dira nahiz eta zapore berezirik ez duten. Sukaldean karamelua egiteko azukrea urarekin nahasten da eta gero ontzia berotzen da. Ura gehitzeko arrazoiak bi dira: alde batetik, azukrea erre gabe berotzeko aukera ematen du eta, bestetik, azukrearen egoste prozesua luzatzen du. Beroketa mantsoagoa denez, erreakzio kimikoak gertatzeko astia luzatzen da eta zapore eta usain gehiago sortzen dira. Horretaz gainera, urak sakarosaren hidrolisia errazten du, hau da, errazago zatitzen da glukosa eta fruktosa emateko. Amaitzeko, karamelua lortu ondoren azkar hoztea gomendatzen da -ontzia ur hotzetan sartuz, adibidez-, bestela desatseginak diren konposatuak agertzen baitira.
Edozein kasutan, produktu gozagarria lortzen da sakarosa berotuta, hainbat zapore desberdin dituena: diazetiloak esne zaporea ematen dio eta esterrek eta laktonek, aldiz, fruta zaporea. Pirolisiak aurrera jarraitzen badu, zapore gozoa geroz eta txikiagoa da; izan ere, gozoa den sakarosa kopurua murriztu egiten da. Sakarosarekin batera esnea edo esne-gaina gehitzen badira, bertan dauden proteinen aminoazidoek sakarosarekin eta pirolisiaren ondorioz sortutako molekulekin erreakziona dezakete eta konposatu sorta zabalagoa eta aroma aberatsagoa agertzen da. Edozein kasutan, ez dira gutxi sakarosa berotzean gertatzen diren erreakzioak eta, jakina, kimika asko dago bertan gordeta. Etxeko laborategian.
Informazio gehiago:
- Lopez-Gazpio, Josu (2019). Nola kalibratu labea azukrea erabiliz. Tolosako ataria.
- McGee, Harold (2017). La cocina y los alimentos. Pendguin Random House Grupo Editorial, Barcelona.
- Lopez-Gazpio, Josu (2014). Maillard jaunaren patata frijituak. Elhuyar, 312, 46-48.
—————————————————–
Egileaz: Josu Lopez-Gazpio (@Josu_lg) Kimikan doktorea, irakaslea eta zientzia dibulgatzailea da. Tolosaldeko Atarian Zientziaren Talaia atalean idazten du eta UEUko Kimika sailburua da.
—————————————————–
Azukreari buruzko artikulu-sorta:
- Kimika sukaldean: azukrea (I). Azukreak eta sakarosa
- Kimika sukaldean: azukrea (eta II). Karamelizazioa
The post Kimika sukaldean: azukrea (eta II). Karamelizazioa appeared first on Zientzia Kaiera.
La evolución nos dice que es probable que seamos la única vida inteligente del universo

¿Estamos solos en el universo? La pregunta que se plantea es si la inteligencia es un resultado probable de la selección natural o un improbable golpe de suerte. Por definición, los acontecimientos probables se producen con frecuencia, mientras que los sucesos improbables tienen lugar pocas veces o una sola vez. La historia de nuestra evolución muestra que muchas adaptaciones de carácter crucial –no solo la inteligencia, sino también los animales y las células complejas, la fotosíntesis y la propia vida– fueron sucesos únicos y excepcionales y, por tanto, muy improbables. Nuestra evolución tal vez haya sido como ganar la lotería… solo que con una probabilidad mucho menor.
El universo es inmensamente grande. La Vía Láctea tiene más de 100 000 millones de estrellas, y en el universo observable, es decir, en la diminuta fracción de universo que podemos ver, hay más de un billón de galaxias. Aunque los mundos habitables son escasos, el número por sí solo —existen tantos planetas como estrellas, puede que más— invita a pensar que hay mucha vida ahí fuera. Si es así, ¿dónde se ha metido? Esta es la paradoja de Fermi. El universo es inmenso y viejo, y dispone de tiempo y espacio suficiente para que la inteligencia evolucione; sin embargo, no hay pruebas de que tal cosa ocurra.
¿Cabría pensar, sencillamente, que a lo mejor es poco probable que la inteligencia evolucione? Por desgracia, no podemos estudiar la vida extraterrestre para responder a esta pregunta. Pero sí podemos estudiar los casi 4 500 millones de años de historia que tiene la Tierra y observar cuándo se repite –o no– la propia evolución.
A veces la evolución se repite, de tal forma que pueden observarse especies diferentes que evolucionan de manera convergente hacia resultados similares. Si la propia evolución se repite con frecuencia, nuestra evolución podría ser un acontecimiento probable, incluso inevitable.

Wikipedia
De hecho, existen ejemplos notables de convergencias evolutivas. El tilacino de Australia, también conocido como lobo marsupial o tigre de Tasmania, hoy extinguido, tenía una bolsa semejante a la de los canguros, pero, por lo demás, parecía un lobo, a pesar de que evolucionó a partir de un linaje de mamíferos diferente. También hay topos marsupiales, marsupiales hormigueros y ardillas planeadoras marsupiales. Es sorprendente comprobar cómo toda la historia evolutiva de Australia, con la diversificación que experimentaron sus mamíferos tras la extinción de los dinosaurios, es paralela a la de otros continentes.
Otros casos llamativos de convergencia son el delfín y el extinto ictiosaurio, que evolucionaron de forma similar para deslizarse por el agua, así como las aves, los murciélagos y los pterosaurios, que evolucionaron de manera convergente para volar.

PLoS Biology
También se observan convergencias en órganos independientes. Los ojos evolucionaron no solo en los vertebrados, sino también en los artrópodos, los pulpos, los gusanos y las medusas. Los vertebrados, los artrópodos, los pulpos y los gusanos, cada uno por su cuenta, desarrollaron mandíbulas. Por su parte, las patas evolucionaron de forma convergente en los artrópodos, los pulpos y cuatro tipos de peces (tetrápodos, peces sapo, rájidos, peces del fango).
Aquí está la trampa. Toda esta convergencia tuvo lugar dentro de un mismo linaje, los eumetazoos, que son animales complejos dotados de simetría, boca, tubo digestivo, músculos y un sistema nervioso. Hubo eumetazoos diferentes que desarrollaron soluciones similares a problemas similares, pero la compleja estructura corporal que lo hizo posible es única. Los animales complejos evolucionaron una sola vez en la historia de la vida, lo que da a entender que son improbables.
Sorprende constatar que muchos acontecimientos fundamentales de la historia de nuestra evolución son únicos y, seguramente, improbables. Uno es el esqueleto óseo de los vertebrados, que permitió que los animales grandes se desplazaran hacia la tierra. Las complejas células eucariotas de las que están compuestos todos los animales y plantas, y que contienen núcleos y mitocondrias, evolucionaron una sola vez. El sexo evolucionó una única vez. La fotosíntesis, que aumentaba la energía disponible para la vida y producía oxígeno, es un acontecimiento único. A este respecto, también lo es la inteligencia humana. Existen lobos y topos marsupiales, pero no hay humanos marsupiales.

Smithsonian Institution
Hay lugares donde la evolución se repite y otros donde no. Si solo nos fijamos en la convergencia, se crea un sesgo de confirmación. La convergencia parece ser la norma y nuestra evolución se presenta como algo probable. Sin embargo, cuando se presta atención a la no convergencia, se observa que está en todas partes, y las adaptaciones decisivas y complejas parecen ser las que menos se repiten, por lo que adquieren carácter improbable.
Además, estos acontecimientos dependían unos de otros. Los seres humanos no pudieron evolucionar hasta que los peces desarrollaron huesos que les permitieron arrastrarse hasta la tierra. Los huesos no pudieron evolucionar hasta que aparecieron los animales complejos. Los animales complejos necesitaban células complejas, y las células complejas necesitaban oxígeno, producido por la fotosíntesis. Nada de esto sucede sin la evolución de la vida, un acontecimiento singular entre acontecimientos singulares. Todos los organismos provienen de un solo antepasado; por lo que sabemos, la vida ocurrió una sola vez.
Es curioso observar que todo este proceso requiere un tiempo sorprendentemente largo. La fotosíntesis evolucionó 1 500 millones de años después de la formación de la Tierra; las células complejas, tras 2 700 millones de años; los animales complejos, al cabo de 4 000 millones de años; y la inteligencia humana, 4 500 millones de años después de que se formara la Tierra. El hecho de que estas innovaciones sean tan útiles pero tardaran tanto en evolucionar implica que son increíblemente improbables.
Una sucesión improbable de acontecimientos
Es posible que estas innovaciones puntuales, casualidades de importancia crucial, crearan una cadena de obstáculos o filtros evolutivos. De ser así, nuestra evolución no fue como ganar la lotería; fue como ganar la lotería una vez y otra y otra y otra. En otros mundos, es posible que estas adaptaciones decisivas hubieran evolucionado demasiado tarde para que la inteligencia apareciera antes de que sus soles se convirtieran en novas, o que no hubieran evolucionado en absoluto.
Supongamos que la inteligencia depende de una cadena de siete innovaciones improbables –el origen de la vida, la fotosíntesis, las células complejas, el sexo, los animales complejos, los esqueletos y la propia inteligencia–, y que cada una tiene un 10 % de posibilidades de evolucionar. Las probabilidades de que la inteligencia evolucione pasan a ser 1 entre 10 millones.

Nick Longrich
Pero las adaptaciones complejas podrían ser incluso menos probables. La fotosíntesis necesitó una serie de adaptaciones en cuanto a proteínas, pigmentos y membranas. Los animales eumetazoos requirieron de múltiples innovaciones anatómicas (nervios, músculos, boca). Por tanto, es posible que cada una de estas siete innovaciones cruciales evolucione solo el 1 % de las veces. En tal caso, la inteligencia evolucionará solamente en 1 de cada 100 billones de mundos habitables. Teniendo en cuenta que los mundos habitables son escasos, podríamos ser la única vida inteligente de la galaxia, o incluso del universo observable.
Así y todo, estamos aquí, y este hecho tiene que valer para algo, ¿no? Si la evolución tiene suerte 1 de cada 100 billones de veces, ¿cuáles son las probabilidades de que nos hallemos en un planeta donde la evolución tuvo lugar? En realidad, las probabilidades de estar en ese mundo improbable son del 100 %, porque no podríamos tener esta conversación en un mundo donde la fotosíntesis, las células complejas o los animales no evolucionaran. Es el principio antrópico. La historia de la Tierra tiene que haber permitido que la vida inteligente evolucionara, pues, de lo contrario, no estaríamos aquí para plantearnos estas cuestiones.
La inteligencia depende, al parecer, de una cadena de acontecimientos improbables. Pero teniendo en cuenta la enorme cantidad de planetas, e igual que un número infinito de monos que golpean un número infinito de máquinas de escribir para redactar Hamlet, está destinada a evolucionar hacia alguna parte. El resultado improbable fuimos nosotros.
Sobre el autor: Nick Longrich es profesor titular (senior lecturer) en el departamento de paleontología y biología evolutiva de la University of Bath
Este artículo fue publicado originalmente en The Conversation. Artículo original.
El artículo La evolución nos dice que es probable que seamos la única vida inteligente del universo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La evolución de la vida inteligente: ¿Azar o necesidad?
- Vida alienígena inteligente, una historia terráquea
- El universo en un día: Vida y diversidad, por Carlos Chordá
Plateren itxurak jaten ditugun elikagaien aukera baldintzatzen du
Gantz eduki handiagoak dituzten produktuak jaten ditugu gaur egun, eta mugimendu fisiko txikiko lan eta bizimoduak dauzkagu. Baina zergatik jaten ditugu elikagai batzuk eta ez besteak? Zergatik ez dugu osasuntsu jaten? Galdera hori erantzuten duen ikerlana bideratu du María Elena Pérez Ochoak, Basque Culinary Centerreko irakasleak “El placer de comer: una mirada biopsicosocial” tesiaren bidez. Ikertzaileak egindako lanaren arabera, elikagai osasuntsuen kontsumoa eta horri dagokion portaera zentzumenek eta ingurunearen eraginak baldintzatzen dute.

Irudia: Elena Pérez ikertzaileak ikertu du gazteek eta helduek dituzten ahorakin portaerak eta hauetan eragina duten faktoreak zeintzuk diren. (Argazkia: RestaurantAnticaRoma / Pixabay – Pixabayren lizentziapean)
Elikagaiak hartzea edo ez hartzea gure zentzumenek eta kultura iragazkiek sortutako portaeraren mende dago, eta portaera horretan zeresan handia dute, besteak beste, ohiturek, jarrerek, emozioek, sinesmenek eta sentsazioek. Izan ere, “Ikusmen eta dastamen estimulazioak plazer zentroekin lotutako garunaren guneen aktibazioa errazten du, eta, horrela, elikagaiak hartzera bideratzen da motibazioa”, dio Elena Pérez ikertzaileak. Hau da, homeostasia mekanismoek (autoerregulazioarekin lotutakoek) eta hedonikoek (plazera helburu dutenek) eragiten diote gure aukeraketari eta bien arteko harremanak zehazten du noiz, zer eta zenbat jaten dugun.
Plater batek duen itxuraren arabera, elikagai hori edo beste bat hartzeko portaera garatzen da. Ikusten dugunak, usaintzen dugunak, sentitzen dugunak edo entzuten dugunak baldintzatu egiten du portaera osasuntsua eta tartean sartzen da kaloria kontsumoarekiko erantzuna.
Oro har, ikerketa honek erakusten du elikagaiak aurkezteko moduak emozioak (esaterako, poztasuna, tristura eta nazka) eta jarrerak (zaporetsu itxura hartzea, loditu egiten duela pentsatzea) aktibatzen dituela kontsumitzaileongan, eta horrek baldintzatu egiten gaituela jango duguna aukeratzerakoan. Baldintzatzaile horiek, batzuetan, garrantzitsuagoak dira elikagaien kaloriak eta nutrizio balioak eurak baino. Egunerokotasunean, badirudi elikagai osasuntsuen aukeraketa kolokan jar dezaketela konstruktu horiek. “Panorama hori ikusita, gero eta beharrezkoagoa da elikadura autoerregulaziora bideratutako estrategiak sortu ahal izatea ikuspegi biopsikosozialetik”, aipatu du Elena Pérezek.
Iturria: UPV/EHUko prentsa bulegoa: Zentzumenekin lotutako alderdiek eta kultura iragazkiak zehazten dute noiz, zer eta zenbat jaten dugun.
Erreferentzia bibliografikoa:
Pérez Ochoa, María Elena (2019). El placer de comer: una mirada biopsicosocial. Doktorego-tesia, UPV/EHU.
The post Plateren itxurak jaten ditugun elikagaien aukera baldintzatzen du appeared first on Zientzia Kaiera.
Breve historia de las ciencias del clima

La climatología es una ciencia peculiar: no hay que confundirla con la meteorología. Por una parte, se considera una rama de las ciencias atmosféricas, y por tanto perteneciente a las ciencias físicas. Por otro lado, se trata de un subcampo de la geografía perteneciente a las llamadas Ciencias de la Tierra. Sin embargo, la climatología también incluye aspectos de la oceanografía y la biogeoquimica, al igual que de otras ciencias como la geofísica, la glaciología, ecología, ciencias computacionales, meteorología, la economía y… también la historia. Y es que el clima, como es natural, está presente en nuestro planeta mucho antes que la especie humana. Es a lo que se dedica la paleoclimatología, que entre otras cosas trata de hacer arqueología de fósiles u otros signos que permitan comprender cómo fueron los climas a lo largo de la historia de la Tierra.
Hoy en día, la ciencia climática utiliza modelos computacionales que permiten estudiar la evolución del clima e, incluso, realizar proyecciones de cómo será en el futuro. No hay duda de que esta ciencia ha cobrado una gran relevancia social, especialmente desde que la concienciación medioambiental se hizo presente en el debate público durante la segunda mitad del siglo XX. De hecho, la historia que tiene detrás muestra que, en realidad, nunca ha sido una disciplina bien definida y que probablemente no existiría de no ser por los aspectos sociales, culturales y tecnológicos que contingentemente la han llevado a coronarse como una de las ciencias de mayor impacto en la vida diaria actual de muchas personas.

En la época clásica, por “clima” se entendía una cosa bien distinta a lo que hoy conciben los climatólogos. Su significado estaba acotado a cuestiones de geografía, un invento de los trabajos de cartografía del siglo III a.C en la Grecia Antigua. No tenía prácticamente nada que ver con la meteorología o la atmósfera, pues hablar del “clima” de un lugar era equivalente a dar sus coordenadas geográficas más que explicar si hacía frío o calor, su humedad o la frencuencia con que llovía en la zona. De hecho, el término “clima” proviene del griego (κλίμα) y significa “zona” o “lugar”.
El concepto “clima” tuvo que esperar hasta el siglo XVIII, momento en el que fue definido como la media de los estados meteorológicos en un lugar a lo largo del tiempo. Sin embargo, sólo se volvió un objeto de la práctica científica cuando los servicios meteorológicos nacionales pudieron proveerse de grandes cantidades de datos para hacer estadística con ellos, lo cual no ocurrió hasta mediados del siglo XIX.
Esta concepción física del clima vino, además, de la mano de la hipótesis científicas del cambio climático. Antes, los colonos del siglo XVII ya auguraban variaciones antropogénicas en el tiempo, cuando en sus observaciones metereológicas se daban cuenta de cambios en zonas particulares. Ellos los atribuían a sus esfuerzos en el cultivo de la tierra, para lo cual tenían que transformar los ecosistemas y, de algún modo, sospechaban que eso tenía su impacto en la meteorología. No obstante, no era una discusión científica, sino más bien una preocupación por la prosperidad de sus cultivos.

Fue con la entrada de la segunda mitad del siglo XVIII cuando empezaron a emerger los debates científicos acerca de si realmente existía un cambio climático y, de existir, cuáles podrían ser las causas de este. La emergencia y desarrollo de la climatología moderna, en sintonía con las nuevas ciencias surgidas con la Revolución Científica, había empezado a aplicar la metodología y formalismos propias de la nueva forma de conocimiento. La matematización y la experimentación eran piezas claves a la hora de comprender científicamente el mundo, y ello llegó al estudio del clima a través de las nuevas teorías de la distribución del calor y la humedad, que reemplazaron a la antigua astrometeorología. El clima empezó a ser estudiado en dimensiones más extensas y escalas temporales más amplias, especialmente cuando descubrieron las eras glaciares pasadas y la discusión de sus causas empezó a cobrar importancia.
Todas esas investigaciones que llevaron científicos como Fourier, Tyundall o Arrhenius, se vieron radicalmente aceleradas a lo largo del siglo XX, sobre todo en su segunda mitad. Hasta entonces, el imperalismo europeo y estadounidense hizo que la climatología se centrara en las geografías pendientes de exploración y zonas concretas de interés, aparte de que la instrumentación disponible no permitía grandes avances ante un objeto tan inmenso y complejo. Sin embargo, entrado el siglo XX el clima se empieza a poder concebir como una entidad global, como una entidad planetaria. Ello vino de la mano de los primeros modelos computacionales, junto con la aparición de otras tecnologías como los satélites artificiales, el radar, los espectómetros, las radiosondas y, en general, la tecnología computacional. Las nuevas capacidades instrumentales permitieron investigar las capas más altas de la atmósfera y mejorar el entendimiento de la física de los procesos atmosféricos. Junto a la información proporcionada por satélites artificiales y la red distribuida de centros meteorológicos, los climatólogos empezaron a tener una visión de conjunto y el clima pasó a convertirse en un objeto científico de escala planetaria.
La actividad climatológica también se transformó por influencia de los cambiantes contextos políticos y culturales durante las guerras mundiales y la guerra fría y, a partir de 1970, por el medioambientalismo y la emergencia de los intereses medioambientales. No sólo apareció una nueva ciencia del clima, sino que también acontenció un nuevo problema político, social y cultural en todas las dimensiones de su práctica. Aparecieron instituciones sin precedentes, como el IPCC, encargada de informar con conocimiento científico a las políticas medioambientales. Así, el consenso científico sobre el calentamiento global antropogénico empezó a consolidarse y los intereses y objetivos de la climatología pasaron a tener un uso político y anticipatorio a problemas medioambientales, marginando los enfoques y preocupaciones de esa misma ciencia durante la preguerra.

Algunos autores han denominado a este tipo de ciencia como ciencia posnormal, una modalidad de ciencia en la que hay valores en disputa, altos riesgos y decisiones urgentes. Una etapa de la ciencia donde se cuestiona su metodología, su producción y su uso. La compleja relación entre ciencia y política, la comunicación de la incertidumbre o la evaluación de la calidad son nuevos elementos que hacen tan particular a esta actividad científica, que no ha de confundirse con la meteorología. Una estudia el tiempo a corto plazo. La otra cuánto plazo queda para que se nos acabe el tiempo.
Referencias:
Heymann, M., G. Gramelsberger, M. Mahony (Eds.) (2017): Cultures of Prediction in Atmospheric and Climate Sciecne: Epistemic and Cultural Shifts in Computer-based Modelling and Simulation, New York: Routledge.
Funtowicz, S., J. Ravetz (1993): “Science for the post-normal age”, Futures, Vol 25, Issue 7, pp. 739-755.
White, S., C. Pfister, F. Mauelshagen (Eds.) (2018): The Palgrave Handbook of Climate History, London: Palgrave McMillan.
Winsberg, E. (2018): Philosophy and Climate Science, Cambridge (UK): Cambridge University Press.
Sobre el autor: José Luis Granados Mateo (@JoisDo) desarrolla una tesis doctoral en Historia y Filosofía de la Ciencia en la UPV/EHU, becado por la Dirección de Medio Ambiente de la Diputación Foral de Gipuzkoa.
El artículo Breve historia de las ciencias del clima se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Una breve historia del método de la hipótesis
- Una breve historia del concepto de trastorno bipolar
- Breve historia del trastorno bipolar (II): neurobiología y tratamiento
Asteon zientzia begi-bistan #276
Margarita Salas Falgueras biokimikaria hil da, 80 urterekin. Elhuyar aldizkarian azaltzen digutenez, fagoak, bakterioak infektatzen dituzten birusak ikertu zituen eta besteak beste, morfogenesia, eta material genetikoaren erreplikazio-mekanismoak eta gene-espresioa ikertu nahi zituen. Erreplikazioaren proteina abiarazlea topatu zuen, baita DNA polimerasa ere.
KimikaAzukrea izan du abiapuntu Josu Lopez-Gazpiok asteon. Hasteko, argitzen digu gluzidoen artean topa daitezkeela hainbat monosakarido (glukosa, fruktosa eta erribosa), disakarido (laktosa, sakarosa eta maltosa, adibidez) eta polisakarido (maltotriosa eta rafinosa, besteak beste). Sakarosaren kasuan –glukosa molekula batez eta fruktosa molekula batez osatutakoa–, horren kontsumo handia hainbat gaixotasunekin lotuta dago. Beraz, kontsumoa murriztu beharko genuke. Izan ere, azken 20 urteotan azukrearen kontsumoa urteko %2 handitu da.
ArkeologiaTeknika analitiko berrien garapenari esker, indusketetan aurkitutako tresnen jatorria eta ohiturak eta jarduerak ikertzeko aukera dute arkeologoek. Duena 10.500-10.000 urte, Eurasiako mendebaldean, ahuntzak eta behiak etxekotu zituzten eta ondorioz, gizakiak animalietatik eskuratutako baliabideak areagotzea lortu zuen. Haitzuloak abeletxe moduan erabiltzen zituzten eta bertan hondakinak areagotu ziren. Urtetan erretako simaurrak hainbat sedimentu geruzak eratutako metaketak sortu zituen. Geruza horiek ongi kontserbatzen direnez, konposatu organikoen ezaugarriak atera daitezke, ukuiluratutako animalia espezieak eta artzain ohiturak antzemate aldera.
AstrofisikaVoyager 2 espazio-ontzia 1977an jaurti zen, eta jada 18.000 milioi km-ko bidaia egin du. Elhuyar aldizkariak bildu dituen datuen arabera jakin dugu duela urtebete atera zela heliosferatik eta izarrarteko espazio misteriotsuan barneratu zela. Ikertzaileek Heliosferaren muga zeharkatu zueneko datuak aztertu dituzte, zehazki heliopausa, heliosferaren azken mugari buruzko informazioa eman dute.
Eneko Agirre Hitz Ikerketa Zentroko kidea, eta UPV/EHUko informatika fakultateko irakaslea eta ikertzailea da, eta ordenagailuekin elkarrizketak izateko teknologia lantzen ari da. Posiblea da orain ordenagailuarekin hitz egitea baina “oso oinarrizkoak” dira oraindik. Hizkuntzen prozesamenduak euskarak badu bere tokia. Agirrek dio: “Adimen artifizialean iraultza bat gertatzen ari da, baina batez ere mundu anglosaxoian eta Txinan. Euskarak ere ezin du atzean geratu. Izan ere, hizkuntzaren prozesamenduan atzean geratzeak esan nahiko luke gure hizkuntzaren prozesuak beste batzuen esku utziko genituzkeela”. Ikerketaren xehetasunak ezagutzeko aukera Berrian egindako elkarrizketan: Ordenagailuekin elkarrizketan euskaraz aritzeko ahala badago.
PaleontologiaPlaneta honetan bost iraungipen masibo izan dira baina deigarriena hauxe da: dinosauro gehienak desagertu zirenekoa. Ikertzaileek ikusi dute dinosauroak suntsitu zituen meteoritoak ozeano guztien azalaren azidotze azkarra ekarri zuela. Ikerketaren abiapuntua foraminiferoak izan dira. Horri esker jakin dute itsasoaren pHaren jaitsiera 0,3koa izan zela eta Pharen aldaketa hori da hain zuzen ere itsasoetan izandako iraungipenaren abiapuntua. Ildo horri jarraiki, eta beste artikulu batean azaltzen dutenez, hondamendi horren ondotik, bizitza agertu zen: fosil asko aurkitu dituzte Coloradon (AEB), horien artean, 1.000 ornodunen baino gehiagoren fosilak eta 6.000 landarerenak ere. Dinosauroak agertu eta lehen milioi urteko tartean garatu ziren fosilak dira.
MatematikaKonputazio ebolutiboan, algoritmoek optimizazio-problemen gainean duten errendimendua ebaluatzeko, ohikoa izaten da problema horien hainbat instantzia erabiltzea. Baina horiek lortzea ez da erraza eta arazo horri aurre egiteko ikertzaileek instantzia artifizialak sortu behar dituzte. Artikulu honetan azaltzen den lanak instantzia artifizialak uniformeki zoriz sortzearen inguruko aspektu batzuk aztertzen ditu.
PsikologiaMunduko Osasun Erakundearen (MOE) arabera, urtean 800.000 pertsona inguruk egiten dute beren buruaz beste, eta, azken sei hamarraldietan, %50 ugaritu dira kasuak. Suizidiora bultzatzen duten egoerak asko dira baina, oro har, kasu gehienen atzean beti sufrimendu handia dago. Suizidioaren aurrean, neurri prebentiboak garatu behar dira: psikopatologiak atzeman eta tratatu, pertsona bat antzalda dezaketen egoera astungarriak saihestu, jendea suizidioaren gainean hezi…
Horren harira, Ernesto Gutierrez Crespo psikologoa elkarrizketatu dute Berrian. Bertan, adingabeen suizidioak saiheste aldera, emozioen kudeaketa landu behar dela dio: “Nerabeek, normalean, emozioek gainezka egiten dietelako egiten dute beren buruaz beste”. Ildo horri jarraiki, Gutierrezek dio eskoletan bereziki “babesa” landu behar dela: “Gazteei irakatsi behar zaie emozioak kudeatzen, eta adierazi behar zaie zailtasunen bat dutenean norengana jo dezaketen”.
–——————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxue Razkin (@UxueRazkin) kazetaria da.
———————————————————————–
The post Asteon zientzia begi-bistan #276 appeared first on Zientzia Kaiera.
La letra pequeña de algunos métodos de aprendizaje
Vitoria-Gasteiz acogió por primera vez el pasado 18 de octubre el evento Las pruebas de la educación, una jornada que abordó diversos temas educativos desde la evidencia científica. El acto, organizado por el Consejo Escolar de Euskadi y la Cátedra de Cultura Científica de la UPV/EHU, tuvo lugar en el Salón de Actos del Centro de Investigación Micaela Portilla, ubicado en el Campus de la capital alavesa de la UPV/EHU.
La jornada consta de un total de cinco charlas que tratan temas como el rendimiento académico, los métodos de aprendizaje y la innovación educativa, entre otros. La dirección del seminario corre a cargo de la doctora en psicología Marta Ferrero.
En esta primera charla es precisamente Marta Ferrero quien aborda algunas ideas erróneas que existen sobre la educación en el profesorado y revisa los estudios existentes sobre la eficacia de diferentes métodos educativos. En este sentido, el objetivo de la ponencia es “leer detenidamente la letra pequeña” de dos métodos actualmente muy extendidos en las aulas: el aprendizaje basado en proyectos y la aplicación de intervenciones inspiradas en la teoría de las inteligencias múltiples para la adquisición de nuevos aprendizajes.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo La letra pequeña de algunos métodos de aprendizaje se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El error como ocasión de aprendizaje
- Del mito al hecho: hemisferios, gimnasia cerebral y estilos de aprendizaje
- Educación basada en la evidencia: retos y propuestas de mejora
Ezjakintasunaren kartografia #283
Zelan antzematen dituzte autistek gainontzekoon emozioak? Begitartean jartzen dute arreta, aurpegieran edo gorputz osoan? José Ramón Alonsok ematen digu erantzuna Recognition of emotions by people with autism artikuluan.
Baliteke zure umore txarraren oinarria izatea entzefaloa logale dela. Antza, gure entzefaloak logura badu ez da goxoa izaten kontua. Rosa García-Verdugok kontatzen digu zergatik Why (some) sleepy brains get grumpy artikuluan.
Fisika atomikoa eta materia kondentsatuaren fisikako konbinazioa da spinen katearen ikerketa lerroa. Lerro hau oso emankorra izan da azken urteotan eta hainbat aplikazio teknologiko bideratu ditu. DIPCko ikertzaileek berrikusketa baten parte hartu dute, spinen kateen arloarekin lehen hurbilpen bikain bat burutuz: Spin chains on surfaces, a thriving field of research.
–—–
Mapping Ignorance bloga lanean diharduten ikertzaileek eta hainbat arlotako profesionalek lantzen dute. Zientziaren edozein arlotako ikerketen azken emaitzen berri ematen duen gunea da. UPV/EHUko Kultura Zientifikoko Katedraren eta Nazioarteko Bikaintasun Campusaren ekimena da eta bertan parte hartu nahi izanez gero, idatzi iezaguzu.
The post Ezjakintasunaren kartografia #283 appeared first on Zientzia Kaiera.
Alcanzada la escala atómica en la detección magnética
Los resultados, publicados en Science, abren un nuevo camino para obtener información crucial para la comprensión fundamental de las estructuras a escala atómica y para el diseño de futuros dispositivos a escala atómica así como de almacenamiento a nanoescala, o simuladores cuánticos entre otros. Nicolás Lorente, investigador del Centro de Física de Materiales (CFM, centro mixto UPV/EHU–CSIC) y del Donostia International Physics Center (DIPC), y Roberto Robles, también del CFM, son parte del equipo internacional que ha llevado a cabo el trabajo, junto a miembros de las Universidades de Estrasburgo (Francia), y Jülich (Alemania).
Los clásicos microscopios ópticos que utilizan un rayo de luz o de electrones son ciegos e inútiles en la exploración del mundo de los átomos y de las moléculas individuales. En su lugar, se utilizan otras técnicas que pueden ser vistas como una versión diminuta y ultraprecisa de un tocadiscos. Estos instrumentos llamados microscopios de sonda de barrido utilizan el extremo de una aguja afilada como punta para «leer» los surcos creados por los átomos y las moléculas en la superficie de apoyo.
“Para sentir la proximidad entre la punta y la superficie, los científicos utilizamos una pequeña corriente eléctrica que comienza a fluir cuando ambas están separadas por una fracción de millones de milímetros, es decir, un nanómetro. La regulación de la punta para mantener esta distancia permite la obtención de imágenes topográficas mediante el escaneado de la superficie” comenta el Dr. Lorente.
Mientras que los principios básicos de tales microscopios se desarrollaron ya en 1980, solo durante la última década la comunidad científica ha aprendido a ampliar las capacidades de estos microscopios elaborando diseños inteligentes del extremo de su punta de sondeo. Por ejemplo, uniendo una pequeña molécula, como el monóxido de carbono (CO) o el hidrógeno (H2), se logra un aumento sin precedentes en la resolución espacial, en el que la flexibilidad de la molécula hace visibles incluso los enlaces químicos.
De manera similar, los autores de la reciente publicación en Science, presentan un diseño de la afilada punta que aporta una función novedosa: la hace sensible a los momentos magnéticos. Esto se consigue mediante la colocación de un imán molecular que contiene un único átomo de níquel en el ápice. Esta molécula puede ser llevada eléctricamente a diferentes estados magnéticos que tienen en cuenta la dirección en la que señala el imán molecular. La dirección del imán se puede determinar midiendo la conductancia electrónica en el microscopio. Al modo de una pequeña brújula, la punta molecular reaccionará a la presencia de pequeños campos magnéticos en la superficie medida, cambiando la conductancia del microscopio.
“Es la magnitud del dipolo magnético (del imán) de forma que si los dos dipolos se miran con sus lados norte, se repelen con una fuerza proporcional al producto de los momentos magnéticos, y si se miran con polos opuestos se atraen con la misma magnitud”
La importancia de este logro es triple. En primer lugar, el uso de una molécula como sensor activo hace que sea muy reproducible y fácil de implementar en instrumentos utilizados por otros grupos de todo el mundo que trabajan en este campo. En segundo lugar, la técnica no es destructiva ya que las interacciones son muy débiles. En tercer lugar, el esquema de detección se basa únicamente en propiedades fácilmente observables en la punta del sensor de forma que pequeñísimos imanes atómicos que normalmente son difíciles de medir, se vuelven accesibles.
Con este trabajo los científicos han ampliado su caja de herramientas a nanoescala con una nueva técnica sensible a las propiedades magnéticas que será importante para futuras aplicaciones que van desde dispositivos de memoria a nanoescala hasta nuevos materiales o aplicaciones en el campo de la simulación cuántica y la computación.
Referencia:
B. Verlhac, N. Bachellier, L. Garnier, M. Ormaza, P. Abufager, R. Robles, M.-L. Bocquet, M. Ternes, N. Lorente, L. Limot (2019) Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope Science doi: 10.1126/science.aax8222
El artículo Alcanzada la escala atómica en la detección magnética se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- La óptica se hace atómica: la lente más pequeña del mundo
- Construcción de heteroestructuras de grafeno con precisión atómica
- Biomarcadores para la detección precoz del melanoma
Gorka Larrinaga: “Minbizia ekosistema bat bezala ikusi beharko genuke” #Zientzialari (125)
Minbiziaren biomarkatzaileak lagungarriak dira minbizia motak hobeto sailkatzeko, tratamendu pronostikoa ona edo txarra den jakiteko eta, kasu batzuetan, tratamendu berriak sortu ahal izateko.
Minbizia ahalik eta hoberen ezagutzea oso lagungarria izan daiteke gaixotasunaren diagnostikoa eta tratamendua hobetzeko. Hala, minbiziaren biomarkatzaileen xehetasunak eta ikerketa-arlo honen erronkak hobeto ezagutzeko, Gorka Larrinagarekin, UPV/EHUko Medikuntza eta Erizaintza Fakultateko ikertzailearekin, hitz egin dugu.
“Zientzialari” izeneko atal honen bitartez zientziaren oinarrizko kontzeptuak azaldu nahi ditugu euskal ikertzaileen laguntzarekin.
The post Gorka Larrinaga: “Minbizia ekosistema bat bezala ikusi beharko genuke” #Zientzialari (125) appeared first on Zientzia Kaiera.
A más datos, mejor servicio público

La digitalización es un aspecto imparable de nuestras sociedades modernas. Cada vez más datos personales acaban en manos de grandes empresas tecnológicas que, en contraprestación, nos ofrecen cada vez nuevos y mejores servicios. Esto, no obstante, conlleva unos riesgos para la privacidad y una preocupación creciente de la ciudadanía, que ya ha visto saltar a los medios diversos escándalos por una gestión poco ética, o directamente ilegal, de esos datos. Leyes como la nueva GDPR europea responden a esa preocupación, y tratan de asegurar que la explotación de nuestros datos se realice con las máximas garantías, aunque todavía queda mucho por hacer.
Recientemente, saltaba la polémica ante la noticia de que diversos organismos públicos, como el INE o el Ministerio de Fomento, están llevando a cabo proyectos para estudiar la viabilidad de obtener un beneficio público de datos procedentes de operadoras de telefonía, ya sea subcontratando estudios o mediante la compra de datos anónimos. En este caso, se trataba de una alarma injustificada provocada por titulares de medios más preocupados por las visitas que por el interés de la ciudadanía. Efectivamente, como muestran muchos estudios científicos, existe un enorme potencial para que la explotación de estos y otros datos mejore la función pública al mismo tiempo que reduzca los costes. Pero además, estos recientes estudios se llevan a cabo con las máximas garantías para preservar nuestro derecho a la privacidad.
El caso del Censo
Un censo es un procedimiento sistemático para adquirir información de una población. Antiguamente, el objetivo era exclusivamente contar a la población. Hoy en día, el registro del Padrón tiene un recuento permanentemente actualizado, y el objetivo de los censos es el de conocer las características de esa población. Se trata de una herramienta de gran tradición (se remonta al siglo XVIII) que aporta una información estadística fundamental para fines no solo gubernamentales, de planificación económica y social, sino también para el tejido empresarial y económico de los países. Tanto es así que su realización es obligatoria por normativa comunitaria, y el ciudadano tiene la obligación por ley de aportar información veraz cuando es encuestado.
En España, el Instituto Nacional de Estadística (INE) es el organismo público encargado de los Censos de Población y Viviendas, que se realizan cada 10 años. La última edición, de 2011, incorporaba una novedad con respecto a la anterior, de 2001: se realizaron encuestas a una muestra representativa (el 10% de la población, unos 4 millones de personas), en lugar de enviar cuestionarios a todas las viviendas del país. Se partía de muy pocos datos por habitante empadronado (tan solo cuatro variables administrativas), y se ideó un procedimiento para inferir todos los demás datos (sociales, familiares, económicos) a partir de la encuesta a esta muestra. Como resultará evidente, se trata de un procedimiento muy complejo y muy costoso.
Los nuevos Censos 2021, en cambio, vendrán cargados de novedades dirigidas a mejorar estas estadísticas y la eficiencia con la que se compilan. El objetivo principal del INE desde 2014, cuando se finalizaron los trabajos de los Censos 2011, es el de aumentar las variables de partida (el INE estima que llegarán hasta el 90%) para disminuir el número de preguntas de la encuesta, haciéndole la vida más fácil al ciudadano, reduciendo el trabajo de procesar todos esos cuestionarios y aumentando la calidad de la información recopilada. Para ello, no solo se cuenta en la actualidad con muchos más registros administrativos (tributarios, seguridad social), aparte del Padrón, sino que se estudia la viabilidad de conseguir parte de esas variables mediante el análisis de datos en manos de compañías privadas.
En concreto, recientemente se ha materializado un acuerdo pionero en Europa entre el INE y tres de las mayores operadoras de telefonía en España. En próximas fechas, se realizará un estudio piloto en el que estas operadoras reportarán al INE recuentos de la presencia de teléfonos móviles para ciertas franjas horarias en una serie de “áreas INE” en las que han dividido el país. Estas áreas se han definido bajo el criterio de que contengan un mínimo de 5000 habitantes para ofrecer las máximas garantías en cuanto a anonimidad de los datos, y el INE ha desarrollado una metodología para su aprovechamiento con tres objetivos fundamentales: obtener 1) dónde vive la población, 2) adónde se mueve diariamente (principalmente por motivos de trabajo), y 3) con qué otras zonas está vinculada (por ejemplo, viaje al pueblo en Navidad). Los dos últimos objetivos están relacionadas con dos preguntas referentes a movilidad que ya estaban presentes en los dos últimos censos, mientras que el primero es una estimación complementaria de la población que servirá para cuantificar y corregir posibles sesgos.
El caso de la movilidad
Otro aspecto tanto o más importante para las políticas públicas que las características de la población es cómo nos movemos. Muchos investigadores estamos convencidos de que la cantidad masiva de datos que generamos con nuestra actividad diaria puede analizarse de forma ética para obtener grandes beneficios sociales en este aspecto. No en vano, la mayor parte del conocimiento que tenemos de nuestras ciudades se basa en estos censos que se realizan cada 10 años y contienen información estática. Investigaciones como el Atlas de la Desigualdad, del profesor Esteban Moro (Universidad Carlos III de Madrid, profesor visitante en el MIT Media Lab), tratan de ir un paso más allá y combinar la información censal con datos de geoposicionamiento para tener una visión más granular de los problemas de las ciudades modernas.
El Ministerio de Fomento también empieza a ser consciente del potencial de este tipo de datos en beneficio de todos, y en concreto para estudiar la movilidad de los ciudadanos y planificar las infraestructuras y sistemas de transportes. Al igual que con el censo, hasta ahora la fuente principal de información también eran encuestas. La última gran encuesta, Movilia 2006/2007, nos costó 5 millones de euros. Sin embargo, en 2018 se contrató un estudio con objetivos similares a partir de datos telefónicos, cuyo coste fue de tan solo 150 mil euros, aunque todavía no son públicos sus resultados.
Datos para el bien social
Toda esta información estadística es un bien público necesario para el buen funcionamiento de un país, para el diseño, evaluación y mejora de las políticas públicas. La empresa privada ya hace tiempo que se subió al carro de la digitalización, y hace cada vez un mayor uso de la ciencia de datos para optimizar sus procesos internos y tomar decisiones basadas en datos, para crecer y aumentar su competitividad en el mercado. Es el momento de que la administración pública tome el mismo camino y se modernice en beneficio de todos.
Como ciudadanos, no solo deberíamos alegrarnos de que por fin se tomen estas iniciativas, sino que deberíamos exigir activamente que nuestros datos se usen para el bien social; eso sí: siempre con las máximas garantías y transparencia, de forma ética y respetuosa con nuestro derecho a la privacidad. Es el momento de exigir políticas y una gestión basadas en datos.
Sobre el autor: Iñaki Úcar es doctor en telemática por la Universidad Carlos III de Madrid e investigador postdoctoral del UC3M-Santander Big Data Institute.
El artículo A más datos, mejor servicio público se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Datos que entran por los ojos
- Los orígenes de la visualización de datos
- Humildemente, el mundo es mejor gracias a mí
Zorizko instantzia uniformeak sortzen al dira optimizazio konbinatorioan?

Irudia: Instantziei dagokienez, uniformeki ausaz esaten denean, optimizazioaren ikuspegitik bi egoera bereizi ditzakegu, soluzioa bilatzeko erabiltzen duten algoritmo motaren arabera.
Batzuetan problema errealen instantziak eskuragarri daude, eta beraz, esperimentaziorako instantzien multzoa hortik osatzen da. Tamalez, orokorrean, ez da hori gertatzen. Instantziak eskuratzeko zailtasunak direla tarteko, ikertzaileek instantzia artizialak sortu behar izaten dituzte, ahal den neurrian, problema errealek dituzten ezaugarriak kontuan izanik.
Ezinezkoa denean ordea, ohikoa da instantzia artifizialak sortzeko, horiek osatzen dituzten parametroak uniformeki ausaz lagintzea. Helburua, instantzien espazioaren eredugarria den instantzia-lagin uniforme bat lortzea da. Alabaina, prozedura hori zuzena izateko, uniformeki ausaz lagintzea parametroen espazioan eta uniformeki ausaz lagintzea instantzien/helburu-funtzioen espazioan baliokideak izan behar dira.
Instantziei dagokienez, uniformeki ausaz esaten denean, optimizazioaren ikuspegitik bi egoera bereizi ditzakegu, soluzioa bilatzeko erabiltzen duten algoritmo motaren arabera. Alde batetik, soluzio bakoitzari dagokion helburu-funtzioaren balioa modu esplizituan kontuan hartzen duten algoritmoak ditugu. Beste aldetik, soluzioei dagokien helburu-funtzioaren balioen konparazioa bakarrik erabiltzen duten algoritmoak daude (A soluzioa B soluzioa baino txarragoa denetz, alegia).
Lehenengo taldeari dagokionez, edozein problema kontsideratuz gero, bereizi daitezkeen helburu-funtzio kopurua infinitua da, hau da, instantzia osatzen duten parametroei balioak aldatuz lortzen ditugun instantzia guztiak ezberdinak dira. Aldiz, bigarren taldeari dagokionez, funtzio kopurua nitua da; Izan ere, talde horretako algoritmoek, funtzioak bilaketa-espazioko soluzio guztien rankingak bezala ikusten dituzte. Beraz, n tamainako edozein problema batentzat, sortu daitezkeen ranking kopurua |Ω| ! da (Ω bilaketa-espazioko soluzio guztien multzoa da).
Azterketa aurrera eramateko konbinatoriako hiru permutazio problema ezagun aukeratu ditugu: ordenazio linealaren problema (LOP), esleipen-problema koadratikoa (QAP) eta Permutation owshop scheduling problem (PFSP). Problema horietan Ω-k n tamaina- ko permutazio guztiak biltzen ditu, hau da, n!. Aurreko hiru problema horietaz baliaturik, instantziak parametro-espazioan edo ranking-espazioan uniformeki ausaz lagintzea berdinak diren edo ez aztertuko dugu.
Horretarako, problema bakoitzaren 105 instantzia sortuko ditugu (n = 3 tamainako instantziak) horiek osatzen dituzten parametroak [0; 100] tartean uniformeki laginduz. Jarraian, instantzia bakoitzari dagokion soluzio-rankinga kalkulatuko dugu, eta azkenik ranking bakoitza zenbat alditan errepikatuta agertzen den zenbatuko dugu.
Emaitzetatik hainbat ondorio interesgarri atera ditzakegu. LOParen kasuan ranking guztiak sortzea, hau da, (3!)!=720 ranking, ezinezkoa da. Problema horretan, soluzio onenaren alderantzizkoa, soluzio txarrena da, eta beraz sortu daitezkeen rankingak simetrikoak izan behar dute. Ondorioz, (3!)! ranking posibleetatik, gutxi batzuk sortu daitezke bakarrik (egindako esperimentazioan, 48 ranking). LOParekin jarraituz, rankingen agerpen-kopurua ez dela uniformea ikusi dugu. Ez hori bakarrik, beraien agerpen-probabilitatearen arabera rankingak, multzokatu egin daitezke.
Rankingen agerpen-probabilitatearen eta haien zailtasunarekin inguruko aipamenen bat egiteko asmotan, LOPan ikusi ditugun rankingak aztertu ditugu duten optimo lokal kopurua aztertuaz. Emaitzen arabera, ranking-multzo berean dauden ranking guztiek optimo lokal kopuru bera dute, eta soluzio rankingean posizio berdinetan daude kokatuta.
PFSP eta QAPari dagokienez, problema horiek ez dira LOPa batezbesteko murriztaileak, eta beraz, n = 3 kasurako, ranking guztiak agertu dira. Baina, n = 4, kasurako, (4!)! ranking sortu al daitezke? Lan honetan agertu diren galdera guztiek etorkizunerako ikerketa ildo interesgarri bat proposatzen dute.
Artikuluaren fitxa:- Aldizkaria: Ekaia
- Zenbakia: Ekaia 34
- Artikuluaren izena: Zorizko instantzia uniformeak sortzen al dira optimizazio konbinatorioan?
- Laburpena: Konputazio ebolutiboan, algoritmoek optimizazio-problemen gainean duten errendimendua ebaluatzeko, ohikoa izaten da problema horien hainbat instantzia erabiltzea. Batzuetan, problema errealen instantziak eskuragarri daude, eta beraz, esperimentaziorako instantzien multzoa hortik osatzen da. Tamalez, orokorrean, ez da hori gertatzen: instantziak eskuratzeko zailtasunak direla tarteko, ikerlariek instantzia artifizialak sortu behar izaten dituzte. Lan honetan, instantzia artifizialak uniformeki zoriz sortzearen inguruko aspektu batzuk izango ditugu aztergai. Zehazki, bibliografian horrenbestetan onetsi den ideia bati erreparatuko diogu: Instantzien parametroen espazioan zein helburu-funtzioen espazioan uniformeki zoriz lagintzea baliokideak dira. Exekutatu ditugun esperimentuen arabera, baliokidetasuna kasu batzuetan ez dela betetzen frogatuko dugu, eta beraz, sortzen diren instantziek espero diren ezaugarriak ez dituztela erakutsiko dugu.
- Egileak: Josu Ceberio, Borja Calvo, Alexander Mendiburu, Jose Antonio Lozano.
- Argitaletxea: UPV/EHUko argitalpen zerbitzua.
- ISSN: 0214-9001
- Orrialdeak: 261-277
- DOI: 10.1387/ekaia.18877
————————————————–
Egileez:
Josu Ceberio, Borja Calvo, Jose Antonio Lozano UPV/EHUko Informatika fakultateko Konputazio Zientziak eta Adimen Artiziala Sailean dabiltza eta Alexander Mendiburu Konputagailuen Arkitektura eta Tekonologia Sailean.
———————————————–
Ekaia aldizkariarekin lankidetzan egindako atala.
The post Zorizko instantzia uniformeak sortzen al dira optimizazio konbinatorioan? appeared first on Zientzia Kaiera.
El puzzle Stomachion y el palimpsesto de Arquímedes (2)
En la primera entrada de esta mini-serie de la sección Matemoción del Cuaderno de Cultura Científica, El puzzle Stomachion y el palimpsesto de Arquímedes (1), habíamos descrito el rompecabezas conocido como Stomachion, o caja de Arquímedes, e incluso analizado las áreas de las piezas que lo componen, pero, sobre todo, habíamos contado la sorprendente historia del palimpsesto de Arquímedes, que incluye la copia más extensa de la obra Stomachion del gran matemático griego Arquímedes de Siracusa (aprox. 287 – 212 a.n.e.). Por otra parte, en la presente entrada vamos a centrarnos en algunos aspectos matemáticos del Stomachion.

Empecemos recordando que el Stomachion es un rompecabezas de tipo Tangram formado por 14 piezas, en concreto, 11 triángulos, 2 cuadriláteros y 1 pentágono, que podemos ver en la imagen anterior.
Si consideramos que el cuadrado generador tiene unas dimensiones de 12 unidades de longitud (por ejemplo, centímetros) de lado y trazamos la cuadrícula 12 x 12 sobre el mismo, como hicimos en la entrada anterior, se puede observar que todos los vértices de las piezas descansan sobre los puntos de intersección de la cuadrícula. Notemos además que, en la cuadrícula, la distancia entre un punto de la misma y el siguiente, en horizontal o vertical, es una unidad de longitud. Esto, además de dejar claro que esta descomposición del cuadrado no es caprichosa, nos permite calcular fácilmente las áreas de las 14 piezas del rompecabezas, todas con valores enteros (desde arriba a la izquierda, siguiendo el orden de las agujas del reloj, más o menos): 12, 6, 12, 24, 3, 9, 6, 12, 6, 21, 3, 6, 12 y 12.

El cálculo de las áreas es sencillo y puede ser un interesante problema para el aula de matemáticas, pero aún le podemos sacar un poco más de partido al tema de las superficies, comprobando que los anteriores resultados son correctos mediante el teorema de Pick, como nos sugiere el grupo Alquerque de Sevilla en su artículo sobre el Stomachion en la revista Suma.
Teorema de Pick (1899): si un polinomio P tiene sus vértices sobre una cuadrícula, entonces su área es igual a
donde B es un número de puntos de la cuadrícula que están en el borde del polígono e I los que están en el interior del mismo.
En la siguiente imagen podemos ver la comprobación del teorema de Pick para las piezas verde y azul. Hemos pintado los puntos del borde de los polígonos (cuyo número es B) de amarillo y los del interior de verde (cuyo número es I).

A continuación, vamos a analizar los ángulos de las piezas de la caja de Arquímedes. Esta es una cuestión importante también, puesto que cuando se trabaja la resolución de puzzles geométricos como el Tangram, los rompecabezas de letras, como T y M, u otros similares, el razonamiento sobre los ángulos es fundamental para la resolución de los mismos. Por ejemplo, en estos puzzles cuadrados, en las esquinas debe ir una pieza rectangular o la suma de los ángulos de las piezas que tocan la esquina debe ser 90º, los ángulos en los vértices que están en los lados del cuadrado deben sumar 180º, mientras que en los vértices interiores deben sumar 360º (véase en la imagen algunos ejemplos).
Para empezar, fijémonos en la pieza que es un triángulo rectángulo, de área 3 en la cuadrícula 12 x 12, que está en la parte derecha de la imagen anterior del puzzle (de color azul grisáceo en la imagen coloreada). Si estudiamos los ángulos de esta figura, uno es 90º (ángulo recto), pero los otros son alpha = arctan (2/3) = 33,69º (aprox.) y beta = 90º – alpha = 90º – 33,69º = 56,31º (aprox.). Como veremos más adelante, la mayoría de los ángulos de las piezas del Stomachion están relacionados con el ángulo delta = arctan (1/2) = 26,57º (aprox.) y los ángulos alpha y beta de este pequeño triángulo rectángulo solo encajan con los ángulos alpha’ y beta’ de la pieza que es un cuadrilátero con un ángulo recto (la pieza verde oscuro en la imagen coloreada). Como consecuencia de esto las dos piezas anteriores, el cuadrilátero con un ángulo recto y el pequeño triángulo rectángulo, siempre irán juntas en cualquier solución del juego original, es decir, colocar las piezas del rompecabezas para montar un cuadrado.
Un análisis similar puede realizarse con las piezas verde claro y naranja, que irán juntas en cualquier solución de la caja de Arquímedes. Y lo mismo las piezas morada y marrón. Por este motivo, en los análisis matemáticos de este juego geométrico se suele juntar cada una de estas parejas de piezas para formar una pieza común. De hecho, la matemática estadounidense nacida en Taiwán Fan Chung y el matemático estadounidense Ron Graham llaman a este nuevo puzzle el Stomach (le han quitado tres letras al nombre, al igual que el nuevo rompecabezas ahora tiene tres piezas menos), y veremos más adelante el análisis que hacen del mismo.

Ahora, de nuevo con un poco de trigonometría básica (de hecho, basta la definición geométrica de la tangente de un ángulo y que la suma de los ángulos de un triángulo es 180º) se pueden calcular los ángulos de las piezas del Stomach (en general, del Stomachion), que como hemos comentado están la mayoría expresados en función del ángulo delta = arctan (1/2) = 26,57º (en la imagen siguiente puede verse, por ejemplo, en el triángulo rosa que el ángulo delta es aquel cuya tangente vale 3/6 = 1/2).
A continuación, mostramos en una tabla los valores de los ángulos de las piezas del Stomach (que son las del Stomachion, con la salvedad de las tres uniones que hemos realizado). Empezamos por las piezas de arriba a la derecha, desde la pieza A, y enumeramos los ángulos desde la derecha y en el sentido de las agujas del reloj.
Pero volvamos a la obra Stomachion de Arquímedes, dedicada al rompecabezas homónimo. Como comentamos en la anterior entrada El puzzle Stomachion y el palimpsesto de Arquímedes (1), el mayor fragmento conservado de esta obra, aunque es solamente una página y además la parte introductoria de la misma, apareció en el palimpsesto de Arquímedes. Esta obra despistó completamente a los expertos, ya que aparentemente trataba sobre un juego infantil sin ningún interés científico, lo cual no se correspondía con la profundidad científica de sus demás obras.
El historiador de las matemáticas israelí Reviel Netz, profesor de la Universidad de Stanford en California, después de investigar el Stomachion concluyó que, en su opinión, no era simplemente una sencilla obra sobre un juego infantil, sino que se trataba realmente de un tratado de combinatoria.
La combinatoria es una rama de las matemáticas, que entre otras cuestiones incluye el estudio de métodos para contar las estructuras o configuraciones de un conjunto de un determinado tipo o tamaño. Por ejemplo, son problemas de la combinatoria el contar cuántos cuadrados latinos existen de un orden dado (véase la entrada Cuadrados latinos, arte y matemáticas), cuántas soluciones tiene una ecuación lineal (véase Aprendiendo técnicas de contar: lotería primitiva y bombones), cómo se pueden distribuir una serie de elementos con unas ciertas condiciones (véase El problema matemático de las cartas extraviadas o El problema de las estudiantes de Kirkman), o cuántas soluciones tiene un juego o puzzle (véase Cubo soma: diseño, arte y matemáticas o el libro Del ajedrez a los grafos).
En opinión de Reviel Netz la cuestión que le interesaba a Arquímedes en relación al rompecabezas era cuántas soluciones existen del mismo, es decir, de cuántas formas distintas se pueden colocar las 14 piezas para formar un cuadrado. Mientras que para el Tangram solo hay una manera de construir el cuadrado, es decir, solo existe una solución, más allá de rotaciones (girar el cuadrado), reflexiones (darle la vuelta) o cambiar las piezas de igual forma entre sí, las piezas geométricas del Stomachion se pueden combinar de diferentes formas para dar lugar al cuadrado, esto es, tiene muchas soluciones. Este era el problema combinatorio del tratado de Arquímedes, por lo tanto, de una profundidad mayor de la que aparentaba.
Por lo tanto, el problema combinatorio quedaba abierto, ¿de cuántas formas distintas se puede resolver la caja de Arquímedes? El profesor Netz no sabía cómo de difícil podía ser este problema y si Arquímedes pudo resolverlo en su tratado, por lo que se lo planteó a algunos colegas de su universidad, la profesora de estadística Susan Holmes y el matemático Persi Diaconis, conocido por su trabajo en magia y matemáticas. Como explica la propia Susan Holmes: “al principio pensamos que podíamos sentarnos y resolver en un día cuántas soluciones tenía. Entonces nos dimos cuenta de que eran muchas más de las que podíamos haber imaginado”. Entonces, junto con la pareja de profesores de la Universidad de California, Ron Howard y Fan Chung, dedicaron varios meses a resolver esta cuestión combinatoria. Finalmente, obtuvieron la respuesta buscada, hay 17.152 configuraciones distintas de todas las piezas del Stomachion que forman un cuadrado, que se reducen a 536, si no tenemos en cuenta rotaciones, reflexiones o el intercambio de las piezas que son iguales (las piezas A y B en la imagen del Stomach), 536 x 32 = 17.152.

Aunque un poco antes, en noviembre de 2003, el informático Guillermo H. Cutler, que había diseñado un programa informático para resolver el problema, encontró las 536 formas distintas de combinar las 14 piezas del rompecabezas para formar el cuadrado.

Por otra parte, la profesora Chung y el profesor Graham visualizaron las soluciones de la caja de Arquímenes, y las relaciones entre las mismas, a través de un grafo, que vamos a explicar brevemente en lo que queda de entrada. La construcción es delicada, pero de una gran profundidad y belleza.
Para empezar, Fan Chung y Ron Howard no estudiaron directamente las soluciones del Stomachion, sino de un nuevo rompecabezas que llamaron Stomach y que hemos mostrado más arriba. Las soluciones son prácticamente las mismas. De hecho, cada solución del Stomach da lugar a dos soluciones del Stomachion ya que la pieza E rosa, se puede intercambiar con la pieza E morada, la cual está formada por dos piezas del Stomachion original. De hecho, el Stomach tiene 268 configuraciones básicas, que dan lugar a las 268 x 2 = 536 configuraciones básicas del Stomachion.
Para visualizar las soluciones del Stomach, Chung y Howard construyeron un grafo. Recordemos que un grafo está formado simplemente por puntos –llamados vértices del grafo- y líneas que unen algunos de esos puntos –llamadas aristas del grafo- (véase, por ejemplo, El problema de los tres caballeros y los tres criados [https://culturacientifica.com/2016/05/04/problema-los-tres-caballeros-los-tres-criados/], El grafo de Marion (gray) [https://culturacientifica.com/2019/07/31/el-grafo-de-marion-gray/] o El juego de Sim [https://culturacientifica.com/2017/04/19/juego-del-sim/], entre otros), y que es una estructura matemática muy sencilla, pero a la vez muy versátil.
En el grafo introducido por Chung y Howard, asociado al rompecabezas geométrico, cada vértice es una de las configuraciones de las piezas formando el cuadrado, es decir, una de las 268 soluciones del rompecabezas, mientras que dos vértices están unidos por una arista si existe un movimiento, local o global (cuyo significado explicaremos un poco más adelante), que transforma una configuración en otra.
Para empezar, describamos lo que esta pareja de matemáticos denomina “núcleo” del grafo, que está formado por 24 configuraciones particulares y los movimientos entre ellas.
Si se consideran las 11 piezas del Stomach, solo existe una forma de dividirlas en cuatro grupos para formar cuatro triángulos rectángulos básicos, que juntos dan lugar al cuadrado del rompecabezas, que llamaremos triángulos básicos 1, 2, 3, 4, siguiendo la notación de Chung y Howard. Estos triángulos son:
El núcleo del grafo está formado por las 24 soluciones básicas que se obtienen juntando estos cuatro triángulos, tomados tal cual están, salvo que los rotemos, o volteados. La notación que vamos a utilizar es la siguiente. Cada configuración básica estará nombrada por los cuatro números de los cuatro triángulos básicos en el orden que están colocados desde la izquierda a la derecha, y si un triángulo está volteado utilizamos un signo prima para marcarlo. Por ejemplo, la solución inicial del Stomach que está más arriba, coloreada, sería 1’ 2’ 3 4, ya que la pieza 1 está a la izquierda, pero volteada, lo mismo que la siguiente, que es la 2, mientras que luego van, sin voltear, las piezas 3 y 4.
A continuación, mostramos la imagen con las 24 configuraciones del núcleo, con la correspondiente notación.
Además, estas configuraciones del núcleo están conectadas por movimientos globales (que van a ser las aristas del grafo) que consisten en intercambiar dos de los cuatro triángulos básicos (la pieza 1 la podemos mantener sin dar la vuelta y siempre en la parte de la izquierda, respecto al centro).
Por ejemplo, la configuración 1234 está conectada, con una arista, a las configuraciones 1324, 1243, 124’3’, 123’4’ y 2134, puesto que se puede llegar a ellas intercambiando dos de los triángulos básicos de 1234, como se ve fácilmente. En teoría de grafos se dice que el vértice 1234 tiene grado 5, ya que hay 5 aristas conectadas con el mismo (por ahora).
Podemos formar ahora la parte de este grafo que es el núcleo, cuyos vértices son las 24 configuraciones anteriores y las aristas están dadas por los movimientos globales que acabamos de describir. El resultado sería el siguiente.
Por otro lado, cada una de esas 24 configuraciones básicas está conectada, mediante aristas que vienen de movimientos locales, con otras configuraciones del cuadrado. Un movimiento local de una configuración consiste en rotar o voltear una subregión simétrica del cuadrado formada por un grupo de piezas contiguas. Por ejemplo, en la imagen de abajo el grupo de piezas formado por los dos triángulos azules, que es un triángulo isósceles, ha sido volteado para dar lugar a otra solución distinta del rompecabezas, otra configuración.
Dada una de las 24 configuraciones básicas, llamémosle B, la estructura de las configuraciones que se pueden alcanzar a partir de ella, mediante movimientos locales, es denominada por Chung y Howard el “cluster” de B. En la siguiente imagen vemos el cluster de la configuración básica 1234, con el grafo asociado al mismo, que es un grafo con 7 vértices/representaciones (podéis descubrir en la imagen el movimiento local que se produce entre una configuración y otra conectada). Notemos que se han coloreado los vértices en función de la distancia a la configuración básica del núcleo (cada arista recorrida aumenta una unidad la distancia), en este ejemplo, la distancia a 1234.
Los clusters de las configuraciones básicas no son siempre iguales. Por ejemplo, el cluster de la configuración 1324 tiene diez vértices, como vemos en la siguiente imagen.
Además, la arista entre dos vértices del núcleo, es decir, entre dos configuraciones básicas, se extiende a aristas entre los vértices de sus clusters. Si los clusters tienen la misma estructura, como los de los vértices 1234 y 2134, las aristas se extienden de forma paralela, como se ve en la siguiente imagen.
Mientras que, si los clusters tienen distintas estructuras, entonces las aristas que unen vértices de los dos clusters son más particulares, como entre los vértices 1234 y 1324.
Existen seis estructuras diferentes de clusters, aunque la mayoría de las configuraciones básicas están relacionadas con tres de ellos. La estructura del cluster de las ocho configuraciones básicas que están en la parte superior de la imagen del grafo del núcleo (1234, 1243, 2143, 2134, 213’4’, 123’4’, 124’3’, 214’3’) es la misma. La llamaremos “estructura de cluster A” y tiene 7 vértices. También comparten estructura de cluster seis de las ocho configuraciones básicas que están en la parte izquierda de la imagen del grafo del núcleo (1324, 3124, 3142, 132’4’, 312’4’, 314’2’). La llamaremos “estructura de cluster B” y tiene 10 vértices. Y la otra estructura de cluster repetida, que llamaremos “estructura de cluster C”, tiene 14 vértices y es compartida por 7 de las ocho configuraciones básicas que están en la parte derecha de la imagen del grafo del núcleo (1423, 4123, 4132, 143’2’, 142’3’, 412’3’, 413’2’). Estas tres estructuras de clusters son las que aparecen en la siguiente imagen.
Mientras que hay tres configuraciones básicas, cada una de las cuales tiene su propia estructura particular de cluster. La configuración 1432 tiene la siguiente estructura de cluster, que llamaremos D, con 18 vértices.
La configuración 1342 tiene la estructura de cluster que llamaremos E, con 16 vértices.
Y la configuración 134’2’ tiene la estructura de cluster más raras de todas, también con 18 vértices, que llamaremos F.
En resumen, el grafo gigante que hemos generado con soluciones/configuraciones del Stomach posee 266 vértices (que recordemos que son las soluciones del rompecabezas geométrico) y 936 aristas (que recordemos que están generadas a partir de movimientos locales y globales sobre las soluciones del Stomach). Pero resulta que hemos generado un grafo (conexo, es decir, no hay grupos de vértices desconectados, mediante las aristas, del resto) con 266 vértices, pero recordemos que el número de soluciones básicas del Stomach son 268. ¿Qué ocurre con las otras dos soluciones/configuraciones del puzzle? Resulta que esas dos configuraciones, están conectadas entre ellas mediante un movimiento local, es decir, son dos vértices con una arista entre ellas, pero están desconectadas del resto de soluciones del rompecabezas. Estas configuraciones son las que aparecen en la imagen siguiente.
En la siguiente imagen, para comprender un poco mejor la estructura de este enorme grafo asociado con el puzzle geométrico Stomach, hemos vuelto a dibujar el núcleo, indicando en cada configuración básica cual es la estructura de cluster que se agrega a la misma, así como las dos configuraciones aisladas, que no están en el núcleo o conectadas con el mismo, que hemos denominado “configuración 267” y “configuración 268”.
Todos los detalles de esta construcción, incluidas las aristas entre clusters de diferente estructura que no hemos incluido aquí, pueden encontrarse en la página A tour of Archimedes’ Stomachion, de la matemática Fan Chung y el matemático Ron Graham. Además, se incluyen interesantes propiedades matemáticas del grafo, como las dos con las que concluimos esta entrada.
Si consideramos la componente más grande del grafo del Stomach, con 266 vértices y 936 aristas, esta tiene un diámetro de 11, es decir, la distancia más grande entre dos vértices del grafo es de 11 aristas. Además, este subgrafo es un grafo de los llamados hamiltonianos, es decir, existe un camino (sucesión de vértices y aristas) que pasa por todos los vértices y en el que no se repite ningún vértice. Uno de esos caminos se muestra en la página A tour of Archimedes’ Stomachion, para quien esté interesado.
Y, para terminar, una escultura relacionada con los caminos hamiltonianos.

Bibliografía
1.- Reviel Netz, Fabio Acerbi, Nigel Wilson, Towards a Reconstruction of Archimedes’ Stomachion, SCIAMV 5, pp. 67-99, 2004.
2.- Grupo Alquerque de Sevilla (Juan Antonio Hans, José Muñoz, Antonio Fernández-Aliseda), Stomachion, el cuadrado de Arquímedes, SUMA, n. 50, pp. 79 – 84, 2005.
3.- Fan Chung, Ron Graham, A tour of Archimedes’ Stomachion
4.- Raúl Ibáñez, Del ajedrez a los grafos, la seriedad matemática de los juegos, colección El mundo es matemático, RBA, 2015.
5.- Erica Klarreich, Glimpses of genius, Science News, n. 15, vol. 165, 2004.
6.- Wolfram Mathworld: Stomachion
7.- Tom Verhoeff, Koos Verhoeff, Three Mathematical Sculptures for the Mathematikon, Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, pp. 105-110, 2016.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo El puzzle Stomachion y el palimpsesto de Arquímedes (2) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El puzzle Stomachion y el palimpsesto de Arquímedes (1)
- Un delicioso puzzle de chocolate
- Un puzzle sencillo
Apokalipsiaren ondoren esnatu zirenean, ugaztunak hor ziren
Gehienok hain zoriontsu bizi garen planeta honetan bost iraungipen masibo izan direla badakigu, baina, horien artean, bada atentzio berezia ematen duen bat: duela 66 milioi urte inguru gertatutakoa. Hain ospetsua izateko arrazoia azken iraungipena izan zela izan zitekeen, baina nahiko agerikoa da dinosauro gehienak desagertu zirelako egiten zaigula ikusgarria. Dinosauro gehienak, esan beharko, bai, paleontologoak haserretu ez daitezen. Behin eta berriz gogoratzen dutenez, hegaztiak ere dinosauroak direlako, eta argi dago horiek planeta osoa konkistatu dutela.
The Rise and Fall of the Dinosaurs liburuan Steve Brusatte paleontologoak asteroidea erosi zeneko eguna oso modu bizian deskribatzen du. “Orduan, dena hasi zen tonu bitxia hartzen, ordura arte Lurraren historian izandako arau guztien kontrakoa”. Ondorengo egunetan eta urteetan gertatu zena apokalipsi baten antzekoa izan zen. Lurrikarak, tsunamiak edota izugarrizko haizeteak zabaldu ziren munduko leku askotan. “Egun lazgarri horren ondorengo urteetan zehar Lurra ilundu eta hoztu zen, kedarra eta arroketako hautsa atmosferan geratu zirelako, eta horiek eguzkiaren argia oztopatzen zutelako”. Atmosferara botatako hauts horrek guztiak, funtsean, fotosintesia galarazi zuen. Ondorioz, kate trofiko gehiena suntsituta gertatu zen.

1. irudia: Taeniolabis generoko ugaztun fosilaren irudikapena, aztarnategi berriari buruz egin duten telebista erreportaje baterako egina. (Irudia: HHMI Tangled Bank Studios)
Ozeanoetan ere eragina izan zuen iluntze global horrek, fotosintesian oinarritutako planktonaren heriotza beste planktonaren eta kate trofikoaren galera ere ekarri zuelako. Baina zientzialariek aspalditik susmoa dute itsasoan izandako eragin hori ez zela mugatu soilik fotosintesira. Hala, garai horretako itsas mikroorganismoekin egindako ikerketa bat ikertu dute, eta horien bitartez ikusi dute duela 66 milioi urte dinosauroak akabatu zituen meteoritoak ozeano guztien azalaren azidotze azkarra ekarri zuela. Emaitzak PNAS aldizkarian azaldu dituzte.
Geulhemmerberg haitzuloan (Herbehereak) bildutako foraminiferoak izan dira ikerketaren abiapuntua: oskola zuten organismo unizelularrak, hain zuzen. Dinosauroak desagertu zirenean aztarnategi hori garaiko Tetis itsasoan zegoen. Haitzuloaren berezitasuna da talka izan eta ondorengo milurtekoetan bizi izan ziren organismoen zantzuak kontserbatu dituela. Horren adierazle da hamar zentimetro inguruko geruza bat. Zientzialariek uste dute asteroidearen talkak sortutako klima aldaketa azkarrak abiatutako ekaitz erraldoien ondorioz sortu zela geruza hori. Aipatutako estratu horretan zeuden buztinek lagundu dute foraminiferoen oskolen kontserbazioa luzatzen. Oskola horiek karbonato kaltzikoaz osatuta daude, eta horien sorreran badu garrantzia itsasoaren azidotasunak.
Zer gertatu zen jakiteko, oskoletan bildutako boroaren isotopo desberdinei erreparatu diete. Izan ere, oskolen osaketa isotopikoak eta oskola horiek garatu ziren itsasoaren osaketak antzekotasunak dituzte. Uraren tenperaturak kalkulatzeko oxigeno isotopoen ratioak erabiltzen diren modu berean, boroaren isotopoak uraren pH-a ondorioztatzeko adierazle bikainak dira. Egiaztatu ahal izan dute haitzuloan behin betiko gordeta geratu ziren foraminifero horien oskoletan deskaltzifikazio nabarmena dagoela.
7.000 foraminifero inguru bildu dituzte bertan. Baina beste bost lekutan hartutako laginak ere kontuan hartu dituzte: Ameriketako Estatu Batuetan, Ozeano Barean eta Ozeano Atlantikoan. Modu horretan egiaztatu ahal izan dute azidotze hori ez zela izan tokiko fenomenoa eta mundu osoko itsasoetan gertatu zela.
Itsasoaren pHaren jaitsiera 0,3koa izan zela kalkulatu dute. 100.000 urtez edo egonkorra izan ostean, eta orain ikusi duten pHaren aldaketa nabarmen hori kontuan hartuta, zientzialariek atera duten ondorio logikoa da azidotze hori izan zela, hein handi batean, itsasoetan izandako iraungipen masiboaren abiapuntua. Garaiko ekosistemetan izan zen karbonoaren ekoizpena erdira jaitsi zela uste dute ikertzaileek, eta karbono murrizketa masibo hori izan zen, hain zuzen, garaiko bioaniztasunean gertatu zen galeraren tamainaren adierazle.
Alabaina, prozesua ez zen uniformea izan, eta batez ere goiko geruzei eragin zien. Horrek sakonera gutxian bizi ziren foraminiferoen eta beste hainbat bizidunen galera ekarri zuen. Zientzialariek uste dute asteroidearen aurreko pH balioetara bueltatzeko 80.000 urte inguru behar izan zirela.
Gogoratu beharra dago, halere, badirela adituak asteroideari garrantzia aitortu bai baina beste hainbat faktore kontuan hartzeko beharra dagoela diotenak. Paleontologoen artean gero eta gehiago zabaltzen ari den joera honen alde daudenek bereziki Indiako Dekkango basalto plataforma nabarmentzen dute; horren eraketaren erantzule izan zen sumendi jarduera, gutxi gorabehera dinosauroen desagerpenarekin batera gertatu zen, eta halako jardun erraldoiak ezinbestean planeta osoko eragin klimatikoa izan zuen seguruenera. Horregatik uste da asteroidearena dagoeneko maldan behera zeuden dinosauroek jaso zuten azken kolpea baino ez zela izan.
Ugaztunen gorakadaHondamendi globala izan arren, ohi bezala, bizitzak bidea aurkitu zuen. Science aldizkarian argitaratutako beste artikulu batean argitu dute berreskurapen hori nolakoa izan zen, Ipar Amerikaren kasuan eta lur ekosistemen kasuan bederen. Horren arrazoia izan da fosilen benetako altxor bat aurkitu dutela Coloradon (AEB), estatuaren erdialdean dauden Corral izeneko labarretan.

2. irudia: Herbeheretan dagoen Geulhemmerberg haitzuloan dinosauroak akabatu zituen talka gertatu eta gutxira bildutako foraminiferoak aurkitu dituzte. Horien ikerketan ikusi dute itsasoaren azidotzeak garrantzi handia izan zuela. (Argazkia: Michael Henehan / GFZ)
Ez dute soilik altxortzat jo fosil asko agertu direlako, animalien eta landareen fosilez gain klimaren eboluzioa aztertzeko beharrezkoak diren polen asko ere agertu direlako baizik. Hori gutxi balitz, inguruko mineral erradioaktiboek geokronologia finkatzeko aukera eman diete ikertzaileei, garaiko egutegi bat zehazteko modua izan dutelarik. Informazio “mozkorraldi” hau, noski, edozein paleontologorentzako gozoki ederra da.
Kontu honetan, are harrigarriagoa izan da inguru hori paleontologoek aspalditik guztiz “orraztuta” zegoela, baina ingurune hori beste begi batzuekin begiratzeari ekin diote oraingoan. Gakoa ez da izan puntako teknika sofistikatuak erabiltzea, inguruko geologia hobeto ulertzea baizik. Normalean paleontologoak hezurren eta antzeko aztarnen bila aritzen badira ere, oraingoan konkrezioei erreparatu diete. Urak eramandakoak diren eta ondoren arroko porotsu batean prezipitatzen diren sustantzien metaketak dira konkrezioak, eta batzuetan horien nukleoetan hezurrak aurkitzen dira. Labarretan zeuden konkrezioetan aurkitu dituzte fosilak.
Aurkitutakoen artean, 1.000 ornodunen baino gehiagoren fosilak daude, eta 6.000 landarerenak ere. Soilik horiekin garaiko mundua irudikatzeko fosil nahikoa dago, baina informazio paleontologiko honi guztiari gehitu behar zaizkie 37.000 polen ale baino gehiago. Dinosauroak agertu eta lehen milioi urteko tartean garatu ziren animalien eta landareen fosilak dira.
Ezaguna da dinosauroek betetzen zituzten txoko ekologikoak libre geratu zirenez gero, ugaztunek aukera bikaina izan zutela esparru horiek eskuratzeko, eta, modu horretan, arrakasta ebolutibo handia lortu zutela. Denborarekin, hasiera batean ugaztun txikiak zirenek tamaina handiagoa hartu zuten.
Animaliei dagokienez, talkaren ondoren arratoien tamaina zuten ugaztun batzuk baino ez ziren bertan bizi, iratzeak jaun eta jabe ziren inguru batean. Pixkanaka, milaka urte pasa eta gero, baina, palmondoak agertzen hasi ziren, eta ugaztunen tamaina ere handituz joan zen. Intxaurren antzeko haziak zituzten landareak nagusitu zirenean ugaztunek eskura zuten elikagaiaren kalitatea eta kopurua asko handitu zen. Handik 700.000 bat urtera, berriz, lekaleak agertu ziren, eta horiei esker ugaztunek 50 kilo arteko pisua hartu zuten.
Erreferentzia bibliografikoak:
Michael J. Henehan, Michael J. et al., (2019). Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences, 201905989. DOI: 10.1073/pnas.1905989116.
Lyson, R. T., (2019). Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science, eaay2268. DOI: 10.1126/science.aay2268.
———————————————————————————-
Egileaz: Juanma Gallego (@juanmagallego) zientzia kazetaria da.
———————————————————————————-
The post Apokalipsiaren ondoren esnatu zirenean, ugaztunak hor ziren appeared first on Zientzia Kaiera.
El modelo de Bohr explica las regularidades en el espectro del hidrógeno

Cuando Bohr propuso su modelo en 1913, solo se conocían las líneas de emisión del hidrógeno en las series Balmer y Paschen. Balmer había sugerido, y el modelo de Bohr concordaba con ello, que deberían existir series adicionales.
Experimentos contemporáneos y posteriores descubrieron la serie de Lyman en la porción ultravioleta del espectro (1904–1914), la serie de Brackett (1922) y la serie de Pfund (1924), estando estas últimas en la región infrarroja del espectro. En cada serie se encontró que las frecuencias medidas de cada una de las líneas eran las predichas por el modelo de Bohr y, lo que es más importante, no aparecían líneas que no se correspondiesen con el modelo. Del mismo modo, el modelo de Bohr podía explicar la fórmula general que Balmer supuso que podría aplicarse a todas las líneas espectrales de hidrógeno. Descritas términos empíricos, las líneas de la serie de Lyman corresponden a transiciones de varios estados iniciales al estado final nf =1; las líneas de la serie Paschen corresponden a transiciones de varios estados iniciales al estado final nf = 3; y así sucesivamente, como lo indica la expresión derivada a partir del modelo de Bohr:
1/λ = RH (1/nf2 – 1/ni2)
El esquema general de posibles transiciones entre las primeras seis órbitas se muestra en la figura 1.

Por lo tanto, el modelo no solo relacionó información conocida sobre el espectro de hidrógeno, sino que también predijo correctamente las longitudes de onda de series de líneas previamente desconocidas en el espectro. Además, proporcionó un modelo físico razonable; la fórmula general de Balmer no había proporcionado ninguna razón física para la relación empírica entre las líneas de cada serie.
El diagrama de la figura 1 es útil como ayuda para la imaginación. Pero tiene el peligro de ser demasiado específico. Por ejemplo, puede llevar a pensar en la emisión de radiación como «saltos» reales de electrones entre órbitas. [*]
Existe otra forma de presentar los resultados de la teoría de Bohr que produce los mismos resultados pero no se adhiere tan estrechamente a una imagen de órbitas. Este nuevo esquema se muestra en la figura 2. No se centra en las órbitas sino en los estados de energía posibles correspondientes. Todos estos estados de energía vienen dados por la expresión para la energía del estado estacionario, En = 1/n2 ·E1 .

En términos de este modelo matemático, el átomo normalmente no está excitado, con una energía E1 de aproximadamente 13,6 eV (o 22 1019 J). La absorción de energía puede colocar a los átomos en un estado excitado, con una energía correspondientemente más alta. El átomo excitado está entonces listo para emitir radiación, con la consiguiente reducción de energía. La energía absorbida o emitida siempre cambia la energía total del átomo a uno de los valores especificados por la fórmula para En. Por lo tanto, el átomo de hidrógeno también puede representarse, no por órbitas, sino por medio de un diagrama de niveles de energía.
Nota:
[*] Es necesario profundizar un poco más en la cuántica para comprender que esto no es posible, porque no podemos, de entrada, localizar un electrón. Lo veremos en una próxima serie.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo El modelo de Bohr explica las regularidades en el espectro del hidrógeno se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El modelo de Bohr explica la fórmula de Balmer
- Las regularidades en el espectro del hidrógeno
- El tamaño del átomo de hidrógeno
Kimika sukaldean: azukrea (I). Azukreak eta sakarosa

Irudia: Sakarosa edo etxeko azukrea glukosa eta fruktosaz osatutako disakaridoa da. (Argazkia: Doris Jungo – domeinu publikoko irudia. Iturria: pixabay.com)
Naturan hainbat azukre mota desberdin daude, baina, horietako gutxi batzuk bakarrik erabiltzen dira sukaldean. Lehenik eta behin, argitu behar da kimikaren ikuspuntutik azukre mota asko daudela, oro har, azukre hitzarekin zapore gozoa duten gluzidoak ezagutzen direlarik. Gluzido horien artean, hainbat monosakarido -glukosa, fruktosa eta erribosa, esaterako-, disakarido -laktosa, sakarosa eta maltosa, adibidez- eta polisakarido -maltotriosa eta rafinosa, besteak beste- sailka daitezke.
Glukosa bizidunok energia lortzeko erabiltzen dugun azukrerik arruntena da eta hainbat frutatan dago. Bestalde, fruktosa frutetan eta eztian dago eta azukre arrunten artean zaporerik gozoena duena da. Sukaldeetan arruntena den azukreari eutsiz, sakarosa glukosa molekula batez eta fruktosa molekula batez osatutako disakaridoa da. Landareek fotosintesian zehar ekoizten dute glukosa eta guk erremolatxatik edota azukre-kanaberatik erauzten dugu. Fruktosaren ondoren azukre arruntik gozoena da eta, hortaz, oso baliagarria da sukaldean jakiak prestatzeko. Sakarosaren zaporea, gainera, gustagarria da nahiz eta kontzentrazio oso altuan egon -postreetan, adibidez-. Beste azukre batzuen kasuan, zaporea gogorregia da kontzentrazio altuan.
Sakarosaren lorpenari dagokionez, kanaberaren edo erremolatxaren azukreak erauztea prozesu nahiko konplexua da, baina, hala ere azukre-kanaberatik erauzten da mundu mailako azukre ekoizpenaren %80. Ez da kopuru txikian, kontuan hartzen bada urtero munduan 175.000 milioi tona azukre kontsumitzen direla. Nolanahi ere, azukrea erauzteko lehengaiak hainbat osagai ditu -erremolatxaren sustraietan zein kanaberaren zurtoinean dauden konposatuak- eta guzti horiek kendu egin behar dira sakarosa lortzeko. Gaur egun, prozesua modu industrialean egiten da koagulaziorako beroa eta karea erabiliz eta ondoren zukua zentrifugatuz. Ondoren sakarosa zuritu egiten da karbono pikortatua erabiliz. Amaieran sakarosa kristalizatu egiten da ale guztiak uniformeak izan daitezen.
Elikadurari dagokionez, azukre puruak nahiko nutritiboak dira; izan ere, energia asko ematen dute. Koipeen eta gantzen ondoren, izan dezakegun kaloria iturri kontzentratuenak dira azukreak. Alabaina, egunotan behar baino energia gehiago kontsumitzen dugu, hau da, energia gabezia arriskurik ez daukagu. Horrexegatik, azukreek beste elikagai nutritiboagoak -energiaz gainera beste osagaiak dituztenak- ordezkatzen badituzte, osasunari kalte larria eragin diezaiokegu. Nolabait esateko, azukreak kaloria iturri hutsalak dira. Herrialde garatuenetako biztanleok azukre asko -gehiegi- kontsumitzen dugu eta iturri nagusia edari freskagarriak dira. Zientzia Kaieran argitaratu den bezala, edari energetikoen kasuan, adibidez, lata bakar bat hartzea nahikoa da Munduko Osasun Erakundeak (MOE) egun batean kontsumitzea gomendatzen duen azukre kantitatea gainditzeko.
Metabolismoaren kasuan, sakarosa jaten dugunean jatorrizko bi monosakaridoetan, glukosan eta fruktosan, hidrolizatzen da sakarosa. Sakarasa eta isomaltasa entzimak dira, nagusiki, prozesu horren erantzuleak eta, jarraian, glukosa eta fruktosa odolera pasatzen dira. Dakigunez, sakarosa kontsumo handia hainbat gaixotasunekin lotuta dago. 2012. urtean eztabaida handia piztu zen azukre kontsumoari buruz, hain zuzen ere, Robert Lustig eta bere lankideek Nature aldizkarian The toxic truth about sugar –azukrearen egia toxikoa- lana argitaratu ostean. Kaliforniako Unibertsitateko ikertzaileek ziotenez, azukreak eta alkoholak antzeko eragina dute osasunean eta, hortaz, ezinbestekoa da azukrearen kontsumoa murrizteko neurriak hartzea.
Artikuluaren arabera, azukrea kaloria hutsal gisa definitze ez da zuzena; izan ere, gero eta ebidentzia gehiago daude azukre kontsumoa hainbat gaixotasun kronikorekin lotzeko. Alkoholaren pare jarri zuten azukrea 2012an: bata zein bestea kontsumitzeak hipertentsioa, obesitatea eta beste hainbat gaixotasunekin lotzen zen. Azukrearen auzia oraindik irekita dagoen gaia bada ere, azken 20 urteotan azukrearen kontsumoa urteko %2 handitu da, eta ez dirudi kontsumoa murriztuko denik.
Informazio gehiago:
- McGee, Harold (2017). La cocina y los alimentos. Pendguin Random House Grupo Editorial, Barcelona.
- Lopez-Gazpio, Josu (2014). Maillard jaunaren patata frijituak. Elhuyar, 312, 46-48.
- Galarraga, Ana (2013). Azukrea, toxiko gozoa. Elhuyar , 302, 24-27.
—————————————————–
Egileaz: Josu Lopez-Gazpio (@Josu_lg) Kimikan doktorea, irakaslea eta zientzia dibulgatzailea da. Tolosaldeko Atarian Zientziaren Talaia atalean idazten du eta UEUko Kimika sailburua da.
—————————————————–
The post Kimika sukaldean: azukrea (I). Azukreak eta sakarosa appeared first on Zientzia Kaiera.
Desmitificando: Vacunas peligrosas

Los datos son de Estados Unidos. Antes de las vacunas algo más de 21000 personas tuvieron difteria; en la era de las vacunas, el número bajó a cero. Para la varicela, el porcentaje de caída del número de enfermos fue del 89%. Para la polio, el 100%, la viruela, el 100%; el tétanos, el 98%. Y así podemos seguir, enfermedad tras enfermedad. Los males que ahora padece nuestra especie, en general, son aquellos para los que no hay vacuna, y, en cambio, muchos con vacuna han sido prácticamente erradicados. Males que diezmaban generaciones hace no muchos años. La OMS, en 2018, resume que las vacunas protegen al 86% de la población mundial, y evitan la muerte de dos millones de personas cada año.
En 1980 se declaró desaparecida la viruela y, ahora, se debate si hay que destruir los pocos cultivos de virus de la viruela que se conservan en algunos laboratorios de alta seguridad. En 2016 solo se registraron 42 casos de polio en todo el mundo y todos ellos en cuatro países: Pakistán, Afganistán, Laos y Nigeria. La enfermedad infectó a unas pocas personas por razones religiosas y sociales, no por causas médicas. Fue en la década de los cincuenta del siglo pasado cuando, primero Jonas Salk y, poco después, Albert Sabin, desarrollaron vacunas contra la polio. Ahora, 60 años después, la vacuna ha eliminado la enfermedad de casi todo el planeta. Jonas Salk renunció a la patente de su vacuna y proclamó que “no se puede patentar el sol”.
Vista la historia de las vacunas, parece que la confianza en ellas debía ser total. Sin embargo, la confianza en su eficacia se ha convertido en un asunto de salud pública global de importancia creciente. La caída en la confianza en las vacunas lleva a la vuelta de enfermedades casi olvidadas y casi erradicadas o a impedir que otras desaparezcan, como ocurre con la polio o las paperas, y a múltiples debates sociales y políticos en muchos países, sean ricos o en desarrollo. El grupo de Heidi Larson, de la Escuela de Higiene y Medicina Tropical de Londres, ha estudiado la confianza en las vacunas en 67 países, con datos de 65810 voluntarios.
El sentimiento de confianza en las vacunas es general en todos los países estudiados, aunque hay mucha variabilidad en las respuestas a la encuesta de los autores. Es de destacar que la menor confianza se observa en Europa, con siete países europeos entre los diez que encabezan la lista de los que no se fían de las vacunas. En Francia, la desconfianza alcanza al 41% de los encuestados, seguida de Bosnia con el 36%. Los países con más confianza son Bangladesh, Ecuador e Irán y los más escépticos son Azerbaiyán, Rusia e Italia. La media de los 67 países es del 13% de falta de confianza en las vacunas. En España, el 28% no considera seguras las vacunas, y el 27% no cree que sean efectivas.
Los voluntarios con más confianza en las vacunas son los mayores de 65 años y los católicos. Y los que menos confianza tienen son de los países con más educación, mejor acceso a los servicios de salud y mayor estatus socioeconómico.
Todo este asunto de la falta de confianza, incluso del temor a las vacunas, comenzó en 1998 cuando Andrew Wakefield y su equipo, entonces en la Escuela de Medicina de Londres, publicaron un artículo que relacionaba la vacuna triple vírica, contra el sarampión, las paperas y la rubeola, con el autismo. Los resultados de este estudio provocaron miedo en los padres y un intenso debate público sobre la seguridad de la vacuna. Unos años, después, en 2010, se reunieron suficientes evidencias que demostraban que la publicación de Wakefield era un fraude e instituciones públicas y privadas la rechazaron. Incluso todos los firmantes del artículo original menos dos retiraron su apoyo al estudio. En 2017, Paul Offit, del Hospital Infantil de Philadelphia, escribe que el 85% de los padres de hijos autistas no creen que la vacuna sea la causa.
La revista The Lancet,que había publicado el artículo original de Wakefield en 1998, se retractó en 2017, y retiró el estudio de sus archivos. Y en 2011, la revista British Medical Journal publicó el relato de cómo se había gestado el fraude y el engaño de Wakefield.
Fue en 2014 cuando se publicó un meta análisis sobre lo conocido hasta esa fecha de la relación entre la vacuna triple vírica y el autismo, tal como Wakefield aseguraba en 1998. Fue el grupo de Luke Taylor, de la Universidad de Sydney, en Australia, quien revisó los trabajos publicados hasta abril de 2014. El total de la muestra son 1256407 niños y, además, se examinan otros cinco estudios con 9920 niños como control. Otra revisión, publicada en 2019, por el grupo de Anders Hviid, del Instituto Estatal del Suero de Copenhague, basada en el seguimiento de 657000 niños daneses, nacidos entre 1999 y 2010 y con un seguimiento hasta 2013, encuentra, también, que no hay relación entre la triple vacuna y el autismo.
Los resultados son claros: no hay relación entre la vacuna triple vírica y el autismo o con desórdenes que se asocian al autismo.
Andrew Wakefield perdió su licencia para ejercer la medicina. Pero el mito, en esos años, llegó a los medios y a las redes sociales y se extendió y, hoy en día, sigue vigente para muchas personas que siguen sin creer en las vacunas. En encuestas publicadas en Australia por el equipo de Stephan Lewandowsky, de la Universidad de Australia Occidental en Crawley, se encuentra que, en 2002, del 20% al 25% de la población cree en la relación entre la vacuna y el autismo, y del 39% al 53% considera que las evidencias a favor y en contra de esa relación están igualadas. Incluso un número relevante de profesionales sanitarios aceptan la relación.
Es interesante conocer las razones que llevan los antivacunas a seguir una conducta que el consenso científico afirma que puede ser peligrosa para la salud e, incluso, la vida de quien la sigue. El estudio de Beth Hoffman y su grupo, de la Universidad de Pittsburgh, utiliza datos que tienen un origen curioso, casi de serendipia. Este grupo de médicos publicó, en 2015, un video en Facebook recomendando el uso de la vacuna contra el virus del papiloma humano. En poco tiempo se convirtió en viral y recibió unas 10000 opiniones de 800 comentaristas de ocho países. La mayoría de los comentarios eran de contenido antivacunas, y los autores eligieron 197 comentaristas de los más activos.
El estudio de los textos permitió al grupo de Hoffman conocer las razones que apoyaban su ideología contra las vacunas. En primer lugar, está la desconfianza respecto a la comunidad científica. Después, aparecen los seguidores de terapias alternativas. En tercer lugar, los que aceptan las exageraciones del riesgo de las vacunas. Y, finalmente, están los conspiranoicos que acusan a gobiernos, instituciones y grandes empresas.
La persistencia de este mito ha llevado a Lewandowsky a investigar cómo se perpetúa. Se extiende por el entorno social, a veces sin ser nadie consciente de ello, ni de quien lo menciona ni quien lo acepta. Pero otras veces, muy a menudo, la difusión es a propósito. Son rumores que parten de obras de ficción, gobiernos, políticos, o de intereses creados. Internet es, en la actualidad, esencial para publicar, difundir y extender estas informaciones falsas y estos mitos. Si se pide en Google que busque “autismo vacuna relación” en inglés, las entradas son más de diez millones. Y, en un estudio publicado en 2018, el grupo liderado por David Bromatowski, de la Universidad George Washington de Washington DC, afirma que los contenidos antivacuna aparecen en gran cantidad en fabricantes de contenidos y trolls de Twitter difundidos desde Rusia.
El estudio de Carolina Moreno Castro, de la Universidad de Valencia, sobre las noticias publicadas en periódicos importantes, entre 2007 y 2013, sobre los beneficios y los riesgos de la vacuna contra el papiloma humano, aclara algunos comportamientos y, además, consiguen desconcertar al lector por las diferencias de orientación de los medios. Los siete diarios analizados son ABC, El Comercio, Las Provincias, Levante, La Nueva España, El País y El Mundo. Son 297 los textos localizados y analizados. Destacan los beneficios de la vacuna 149 artículos y previenen de los riesgos 127. Sin embargo, hay periódicos que publican más sobre riesgos: El Mundo, El País y Levante. Es el ABC el que más destaca los beneficios.
Estos periódicos, de gran tirada, influyen en la opinión pública y en la conducta de los ciudadanos respecto a esta vacuna. Aunque el número de noticias a favor y en contra sea parecido implica una cierta equidistancia, equivocada y poco científica, en la línea editorial de cada diario.
En la aceptación de la información falsa sobre las vacunas influye la ideología y las creencias previas e, incluso, la presentación de evidencias que demuestran la falsedad del mito lleva a algunas personas a reforzar sus creencias falsas. Son las famosas teorías conspiratorias de empresas farmacéuticas, gobiernos, sindicatos médicos, socialistas radicales y quien sabe que otro colectivo.
Es bueno, en el debate, presentar un relato alternativo y veraz; repetirlo cuantas veces sea necesario pero, siempre, con la precaución de no reforzar las falsedades y siempre basado en evidencias científicas; destacar la importancia básica que tienen los hechos; avisar y concretar qué informaciones falsas se van a tratar; utilizar pocos argumentos para rebatir la información falsa y recordar que, siempre, menos es más; ser crítico con las fuentes de informaciones falsas; reafirmar los datos verdaderos y relacionarlos con valores personales. No hay que olvidar el concepto de inmunidad colectiva que supone que no vacunarse pone en peligro la salud de las personas de la comunidad, y no solo de quien no se vacuna.
Referencias:
Broniatowski, D.A. et al. 2018. Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. American Journal of Public Health doi: 10.2105/AJPH.2018.304567
Deer, B. 2011. How the case against the MMR vaccine was fixed. British Medical Journal 342: 77-82.
EuroScientist. 2017. Vaccine successes. Facing diseases since the 18th century. 16 February.
Godlee, F. et al. 2011. Wakefield’s article linking MMR vaccine and autism was fraudulent. British Medical Journal 342: c7452.
Heap, M. 2019. Medicine on the fringe. Skeptical Intelligencer Spring: 4-5.
Hoffman, B.L. et al. 2019. It’s not all about autism: The emerging landscape of anti-vaccination sentiment on Facebook. Vaccine 37: 2216-2223.
Hviid, A. et al. 2019. Measles, mumps, rubella vaccination and autism. A nation wide cohorts study. Annals of Internal Medicine doi: 10.7326/M18-2101
Larson, H.J. et al. 2016. The state of vaccine confidence 2016: Global insights through a 67-country survey. EbioMedicine DOI: 10.1016/j.ebiom.2016.08.042
Lewandowsky, S. et al. 2012. Misinformation and its correction: Continued influence and successful debiasing. Psychological Science in the Public Interest 13: 106-131.
López Goñi, I. 2017. Dudas sobre las vacunas: problemas y soluciones. Cuaderno de Cultura Científica 12 junio.
Moreno Castro, C. 2015. La influencia de los medios de comunicación sobre el efecto Weber: correlación entre las noticias publicadas sobre la vacuna del VPH y las alertas registradas en farmacovigilancia. Panace@ 16: 195-205.
Offit, P. 2017. Las vacunas no causan autismo. Investigación y Ciencia enero: 40.
Taylor, L.E. et al. 2014. Vaccines are not associated with autism: An evidence-based meta-analysis of case control and cohort studies. Vaccine doi: 10.1016/j.vaccine.2014.04.085
Wakefield, A.J. et al. 1998. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351: 637-641.
Wikipedia. 2017. Andrew Wakefield. 20 marzo.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo Desmitificando: Vacunas peligrosas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Desmitificando: La vitamina C y el resfriado
- Desmitificando: Las rubias son “tontas”
- Dudas sobre las vacunas: problemas y soluciones
Kimika analitikoa historiaurreko artzain praktikak ikertzeko oinarri gisa
Duela 10.500-10.000 urte, Eurasiako mendebaldean, Capra aegagrus ahuntzak, Ovis orientalis eta Bos primigenius behiak etxekotu zituzten. Etxekotzearen ondorioz, gizakiak animalietatik eskuratutako baliabideak areagotzea lortu zuen; haragiaren bitartez proteina bakarrik hartzetik, esnea eta artilea erabiltzera igaro ziren.

1. irudia: Animalien etxekotzearen kronologia. (Iturria: Larson, G., Fuller, D. Q., (2014). The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics, 45)
Etxekotzea garatzen eta ugaritzen ari zenez, artzainek euren abelburuak babesteko eta salbu gordetzeko toki bat bilatu behar izan zuten. Haitzuloak edo aterpeak abeletxe bezala erabiltzea ohikoa izan zen Mediterraneo osoan zehar, Neolitotik Burdin Arora bitartean. Aterpe horietan aurkitu diren aztarnategiek partekatzen duten ezaugarri nagusi bat sedimentuak dira. Buztin itxurako metakinak dituzten espazioak dira, simaur kantitate handiek sortuak, bertan ganadua izan ohi zutelako; bereziki, ardiak eta ahuntzak. Animaliak ukuiluratuta izatearen ondorioz, abeletxeko hondakinak areagotu ziren, simaurra eta haiek botatako produktuak, belarra, lurra eta harriak pilatzetik sortuta.
Abeletxea garbi eta parasitorik gabe mantentzeko, askotan, simaurra erretzen zuten, simaur kantitatea murrizteko. Uste da praktika horrek Burdin Arora arte iraun zuela, ordutik aurrera, abeletxeetan sortutako simaurra landarako ongarri gisa erabiltzen hasi baitzen.
Urtetan erretako simaurrak hainbat sedimentu geruzak eratutako metaketak sortu zituen, errekuntza unitateak bata bestearen gainean pilatzeagatik. Modu generikoan fumier izenez ezagutzen dira (simaurra frantsesez), eta, oro har, honako geruza hauek osatzen dituzte: zuria edo grisa (erabateko errekuntza), beltza (errekuntza partziala) eta, azkenik, marroia (errekuntzarik gabe). Geruza horiek, batez ere beltzak eta marroiak, ongi kontserbatzen dira, eta, horri esker, konposatu organikoen ezaugarriak atera ditzakegu, ukuiluratutako animalia espezieak eta artzain ohiturak antzematen lagunduko digutenak.
Animalien gorotzak desagerrarazteko estrategia hori erabili zen aztarnategi garrantzitsuenetako bat San Kristobalgoa izan zen, Toloñoko mendilerroan kokatuta dagoena (Araba).

2. irudia: San Kristobalgo indusketa. (Argazkia: UPV/EHUko Farmazia Fakultateko Kimika Analitikoa saila)
Azterlanari ekin zioten Fernández Eraso UPV/EHUko Geografia, Historiaurre eta Arkeologia Saileko irakasleak eta bere taldeak, High Yield Research Group of Prehistory-k (IT 622-13), gaian interesa zutelako, eta horrek ikerketa lerro bat ezartzeko aukera eman zuen, ukuiluratutako animalien ezaugarriak Toloñoko mendilerroko aterpeetatik ateratako zenbait substantzia organikorekin erlazionatzeko.
Aztarnategi horretan ez da aurkitu bertan ukuiluratutako animalien hezur aztarnarik, eta beharrezkoa da espezieen biomarkatzaileak analizatzea, zer animalia mota ukuiluratu den zehazteko. Azterlana Arabako Analisi Zerbitzu Zentralean gauzatu zen, eta San Kristobalgo aztarnategiko hondakin/sedimentu organikoen (geruza zuriak, beltzak eta marroiak) behazun azidoen, esterolen eta fitoesterolen analisi kuantitatiboan oinarritu zen; Gasen Kromatografia-Masen Espektrometria (GC-MS) neurketa teknika erabili zuten horretarako.

3. irudia: San Kristobalgo aztarnategia, Toloñoko mendilerroa (Araba). Simaurraren egitura. (Argazkia: Javier Fernández Eraso)
Azterlana egiteko biomarkatzaile gisa aukeratutako sedimentuen konposatu organikoak mikrouhinek lagunduta erauzi ziren; ondoren, garbitu egin ziren, eta, azkenik, deribatu eta GC-MS teknikaren bidez aztertu. Biomarkatzaileen azterketaren emaitzak tresna kimiometrikoak erabilita prozesatu ziren (ikus 2. irudia), historiaurreko hondakin/sedimentu organikoak sailkatzea errazten dutelako, eta, hala, aztarnen jatorria eta artzainen jarduera bereiz daitezke.

4. irudia: Sailkatu ezin diren hausnarkarien eta hondakinen laginetarako osagai nagusien azterketa. (Iturria: Journal of Separation Science, (2017), 40)
Geruza marroiek eta beltzek animalia hausnarkarien aztarna gisa sailkatzen dituzte aztarnak, baina gainerakoak ezin dira erabili ukuiluratutako animalia motak sailkatzeko, ez direlako kontserbatu intereseko konposatuak. Gainera, artzainen jarduera hauteman da, 6010±30 BP (Neolito goiztiarra) eta 4030±30 BP (Kalkolitoa) artekoa. Beraz, berretsi egiten dira aurreko azterlanak, eta, gainera, ez dago hausnarkariak ez diren beste animalia batzuk ukuiluratzearen zantzurik.
Erreferentzia bibliografikoak:
Pollard, A. M., Batt, C. M., Stern, B., (2007). Analytical Chemistry in Archaeology, Cambridge University Press, London. DOI: https://doi.org/10.1017/CBO9780511607431.
Angelucci, Diego E.; Boschia, Giovanni; Fontanals, Marta; Pedrotti, Annaluisa & Vergès, Josep Maria, (2009). Shepherds and karst: the use of caves and rock-shelters in the Mediterranean region during the Neolithic , World Archaeology, 41(2), 191-214. DOI: https://doi.org/10.1080/00438240902843659.
Boschian, G. and Miracle, P. T., (2008). Shepherds and caves in the Karst of Istria (Croatia). In Proceedings of the 2nd International Conference on Soils and Archaeology (ed. G. Boschian). Atti Società toscana Scienze naturali, Mem., Serie A, 112(2007), pp. 173–80.
Fernández Eraso, J., Polo Diaz, A., (2009). Establos en abrigos bajo roca de la prehistoria reciente: su formación, caracterización y proceso de estudio. Los casos de los Husos y de San Cristóbal. Krei, 10, 39-51.
Larson, G., Fuller, D. Q., (2014). The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics, 45, 115–136. DOI: https://doi.org/10.1146/annurev-ecolsys-110512-135813.
Nigra, B.T., Faull, K.F., Barnard, H., (2014). Analytical Chemistry in Archaeological Research, Analytical Chemistry, 87 (1), 3–18. DOI: https://doi.org/10.1021/ac5029616.
Fernández-Eraso, J. et al., (2015). Beginnings, settlement and consolidation of the production economy in the Basque region. Quaternary International 364, 162–171. DOI: https://doi.org/10.1016/j.quaint.2014.09.070.
—————————————————–
Egileaz: UPV/EHUko Arabako Analisi Zerbitzu Zentrala – SGIker (@SGIker).
—————————————————–
Oharra:
Azterlan hau Jaime Gea del Ríoren doktorego-tesiko lanaren parte da, UPV/EHUko Farmazia Fakultateko METABOLOMIPs ikertaldean garatua.
The post Kimika analitikoa historiaurreko artzain praktikak ikertzeko oinarri gisa appeared first on Zientzia Kaiera.
Un gen ahorrador

Sobre la obesidad actúan factores de naturaleza ambiental, pero también tiene una importante base genética. En las sociedades contemporáneas la actividad física ha disminuido con relación a la que se hacía en el pasado. Y a eso se añade la sobreabundancia de alimento fácil de digerir y absorber. Los mayores índices de sobrepeso y obesidad del mundo se dan en archipiélagos e islas del Pacífico, como Nauru o Kiribati (Micronesia), y Samoa, Tonga, Hawái o Tuvalu (Polinesia). Y lo llamativo de estos casos es que sus niveles de obesidad superan ampliamente los característicos de países con similar provisión de comida.
El sobrepeso se mide mediante el índice de masa corporal, que se calcula dividiendo el peso (en kg) entre el cuadrado de la altura (m). Si sobrepasa el valor de 25 indica sobrepeso, y si es mayor que 30, obesidad. En Samoa, uno de los archipiélagos citados, el valor medio de ese índice es 31’7, solo por debajo de los de la isla de Nauru (32’5) y el archipiélago de Tonga (31’9). A comienzos del siglo XXI, el 68% de los hombres y el 84% de las mujeres samoanas tenían sobrepeso; diez años después esos porcentajes habían subido al 80 y 91% respectivamente.
Hace cerca de seis décadas el genetista James Neel propuso que la diabetes tipo II podía ser una consecuencia negativa de la selección en la población de cierta variante genética, a la que él llamó “gen ahorrador”, que predispone a sus portadores a sufrir esa enfermedad. Más adelante, en la hipótesis se incluyó la obesidad como otra de sus consecuencias. La diabetes metabólica (tipo II) y la obesidad son rasgos que aparecen juntos a menudo, y lo que se proponía es que cierta variante genética podría haber sido beneficiosa en el pasado porque habría permitido sobrevivir con menos alimento, pero que en abundancia, lejos de ser beneficiosa, esa variante se convierte en un problema.
En un estudio reciente han encontrado que hay una fuerte asociación entre el índice de masa corporal y una mutación en el gen CREBRF, que es muy rara fuera de Samoa pero muy abundante en ese archipiélago. Aparte de esa relación, los investigadores hicieron experimentos con adipocitos (células que almacenan grasas de reserva) mediante las que observaron que la mutación en el gen CREBRF promueve un mayor almacenamiento de grasa y menor utilización de energía. Concluyeron, por tanto, que esa variante es, al menos en parte, responsable del sobrepeso de la gran mayoría de habitantes de Samoa. Por lo que la hipótesis “del gen ahorrador” se ha visto reforzada.
La mayoría de los genes que contribuyen a la obesidad lo hacen porque influyen en la regulación central (nerviosa y hormonal) del balance energético. El gen CREBRF, sin embargo, influye en el metabolismo celular. Y podría haber casos similares en otros grupos humanos.
Los samoanos, como otros polinesios, se han aventurado durante los últimos 3.000 años en grandes travesías oceánicas de duración y destino inciertos. Lo han podido hacer gracias al desarrollo del catamarán y a su gran pericia como navegantes. En esos viajes pasaron, con toda seguridad, hambre y frío. Solo quienes sobrevivían a esas duras condiciones han dejado descendencia. Y muchos de ellos sobrevivieron gracias a su metabolismo ahorrador. El pasado pasa ahora factura a los descendientes de aquellos navegantes en forma de obesidad generalizada, pues las condiciones a las que se ven expuestos los samoanos de hoy -alimento abundante y confort térmico- son diametralmente opuestas a las que tuvieron que superar sus ancestros. Un colofón nada épico a uno de los episodios más asombrosos de la odisea humana.
Fuente: Ryan L Minster et al (2016): A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nature Genetics 48 (9): 1049-1054
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Un gen ahorrador se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Andar puede salvarte la vida
- Obesidad y delgadez también se heredan
- #Naukas15 En el comer y en el rascar, ¿todo es empezar?
Asteon zientzia begi-bistan #275
Climate Central ikerketa zentroak mapa batean aztertu du 2050ean non izan dezaketen uholde arriskua itsasoaren maila igotzean. Munduan, 300 milioi lagun bizi diren lekuak arriskuan egongo dira (Asian, gehienbat: Txinan, Bangladeshen, Indian, Vietnamen, Indonesian eta Thailandian). Euskal Herrian ere pairatuko dugu eragina. Oro har, kostalde osoan nabarituko dute, batez ere, Aturri ibaiaren inguruko herrietan, Lapurdin eta Nafarroa Beherean, hain zuzen. Horietaz gain, zerrendan, Donibane Lohizune, Irun, Donostia-Pasaia eta Bilboko itsasadarra agertzen dira.
Ikertzaileek diote klima-aldaketaren ondorio asko “geraezinak” direla baina gaineratzen dute, “inoiz ez da berandu aldaketaren eragina murrizteko, horretarako kutsadura gutxituta”.
Elhuyar aldizkariak ere eman du Climate Central ikerketa zentroaren txostenaren berri. Artikulu honetan azaltzen da mapa hau gauzatzeko sare neuronaletan oinarritutako eredu bat sortu dutela bertako ikertzaileek, kalkulatzeko munduko populazioaren zenbatekoari eragingo dion zuzenean itsas mailaren igoerak.
IngeniaritzaEgungo trenbideen komunikazio-sistemen erronka segurtasuna da. Testuan azaltzen digutenez, trena da gaur egun arte istripu gutxien dituen garraiobidea baina halere, sistema kritikoa kontsideratzen da. Europan ERTMS (European Rail Traffic Management System) sistema sortu zen baina horrekin batera, inguruko hainbat erronkak sortu ziren. Komunikazio-sareen osotasuna bermatzeko, bi kriptografia-sistema erabiltzen dira: A5/1 algoritmoa eta EuroRadio protokoloa. Baina horiek ahultasunak dituztela frogatu dute.
AstronomiaGalaxia erraldoi batean milaka kumulu globular berri sortu direla argitu dute. Baina zer dira kumulu globularrak? Elhuyar aldizkariak azaltzen digu milioika izarretik gora osatuta egoten direla eta aldi berean sortutako izarrak direla, gure galaxiaren diametroa baino ehunka aldiz diametro txikiagoko bolumen esferiko dentsoetan biltzen direnak. Ikertzaileek ikusi dute milaka kumulu globular berri sortuz joan direla azken mila milioi urteetan gas hotz batetik abiatuta, Perseus galaxia-kumuluaren erdigunean dagoen galaxia erraldoian.
Ikertzaile talde batek, Mesopotamiako antzinako testuetan oinarrituta, duela 2700 urteko aurora borealen lehen aipamentzat dituztenak aurkeztu dituzte. Aipamen horien atzean ez dago espekulaziorik: eguzki-ekaitzen ondorioz zuhaitzen eraztunetan agertutako anomaliekin alderatu dituzte, eta Kristo aurreko 679-655 urte tartean izandako hiru eguzki-ekaitzaren aztarnak identifikatu dituzte.
BiologiaNitratoek eta metal astunek uretan eragindako kutsadura neurtzeko biosentsore bakterianoak garatu dituzte UPNA/NUPeko ikasleek. Honekin, Massachusettseko Teknologia Institutuak (MIT) urtero antolatzen duen iGEM (International Genetically Engineered Machine) izeneko txapelketan parte hartuko dute. Artikuluan azaltzen den moduan, biosentsoreak nitratoek eta metal astunek uretan eragindako kutsadura neurtzeko metodo bat dira.
GenetikaGure arbasoak irudikatzeko orduan zuhaitz genealogiko baten bidez egin ohi dugu: zenbat eta atzerago, orduan eta adartsuago. Bada, ez da beharrezkoa oso atzera egitea adarretako batzuek bat egiten dutela ikusteko. Adam Rutherford genetistak A Brief History of Everyone Who Ever Lived liburuan dio jatorri europarra dugunok Karlomagnoren ondorengo garela. Europar guztiok dugu arbaso komun bat, duela 600 bat urte bizi izan zena.
Fisika eta TeknologiaUnibertsitate Politeknikoko ikertzaileek jet erraldoi baten sorrera argazkitan jaso dute lehenengo aldiz. Kolonbian hartu dituzte argazkiak, tropikoetan bakarrik gertatzen delako fenomenoa. Jet erraldoiak ezagutzen diren deskarga elektrikorik handienak dira. Ez galdu!
Euskal Herriko, Frantziako eta Alemaniako ikertzaile talde batek materialen azaleko atomoen ezaugarri magnetikoak irakur ditzakeen teknika bat sortu du. Artikuluan azaltzen diguten moduan, iman moduko bat sortu dute, eta disko gogor are txikiagoak eta material berriak sortzeko tresna izan daiteke teknika berria. Nicolas Lorente ikertzailearen esanetan: “Azaleren ezaugarriak neurtu ahalko ditugu, atomoz atomo; horregatik da hau horren ikusgarria, lor daitekeen zorroztasunik handiena delako”.
Super-ordenagailuak edo ordenagailu kuantikoak eraikitzea oso aurrerapauso handia izan da baina oraindik horiek erabiliko ditugun eguna oso urrun dago. Ordenagailu hauen berezitasun nagusiena da qubit-ak erabiltzen dituztela. Aldiz, orain erabiltzen ditugun ordenagailuek informazioa kodetzeko bit kontzeptua erabiltzen dute (bit batek bi balio hartzen ahal ditu: 0 eta 1).
MikrobiologiaAzken hilabeteetan haragi kutsatua jateagatik listeriosi kasuak asko ugaritu dira Andaluzia partean eta horrek alarmak piztu ditu. Gaixotasun hau Listeria monocytogenes bakterioak sortzen du. Oso sentikorra da ingurune azidoetan eta gatz kontzentrazio altuetan. Listeriosia ez da gaixotasun arrunta, baina bada larrienetariko bat. Neurriak har ditzakegu jakina, erabat funtsezkoak dira elikagaien higienea, kontrola eta segurtasuna. Listeriaren inguruan gehiago jakiteko, jo ezazu artikulura.
Neurozientzia
Nerea Irastorza neurozientzialariak pare bat urte daramatza iktus baten ondorioz paralisia duen paziente batekin, mugikortasuna berreskuratzeko ahaleginean. Azken helburua: pazienteak autonomia berreskuratzea. Irastorza Tübingeneko Unibertsitatean dabil tesia egiten, eta azaltzen duen moduan, ikerketa honetan diziplinartekotasuna da nabarmentzekoa. Izan ere, Alemaniako Unibertsitatean Ander Ramos Murguialday neurozientzialariarekin egiten du lan eta azken hau Tecnalian dabil. Azken batean, proiektu honetan, Tecnaliak robotikako alderdia lantzen du, eta Alemaniako laborategiak, batez ere, seinaleen deskodifikazioa.
–——————————————————————–
Asteon zientzia begi-bistan igandeetako atala da. Astean zehar sarean zientzia euskaraz jorratu duten artikuluak biltzen ditugu. Begi-bistan duguna erreparatuz, Interneteko “zientzia” antzeman, jaso eta laburbiltzea da gure helburua.
———————————————————————–
Egileaz: Uxue Razkin (@UxueRazkin) kazetaria da.
———————————————————————–
The post Asteon zientzia begi-bistan #275 appeared first on Zientzia Kaiera.