Posibles biomarcadores para el ictus
La formación de placas de ateroma o acúmulos de células y grasa mayoritariamente en los vasos principales que llevan la sangre del corazón al cerebro por el cuello, las llamadas arterias carótidas, es un factor de riesgo para desarrollar un ictus. Actualmente se desconoce el mecanismo preciso por el cual la placa se rompe dando lugar al ictus. Se sabe que las células del músculo liso (CML) presentes en la placa juegan un papel en su formación.
El grupo Neurogenomiks, vinculado al centro Achucarro Basque Centre for Neuroscience (EHUtaldea) y a la Universidad del País Vasco (UPV/EHU), en colaboración con el Hospital Universitario de Basurto acaban de publicar el resultado de un trabajo de investigación en el que han identificado, mediante un estudio de transcriptómica basado en secuenciación masiva, 67 genes y 143 isoformas reguladas diferencialmente en células CML de placas inestables (provenientes de pacientes sintomáticos) comparado con las células CML de placas estables (provenientes de pacientes asintomáticos).
Además, los análisis de enriquecimiento y de vías realizados con los datos de transcriptómicas mediante herramientas de bioestadística han demostrado que las células CML de placas instables (provenientes de pacientes sintomáticos) presentan un perfil transcriptómico de biomarcadores asociado a un fenotipo de senescencia celular y sin embargo las células CML de placas estables (provenientes de pacientes asintomáticos) presentan un perfil asociado a un fenotipo de osteogénesis.
Por tanto podemos decir que el proceso por el cual se rompe la placa de ateroma en la arteria carótida no es un proceso aleatorio sino que es una acción dirigida.
Las opciones terapéuticas existentes han mejorado pero todavía son limitantes y además hasta ahora no se han identificado parámetros analíticos, biomarcadores, que nos puedan ayudar en la práctica habitual para esta enfermedad. Por tanto, la identificación de biomarcadores con potencial en el diagnostico o pronóstico de la enfermedad cerebrovascular son de innegable interés. Los resultados de este trabajo abren las vías para el desarrollo de nuevas opciones en el diagnóstico y tratamiento que pueden mejorar el pronóstico de estos pacientes.
Referencia:
Iraide Alloza, Haize Goikuria, Juan Luis Idro, Juan Carlos Triviño, José María Fernández Velasco, Elena Elizagaray, María García-Barcina, Genoveva Montoya-Murillo, Esther Sarasola, Reyes Vega Manrique, Maria del Mar Freijo & Koen Vandenbroeck. RNAseq based transcriptomics study of SMCs from carotid atherosclerotic plaque: BMP2 and IDs proteins are crucial regulators of plaque stability. Scientific Reports 7 (2017). DOI: 10.1038/s41598-017-03687-9.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Posibles biomarcadores para el ictus se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Juno, Júpiter, arte y amoniaco
Una de las ventajas que ofrece este rincón del Cuaderno de Cultura Científica es la relativa atemporalidad del arte. Un servidor puede traer prácticamente cualquier tema a colación sin preocuparse de que sea de vibrante actualidad, algo que no pueden hacer quienes divulgan sobre temas más candentes como las ondas gravitacionales o los últimos avances en medicina.
Sin embargo, recientemente ha habido una noticia de tal impacto que bien merece que le dediquemos unas líneas. Me refiero, como ya habréis deducido por el título del artículo, a las últimas imágenes que nos ha regalado el satélite Juno de la superficie de Júpiter. No tengo la menor intención de hablar de los prometedores resultados científicos que se han recibido, de eso ya se ha encargado la gente que sabe del tema. Pero sí que quería aportar un punto de vista diferente, ya que Júpiter es una enorme obra de arte con mucha química. Y, si no, contemplad la Imagen 1 para salir de toda duda.
Juno abandonó la Tierra el 5 de agosto de 2011 y casi seis años después ha llegado a su destino. Más allá de los datos gravimétricos que pueda ofrecer, lo más fascinante para quienes no sabemos resolver una ecuación diferencial son las imágenes captadas por la cámara que lleva incorporada (JunoCam). Por cierto, la NASA ha habilitado una web donde podemos obtener toda la información que deseemos y subir nuestras propias fotos del planeta. Juno ya lleva unas semanas en la órbita de Júpiter en una escena similar a la recreación artística que os enseño en la Imagen 2. Digna de una película de ciencia ficción, ¿verdad? Y, sin embargo, es a la vez una antigua leyenda griega trasladada al siglo XXI. Cuando en la NASA eligieron el nombre del satélite, no lo podrían haber hecho mejor. A continuación os explico por qué.
Al igual que Júpiter es el más grande de todos los planetas del sistema solar, el dios homónimo era el más poderoso entre los de su especie para los romanos. Éstos, en otra demostración de pragmatismo, habían tomado sus dioses del panteón griego donde Júpiter se conocía como Zeus. Así, aunque directamente el nombre provenga del latín, el legado es más bien heleno (como diría Javier Reverte y, antes que él, Percy Bysshe Shelley: todos somos griegos). Júpiter no sólo era el rey de los cielos, también era un auténtico mujeriego y no perdía oportunidad de mancillar a cualquier mortal, ninfa o diosa que se le pusiese en el camino (de eso ya os hablé aquí). De hecho, en un “poético” acto de nomenclatura que comenzó en el siglo XVII con los satélites galileanos (Calisto, Ío, Europa y Ganimedes), las lunas de Júpiter llevan nombres de sus amantes. Algo que supuso un problema cuando, al nombrar la número treinta y tres, las amantes se agotaron. Entonces se recurrió a su progenie que, como podéis imaginar, también era abundante si tenemos en cuenta que el machote del Olimpo siempre dejaba encinta a su pareja. Y mirad por donde, mientras escribo estas líneas se anuncia el descubrimiento de dos nuevas lunas jovianas, para un total de 69. ¡A este ritmo nos vamos a quedar sin nombres mitológicos!
Volviendo a las aventuras amorosas de Júpiter, hay que decir que el dios contaba con un impedimento considerable: estaba casado. Y os podéis imaginar que a su consorte no le hacían mucha gracia sus correrías, así que siempre estaba atenta para evitar otra infidelidad y, de paso, castigar a la desdichada víctima de su marido. Efectivamente, la esposa (y hermana) se llamaba Juno. Puesto que los amoríos de Zeus son una de las representaciones más habituales en la Historia del Arte, podemos encontrar numerosas obras en las que la divina pareja es representada. Me gustaría destacar por encima de todas la que os enseño en la Imagen 3: un colosal óleo realizado por Dominique Ingres, uno de los grandes pintores franceses del XIX. Ahí podemos ver al majestuoso dios, sentado en su trono en una representación iconográfica impecable (el águila, el cetro, las nubes…). Quizás os resulte familiar por este retrato de Napoleón. A sus pies la diosa Tetis que, en contra de lo que pueda parecer, no está intentando seducir al divino ser. Simplemente implora por la vida de su hijo Aquiles en la batalla de Troya, una escena descrita en la Ilíada que Ingres tomó prestada de la obra de Homero. ¿Y dónde está Juno? Pues allí, a la izquierda, entre las nubes, vigilando la escena. 200 años antes de que un satélite con su nombre posase la mirada sobre el otro Júpiter.
Pero aquí no acaba el parecido entre Juno “satélite” y Juno “diosa”. Una de las aventuras más conocidas de Zeus cuenta cómo, para yacer con la sacerdotisa Ío sin que nadie se enterase, el dios tomó forma de nube (en la Imagen 4 podéis ver la interpretación que hizo Correggio). Ahora bien, Hera difícilmente se dejaba engañar y fue capaz de ver entre las nubes la fechoría de su marido. Zeus se encontró en un callejón sin salida y tuvo que transformar a Ío en ternera para salvar su vida. Como veis, no se puede elegir mejor nombre para un satélite que pretende explorar entre las nubes de un planeta gaseoso.
Siguiendo con las nubes, en la primera imagen os mostraba una foto de la superficie joviana. Esas manchas que forman caprichosas formas pueden estar compuestas de amoniaco o de agua. En la imagen 5 podéis disfrutar de una vista más espectacular si cabe. Eso que contempláis es el polo sur del planeta.
¿No os parece una auténtica maravilla? ¿No os recuerdan esas ondulaciones a las pinceladas de van Gogh en la noche estrellada (Imagen 6)? Si os soy sincero no soy el primero al que se le ha pasado por la cabeza.
Decíamos que el agua o el amoniaco pueden ser los principales componentes de esos cúmulos tan llamativos. Y es que, si bien Júpiter es un portento en tamaño, su composición química es extremadamente simple (hasta donde sabemos). Al igual que el Sol, está compuesto por una gran cantidad de hidrógeno y helio (los dos elementos químicos más pequeños) a la que se le suman los compuestos que ya hemos mencionado. El amoniaco (NH3), aunque un poco más complejo, es también muy simple, ya que está formado por un átomo de nitrógeno y tres de hidrógeno.
Al leer el nombre es posible que vuestra primera reacción haya sido asociarlo al producto de limpieza que tan desagradable olor desprende (hay que aclarar que la fórmula comercial es una disolución acuosa, ya que el amoniaco se encuentra en forma gaseosa a temperatura ambiente). Ahora bien, más allá de su mal olor, esta sustancia puede deparar alguna sorpresa agradable para otro de nuestros sentidos: la vista.
En la Imagen 7 os muestro un par de ejemplos. En una de las fotografías tenemos dos tubos de ensayo con disoluciones diferentes. El de la derecha contiene cobre disuelto (en forma de Cu2+) y es de una tonalidad azul clara. Si encima de ese líquido añadimos una disolución de amoniaco (que no tiene color) se forma el compuesto de la izquierda, un “complejo” de un color azul intenso. Más allá de para la formación de disoluciones de colores llamativos, el amoniaco se ha usado históricamente para la obtención de numerosos pigmentos como el verdigris e incluso juega un papel importante en la composición de alguno de ellos como el violeta de manganeso (NH4MnP2O7) que podéis ver en la otra parte de la imagen.
Y, para acabar, quería hacer una referencia sobre la etimología del amoniaco. Según parece, el nombre deriva del dios egipcio Amón cerca de cuyo templo en Libia los romanos obtenían una sal que contiene amoniaco (cloruro amónico). ¿Y sabéis qué es lo más curioso? Amón era el dios principal de los egipcios (aunque esto dependía del periodo y de la ciudad) y de ahí que los romanos lo asociaran a Júpiter. Por lo tanto, el mencionado templo estaba también dedicado a Júpiter, quien posteriormente dio el nombre a un planeta cubierto de amoniaco. Y así se cerró este particular círculo de química, astronomía y mitología.
Un último espectáculo visual
No me gustaría finalizar este artículo sin mostraros un vídeo en el que el artista Garip Ay hace una recreación de la noche estrellada sobre… ¡agua! No os lo perdáis.
Para saber más:
Daniel Torregrosa: La influencia de la mitología en la ciencia (37ª Parte): Juno en Ese Punto Azul Pálido.
Daniel Marín: Descubriendo el interior de Júpiter: primeros resultados científicos de Juno en Eureka (Naukas).
Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.
El artículo Juno, Júpiter, arte y amoniaco se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Arte & Ciencia: Cómo descubrir secretos que esconden las obras de arte
El arte y la ciencia son dos formas de conocimiento aparentemente alejadas, en gran medida consecuencia de la especialización profesional y la educación compartimentada. Del estudio de esta impostada separación surgió el estereotipo de las dos culturas, las ciencias y las humanidades, para referirnos a esa brecha de conocimiento. La realidad es que la ciencia y el arte sí están conectadas y que ninguna forma de conocimiento es impermeable a otra. Por poner algunos ejemplos: ¿Cómo podría crearse una obra plástica sin las técnicas propiciadas por la ciencia? ¿Cómo podríamos interpretar la elección de materiales?
Estas y otras cuestiones relacionadas furon tratadas por destacados profesionales -artistas, ilustradores, filósofos y científicos- que han puesto el foco en ese difuso trazo que une la ciencia y el arte. El ciclo Ciencia & Arte se desarrolló, bajo la dirección de Deborah García Bello, a lo largo de cuatro jornadas que se celebraron los jueves días 6 y 27 de abril y 11 y 25 de mayo de 2017 en el auditorio del Museo Guggeheim Bilbao.
Esta actividad de la Cátedra de Cultura Científica de la UPV/EHU se enmarca en el programa TopARTE que conmemora el XX Aniversario del Museo Guggenheim Bilbao.
Primera jornada. 3ª conferencia
Oskar González Mendia, profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU: Cómo descubrir secretos que esconden las obras de arte
Las ciencias experimentales juegan un papel esencial en el análisis, tratamiento y conservación de las obras de arte. Estos procesos nos ofrecen, además, información valiosa sobre el contenido de la obra y las circunstancias en las que fue creada. Ciencia y arte tienen una relación mucho más íntima de lo que imaginamos, ya que el conocimiento científico es una herramienta imprescindible para artistas, restauradores y analistas. Les permite conocer las cualidades de los materiales para optar por unos u otros, prever cómo se degradarán los pigmentos o determinar la mejor manera para conservar una escultura.
Cómo descubrir secretos que esconden las obras de arteEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Arte & Ciencia: Cómo descubrir secretos que esconden las obras de arte se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Catástrofe Ultravioleta #17 BABEL
La mitad de las lenguas que existen en nuestro planeta están en riesgo de desaparecer. En este capítulo de Catástrofe Ultravioleta descubriremos nuevas formas de ver el mundo a través de lenguas que estamos perdiendo.
Imagina encontrar al último hablante de la lengua mamuju en una boda en Nueva York, recuperar el lenguaje de una tribu del Amazonas gracias al loro que sobrevivió a su desaparición o registrar las últimas palabras de una lengua india de Nuevo México charlando con la última hablante viva. Cada día, lingüistas de todo el mundo luchan a contrarreloj para salvar centenares de lenguas de las que apenas quedan unos pocos hablantes. La UNESCO advierte de que más de la mitad de las 6.000 lenguas que se hablan en el planeta están en riesgo de desaparecer. ¿Quieres saber por qué es importante que no desaparezcan? Pues abre bien las orejas.
Agradecimientos: Eugenio Daria y al cabildo de La Gomera por el silbo; a Daniel Kaufman, la Endangered Language Alliance y Wikitongues por sus grabaciones; a Fernando Nava, Blanca y Miguel Gotor por sus testimonios; a Douglas, Marco, Vanderlei y Neiva por las cuñas en portugués y tupi; a Celine, Ray Jaén, Ana González y Stephen Hughes por las voces. Y, por supuesto, ¡a Alexander von Humboldt por sus palabras!
* Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el apoyo de la Cátedra de Cultura Científica de la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.
Puedes conocernos en nuestra web: Catastrofeultravioleta.com y seguirnos en el twitter Catastrofe_UV. También puedes encontrar todos los capítulos en este enlace.
El artículo Catástrofe Ultravioleta #17 BABEL se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:ADN basura: negacionismo y malentendidos (con cebolla) Primera parte
Los lectores de noticias científicas probablemente os habréis encontrado más de una vez una historia que puede resumirse así:
“Descubren algo interesante en la región del genoma que hasta hace poco se consideraba basura”
Ese algo interesante puede consistir en secuencias que determinan el desarrollo del cerebro o la forma de nuestra cara, un gen clave para la celiaquía, un trocito de ADN que determina la evolución del cáncer, otro que permitirá curar la diabetes… todo tipo de maravillas, halladas gracias a que a alguien se le ocurrió buscar en lo que sus poco espabilados colegas creían un vertedero genético.
El mito del tesoro en el vertedero
El concepto ADN basura lleva muchos años divulgándose y enseñándose como si se tratase de un error surgido directamente de la arrogancia de los científicos. Un error que ahora, gracias a nuevos hallazgos y a un cambio de mentalidad, se estaría corrigiendo.
El mito dice así: Cuando los científicos empezaron a leer el genoma humano comprobaron que solo una minúscula parte consiste en ADN codificante, es decir, en genes con información para sintetizar proteínas. El resto del ADN, ¿para qué sirve? ¿Qué hace ahí? No lo sabían. Y, como no lo sabían, decidieron que se trataba de ADN inútil. Que estaba ahí simplemente porque no hacía daño. Que era chatarra. Y así quedó establecido como ortodoxia durante un tiempo vergonzosamente largo. Hasta que, por fin, las nuevas investigaciones comprobaron que esa gran cantidad de ADN no codificante tiene papeles cruciales.
El mito tiene variantes y oscila entre dos extremos:
1.- El ADN no codificante, “antes considerado basura” contiene algunos tesoros genéticos.
2.- El mal llamado ADN basura es todo él un tesoro genético.
Es una narración atractiva. Enfrenta de un modo más o menos explícito a unos “malos”: científicos anticuados, engreídos y sin imaginación, con unos “buenos”: científicos modernos, abiertos de mente y humildes ante la magnificencia de la naturaleza. Ésta nos habría dado una lección de modestia: aquello que creíamos que era absurdo porque no comprendíamos, en realidad tendría perfecto sentido.
Incontables noticias en los periódicos, blogs, libros de divulgación y abstracts de trabajos científicos reproducen el mencionado esquema año tras año. Profesores de biología de todo el mundo, en institutos y universidades, están enseñando a sus alumnos que el ADN basura es una hipótesis fallida.
Quizá debido a la compartimentación del saber, a una no siempre buena comunicación entre expertos de distintas especialidades, y a malentendidos habituales sobre la evolución, el negacionismo del ADN basura está muy extendido entre biólogos y bioquímicos. A menudo lo expresan con argumentos que harían alzar las cejas a cualquier iniciado en biología evolutiva:
“si este ADN ha llegado hasta nuestros días es que debe tener alguna función”.
El mismísimo Francis Collins, prestigioso genetista que dirigió el Proyecto Genoma Humano y luego los Institutos Nacionales de Salud estadounidenses, se ha revelado también como un negacionista del ADN basura: “Ya no usamos más esa expresión. Fue en gran medida un caso de arrogancia eso de imaginar que podríamos prescindir de alguna parte del genoma, como si supiéramos lo bastante para afirmar que no era funcional”.
Collins es un creyente cristiano, pero no es un creacionista. Quienes rechazan la evolución desde posturas religiosas no pueden aceptar que el diseñador inteligente que supuestamente nos creó haya metido tal cantidad de morralla en nuestros núcleos celulares. Una buena proporción de los textos que atacan al ADN basura procede de las organizaciones creacionistas. ¡Lo odian! Un genoma repleto de secuencias inútiles es prueba de que los seres vivos han ido cambiando mediante procesos ciegos, inconscientes, naturales. Siempre que un equipo científico ha encontrado algo interesante en una región del genoma “anteriormente considerada basura”, los creacionistas lo han celebrado como un golpe más en la cara de Darwin.
El Proyecto ENCODE
El “meme” del ADN basura como concepto erróneo y obsoleto alcanzó su apogeo en 2012, en lo que debería ser recordado como una de las mayores catástrofes de la comunicación científica. Ese año, con gran bombo, el Consorcio del Proyecto ENCODE (Encyclopaedia of DNA Elements) publicó simultáneamente treinta trabajos sobre el genoma humano. Más del 80% de éste, según hallaron, tenía “funciones bioquímicas”.
Se gastaron unos 400 millones de dólares. Espléndidos materiales divulgativos fueron producidos al mismo tiempo que se preparaban los papers científicos. La revista Nature lanzó un portal dedicado a ENCODE. En este vídeo de dibujos animados, narrado por el comediante y activista del pensamiento crítico Tim Minchin, ENCODE aparece representado como un robot gigante que, entre otras proezas, lucha contra el cáncer. ENCODE, explica el vídeo, “es un mapa que revela que el genoma entero es una jungla de ruidosa actividad, incluso las partes que solíamos considerar chatarra; no solo los genes sino también las instrucciones que les dicen qué hacer y cuándo”.
Hubo profusión de entrevistas a los científicos que habían participado en ENCODE. Ewan Birney, uno de los líderes, afirmó que ese 80% del genoma con función se convertiría probablemente en el 100% una vez avanzaran los estudios, y añadió: “Realmente no tenemos ninguna gran porción de ADN redundante. Esta metáfora del ADN basura no es tan útil”.
Roderic Guigó, coordinador del programa Bioinformática y Genómica del Centro de Regulación Genómica, dijo: “Hemos visto que partes del genoma que considerábamos ADN basura, sin utilidad, son en realidad muy importantes. Identificamos en estas secuencias unos 4 millones de interruptores de genes, es decir, de regiones reguladoras.”
¡Cuatro millones! Varios medios publicaron que El ADN antes conocido como basura era, en realidad, un gigantesco panel de control, un sistema operativo de la célula. Los titulares fueron sensacionales:
El ADN basura, demolido (The Wall Street Journal)
El estudio Encode desacredita la teoría del “ADN basura” (The Independent)
El ADN basura es esencial para el genoma humano (ABC)
El Proyecto Encode escribe una elegía para el ADN basura (Science)
No existe el ADN basura (QUO)
Pero el ADN basura sí existe y está presente en cantidades ingentes en los genomas de la mayoría de las especies vivas. La evidencia científica a su favor es aplastante y procede de múltiples ramas de la biología. Su negacionismo es una combinación de malentendidos, exageraciones, falsa modestia, ceguera ideológica y adanismo.
¿Cómo desmontar este titánico mito construido y defendido por investigadores de incuestionable valía, las mejores revistas científicas, un multimillonario proyecto genómico internacional, profesores, periodistas, divulgadores… y, además, por si fuera poco, la estrafalaria ayuda de los creacionistas? Parece una tarea imposible. Ante tan gargantuesco y multicéfalo rival parece que solo cabe rendirse. Quizá aquí debería acabarse este artículo. Pero no; queda mucho todavía.
Muchos investigadores, por supuesto, han salido en defensa del ADN basura. Algunos de los más activos y visibles son el experto en genómica T. Ryan Gregory, el vitriólico biólogo evolutivo Dan Graur, el bioquímico Laurence A. Moran, el biólogo del desarrollo y conocido bloguero PZ Myers o el biólogo molecular y computacional Sean Eddy. Las críticas al proyecto ENCODE llegaron también a las revistas científicas en forma de diversos papers, algunos muy interesantes por su carácter divulgativo. Con la ayuda de estos científicos, comenzamos el combate dividiendo al adversario en seis malentendidos o errores principales.
El ADN basura no surge de la ignorancia
El primer malentendido en esta historia es la leyenda según la cual el ADN basura fue un parche, una solución torpe que dieron los científicos cuando descubrieron una montonera de ADN extraño y no supieron para qué servía.
En realidad, el ADN basura fue una predicción basada en los límites de la selección natural y calculada mediante las matemáticas de la genética de poblaciones. Su origen es bastante anterior al comienzo de la era genómica. Como tal predicción, se fue cumpliendo a medida que se fueron secuenciando genomas de todo tipo de especies.
La selección natural hace muchas cosas. Adapta a las poblaciones al medio, las separa y modifica hasta producir nuevas especies, estructuras, órganos, instintos… Éste es el papel constructor o creativo de la selección natural. Lo lleva a cabo con la colaboración imprescindible de las mutaciones y con la participación de otros mecanismos evolutivos. Es su aspecto peor comprendido por los no expertos y el más atacado por los “antidarwinistas”. Pero no es el que nos interesa ahora.
El que ahora toca es el papel conservador de la selección natural, mucho más intuitivo, fácil de comprender y menos polémico. La selección natural conserva las funciones biológicas y evita que los genomas degeneren fatalmente por acumulación de errores aleatorios que suceden constantemente.
Todos somos mutantes; cada uno de nosotros nace con nuevas mutaciones que, cuando afectan un gen, pueden estropearlo, deteriorando su función o anulándola por completo. Además, todos heredamos de nuestros padres un conjunto distinto de alelos (variantes de un mismo gen) estropeados que nos pueden provocar desde nada (ningún efecto detectable) hasta pequeñas molestias o desventajas, enfermedades serias o incluso la muerte prematura. Cada población de seres vivos soporta una carga mutacional que, en ocasiones, llega a resultar fatídica.
Pero, en general, los genes se mantienen buen estado. Lo que los conserva no es magia arcana; simplemente, los individuos que tienen genes menos estropeados suelen reproducirse más que aquellos que tienen los genes más estropeados. Eso hace que, en cada generación, parte de las variantes defectuosas desaparecen de las poblaciones. Sin la selección purificadora (así se llama), la información de los genomas degeneraría a lo largo de las generaciones. Los organismos nacerían cada vez menos aptos y, finalmente, la vida se extinguiría por completo.
Los límites de la selección natural
Pero la selección purificadora no es un espectro inteligente (con la cara de Charles Darwin) que detecta cualquier pequeño error en el mundo y lo elimina ipso facto. Tiene limitaciones que los especialistas conocen y calculan. La capacidad de la selección natural para limpiar los genomas depende de factores como el tamaño de las poblaciones, sus oscilaciones o su diversidad. Sin una buena formación en teoría evolutiva, tendemos a considerar que la selección es omnipotente. En general, funciona de forma mucho menos eficaz de lo que creemos.
Nuestro genoma es larguísimo. Si todo él, enterito, tuviera funciones biológicas cruciales, la selección natural tendría que haber estado protegiendo y conservando varios millones de secuencias útiles distintas. Y no puede hacerlo.
Los genetistas de poblaciones, teniendo en cuenta lo que saben sobre las tasas de mutación, los tamaños habituales de los genes, la recombinación, el censo efectivo de las poblaciones, etc., comprueban que tal hipótesis es inviable. Una selección natural tan eficaz habría requerido que cada humano tuviera una cantidad astronómica de hijos (los números, en este trabajo de Graur). Millones de hijos que luego, casi todos, a causa de pequeños defectos, tendrían que haber muerto sin descendencia. Esto habría que aplicarlo al resto de animales, plantas y microorganismos de la Tierra. No cabríamos en en el Sistema Solar.
Por tanto, en el mundo real existe un límite en el número de loci (genes en sentido amplio), que la selección natural puede conservar. En 1970 ya se había estimado que el número total de genes humanos sería como mucho de unos 30.000. Esta cantidad era asombrosamente pequeña para el pensamiento de la época. Hoy en día, sin embargo, parece muy acertada.
Susumu Ohno es citado a menudo como el padre del ADN basura (aunque la historia es más complicada). Dedujo en 1972 que esos treinta mil loci útiles incluirían tanto los genes típicos que codifican proteínas como sus posibles regiones reguladoras. El ADN esencial (útil) representaría aproximadamente el 6% de nuestro genoma. El resto, más de un 90% del genoma, no puede estar siendo conservado por la selección natural y, por tanto, carece de función. El ADN basura fue deducido mediante una teoría científica sólida, no inventado a la desesperada para tapar un misterio. Surgió del conocimiento, no a partir de la ignorancia.
(continuará en la segunda parte, donde por fin aparecerá la cebolla)
Este post ha sido realizado por @Paleofreak y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo ADN basura: negacionismo y malentendidos (con cebolla) Primera parte se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Tres historias italianas: vacunas, homeopatía, niños y derechos humanos
Mikel Mancisidor
Les voy a contar tres historias que nos llegan desde Italia. Luego reflexionaré sobre algunos aspectos que tienen que ver con los Derechos Humanos. Confío en que, como por definición todo lo relativo a los Derechos Humanos tiene vocación universal, estas ideas resulten válidas también para nuestro país o cualquier otro.
La primera historia es muy reciente y seguramente la conocen ustedes. Un niño de 7 años entró en el hospital de Urbino ya en estado de coma tras haber sufrido grandes dolores durante días. Poco después murió sin que los médicos pudieran hacer nada por salvar su vida. Sus padres habían decidido tratar la otitis que sufría el niño con homeopatía. La infección avanzó sin que la homeopatía pudiera evitarlo y afectó al cerebro hasta causarle la muerte.
También en Italia se dio un caso parecido hace unos pocos años. Luca, un niño de 4 años, ingresó ya muerto, tras 7 de días de diarreas, toses y fiebre, debido a una “neumonía intersticial y bacteriana, complicada por una infección de hongos patógenos”. Sus padres decidieron no enviar al niño a su pediatra y lo trataron en casa con homeopatía e infusiones de hinojo. Su padre, por cierto, es médico y se anuncia como homeópata y terapeuta. Los médicos que recibieron el cuerpo del niño dijeron que sufría grave desnutrición, problemas estomacales graves y costras en varias partes del cuerpo. “Al verle inmediatamente pensamos en las imágenes que se ven en la televisión cuando las grandes hambrunas africanas”, dijo ante el juez uno de los médicos. Sí, aunque resulte difícil de creer, esto sucedió en la Italia del siglo XXI, en una familia de recursos medio-altos, con padres titulados superiores y en un entorno con sobradas posibilidades de acceso a la mejor alimentación, a la mejor sanidad y a la mejor información.
Y no salimos de Italia, pero pasamos de homeopatía a los movimientos antivacunas. Una nueva ley que entrará en vigor en breve permitirá obligar a los padres a vacunar a sus hijos. En caso de que no lo hagan podrán ser sancionados con altas multas e incluso en casos extremos con la pérdida de la patria potestad. Otros países europeos cuentan con normas similares. Y es que la decisión de no vacunar a un niño puede llevar a su muerte (¿recuerdan el caso de Olot?) y además pone en peligro avances generales como la reducción de enfermedades y la progresiva erradicación de alguna de ellas.
Aclaro de entrada que no quiero hablarles aquí de homeopatía o de vacunación, puesto que poco sé de medicina y hay muchos expertos que colaboran en este Cuaderno que pueden hacerlo mucho mejor. Pero trataré de hacer algún comentario desde una perspectiva de Derechos Humanos.
Las cuestiones que queremos responder en este artículo pueden formularse así: ¿puede el estado obligar a los padres a vacunar contra su voluntad a los niños?, ¿puede el estado intervenir en caso de que los padres no estén dando a sus hijos la mejor asistencia médica disponible?, ¿se vulnera el derecho de los padres a elegir por sus hijos?, ¿tiene límites este derecho de los padres?
Estos días en redes sociales se han podido leer al respecto cosas como ésta: “la obligación de vacunar vulnera el derecho a la libertad personal, la integridad física y la intimidad personal. Debe prevalecer el derecho a no vacunarse y que tal decisión sea tomada por los padres, que en definitiva tienen la obligación de velar por la salud y educación de sus hijos.”
¿Atenta de verdad una obligación de vacunar contra esos derechos de libertad, integridad física e intimidad personal?, ¿pueden los poderes públicos entrometerse e incluso corregir esa decisión de los padres?
El Derecho Internacional de los Derechos Humanos se ha topado con asuntos de este tipo con frecuencia y su respuesta es clara. Para empezar tanto la Declaración Universal, de 1948, como el Pacto de Derechos Económicos, Sociales y Culturales, de 1996, (del cual tanto Italia como España, junto a otros 162 estados, son parte) reconoce el Derecho a la Salud en los siguientes términos: se “reconoce el derecho de toda persona al disfrute del más alto nivel posible de salud física y mental”. Llamo la atención sobre el hecho de que el derecho no es a disfrutar del nivel de salud que los padres, tutores u otros consideren mejor para un menor, sino al “más alto posible nivel posible”.
Por medio del Pacto de Derechos del Niño, de 1989, del que obviamente tanto Italia como España son parte, “los Estados Partes reconocen el derecho del niño al disfrute del más alto nivel posible de salud y a servicios para el tratamiento de las enfermedades y la rehabilitación de la salud. Los Estados Partes se esforzarán por asegurar que ningún niño sea privado de su derecho al disfrute de esos servicios sanitarios. Los Estados Partes asegurarán la plena aplicación de este derecho y, en particular, adoptarán las medidas apropiadas (…) para asegurar que todos los sectores de la sociedad, y en particular los padres y los niños, conozcan los principios básicos de la salud y la nutrición de los niños (…), tengan acceso a la educación pertinente y reciban apoyo en la aplicación de esos conocimientos”. Este Tratado es muy explícito al afirmar que “los Estados Partes adoptarán todas las medidas eficaces y apropiadas posibles para abolir las prácticas tradicionales que sean perjudiciales para la salud de los niños”.
En los conflictos que involucran a niños se aplica el conocido como principio del interés superior del niño. Se expresa así en el citado tratado: “en todas las medidas concernientes a los niños que tomen las instituciones públicas o privadas de bienestar social, los tribunales, las autoridades administrativas o legislativas, una consideración primordial será el interés superior del niño”. Además “los estados se comprometen a asegurar al niño la protección y el cuidado que sean necesarios para su bienestar, teniendo en cuenta los derechos y deberes de sus padres”. Es decir, lo primero es el derecho de los niños, su interés superior, en este caso la salud, y luego el papel de los padres, que se expresa como derecho, cierto, pero también como deber.
El Comité de Derechos del Niño “exhorta a los Estados a que sitúen el interés superior del niño en el centro de todas las decisiones que afecten a su salud y su desarrollo”. Este “interés superior del niño deberá (…) contribuir a la solución de los conflictos de intereses entre padres y trabajadores sanitarios. El Comité recalca la importancia del interés superior del niño como fundamento de todas las decisiones que se adopten con respecto al tratamiento que se dispense, niegue o suspenda a todos los niños.” (Comentario General N.º 15 del Comité de Derecho del Niño).
¿Cuál es entonces este espacio de decisión de los padres? Compare usted con lo que ya sabemos sobre el Derecho a la Educación y a libertad de elección de los padres. Se permite ciertamente que los padres elijan el tipo de educación que quieren para sus hijos: privada o pública, religiosa o laica, con más o menos deporte, arte o innovación pedagógica, con distintos tipos de equilibrio o diversidad lingüística. Pero el derecho de los padres a elegir no puede vulnerar el de los niños a acceder a una educación de calidad que incluya los contenidos mínimos que “el estado prescriba”. El derecho de elegir en educación no incluye un derecho a no educar o a educar por debajo de unos contenidos mínimos o a educar en fantasías, mitos y falsedades. Lo mismo puede predicarse en relación a la salud. Los padres podrán elegir distintos tipos de prestaciones o tratamientos médicos posibles, pero siempre que puedan ser considerados como equivalentes al “más alto nivel posible” no por cualquiera, sino tras un escrutinio profesional científicamente fundado, ajeno a mitos, tradiciones y creencias.
Al Estado le toca “adoptar todas las medidas eficaces y apropiadas posibles para abolir las prácticas tradicionales que sean perjudiciales para la salud de los niños”, como queda dicho. Y es que el estado tiene la obligación de proteger al niño frete a terceros, incluidos sus propios padres cuando corresponda. El estado, de esta forma, podría incumplir sus obligación y llegar a violar los derechos humanos del menor cuando no le protege a los “contra las violaciones del derecho a la salud por terceros”, como, por ejemplo, al no evitar “la observancia de prácticas médicas perjudiciales” (Comentario General N.º 17 del Comité de Derechos, Económicos, Sociales y Culturales – DESC).
Estos asuntos están llegando ya a los órganos de Derechos Humanos de la ONU que empiezan a examinar casos donde la ausencia de vacunación ya no se debe, como por desgracia aún sucede en ocasiones, a la pobreza, la falta de medios o la falta de voluntad del estado, sino a la negativa de los padres. Este mismo mes de Junio el Comité DESC ha tratado el asunto, por ejemplo, con Uruguay pidiéndole que asegure la vacunación de acuerdo a los criterios establecidos por el Ministerio de Salud y la Organización Mundial de la Salud.
Como vemos el derecho de los padres a elegir no es ilimitado. Puede y, en ocasiones, debe ser supervisado e incluso corregido por los poderes públicos. Esta imposición de la ley italiana, por lo tanto, no es pues una violación de ningún derecho a la integridad, intimidad o libertad, ni de padres ni de niños. Todo lo contrario: es una exigencia muy sólidamente fundada en el Derecho Internacional de los Derechos Humanos.
Sobre el autor: Mikel Mancisidor es miembro del Comité de Derechos Económicos, Sociales y Culturales de la ONU y Adjunct Professor of International Human Rights Law, Washington College of Law, American University (Washington D. C.)
El artículo Tres historias italianas: vacunas, homeopatía, niños y derechos humanos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Azúcar moreno, ¿mejor que el azúcar blanco?
Sabemos que un consumo excesivo de azúcar incrementa el riesgo de padecer enfermedades como diabetes, obesidad y, en consecuencia, cardiopatías. Estos son los principales motivos por los que la Organización Mundial de la Salud recomienda consumir un máximo de 25 g de azúcar al día.
Alcanzar esta cifra es más sencillo de lo que parece, ya que además del azúcar que añadimos al café o a las infusiones, consumimos azúcar añadido en multitud de alimentos. Para algunos, todo esto ha provocado mayor conciencia del azúcar que tomamos y hemos optado por minimizar su consumo y, en algunos casos, sustituirlo por opciones en principio más saludables. Es común que entre estas opciones se encuentre el azúcar moreno como sustituto.
Analicemos si sustituir el azúcar blanco por azúcar moreno es una buena elección.
-
Tipos de azúcar
El azúcar de cualquier tipo, sea blanco o moreno, está constituido principalmente por una sustancia denominada sacarosa. La sacarosa se extrae de dos fuentes: la remolacha azucarera o la caña de azúcar. En los climas cálidos se opta por la caña y en los climas templados por la remolacha. En el sudeste asiático, donde ya se utilizaba azúcar desde hace miles de años, se extrae de la caña; pero en España, por razones climáticas, se obtiene de la remolacha.
En la legislación podemos distinguir dos grandes grupos atendiendo a su composición: azúcar blanco y azúcar moreno. La distinción esencial se hace en función de la cantidad de sacarosa que contienen. El azúcar moreno tiene una pureza media del 85% y el blanco del 95%. Las denominaciones «azúcar natural» o «azúcar integral» no están recogidas en la legislación, sino que se trata de denominaciones coloquiales o publicitarias para denominar al azúcar moreno.
Existen otras denominaciones para el azúcar que hacen referencia a la presentación del producto, además de a su composición. Por ejemplo, el azúcar candi que está tan de moda, se presenta en forma de bloques amorfos. Se hace alargando el proceso de cristalización, añadiendo agua y prensándolo en moldes. Puede estar hecho con azúcar blanco o con azúcar moreno. En cambio, el azúcar glas, que se presenta como azúcar en polvo, de grano muy fino y de color blanco, se hace exclusivamente con azúcar blanco molido.
-
¿Cómo se produce el azúcar blanco?
El proceso de producción de cualquier tipo de azúcar, sea blanco, moreno, o de cualquier otra denominación, es el mismo en todas las etapas y sólo difiere ligeramente en la última. El proceso es bastante complejo, pero podemos simplificarlo.
Se lava y se trocea la caña o la remolacha y se hace un proceso análogo a una infusión en agua, de forma que se extrae un jugo dulce. Ese jugo contiene una gran cantidad de sacarosa, pero también va acompañado de otras sustancias indeseables que podrían estropearla. Estas sustancias se eliminan añadiendo otros compuestos con los que se combinan fácilmente y terminan depositándose en el fondo del jugo, por lo que se pueden extraer por decantación y filtrado. Gracias a este proceso de separación también se inhibe el crecimiento de bacterias.
Así llegamos a una disolución que es básicamente agua con sacarosa. El agua se evapora -de ahí que las fábricas de azúcar estén envueltas en grandes nubes de vapor de agua- hasta llegar a una disolución saturada. En este punto es donde la sacarosa empieza a formar cristales. Hay una pequeña parte de sacarosa que, por su contenido en agua e impurezas, no llega a cristalizar. Parte de esta sacarosa carameliza hasta volverse amarga y adquirir un color parduzco. Esta fracción es la melaza.
Esta última parte del proceso se repite hasta lograr una separación óptima entre la sacarosa cristalizada y la melaza. La melaza se emplea, entre otras cosas, para producir alcohol etílico.
-
Cómo se produce el azúcar moreno
El azúcar moreno se produce de la misma manera que el azúcar blanco, salvo en la etapa final en la que se separa la sacarosa de la melaza. En el azúcar moreno se conserva parte de la melaza. Según la cantidad de melaza que se conserve y la forma de presentación del producto final, podemos distinguir varios tipos (mascabado, turbinado, demerara, etc.) La presencia de más o menos melaza es la responsable de las apreciables diferencias en el aroma y el sabor de los distintos tipos de azúcar moreno. Como la melaza es de color pardo, es la responsable de teñir el azúcar moreno.
Hay dos maneras de producir azúcar moreno: mezclando azúcar blanco con melaza hasta llegar a la proporción deseada, o bien no separar totalmente la sacarosa de la melaza en la última etapa de la producción. Con el modo de mezcla se controlan mejor las proporciones y se reducen costes, ya que es más sencillo fabricar varios tipos de azúcar moreno ajustando las mezclas.
No es cierto que se empleen colorantes para teñir el azúcar, ya que esto no está legalmente permitido. En todos los tipos de azúcar moreno, el color pardo se debe a la melaza. Cuando disolvemos azúcar moreno y éste pierde su color superficial revelando que el interior se asemeja al azúcar blanco, es debido a que es un azúcar moreno producido por mezcla.
-
Diferencias nutricionales entre el azúcar blanco y el azúcar moreno.
Tanto el azúcar blanco como el azúcar moreno aportan 4 kcal por gramo. Estas calorías se denominan «calorías vacías» porque aportan energía, pero no tienen valor desde el punto de vista nutricional. Ambos tipos de azúcar son, esencialmente, sacarosa con una pureza del 85% o más. El pequeño porcentaje restante, que es melaza y agua, contiene una insignificante cantidad de minerales y vitaminas.
La presencia de vitaminas y minerales que porta la melaza del azúcar moreno es lo que suele usarse como razón para sustituir un azúcar por otro. Pero, esta razón no es relevante desde el punto de vista nutricional: la cantidad de minerales o vitaminas que se encuentran en el azúcar moreno es tan baja que, para alcanzar un nivel simbólico para el organismo, habría que consumir mucho más azúcar del recomendado, así que lo que se presenta como virtud, realmente enmascara el verdadero problema: el consumo excesivo de «azúcar libre».
La Organización Mundial de la Salud recomienda no consumir más de 25 g de «azúcar libre» al día. Tanto el azúcar blanco como el azúcar moreno son «azúcar libre».
También hay que tener en cuenta que el azúcar moreno, por su contenido en melaza, que es amarga, tiene un poder edulcorante menor que el azúcar blanco, con lo que resulta tentador utilizar más cantidad para llegar al mismo dulzor. Si a esto le sumamos la errónea convicción de que es más saludable, a muchos no les temblará el pulso y utilizarán más azúcar moreno del que añadirían si se tratase de azúcar blanco.
-
Conclusiones.
No hay diferencias nutricionales relevantes entre el azúcar blanco y el azúcar moreno. Ambos son «azúcar libre» y su consumo según la Organización Mundial de la Salud ha de minimizarse.
Sustituir el azúcar blanco por azúcar moreno perpetúa el problema y, en algunos casos, lo sobredimensiona porque consumimos más, ya que tiene menor poder edulcorante y además es fácil caer en el error de creer que es un sustituto saludable. Si queremos vitaminas y minerales, no los busquemos en el azúcar.
La elección saludable y el esfuerzo que deberíamos hacer, si realmente queremos plantarle cara al problema, es endulzar cada vez menos todo lo que consumimos y comer más productos frescos y menos ultraprocesados, que son los que más azúcar añadido contienen. Si lo logramos, obtendremos una recompensa realmente valiosa: descubrir el auténtico sabor de los alimentos.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo Azúcar moreno, ¿mejor que el azúcar blanco? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Aislantes topológicos en sólidos amorfos
Todos sabemos que hay materiales aislantes de la electricidad y otros que la conducen: en un cable eléctrico el cobre del interior es conductor y la protección plástica exterior es aislante. Sin embargo, existen materiales que son aislantes en su conjunto pero que conducen la electricidad en su superficie, son los llamados aislantes topológicos. Esta característica se debe a unos estados cuánticos muy particulares del material en su superficie. Lo interesante del asunto es que estos estados son robustos frente a defectos y otras imperfecciones, lo que hace que estos materiales se estén investigando intensamente porque son potencialmente útiles en computación cuántica y otras aplicaciones.
Todos los aislantes topológicos conocidos son cristales, es decir estructuras tridimensionales perfectamente ordenadas. Ahora, un nuevo trabajo teórico demuestra que los materiales amorfos, los llamados vidrios, también podrían ser aislantes topológicos. Esto podría dar lugar a la búsqueda de nuevos aislantes topológicos entre en abanico muchísimo más amplio de materiales posibles.
Los aislantes topológicos se caracterizan por ciertas simetrías. Por ejemplo, muchos aislantes topológicos son simétricos frente a la inversión del tiempo, lo que significa que las funciones de onda electrónicas que describen el estado no se ven alteradas por un cambio en la dirección del tiempo. Se dice que estas simetrías “protegen” los estados de la superficie, lo que significa que el sistema no puede cambiar a otro estado sin pasar por un cambio de fase. Actualmente la búsqueda de nuevos aislantes topológicos asume que las simetrías deseadas se generan en una estructura reticular ordenada, pero nada se opone a que estas simetrías aparezcan en un material no cristalino.
Los resultados, de momento una posibilidad teórica, sugieren que los aislantes topológicos podrían hacerse mediante la creación de vidrios con un fuerte acoplamiento espín-órbita o colocando al azar átomos de otros elementos en el interior de un aislante normal. De comprobarse que esto es cierto significará una pequeña revolución en el mundo de los materiales que tendrá un gran impacto en el rendimiento y el coste de los dispositivos del futuro.
Referencia:
Adhip Agarwala and Vijay B. Shenoy (2017) Topological Insulators in Amorphous Systems Physical Review Letters doi: 10.1103/PhysRevLett.118.236402
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Aislantes topológicos en sólidos amorfos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Locura instantánea, un rompecabezas con cubos de colores
Locura instantánea es el nombre de un juego de ingenio de la familia de los solitarios. Es un juego que me gusta mucho, que suelo utilizar en algunas de mis charlas y que incluí en mi libro sobre las matemáticas de los juegos de ingenio, Del ajedrez a los grafos, que es el último libro de la colección El mundo es matemático (National Geographic, 2015). Mencioné este juego de pasada en mi entrada del Cuaderno de Cultura Científica, Blanche Descartes y la cuadratura del cuadrado, pero en aquella ocasión no entramos a analizarlo.
El rompecabezas Locura instantánea, nombre con el que fue comercializado por la empresa de juguetes Parker Brothers en 1967 y del que se vendieron más de doce millones, consta de cuatro cubos, cada una de cuyas caras está coloreada con uno de los cuatro colores del juego (en la imagen anterior, rojo, azul, verde y amarillo), siguiendo un patrón determinado, que se muestra más abajo.
El objetivo del solitario es colocar los cuatro cubos, uno encima (o a continuación) del otro, formando una torre (o un prisma rectangular de tamaño 1 x 1 x 4) de manera que cada uno de los cuatro colores aparece exactamente una vez en cada una de las cuatro caras de la torre.
En la página Sources in recreational mathematics, an annotated bibliography, el matemático estadounidense David Singmaster menciona que este juego aparece por primera vez en 1890, patentado por Frederick A. Schossow (con corazones, picas, tréboles y diamantes, en lugar de colores), con el nombre Katzenjammer (que puede traducirse como conmoción, o también, resaca), y que volvería a aparecer a lo largo del siglo XX con diferentes nombres, en los años 1940 con el nombre El gran suplicio de Tántalo, pero también Cubo 4, Cubo diabólico, Cuatro ases, rompecabezas de Symington y muchos otros.
A continuación, mostramos el esquema plano de la distribución de los colores del juego Locura instantánea (exactamente la distribución de los dados de la primera imagen), al desplegar en el plano los cuatro cubos en sus seis caras.
Una primera cuestión que nos podemos plantear en relación a este rompecabezas, antes de ir a lo importante que es jugar y resolver el puzzle, es la siguiente: ¿Cuál es el número de formas distintas (en relación al juego) de colocar los cuatro cubos de colores formando una torre (o una a continuación del otro)? El objetivo del juego es encontrar cual, o cuales, de ellas son una solución del rompecabezas.
Teniendo en cuenta que, de cara a su resolución, lo importante son las cuatro caras de cada cubo que van a quedar en los laterales visibles de la torre, y que es irrelevante el orden de colocación de los cubos, se puede observar que esencialmente hay tres formas distintas de colocar el primer cubo de la torre, dependiendo de cuál de las tres parejas de caras opuestas ocultemos. Y como es la primera pieza en ser colocada, da lo mismo cuál de las dos caras ocultas vaya arriba y cuál abajo.
Una vez colocado el primer cubo, hay veinticuatro formas de colocar el segundo cubo. Seis caras tiene el cubo, luego tenemos seis opciones para la cara de abajo (o equivalentemente, tenemos tres parejas de caras opuestas, pero ahora, fijada ya la posición del primer cubo, si es diferente cual de las caras va debajo), y para cada una de esas seis posiciones, puede rotarse el cubo, dando lugar a cuatro posiciones distintas, ya que hay cuatro caras laterales. Lo mismo ocurre para el tercer y cuatro cubos. En consecuencia, existen 3 x 24 x 24 x 24 = 41.472 formas distintas (desde la perspectiva del solitario) de colocar los cuatro cubos.
El método del ensayo y error, es decir, el ir probando diferentes alternativas de colocación de los cuatro cubos y ver si se ha resuelto el solitario, no parece ser muy apropiado para la resolución de este juego a la vista de las 41.472 configuraciones distintas que existen de los cubos. El recorrido por todas ellas en busca de la solución será tedioso y llevará bastante tiempo. Si utilizásemos unos 5 minutos de media para cada posición, recorrer todas llevaría 3.456 horas, más o menos, dos años y medio, dedicando cuatro horas todos los días.
Si el método de ensayo y error no parece ser el más adecuado, esto nos lleva a plantear algún otro método de resolución del juego. Para empezar podemos intentar conocer más en profundidad este solitario y extraer información útil que nos simplifique la búsqueda o nos ayude a plantear algún método de resolución.
Para empezar, veamos cuántas caras hay de cada color. Si miramos a los cuatro cubos (por ejemplo, en la imagen de los desarrollos planos) se verá que en este solitario hay 7 caras azules, 6 rojas, 5 amarillas y 6 verdes. Puesto que en la solución del rompecabezas cada color aparece una sola vez en cada lateral de la torre, serán cuatro caras de cada color, y el resto permanecerán ocultas, es decir, sabemos que van a tener que quedar ocultas 3 caras azules, 2 rojas, 1 amarilla y 2 verdes.
La anterior información nos da una pista de cómo podríamos intentar resolver el juego, buscando distribuciones de los cubos que oculten 3 caras azules, 2 rojas, 1 amarilla y 2 verdes.
Esta información, y el camino que nos abre, es interesante, pero se necesita complementarla con algún dato más, como por ejemplo, cuales son los pares de caras opuestas de cada cubo (que se mostrarán u ocultarán de forma conjunta, lo cual es relevante). A continuación, detallamos cuales son estos pares de caras opuestas, según su color.
Cubo 1: [azul – azul] + [azul – rojo] + [amarillo – verde]
Cubo 2: [verde – azul] + [verde – rojo] + [amarillo – azul]
Cubo 3: [amarillo – verde] + [amarillo – azul] + [rojo – rojo]
Cubo 4: [verde – rojo] + [verde – amarillo] + [rojo – azul]
Y ya tenemos una información que puede ser muy útil. Ahora, para intentar resolver el rompecabezas, se trata de elegir pares de caras opuestas de cada cubo de forma que sus colores sumen las 3 caras azules, 2 rojas, 1 amarilla y 2 verdes, que son las que deben permanecer ocultas. Es una cuestión combinatoria muy sencilla.
Por ejemplo, la combinación [azul – azul] (cubo 1), [verde – azul] (cubo 2), [rojo – rojo] (cubo 3) y [verde – amarillo] (cubo 4) resulta que, como se observa fácilmente colocando convenientemente los cubos, ya nos genera una solución, de hecho, la única.
Este es un método muy sencillo, que es el que yo utilicé para resolver el Cubo 4 cuando me enfrenté a su resolución. No es tan elegante como la solución con grafos que vamos a mostrar a continuación, ni podemos extraer información muy relevante de cara a posibles generalizaciones o rompecabezas relacionados, pero cumple una de las máximas principales de la resolución de problemas, lo primero es resolverlo. Además, nos ha permitido rápidamente no solo encontrar una solución, sino saber que es única.
Antes de abordar la resolución del juego mediante grafos, recordemos qué es un grafo etiquetado.
Grafo etiquetado: Un grafo al que le asignamos etiquetas a las aristas, o a los vértices, es un grafo etiquetado. Las etiquetas pueden ser números, colores u otras informaciones.
El rompecabezas Locura instantánea puede ser modelizado con grafos etiquetados de la siguiente forma. Los vértices del grafo son cada uno de los colores, rojo, azul, verde y amarillo. Además, para cada cubo, dos vértices van a estar unidos por una arista si esos dos colores están en caras opuestas del cubo. En nuestro caso, los grafos etiquetados (las etiquetas en los vértices son los colores) asociados a los 4 cubos son:
Para juntar toda esa información en un único grafo se etiquetan también las aristas con un número que se corresponde con el del cubo en el que se establece dicha arista. Así, el grafo etiquetado que modeliza El gran suplicio de Tántalo es el siguiente.
Una vez que el rompecabezas ha sido modelizado mediante este grafo, hay que utilizarlo para construir una solución, y en general, estudiar el espacio de soluciones.
Dada una solución del solitario, en particular, los cuatro colores aparecerán en la parte de delante, y también en la de detrás, de la torre. Esto se suele llamar una solución parcial, ya que no se imponen condiciones sobre los laterales de la torre. Y construir una solución parcial del Cubo diabólico es equivalente a encontrar un “subgrafo bueno” del grafo original, es decir, un subgrafo H que contiene los cuatro vértices (colores), con grado 2 (número de aristas que inciden en el vértice) con una arista etiquetada para cada uno de los números (que se corresponden con los cuatro cubos). Como cada vértice en un tal subgrafo bueno H tiene grado 2, cada color aparece exactamente dos veces, y se pueden colocar los cubos para que cada color aparezca una vez en la parte delantera y una en la de atrás.
Si ahora podemos encontrar otro subgrafo bueno que no utilice las mismas aristas que el primero, es decir, en cada cubo nos va a dar otra pareja, distinta de la anterior, de caras opuestas, entonces podemos rotar cada cubo de manera que estas parejas aparezcan en las caras laterales de la torre, pero sin deshacer las caras de delante y detrás, lo que resolverá completamente el Cubo 4. Es decir, la solución de El suplicio de Tántalo se corresponde con dos soluciones parciales que encajan bien la una con la otra.
Puede formularse así el resultado.
Teorema (F. de Canterblanche): El rompecabezas Locura instantánea tiene solución si, y sólo si, el grafo etiquetado asociado admite dos subgrafos buenos que no comparten aristas.
F. de Carteblanche es un seudónimo. En los años 1940, cuatro matemáticos de la Universidad de Cambridge adoptaron el seudónimo Blanche Descartes, y también el de su marido F. de Carteblanche, para publicar sobre matemáticas, pero también sobre poesía y humor matemático. Probaron algunos teoremas sobre teselaciones, publicaron sobre el coloreado de grafos, resolvieron la cuadratura del cuadrado, o descubrieron la disección de Blanche. A ellos se debe el estudio con grafos del (Gran) “suplicio de Tántalo”.
Una vez resuelto el rompecabezas, podemos ver si existen más soluciones al mismo. Calculando todos los subgrafos buenos y viendo qué parejas de subgrafos no comparten aristas obtendríamos todas las soluciones del rompecabezas. En el caso del Conmoción solo hay otro subgrafo bueno, además de los dos anteriores, y comparte aristas con ambos, luego no genera ninguna nueva solución. Es decir, la solución es única, como ya sabíamos.
Como hemos estudiado, el Locura instantánea admite una única solución, pero pueden existir otros rompecabezas con cuatro cubos de colores que no admitan soluciones o que admitan varias soluciones, como los dos mostrados en la siguiente imagen.
Una cuestión interesante relacionada con la creación de este tipo de rompecabezas es el cálculo del número de formas distintas que hay de colorear un cubo con 4 colores (o en general, con un número k de colores), que son los cubos con los que podemos formar, a priori, rompecabezas como el Locura instantánea. Este cálculo es posible gracias al lema de Burnside, pero esa es otra historia y debe ser contada en otra ocasión.
Bibliografía
1.- Raúl Ibáñez, Del ajedrez a los grafos, la seriedad matemática de los juegos, colección El mundo es matemático, National Geographic, 2015.
2.- David Singmaster, Sources in recreational mathematics, an annotated bibliography
3.- Página web de rompecabezas de James A. Storer
4.- Página web del artista griego Dimitris Ioannou
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Locura instantánea, un rompecabezas con cubos de colores se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Evolución de los sistemas nerviosos: anélidos y artrópodos
Muchos invertebrados segmentados tienen sistemas nerviosos centrales “distribuidos”: están formados por los ganglios de cada segmento corporal. Cada ganglio se ocupa del control del segmento en el que se encuentra y además, quizás, de parte de los adyacentes. Los ganglios intercambian información a través de dos haces o troncos de axones, denominados conectivos. Esa disposición da lugar a un cordón nervioso ventral característico de anélidos y artrópodos. En el extremo anterior una o varias grandes agrupaciones de cuerpos celulares neuronales dan lugar a la formación de un cerebro. Ese cerebro recibe información de los sistemas sensoriales localizados en la cabeza y controla sus movimientos, pero los axones de varios somas neuronales del cerebro se extienden a lo largo del cordón ventral y ejercen un cierto control sobre sus ganglios; así coordina el cerebro los movimientos del conjunto del organismo.
Los anélidos fueron el primer gran grupo zoológico con un sistema nervioso central condensado de un modo significativo. En algunas especies los ganglios están fusionados. Merece la pena citar una curiosa excepción a la disposición general del sistema nervioso central en este grupo: las sanguijuelas tienen, además del cerebro anterior, un cerebro caudal, en el extremo posterior, que es de mayor tamaño que el anterior. En lo que se refiere al sistema nervioso periférico, muchos anélidos cuentan con un sistema somatogástrico muy desarrollado y en los gusanos de tierra hay además una extensa red subepidérmica de nervios finos.
Las formas de comportamiento mejor estudiadas en anélidos son las siguientes: (1) Las respuestas de huida, que son patrones de acción fijados en los que participan interneuronas y motoneuronas del sistema nervioso central con axones gigantes. (2) La regulación del latido cardiaco en los corazones tubulares de sanguijuelas, que constituyen un ejemplo de control nervioso de comportamiento rítmico. En éste participan motoneuronas del sistema periférico cuya actividad puede ser influenciada por inputs sensoriales directos o por interneuronas del sistema central que permiten ajustar el latido a las necesidades del animal. (3) Movimientos locomotores, que están bajo el control de una red del sistema central que recibe señales de receptores sensoriales periféricos (nociceptores, barorreceptores y receptores táctiles).
Los sistemas nerviosos de los artrópodos se asemejan a los de los anélidos. En las formas más primitivas consisten en una cadena de ganglios ventrales unidos por conexiones horizontales. En muchas especies, los ganglios de la cabeza y los del segmento abdominal terminal se forman por fusión de los ganglios de varios segmentos. Los artrópodos más evolucionados, como cangrejos y algunos insectos, presentan una única masa ganglionar torácica, además de la de la cabeza. Se trata de un sistema nervioso muy complejo, con numerosas neuronas y, por lo tanto, muchas conexiones sinápticas. Por ello, es capaz de desarrollar una gran variedad de comportamientos de gran complejidad.
Muchos movimientos de ajuste de la posición corporal y del movimiento de las extremidades están controlados por señales sensoriales que son sometidas a una integración considerable por parte del sistema central, aunque también hay circuitos de ámbito local.
En artrópodos hay comportamientos rítmicos motores y digestivos. Las actividades rítmicas correspondientes a la locomoción, la natación y el vuelo dependen de Generadores Centrales de Modelos formados por redes de neuronas del sistema nervioso central. En estos casos, la retroalimentación sensorial juega un papel importante. En las respuestas rítmicas de huida, como los rápidos movimientos abdominales de los cangrejos de río, participan dos neuronas gigantes motoras cuyos axones recorren toda la longitud del cuerpo y que establecen conexión sináptica mutua en el cerebro, además de otros tres pares de interneuronas con axones gigantes. El vuelo de las langostas es otra forma de comportamiento rítmico que está controlado por un Generador Central de Modelos. Se trata de un comportamiento controlado por el sistema nervioso central y dependiente de inputs sensoriales.
El sistema somatogástrico controla las actividades rítmicas implicadas en el procesamiento del alimento en el sistema digestivo. Estas actividades están reguladas por conjuntos de interneuronas y motoneuronas del ganglio somatogástrico. Su funcionamiento garantiza la correcta secuenciación de los movimientos implicados en la conducción y tratamiento mecánico del alimento.
Además de los rítmicos, los artrópodos tienen comportamientos que no lo son. Los movimientos de huida de las cucarachas constituyen el comportamiento no-rítmico mejor conocido en este filo. En él participan pares de neuronas con axones gigantes, cuyos cuerpos celulares radican en los últimos ganglios abdominales, pero cuyos axones terminan probablemente en los ganglios subesofágicos en la cabeza. Además de estos, la presencia de axones gigantes que participan en movimientos de huida está muy extendida en otros grupos de artrópodos.
Otro ejemplo de comportamiento no-rítmico es el de los movimientos de amartillamiento y salto en langostas y saltamontes. En éstos participan inputs sensoriales de diferentes tipos (visuales, auditivos y táctiles) a través del sistema nervioso central, a la vez que propioceptores y receptores cuticulares del sistema periférico. La red nerviosa implicada, en la que se producen fenómenos de inhibición cruzada, da lugar a la contracción alternativa de músculos flexores y extensores a cargo de sus correspondientes motoneuronas.
En la mayor parte de los comportamientos anteriores participan tan solo unos pocos ganglios. Sin embargo, en los artrópodos se producen comportamientos muy elaborados y se ha demostrado capacidad de aprendizaje. Todos aquellos aspectos del comportamiento que requieran una valoración del inicio, mantenimiento y duración o selección, precisan del concurso de la principal masa nerviosa del cerebro, que suele estar dividido en dos partes, el ganglio subesofágico y el superesofágico. Aunque se desconoce el funcionamiento preciso de estos órganos, se ha comprobado que el superesofágico inhibe la actividad del subesofágico, quien, a su vez, ejerce un efecto excitatorio en muchos comportamientos.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Evolución de los sistemas nerviosos: anélidos y artrópodos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Carnot y los comienzos de la termodinámica (2)
La máquina ideal de Carnot, tan sencilla como es, explica algunos aspectos fundamentales del funcionamiento de máquinas y motores de todo tipo y permite formular un principio fundamental de la naturaleza.
Cualquier máquina que derive su energía mecánica del calor se debe enfriar para eliminar el “desperdicio” de calor a una temperatura más baja. Si hay alguna fricción u otra ineficiencia en la máquina, agregarán más calor residual y reducirá la eficiencia por debajo del límite teórico de la máquina ideal.
Sin embargo, a pesar de las ineficiencias de todas las máquinas reales, es importante saber que nada de la energía total se destruye. Lo que ocurre con la parte de la energía de entrada que llamamos residual es que no se puede emplear para hacer trabajo útil. Así, el calor residual no puede ser reciclado como energía de entrada para hacer funcionar la máquina para producir más trabajo útil y así aumentar la eficiencia del motor a base de reducir la cantidad de energía residual, porque el depósito de calor de entrada está a una temperatura más alta que el de salida, y el calor no fluye por sí mismo de frío a caliente.
La observación de Carnot, que parece tan obvia, esa de que el calor no fluye por sí solo de un cuerpo frío a uno caliente, y que la necesidad de acondicionadores de aire y refrigeradores ilustra tan bien, no es más, si se generaliza, que una forma de expresar un principio fundamental de la naturaleza: la segunda ley de la termodinámica. Esta ley es una de las más potentes que conocemos, dada su capacidad para explicar cosas: desde cómo y en qué sentido ocurren los fenómenos naturales a los límites fundamentales de la tecnología. Volveremos a ella repetidamente en esta serie.
Un ejemplo paradójico del resultado de Carnot
Si quemamos gasóil para calefacción en una caldera en el sótano de nuestro edificio, sabemos que parte del calor se pierde por la chimenea en forma de gases calientes y otra como calor perdido porque el propio quemador no puede estar aislado por completo. Con todo, los recientes avances en tecnología de calderas han dado como resultado calderas con una eficiencia nominal de hasta 0,86, o 86%.
Ahora bien, si preferimos radiadores eléctricos, nos encontramos con que es probable que la compañía de energía eléctrica todavía tenga que quemar petróleo, carbón o gas natural en una caldera, Y después conseguir que esa electricidad generada llegue a nuestra casa. Debido a que los metales se funden por encima de una cierta temperatura (por lo que la sustancia caliente no puede superar la temperatura de fusión de su contenedor) y debido a que el agua de refrigeración nunca puede bajar por debajo del punto de congelación (porque entonces sería sólida y no fluiría, lo que pone un límite inferior de temperatura a nuestra sustancia fría), el hallazgo de Carnot hace imposible que la eficiencia de la generación eléctrica supere el 60%. Dado que la caldera de la compañía de energía también pierde parte de su energía por la chimenea, y dado que existen pérdidas de electricidad en el camino desde la planta que la genera, sólo alrededor de un cuarto a un tercio de la energía que había originalmente en el combustible llega realmente a tu casa. Una eficiencia, en el mejor de los casos, del 33 %. Paradójicamente, la calefacción eléctrica es mucho menos sostenible que una caldera de gasóil si las plantas que generan energía emplean combustibles fósiles.
Debido a los límites encontrados por Carnot para las máquinas térmicas, a veces es importante no sólo dar la eficiencia real de una máquina térmica, sino también especificar lo cerca que está del máximo posible. Los aparatos de calefacción domésticos y muchos aparatos eléctricos de gran potencia, como frigoríficos y acondicionadores de aire, vienen ahora con una etiqueta que indica la eficiencia relativa del aparato y el potencial de ahorro anual en coste de electricidad.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Carnot y los comienzos de la termodinámica (2) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Dudas sobre las vacunas: problemas y soluciones
Ignacio López Goñi
Cada vez hay más padres que dudan de los beneficios de la vacunación. ¿Debería ser obligatoria? Los profesionales de la salud son la mejor herramienta contra los anti-vacunas.
Los programas de vacunación han contribuido a que el número de casos y de muertes por enfermedades infecciosas hayan disminuido de forma significativa en el último siglo. Las vacunas han salvado millones de vidas humas, son responsables de la erradicación de la viruela del planeta y de que la polio esté apunto de serlo. En general, las coberturas vacunales o tasas de vacunación infantil siguen creciendo a nivel mundial, lo que indica que la vacunación es una medida de salud pública ampliamente aceptada.
Sin embargo, un número cada vez más creciente de padres (*) perciben la vacunación como algo insano e innecesario. Como las vacunas se administran cuando el niño está sano, nuestro umbral del riesgo es muy bajo. Cualquier duda, aunque sea teórica, sobre la seguridad de las vacunas puede causar que los padres rechacen o retrasen la vacunación de sus hijos. Incluso algunos padres que vacunan a sus hijos suelen tener dudas y temores acerca de la vacunación. Los movimientos anti-vacunas han sido responsables de la disminución de las tasas de aceptación de las vacunas y del aumento de brotes de enfermedades infecciosas que se pueden prevenir con las vacunas. Entre los extremos de los movimientos anti-vacunas que rechazan totalmente la inmunización y los entusiastas pro-vacunas, cada vez hay más padres que dudan: padres que rechazan alguna de las vacunas pero que aceptan otras, que retrasan la vacunación de su hijo porque dudan del calendario vacunal recomendado, o que se sienten inseguros cuando vacunan a sus hijos.
En África entierran a los niños, en Europa enterramos a los ancianos
Por supuesto, la situación es diferente según el contexto y el país. En los países de altos ingresos donde los programas de vacunación están bien establecidos y en gran parte son gratuitos, las vacunas son víctimas de su propio éxito. Como gracias a las vacunas han disminuido radicalmente la frecuencia de enfermedades infecciosas, los padres no perciben el riesgo de esas enfermedades y no ven la necesidad de las vacunas: “¿para que voy a vacunar a mi hijo si ya no hay varicela?”. Se tiene más miedo a la vacuna que a la propia enfermedad. Sin embargo, en los países con ingresos medios o bajos, donde este tipo de enfermedades son todavía más frecuentes, la duda de la inmunización es menor. En países donde la mortalidad infantil es todavía muy alta debido a las enfermedades infecciosas, todavía da más miedo la enfermedad que la vacuna.
Anti-vacunas: desde Jenner hasta Twitter
Los movimientos anti-vacunas no son algo nuevo. Nada más empezar Edward Jenner, a principios de 1800, sus demostraciones de que la viruela de las vacas protegía contra la viruela humana, y a pesar de que más del 30% de los casos de viruela eran mortales, comenzaron las campañas contra la vacuna. Son famosos los dibujos satíricos publicados en 1802 en los que se ridiculizaba la vacunación de Jenner y se mostraban los bulos de sus opositores: que al vacunarte con la viruela de las vacas te salían por el cuerpo apéndices de vaca.
Durante el siglo XIX, en el Reino Unido primero, luego en el resto de Europa y en EE.UU. después, se crearon las primeras Ligas Anti-Vacunación y hubo varias campañas anti-vacunas que lucharon activamente contra las leyes que obligaban a la vacunación y en defensa de la libertad personal. Sin embargo, ya en pleno siglo XX, llegó la edad de oro de las vacunas en las décadas de los 50 y 60, durante las cuáles la aceptación de la inmunización fue máxima. En esos años se introdujeron las vacunas contra la poliomielitis, el sarampión, las paperas y la rubéola, con gran aceptación al comprobar cómo los casos de enfermedades y muertes se reducían de forma espectacular. En los años 70 se comenzó un gran esfuerzo internacional para expandir los programas de vacunación también a los países de bajos ingresos, con el objetivo de acabar con seis grandes asesinos: polio, difteria, tuberculosis, tosferina, sarampión y tétanos. Entonces menos del 5% de la población mundial infantil menor de un año estaba inmunizada contra estos patógenos. En los años 90 cerca del 75% de la población mundial infantil estaba vacunada contra la polio difteria, tétanos y tosferina. Sin embargo, ese periodo de aceptación entusiasta de las vacunas duraría poco tiempo.
A mediados de los 70 los movimientos anti-vacunas resurgieron con fuerza. La controversia comenzó en el Reino Unido con la vacuna contra la tosferina (pertussis en inglés, por estar causada por la bacteria Bordetella pertussis), al publicarse un trabajo que relacionada serios trastornos neurológicos en 36 niños después de haber sido vacunados con la tripe difteria-tétano-pertusis (vacuna DTP). Este trabajo tuvo una gran repercusión mediática e hizo que la cobertura vacunal en el Reino Unido bajara del 77 al 33%, con el consiguiente aumento de los casos de tosferina, algunos de ellos mortales. En EE.UU. la controversia comenzó en 1982 con la emisión de un emotivo documental periodístico “DTP: vaccination roulette” que acusaba al componente pertusis de la DTP de causar daños cerebrales severos y retraso mental. A raíz de tal escándalo se crearon grupos de presión anti-vacunas, se investigaron las empresas fabricantes de vacunas, aumentaron los precios y se redujeron las tasas de vacunación. A pesar de los estudios que se hicieron posteriormente que demostraban que no había relación alguna entre la vacuna DTP y los trastornos neurológicos, la preocupación sobre su seguridad fue un estimulo para el desarrollo de una nueva vacuna de pertusis acelular, menos reactiva y, por lo que se está viendo con el tiempo, con un menor poder protector contra la enfermedad. Quizá lo único bueno de todo aquello fue la creación del Vaccine Adverse Event Report System (VAERS), un programa nacional del CDC y la FDA para recoger, evaluar y publicar de forma transparente todo tipo de información sobre los efectos adversos que puedan ocurrir por la administración de las vacunas en EE.UU.
Unos 25 años después de la controversia sobre la vacuna DTP, el Reino Unido volvió a ser el origen de una de las mayores crisis sobre las vacunas, en esta ocasión relacionando la vacuna tripe vírica sarampión/rubeola/paperas (SRP) con el autismo. La revista The Lancet publicó en 1998 un artículo firmado por Andrew Wakefield y otros doce colegas en el que se sugería una posible asociación entre la vacuna y el autismo. Aunque en el artículo no se probaba una relación causal, las afirmaciones posteriores de Wakefield no dejaban lugar a duda de su opinión y pidió la retirada de la vacuna hasta que se hicieran más estudios. Años después se demostró que los datos de la publicación habían sido sesgados, y que Wakefiled recibió dinero para publicar estos datos contra las empresas farmacéuticas. En 2004, 10 de los 12 coautores del trabajo se retractaron de la publicación. En 2010 el Consejo General Médico inglés expulsó a Wakefield y le prohibió ejercer la medicina en el Reino Unido, y The Lancet tomó la decisión de retirar y retractarse de lo publicado en 1998. Pero habían pasado ya doce largos años. Se han evaluado y revisado más de 20.000 artículos relacionados con esta vacuna y más de 14 millones de casos de niños vacunados y no hay ningún indicio de que la vacuna SRP tenga alguna relación con el autismo infantil. A pesar de ello, la relación de las vacunas con el autismo sigue siendo una de las principales preocupaciones de muchos padres que dudan.
Como hemos comentado, en general las vacunas son mucho mejor recibidas en los países de bajos ingresos. Sin embargo, en los últimos años ha habido también algunas controversias que han hecho disminuir las coberturas vacunales y han supuesto un serio problema para las campañas mundiales de inmunización. En 1990 en Camerún se extendieron rumores de que el objetivo de las campañas de vacunación era la esterilización de las mujeres y en 2003 se boicoteó la vacuna de la polio en el norte de Nigeria también con rumores de que la vacuna era una estrategia para extender el VIH y reducir la fertilidad entre los musulmanes. A consecuencia de estos rumores, la polio resurgió en Nigeria y se extendió en 15 países africanos que ya habían sido declarados libres de la enfermedad.
Desde el año 2000, Internet ha supuesto un cambio de paradigma en la relación médico/paciente. Internet ha acelerado la velocidad de la información y ha roto barreras: la web proporciona información gratis, inmediata y disponible todo el tiempo y anónima. Internet es una oportunidad sin precedentes para los activistas anti-vacunas, para difundir su mensaje a una audiencia cada vez más amplia y reclutar nuevos miembros. Las personas que son contrarias a las vacunas, aunque sean minoría, generan una cantidad desproporcionada de contenidos anti-vacunas.
Cada mes son miles los contenidos que se vierten al ciberespacio sobre la vacunación, la inmensa mayoría subjetivos y de contenido emocional. Internet es una de las principales fuentes de información que emplean los padres para consultas sobre el tema de la vacunación. Desgraciadamente si se examinan los contenidos relacionados con la vacunación en la web o en las redes sociales sobresale la información inexacta e incorrecta. Esto hace que muchos padres pasen de dudar de las vacunas a ser resistentes a la vacunación o incluso claramente opuestos. Muy probablemente ver una web anti-vacunas aumenta los sentimientos negativos contra la inmunización, mientras que las webs pro-vacunas suelen tener un efecto mínimo.
En España no existen movimientos anti-vacunas como en EE.UU. pero el número de padres que dudan aumenta
En España no existen movimientos anti-vacunas bien organizados y beligerantes como los que hay en EE.UU. o en el Reino Unido, pero el número de padres que ponen en duda la efectividad y seguridad de las vacunas aumenta. Además, cada vez tienen más relevancia pública algunos claros anti-vacunas como Josep Pamiés o la monja Forcades, incluso sorprendentemente con la colaboración de grandes medios de comunicación y poderes públicos. También, en los últimos años se han publicado varios libros que claramente ponen en tela de juicio el valor de las vacunas: Vacunas, una reflexión crítica (Enric Costa), Los peligros de las vacunas (Xavier Uriarte), Vacunaciones sistemáticas en cuestión, ¿son realmente necesarias? (Manuel Marín Olmos), o Vacunas las justas (Miguel Jara).
La duda sobre las vacunas es ya un problema de salud pública
Los padres que mantiene una posición claramente anti-vacunas son una minoría, pero la proporción de los que dudan va en aumento. Esto es preocupante porque para el éxito de las campañas de vacunación se debe mantener una cobertura vacunal alta. Se debe conseguir que lo normal sea que un padre vacune a su hijo según el calendario que le corresponde. La vacunación es una medida individual pero que beneficia a la comunidad. A diferencia de otras intervenciones preventivas, si un padre rechaza las vacunas de su hijo no solo pone en riesgo la vida de su hijo sino también de los que le rodean, de los más débiles, otros niños, los enfermos y los ancianos. Luchar contra la oposición o la duda de las vacunas es un problema comunitario.
¿Qué impacto clínico tiene el fenómeno de los anti-vacunas? Quizá el de mayor actualidad sea el aumento de los casos de sarampión, una de las enfermedades infecciosas más contagiosas (ver El sarampión aumente en Europa, en microBIO). Las autoridades sanitarias han alertado que desde febrero de 2016 han aumentado los casos de sarampión en Europa, la mayoría en niños pequeños sin vacunar. La situación en este momento es que de los 53 países de toda la región europea solo han conseguido erradicar la enfermedad 15 países, y en 6 todavía sigue habiendo transmisión endémica. Desde enero de 2017 ya ha habido incluso algunos casos de muertes en Rumanía, Italia y Portugal. La ECDC alerta de que la probabilidad de que se extienda el sarampión a otros países es alta. Casos similares también han ocurrido en el continente americano, libre de sarampión desde el año 2002. En EE.UU. hubo tres grandes brotes en 2013 y lo mismo ocurrió en Canadá. De forma similar en los últimos años ha habido brotes de rubéola, paperas y pertusis en Polonia, Suecia, Holanda, Rumania, Bosnia EE.UU., etc. por la misma causa: personas que no habían sido vacunadas. En 2010, la OMS estimó el número de muertos por enfermedades infecciosas prevenibles por las vacunas (difteria, sarampión, tétanos, pertusis y polio) en unas 400.000. Estas muertes se podrían haber evitado con las vacunas. Es cierto, que más de la mitad ocurren en países donde los problemas de infraestructuras son responsables de la falta de vacunación, pero en otros casos es el rechazo a las vacunas la causa.
Entender las causas y el contexto del que duda
Los grupos anti-vacunas de hoy en día son en su mayoría gente de clase media (o media-alta) con estudios superiores que reclaman su derecho a una decisión informada acerca de las vacunas, prefieren soluciones “naturales”, no les gusta que les califiquen como anti-vacunas (el término “anti” es negativo) y prefieren términos neutros, como grupo pro vacunas seguras. Pero algunos de sus argumentos son los mismos que en 1800: las vacunas no son efectivas; causan enfermedades; son un negocio y se fabrican sólo para beneficio de las farmacéuticas; las vacunas contienen aditivos tóxicos peligrosos para la salud; los daños de las vacunas son ocultados por las autoridades (teorías conspiratorias); la vacunación obligatoria es contraria a la libertad y a los derechos civiles; la inmunidad natural es mucho mejor que la que inducen las vacunas; las vacunas son muchas y se dan demasiado pronto; los productos naturales y alternativos (vida “sana”, homeopatía, vitaminas) son mejores que las vacunas para prevenir las enfermedades; etc. En muchos casos se presentan datos incorrectos, hechos sacados de contexto, ambiguos o medias verdades. En muchas ocasiones apelan a las emociones y presentan historias muy duras del legitimo sufrimiento de padres que creen seriamente que sus hijos han padecidos enfermedades graves por culpa de las vacunas.
El contexto a veces no ayuda. En los últimos años ha aumentado el número de nuevas vacunas, lo que ha complicado los calendarios vacunales. El que no exista un mismo calendario vacunal en distintos países o, lo que es peor, en distintas comunidades autónomas de un mismo país genera percepciones negativas. La falta de transparencia de algunos gobiernos y empresas farmacéuticas y los errores en la forma de afrontar e informar sobre crisis sanitarias también provoca desconfianza y susceptibilidades: la crisis de las vacas locas, la pandemia de gripe aviar o el último brote de Ébola, por ejemplo. Hoy en día los pacientes quieren estar involucrados y participar en sus propias decisiones de salud.
¿Debería ser obligatoria la vacunación?
Esta es la pregunta que hace unos días lance desde mi cuenta de Twitter, y el 94% de las respuestas fue afirmativa. Es verdad que el resultado está sesgado y no es significativo: la mayoría de los seguidores de esa cuenta de Twitter son claramente pro-vacunas, pero algunos comentarios fueron muy sugerentes: “si la vacuna de la rabia es obligatoria para los perros, ¿por qué vacunar a los niños no lo es?”, “si llevar cinturón de seguridad en el coche es obligatorio, ¿por qué no las vacunas?”, “si fumar está prohibido en muchos lugares porque es malo para la salud, ¿por qué las vacunas no son obligatorias si son buenas para la salud?”, “si una persona no vacunada puede poner en riesgo la salud de mi hijo, ¿por qué no obligan a vacunarse en las guarderías?”
Los recientes brotes de sarampión y de otras enfermedades evitables por las vacunas han hecho que algunos países cambien su legislación. En Italia ya es obligatoria la vacunación contra doce enfermedades infecciosas para poder matricular a tu hijo en el colegio. En Portugal no son obligatorias, pero sí gratuitas y están preparando una ley para exigir la vacunación. En Alemana, no son obligatorias, pero preparan también una ley para poder multar si no vacunas a tus hijos. En Francia son obligatorias las del tétanos, difteria y polio, y en Bélgica solo la de la polio. ¿Y en España? La vacunación es voluntaria, nuestro ordenamiento no incorpora explícitamente el deber de vacunación y nadie puede, en principio, ser obligado a vacunarse. Ahora bien, hay determinadas situaciones que permiten que los poderes públicos competentes impongan la vacunación forzosa, en caso de brotes o epidemias y de peligro para la salud pública. ¿Debería cambiarse la ley y que la vacunación fuera obligatoria?
Para controlar e incluso llegar a erradicar una enfermedad infecciosa, la OMS recomienda que la cobertura vacunal para esa enfermedad sea de al menos el 95%. Según datos oficiales, las tasas de vacunación en nuestro país en los últimos años son elevadas, superiores al 95%.
En España, a pesar de la no obligatoriedad, la tasa de vacunación es incluso superior a la de países en los que la vacunación es obligatoria. Por ello, el debate planteado podría ser útil si hubiera un descenso de las tasas de vacunación que pusieran en compromiso la protección del efecto rebaño y afectara a la salud pública. Adelantar cambios normativos que impusieran de forma coercitiva la vacunación, podría generar un efecto contrario al pretendido. Obligar quizá, de momento, no sea la solución.
¿Qué podemos hacer?
Para responder a los movimientos anti-vacunas o convencer a los que dudan, algunas estrategias se han basado en campañas de educación (folletos “oficiales” o similar) con información sobre la efectividad y seguridad de las vacunas. Si embargo, aunque necesaria, no parece que ésta sea la forma más efectiva. Educar a la gente tiene poco efecto o impacto en cambiar la actitud anti-vacunas. La información y educación no suelen cambiar por si solas las percepciones. Todos tenemos la tendencia de recibir mejor la información que confirma lo que pensamos y solemos rechazar lo que contradice nuestras creencias. Para muchas personas lo que convence no son los hechos, sino la credibilidad o autoridad de quién lo dice. En este sentido, la pieza fundamental para conseguir la aceptación y confianza pública de las vacunas son los profesionales de la salud (de la medicina y la enfermería). La gente cree y confía más en su médico o enfermera de lo que nos imaginamos. Muchas gente dice que la primera razón para vacunar a su hijo es la recomendación del profesional de la salud en la consulta de pediatria. Promover una buena relación con el paciente es fundamental.
Se han publicado algunas recomendaciones para estos profesiones de la salud, pero que nos pueden ayudar a todos cuando nos enfrentamos a una persona que duda: ¿cómo convencer a unos padres de que no vacunar supone un riesgo mayor?
1. Recuerda por qué nos vacunamos. Hay que explicar cómo las vacunas nos protegen de las infecciones y nos ayudan mantener la salud; reforzar la idea de que la vacunación es una norma social, porque la gente hace lo que cree que todo el mundo debe hacer. Da por hecho que va a vacunar a su hijo, ni si quiera ponlo en duda. Felicítale por vacunarlo (y concreta la fecha para la siguiente cita).
2. No intentes asustar a la gente con mensajes catastrofistas, ya que te puede salir el tiro por la culata. Explica cómo se controla de forma rigurosa la seguridad de las vacunas, algo que no se suele contar a la gente. Las vacunas son uno de los agentes farmacéuticos mejor estudiados y más seguros del mercado. Es frecuente confundir correlación con causalidad: que dos cosas ocurran al mismo tiempo no quiere decir que una sea la causa de la otra. Que el autismo se manifieste los primeros años de vida al mismo tiempo que el calendario vacunal, no demuestra que las vacunas sean la causa del autismo. Pero el sufrimiento de unos padres con un niño autista, … es tremendo.
3. Ten empatía. Evita ser despectivo. Hazte cargo de sus preocupaciones. Si tiene dudas, escucha, deja que hable, deja que acabe de hablar, reconoce el derecho que tiene para dudar y hacerse esas preguntas, sé positivo, responde de forma simple, sencilla, que se te entienda (“Hay más formaldehido en una pieza de fruta que en todas las vacunas que recibe tu niño”). Dedícale tiempo, con respeto, paciencia y confianza. Recuerda aquello de “siempre positivo, nunca negativo”.
4. La verdad es la piedra angular de la aceptación de las vacunas. Explica claramente las posibles reacciones adversas que pueda haber, que no le coja por sorpresa las reacciones locales de la vacuna. Su hijo ha ido a vacunarse estando sano, sin fiebre y las reacciones locales pueden alarmar si no se han explicado antes. La fiebre, el malestar general, un pequeño sarpullido o enrojecimiento local no significan que la vacuna no funcione sino todo lo contrario. Es señal de que la vacuna está activando las defensas. Y explica las posibles reacciones adversas graves muy raras que puede haber (menos de un caso por millón de dosis administradas). Se honesto y claro. Ningún medicamento es 100% seguro y todos tienen efectos secundarios. Reconoce los riesgos, también hay riesgo en tomar un paracetamol, pero distingue claramente las reacciones locales de los casos graves y muy raros. Hay que dar la información a medida, según las dudas y las preocupaciones de los padres.
5. Cuenta tu historia, tu propia experiencia, como profesional de la salud o como padre que vacuna a sus hijos: aquel viejo amigo del colegio que tuvo polio, o por qué tus hijos no han tenido rubéola. Y cuéntalo como una historia de ciencia. Explica que no hay nada más natural que las vacunas que inducen una inmunidad natural, al estimular a tu propio sistema inmune a producir su propia protección. Los anticuerpos que te protegen los produce tu propio cuerpo. La gente que está en riesgo es la que no hace nada.
6. Utiliza las redes sociales. Involúcrate de forma proactiva con los medios de comunicación y en las redes sociales. Proporcionarles información, comentarios independientes, ayuda a los periodistas a entender los datos. Da información, respuestas, historias, videos. Internet puede ser una herramienta muy útil para luchar contra la duda. Los algoritmos que usa Google no ayudan. Google puede darte una información sesgada. Las palabras “clave” que te sugiere y los contendidos web que te ofrece puede estar condicionados por tus propias preferencias y consultas previas. Así, Google puede contribuir a crear, mantener o aumentar tus dudas o a creer que lo que opina una minoría es mucho más frecuente que lo que realmente es. Por ejemplo, los contendidos negativos tienden a proliferar más en internet. ¿Por qué una madre que ha vacunado a su hijo y todo ha ido fenomenal y están los dos sanos y felices va a escribir su experiencia en un blog o va a dejar un comentario en Internet? Por el contario, si ha habido el menor problema, esa madre compartirá sus dudas en fórums o redes sociales y su testimonio se extenderá cómo la pólvora, generando una percepción errónea del problema. Como ya hemos dicho, los contenidos relacionados con la vacunación en la web y redes sociales son principalmente inexactos e incorrectos. Por eso, uno de los “campos de batalla” se libra en internet. Difundir mensajes en blogs, redes sociales, YouTube, … está muy bien, pero es complicado. El reto no solo es que los padres tengan acceso a la información, sino que esta se entienda y sea inteligible para cualquiera. Usa un lenguaje coloquial, muestra empatía y escucha al público.
Conclusión: En España no hay grandes movimientos anti-vacunas pero sí un aumento de padres que dudan de la seguridad y eficacia de las vacunas. De momento, las coberturas vacunales son altas y no se compromete el efecto rebaño. Por ello, imponer de forma coercitiva la vacunación, podría tener un efecto contrario al pretendido. No obstante, es necesaria una vigilancia estrecha del fenómeno anti-vacunas y su efecto en la salud pública. Los profesionales de la salud son la principal fuente de información para los padres que dudan y la forma más efectiva de convencerles de lo peligroso que es no vacunar a sus hijos.
Referencias y más información:
Las vacunas funcionan. Ignacio López-Goñi y Oihana Iturbide. 2015. Phylicom ediciones, Valencia. Colección Pequeñas Guías de Salud. ISBN: 978-84-943440-0-8
Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: influence, impact and implications. Dubé, E., y col. (2015). Expert Rev Vaccines. 14(1):99-117. doi: 10.1586/14760584.2015.964212.
Identifying and addressing vaccine hesitancy. Kestenbaum, L.A., y col. (2015). Pediatr Ann. 44(4):e71-5. doi: 10.3928/00904481-20150410-07.
Promoting vaccine confidence. Smith, M.J. (2015). Infect Dis Clin North Am. 29(4):759-69. doi: 10.1016/j.idc.2015.07.004.
Vaccine hesitancy: A vade mecum v1.0. Thomson, A., y col. (2016). Vaccine. 34(17):1989-92. doi: 10.1016/j.vaccine.2015.12.049.
The impact of the web and social networks on vaccination. New challenges and opportunities offered to fight against vaccine hesitancy. Stahl, J.P., y col. (2016). Med Mal Infect. 46(3):117-22. doi: 10.1016/j.medmal.2016.02.002.
Vaccine Adverse Event Reporting System (VAERS)
El sarampión aumenta en Europa
Coberturas de vacunación en España (MSSSI)
Nota:
(*) Cuando me refiero a “padres” e “hijos” empleo los términos en plural que según el Diccionario de Lengua Española de la Real Academia significan “padre y madre de una persona” y “descendientes”, respectivamente.
Sobre el autor: Ignacio López Goñi es catedrático de microbiología de la Universidad de Navarra y autor del blog microBio.
El artículo Dudas sobre las vacunas: problemas y soluciones se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Un nuevo mecanismo de resistencia antifúngico
El grupo de investigación de la UPV/EHU Fungal and Bacterial Biomics ha demostrado la existencia de un nuevo mecanismo de resistencia que se desconocía hasta el momento en el hongo Lomentospora prolificans (L. prolificans). Este microorganismo es multirresistente a los antifúngicos (antibióticos desarrollados frente a hongos) utilizados actualmente y provoca una mortalidad de entre el 80 y el 100% en pacientes con el sistema inmunológico debilitado. Gracias al estudio se podrán diseñar fármacos más efectivos para luchar contra este hongo.
El microorganismo L. prolificans (antes conocido como Scedosporium prolificans) es un hongo filamentoso que pertenece a un grupo conocido vulgarmente como mohos, algunos de los cuales podemos observar creciendo en la comida en mal estado (fruta, pan, etc.) y que se diferencian de las levaduras unicelulares, tales como Candida albicans o Saccharomyces cerevisiae, que son relevantes en práctica clínica o en la industria alimenticia, respectivamente. El hongo L. prolificans es también común y bastante habitual en suelos de ciudades o en zonas industriales. A pesar de estar en contacto con él, no suele producir dolencias en individuos sanos, gracias al sistema inmunológico.
Sin embargo, explica Andoni Ramirez, uno de los autores del artículo, produce “infecciones muy graves” en pacientes con alguna enfermedad subyacente, como la “fibrosis quística”, o con el “sistema inmunológico debilitado”, como es el caso de pacientes que están siendo tratados con quimioterapia debido a padecer algún tipo de cáncer, pacientes en los que se ha llevado a cabo algún trasplante de órgano, o que sufren el Síndrome de la Inmunodeficiencia Adquirida (SIDA) por VIH.
Este hongo, revela la investigación, muestra una gran resistencia a los antifúngicos más habituales como el voriconazol, que es uno de los “fármacos de elección para el tratamiento” de las infecciones causadas por hongos filamentosos. “Este trabajo es muy relevante porque demuestra la existencia de un nuevo mecanismo de resistencia que se desconocía hasta el momento en hongos. Así, observamos una gran modificación de la pared celular en respuesta al antifúngico voriconazol, que es el que se utiliza preferentemente frente a este hongo y frente a otras especies fúngicas. Estas modificaciones se producen tanto en el tamaño como en la composición de su pared celular”, explica.
Este trabajo supone la primera descripción de estas respuestas como mecanismo de defensa frente a un antifúngico, abriendo un nuevo campo de posibilidades de cara al diseño de nuevas moléculas que permitirán un mejor tratamiento de ésta y otras infecciones fúngicas. “A diferencia de lo que ocurre con los agentes antibacterianos, la variedad de los compuestos antifúngicos es muy escasa, y funcionan con pocos mecanismos de acción diferentes. Así, en caso de aparición de cepas o especies resistentes, las opciones que tienen en los hospitales pueden ser a veces muy limitadas. Por tanto, el hallazgo de nuevos mecanismos de resistencia podría, en primer lugar, aumentar el número de dianas frente a las que dirigir fármacos; y en segundo lugar, explicar la resistencia tanto intrínseca como adquirida en otras especies de hongos patógenos”, advierte.
Por el momento, la investigación que está llevando a cabo el grupo de la UPV/EHU Fungal and Bacterial Biomics es básica, es decir, están generando el conocimiento necesario para que en un futuro se puedan diseñar nuevas terapias. “En este sentido, el siguiente objetivo es el de identificar los enzimas necesarios para los cambios que produce el hongo L. prolificans en su pared en respuesta al antifúngico, para así estudiarlos y generar nuevas estrategias terapéuticas”.
Aunque, hay que tener en cuenta que como en cualquier área de la biomedicina, el camino desde el laboratorio hasta el paciente es largo (de varios años) y difícil debido a la cantidad de pruebas que deben hacerse. “Además, al igual que sucede con las denominadas enfermedades raras, las infecciones causadas por este tipo de hongos tienen una baja incidencia en la población y, por tanto, a pesar de la elevada mortalidad que presentan, resulta difícil que haya agentes interesados en invertir en su investigación. Por ello, el avance siempre resulta más dificultoso y lento”, señala Ramírez.
Referencia:
Aize Pellon, Andoni Ramirez-Garcia, Idoia Buldain, Aitziber Antoran, Aitor Rementeria, Fernando L. Hernando.. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole. PLOS ONE 12(3): e0174885. DOI: 10.1371/journal.pone.0174885.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Un nuevo mecanismo de resistencia antifúngico se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Migraciones
Los seres humanos modernos aparecieron en el este de África hace unos 200.000 años. Hace 75.000 alcanzaron el Oeste del continente. Aunque hubo otros movimientos anteriores hacia Oriente Próximo, hasta hace unos 60.000 no salieron del continente africano para, poco a poco, extenderse hacia otras zonas del planeta. Hace 46.000 años llegaron a Australia y 2.000 después, a Europa. Hace 16.000 años llegaron al continente americano. Hace 11.000 los asentados en el continente europeo avanzaron hacia el Norte el retirarse los hielos de la última glaciación. Y 3.000 después llegaron a nuestro continente los primeros pueblos de agricultores y ganaderos. Hace 1.500 años los seres humanos empezaron a poblar la Polinesia. La mayor parte de esas expansiones eran, seguramente, de carácter “démico”; esto es, fueron ocupaciones graduales de territorios vecinos que iban siendo colonizados poco a poco.
Hace 6.000 años, en Sumeria, las ciudades se convirtieron en los primeros focos de atracción de emigrantes procedentes de localidades de menor tamaño o asentamientos rurales. Y ese proceso impulsó innovaciones culturales, incluidas las tecnológicas. Hace 4.500 años los pastores yamnaya invadieron Europa procedentes de las estepas de Eurasia, y los hunos hicieron lo propio hace unos 1.650, provocando el desplazamiento de pueblos germánicos hacia el interior del Imperio Romano.
Hace unos 1.570 años, anglos y sajones procedentes del norte de Europa colonizaron Gran Bretaña. Los vikingos, 350 años después, siguieron el mismo camino, y en el 980 de nuestra era, viajaron a Islandia, Groenlandia y Terranova. Antes, los árabes ya se habían expandido por Asia Occidental y Norte de África a partir del 632. Y hace ocho siglos los mongoles ocuparon gran parte de Asia.
En 1492 Colón llegó a las Américas, propiciando a partir de esa fecha grandes movimientos migratorios hacia ese continente. En 1520, barcos europeos empezaron a llevar a América esclavos capturados en el África Occidental. En 1820, cuando todavía no se habían producido las migraciones masivas que vendrían más adelante, ya vivían en América 2,6 millones de personas de origen europeo. En 1847, millón y medio de irlandeses huyeron de la hambruna en dirección a Gran Bretaña y Norteamérica. En 1913 la emigración europea hacia las Américas alcanzó su máximo histórico: ese año se desplazaron algo más de dos millones de personas. La revolución bolchevique de 1917 provocó el desplazamiento de más de un millón de seres humanos hacia Europa Occidental. Y en 1945 la Segunda Guerra Mundial desplazó a 30 millones de personas. En 1947 se movieron entre India y Paquistán 18 millones, como consecuencia de la partición india de acuerdo con criterios étnico-religiosos.
Hasta aquí hemos relatado los grandes movimientos de población que se han producido en la historia de la humanidad y de los que tenemos información precisa o, al menos, constancia. Pero, como es sabido, los desplazamientos siguen produciéndose a gran escala. En la actualidad, alrededor de 245 millones de personas viven en países distintos de los que nacieron y, de esos, más de 65 millones han tenido que abandonar su país huyendo de conflictos, violencia o vulneraciones de derechos humanos. Parte de los emigrantes -menos del 10%- son refugiados. El Alto Comisionado de Naciones Unidas para los Refugiados (ACNUR) informa de la existencia de 16,1 millones de personas bajo su jurisdicción, a los que hay que añadir otros 5,2 millones que están al amparo de la Agencia de Naciones Unidas para los Palestinos. En total son más de 21 millones.
Las personas no han dejado de moverse en el Mundo y siempre lo ha hecho por las mismas razones: huyen de la violencia y la persecución o, sencillamente, buscan una vida mejor.
Nota: Las fechas consignadas en el primer párrafo de esta anotación tienen carácter tentativo, por lo que no han de tomarse como definitivas. Cada cierto tiempo se hacen propuestas diferentes para las expansiones. El origen de la especie también está sometido a revisión; esta misma semana Nature ha publicado el hallazgo de fósiles que podrían modificar tanto el origen geográfico como temporal de nuestra especie. La paleoantropología no deja de dar sorpresas.
—————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————
Una versión anterior de este artículo fue publicada en el diario Deia el 26 de marzo de 2017.
El artículo Migraciones se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Arte & Ciencia: Conservación de obras con componentes tecnológicos
El arte y la ciencia son dos formas de conocimiento aparentemente alejadas, en gran medida consecuencia de la especialización profesional y la educación compartimentada. Del estudio de esta impostada separación surgió el estereotipo de las dos culturas, las ciencias y las humanidades, para referirnos a esa brecha de conocimiento. La realidad es que la ciencia y el arte sí están conectadas y que ninguna forma de conocimiento es impermeable a otra. Por poner algunos ejemplos: ¿Cómo podría crearse una obra plástica sin las técnicas propiciadas por la ciencia? ¿Cómo podríamos interpretar la elección de materiales?
Estas y otras cuestiones relacionadas furon tratadas por destacados profesionales -artistas, ilustradores, filósofos y científicos- que han puesto el foco en ese difuso trazo que une la ciencia y el arte. El ciclo Ciencia & Arte se desarrolló, bajo la dirección de Deborah García Bello, a lo largo de cuatro jornadas que se celebraron los jueves días 6 y 27 de abril y 11 y 25 de mayo de 2017 en el auditorio del Museo Guggeheim Bilbao.
Esta actividad de la Cátedra de Cultura Científica de la UPV/EHU se enmarca en el programa TopARTE que conmemora el XX Aniversario del Museo Guggenheim Bilbao.
Primera jornada. 2ª conferencia.
Aitziber Velasco, técnica de Conservación del Museo Guggenheim Bilbao: Conservación de obras con componentes tecnológicos
Las ciencias experimentales juegan un papel esencial en el análisis, tratamiento y conservación de las obras de arte. Estos procesos nos ofrecen, además, información valiosa sobre el contenido de la obra y las circunstancias en las que fue creada. Ciencia y arte tienen una relación mucho más íntima de lo que imaginamos, ya que el conocimiento científico es una herramienta imprescindible para artistas, restauradores y analistas. Les permite conocer las cualidades de los materiales para optar por unos u otros, prever cómo se degradarán los pigmentos o determinar la mejor manera para conservar una escultura.
Conservación de obras con componentes tecnológicosEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Arte & Ciencia: Conservación de obras con componentes tecnológicos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La carrera hacia la supremacía cuántica
Dos grandes empresas, IBM y Google, compiten entre sí por alcanzar la supremacía cuántica: fabricar un ordenador cuántico capaz de resolver un problema que ningún ordenador clásico del mundo haya sido capaz de resolver hasta ese día. Parece difícil, ya que los superordenadores más poderosos del mundo, que lideran el TOP500, son muy poderosos. Sin embargo, se estima que un ordenador cuántico de propósito general totalmente funcional sería capaz de tal hazaña con tan solo 50 cúbits. Como puedes imaginar, lograr la supremacía cuántica será el final de una carrera y el inicio de otra, la carrera hacia los ordenadores cuánticos comerciales. Permíteme glosar la situación actual de esta carrera entre gigantes.
El término «supremacía cuántica» fue acuñado por el físico John Preskill, que ocupa la cátedra Richard P. Feynman de Física Teórica en el Instituto Técnico de California (Caltech). Lo acuñó en octubre del año 2011 para su charla en la 25º Conferencia Solvay de Física [1]. Un término muy popular hoy en día, aunque resulta políticamente incorrecto para cierta gente [2]. El problema lingüístico es sencillo, en inglés recuerda demasiado al término «supremacía blanca», que se usó durante el apartheid de Sudáfrica entre 1948 y 1991. Para un hispanoparlante, quizás, la asociación con la segregación racial no sea tan obvia. Aun así, el propio Preskill tuvo sus propias dudas al respecto como nos contó en su blog Quantum Frontiers [3]; allí retó a sus lectores a proponer una alternativa; nadie propuso ninguna mejor.
Llamamos «cúbit» (qubit en inglés) a un «dígito binario cuántico» (quantum binary digit), o sea, a un «bit cuántico» (quantum bit). Este término matemático fue acuñado en el año 1993 por el físico Ben Schumacher, del Kenyon College, Ohio (EE.UU.), tras una conversación con uno de los padres de la teoría cuántica de la información, el físico teórico Bill K. Wootters, del Williams College, Massachusetts (EE.UU.) [4]. El concepto matemático de cúbit se puede implementar físicamente mediante cualquier sistema cuántico que presente dos niveles, o estados energéticos, que puedan estar en superposición cuántica. A veces conviene diferenciar entre «cúbit matemático» y «cúbit físico», pero en la práctica el contexto suele aclarar en qué sentido se está usando.
El primer artículo en el que se escribió el término «cúbit» se envió en 1993 a una revista de física, Physical Review A, aunque apareció en abril de 1995 [4]. Un segundo artículo del propio Schumacher, junto al matemático Richard Jozsa, de la Universidad de Cambridge (Reino Unido), que fue enviado más tarde en 1993 a una revista de óptica, acabó apareciendo publicado un poco antes, en 1994 [6]. En poco tiempo el término se hizo muy popular.
Los ordenadores cuánticos se caracterizan por su número total de cúbits, lo que en un ordenador clásico sería equivalente, más o menos, al número total de transistores de su microprocesador. En los ordenadores clásicos el número de bits se usar para otra cosa, el tamaño del bus de datos, es decir, el número de bits que puede recibir o enviar de forma simultánea desde la placa base al microprocesador. Hoy en día lo habitual es que un ordenador use un microprocesador de Intel de 64-bits (un Core i3, Core i5, o Core i7), que tiene unos cientos de millones de transistores. Sin embargo, el primer microprocesador de Intel era de 4-bits, el famoso Intel 4004, que tenía 2300 transistores; luego aparecieron los procesadores de 8-bits, como el 8080, con 4500 transistores; más tarde los de 16-bits, como el famoso 8086, con 29000 transistores; y así sucesivamente.
Un ordenador cuántico con 50 cúbits sería algo así como un ordenador clásico con una memoria capaz de almacenar 50 bits (el equivalente a siete letras de texto en formato ASCII); parece un número ridículamente pequeño, sobre todo hoy en día que los ordenadores tienen gigabytes de memoria; pero la magia cuántica oculta un as bajo la manga, el paralelismo cuántico. En cada paso de la ejecución de cierto algoritmo, el ordenador clásico aplica una operación matemática al contenido almacenado en su memoria clásica de 50 bits, llamada registro, es decir, a un valor numérico concreto de entre 250 posibles valores (uno entre unos mil billones).
Sin embargo, en el ordenador cuántico la información se almacena en un registro cuántico, que para 50 cúbits almacena un estado en superposición cuántica de todos los 250 posibles valores, cada uno con su correspondiente amplitud de probabilidad; gracias a ello, en cada paso de la ejecución del algoritmo cuántico se aplica una operación matemática que cambia de forma simultánea las 250 amplitudes de probabilidad correspondientes a cada uno de los 250 valores en superposición cuántica. Si este proceso se realiza de forma adecuada, el ordenador cuántico puede ser mucho más eficiente que un ordenador clásico; más aún, la simulación en un ordenador clásico del funcionamiento de un ordenador cuántico requerirá usar 250 registros clásicos, o aplicar 250 operaciones sobre un único registro clásico. Aunque estoy obviamente muchas sutilezas técnicas, salta a la vista que un ordenador cuántico con decenas de cúbits puede lograr la supremacía cuántica.
El gran problema de la fabricación de un ordenador cuántico es que no basta tener unos cuantos cúbits físicos para tener un registro cuántico en el que adquieran un estado de superposición cuántica coherente. Además, hay que garantizar que la coherencia cuántica no se pierda durante la aplicación de todas y cada una de las operaciones cuánticas aplicadas a los cúbits del registro cuántico. Cualquier interacción de alguno de los cúbits con su entorno (el sitio donde se encuentre cada cúbit físico) puede resultar en una medida no intencionada de su estado cuántico; la medida destruye (al menos parcialmente) el estado cuántico en superposición y entra en acción la decoherencia cuántica, con lo que el sistema de cúbits pasa a comportarse como un ordenador clásico (probabilístico). Con la tecnología actual aislar 50 cúbits del resto del universo y al mismo tiempo poder operar de forma arbitraria con cualquiera de ellos raya lo imposible. Por eso la carrera hacia la supremacía cuántica está repleta de obstáculos, incluso para gigantes como IBM y Google.
El concepto de supremacía cuántica es relevante en computación cuántica porque, en la práctica, es el único método para asegurarnos de que un supuesto ordenador cuántico con muchos cúbits es realmente un ordenador cuántico. Parece un juego de palabras, pero la diferencia entre un ordenador cuántico y un ordenador clásico probabilístico que usa cúbits como fuente de aleatoriedad es sutil; la eficiencia cuántica requiere que el ordenador sea cuántico de verdad. Con pocos cúbits se puede realizar un estudio experimental sistemático para verificar que el ordenador cuántico se comporta como tal. Pero con decenas de cúbits dicho estudio experimental es inviable.
Por todo ello, la mejor manera de confirmar que un supuesto ordenador cuántico con 50 cúbits es realmente un ordenador cuántico consiste en ejecutar en él un algoritmo que resuelva un problema cuya solución es imposible de lograr con el más potente de los superordenadores clásicos actuales; lo ideal sería que, por supuesto, el problema sea tal que sea fácil comprobar que la solución ofrecida es correcta. Hay muchos problemas así, pero es muy costoso poner a un equipo de investigadores a desarrollar programas y más programas para ejecutar en dicho ordenador esperando, no sin cierta fe, a que alguno demuestre la supremacía cuántica. Aquí es donde entra con pie firme la iniciativa de IBM llamada Quantum Experience [7].
El gigante azul ofreció en el verano de 2016 el acceso gratuito y automático a un ordenador cuántico de 5 cúbits mediante un servicio en la nube (cloud). La iniciativa ha sido todo un éxito y se estima que unos 40000 usuarios de más de 100 países han desarrollado más de 275000 algoritmos cuánticos para dicho ordenador en solo un año; la corrección de los programas se verifica en un simulador clásico, para luego ser ejecutados en la máquina física IBM Q [8]. Gracias a esta ingente cantidad de experimentos se puede validar estadísticamente que este ordenador IBM Q de 5 cúbits se comporta como debe hacerlo un ordenador cuántico de propósito general.
Validar de forma experimental que un ordenador cuántico de 16 cúbits es realmente cuántico, si bien no es imposible, requiere un coste muy elevado en tiempo y recursos. Por ello, desde marzo de 2017, la IBM Q Experience ofrece el acceso gratuito a un supuesto ordenador cuántico de 16 cúbits que usa la misma tecnología que el ordenador anterior de 5 cúbits [7]. Para este nuevo ordenador no existe un simulador clásico eficiente, aunque existe un verificador de la sintaxis del código. Un usuario solo sabrá si su algoritmo funciona correctamente tras ejecutarlo físicamente en la máquina IBM Q. Se espera que gran parte de los usuarios que ya han disfrutado de la experiencia con 5 cúbits se atrevan con la nueva máquina de 16 cúbits. Si toda va bien, dentro de un año habrá un número suficiente de experimentos como para que se pueda verificar de forma estadística que la máquina de 16 cúbits se comporta como debe hacerlo un ordenador cuántico.
Permíteme enfatizar la idea del gigante azul: decenas de miles de usuarios trabajarán gratis para IBM demostrando que su máquina funciona. ¡Qué más se puede pedir! Por supuesto, mantener una máquina cuántica de 16 cúbits en funcionamiento continuo en un laboratorio tiene un coste. Por ello, las grandes mentes pensantes de IBM Q han tenido otra idea feliz, que anunciaron el pasado 17 de mayo de 2017 [7]. Su máquina de 16 cúbits tiene 17 cúbits. ¡¿Cómo?! La experiencia IBM Q ofrece acceso gratuito a 16 cúbits, ni uno más; quien quiera usar los 17 cúbits tendrá que pagar por ello. Todas las empresas, industrias, institutos de investigación y demás entes interesados en usar la máquina de 17 cúbits podrán aprender a usarla de forma gratuita, con 16 cúbits, pero para usar la máquina fetén tendrán que abonar por ello. Sin lugar a dudas el gigante azul es gigante por algo.
Seguro que te preguntas, si nadie sabe con seguridad si el ordenador IBM Q de 17 cúbits es realmente cuántico, ¿quién va a pagar por usarlo? Yo no tengo la respuesta. Lo cierto es que lo único importante para IBM Q es que la máquina de 16 cúbits sea tan usada, o más, de lo que ha sido usada la máquina de 5 cúbits en el último año. Así podrá verificar que su tecnología funciona.
El objetivo de IBM Q es fabricar un ordenador cuántico de 50 cúbits antes de 2022 capaz de lograr la supremacía cuántica. Para este proyecto lo ideal es disponer de cientos de miles de algoritmos cuánticos ya implementados y de decenas de miles de programadores cuánticos experimentados en su tecnología. Quizás alguno de esos algoritmos, implementado en 50 cúbits, sea el que logre la supremacía cuántica para IBM. Quizás en los próximos años IBM abra una competición entre sus usuarios con un buen premio en metálico para el primero que logre demostrar la supremacía. Quizás el gigante azul venza en la carrera de la supremacía cuántica contra Google gracias a esos miles de programadores que están trabajando gratis por el mero placer de usar un ordenador cuántico.
Por cierto, Google afirma tener un ordenador cuántico de 8 cúbits, pero no ha demostrado aún que sea cuántico. Ha anunciado que pretende fabricar uno de 50 cúbits antes que IBM [8]. ¿Pero quién programará dicha máquina? ¿Quién trabajará gratis para Google?
Este post ha sido realizado por Francis Villatoro (@Emulenews) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
Referencias
[1] John Preskill, “Quantum computing and the entanglement frontier,” 25th Solvay Conference on Physics (“The Theory of the Quantum World”), 19-22 Oct 2011, arXiv:1203.5813 [quant-ph].
[2] Karoline Wiesner, “The careless use of language in quantum information,” arXiv:1705.06768 [physics.soc-ph].
[3] John Preskill, “Supremacy Now?” Quantum Frontiers, 22 Jul 2012. https://goo.gl/KdnD3j
[4] John Preskill, “Who named the qubit?” Quantum Frontiers, 09 Jun 2015. https://goo.gl/EwFDyR
[5] Benjamin Schumacher, “Quantum coding,” Physical Review A 51: 2738 (1995), doi: 10.1103/PhysRevA.51.2738.
[6] Richard Jozsa, Benjamin Schumacher, “A New Proof of the Quantum Noiseless Coding Theorem,” Journal of Modern Optics 41: 2343-2349 (1994), doi: 10.1080/09500349414552191.
[7] IBM Q Experience: https://www.research.ibm.com/ibm-q/
[8] Davide Castelvecchi, “IBM’s quantum cloud computer goes commercial,” Nature 543: 159 (09 Mar 2017), doi: 10.1038/nature.2017.21585.
El artículo La carrera hacia la supremacía cuántica se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La evaluación mejora el aprendizaje
Marta Ferrero
En el ámbito escolar la evaluación se suele asociar con el proceso de examinar y poner nota a los conocimientos de los estudiantes. Quizá por eso despierta tanto recelo entre muchos alumnos, familias e incluso docentes, hasta el punto de que no son pocas las voces que abogan por desterrarla definitivamente de los centros escolares. Lo que muchos desconocen es que, además de ser un medio para comprobar lo aprendido, la evaluación es un potente medio para aprender.
A mediados de la década de los 70, una revisión de la literatura puso de relieve que el acto de recuperar la información almacenada en la memoria favorece su aprendizaje (Bjork, 1975). Desde entonces, el efecto de la evaluación (o “testing effect” en inglés) ha sido objeto de estudio en innumerables ocasiones y la evidencia recogida hasta el momento apunta de forma consistente en la misma dirección: evaluar a los alumnos propicia un mejor aprendizaje y recuerdo posterior de lo aprendido que otras técnicas de estudio más populares (Adesope y cols., 2017; Bangert y cols., 1991; Phelps, 2012; Roediger y cols, 2006; Rohrer y cols., 2010). De hecho, en contra de lo que la intuición nos pueda dictar, el hecho de enfrentarse a una evaluación tiene más beneficios en el aprendizaje que leer la materia una y otra vez. Y más importante aún, como veremos a continuación, este resultado es robusto bajo una amplia variedad de circunstancias.
En el año 2006, Roediger y colaboradores realizaron una revisión cualitativa sobre el efecto de la evaluación en el aprendizaje. Los resultados mostraron que los beneficios de ésta son constantes independientemente del tipo de tarea que se emplee para ello (por ejemplo, tareas de laboratorio como la asociación de parejas de estímulos o tareas reales como la redacción de un ensayo o responder a preguntas de selección múltiple), del tipo de material objeto de estudio (por ejemplo, listas de palabras o textos) o del contenido y su complejidad. Además, encontraron que estas ganancias se mantienen constantes tanto en los laboratorios como en las aulas. Un meta-análisis de estudios realizados exclusivamente en colegios había alcanzado esta misma conclusión años atrás (Bangert y cols., 1991). En el año 2012, Phelps realizó una nueva síntesis sobre el efecto de la evaluación en el rendimiento académico de los alumnos. En esta ocasión, se incluyeron trabajos cuantitativos y cualitativos realizados entre 1910 y 2010. Una vez más, los resultados mostraron que evaluar mejora el aprendizaje.
Recientemente, Adesope y colaboradores (2017) han realizado un meta-análisis sobre el efecto de la evaluación. Su trabajo de revisión incorpora una serie de mejoras en relación a los anteriores como, por ejemplo, la inclusión de los estudios más recientes o el uso de técnicas de análisis más sofisticadas que permiten una interpretación de los datos más completa y rigurosa. Por todo ello, las conclusiones a las que llega son especialmente relevantes. En primer lugar, los resultados confirman que realizar evaluaciones favorece el aprendizaje. Este efecto es moderado si se compara con otras estrategias de estudio, como la relectura, y es mucho mayor cuando se compara con no hacer nada. En relación al formato de las tareas de evaluación empleadas, se observa que el recuerdo libre, el recuerdo con pistas, las preguntas de selección múltiple y las preguntas de respuestas cortas son las estrategias que conducen a beneficios mayores. Por ello, lo más adecuado es que el docente decida en cada caso qué formato usar en función del tipo de aprendizaje (por ejemplo, preguntas de selección múltiple para retener hechos y preguntas de respuesta corta para contenidos más abstractos y conceptuales). Además, los beneficios de aprendizaje son mayores si el formato de las pruebas finales coincide con el de las pruebas de repaso y también si se combinan diferentes tipos de tarea durante ambos tipos de prueba. Este último resultado justifica una vez más el empleo de diferentes tipos de tarea en función de la materia objeto de aprendizaje. En relación al feedback, los autores concluyen que los beneficios de la evaluación son prácticamente iguales tanto si los alumnos reciben retroalimentación sobre su rendimiento durante las pruebas de repaso como si no. Y, por tanto, recomiendan la evaluación incluso cuando no existe la opción de dar feedback. La evaluación es también eficaz independientemente del intervalo de tiempo que transcurra entre las pruebas de repaso y las finales, aunque las mejoras son mayores si este lapso de tiempo es de 1 a 6 días que si es inferior a 1 día. Y también lo es al margen del nivel académico en el que se encuentren los alumnos. Curiosamente, es preferible que los estudiantes realicen una única prueba de repaso a que realicen varias. Luego, en principio, una pequeña inversión de tiempo es suficiente para obtener mejoras. Por último, al igual que en revisiones previas, este meta-análisis muestra que los efectos de la evaluación se producen tanto en contextos artificiales como en aulas reales.
¿Por qué la evaluación está tan infravalorada en relación a otras estrategias de aprendizaje como la relectura, tan valorada por muchos estudiantes? La relectura de un texto puede propiciar un sentido de familiaridad con el mismo que nos conduce a la falsa sensación de estar aprendiendo (Bjork y cols., 2011). Sin embargo, este aprendizaje es superficial y se traduce en un rendimiento pobre a largo plazo (Roediger et al., 2006). Por el contrario, la evaluación posibilita unas condiciones de aprendizaje que, aunque aparentemente crean cierta dificultad, permiten un aprendizaje más flexible y duradero. Estas dificultades deseables, como las ha denominado Bjork (1994), impulsan los procesos de codificación y recuperación que favorecen el aprendizaje, la comprensión y el recuerdo. Junto con la dificultad que supone ser evaluado, hay otras razones que pueden explicar la mala fama de la evaluación. Por un lado, hay voces que apuntan al estrés que puede causar en los estudiantes una exposición frecuente a evaluaciones (véase, por ejemplo, Acaso, 2014). Sin entrar en más debate, es importante recalcar aquí que evaluación no es necesariamente sinónimo ni de calificación ni de prueba oficial para acceder a estudios superiores. Por otro lado, algunos críticos también apuntan a que la evaluación puede quitar tiempo para hacer otras actividades o para usar el material didáctico de una forma más creativa. Sin embargo, como apuntan Roediger y colaboradores (2006), si los alumnos no han alcanzado un dominio básico de la materia, difícilmente van a poder pensar de forma crítica y creativa sobre la misma. Además, como explican estos autores, hay muchas formas de integrar la práctica de la evaluación en el aula sin interrumpir la rutina de trabajo habitual.
En síntesis, la evidencia demuestra de forma robusta que la evaluación es una herramienta muy valiosa para favorecer el aprendizaje a largo plazo. Los numerosos estudios que se han hecho muestran además que los beneficios de la evaluación se mantienen con independencia de la edad y nivel educativo de los aprendices así como del tipo y complejidad de la materia. A la luz de estos resultados, y a pesar del creciente número de voces críticas, no hay razón para que los centros escolares no mantengan o incorporen la evaluación en sus aulas como práctica habitual.
Referencias:
Acaso, M. (2014). Dopamina, empoderamiento y responsabilidad: sin cambiar la evaluación no cambiaremos la educación.
Adesope, O. O., Trevisan, D. A., & Sundararajan, N. (2017). Rethinking the Use of Tests: A Meta-Analysis of Practice Testing. Review of Educational Research, 87, 1-43.
Bangert-Drowns, R.L., Kulik, J.A., & Kulik, C.L.C. (1991). Effects of frequent classroom testing. Journal of Educational Research, 85, 89-99.
Bjork, R. A. (1975). Retrieval as a memory modifier. In R. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 123-144). Hillsdale, NJ: Erlbaum.
Bjork, R.A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185-205). Cambridge, MA: MIT Press.
Bjork, E. J., & Bjork, R. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In M. A. Gernsbacher, R. W. Pew, L. M. Hough, & J. R. Pomerantz (Eds.), Psychology and the real world: Essays illustrating fundamental contributions to society (pp. 56-64). Washington, DC: FABBS Foundation.
Phelps, R. P. (2012). The effect of testing on student achievement, 1910–2010. International Journal of Testing, 12, 21–43.
Roediger, H.L., & Karpicke, J.D. (2006). The Power of Testing Memory: Basic Research and Implications for Educational Practice. Perspectives on Psychological Science, 1, 181-210.
Rohrer D., & Pashler, H. (2010). Recent research in human learning challenges conventional instructional strategies. Educational Research, 39, 406-412.
Sobre la autora: Marta Ferrero es psicopedagoga y doctora en psicología. Actualmente es investigadora posdoctoral en el Deusto Learning Lab de la Universidad de Deusto. Es autora del blog Si tú supieras…
El artículo La evaluación mejora el aprendizaje se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Ciencia: es complicado
Explicaciones hay, y las ha habido siempre; para cada problema humano hay siempre una solución bien conocida, elegante, plausible y equivocada. H. L. Mencken
La mente humana es una máquina maravillosa que está poseída por un insaciable deseo de conocer, de satisfacer su curiosidad, pero como todos los sistemas biológicos tiene sus defectos. Y uno de ellos es particularmente perverso: la vagancia. La mente humana quiere saber, pero el cerebro tiene un infinito anhelo de trabajar lo menos posible. Por eso siempre prefiere una explicación sencilla a una compleja; un razonamiento simple a uno más alambicado, una historia directa y sin demasiados condicionales que otra repleta de apartes, casos particulares y rincones que necesitan explicaciones complementarias. No hablamos aquí de la llamada Navaja de Ockham, un principio metodológico razonable, sino del simple problema de la pereza que hace que los seres vivos prefieran el camino con menos cuestas. Y eso, para la ciencia, es un problema, porque resulta que nuestro Universo es complejo, sutil, a veces contradictorio y siempre anti-intuitivo. Comprender el cosmos es siempre cuesta arriba.
Por eso la respuesta a casi cualquier pregunta realmente interesante se puede resumir igual que esas tortuosas relaciones personales se etiquetan en Facebook: Es Complicado.
Pongamos un ejemplo relacionado con la actualidad. El pasado domingo 4 de junio de 2017 la periodista Rosa Montero publicó en la revista El País Semanal un artículo sobre intolerancias alimenticias, transgénicos, el poder de la industria farmacéutica y la demonización de la homeopatía. No se trata de desmontar sus numerosos, variados y profundos errores; otros ya lo han hecho, con brillantez. Lo que se pretende aquí es subrayar hasta qué punto este tipo de argumentos revelan el daño que hace el afán de simplicidad enfrentado a la complejidad del conocimiento científico. Porque puramente por casualidad y coincidiendo con el artículo citado la revista The Scientist publicó un amplio repaso de lo que la ciencia conoce ahora mismo sobre la celiaquía, las intolerancias alimentarias no celiacas, su prevalencia, causas y posibles orígenes, además de potenciales avenidas de tratamiento. A diferencia de la elegante, plausible y equivocada explicación defendida por Rosa Montero lo que conocemos es mucho más complejo.
La prevalencia de estas enfermedades está aumentando, es cierto, y no sabemos por qué; pero no se debe a transgénicos (que no están en nuestros campos de cultivo) y mucho menos a que la labor del gran Norman Borlaug y la Revolución Verde crearan nuevos tipos de trigo con un gluten distinto, cosa que no hizo. Sabemos que la verdadera intolerancia celiaca se comporta como una enfermedad autoinmune, creando respuesta de nuestras defensas no sólo contra algunas de las proteínas del gluten, sino sobre células propias del cuerpo. Hay un componente genético, pero resulta que casi el 40% de la población lleva variantes génicas relacionadas con la enfermedad y sólo entre el 1 y el 3% del total la desarrollan, y aún no conocemos el agente detonante que podría ser cualquier cosa en nuestro medio ambiente, tal vez la más insospechada. Existen, además, intolerancias a los cereales que no están relacionadas con el gluten, pero que pueden interactuar modificando el curso de la enfermedad.
Los síntomas abdominales son los más típicos y pueden dañar el intestino, pero ahora están apareciendo otros de síntomas en adultos (osteoporosis, anemia) cuya conexión no conocemos. Sabemos que la composición del microbioma intestinal es diferente en los celiacos, pero no sabemos de qué manera afecta a la enfermedad; aunque resulta que al menos parte del aumento del número de casos podría deberse a nuestra exitosa lucha contra las úlceras de estómago, porque la presencia de Helicobacter pylori (la bacteria que causa muchas de ellas) coincide con menos celiaquía. Y sabemos que en algunas circunstancias la infección deliberada con parásitos, como lombrices intestinales, alivia a algunos enfermos, pero no sabemos cómo ni por qué. Hay pocas certezas y muchos factores en juego. En otras palabras: es complicado.
Sería mucho más sencillo, comprensible y satisfactorio tener un único enemigo contra el que poder luchar. Sería mucho más heroico que ese enemigo tuviese defensores poderosos para así luchar hasta derrotarlos en defensa de la verdad. Sería mucho más elegante y plausible que las cosas tuviesen una explicación sencilla. Pero la realidad no es así. En ciencia muchos fenómenos surgen de la interacción de múltiples factores, lo que complica entenderlos. Por eso uno de los principios metodológicos básicos es el reduccionismo: controlar los factores que participan en un sistema complejo y modificarlos de uno en uno, de modo controlado y sistemático, para detectar cuáles influyen y de qué manera afecta cada uno. Cuando se trata de objetos o seres vivos es fácil realizar este tipo de investigación en un laboratorio. Pero cuando se trata de seres humanos no se pueden hacer experimentos, así que hay que usar los grandes números, las estadísticas y la historia para intentar conseguir los datos. Esto obliga a tratar con múltiples factores y a usar sofisticados métodos de análisis para separar sus efectos. El proceso no es simple y puede conducir a errores que luego hay que corregir, pero es el único disponible.
Esto exige años de estudio, décadas de dedicación, grandes presupuestos, captación de datos a gran escala, y también personas que dedican su carrera y deben vivir con la posibilidad, siempre presente, de que el trabajo de su vida resulte ser uno de esos errores que se descartan en los pies de página de los libros de ciencia. Exige mucho trabajo mental sin ninguna garantía de que el resultado final sea positivo y con la certeza de que, aun siéndolo, la explicación nunca será elegante y sencilla sino retorcida, compleja, llena de excepciones y sutilezas difíciles de entender. La práctica de la ciencia a veces genera la sensación de estar golpeándote la cabeza contra la pared, de estar desperdiciando tu vida dedicándote a pensar con feroz intensidad en resolver un problema que no se puede resolver. Y hacerlo antes de que los chinos, o los estadounidenses, lo consigan antes que tú.
Cuánto más fácil es buscar un culpable, un enemigo malvado, plausible y que explique todo y enfocar en la ira sobre esa imagen, sobre todo cuando lo que se quiere es la explicación de un sufrimiento humano real; cuánto más satisfactorio sentirse seguro y lleno de justicia con una explicación simple y un enemigo claro en lugar de frustrado, inseguro e incluso ignorante. La ciencia no ofrece respuestas sencillas, ni morales, ni justas: busca respuestas reales. El cerebro a veces prefiere ahorrarse el trabajo y las dudas, y es comprensible: siempre es más fácil remar a favor que en contra de la corriente. Pero aunque cueste más trabajo hay que ir donde está la verdad; por eso merece la pena. Aunque sea complicado.
Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.
El artículo Ciencia: es complicado se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Cómo el Ártico se volvió salado
El Océano Ártico fue una vez un gigantesco lago de agua dulce. Sólo después de que el puente terrestre entre Groenlandia y Escocia se hubiese sumergido lo suficiente, grandes cantidades de agua salada llegaron desde el Atlántico. Con la ayuda de un modelo climático, investigadores del Instituto Alfred Wegener (Alemania) han demostrado cómo tuvo lugar este proceso, permitiéndonos por primera vez comprender con mayor precisión cómo se desarrolló la circulación atlántica que conocemos hoy.
Cada año, aproximadamente 3.300 kilómetros cúbicos de agua dulce fluyen hacia el océano Ártico. Esto equivale al diez por ciento del volumen total de agua que todos los ríos del mundo transportan a los océanos al año. En el clima cálido y húmedo del Eoceno (hace entre 56 a 34 millones de años), la afluencia de agua dulce probablemente fue aún mayor. Sin embargo, a diferencia de hoy, durante ese período geológico no hubo intercambio de agua con otros océanos. La afluencia de aguas salinas del Atlántico y del Pacífico, que hoy encuentra su camino al Océano Ártico desde el Pacífico a través del estrecho de Bering y desde el Atlántico Norte a través de la cresta Groenlandia-Escocia, no era posible. La región que hoy está sumergida estaba por encima del nivel del mar en ese periodo.
Sólo una vez que desapareció el puente terrestre entre Groenlandia y Escocia, surgieron los primeros pasos oceánicos, conectando el Ártico con el Atlántico Norte y haciendo posible el intercambio de agua. Utilizando un modelo climático, los investigadores han simulado con éxito el efecto de esta transformación geológica en el clima. En sus simulaciones, sumergieron gradualmente el puente terrestre a una profundidad de 200 metros, un proceso tectónico de inmersión que en la realidad duró varios millones de años. Curiosamente, los mayores cambios en los patrones de circulación y las características del Océano Ártico sólo se produjeron cuando el puente de tierra había alcanzado una profundidad de más de 50 metros por debajo de la superficie del océano.
Esta profundidad umbral corresponde a la profundidad de la capa superficial de mezcla, esto es, la capa que determina dónde termina el agua superficial relativamente ligera del Ártico y comienza la capa subyacente de agua densa que entra del Atlántico Norte. Sólo cuando la cresta oceánica se encuentra por debajo de la capa de mezcla superficial puede el agua salina más pesada del Atlántico Norte fluir hacia el Ártico con relativamente poco obstáculo. Por tanto, solo una vez que el puente entre Groenlandia y Escocia había alcanzado esta profundidad crítica, se creó el Océano Ártico salino como lo conocemos hoy. La formación de los pasos oceánicos desempeña un papel vital en la historia del clima global, ya que conlleva cambios en el transporte de energía térmica en el océano entre las latitudes media y polar.
La teoría de que la Cuenca Ártica estuvo una vez aislada se apoya en el descubrimiento de fósiles de algas de agua dulce en los sedimentos de aguas profundas del Eoceno que se obtuvieron durante una campaña de perforación internacional cerca del Polo Norte en 2004. Lo que una vez fue un puente terrestre ahora se encuentra alrededor de 500 metros bajo el océano y está formado casi enteramente de basalto volcánico. Islandia es la única sección que queda por encima de la superficie.
Referencia:
Michael Stärz, Wilfried Jokat, Gregor Knorr, Gerrit Lohmann (2017) Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge. Nature Communications. DOI: 10.1038/NCOMMS15681
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Cómo el Ártico se volvió salado se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El teorema de los cuatro colores (y 4): ¿Podemos creer la prueba de la conjetura?
En 1975, el divulgador científico Martín Gardner (1914-2010) publicaba un artículo (ver [1]) en el que afirmaba que el denominado mapa de Mc.Gregor –de 110 regiones– precisaba necesariamente de cinco colores para pintarse, sin que dos regiones adyacentes compartieran color. Es decir, proponía un contraejemplo al teorema de los cuatro colores. ¿Por qué continuaron entonces Appel y Haken intentando demostrar el resultado planteado por Guthrie en 1852?
El artículo de Gardner se publicó el 1 de abril de 1975, el Día de los inocentes en los países anglosajones. Muchos lectores, contrariados, enviaron a Gardner propuestas de coloreado del mapa de Mc.Gregor, para mostrarle que su afirmación era errónea.
Lo raro es que esos lectores no fueran conscientes de que se trataba de una simple broma; en ese artículo Gardner hablaba de Seis descubrimientos sensacionales que de alguna manera han escapado a la atención pública. En efecto, el divulgador:
-
‘mostraba’ una refutación de la teoría de la relatividad de Einstein, a través de un experimento del físico británico Humbert Pringl;
-
‘anunciaba’ el descubrimiento –en el Codex Madrid I y por parte de Augusto Macaroni de la Universidad Católica de Milán– de que Leonardo de Vinci había inventado el retrete auto-limpiable con el agua de su cisterna;
-
‘comentaba’ la demostración de Richard Pinkleaf –con ayuda del ordenador MacHic– de que en ajedrez, el movimiento de apertura de peón a cuatro torre de rey gana siempre la partida;
-
‘notificaba’ el sorprendente resultado –obtenido por John Brillo de la Universidad de Arizona– de que la base de los logaritmos naturales, el número e,elevado a π(163)½ es el número entero 262.537.412.640.768.744;
-
‘anunciaba’ la construcción –debida al parapsicólogo Robert Ripoff– de un motor funcionando con energía mental; y
-
‘notificaba’ el descubrimiento –por parte del especialista en teoría de grafos William McGregor– del famoso mapa del que hemos hablado antes.
Así que es lógico que, tras el 1 de abril de 1975, se continuara con la búsqueda de una demostración del teorema de los cuatro colores… Durante el largo proceso hasta llegar a su prueba, se desarrollaron teorías matemáticas como la teoría de grafos y de redes. Es decir, ni los errores ni los aciertos intentando demostrar este teorema fueron nimios; todos ellos ayudaron a la puesta a punto de este primer gran teorema demostrado –¿verificado?– usando un ordenador.
Pero, ¿es realmente una demostración? ¿Se puede garantizar la corrección de la compilación realizada por un ordenador? ¿Las computadoras son infalibles? Tras la demostración del teorema de los cuatro colores con ayuda de ordenadores, otras pruebas se apoyaron en este método, como la clasificación de los grupos simples finitos (2004) –que depende de cálculos imposibles de ejecutar con detalle a mano– o la solución de Thomas Hales (1998) del problema de Kepler sobre el empaquetamiento óptimo de esferas. Pero, ¿se puede aceptar como válida una afirmación que sólo una máquina, y no una mente humana, puede comprobar?
¿Qué es una demostración? El filósofo de la ciencia Imre Lakatos (1922-1974) la define (ver [3]) como: “Una sucesión finita de fórmulas de algún sistema dado, donde cada uno de los pasos de la sucesión es o bien un axioma del sistema, una fórmula derivada por una regla del sistema a partir de una fórmula precedente”.
Por su parte, el filósofo Thomas Tymoczko (1943-1996) califica una demostración como algo (ver [6]): convincente –debería persuadir incluso a los escépticos que dudan de la veracidad del resultado–, formalizable –la conclusión debería alcanzarse partiendo de sistemas axiomáticos–, y comprobable.
Este último es el aspecto más controvertido en el caso del teorema de los cuatro colores. ¿Puede estar un teorema probado si no se puede leer (comprobar) su demostración?
Existen dos corrientes principales que intentan responder a este dilema:
Los escépticos opinan que el aspecto de la comprobabilidad es el que pone en duda la credibilidad de la prueba. Si las pruebas deben ser verificadas, parece que entonces una persona –lo opuesto a una máquina– debe completar esta tarea: esto no puede hacerse con la prueba del teorema de los cuatro colores.
El matemático Paul Halmos (1916-2006) opinaba que la demostración realizada con un ordenador tiene la misma credibilidad que si está hecha por un adivino…Y afirmaba: “No puedo aprender nada de la demostración. La prueba no indica la razón por la que sólo se necesitan 4 colores ¿por qué no 13? ¿Qué tiene de especial el número 4?”.
El matemático Pierre Deligne (1954) comentaba: “No creo en una prueba hecha con ordenador. En primer lugar, soy demasiado egocéntrico. Creo en una demostración si la entiendo, si está clara. Un ordenador puede también cometer errores, pero es mucho más difícil encontrarlos”.
Tymockzo afirma que usar un ordenador para establecer una verdad matemática es transformar pruebas en experimentos. Afirma que el teorema de los cuatro colores ha sido confirmado a través de un experimento de física teórica, pero no probado de una manera formal. Aunque se tiene una pequeña idea de lo que el ordenador está testando, no se tiene la seguridad de lo que se está haciendo.
Los no escépticos, por su parte, argumentan del siguiente modo:
-
aunque las equivocaciones cometidas por los ordenadores son más difíciles localizar, los seres humanos fallan con más frecuencia; los ordenadores siguen un programa rígido predeterminado, y no tienen tropiezos motivados por los cambios de humor, el estrés u otros factores externos;
-
la longitud de algunas demostraciones sobrepasa la capacidad de computación humana, pero es perfectamente aceptable por los estándares de las máquinas;
-
la idea de que no pueden usarse ordenadores va a ser cada vez más insólita para las generaciones futuras: los ordenadores serán –¿son?– herramientas como el lápiz y el papel…
-
la prueba de Appel y Haken es, en esencia, tradicional, ya que consiste en una serie de pasos lógicos, que conducen a la conclusión de que la conjetura puede reducirse a una predicción sobre el comportamiento de unos2.000 mapas.
¿Quiénes tienen razón?
Para añadir un poco más de incertidumbre al tema, el filósofo Hud Hudson afirmaba dar en [2] un contraejemplo al teorema de los cuatro colores: presentaba el mapa de Zenopia, una isla formada por seis provincias que necesita seis tonos para colorearse… Entonces, ¿es falso el teorema de los cuatro colores? No, no hay que preocuparse: Zenopia es un mapa con fronteras extrañas, cuya especial geografía queda excluda del enunciado original del teorema…
Bibliografía
[1] Martin Gardner, Mathematical Games: Six Sensational Discoveries that Somehow or Another have Escaped Public Attention, Scientific American 232, 127-131, 1975
[2] Hud Hudson, No basta con cuatro colores, Gaceta de la RSME 8(2), 361-368, 2005.
[3] Imre Lakatos, What does a mathematical proof prove?, Cambridge Univers¡ity Press, 540-551, 1979.
[4] Marta Macho Stadler, Mapas, colores y números, Descubrir las matemáticas hoy: Sociedad, Ciencia, Tecnología y Matemáticas 2006 (2008) 41-68
[5] E.R. Swart, The philosophical implications of the four-colour theorem, American Mathematical Montlhy 87, 697-707, 1980
[6] Thomas Tymoczko, The four-color problem and its philosophical significance, Journal of Philosophy 76, 57-70, 1979
[7]Robin .J. Wilson, Four colors suffice: how the map problem was solved, Princeton University Press, 2002
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo El teorema de los cuatro colores (y 4): ¿Podemos creer la prueba de la conjetura? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: