Se intuye la conservación de la energía (2)
Un año antes de la observación de Joule, Julius Robert Mayer, un médico alemán, también había propuesto una ley general de conservación de la energía. Mayer no había hecho experimentos cuantitativos; pero había observado procesos corporales que implicaban calor y respiración. También había utilizado los datos publicados por otros científicos sobre las propiedades térmicas del aire para calcular el equivalente mecánico del calor, obteniendo aproximadamente el mismo valor que había obtenido Joule.
Mayer pertenecía a la escuela filosófica alemana ahora conocida como Naturphilosophie o “filosofía de la naturaleza.” Esta escuela, relacionada con el movimiento romántico, floreció a finales del XVIII y principios del XIX. Según la Naturphilosophie, los diversos fenómenos y fuerzas de la naturaleza -como la gravedad, la electricidad y el magnetismo- no están en realidad separadas unas de otras, sino que son manifestaciones de alguna fuerza natural “básica” unificadora. Esta filosofía por lo tanto alentó los experimentos que buscaban esa fuerza subyacente y las conexiones entre las diversas clases de fuerzas observadas en la naturaleza.
Los pensadores más influyentes de la Naturphilosophie fueron Johann Wolfgang von Goethe y Friedrich Wilhelm Joseph von Schelling. Ninguno de estos hombres fue lo que hoy llamaríamos un científico, aunque Goethe escribió extensamente sobre geología y botánica, y desarrolló una teoría de colores que difería de la de Newton. Goethe se considera generalmente el más importante poeta y dramaturgo en lengua alemana, mientras que Schelling era un filósofo. Ambos hombres tuvieron gran influencia en la generación de científicos europeos educados en las primeras décadas del siglo XIX.
Los filósofos de la naturaleza estuvieron estrechamente asociados con el movimiento romántico en la literatura, el arte y la música y los románticos protestaron contra la idea del Universo como una gran máquina, la “máquina del mundo newtoniana”. Esta idea les parecía moralmente vacía y artísticamente inútil (véase a este respecto Anticiencia: La unidad perdida). Se negaron a creer que la riqueza de los fenómenos naturales, incluyendo el intelecto humano, las emociones y las esperanzas, pudieran entenderse como el resultado de los movimientos de las partículas; por cierto, una opinión que en realidad casi ningún científico ni hace hoy ni hacía entonces, ni la defiende hoy ni la defendía entonces (aunque siempre hay algún vaquesfericista, esto es, aquel que tiende a la sobresimplificación de tratar a la vaca como una esfera).
Un punto muy importante del ideario de la Naturphilosophie decía que la naturaleza podía ser entendida como es en realidad solo por observación directa, o “experiencia”. Pero no nos confundamos, no querían decir lo que nosotros entendemos ahora por observación. Para ellos no se debían usar aparatos “artificiales”, sólo los sentidos, los sentimientos e las intuiciones. Para Goethe, el objetivo de su filosofía era “descubrir la fuerza más íntima que ata al mundo y guía su curso”. Si el lector encuentra un parecido extraordinario con las pseudociencias no se extrañe, al final es lo mismo.
Aunque su énfasis en la unidad de la naturaleza llevó a los seguidores de la Naturphilosophie a algunas ideas muy útiles -como el concepto general de la conservación de la energía-, su prejuicio romántico y anticientífico hizo que fuese disminuyendo su influencia conforme se acumulaban los éxitos de la ciencia. Pasado la mitad del siglo XIX, los científicos que antes habían reconocido su influencia, incluyendo Mayer, ahora se oponían furibundamente. De hecho, la oposición de algunos científicos dudaron alrincipio de la ley de conservación de la energía simplemente por su desconfianza en la Naturphilosophie. Y es que los científicos son personas que, como todas las personas, no piensan en un vacío intelectualmente aséptico, aunque a muchos les cueste reconocer la influencia que las ideas de su tiempo tienen en uno u otro sentido en sus argumentaciones. Por ejemplo, William Barton Rogers, fundador del Instituto de Tecnología de Massachusetts, escribió en 1858:
Me parece que muchos de los que están discutiendo esta cuestión de la conservación de la fuerza [ahora diríamos energía] se están hundiendo en la niebla del misticismo.
Sin embargo, la ley fue aplicada tan rápidamente y con tanto éxito en las ciencias físicas que sus orígenes filosóficos pronto fueron olvidados. Sin embargo, este episodio es un recordatorio de que, si bien en el trabajo diario cotidiano de los científicos físicos, el experimento y la teoría matemática son las guías habituales, para conseguir un avance realmente importante en ciencia, la especulación filosófica también puede desempeñar un papel importante. Los trabajos de Albert Einstein y Niels Bohr, entre otros muchos, son magníficos ejemplos de ello.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Se intuye la conservación de la energía (2) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Se intuye la conservación de la energía (1)
- Carnot y los comienzos de la termodinámica (2)
- Arte & Ciencia: Conservación de obras con componentes tecnológicos
Evolución del asesinato
Fue David Buss el que, en 2005, afirmó que los humanos han desarrollado, en el proceso de la evolución, poderosas adaptaciones psicológicas que les llevan al crimen como un medio para resolver los problemas específicos que se presentan en la lucha evolutiva por la supervivencia y la reproducción. Es una buena hipótesis para comenzar este capítulo. Por tanto, es la selección natural la que ha reunido una serie de mecanismos psicológicos para el homicidio que llevan a resolver problemas adaptativos concretos.
También conocemos alternativas al asesinato que significan una victoria en la lucha pero no son letales para el perdedor. Seguramente ha existido una competencia o, mejor, una selección simultánea, entre el asesinato y esas otras conductas que no incluyen la muerte de una persona. Sin embargo, Duntley y Buss afirman que no sabemos cuales son los factores que llevan al asesinato y, por tanto, tampoco los que llevan a otras conductas que lo evitan, como pueden ser el altruismo, la empatía o las relaciones de pareja y de grupo.
José María Jarabo: Por el honor de mi dama
Se llamaba José María Manuel Pablo de la Cruz Jarabo Pérez-Morris y, cuando ocurrieron los hechos que aquí narramos, era sobrino del Presidente del Tribunal Supremo, José María Ruiz Jarabo que, años más tarde, sería nombrado Ministro de Justicia. Hay quien asegura que nuestro protagonista fue el inventor de la muchas veces utilizada frase “¡No sabe usted con quien está hablando!”, y que la pronunció al ser detenido. Asesinó a cuatro personas, entre el 19 y el 21 de julio de 1958, en las calles Lope de Rueda y Alcalde Sáinz de Baranda de Madrid, casi haciendo esquina. El 22 de julio se descubrieron los crímenes, y ese mismo día fue detenido. Convicto y confeso, fue juzgado el 29 de enero de 1959 y ejecutado el 4 de junio del mismo año. Fue el último ejecutado a garrote vil.
Eran los asesinatos de un “niño bien”, con una vida azarosa, pues ya había pasado por la cárcel en Estados Unidos; y fueron también los crímenes de un machista, de un mujeriego, de un caprichoso, en fin, de un asesino “porque yo me lo merezco”.
De 35 años, Jarabo procedía de una buena familia, antiguo alumno de El Pilar, vivero de ministros, residía en el chalet de su familia en la calle Arturo Soria y llevaba ocho años, desde que volvió de América, entre juergas y drogas, mujeres y alcohol, sobre todo alcohol. Estaba arruinado y, aunque su madre, desde Puerto Rico, le enviaba dinero, no le llegaba para todos sus gastos y sus crecientes deudas.
Nacido en Madrid el 28 de abril de 1928, educado en buenos colegios en España y Estados Unidos, regresó a España en 1950 mientras su familia permanecía en Puerto Rico. En un año gastó los 15 millones de pesetas que traía. En 1958, año de los hechos, sólo tenía deudas e, incluso, había hipotecado el chalet de Arturo Soria. Hijo mimado de una familia respetable y muy conocida en Puerto Rico, ya desde joven el alcohol, las drogas y las mujeres le lanzaron a la delincuencia. Se casó al acabar sus estudios con una respetable señorita, con la que tuvo un hijo, y que se divorció cuando Jarabo fue expulsado a España.
A los veinte años fue detenido en Nueva York y condenado por trata de blancas a nueve años de cárcel en el penal de St. Louis, en Missouri; cumplió dos y en 1950 fue deportado a España, a donde llegó con los 15 millones que le dio su familia para instalarse. Pero de nuevo su vida de juergas y drogas le arruinaron, a pesar de recibir periódicamente dinero de su madre y de una de sus tías desde Puerto Rico. En Madrid, compraba y vendía coches, hipotecó el chalet de Arturo Soria e, incluso, vendió una patente para fabricar lámparas de neón que era propiedad de su padre. La leyenda cuenta que se llevaba a las mujeres de calle por su enorme verga y su insaciable afán sexual. Rumboso, simpático, seductor y dominante, las mujeres eran para Jarabo una droga y pasaba, sin problemas, de asuntos de amor profundo y romántico a amigas de una sola noche o a prostitutas.
Su historial delictivo en España, tras su regreso en 1950, es el de un delincuente violento y peligroso. Llega a primeros de mayo de 1950 y el 23 de ese mes ya tiene una denuncia por golpear a una mujer. En 1951, en enero y marzo, otras dos denuncias por la misma causa; en junio del 54, chantaje; en el 55, hurto y daños; en agosto del 55, estafa; en junio del 56, de nuevo estafa; en marzo del 57, allanamiento de morada; y así llegamos a 1958, año de los sucesos que aquí narramos. Además, era conocida su costumbre, parece que traída de los peligrosos ambientes en que se había movido en Estados Unidos, de llevar siempre una pistola cargada en el bolsillo. Era una Browning FN calibre 7.65, de fabricación belga. Es el arma que usó en los asesinatos.
Una de sus amantes era la inglesa Beryl Martin Jones, casada, que había prestado a Jarabo un anillo de diamantes, regalo de su marido, para que cubriera sus deudas. Ahora lo reclamaba pues su matrimonio peligraba si no conseguía mostrárselo a su marido. Nada menos que el argumento de “Los tres mosqueteros”, un siglo después y, desde luego, Jarabo no es el caballeroso D’Artagnan. Pero sí es, como él mismo afirma, “un caballero español”, y hará todo lo que sea necesario para salvar el honor de su dama. Aunque, quizá, los motivos no fueron tan caballerosos: él mismo declaró en los interrogatorios tras su detención que necesitaba dinero pues planeaba instalarse en Palma de Mallorca como psiquiatra y ya había adquirida en aquella ciudad un chalet a nombre de Jaime Martín Valmaseda. Sin embargo, también en esos interrogatorios, declaró que no quería matar a nadie pero “no tuvo más remedio”.
Beryl Martin Jones estaba casada con un francés y vivía en Lyon. Viajó a Madrid en el verano de 1957, como turista, para meditar sobre un matrimonio que no marchaba demasiado bien. Conoció a Jarabo en las noches de la capital y comenzó el idilio. Pero el dinero se terminó, comenzaron los problemas para la pareja, y llegó el empeño del anillo que tantas desgracias traería. Beryl enfermó y vino el marido y la convenció de volver a casa. Jarabo y Beryl no volverían a verse. Más adelante, declararía a la policía que Beryl era “la única mujer a la que había logrado amar”.
En su momento, había empeñado el anillo en la Casa Jusfer, sita en la calle Alcalde Sáinz de Baranda. Obtuvo 4000 pesetas, pero tuvo que dejar también una nota de Beryl que, como propietaria del anillo, daba permiso a Jarabo para empeñarlo. Una carta, es obvio, muy comprometedora.
Jarabo mató a Emilio Fernández Díaz, a su esposa María de los Desamparados Alonso Bravo, a la criada Paulina Ramos, y al socio de Emilio en el negocio de compraventa de oro y joyas que dirigían, Félix López Robledo. A las 10 de la noche del sábado 19 de julio de 1958, sin dinero y obligado a recuperar el anillo de diamantes de Beryl, Jarabo se dirigió al domicilio de Emilio Fernández, en la calle Lope de Rueda, sin esperar al lunes para acudir a la tienda de compraventa. Abre el ascensor con los codos, aprieta el botón del piso con la uña y pulsa el timbre de la vivienda con el dedo doblado. Le abre la criada, Paulina Ramos, que le indica que el dueño no está y le acompaña al salón para que le espere. Pero la sigue a la cocina y la golpea con una plancha; ya muerta, la apuñala con el mismo cuchillo con el que estaba pelando unas judías. Lleva el cadáver a su cuarto y lo deja sobre la cama.
Llega Emilio Fernández y se dirige al baño. Allí, Jarabo le dispara un tiro en la nuca y el muerto queda entre el bidé y la taza del wáter. Mientras registra la casa, se relaja bebiendo el chinchón del mueble bar. Poco después entra en el piso Amparo, la mujer de Emilio, y Jarabo la persigue hasta el dormitorio donde también le dispara un tiro en la nuca. Estaba embarazada lo que, al descubrirse el crimen, causaría una gran conmoción en la opinión pública. Después de matar a la mujer, se termina la botella de chinchón.
Jarabo registra la vivienda y no encuentra ni el anillo ni la carta de Beryl. Se cambió de camisa, manipuló los cadáveres para que pareciese un crimen sexual, y durmió en la casa puesto que eran ya las doce de la noche y supuso que el portal ya estaría cerrado. Al día siguiente, domingo, va al cine y descansa en la pensión en la que vive. Espera al lunes para buscar al socio de Emilio Fernández, Félix López, en un último y desesperado intento de recuperar el anillo y la carta. Jarabo espera a Félix López en la entrada de Casa Jusfer, en la calle Sáinz de Baranda. Cuando llega, entra en la tienda con él y, sin más, le dispara dos tiros en la nuca. Registra la tienda y siguen sin aparecer el anillo y la carta. Un desastre: cuatro muertos y Jarabo está como al principio.
Unas horas después, todavía durante la mañana, lleva el traje ensangrentado a una tintorería de la calle Orense. Y pasa toda la noche de juerga, acompañado de dos mujeres y va en taxi de un local a otro hasta la madrugada. El martes 22, por la mañana, va a la tintorería a recoger el traje y es detenido por la policía. Se han descubierto los asesinatos y el dueño de la tintorería, que ha leído la noticia en los periódicos, recuerda el traje lleno de sangre y avisa a la policía. El grupo de homicidios estaba dirigido por el inspector Sebastián Fernández Rivas, y en la tintorería le detuvo el inspector Viqueira.
En los interrogatorios, Jarabo hace gala de su fama de generosidad e hidalguía y pide que le lleven, desde el restaurante Lhardy, comida para todos y una botella de coñac francés. Declaró que sentía la muerte de las mujeres pero no la de los prestamistas. Consiguió que le dieran una dosis de morfina y, ya agotado, pidió que le dejaran dormir.
El 29 de enero de 1959 se inició el juicio con la asistencia de numeroso y distinguido público: artistas como Zori o Sara Montiel, algún torero, un numeroso grupo de esposas de jerarcas del régimen, muchos periodistas,…
El juicio duró cinco días y Jarabo, elegante y puntilloso, estrenó traje cada uno de ellos. Su abogado defensor, Antonio Ferrer Sama, alegó que su defendido era un psicópata y, por tanto, irresponsable. El tribunal escuchó a cinco médicos, y tres ellos determinaron que Jarabao sabía lo que hacía. Uno de los fiscales porclamó aquello de que “la mejor medicina para los psicópatas es el cadalso”. Fue condenado a cuatro penas de muerte, a pesar de influencias como la de su tío, el Presidente del Tribunal Supremo. Franco dio su visto bueno a la condena y la ejecución se fijó para el 4 de julio de 1959.
La noche antes de la ejecución, Jarabo la pasó fumando y bebiendo whisky. Acudió al patíbulo vestido de punta en blanco y oliendo a colonia cara, como era su estilo, pero su muerte fue terrible pues el verdugo no acertó a partirle el cuello con el garrote y tardó veinte minutos en morir.
La noche de víspera de la ejecución, el inspector Fernández Rivas, jefe del grupo de homicidios que le había capturado, le visitó en la cárcel y le regaló una caja de puros, marca “Romeo y Julieta”, de parte de Eugenio Suárez, director de El Caso, pues, a causa de sus crímenes, la tirada del periódico pasó de 13000 a 480000 ejemplares y supuso su definitivo despegue y, además, el nacimiento de un mito de la prensa española.
Y los líos siguieron incluso en su entierro. Ante el rumor de que no había sido ejecutado por sus influencias, el comisario que escoltaba el féretro hasta el cementerio obligó al conductor del coche fúnebre, pistola en mano, a abrir la caja para que quien quisiera viera el cadáver.
En la mayor parte de su historia evolutiva, nuestra especie ha vivido en pequeños grupos. En ellos, el anonimato no existe, todos se conocen y repetidamente interaccionan unos con otros. En este entorno se construye con rapidez una jerarquía social y el estatus, el cómo te consideran los demás miembros del grupo, es muy importante, sobre todo para los hombres. Cuando pierden el respeto y la confianza de los otros miembros del grupo, el mensaje es evidente y dice que el perdedor es débil. Este mensaje pone en peligro el conseguir recursos y una pareja, es decir, peligran la supervivencia y la reproducción.
La violencia puede ser una respuesta apropiada para defender el estatus en el grupo e, incluso, mejorarlo y conseguir una mayor supervivencia y más exitosa reproducción. Todavía en la actualidad y, se supone, en una sociedad y en una cultura diferentes, respecto a la violencia seguimos manejando los mismos mecanismos psicológicos de defensa del estatus. Incluso hay casos en que estos ataques al estatus, triviales hoy en día, pueden activar los mecanismos psicológicos que he mencionado y terminar en trifulcas y homicidios. Solo hay que recordar como puede terminar una banal discusión de tráfico.
William Burke & William Hare: El ascenso de la Anatomía
Aunque los asesinos, en el Edimburgo de los años 20 del siglo XIX, fueron Burke y Hare, y por sus crímenes fueron condenados, esta historia debería comenzar con Robert Knox, profesor de Anatomía. Nació en 1791, hijo de un profesor de matemáticas y se graduó en Medicina en 1814. Vivió un año en Londres, completando su formación en el Hospital de San Bartolomé, y se alistó en el ejército. Estuvo en Bruselas, después de Waterloo, y fue destinado a Ciudad del Cabo donde vivió varios años. Permaneció en el ejército hasta 1832, aunque desde 1820, y tras solicitar un permiso prolongado, continuó la carrera médica por su cuenta. Vivió en París, donde conoció al Barón Larrey, Inspector General Médico en el régimen napoleónico y, por su mediación, a los gigantes de la Anatomía Comparada, Etienne Geoffroy Saint-Hilaire y el Barón Cuvier.
Regresó a Edimburgo en 1826 y fue nombrado Conservador del recién inaugurado Museo de Anatomía Comparada. Además, y para ganarse el sustento con holgura, fundó una escuela privada de anatomía. En aquella época era costumbre, y muy necesaria, que los médicos, una vez licenciados, continuaran su preparación en Anatomía con clases privadas, pues los estudios oficiales no eran lo suficientemente completos. De ello la proliferación de escuelas privadas de esta disciplina médica.
Knox tuvo un éxito arrollador con su escuela y, en 1828, era la que más alumnos atendía de toda Gran Bretaña. Entre sus alumnos quizá estuvo un joven y desganado Charles Darwin que, por aquellos años, hacía un fútil intento de estudiar Medicina en Edimburgo, obligado por su padre que, como todos los padres, quería hacer de su hijo un hombre de provecho. Lo sería, aunque con un futuro totalmente inesperado. Volvamos al profesor Knox puesto que, entonces, estalla el asunto Burke & Hare.
En noviembre de 1828, la policía descubre el cadáver de una tal Mrs. Docherty en el sótano de la vivienda de Robert Knox que es, a la vez, la sala de disección de la Escuela de Anatomía. No es raro encontrar un cadáver en un sitio con ese uso, pero la policía sospecha que Mrs. Docherty no ha llegado hasta allí con todos los permisos necesarios. Por cierto y antes de seguir, el profesor Knox acostumbraba, con una técnica genuinamente escocesa, a conservar los cadáveres en whisky antes de proceder a su disección.
Knox, como muchos otros profesores de Anatomía, incluso en la actualidad, tenía muchas dificultades para conseguir cadáveres suficientes para que practicaran sus numerosos alumnos y, también, para sus propias investigaciones. Cuando alguien le entregaba un cadáver, no era muy escrupuloso y no solía preguntar por su origen. Pagaba lo acostumbrado y asunto resuelto. Y aquí intervienen los llamados “resurreccionistas”, que son aquellos que “resucitaban” a los muertos recién enterrados en el cementerio. Cualquiera puede recordar en este momento la escena inicial de la película El Doctor Frankenstein, de James Whale (1931); allí se ve a los “resurreccionistas” en plena acción.
Para solucionar su escasez de cadáveres, Knox pagaba unas siete libras por cadáver a personajes no muy recomendables, entre ellos los que serían, en poco tiempo, los famosos William Burke y William Hare, conocidos “resurreccionistas” de Edimburgo y cementerios de los alrededores. Pero la demanda de Knox era mucha y los cadáveres pocos, lo que obligó a Burke y Hare a desarrollar un método más drástico, incluso más limpio, pues no había ni que desenterrar al muerto, para conseguir cadáveres frescos: simplemente, asesinaban a todo aquel que se ponía a su alcance. Así, Mrs. Docherty formaba parte del grupo de entre 16 y 28 cadáveres que, por lo que sabemos, asesinaron Burke y Hare, según propia confesión. Los asesinos mataban a sus víctimas sofocándolas con emplastos que apretaban contra su rostro hasta que se asfixiaban. Hoy en día, en inglés, to burke es sofocar, estrangular. Por otra parte, en la investigación se descubrió que los asesinados estaban ebrios ya que pasaban sus últimos momentos bebiendo con quienes serían sus asesinos.
Cuando se descubrió la tragedia, Gran Bretaña entera se estremeció de horror. La reputación de Knox se hundió. Aunque fue exculpado por ignorancia y ni siquiera juzgado, durante la ejecución pública de Burke, la multitud pidió a gritos la presencia de Knox en el cadalso. Por cierto, quizá por una especie algo rara de justicia poética, el juez ordenó que, inmediatamente después de la ejecución, el 28 de enero de 1829, el cadáver de Burke fuera diseccionado allí mismo por un profesor de anatomía. Una enorme multitud se reunió para ver la labor del experto, y en el tumulto, desapareció la piel de Burke, ya separada del cuerpo; semanas más tarde, por las calles de Edimburgo se ofrecían a buen precio, carteras y bolsos hechos, se decía, con la piel de Burke. Su máscara mortuoria, algunos de estos bolsos y carteras y su esqueleto todavía pueden verse en el Museo de la Facultad de Medicina de la Universidad de Edimburgo.
Ya los he ajusticiado y, sin embargo, poco he hablado de los asesinos. Ambos eran norirlandeses, del Ulster, y habían nacido Burke en Urney, en 1792, y Hare en Derry, en 1790. Cuando Burke fue ahorcado, los dos tenían 37 años. Por cierto, Hare se libró de la horca ya que el fiscal le concedió la inmunidad por declarar contra su colega; fue liberado en 1829 y no se sabe que fue de él. Burke y Hare emigraron a Escocia por separado, y no se conocieron hasta 1827 cuando ya se habían casado. La mujer de Hare tenía una pensión en la que se alojaron Burke y su novia, Helen McDougal. Su primera venta a los ayudantes de Knox fue el cadáver de un huésped de la pensión, llamado Desmond, que murió por causas naturales. Para ahorrarse los gastos del entierro, Burke y Hare cargaron con él y se lo vendieron a Knox por 7 libras y 10 chelines, el sueldo de un obrero por seis meses de trabajo. A partir de esta primera venta, parece ser que Burke y Hare ya no esperaban causas naturales para conseguir cadáveres. Además, la pensión de Hare ofrecía un surtido interminable de personas solitarias, pobres y con mala salud, a los que sólo ayudaron a morir y que, por otra parte, nadie reclamaba.
Pocos años más tarde, en 1831, John Bishop y Thomas Williams, cometieron en el King’s College de Londres un “Burke and Hare”, como decía gráficamente la prensa. Asesinaron, como sus colegas “resurreccionistas” de Edimburgo, para surtir de cadáveres a los profesores de Anatomía del College. Estos escándalos obligaron por fin al gobierno a regular estrictamente la entrada de cadáveres en las salas de disección de anatomía.
En Edimburgo, la incógnita que quedó sin respuesta es si Knox estaba al tanto de los manejos criminales de Burke y Hare. Es cierto que no compraba los cadáveres en persona; lo hacían sus ayudantes, pero siguiendo sus órdenes e instrucciones. Incluso alguna vez se comentó lo “fresco” que era el material de Burke y Hare. Además, Knox era un experto en la materia, uno de los mejores del mundo según su fama, y parece difícil que, al hacer la disección, no averiguara cómo habían muerto aquellas personas; seguro que algo sospechaba y no le importó. Necesitaba cadáveres para la docencia y para su investigación; quizá su lema era la Anatomía por encima de cualquier consideración ética. Dicen que huyó a Londres, acabó en el descrédito y la miseria, emigró a Norteamérica y, allí, trabajó de actor. Quizá son leyendas.
Una jerarquía moral del crimen que clasifique asesinos y víctimas nos lleva a reconocer, en nuestra sociedad, la repugnancia ante la barbarie del crimen y la inocencia de la víctima, como sería el caso, por ejemplo, de un asesino que tortura y mata niños o, en otro contexto, la exterminación sistemática de judíos por los nazis. Pero sentimos, sin embargo, un nivel más bajo de repugnancia por los asesinatos sin culpable, de víctimas poco conocidas e, incluso, por algunas muertes que, según la cultura y la educación de quienes lo juzguen, hasta se consideran aceptables, como las muertes cometidas oficialmente por instituciones, la guerra, la violencia doméstica en algunas culturas, el infanticidio o la eutanasia.
En general y como media de las culturas estudiadas, el 65% de los homicidios son de hombres que matan a hombres, el 22% de hombres que matan a mujeres, el 10% de mujeres que matan a hombres, y el 3% de mujeres que matan a mujeres.
Sin embargo, esta hipótesis que dice que hemos evolucionado para cometer asesinatos si es necesario o, si se quiere, cuando los estímulos del entorno disparan los mecanismos psicológicos que llevan a nuestra especie al asesinato, nos hace pensar en por qué el crimen es tan poco frecuente o, incluso, en por qué los asesinos, en general, solo cometen un asesinato o, también, por qué no somos criminales o, por lo menos, violentos, la mayor parte de nuestra vida.
Julio López Guixot: El asesino superdotado
Otro crimen de un superdotado, de alguien que se creía capaz de planear y ejecutar el crimen perfecto, y que lo único que consigue es destrozar su vida y la muerte de un inocente. Se llamaba Julio López Guixot y había nacido en Murcia, en fecha desconocida y abandonado en la Beneficencia. Se le bautizó como Julio Meseguer Linares y, más adelante, cuando fue reconocido por su madre, que le dio sus apellidos, cambió su nombre a Julio López Guixot. El abandono por su madre marcó la vida de Julio, que lo consideraba una desgracia y un insulto y le llevó a tener un carácter antipático y violento.
Como tantos jóvenes de la posguerra, con poco futuro, ingresó voluntario en el Ejército del Aire en septiembre de 1943. No duró mucho su servicio militar pues fue acusado de incitación a la rebelión y condenado a 10 años de cárcel.
Al salir de prisión, conoció a José Segarra, un joven de Elche, empleado en la sucursal del Banco Central en Elche, y a su hermana, Asunción, de la que se enamoró apasionadamente.
Con su inteligencia, ambición y deseo de notoriedad, no es raro que Julio idease un sistema para acertar trece aciertos en las quinielas. Convenció a José Segarra, a sus amigos y a la familia de su novia Asunción para que invirtieran dinero en su proyecto, incluso pidiendo algunos de ellos créditos bancarios. El asunto, como era de esperar, fracasó, todos quedaron en una difícil situación económica y Asunción hasta tuvo que hipotecar su casa.
Justo entonces la Guardia Civil detuvo a Julio por evadir el servicio militar. Creía que ya había cumplido con el tiempo de su condena por incitación a la rebelión, pero no era así y acabó en África, en un batallón disciplinario. Licenciado en 1952, volvió a Elche y, según aseguró a sus amigos, con el sistema para acertar las quinielas muy perfeccionado.
Otra vez buscó socios capitalistas, invirtió y ganó algunos premios, uno de ellos de 64000 pesetas, que era dinero en aquellos años. Pero el sistema empezó a fallar de nuevo, los socios le abandonaron y Julio se arruinó de nuevo. Y, siempre ambicioso, comenzó a pensar en el delito.
Su amistad con José Segarra, recordad que era empleado de banca, le sirvió para planear, entre ambos, el atraco al encargado de llevar el dinero desde el Banco Central en Alicante hasta la sucursal de Elche, en la que trabajaba Segarra. Se llamaba Vicente Valero Marcial, y también era compañero y amigo de Segarra.
Sabían los conspiradores que tendrían que matar a Valero para conseguir el dinero del envío. Así, Julio, por su parte, fue a Vistahermosa, un barrio cercano a la ciudad de Alicante, y alquiló un chalet, según dijo a la dueña, para una familia de Albacete, y dejó 500 pesetas de señal. Y Segarra, mientras tanto, le enseñó a Valero, que tenía fama de mujeriego, una carta de una antigua novia que le escribía que vendría a pasar el verano a Alicante con una amiga. De esta manera, la conspiración se puso en marcha.
El viernes 30 de julio de 1954, Segarra, en su trabajo, se enteró de que enviaban a Valero a Alicante a por dinero para la sucursal. Avisó a Julio que, en moto, fue al chalet de Vistahermosa. Segarra pidió permiso para ir al médico y, a la vez, quedó con Valero para visitar a las dos amigas en el chalet de Vistahermosa.
Cuando llegaron, en taxi, a la casa, Julio ya estaba esperándoles. Entró Segarra y, cuando pasó Valero, le golpeó en la cabeza con un yunque de zapatero. Los asesinos le robaron la cartera con 40000 pesetas y no se dieron cuenta de que llevaba otras 250000 escondidas en la ropa; las encontraría la policía más tarde, al desnudar el cadáver. Valero, que no había muerto, sufre una larga agonía. Segarra se fue en el mismo taxi que le había traído y Julio quedó encargado de esconder el cadáver. Pero no hizo nada y lo dejó, sin más, en el chalet.
En realidad, Julio estaba aterrorizado viendo los sufrimientos de la agonía de Valero. Salió de la casa y se le rompió la llave. Fue donde la administradora y consiguió otra. Regresó chalet y vio que el moribundo se había movido. Lo desnudó, sin encontrar el dinero escondido, lo envolvió en una manta y lo metió en un saco, pero lo dejó de nuevo en el chalet. Va y viene varias veces y ya no sabe qué hacer, pierde la llave otra vez, no se atreve a pedir una segunda llave y, por fin, se va y abandona definitivamente todo el asunto.
Pasaron cuatro meses, Julio se casó con su novia Asunción, la hermana de Segarra. Pero la dueña del chalet de Vistahermosa sintió el hedor que sale de su casa alquilada, avisó a la Guardia Civil que descubrió el cadáver y no tardó en identificarlo como el empleado de banca que había desaparecido con el dinero que llevaba a Elche. Pronto es detenido Segarra y comenzó la búsqueda de Julio que estaba de luna de miel con su mujer, Asunción. Y, paradojas de la vida, Julio consigue por fin un premio importante en las quinielas, 127000 pesetas, pero solo las puede cobrar en Murcia y Cartagena. Cuando entró a cobrar en la administración de Murcia, la policía le está esperando y lo detiene.
Julio es tan chulo que, en su interrogatorio, él mismo mecanografió su declaración pues le parecía que el funcionario que lo estaba haciendo se equivocaba a menudo y era muy lento.
En el juicio, José Segarra y Julio López Guixot son condenados a muerte. El primero fue indultado pero Julio fue ejecutado a garrote vil, en Alicante, el 22 de julio de 1958, por el verdugo Antonio López Sierra.
La psicología evolutiva propone que el cerebro humano está compuesto por un gran número de mecanismos que procesan, cada uno de ellos, información específica y, entre otros, están los mecanismos psicológicos resultado de la evolución, que se han seleccionado en respuesta a problemas específicos y repetidos, a los que se han enfrentado nuestros antepasados, como son alimento y refugio, evitar depredadores, encontrar pareja, y proteger y alimentar a los hijos propios.
Estos mecanismos psicológicos evolucionados se activan con información específica en estímulos del entorno, actividad fisiológica propia o, incluso, en respuesta a otros mecanismos psicológicos que procesan otra información y responden a ella. En nuestra sociedad actual, estos mecanismos evolucionados durante miles de años en la historia de nuestra especie pueden responder a información nueva, novedosa para nuestra especie, y provocar conductas inadecuadas en nuestra cultura. Así, seguimos respondiendo con miedo y asco a serpientes y arañas como animales peligrosos y venenosos que eran, o los niños no quieren verduras, conducta que se seleccionó, quizá, para evitar que probaran plantas venenosas en su deambular por el campo. En cambio, no tenemos la misma reacción de precaución, porque no ha dado tiempo a seleccionarla, a los automóviles o a los aparatos eléctricos.
Wallace Souza: Asesinato en prime time
Periodista prime time, político en alza, justiciero y salvador y, además, asesino. Los guiones de sus programas eran perfectos y estaban preparados hasta el último detalle, cadáver incluido. Era el documental trucado y real como la vida misma, era la teatralidad al límite de la manipulación, era el periodista que contrataba asesinatos para emitirlos casi en directo y ganar audiencias, era el share de los medios como pena de muerte.
Wallace Souza nació en Manaos, en la Amazonía, el 12 de agosto de 1957 y murió en un hospital de Sao Paulo, de un ataque al corazón, el 27 de julio de 2010. Casado y con cuatro hijos, fueron casi 53 años de una vida intensa, y peligrosa.
Se graduó en la Facultad de Económicas San Luis Gonzaga y en la Universidade Estatal Basilio Machado. Hizo cursos de posgrado en el Centro de Estudios de la Conducta Humana y en la Universidade Nilton Lins. Muchos estudios y, en consecuencia, muy bien preparado.
En 1979, Souza ingresó en la policía y en 1987 fue despedido después de ser detenido por un fraude relacionado con las pensiones y por robo de petróleo.
Descrito como fortachón, mostachudo y barbado, con trajes entallados, gesticulador y carismático, fue elegido a la Asamblea Legislativa de Amazonas en 1998, por el Partido Liberal, con el mayor número de votos, y muy pronto se erigió como líder del Partido Social Cristiano. Fue reelegido en varias legislaturas hasta su expulsión de la Cámara en octubre de 2009 como resultado de las investigaciones policial y judicial que se seguían contra el parlamentario.
Era famoso por dirigir y presentar un programa de televisión llamado Canal Livre desde 1989. El programa se definía como “periodismo de investigación dedicado a la lucha contra el crimen y la injusticia social”. Dejó de emitirse en 2008 cuando las sospechas sobre la conducta de Souza se extendieron. Llegó a tener una gran audiencia y era muy popular en Manaos.
En 2009, la policía estatal del Amazonas inició una investigación sobre sus actividades en relación con Canal Livre. Se le acusó de contratar sicarios para cometer crímenes que después ofrecía en su programa. Así consiguió su gran popularidad. El programa, en principio, seguía muy de cerca todo tipo de investigaciones de la policía y de los jueces. Pero empezó a tener una conducta sospechosa, o como poco notable, cuando, una y otra vez, era el primero, antes que la policía, en llegar a la escena del crimen.
Un antiguo policía, Moacir Jorge da Costa, fue acusado de cometer alguno de los asesinatos que aparecieron en el programa. Antiguo sargento de la Policía Militar y encargado de la seguridad de Souza, era sospechoso de participar en nueve asesinatos y admitió que el periodista que le había contratado mostró en su programa, por lo menos, uno de los crímenes.
Aunque Souza y sus abogados negaron todas las sospechas, al final su hijo Rafael fue detenido y acusado de homicidio, tráfico de drogas y posesión de armas. En un registro en casa de Souza se encontraron armas, munición, casquillos de balas como los recogidos en el escenario de los crímenes, así como dinero, más de 100000 euros en reales y dólares cuyo origen no pudo justificar. Finalmente, en el mes de octubre de 2009, Wallace Souza fue acusado de asesinato, tráfico de drogas, intimidación de testigos, transporte ilegal de armas y formación de una banda criminal. Ese mismo mes, octubre de 2009, fue expulsado de la Asamblea Legislativa. En libertad bajo fianza, Souza desapareció y se organizó su búsqueda a nivel nacional. Pronto, el 9 de octubre, fue capturado junto a su hermano Carlos y a la productora del programa, Vanessa Lima. En total, fueron detenidas 15 personas, incluyendo a su hijo Rafael y un grupo de policías en activo que se encargaba de cometer los asesinatos.
En fin, fue Mario Vargas Llosa, con ironía, quien mejor lo catalogó. Lo definió como el héroe del momento, un servidor de su público, un periodista con la conciencia profesional desmesurada.
El asesinato de una persona es lo más terrible que le puede pasar a la víctima. La muerte supone que desaparece la influencia activa de la víctima en los asuntos de su familia, amigos e, incluso, de sus enemigos. Desde que existen leyes escritas, el asesinato es un crimen y nunca otro delito lleva un castigo más duro. Y, cuando no hay leyes escritas, o sea, cuando no hay amenaza de castigo, el asesinato es habitualmente la mayor causa de muerte, a veces llegando a un tercio de los hombres del grupo. A pesar de que en las culturas con leyes escritas, fuerzas de policía y promesas de castigo, las tasas de homicidio han bajado, los asesinatos siguen siendo una de las causas de muerte más alta en algunos grupos.
Explicar o, incluso, solo entender estos hechos es difícil y, por ello, Duntley y Buss hicieron la propuesta que antes he mencionado. La hipótesis plantea que matar a otro ser humano supone alguna ventaja adaptativa, con el consiguiente éxito reproductor y que, por ello, sigue siendo una conducta todavía presente en las culturas actuales aunque, quizá, ya no sea ni tan necesaria ni tan útil como hace unos miles de años.
Eugene Aram: Al crimen por la Filología
El 1 de agosto de 1758, un hombre que golpeaba piedra para obtener cal cerca de Knaresborough, en Yorkshire, Inglaterra, encontró un esqueleto humano. Las autoridades y la población de la ciudad pensaron en Daniel Clark, un zapatero desaparecido trece años atrás y cuyo recuerdo no lo había hecho. Había estafado su dinero a varios vecinos, quizá con la ayuda de varios cómplices desconocidos.
Todo comenzó el 7 de febrero de 1745. Fue el último día en que se vió a Clark con vida; después, desapareció. Buen zapatero, Clark se había casado con una mujer de buena renta y pretendía abrir una tienda en Londres. Pidió dinero a todos sus amigos y consiguió un curioso inventario de préstamos: tres jarras de cerveza de plata, cuatro ollas de plata, un jarro de plata, un anillo con una esmeralda y dos diamantes, otro anillo con tres diamantes, otro más con una amatista, seis anillos más, ocho relojes, dos cajas de rapé, un Diccionario Chambers en dos volúmenes in folio, los textos de Homero en la versión de Alexander Pope en seis volúmenes, y una buena cantidad de monedas de plata. En fin, en aquel tiempo la pequeña burguesía y los artesanos no se debían fiar de nadie y preferían guardar sus ahorros en casa, e incluso los buenos libros que, parece, eran una buena inversión.
Siempre se sospechó que los cómplices de Clark habían sido Henry Terry, vendedor de cerveza; Frank Iles, con fama de perista; Richard Houseman, fabricante de lino; y Eugene Aram, maestro de escuela y erudito. Curioso grupo criminal: un cervecero, un ladrón, un pequeño industrial y un maestro de escuela.
La investigación sobre la desaparición de Clark, y sobre todo la murmuración popular, achacaron el asesinato a Houseman o Aram o a ambos, una vez que aquel culminó la recogida de fondos para su futura tienda en Londres, y con la intención de robarle y repartirse el botín. Parece ser que todo ocurrió a primera hora del 8 de febrero de 1745. Varios testigos declararon haber visto juntos, la noche del 7 de febrero, a Clark, Houseman y Aram. Además, parte del botín se recuperó en la casa de Houseman y enterrado en el jardín de Aram.
Mientras tanto, Eugene Aram fue detenido en razón a otra estafa no relacionada con el caso Clark y, a pesar de que se le consideraba como persona con pocos recursos, pagó la fianza y, además, pagó la hipoteca que debía por la casa en que vivía con su mujer y sus hijos. A continuación, desapareció.
Cuando, trece años después, se descubrió el esqueleto en la calera de Knaresborough, la esposa de Aram reveló sus sospechas sobre la complicidad de su desaparecido marido en el asesinato de Clark. Recordó que aquella fatídica noche del 7 al 8 de febrero de 1745, hacia las dos de la madrugada, llegaron a su casa Clark, Houseman y su marido; que una hora más tarde marcharon y que, hacia las cinco de la mañana, volvieron sólo Houseman y su marido. Encendieron fuego en la chimenea de la sala y escuchó, horrorizada, como discutían si matarla o no para que no hablase. Cuando, por fin, se marcharon, la asustada mujer examinó las cenizas de la chimenea y encontró tela medio quemada y un pañuelo, que reconoció que pertenecía a Houseman, manchado de sangre.
Houseman fue detenido y negó que aquel esqueleto perteneciera a Clark. Guió a los investigadores a otra cueva cercana y localizó el cadáver del desaparecido Clark. Declaró que había visto a Aram golpear a Clark en la cabeza y en el pecho y como éste había caído al suelo como muerto. Con esta declaración, se ordenó la búsqueda, trece años después, del fugado Eugene Aram.
Y de esta manera, trece años más tarde del crimen y por el hallazgo de un cadáver que no era el de la víctima, Eugene Aram fue perseguido y capturado en King’s Lynn, Norfolk, trabajando en su oficio de siempre, maestro de escuela. Tras su desaparición viajó por Inglaterra, encontró empleo de portero en varias escuelas y acabó como profesor en la Escuela de Gramática de King’s Lynn. En los interrogatorios lo negó todo y, por su cuenta, acusó a Terry, el cervecero, y a Houseman, aunque, por otra parte, declaró que “no podía afirmar que Clark fuera asesinado”.
Houseman y Aram fueron a juicio el 3 de agosto de 1759. Houseman fue absuelto por falta de pruebas pero no perdió la oportunidad de acusar a su antiguo amigo. Declaró que había sido testigo de la pelea, esa noche fatídica, entre Aram y Clark frente a la cueva en la que luego se encontraría el cadáver. Aram asumió su propia defensa y declamó un elocuente discurso, alabado por el juez, pero que no le sirvió de mucho pues fue condenado a la horca.
Después del juicio y en la cárcel a la espera de la ejecución, redactó otro convincente alegato para que le permitieran suicidarse y, de todas maneras, casi lo consigue con una navaja que robó al propio verdugo. En este escrito confesaba su culpabilidad y se justificaba afirmando que su mujer le engañaba con Clark. Siempre habían sido amigos, unidos por su afición a la jardinería y su fama, entre sus vecinos, de robar plantas, semillas y esquejes para mejorar sus jardines.
Aram fue ahorcado el 6 de agosto de 1759. Su cadáver fue trasladado a Knaresborough, lugar del crimen, y encerrado, a la entrada del pueblo, en la jaula de hierro en que se dejaban, a la vista del público, los cuerpos de los ajusticiados. Para ejemplo de todos y, también, porque allí metidos se evitaba que se deshicieran en pedazos con rapidez por la descomposición del cadáver.
Eugene Aram había nacido en 1704, dentro de una pobre familia, en Ramsgill, Yorkshire. Todavía joven, se casó y se estableció como maestro en Netherdale. Aficionado a la filología, aprendió por su cuenta latín y griego. En 1734 se trasladó a Knaresborough, donde ocurrieron los hechos que aquí he narrado. En sus años de huida, recopiló diverso material para su obra cumbre sobre etimología titulada “Léxico Comparado de Inglés, Latín, Griego, Hebreo y los Idiomas Celtas”. Era, sin discusión, un filólogo original y adelantado a su época. Fue el primero en demostrar la relación del celta con otros idiomas europeos y, también, sostuvo contra lo aceptado, que el latín derivaba del griego. Afirmó el carácter indoeuropeo del celta, lo que no se aceptó hasta casi un siglo más tarde. Las crónicas dicen que robó y mató para conseguir dinero y poder dedicarse por entero a la ciencia, a la filología, y, sin embargo, terminó siendo conocido, no por la filología, sino por el crimen que cometió a causa de la filología.
Cuesta, quizá, aceptar que un erudito como Aram se convirtiera en un violento criminal simplemente por dinero. Por ello, en el poema sobre su vida que publicó en 1831 el poeta Thomas Hood, o la novela que Edward Bulwer-Lytton publicó un año después, los autores convirtieron al erudito asesino en un héroe romántico que mató por amor a la ciencia, en concreto, a la filología. En pleno Romanticismo, Aram se convirtió en un asesino con ansias de conocimiento. Mató a Clark para conseguir fondos para su proyecto de investigación, fondos de los que no disponía por su escaso sueldo de maestro y la carga que le suponían su mujer y sus hijos. En definitiva, el móvil de su crimen fue la filología, un móvil muy especial y poco habitual.
El asesinato, según esta teoría, da evidentes ventajas adaptativas: evita la muerte prematura del propio asesino, o sea, mata para que no le maten; aparta posibles rivales, sobre todo en la búsqueda de pareja; permite obtener recursos con más facilidad; evita la competencia de la futura descendencia del muerto que, por supuesto, no llegará a nacer. Incluso no hay que cuidar de la descendencia del asesino, es decir, proveer de alimentos y cuidados a hijastros, algo que en la evolución se evita siempre que se puede y se evita que lleguen a competir con las crías que llevan los genes del asesino.
Es, por supuesto, importante planificar bien el asesinato para evitar fracasos y castigos. Han evolucionado, por miles de años, los mecanismos psicológicos implicados en el diseño del crimen. El plan moviliza la atención y el interés del asesino, recrea diferentes situaciones posibles, calcula las consecuencias y llega, finalmente, a conductas muy pensadas y motivadas.
Pero es necesario que la evolución del crimen haya provocado, además, la evolución de diferentes mecanismos de defensa y, así, hay una verdadera carrera evolutiva entre las estrategias homicidas y las defensas anti-homicidios. La empatía, el ponerse en el lugar del otro, el sentir como él y saber cómo se siente, es algo esencial para hacer grupo, para promover el altruismo y unir a la familia y a la tribu. Son cualidades esenciales en la evolución de nuestra especie. Una reciente hipótesis planteada por Roger Whitaker y su grupo, de la Universidad de Cardiff, propone que el extraordinario tamaño del cerebro de nuestra especie se seleccionó en la evolución a partir de grupos, no muy grandes pero sí muy complejos en relaciones sociales, que incluían individuos en los que, para conseguir el manejo de esa complejidad social, se seleccionaba un cerebro cada vez más complicado y de mayor tamaño.
En el cerebro hay zonas concretas, como la corteza prefrontal, el lóbulo temporal, la amígdala y otras regiones del sistema límbico, que tienen que ver con la empatía. Además, son el sistema límbico y las cortezas prefrontal y temporal las que regulan los impulsos y emociones. Y varias de estas mismas áreas cerebrales están relacionadas con la violencia. O sea, controlarían el ponerse en el lugar del otro, la empatía, e inhibirían la violencia. Pero, también, controlan la agresividad y la violencia contra el otro.
Tenemos la capacidad de ser empáticos y violentos, y seguir una conducta u otra depende de los estímulos del entorno, del grupo y, sobre todo, de nuestra cultura y de la educación que hayamos recibido en el sentido más amplio del término.
Los factores biológicos que permiten llegar al asesinato y que ahora empezamos a conocer, son la genética, la bioquímica, la fisiología y la psicología y, en la aparición de estos factores en la historia de nuestra especie, la evolución.
En resumen, esta hipótesis propone una explicación de por qué las personas asesinan a otras personas, aunque no queda claro si lo que convierte a una persona en un asesino es su misma psicología, la sociedad en que vive o, simplemente, la evolución. A lo largo de la historia de nuestra especie han existido fuentes de conflicto recurrentes entre individuos, como son la reputación y el estatus social, los recursos y la pareja. Y, ya lo he mencionado varias veces, el asesinato es una de entre varias estrategias construidas por la selección natural para ganar los conflictos con otros. El asesinato solo se diferencia cualitativamente, según las culturas, de esas otras estrategias. Una vez muerto, el asesinado no puede dañar la reputación del asesino, ni apropiarse de sus recursos o tener sexo con la pareja del asesino. Así, tenemos todos nosotros el asesinato como herencia evolutiva para resolver conflictos. A veces, a todos nos ha pasado, soñamos con matar al adversario y, muchas menos veces, incluso algunos lo matan.
Los riesgos que se solucionan con un asesinato son la pérdida de la vida propia o la de las personas cercanas, de una pareja, de territorio o de recursos, y del estatus o jerarquía social.
Un factor siempre importante en caso de asesinato es la incertidumbre. Aparece sobre las causas que provocan la respuesta adaptativa que lleva al asesinato. Por ejemplo, en el caso de la pareja puede dudarse de si lo que hay entre mi pareja y el otro es amor, sexo o amistad. O sobre las variables personales o ambientales que lo permiten o lo impiden. Así, una navaja es difícil que acabe con King Kong. Lo mejor, aconsejan los expertos, es ser muy meticuloso, y estar preparado y planificar hasta el menor detalle. Aunque siempre queda un punto de incertidumbre.
Referencias:
Amores. J.J. 2007. Alicante en el recuerdo: El crimen de Vistahermosa.
Aznárez, J.J. 2008. Matar por la primicia. El País 30 agosto.
Barón, F. 2008. Un reportero de Brasil, acusado de ordenar crímenes y grabarlos. El País 13 agosto.
Biddiss, M.D. 1976. The politics of Anatomy: Dr. Robert Knox and Victoriam racism. Proceedings of the Royal Society of Medicine 69: 245-250.
Buss, D.M. 2005. The murdered next door: Why the mind is designed to kill. Penguin Books. New York. 288 pp.
Buss, D.M. 2012. The evolutionary psychology of crime. Journal of Theoretical and Philosophical Criminology Special Edition January: 90-98.
Costa, P. 2008. Jarabo, los crímenes de un caballero español. El País 13 julio.
Duntley, J.D. & D.M. Buss. 2004. The plausability of adaptations for homicide. En “The structure of the innate mind”. Ed. por P. Carruthers, S. Laurence & S. Stich. Oxford University Press. New York.
Duntley, J.D. & D.M. Buss. 2011. Homicide adaptations. Aggression and Violent Behavior 16: 399-410.
García, J.E. 2015. El comportamiento criminal desde un punto evolucionista. Persona 18: 27-46.
Gorelik, G., T.K. Shackelford & V.A. Weekes-Shackelford. 2012. Human violence and evolutionary consciousness. Review of General Psychology 16: 343-356.
Hood, T. 1831. The dream of Eugene Aram, The murderer. Charles Tilt. London. 30 pp.
Jackson, A. 2010. The singular story of Eugene Aram – Murderer! Knaresborough Online.
Kelly, R.C. 2005. The evolution of lethal intergroup violence. Proceedings of the National Academy of Sciences USA 102: 15294-15298.
Liddle, J.R., T.K. Shackelford & V.A. Weekes-Shackelford. 2012. Why can’t we all just get along? Evolutionary perspectives on violence, homicide, and war. Review of General Psychology 16: 24-36.
MacLaren, I. 2000. Robert Knox MD, FRSEd 1791-1862: The first Conservator of the College Museum. Journal of the Royal College of Surgeons of Edinburgh 45: 392-397.
Marín, T. 1995. Relatos trágicos de Alicante. Santa Faz Producciones. Alicante. 93 pp.
Noon, R. 2003. Should Eugene Aram have hanged? Web Mystery Magazine Summer 2003.
Olmos, M. 2008. Sangre y chinchón. El Correo 23 julio.
Olmos, M. 2012. Uno, equis, dos. El Cañí 22 noviembre.
Pérez Abellán, F. 1997. Crónica de la España negra. Los 50 crímenes más famosos. Espasa. Madrid. 336 pp.
Vargas Llosa, M. 2008. El mundo en que vivimos. El País 23 agosto.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo Evolución del asesinato se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Evolución de los sistemas nerviosos: cnidarios y gusanos no segmentados
- Evolución de los sistemas nerviosos: moluscos
- Evolución de los sistemas nerviosos: anélidos y artrópodos
Un método nuevo y muy potente para sintetizar un tipo de moléculas cíclicas
El grupo de investigación liderado por el profesor Enrique Gómez Bengoa del Departamento de Química I de la UPV/EHU, en colaboración con el grupo de la profesora Cristina Nevado de la Universidad de Zürich, ha publicado recientemente un método nuevo y muy potente para sintetizar un tipo de moléculas cíclicas.
“La práctica totalidad de los medicamentos actuales- explica Enrique Gómez Bengoa- son compuestos orgánicos que se sintetizan industrialmente en procesos muy complejos, a menudo laberínticos, y también caros. A esta misma familia de moléculas orgánicas con actividad biológica pertenecen otras sustancias como los herbicidas o pesticidas, y no solo estos, sino todas las moléculas presentes en los organismos vivos, las hormonas, los metabolitos primarios y secundarios, o las responsables de dar olor y sabor a los alimentos. La naturaleza lleva sintetizando estas sustancias espontáneamente millones de años y nosotros hemos aprendido a prepararlas en el laboratorio, por métodos similares en algunos casos”.
“El peso fuerte de la investigación lo ha llevado a cabo el grupo de la profesora Nevado, donde se han llevado a cabo los métodos experimentales, las reacciones de laboratorio. Allí han desarrollado un método nuevo y muy potente para sintetizar un tipo de moléculas cíclicas, estructuralmente complejas, de una manera muy eficiente, rápida y sin usar reactivos demasiado problemáticos. El descubrimiento se basa en el uso de un proceso radicálico (mediante reacción de radicales) en una sola etapa, cuando antes eran necesarias varias etapas para llegar al mismo objetivo. La aportación de nuestro grupo en Donostia es estudiar estas reacciones por métodos de cálculo computacional, con el objetivo de entender cómo ocurren, cuál es su mecanismo. Hoy en día, los ordenadores nos permiten ‘ver’ cómo se mueven los átomos durante una reacción química”, explica el profesor Enrique Gómez Bengoa.
Referencia:
Shu, Wei; Llorente, Adriana; Gómez-Bengoa, Enrique; Nevado, Cristina.. Expeditious Stereoselective Synthesis of Elaborated Ketones via Remote Csp3-H Functionalization. Nature Commun. 2017, 8, 13832. doi:10.1038/ncomms13832
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Un método nuevo y muy potente para sintetizar un tipo de moléculas cíclicas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Usando ADN para sintetizar nanoestructuras de oro
- Método para evaluar la activación de proteínas marcadoras en cáncer
- Cómo sintetizar casi cualquier biomaterial usando ADN
Zorros urbanos
En Vega de Tirados, comarca de Ledesma, provincia de Salamanca, una joven tabernera deposita al atardecer restos de comida en la trasera del local que regenta. Poco después, una zorra se acerca y da buena cuenta de las viandas. La escena se repite a diario. Hace unos meses una persona emparentada con mi familia política oyó un extraño ruido en la cocina de su casa londinense. Se acercó y descubrió que, ante sus ojos y sin inmutarse, un zorro la contemplaba con parsimonia. Son solo dos ejemplos, pero cada vez con mayor frecuencia los zorros frecuentan a las personas con relativa normalidad si pueden obtener algún beneficio de ello.
Los zorros, al igual que lobos, chacales y perros, pertenecen a la familia de los cánidos. Las diferentes variedades o subespecies de la especie Vulpes vulpes (zorro común o zorro rojo) se distribuyen desde el Círculo Polar Ártico hasta el Norte de África, y aunque proceden de Eurasia, también colonizaron Norteamérica y, más recientemente, Australia. En este país están considerados una de las especies invasoras más peligrosas pues es una amenaza gravísima para la fauna local de pequeño tamaño (pequeños marsupiales y aves, principalmente).
Una de sus características más notables es su extraordinaria capacidad para adaptarse a ambientes muy diferentes. Esa es la razón por la que ha alcanzado una distribución tan amplia y por lo que ha llegado a relacionarse de forma tan directa con la tabernera de Vega de Tirados o entrar en la cocina londinense de nuestra conocida. En sus hábitats naturales consumen, preferentemente, roedores y en menor proporción, aves. En ocasiones asaltan granjas para atrapar aves y pequeños mamíferos. También consumen gran variedad de bayas y pequeños frutos, así como algunos tubérculos. Está claro, por lo tanto, que su dieta es muy variada y se pueden considerar omnívoros.
Durante los últimos años ha llamado especialmente la atención su gran penetración en áreas urbanas. Han tenido mucho éxito en los suburbios de baja densidad, aunque también han sido vistos en zonas densamente pobladas. Este fenómeno se ha producido en ciudades de todo tipo en Japón, Australia, Norteamérica y Europa. Los zorros fueron vistos en Melbourne (Australia) en la década de los años treinta por primera vez, al igual que en algunas ciudades británicas. En Londres se introdujeron durante los años cuarenta del siglo pasado, y algo más tarde en Cambridge y Norwich (Reino Unido). En los años ochenta penetraron en Zurich, Suiza. Los zorros que merodean por zonas urbanas de baja de densidad de población humana se mueven por espacios que abarcan de 80 a 90 hectáreas, aunque pueden restringir notablemente su movilidad (hasta las 30 o 40 hectáreas) en zonas más densamente pobladas.
Inglaterra es el país del que se dispone de información más precisa. En 2006 se había estimado una población de zorros en Londres de unos 10.000 ejemplares, aunque esas cifras se han elevado sustancialmente en los últimos años. La densidad más alta se ha registrado en Bournemouth, con 23 zorros por kilómetro cuadrado; en Bristol llegó a haber 37, aunque tras una epidemia han descendido a 16. Y en Londres hay 18. Para el conjunto de Inglaterra la población de zorros urbanos ha pasado de 33.000 ejemplares en la década de los noventa, a los 150.000 estimados en la actualidad. Y la progresión no parece haberse detenido.
Los zorros no son los únicos cánidos urbanitas. En Norteamérica son los coywolves (lobos coyotes). Y quizás animales de otras familias se animen también. La naturaleza (no tan) salvaje penetra en las urbes (occidentales); quizás no quede tanto para que los veamos en nuestras ciudades.
—————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————
Una versión anterior de este artículo fue publicada en el diario Deia el 9 de abril de 2017.
El artículo Zorros urbanos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Arte & Ciencia: Química y Arte, reacciones creativas
El arte y la ciencia son dos formas de conocimiento aparentemente alejadas, en gran medida consecuencia de la especialización profesional y la educación compartimentada. Del estudio de esta impostada separación surgió el estereotipo de las dos culturas, las ciencias y las humanidades, para referirnos a esa brecha de conocimiento. La realidad es que la ciencia y el arte sí están conectadas y que ninguna forma de conocimiento es impermeable a otra. Por poner algunos ejemplos: ¿Cómo podría crearse una obra plástica sin las técnicas propiciadas por la ciencia? ¿Cómo podríamos interpretar la elección de materiales?
Estas y otras cuestiones relacionadas furon tratadas por destacados profesionales -artistas, ilustradores, filósofos y científicos- que han puesto el foco en ese difuso trazo que une la ciencia y el arte. El ciclo Ciencia & Arte se desarrolló, bajo la dirección de Deborah García Bello, a lo largo de cuatro jornadas que se celebraron los jueves días 6 y 27 de abril y 11 y 25 de mayo de 2017 en el auditorio del Museo Guggeheim Bilbao.
Esta actividad de la Cátedra de Cultura Científica de la UPV/EHU se enmarca en el programa TopARTE que conmemora el XX Aniversario del Museo Guggenheim Bilbao.
Segunda jornada. 1ª conferencia
Xavier Durán, químico y periodista científico: Química y Arte, reacciones creativas
Las primeras ilustraciones de animales y plantas, el coleccionismo de maravillas naturales, el trabajo de los artistas… A lo largo de su historia, el ser humano ha representado la naturaleza de diferentes maneras que han jugado un papel fundamental en la generación de conocimiento científico. Pero esta influencia también se ha dado en la dirección inversa, puesto que los descubrimientos científicos han servido de inspiración y han influido en el desarrollo de técnicas pictóricas y estilos artísticos, marcando el devenir de la historia del arte.
Conocimiento y representación de los fenómenos naturalesEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Arte & Ciencia: Química y Arte, reacciones creativas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Arte & Ciencia: Cómo descubrir secretos que esconden las obras de arte
- Arte & Ciencia: La importancia de la ciencia para la conservación del arte
- Arte & Ciencia: Conservación de obras con componentes tecnológicos
ADN basura: negacionismo y malentendidos (con cebolla) Segunda parte
En la primera parte de este artículo vimos cómo se ha construido un poderoso mito alrededor del ADN basura, un mito que lleva al negacionismo científico. Comenzábamos nuestro “épico” intento de desmontarlo explicando que la selección natural es incapaz de mantener un genoma grande totalmente funcional, y que el ADN basura no fue un parche de ignorantes sino una predicción realizada con las matemáticas de la teoría evolutiva.
ADN basura no equivale a ADN no codificante
El segundo gran malentendido es la ubicua confusión entre ADN no codificante y ADN basura. Recordemos que el ADN no codificante es aquél que no contiene información que será traducida por la célula a secuencias de proteínas. Sabemos hoy en día que alrededor del 98% del genoma humano consiste en este tipo de ADN.
Cuando la típica noticia dice “se ha encontrado algo estupendo en una región del genoma que antes se creía basura”, lo que quiere decir casi siempre es que se han encontrado algo estupendo en una región de ADN no codificante.
Pero no son lo mismo. El ADN basura no tiene utilidad, no puede tenerla por definición. El ADN no codificante puede tener diversas funciones, y esto se sabe desde hace casi medio siglo.
Se podría responder: bien, de acuerdo, pero no seamos cínicos; se trata de enfatizar que, durante mucho tiempo, los genetistas creyeron que todo el ADN no codificante era basura, sin excepción. El problema es que esa historia no es cierta. Semejante opinión nunca estuvo extendida en la comunidad científica. Los biólogos descubrieron funciones reguladoras en el ADN no codificante antes (años 60), durante (años 70) y después (80, 90…) de la consolidación del ADN basura como hipótesis. La “creencia” en el ADN basura no parece haber obstaculizado en ningún momento la investigación sobre la regulación genética. En todo momento la compatibilidad fue total.
Veamos el caso de los intrones. Son secuencias no codificantes que están en medio de genes que sí son codificantes. En nuestra especie, el típico gen con información para sintetizar una proteína está interrumpido por varios intrones, a veces larguísimos. Después de que el ADN se transcribe a ARN, las secuencias correspondientes a los intrones son cortadas y no se tienen en cuenta para fabricar la proteína.
Los intrones constituyen casi el 30% de nuestro genoma. Se descubrieron en 1977 y nadie sabía por qué existían o si contenían algo interesante. El mito dice que fueron “inmediatamente y universalmente considerados basura genómica” pero, como muestra T. Ryan Gregory, eso no fue así. Lo que abundaba era justo la opinión contraria, el “aquí tiene que haber algo”. Los científicos especularon con la utilidad oculta de los intrones desde el principio, buscaron secuencias reguladoras en su interior y realizaron interesantes experimentos para detectarlas. Si realmente hubo algunos extremistas defendiendo la inutilidad absoluta de todo el ADN de los intrones, no parece que influyeran demasiado en la opinión y en las investigaciones de sus colegas.
Hoy sabemos que, como sospechaban los genetistas de hace décadas, los intrones contienen mucha chatarra y algunas secuencias funcionales. El “gen de los ojos azules” es una variante de una secuencia reguladora que pertenece a un intrón. La variante más común está asociada con los ojos marrones y está conservada por la selección natural. La que da ojos azules cuando está en doble dosis ha sido, además, promocionada por la selección positiva durante los últimos milenios en algunas poblaciones humanas. Es solo un ejemplo de las muchas secuencias interesantes que se han encontrado formando parte del ADN no codificante… al lado de montones de ADN basura.
¿Qué es función biológica?
El tercer gran malentendido surge del Proyecto ENCODE y su concepto de función. ENCODE es, supuestamente, una enciclopedia de elementos funcionales del genoma humano pero, aquí viene el truco, ha definido “elemento funcional” a su manera..
La función biológica no es un asunto sencillo, filosóficamente hablando. Sin embargo, se suele entender que algo es funcional si tiene un efecto seleccionado. Simplificando, si una secuencia de ADN tiene un efecto que esté siendo conservado o promocionado por la selección natural, entonces es funcional. ¿Por qué usar éste y no otro criterio? Primero, porque la teoría evolutiva es la gran unificadora en la ciencia de los seres vivos (nada tiene sentido en biología si no es a la luz de la evolución) y segundo, porque otros conceptos de función no generan fácilmente hipótesis testables y por tanto científicas.
ENCODE ignora esta noción evolutiva y se saca de la manga otra completamente distinta. Para ENCODE, una secuencia de ADN es funcional si tiene “actividad bioquímica específica”. Por ejemplo, si una secuencia de ADN es transcrita, generándose una molécula de ARN, contará como funcional aunque luego ese ARN esté presente en cantidades minúsculas y se degrade sin realizar ninguna tarea dentro de la célula. Otro ejemplo: si una secuencia de ADN es reconocida por ciertas proteínas, que se adhieren a ella, también contará como funcional para ENCODE; incluso aunque tal interacción no provoque ningún tipo de efecto relevante en la célula.
El problema es que es esperable que esa “actividad bioquímica específica” también la presente el ADN basura. Por el puro azar, por las huellas o restos de su historia evolutiva, e incluso por el ruido y el caos bioquímico del interior de las células, un ADN completamente inútil puede adherirse de forma inútil a diversas moléculas, puede ser transcrito a ARN inútil o puede ser incluso, a veces, traducido a proteínas inútiles.
Toda esta actividad absurda, este derroche, este caos, no es lo que muchos tienen en mente cuando se imaginan el funcionamiento de la célula. Tanto para quien cree en una creación inteligente como para el que se imagina una selección natural todopoderosa, este escenario chapucero resulta chocante e incluso ofensivo. Pero la vida es así, y quizá no pueda ser de otra manera.
Si fabricamos secuencias totalmente aleatorias de ADN sintético también obtendremos esa “actividad bioquímica específica” que la propaganda del ENCODE ha vendido como algo inesperado y apasionante. Imaginad la siguiente inocentada: alguien crea un genoma completamente aleatorio como el que propone Sean R. Eddy y consigue colárselo al Proyecto ENCODE como si fuera un genoma real para que lo estudie. ¿Cómo serían los resultados? ¿Descubrirían un gran porcentaje de ADN con “funciones esenciales” para un organismo inexistente? ¿quizá otro gigantesco “panel de control”? La selección natural no fue el único concepto básico que desatendieron; también se les escapó el azar.
La carga de la prueba
Ya hemos visto que el ADN basura no es aquél que no sabemos para qué sirve, sino aquél que realmente no sirve para nada. Si algún buen lector sigue encontrando “arrogante” esta proposición, puede que estemos en presencia de un cuarto malentendido, que tiene que ver con la carga de la prueba.
Cierta tendencia a idealizar la naturaleza a veces nos conduce a creer que los seres vivos están optimizados a la perfección y que cualquier pequeño detalle biológico ha de ser necesario y esencial. Es fácil entonces ver el ADN basura como una bravuconada, una cuñadez, una afirmación extraordinaria que debe rechazarse, o al menos ser revisada con la misma desconfianza con la que examinaríamos una máquina de movimiento perpetuo o una demostración de percepción extrasensorial.
En realidad, la visión de los organismos como máquinas perfectas donde cada elemento es imprescindible no puede apoyarse en la teoría evolutiva y carece de base científica. Aunque resulte poco intuitivo, la ausencia de función no solo es a veces perfectamente razonable, sino que en muchos casos debe ser la hipótesis que se plantée por defecto.
Imaginemos que estudiamos una secuencia concreta, una pequeña porción del genoma específica. ¿Cómo averiguamos si es basura o no? Es imposible, podría argumentarse. Que no seamos capaces de encontrarle una función no significa que no la tenga. Quizá su utilidad se nos escape siempre, por mucho que investiguemos. En cierto experimento se extirpó una gran porción de ADN no codificante en el genoma de unos ratones. Los animales así “mutilados” se desarrollaron bien y aparentemente no presentaban diferencias con el resto. Todo apuntaba a que la porción eliminada era ADN basura. Pero ¿y si los ratones manipulados tenían una desventaja demasiado sutil? ¿Y si solo se manifestaba en el medio natural, fuera de las condiciones del laboratorio? Esos ratones, como reconocieron los propios autores, quizá tuvieran alguna anomalía no revisada. ¿Estamos ante un problema irresoluble?
No, salvo que seamos poco realistas y exijamos seguridad absoluta. Si una porción de ADN no contiene nada similar a genes ni a secuencias reguladoras conocidas, y además puedes eliminarla sin causar defectos evidentes, entonces probablemente es ADN basura. No habrá certeza total, pero tampoco una posición inamovible o dogmática. Lo que ocurre es que la carga de la prueba la tiene quien afirme, contra los indicios, que existe una función oculta en esa secuencia. Es quien debe hacer el esfuerzo de aportar evidencias.
Recordemos, además, que la selección natural debe estar actuando sobre una secuencia para que pueda hablarse propiamente de función biológica. Gracias a los avances en genómica y bioinformática, los científicos comparan masivamente genomas de muchas poblaciones y especies (¡extintas, en ocasiones!). Cada vez resulta más fácil estudiar la evolución de esa secuencia; saber su está o no conservada, si muestra señales de selección o si, por el contrario lleva millones de años cambiando a la deriva, de forma neutra.
Si algo grazna como un pato, nada como un pato, camina como un pato… no tachemos de arrogante a quien lo llama “pato”. Cuando una secuencia parece basura y evoluciona justo como corresponde al ADN basura, entonces muy probablemente es ADN basura. Ésta es la hipótesis por defecto. Quien proponga lo contrario tiene dos trabajos: probar la existencia de una función y explicar la razón de tan extraño y engañoso comportamiento evolutivo.
El test de la cebolla
El negacionismo del ADN basura viene en distintos colores y grados. La postura de algunos es confusa: claramente están incómodos pero no dejan claro exactamente por qué; quieren redefinir el concepto de alguna forma, cambiarlo de nombre o que se deje de hablar del asunto. El negacionista típico cree que el genoma es funcional en un porcentaje cercano al 100%; admite que podría haber una pizca de ADN inútil pero nunca el enorme porcentaje que suele estimarse. Esto implica rechazar (pocas veces desde el conocimiento) el desarrollo teórico que llevó a descubrir el ADN basura. Algunos sostienen que el “mal llamado” ADN basura posee, en realidad, alguna función general, universal.
El test de la cebolla es un famoso desafío para ellos planteado por T. Ryan Gregory. Si el ADN basura tiene en realidad una función universal, ¿por qué la cebolla (Allium cepa) necesita, para realizar esa función, cinco veces más ADN que un ser humano? Y, a su vez, ¿por qué unas especies cercanas de Allium, el género de la cebolla, necesitan casi 5 veces más ADN que otras?
Gregory escogió la cebolla pero es solo un ejemplo posible entre miles. Los genomas de distintos seres vivos tienen tamaños extraordinariamente diferentes que no guardan proporción con la complejidad del organismo. Una hormiga, insecto social, puede tener el doble de genoma que una abeja, otro insecto social. Las especies de salamandras tienen entre 4 y 35 veces más ADN que nosotros. Cierta ameba, no mucho más compleja que uno de nuestros miles de millones de glóbulos blancos, supera nuestro genoma en 200 veces. Un pez pulmonado tiene un genoma casi 40 veces más grande que el Homo sapiens y más de 300 veces mayor que el de un pez globo. Una planta con flor, Paris japonica, tiene un genoma más de ¡2400 veces! mayor que otra planta con flor, Genlisea aurea.
Las razones de estas descomunales y aparentemente caprichosas diferencias no se conocen aún completamente. Sin embargo, gran parte y probablemente el meollo del asunto se explica acudiendo a fenómenos biológicos bien conocidos:
Las mutaciones espontáneas duplican segmentos de ADN con una frecuencia muy alta. En las poliploidías, que muchas veces han surgido por hibridación entre especies, se multiplican los genomas (y por tanto se multiplica la gran fracción de ADN basura). Los genes así repetidos son a menudo prescindibles; dejan de ser conservados por la selección darwiniana y evolucionan hacia la degradación. Ciertas infecciones víricas y la proliferación de elementos móviles pueden incrementar el ADN drásticamente, sobre todo en periodos en los que la población se ha reducido y la selección natural es poco eficaz. Millones de estas secuencias de ADN parasitario infestan los genomas. Con el tiempo, la mayoría acaban siendo inutilizadas por mutaciones y convirtiéndose en reliquias que evolucionan a la deriva.
Las deleciones por otra parte, son mutaciones que eliminan secuencias de ADN. Ciertas especies parecen tener un sesgo interno en favor de las deleciones y esto, junto con la selección natural, ayuda a explicar por qué algunos organismos han miniaturizado el genoma durante su evolución, conservando el número habitual de genes típicos pero eliminando chatarra a mansalva.
Efectivamente, se trata de fenómenos implicados en la producción y eliminación de ADN basura. Si sostenemos que el 100% del genoma es funcional, la tremenda diversidad en el tamaño de los genomas que existe en la Tierra se convierte en un misterio científico sobrecogedor.
El test de la cebolla nos recuerda que hay una formidable variación en el mundo vivo y que no tenemos el menor indicio de que el genoma humano sea especial o radicalmente distinto al resto. Cualquier especulación salvaje sobre “paneles de control” o “millones de funciones” debe poder aplicarse también, y con todas las consecuencias, a la humilde cebolla, al murciélago, a la ameba o a la plantita carnívora. De lo contrario, estaríamos cayendo en un quinto error: el antropocentrismo.
¿Qué hay en el genoma?
Veamos, para terminar, algunos datos sobre la composición del genoma humano. Un 9% de nuestro genoma consiste en virus defectivos (estropeados, “muertos”). Alguna que otra vez, la evolución ha convertido ADN de origen vírico en una secuencia funcional, útil para el organismo, pero se trata de acontecimientos muy raros. Ese nueve por ciento procede de antiguas infecciones, son como restos en descomposición y probablemente siguen ahí porque no resultan perjudiciales.
Un impresionante 44% del genoma está hecho de transposones defectivos. Los transposones son elementos genéticos móviles descubiertos por la premio Nobel Barbara McClintock. “Saltan” en los cromosomas e insertan copias de sí mismas. Se trata casi siempre de secuencias parásitas. De nuevo, en algunas ocasiones, mutaciones surgidas en un transposón o provocadas por éste han dado lugar a funciones útiles. Ojo: solo un 0,05% de nuestros transposones pueden funcionar como tales. El resto ya no puede saltar; están “muertos” y la evolución molecular degenera sus secuencias progresivamente. Hay que decirlo otra vez: ¡son el 44% de nuestro genoma!
Los intrones (casi el 30% del genoma, como ya vimos) consisten principalmente en ADN que no está evolutivamente conservado, que carece en su mayor parte de funciones conocidas y que está plagado de transposones.
Los pseudogenes constituyen un modesto 1% del genoma del Homo sapiens (pero puede que una proporción mucho mayor en una bacteria como la Rickettsia). Una vez más se trata de secuencias cadavéricas. Antaño fueron genes codificantes clásicos, pero la selección natural los abandonó y quedaron inutilizados por las mutaciones. Desde entonces, su secuencia se desbarata acumulando cambios al azar. Un ejemplo es el gen GLO, necesario para sintetizar vitamina C, que se fastidió en el linaje de los antropoides. GLO es ahora un pseudogén sin función alguna y, como consecuencia, podemos padecer escorbuto.
Se conocen relativamente bien muchos otros elementos y tipos de secuencias en nuestro genoma. Están los genes que codifican proteínas y RNAs, las secuencias reguladoras, los telómeros, el ADN satélite… L. A. Moran tiene este post clásico sobre el asunto. En él encontraréis estimaciones conservadoras acerca de las cantidades de ADN basura y su localización.
La creencia en un genoma inexplorado y prácticamente desconocido forma parte necesaria del mito del “tesoro en el vertedero”. Este es el sexto error: el adanismo. Creer que partimos de cero, ignorar el progreso previo. Sin duda hay mucho por averiguar y las sorpresas están garantizadas, pero no debemos desdeñar la investigación acumulada. El ADN basura encaja confortablemente con todo ese conocimiento. De hecho, está bien fundido con éste; forma parte del armazón. Quien pretenda extirparlo lo tiene muy crudo, científicamente hablando. Y, sin embargo, ¡triste paradoja! su mala fama y el mito del tesoro en el vertedero durarán aún muchos años.
Este post ha sido realizado por @Paleofreak y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo ADN basura: negacionismo y malentendidos (con cebolla) Segunda parte se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- ADN basura: negacionismo y malentendidos (con cebolla) Primera parte
- El rombododecaedro estrellado: arte, abejas y puzzles (segunda parte)
- Llega la segunda generación de ingredientes funcionales
La ciencia y la competencia
La ciencia es un sistema de búsqueda de conocimiento, y también el depósito de saberes acumulado por este sistema. Su objetivo es esclarecer el funcionamiento del Universo, saber cómo funcionan las cosas y de qué están hechas; es una búsqueda intelectual y sistemática que intenta dejar a un lado los errores conocidos y trata de aproximarse en sucesivos ciclos a la verdad. En este sentido es inherentemente cooperativa, no competitiva: el conocimiento es de todos y los descubrimientos del otro pueden y deben enriquecer los propios. El hecho de que el final del proceso de descubrimiento científico sea la publicación así lo demuestra: el objetivo es hacer público, dar a conocer lo descubierto para que todos lo conozcan. La ciencia es, por tanto, una república cooperativa. En teoría.
Y en teoría no debería haber diferencia entre la teoría y la práctica, pero en la práctica la hay.

De izquierda a derecha: Crick, Watson, Franklin, Wilkins y Pauling. Cinco de los protagonistas de uno de los casos de competencia en ciencia más conocidos del siglo XX: el descubrimiento de la estructura del ADN. Los hechos se narran aquí.
Los humanos somos primates, y como tales intensamente sociales y muy jerárquicos; esto implica que tendemos de forma natural a competir constantemente para establecer relaciones de dominación y sumisión. Sólo por este factor la ciencia, como cualquier empeño humano, tiende a la competencia, y el triunfo máximo en ciencia es ser el primero en publicar algo: el que pasa a la historia como el descubridor. A veces las reglas de la ciencia así lo reconocen de modo explícito, como cuando el nombre de quien crea una especie biológica forma parte de su denominación taxonómica oficial: descubre y describe una nueva especie y estarás para siempre en los libros de taxonomía. Si eres el primero en desarrollar una teoría o en abrir un nuevo campo de estudio pasarás a la historia. Nadie recuerda al segundo: es el primero el que se lleva toda la gloria. Y así ha sido siempre, y seguirá siendo mientras seamos humanos.
Otro factor importante es el desarrollo de la tecnología como herramienta política. Las técnicas son hijas de la ciencia, pues consisten en aplicar el conocimiento científico para resolver problemas prácticos, y a lo largo de la historia han influido decisivamente en el poder de las naciones. Ya desde antes y desde luego sin duda desde el siglo XX está más que claro que la única forma de mantener una capacidad económica y militar importante es poseer una capacidad tecnológica y científica importante, porque la economía y la tecnología ganan guerras. Es por eso, y desgraciadamente no por amor al conocimiento, por lo que los estados subvencionan el desarrollo científico, lo cual inmediatamente introduce un factor de distorsión: el que paga no quiere regalar lo que tanto le ha costado conseguir. Hay un enfrentamiento intrínseco entre los objetivos de los estados y el alma misma de la ciencia, ya que los gobiernos quieren el secreto que es esencialmente enemigo del pensamiento científico. La coexistencia es complicada, y eso sin entrar a analizar los intereses comerciales de empresas o editoriales a la hora de controlar el acceso público a la ciencia que generan o canalizan.

Un caso de rivalidad científica que provocó portadas e hizo tambalearse a las bolsas del mundo fue el que enfrentó a los Institutos Nacionales de la Salud de Estados Unidos dirigidos por Francis Collins y a Celera Genomics Corporation dirigida por J. Craig Venter, en su afán por completar el Proyecto Genoma Humano, lo que se dio por conseguido en 2003.
La consecuencia de todo esto es que en el mundo de la ciencia real hay una competencia constante, intensa y feroz; cualquier científico que trabaje en un área de interés puede contar con seguridad con que otros científicos de otros países le están constantemente pisando los talones. La naturaleza no es de propiedad privada: los mismos genes tienen las Drosophilas o los Caenorhabditis o las Arabidopsis en China que en EE UU que en Europa, hay neutrones en cualquier departamento de física del planeta y los ceros de la función zeta de Riemann son los mismos para cualquier matemático, por lo que nadie tiene en principio ventaja: sólo el esfuerzo y el talento cuentan. Quien sea más inteligente, más eficiente y más rápido será el primero, y los demás tendrán que conformarse con ir a la cola. En teoría es la más justa de las contiendas: la naturaleza es la misma para cualquiera y sólo la capacidad determinará quién es el vencedor.
Pero en la práctica dónde estás importa, porque los recursos que se dedican a la investigación no son los mismos ni se reparten de la misma manera, por lo que algunos científicos de según qué países están en desventaja. Todos los científicos compiten a la vez que cooperan, pero algunos lo hacen con más dinero, más becarios, doctorandos y postdocs, más respaldo político, mejores perspectivas laborales y profesionales; y otros con menos. Las políticas estatales importan, porque por muy listo y talentoso que seas sin dinero, sin laboratorios, sin la posibilidad de una carrera profesional estable y sin respaldo político y cultural no se puede competir contra quien sí los tiene. Los países más ambiciosos y poderosos del mundo invierten en su ciencia porque saben que es invertir en poder para sus estados y bienestar para sus ciudadanos. Los demás invierten menos y colocan a sus científicos en posición de desventaja en una carrera en la que todos participamos, seamos conscientes o no. Esta es, también, una decisión política fundamental relacionada con la ciencia. Porque por muy cooperativamente humano que sea el conocimiento mientras seamos como somos la competencia existirá. Y en algunos países la estamos perdiendo por ceguera.
Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.
El artículo La ciencia y la competencia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Un rebaño de vacas pastando como sistema complejo
La imagen de las vacas pastando en un campo ha evocado desde hace mucho tiempo una nostalgia romántica del presunto ritmo relajado de la vida rural. Sin embargo, si se analiza con cuidado, lo que parece ser un rebaño aleatoriamente disperso que come pacíficamente hierba es, de hecho, un complejo sistema de individuos en un grupo sometido a varios tipos de tensiones. Para describirlo un equipo de matemáticos y un biólogo ha construido un modelo matemático que incorpora una función de costes a la conducta dentro del rebaño para entender la dinámica de estos sistemas.
Esta investigación se encuadra dentro de lo que se llama ciencia de sistemas complejos, que busca entender no sólo los componentes individuales de un sistema dado, sino cómo estos componentes interactúan para producir un comportamiento de grupo “emergente”. Las vacas que pastan en rebaño son un ejemplo interesante de sistema complejo.
Así, una vaca individual realiza tres actividades principales a lo largo de un día normal: come, se queda quieta mientras lleva a cabo algunos procesos digestivos, y luego se echa para descansar.
Si bien este proceso parece bastante simple, convive con la búsqueda del equilibrio con la dinámica de grupo del rebaño.
Las vacas se mueven y comen en rebaño para, en principio, protegerse de los depredadores. Pero como comen a diferentes velocidades, la manada puede empezar a moverse antes de que las vacas más lentas hayan terminado de comer, lo que deja a estas vacas, habitualmente más pequeñas, frente a una difícil elección: seguir comiendo en un grupo más pequeño y menos seguro o empezar a moverse con el grupo más grande todavía con hambre. Si el conflicto entre alimentarse y mantener el ritmo del grupo se vuelve demasiado grande, puede ser ventajoso que algunos animales se dividan en subgrupos con necesidades nutricionales similares .
Los investigadores incorporaron una función de coste en su modelo para describir estas tensiones. Lo que añade complejidad matemática, pero es imprescindible para que el modelo reproduzca el comportamiento real.
Con todo, algunos resultados de la simulación son sorprendentes. De la descripción anterior uno podría creer que habría dos grupos estáticos de vacas – las comedores rápidas y las lentas – y que las vacas dentro de cada grupo llevarían a cabo sus actividades de una manera sincronizada. En lugar de eso nos encontramos que también aparecen vacas que se mueven adelante y atrás entre los dos subrebaños.
La causa principal es que este complejo sistema tiene dos ritmos en competencia. El grupo de animales grandes va más rápido y el grupo de animales pequeños va a ritmo más lento. Pero, ¿qué ocurre si eres una vaca, digamos, intermedia? La vaca podría encontrarse en el primer grupo, y después de algún tiempo, el grupo resulta ser demasiado rápido. Se va entonces al grupo más lento, pero que es demasiado lento, y termina yendo otra vez con el rápido. Pero como mientras se mueve entre los dos grupos la vaca se expone más al peligro de los depredadores, ello causa una tensión entre la necesidad de la vaca de comer y su necesidad de seguridad.
Este modelo podría aplicarse al estudio del comportamiento de rebaños en grandes extensiones, lo que sería de utilidad a ganaderos, veterinarios y gestores de parques naturales. Y, si incluimos a los rebaños de humanos, también a fuerzas del orden y agentes de protección civil.
Referencia:
Kelum Gajamannage, Erik M. Bollt, Mason A. Porter and Marian S. Dawkins (2017) Modeling the lowest-cost splitting of a herd of cows by optimizing a cost function. Chaos doi:10.1063/1.4983671
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con N
El artículo Un rebaño de vacas pastando como sistema complejo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Econofísica: ¿puede la economía tratarse como un sistema físico?
- Cómo diseñar un sistema para comunicarse con el otro lado de la galaxia
- #Naukas14 ¿Por qué explota una granja de vacas?
El teorema de Morcom
El cómic Le Théorème de Morcom –con guión de Benoît Peeters y dibujos de Alain Goffin– se publicó por primera vez en 1992, en Les Humanoïdes Associés. La editorial lo presenta de la siguiente manera:
Tras la muerte del famoso lógico Julius Morcom, Fred Mathison, periodista en Journal of Science, decide escribir un artículo relatando la carrera de este brillante hombre. Pronto descubre que Morcom estaba lejos de ser un matemático ordinario. Y que su trabajo sobre la “máquina universal” interesaba a más de uno… Este viaje por las sombras de los servicios secretos, durante y después de la Segunda Guerra Mundial, es una historia vibrante de suspense matemático.

Imagen 1. Portada del cómic.
¿Julius Morcom es un matemático real? Y Fred Mathison, ¿no os recuerda a alguien ese apellido? ¿Ni aun sabiendo que el tebeo trata de matemáticas y máquinas?
El nombre completo de Alan Turing era Alan Mathison Turing; de hecho, su padre se llamaba Julius Mathison Turing. Así, los nombres de los personajes –el matemático y el periodista– presentados en el resumen de la editorial se inspiran en cierto sentido en el matemático británico. Además Christopher Morcom fue el primer amor –no correspondido, aunque eran grandes amigos– de Alan Turing. Se conocieron en 1927, Morcom era un año mayor que Turing, y compartían su pasión por la ciencia y el descubrimiento. Su relación se fue fortaleciendo hasta la trágica muerte de Christopher, en 1930, debido a las complicaciones de una tuberculosis bovina.
La historia contada en este tebeo comienza el 12 de julio de 1954, en la carretera que lleva de Thornill a Strangton: un Cadillac se sale de la carretera y cae a un precipicio. Su conductor es el genial matemático Julius Morcom, que muere instantáneamente. ¿Se trata de un simple accidente de tráfico? ¿De un suicidio? ¿De un asesinato?

Imagen 2. Primeras viñetas del cómic: la muerte de Julius Morcom.
Fred Mathison, periodista de Journal of Science, se interesa por esta noticia, y comienza a indagar en el pasado del matemático: su genialidad al haber escrito con solo 24 años un artículo de lógica matemática que ponía en duda algunos conocimientos aceptados, su vida como criptógrafo durante la Segunda Guerra Mundial, y su obsesión por crear ‘máquinas inteligentes’… En una de las cartas que Morcom –su madre vive en Inglaterra, el matemático en EE. UU., esperando encontrar una mejor disposición hacia sus teorías– envía a su madre antes de morir, escribe:
Quiero volver a considerar todo a partir de cero para concebir una máquina verdaderamente inteligente, concebida a imagen de nuestro cerebro, una máquina capaz de pensar, de sentir, de reaccionar, como lo hacemos nosotros…
Enseguida, el periodista advierte que no es el único interesado en Morcom: alguien busca los apuntes que contienen sus últimos descubrimientos.
Mathison viaja a Cambridge para proseguir sus investigaciones y entrevistar a Anthony Rules, un antiguo profesor de Morcom. Rules le habla de la genialidad de su alumno, cuya tesis –On computable Numbers with an application to the ‘Entscheidungsproblem’ [Nota 1]– es una primera versión de su innovadora teoría. Y comenta, con pesar, su posterior giro hacia las máquinas inteligentes…
El periodista se reúne también con Kenneth Williams –uno de los estudiantes de Morcom–, con el que el matemático intentaba construir su máquina –una máquina real–, cuando la guerra les interrumpió.
Prosigue sus investigaciones, y cuando llega al coronel Knox, nota que los secretos militares le van a impedir conocer el trabajo de Morcom en Bletchley Park. Se entrevista con Sarah Hodges [Nota 3], asistente de Turing en el establecimiento militar. Sarah le habla de la homosexualidad del matemático, y de los problemas que esto le generaba –además de desobediencia sistemática– con las autoridades.
A partir de ese momento, asaltan la casa de Anthony Rules, la habitación en el hotel de Morcom, asesinan a Sarah… buscando documentos del genio. Pero esa búsqueda ya no tiene sentido: la madre de Morcom ha quemado los cuadernos de su hijo, repletos de cálculos, de gráficas… y de imágenes de chicos, que podían publicarse y perjudicar la imagen de Julius.
Mathison regresa a su país, marcado por los violentos acontecimientos, y decide abandonar el artículo y su trabajo en el Journal of Science, para dedicarse a escribir la verdadera historia de Julius Morcom. ¿O es la historia de Alan Turing y de la máquina ENIGMA?

Imagen 3. Alan Turing y Christopher Morcom.
Notas:
Nota 1: Entscheidungsproblem –El problema de decisión– fue un reto en lógica simbólica que consistía en encontrar un algoritmo general que decidiera si una fórmula del cálculo de primer orden es un teorema. En 1936, de manera independiente, el lógico Alonzo Church y Alan Turing demostraron que es imposible escribir tal algoritmo.
Nota 2: Bletchley Park es una instalación militar localizada en Buckinghamshire (Gran Bretaña) en la que se realizaron los trabajos de descifrado de códigos alemanes durante la Segunda Guerra Mundial.
Nota 3: Andrew Hodges es matemático, escritor y activista del movimiento de liberación gay de los años 1970. Es el autor de Alan Turing: The Enigma. Ethel Sara es el nombre de la madre de Alan Turing.
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo El teorema de Morcom se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El teorema de los cuatro colores (y 4): ¿Podemos creer la prueba de la conjetura?
- El teorema de los cuatro colores (3): Tras más de un siglo de aventura… ¿un ordenador resuelve el problema?
- El teorema de los cuatro colores (1): una historia que comienza en 1852
Evolución de los sistemas nerviosos: el tamaño encefálico
Hay sistemas nerviosos con unos pocos centenares de neuronas, como los de los nematodos, que tienen alrededor de 300. En el otro extremo están los grandes mamíferos, que llegan a tener del orden de 1011. Pero, ¡ojo! No hemos de pensar que esas diferencias marcan los extremos de una posible evolución lineal desde animales de muy sencilla configuración corporal hasta los mucho más complejos vertebrados. En el curso de la evolución ha habido divergencias que han conducido a sistemas nerviosos muy complejos siguiendo distintas trayectorias. Los cefalópodos, por ejemplo, han desarrollado sistemas nerviosos con números altísimos de neuronas: 108. Esa cifra es superior a la de muchos peces, reptiles y anfibios, como lo es la complejidad de sus circuitos y de su comportamiento.
De hecho, las diferencias numéricas suelen ir acompañadas, además, de diferencias en el grado de complejidad. En general, la circuitería nerviosa es mucho más compleja cuanto mayor es el número de neuronas que tiene un sistema. Pero de lo anterior no debe deducirse que cuantas más neuronas tiene un animal, mayor es su capacidad cognitiva necesariamente. Porque otros factores también inciden en el número de neuronas. Una ballena o un elefante puede tener el doble de neuronas que un ser humano, por la sencilla razón de que sus encéfalos son muy grandes, y no hay base para pensar que sus capacidades cognitivas son superiores a las humanas. Y al contrario, aves de encéfalos muy pequeños y con un número relativamente pequeño de neuronas, como algunos córvidos, por ejemplo, tienen capacidades cognitivas asombrosas.

Tamaño encefálico de algunos mamíferos.
Lo anterior nos conduce a la cuestión del tamaño encefálico. En general el tamaño del encéfalo de los vertebrados es mayor cuanto mayor es el tamaño de un animal, aunque la relación no es lineal, sino potencial (del tipo B = a Wb, donde B es la masa encefálica y W la corporal), con un valor de la potencia b que es inferior a 1, lo que significa que la masa del encéfalo es una proporción menor de la masa corporal en los vertebrados de mayor tamaño.
No obstante lo anterior, hay enormes diferencias entre los tamaños encefálicos de vertebrados de similar masa corporal, de manera que un encéfalo puede ser hasta 30 veces mayor que el de otro animal del mismo tamaño. Peces, anfibios y reptiles los tienen, en general, de pequeño tamaño relativo dentro de los vertebrados, menor, incluso, que el de la mayoría de pulpos y calamares. Los encéfalos más pequeños son los de los agnatos (vertebrados sin mandíbulas) y, en estos, muy especialmente los de las lampreas. Sin embargo, los peces cartilaginosos -tiburones y rayas- los tienen de tamaño similar al de mamíferos y aves de parecidas dimensiones. Por otro lado, los anfibios tienen un tamaño encefálico inferior al de los reptiles, y dentro de aquellos, los de los anuros (ranas) son mayores que los de los urodelos (tritones). Aves y mamíferos tienen encéfalos que son del orden de diez veces mayores que los de reptiles.
En las aves los mayores tamaños encefálicos relativos son los de algunas paseriformes, como pájaros carpinteros y loros, y los menores los de algunas granívoras, como palomas y codornices. Los primates son los mamíferos con encéfalos de mayor tamaño, aunque después del humano el segundo de mayor tamaño es el de los delfines (cetáceos). Los menores son los de monotremas, marsupiales, roedores e insectívoros.
Se ha especulado mucho acerca de la base de esas diferencias. Tenemos, por un lado, la hipótesis del tejido caro. El tejido nervioso es muy caro, porque debe mantener de forma permanente los gradientes iónicos que permiten la transmisión de los impulsos nerviosos y porque ha de producir, transportar, liberar y recuperar neurotransmisores, también de forma permanente. Por eso, cuanto mayor es el encéfalo, más hay que gastar en esas costosas actividades. Por otro lado, el hígado y el tracto gastrointestinal son también órganos muy activos y caros de mantener. Se da la circunstancia de que los animales que se alimentan de productos de baja calidad nutricional tienen sistemas digestivos de mayor tamaño (disponen así de más recursos y de más tiempo para la digestión). Esas diferencias permiten explicar por qué los carnívoros tienen, normalmente, mayores encéfalos y menores sistemas digestivos que los herbívoros. Y si esa hipótesis es correcta, habría que pensar que los animales que han podido acceder a dietas de alta calidad han desarrollado encéfalos más grandes. Aunque también podría valer la interpretación en sentido opuesto: los animales de mayor tamaño encefálico disponen de mayor capacidad para encontrar alimentos de mayor calidad y se habrían especializado, por ello, en dietas carnívoras. Sea como fuere, lo cierto es que encéfalos grandes suelen asociarse a digestivos pequeños, y estos solo pueden serlo si el alimento es de alta calidad, o sea, si proporciona mucha energía y nutrientes por unidad de esfuerzo dedicado a la digestión y absorción.
Una variante de la hipótesis anterior -apropiada solo para los seres humanos- incluye la cocción de los alimentos en la ecuación, ya que cocinando los alimentos los nutrientes se hacen mucho más fácilmente digeribles, lo que amplia mucho las dietas que pueden utilizarse sin necesidad de disponer de un sistema digestivo de gran tamaño.
Y finalmente, no quiero dejar sin citar la hipótesis de Robin Dunbar, que liga el tamaño encefálico con la socialidad y, más en concreto, con los requerimientos cognitivos que impone la vida en el seno de grupos relativamente grandes de individuos. Dunbar propone que, con carácter general, las especies monógamas tienen requerimientos cognitivos superiores a las demás especies. Y encéfalos de mayor tamaño habrían evolucionado bajo esa presión selectiva, porque se supone que dentro de un mismo linaje, un mayor tamaño encefálico está asociado a mayor capacidad cognitiva. Sería, por lo tanto, un factor cualitativo, cual es el tipo de vínculo reproductivo, el responsable de las diferencias en tamaños encefálicos. Lo que habría conducido a que los primates sean los mamíferos con encéfalos de mayor tamaño relativo es que estos habrían generalizado a las relaciones sociales ciertas características de las relaciones propias del vínculo de pareja; y como consecuencia de esa generalización, el encéfalo habría alcanzado el gran tamaño relativo que tiene en este grupo. Los partidarios de esta hipótesis sostienen que el tamaño encefálico evoluciona en respuesta a las presiones selectivas que imponen las relaciones –de pareja y sociales- de los individuos de los diferentes linajes, pero que son factores dietéticos los que habrían posibilitado el cambio evolutivo. Todo demasiado especulativo.
Fuentes:
Robin I Dunbar (2009): The Social Brain Hypothesis and its Implications for Social Evolution, Annals of Human Biology 36 (5): 562-572, doi: 10.1080/03014460902960289
Lauralee Sherwood, Hillar Klandorf y Paul h. Yancey (2005): “Chapter 5: Nervous Systems”, Animal Physiology: From Genes to Organisms, Brooks/Cole, Belmont.
Georg Striedter (2005): “Chapter 4: Evolutionary Changes in Overall Brain Size”, Principles of Brain Evolution, Sinauer Associates, Massachusetts.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Evolución de los sistemas nerviosos: el tamaño encefálico se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Evolución de los sistemas nerviosos: moluscos
- Evolución de los sistemas nerviosos: anélidos y artrópodos
- Evolución de los sistemas nerviosos: cnidarios y gusanos no segmentados
Se intuye la conservación de la energía (1)
A principios del siglo XIX los avances en la ciencia, de la ingeniería y de la filosofía sugirieron nuevas ideas sobre la energía. Parecía que todas las formas de energía (incluido el calor) podían transformarse entre sí sin pérdida alguna. Por lo tanto, parecía que la cantidad total de energía en universo debía permanecer constante.
En 1800 Alessandro Volta inventó la batería eléctrica, demostrando que las reacciones químicas podían producir electricidad. Pronto se descubrió que las corrientes eléctricas podían producir calor y luz, al pasar a través de un alambre delgado. En 1820, Hans Christian Oersted descubrió que una corriente eléctrica produce efectos magnéticos. En 1831, Michael Faraday descubrió la inducción electromagnética. Cuando un imán se mueve cerca de una bobina o un alambre, se produce una corriente eléctrica en la bobina o alambre. Para algunos pensadores estos descubrimientos sugirieron que todos los fenómenos de la naturaleza estaban de alguna manera unidos. Esta idea, aunque vaga e imprecisa, terminó fructificando en forma de ley de conservación de la energía, una de las leyes más importantes en ciencia:
Los fenómenos naturales pueden implicar una transformación de la energía de una forma a otra; pero la cantidad total de energía no cambia durante la transformación.
La invención y el uso de máquinas de vapor ayudó a consolidar la ley de conservación de energía al mostrar cómo medir esos cambios de energía. Por ejemplo, Joule utilizó el trabajo realizado por pesos descendentes que hacen girar una rueda de paletas en un tanque de agua como una medida de la cantidad de energía potencial gravitacional transformada en energía térmica en el agua por su fricción con las paletas. En 1843, Joule afirmó que en tales experimentos, siempre que una cierta cantidad de energía mecánica parecía desaparecer, siempre aparecía una cantidad concreta de calor. Para él, esto era una indicación de la conservación de lo que ahora llamamos energía. Joule afirmó estar…
. . . satisfecho de que los grandes agentes de la naturaleza son por el fiat del Creador indestructibles; y que, siempre que se gasta [energía] mecánica, se obtiene siempre un equivalente exacto de calor.
Joule era básicamente un hombre práctico que tenía poco tiempo para especular sobre un posible significado filosófico más profundo de sus hallazgos. Pero otros, aunque utilizando argumentos especulativos, también estaban llegando a la conclusión de que la cantidad total de energía en el universo es constante.
En este Cuaderno hemos tratado ya en varias ocasiones el trasfondo filosófico y la historia del surgimiento de las leyes de conservación, pero ello no es óbice ni cortapisa para que en la próxima entrega de esta serie lo hagamos de nuevo centrándonos en este pilar de la ciencia que es la ley de conservación de la energía.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Se intuye la conservación de la energía (1) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La memoria colectiva
Fue en 2014 cuando el Gobierno Vasco aprobó la Ley 4/2014, del 27 de noviembre, de la creación del Instituto de la Memoria, la Convivencia y los Derechos Humanos. En la Exposición de motivos, esta ley especifica que
“La gestión de una memoria democrática es uno de los factores directamente vinculados a la restitución y promoción de valores como la libertad, la igualdad y la dignidad humana. La memoria es un derecho ciudadano, no una obligación. Responde a la voluntad de compartir una reflexión crítica ante los acontecimientos de nuestra historia reciente que supusieron una violación de derechos humanos sostenida y socialmente traumática.”
“La memoria es la facultad que permite mantener presente el recuerdo de lo sucedido. Se asienta en la referencia de hechos objetivos que forman parte de lo que se recuerda, pero se configura subjetivamente en cada persona. No hay dos memorias exactamente iguales. La memoria pública es, en este sentido, una construcción conflictiva, dinámica y poliédrica.”
“La misión principal de una política de memoria y convivencia no se reduce a la actualización del sufrimiento, porque el dolor no es un valor, ni debe ser considerado como un principio de autoridad memorial que sustituye a la razón.”
“…se orienta a rescatar, destacar, conmemorar y transmitir los valores y esfuerzos democráticos que en medio de graves episodios violentos, pugnaron por defender la dignidad, la igualdad, la libertad…”
“El derecho a la memoria corresponde al conjunto de la sociedad, porque la ciudadanía es depositaria y heredera natural de la historia, el recuerdo y de la memoria. El olvido impide el reconocimiento, impone una versión del pasado y genera un vacío ético.”
En el Capítulo 3.- Finalidad, y en su punto 2.-, el texto precisa que
“El instituto será un agente activo en la permanente conmemoración de los valores políticos y sociales que garanticen el conocimiento, comprensión y conciencia de la ciudadanía respecto al proceso sostenido a lo largo de décadas en defensa de la libertad y del desarrollo de la democracia en nuestro país.”
Y el 8 de marzo de 2017, hace unas semanas, se constituyó en el Parlamento Vasco la Ponencia de Memoria y Convivencia, con el objetivo de “la búsqueda de amplios consensos” en torno a las cuestiones que planteen los grupos en relación a “la memoria, la convivencia, las víctimas, la deslegitimación del terrorismo y la violencia, la política penitenciaria, la paz y los derechos humanos”.
Después de esta larga introducción quizá empezamos a comprender lo que nuestros dirigentes y, se supone, nuestro entorno social entiende por memoria colectiva, con sus objetivos e intenciones de futuro. Ahora pasemos a lo que los psicólogos experimentales empiezan a averiguar sobre la memoria colectiva.
Según estudios publicados en los últimos años, la memoria colectiva se ha convertido en objeto de estudio de la psicología experimental. Como afirman Henry Roediger III y Magdalena Abel, de la Universidad Washington de St. Louis, hasta ahora la memoria colectiva ha sido un tema importante en los estudios de humanidades pero, actualmente, se comienza a investigar desde un enfoque empírico y experimental.
Para estos autores, la memoria colectiva se construye con los sucesos compartidos por un grupo. Es una forma de memoria cuya definición concreta está en debate. Además de compartirla el grupo, debe tener una importancia básica y central en la identidad social de sus miembros.
Hay conceptos cercanos a la memoria colectiva que no tienen exactamente el mismo significado. Por ejemplo, no es lo mismo que los recuerdos colectivos. Estos son dinámicos y siguen un proceso continuo de debate sobre cómo se debe representar y recordar el pasado. La memoria colectiva, por el contrario, aunque cambia con frecuencia, es un conocimiento asentado del pasado que, además, es compartido por los miembros del grupo.
La memoria colectiva tampoco es la historia, que nos da una representación ajustada y objetiva de un pasado complejo que, siempre, incluye ambigüedades y diferentes puntos de vista y opiniones. Es, se supone, un enfoque objetivo del pasado que, además, no tiene por qué ser la memoria colectiva.
Y tampoco es, sin más, la suma de los recuerdos de los individuos del grupo. A veces, estos recuerdos tienen importancia social pero, también, muy a menudo, solo conciernen a quien recuerda. Si son compartidos por el grupo se convierten en recuerdos colectivos y, puede que, más adelante, en memoria colectiva. Así los recuerdos individuales y la historia, en último término, pueden ayudar a construir la memoria colectiva del grupo.

Este señor, Andrew Johnson, fue presidente de los Estados Unidos.
Con estos autores vamos a repasar algunos de los estudios empíricos sobre memoria colectiva que antes citaba. Para empezar, investigan el recuerdo que los estadounidenses tienen de sus presidentes. Lo preguntan en 1974, en 1991 y en 2009, y detectan que los recuerdos se mantienen. Los encuestados deben anotar los presidentes que recuerden y ordenarlos, si es posible, en el orden temporal de sus mandatos.
Hay un olvido sistemático de los presidentes alejados en más de unas décadas, un recuerdo fuerte de los últimos presidentes para cada grupo de encuestados, con su olvido posterior, y un recuerdo fuerte de los presidentes que hicieron historia como Washington y sus sucesores inmediatos, Lincoln, y los presidentes del siglo XX, cada vez más recordados puesto que están más cercanos en el tiempo e intervinieron en hechos históricamente importantes, y muy recordados todavía, como las guerras mundiales, la depresión o las guerras de Corea y Vietnam.

Imagen del ataque a Pearl Harbor
En la memoria colectiva se guardan hechos heroicos, incluso míticos, importantes para el grupo, y se minimizan o desaparecen los hechos negativos o que no confluyen con el destino aceptado para todo el grupo. Es interesante conocer qué recuerdan los estadounidenses de tres guerras en las que ha participado su país: la Guerra Civil, la Segunda Guerra Mundial y la guerra de Irak. Lo estudiaron Franklin Zaromb y su grupo, del Servicio de Educación de Princeton, con 60 voluntarios, todos hombres, la mitad de 18 a 23 años y la otra mitad, de 62 a 87 años.
Se pide a los voluntarios que hagan una lista con los diez hechos que consideran más importantes de cada guerra y que los puntúen según las emociones que les provocan. Los recuerdos importantes de la Guerra Civil y de la Segunda Guerra Mundial son parecidos para la mayoría de los encuestados. Por ejemplo, en la Segunda Guerra Mundial son Pearl Harbor, el desembarco de Normandía y las bombas atómicas sobre el Japón.
Los sucesos importantes son pocos y llegan a la memoria colectiva con relatos cortos y potentes, fáciles de aceptar y asumir. En general, las memorias colectivas se expresan como una narración con un principio, una parte media y un final. El resto de sucesos o desaparecen o se fusionan con los más recordados. Para la Segunda Guerra Mundial, el comienzo fue Pearl Harbor, la parte central con cambio de tendencia fue el desembarco de Normandía, y el final, con la victoria, fue Hiroshima y Nagasaki.
Es interesante resaltar que uno de los aspectos esenciales de una memoria colectiva es su continua reelaboración dentro de un esquema permanente y aceptado. El pasado cambia constantemente en la memoria. También se generan interpretaciones diferentes para los mismos hechos. El genocidio armenio ocurrió hace un siglo y, sin embargo, Turquía y Armenia, cada grupo con su propia memoria colectiva, siguen debatiendo sobre el suceso, su interpretación y quienes fueron los responsables y, por supuesto, sobre qué recordar e incluir en la memoria colectiva.
Otro ejemplo viene del trabajo citado de Zaromb sobre las guerras en Estados Unidos. Todos recuerdan las bombas atómicas sobre Japón pero los encuestados de más edad lo consideran un hecho heroico que contribuyó a que la guerra terminara antes y a que se salvaran miles de vidas de soldados de Estados Unidos y, en cambio, los encuestados más jóvenes lo recuerdan como una masacre con miles de japoneses muertos y como el inicio de la Guerra Fría y de la acumulación de los arsenales de armas nucleares.
También influye el silencio público sobre algunos hechos que consigue que se olviden cuando no coinciden con lo que se acepta en la memoria colectiva del grupo, como demuestran Charles Stone y William Hirst, de la Universidad de la Ciudad de Nueva York. La omisión de sucesos puede venir de la comunidad, de un líder e, incluso, del grupo al completo. Se olvida lo que, ante todo, no se quiere escuchar y, por supuesto, no se quiere recordar.

Alberto II, rey de los belgas
Stone y Hirst estudian los recuerdos de los belgas sobre los discursos de su rey en un momento político difícil, sin gobierno y con negociaciones entre los partidos sin llegar a un acuerdo. Entrevistan a 81 voluntarios y, aquellos que no escucharon el discurso del rey, recuerdan los problemas de su país y las negociaciones que están en marcha para solucionarlos, con su secuencia en el tiempo. Los que escuchan al rey recuerdan parcialmente esos problemas; en realidad, solo lo que el rey menciona, y el resto lo han olvidado.
Así, las figuras públicas pueden provocar olvidos selectivos y conformar la memoria colectiva del grupo. Pero no siempre es así y, a veces, parece funcionar de manera parcial como ocurre en el conflicto entre turcos y armenios sobre el genocidio del siglo pasado, incluso teniendo en cuenta que en Turquía está prohibido debatir y difundir este asunto.
Por tanto, la memoria colectiva, como la memoria de los individuos, solo recuerda parte de lo que ocurrió, y el resto lo olvida.
También la nostalgia, por supuesto colectiva, influye en la construcción de la memoria colectiva. El Diccionario de la Lengua define así la nostalgia:
“1.f.Penadeverseausentedelapatriaodelosdeudoso amigos.
2.f.Tristezamelancólicaoriginadaporelrecuerdodeunadichaperdida.”
El grupo de Tim Wildschut, de la Universidad de Southampton, ha demostrado que quienes sienten nostalgia colectiva, por sucesos vividos en grupo, evalúan más alto las relaciones dentro del mismo grupo que quienes sienten nostalgia individual, por hechos vividos personalmente.
Los que sienten esa nostalgia colectiva están más dispuestos a apoyar y reforzar el grupo. En resumen, Wildschut afirma que la nostalgia es importante en los sentimientos de los miembros del grupo, en sus tendencias a la acción, y, en general, en su conducta.
Como conclusiones finales podemos afirmar que la memoria colectiva es un término que refleja cómo las personas recuerdan el pasado por ser miembros de un grupo. La memoria colectiva es, siempre, un proyecto inacabado que se basa en el rescate de recuerdos individuales y en la construcción de un relato común que refuerce la identidad del grupo.
Puede estudiarse como un cuerpo de conocimiento, como el esquema que soporta a un pueblo, o como un proceso de reivindicación y cambio. La memoria colectiva probablemente impulsa la identidad del grupo y construye su discurso social y político. Y además, el estudio de cómo varios miembros del grupo recuerdan los mismos sucesos de forma diferente puede ayudar a entender los factores psicológicos que intervienen en la creación de la memoria colectiva así como su influencia en la dinámica dentro del grupo y en los conflictos internos y externos.
Referencias:
BOPV. 2014. Ley 4/2014, de 27 de noviembre, de creación del Instituto de la Memoria, la Convivencia y los Derechos Humanos. BOPV 230, nº 5141.
Roediger, III, H.L. & M. Abel. 2015. Collective memory: a new arena of cognitive study. Trends in Cognitive Sciences 19: 359-361.
Spinney, L. 2016. Our collective memory, like individual memory, is shockingly falible. British Psychological Society BPS Blog, 22 January.
Stone, C.B. & W. Hirst. 2014. (Induced) Forgetting to form a collective memory. Memory Studies 7: 314-327.
Wildschut, et al. 2014. Collective nostalgia: A group-level emotion that confers unique benefits on the group. Journal of Personality and Social Psychology doi: 10.1037/a0037760
Zaromb, F. et al. 2014. Collective memories of three wars in United States history in younger and older adults. Memory & Cognition 42: 383-399.
Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.
El artículo La memoria colectiva se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El deterioro de la memoria con la edad es selectivo
- Un nexo cannabinoide entre mitocondrias y memoria
- La clave de la memoria que no lo era
Posibles biomarcadores para el ictus
La formación de placas de ateroma o acúmulos de células y grasa mayoritariamente en los vasos principales que llevan la sangre del corazón al cerebro por el cuello, las llamadas arterias carótidas, es un factor de riesgo para desarrollar un ictus. Actualmente se desconoce el mecanismo preciso por el cual la placa se rompe dando lugar al ictus. Se sabe que las células del músculo liso (CML) presentes en la placa juegan un papel en su formación.
El grupo Neurogenomiks, vinculado al centro Achucarro Basque Centre for Neuroscience (EHUtaldea) y a la Universidad del País Vasco (UPV/EHU), en colaboración con el Hospital Universitario de Basurto acaban de publicar el resultado de un trabajo de investigación en el que han identificado, mediante un estudio de transcriptómica basado en secuenciación masiva, 67 genes y 143 isoformas reguladas diferencialmente en células CML de placas inestables (provenientes de pacientes sintomáticos) comparado con las células CML de placas estables (provenientes de pacientes asintomáticos).
Además, los análisis de enriquecimiento y de vías realizados con los datos de transcriptómicas mediante herramientas de bioestadística han demostrado que las células CML de placas instables (provenientes de pacientes sintomáticos) presentan un perfil transcriptómico de biomarcadores asociado a un fenotipo de senescencia celular y sin embargo las células CML de placas estables (provenientes de pacientes asintomáticos) presentan un perfil asociado a un fenotipo de osteogénesis.
Por tanto podemos decir que el proceso por el cual se rompe la placa de ateroma en la arteria carótida no es un proceso aleatorio sino que es una acción dirigida.
Las opciones terapéuticas existentes han mejorado pero todavía son limitantes y además hasta ahora no se han identificado parámetros analíticos, biomarcadores, que nos puedan ayudar en la práctica habitual para esta enfermedad. Por tanto, la identificación de biomarcadores con potencial en el diagnostico o pronóstico de la enfermedad cerebrovascular son de innegable interés. Los resultados de este trabajo abren las vías para el desarrollo de nuevas opciones en el diagnóstico y tratamiento que pueden mejorar el pronóstico de estos pacientes.
Referencia:
Iraide Alloza, Haize Goikuria, Juan Luis Idro, Juan Carlos Triviño, José María Fernández Velasco, Elena Elizagaray, María García-Barcina, Genoveva Montoya-Murillo, Esther Sarasola, Reyes Vega Manrique, Maria del Mar Freijo & Koen Vandenbroeck. RNAseq based transcriptomics study of SMCs from carotid atherosclerotic plaque: BMP2 and IDs proteins are crucial regulators of plaque stability. Scientific Reports 7 (2017). DOI: 10.1038/s41598-017-03687-9.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Posibles biomarcadores para el ictus se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Biomarcadores para la detección precoz del melanoma
- Algoritmos de triaje para readmitidos en urgencias
- Una nueva diana terapéutica para el neuroblastoma
Juno, Júpiter, arte y amoniaco
Una de las ventajas que ofrece este rincón del Cuaderno de Cultura Científica es la relativa atemporalidad del arte. Un servidor puede traer prácticamente cualquier tema a colación sin preocuparse de que sea de vibrante actualidad, algo que no pueden hacer quienes divulgan sobre temas más candentes como las ondas gravitacionales o los últimos avances en medicina.
Sin embargo, recientemente ha habido una noticia de tal impacto que bien merece que le dediquemos unas líneas. Me refiero, como ya habréis deducido por el título del artículo, a las últimas imágenes que nos ha regalado el satélite Juno de la superficie de Júpiter. No tengo la menor intención de hablar de los prometedores resultados científicos que se han recibido, de eso ya se ha encargado la gente que sabe del tema. Pero sí que quería aportar un punto de vista diferente, ya que Júpiter es una enorme obra de arte con mucha química. Y, si no, contemplad la Imagen 1 para salir de toda duda.

Imagen 1. Vista de Júpiter creada por Gabriel Fiset empleando los datos de la cámara Juno. Fuente: NASA
Juno abandonó la Tierra el 5 de agosto de 2011 y casi seis años después ha llegado a su destino. Más allá de los datos gravimétricos que pueda ofrecer, lo más fascinante para quienes no sabemos resolver una ecuación diferencial son las imágenes captadas por la cámara que lleva incorporada (JunoCam). Por cierto, la NASA ha habilitado una web donde podemos obtener toda la información que deseemos y subir nuestras propias fotos del planeta. Juno ya lleva unas semanas en la órbita de Júpiter en una escena similar a la recreación artística que os enseño en la Imagen 2. Digna de una película de ciencia ficción, ¿verdad? Y, sin embargo, es a la vez una antigua leyenda griega trasladada al siglo XXI. Cuando en la NASA eligieron el nombre del satélite, no lo podrían haber hecho mejor. A continuación os explico por qué.

Imagen 2. Recreación artística de Juno orbitando alrededor de Júpiter. Fuente: NASA
Al igual que Júpiter es el más grande de todos los planetas del sistema solar, el dios homónimo era el más poderoso entre los de su especie para los romanos. Éstos, en otra demostración de pragmatismo, habían tomado sus dioses del panteón griego donde Júpiter se conocía como Zeus. Así, aunque directamente el nombre provenga del latín, el legado es más bien heleno (como diría Javier Reverte y, antes que él, Percy Bysshe Shelley: todos somos griegos). Júpiter no sólo era el rey de los cielos, también era un auténtico mujeriego y no perdía oportunidad de mancillar a cualquier mortal, ninfa o diosa que se le pusiese en el camino (de eso ya os hablé aquí). De hecho, en un “poético” acto de nomenclatura que comenzó en el siglo XVII con los satélites galileanos (Calisto, Ío, Europa y Ganimedes), las lunas de Júpiter llevan nombres de sus amantes. Algo que supuso un problema cuando, al nombrar la número treinta y tres, las amantes se agotaron. Entonces se recurrió a su progenie que, como podéis imaginar, también era abundante si tenemos en cuenta que el machote del Olimpo siempre dejaba encinta a su pareja. Y mirad por donde, mientras escribo estas líneas se anuncia el descubrimiento de dos nuevas lunas jovianas, para un total de 69. ¡A este ritmo nos vamos a quedar sin nombres mitológicos!
Volviendo a las aventuras amorosas de Júpiter, hay que decir que el dios contaba con un impedimento considerable: estaba casado. Y os podéis imaginar que a su consorte no le hacían mucha gracia sus correrías, así que siempre estaba atenta para evitar otra infidelidad y, de paso, castigar a la desdichada víctima de su marido. Efectivamente, la esposa (y hermana) se llamaba Juno. Puesto que los amoríos de Zeus son una de las representaciones más habituales en la Historia del Arte, podemos encontrar numerosas obras en las que la divina pareja es representada. Me gustaría destacar por encima de todas la que os enseño en la Imagen 3: un colosal óleo realizado por Dominique Ingres, uno de los grandes pintores franceses del XIX. Ahí podemos ver al majestuoso dios, sentado en su trono en una representación iconográfica impecable (el águila, el cetro, las nubes…). Quizás os resulte familiar por este retrato de Napoleón. A sus pies la diosa Tetis que, en contra de lo que pueda parecer, no está intentando seducir al divino ser. Simplemente implora por la vida de su hijo Aquiles en la batalla de Troya, una escena descrita en la Ilíada que Ingres tomó prestada de la obra de Homero. ¿Y dónde está Juno? Pues allí, a la izquierda, entre las nubes, vigilando la escena. 200 años antes de que un satélite con su nombre posase la mirada sobre el otro Júpiter.

Imagen 3. Júpiter y Tetis (324×260 cm) de Dominique Ingres (1811). Fuente: Wikimedia
Pero aquí no acaba el parecido entre Juno “satélite” y Juno “diosa”. Una de las aventuras más conocidas de Zeus cuenta cómo, para yacer con la sacerdotisa Ío sin que nadie se enterase, el dios tomó forma de nube (en la Imagen 4 podéis ver la interpretación que hizo Correggio). Ahora bien, Hera difícilmente se dejaba engañar y fue capaz de ver entre las nubes la fechoría de su marido. Zeus se encontró en un callejón sin salida y tuvo que transformar a Ío en ternera para salvar su vida. Como veis, no se puede elegir mejor nombre para un satélite que pretende explorar entre las nubes de un planeta gaseoso.

Imagen 4. Júpiter e Ío (164×74 cm) de Correggio (1531-32). Fuente: Wikimedia
Siguiendo con las nubes, en la primera imagen os mostraba una foto de la superficie joviana. Esas manchas que forman caprichosas formas pueden estar compuestas de amoniaco o de agua. En la imagen 5 podéis disfrutar de una vista más espectacular si cabe. Eso que contempláis es el polo sur del planeta.

Imagen 5. El polo sur de Júpiter, capturado por Juno a una distancia de 52000 km. Fuente: NASA
¿No os parece una auténtica maravilla? ¿No os recuerdan esas ondulaciones a las pinceladas de van Gogh en la noche estrellada (Imagen 6)? Si os soy sincero no soy el primero al que se le ha pasado por la cabeza.

Imagen 6. Un detalle del polo sur de Júpiter y otro de la noche estrellada de Vincent van Gogh (1889). Fuente: Wikimedia
Decíamos que el agua o el amoniaco pueden ser los principales componentes de esos cúmulos tan llamativos. Y es que, si bien Júpiter es un portento en tamaño, su composición química es extremadamente simple (hasta donde sabemos). Al igual que el Sol, está compuesto por una gran cantidad de hidrógeno y helio (los dos elementos químicos más pequeños) a la que se le suman los compuestos que ya hemos mencionado. El amoniaco (NH3), aunque un poco más complejo, es también muy simple, ya que está formado por un átomo de nitrógeno y tres de hidrógeno.
Al leer el nombre es posible que vuestra primera reacción haya sido asociarlo al producto de limpieza que tan desagradable olor desprende (hay que aclarar que la fórmula comercial es una disolución acuosa, ya que el amoniaco se encuentra en forma gaseosa a temperatura ambiente). Ahora bien, más allá de su mal olor, esta sustancia puede deparar alguna sorpresa agradable para otro de nuestros sentidos: la vista.
En la Imagen 7 os muestro un par de ejemplos. En una de las fotografías tenemos dos tubos de ensayo con disoluciones diferentes. El de la derecha contiene cobre disuelto (en forma de Cu2+) y es de una tonalidad azul clara. Si encima de ese líquido añadimos una disolución de amoniaco (que no tiene color) se forma el compuesto de la izquierda, un “complejo” de un color azul intenso. Más allá de para la formación de disoluciones de colores llamativos, el amoniaco se ha usado históricamente para la obtención de numerosos pigmentos como el verdigris e incluso juega un papel importante en la composición de alguno de ellos como el violeta de manganeso (NH4MnP2O7) que podéis ver en la otra parte de la imagen.

Imagen 7. (A) Tubos de ensayo que contienen un complejo cobre-amoniaco (izquierda) y una disolución de cobre (Cu2+). (B) Un frasco con violeta de manganeso. Fuentes: Royal Society of Chemistry y Wikimedia Commons
Y, para acabar, quería hacer una referencia sobre la etimología del amoniaco. Según parece, el nombre deriva del dios egipcio Amón cerca de cuyo templo en Libia los romanos obtenían una sal que contiene amoniaco (cloruro amónico). ¿Y sabéis qué es lo más curioso? Amón era el dios principal de los egipcios (aunque esto dependía del periodo y de la ciudad) y de ahí que los romanos lo asociaran a Júpiter. Por lo tanto, el mencionado templo estaba también dedicado a Júpiter, quien posteriormente dio el nombre a un planeta cubierto de amoniaco. Y así se cerró este particular círculo de química, astronomía y mitología.
Un último espectáculo visual
No me gustaría finalizar este artículo sin mostraros un vídeo en el que el artista Garip Ay hace una recreación de la noche estrellada sobre… ¡agua! No os lo perdáis.
Para saber más:
Daniel Torregrosa: La influencia de la mitología en la ciencia (37ª Parte): Juno en Ese Punto Azul Pálido.
Daniel Marín: Descubriendo el interior de Júpiter: primeros resultados científicos de Juno en Eureka (Naukas).
Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.
El artículo Juno, Júpiter, arte y amoniaco se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Arte & Ciencia: Cómo descubrir secretos que esconden las obras de arte
El arte y la ciencia son dos formas de conocimiento aparentemente alejadas, en gran medida consecuencia de la especialización profesional y la educación compartimentada. Del estudio de esta impostada separación surgió el estereotipo de las dos culturas, las ciencias y las humanidades, para referirnos a esa brecha de conocimiento. La realidad es que la ciencia y el arte sí están conectadas y que ninguna forma de conocimiento es impermeable a otra. Por poner algunos ejemplos: ¿Cómo podría crearse una obra plástica sin las técnicas propiciadas por la ciencia? ¿Cómo podríamos interpretar la elección de materiales?
Estas y otras cuestiones relacionadas furon tratadas por destacados profesionales -artistas, ilustradores, filósofos y científicos- que han puesto el foco en ese difuso trazo que une la ciencia y el arte. El ciclo Ciencia & Arte se desarrolló, bajo la dirección de Deborah García Bello, a lo largo de cuatro jornadas que se celebraron los jueves días 6 y 27 de abril y 11 y 25 de mayo de 2017 en el auditorio del Museo Guggeheim Bilbao.
Esta actividad de la Cátedra de Cultura Científica de la UPV/EHU se enmarca en el programa TopARTE que conmemora el XX Aniversario del Museo Guggenheim Bilbao.
Primera jornada. 3ª conferencia
Oskar González Mendia, profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU: Cómo descubrir secretos que esconden las obras de arte
Las ciencias experimentales juegan un papel esencial en el análisis, tratamiento y conservación de las obras de arte. Estos procesos nos ofrecen, además, información valiosa sobre el contenido de la obra y las circunstancias en las que fue creada. Ciencia y arte tienen una relación mucho más íntima de lo que imaginamos, ya que el conocimiento científico es una herramienta imprescindible para artistas, restauradores y analistas. Les permite conocer las cualidades de los materiales para optar por unos u otros, prever cómo se degradarán los pigmentos o determinar la mejor manera para conservar una escultura.
Cómo descubrir secretos que esconden las obras de arteEdición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo Arte & Ciencia: Cómo descubrir secretos que esconden las obras de arte se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Arte & Ciencia: Conservación de obras con componentes tecnológicos
- Arte & Ciencia: La importancia de la ciencia para la conservación del arte
- Ciencia, naturaleza y arte: la química y sus metáforas, por Fernando Cossío
Catástrofe Ultravioleta #17 BABEL

Catástrofe Ultravioleta #17 BABEL
La mitad de las lenguas que existen en nuestro planeta están en riesgo de desaparecer. En este capítulo de Catástrofe Ultravioleta descubriremos nuevas formas de ver el mundo a través de lenguas que estamos perdiendo.
Imagina encontrar al último hablante de la lengua mamuju en una boda en Nueva York, recuperar el lenguaje de una tribu del Amazonas gracias al loro que sobrevivió a su desaparición o registrar las últimas palabras de una lengua india de Nuevo México charlando con la última hablante viva. Cada día, lingüistas de todo el mundo luchan a contrarreloj para salvar centenares de lenguas de las que apenas quedan unos pocos hablantes. La UNESCO advierte de que más de la mitad de las 6.000 lenguas que se hablan en el planeta están en riesgo de desaparecer. ¿Quieres saber por qué es importante que no desaparezcan? Pues abre bien las orejas.
Agradecimientos: Eugenio Daria y al cabildo de La Gomera por el silbo; a Daniel Kaufman, la Endangered Language Alliance y Wikitongues por sus grabaciones; a Fernando Nava, Blanca y Miguel Gotor por sus testimonios; a Douglas, Marco, Vanderlei y Neiva por las cuñas en portugués y tupi; a Celine, Ray Jaén, Ana González y Stephen Hughes por las voces. Y, por supuesto, ¡a Alexander von Humboldt por sus palabras!
* Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el apoyo de la Cátedra de Cultura Científica de la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.
Puedes conocernos en nuestra web: Catastrofeultravioleta.com y seguirnos en el twitter Catastrofe_UV. También puedes encontrar todos los capítulos en este enlace.
El artículo Catástrofe Ultravioleta #17 BABEL se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Preparados para una Catástrofe Ultravioleta
- Catástrofe Ultravioleta #13 LEVIATÁN
- Catástrofe Ultravioleta #14 VULCANO
ADN basura: negacionismo y malentendidos (con cebolla) Primera parte
Los lectores de noticias científicas probablemente os habréis encontrado más de una vez una historia que puede resumirse así:
“Descubren algo interesante en la región del genoma que hasta hace poco se consideraba basura”
Ese algo interesante puede consistir en secuencias que determinan el desarrollo del cerebro o la forma de nuestra cara, un gen clave para la celiaquía, un trocito de ADN que determina la evolución del cáncer, otro que permitirá curar la diabetes… todo tipo de maravillas, halladas gracias a que a alguien se le ocurrió buscar en lo que sus poco espabilados colegas creían un vertedero genético.
El mito del tesoro en el vertedero
El concepto ADN basura lleva muchos años divulgándose y enseñándose como si se tratase de un error surgido directamente de la arrogancia de los científicos. Un error que ahora, gracias a nuevos hallazgos y a un cambio de mentalidad, se estaría corrigiendo.
El mito dice así: Cuando los científicos empezaron a leer el genoma humano comprobaron que solo una minúscula parte consiste en ADN codificante, es decir, en genes con información para sintetizar proteínas. El resto del ADN, ¿para qué sirve? ¿Qué hace ahí? No lo sabían. Y, como no lo sabían, decidieron que se trataba de ADN inútil. Que estaba ahí simplemente porque no hacía daño. Que era chatarra. Y así quedó establecido como ortodoxia durante un tiempo vergonzosamente largo. Hasta que, por fin, las nuevas investigaciones comprobaron que esa gran cantidad de ADN no codificante tiene papeles cruciales.
El mito tiene variantes y oscila entre dos extremos:
1.- El ADN no codificante, “antes considerado basura” contiene algunos tesoros genéticos.
2.- El mal llamado ADN basura es todo él un tesoro genético.
Es una narración atractiva. Enfrenta de un modo más o menos explícito a unos “malos”: científicos anticuados, engreídos y sin imaginación, con unos “buenos”: científicos modernos, abiertos de mente y humildes ante la magnificencia de la naturaleza. Ésta nos habría dado una lección de modestia: aquello que creíamos que era absurdo porque no comprendíamos, en realidad tendría perfecto sentido.
Incontables noticias en los periódicos, blogs, libros de divulgación y abstracts de trabajos científicos reproducen el mencionado esquema año tras año. Profesores de biología de todo el mundo, en institutos y universidades, están enseñando a sus alumnos que el ADN basura es una hipótesis fallida.
Quizá debido a la compartimentación del saber, a una no siempre buena comunicación entre expertos de distintas especialidades, y a malentendidos habituales sobre la evolución, el negacionismo del ADN basura está muy extendido entre biólogos y bioquímicos. A menudo lo expresan con argumentos que harían alzar las cejas a cualquier iniciado en biología evolutiva:
“si este ADN ha llegado hasta nuestros días es que debe tener alguna función”.
El mismísimo Francis Collins, prestigioso genetista que dirigió el Proyecto Genoma Humano y luego los Institutos Nacionales de Salud estadounidenses, se ha revelado también como un negacionista del ADN basura: “Ya no usamos más esa expresión. Fue en gran medida un caso de arrogancia eso de imaginar que podríamos prescindir de alguna parte del genoma, como si supiéramos lo bastante para afirmar que no era funcional”.
Collins es un creyente cristiano, pero no es un creacionista. Quienes rechazan la evolución desde posturas religiosas no pueden aceptar que el diseñador inteligente que supuestamente nos creó haya metido tal cantidad de morralla en nuestros núcleos celulares. Una buena proporción de los textos que atacan al ADN basura procede de las organizaciones creacionistas. ¡Lo odian! Un genoma repleto de secuencias inútiles es prueba de que los seres vivos han ido cambiando mediante procesos ciegos, inconscientes, naturales. Siempre que un equipo científico ha encontrado algo interesante en una región del genoma “anteriormente considerada basura”, los creacionistas lo han celebrado como un golpe más en la cara de Darwin.
El Proyecto ENCODE
El “meme” del ADN basura como concepto erróneo y obsoleto alcanzó su apogeo en 2012, en lo que debería ser recordado como una de las mayores catástrofes de la comunicación científica. Ese año, con gran bombo, el Consorcio del Proyecto ENCODE (Encyclopaedia of DNA Elements) publicó simultáneamente treinta trabajos sobre el genoma humano. Más del 80% de éste, según hallaron, tenía “funciones bioquímicas”.
Se gastaron unos 400 millones de dólares. Espléndidos materiales divulgativos fueron producidos al mismo tiempo que se preparaban los papers científicos. La revista Nature lanzó un portal dedicado a ENCODE. En este vídeo de dibujos animados, narrado por el comediante y activista del pensamiento crítico Tim Minchin, ENCODE aparece representado como un robot gigante que, entre otras proezas, lucha contra el cáncer. ENCODE, explica el vídeo, “es un mapa que revela que el genoma entero es una jungla de ruidosa actividad, incluso las partes que solíamos considerar chatarra; no solo los genes sino también las instrucciones que les dicen qué hacer y cuándo”.
Hubo profusión de entrevistas a los científicos que habían participado en ENCODE. Ewan Birney, uno de los líderes, afirmó que ese 80% del genoma con función se convertiría probablemente en el 100% una vez avanzaran los estudios, y añadió: “Realmente no tenemos ninguna gran porción de ADN redundante. Esta metáfora del ADN basura no es tan útil”.
Roderic Guigó, coordinador del programa Bioinformática y Genómica del Centro de Regulación Genómica, dijo: “Hemos visto que partes del genoma que considerábamos ADN basura, sin utilidad, son en realidad muy importantes. Identificamos en estas secuencias unos 4 millones de interruptores de genes, es decir, de regiones reguladoras.”
¡Cuatro millones! Varios medios publicaron que El ADN antes conocido como basura era, en realidad, un gigantesco panel de control, un sistema operativo de la célula. Los titulares fueron sensacionales:
El ADN basura, demolido (The Wall Street Journal)
El estudio Encode desacredita la teoría del “ADN basura” (The Independent)
El ADN basura es esencial para el genoma humano (ABC)
El Proyecto Encode escribe una elegía para el ADN basura (Science)
No existe el ADN basura (QUO)
Pero el ADN basura sí existe y está presente en cantidades ingentes en los genomas de la mayoría de las especies vivas. La evidencia científica a su favor es aplastante y procede de múltiples ramas de la biología. Su negacionismo es una combinación de malentendidos, exageraciones, falsa modestia, ceguera ideológica y adanismo.
¿Cómo desmontar este titánico mito construido y defendido por investigadores de incuestionable valía, las mejores revistas científicas, un multimillonario proyecto genómico internacional, profesores, periodistas, divulgadores… y, además, por si fuera poco, la estrafalaria ayuda de los creacionistas? Parece una tarea imposible. Ante tan gargantuesco y multicéfalo rival parece que solo cabe rendirse. Quizá aquí debería acabarse este artículo. Pero no; queda mucho todavía.
Muchos investigadores, por supuesto, han salido en defensa del ADN basura. Algunos de los más activos y visibles son el experto en genómica T. Ryan Gregory, el vitriólico biólogo evolutivo Dan Graur, el bioquímico Laurence A. Moran, el biólogo del desarrollo y conocido bloguero PZ Myers o el biólogo molecular y computacional Sean Eddy. Las críticas al proyecto ENCODE llegaron también a las revistas científicas en forma de diversos papers, algunos muy interesantes por su carácter divulgativo. Con la ayuda de estos científicos, comenzamos el combate dividiendo al adversario en seis malentendidos o errores principales.
El ADN basura no surge de la ignorancia
El primer malentendido en esta historia es la leyenda según la cual el ADN basura fue un parche, una solución torpe que dieron los científicos cuando descubrieron una montonera de ADN extraño y no supieron para qué servía.
En realidad, el ADN basura fue una predicción basada en los límites de la selección natural y calculada mediante las matemáticas de la genética de poblaciones. Su origen es bastante anterior al comienzo de la era genómica. Como tal predicción, se fue cumpliendo a medida que se fueron secuenciando genomas de todo tipo de especies.
La selección natural hace muchas cosas. Adapta a las poblaciones al medio, las separa y modifica hasta producir nuevas especies, estructuras, órganos, instintos… Éste es el papel constructor o creativo de la selección natural. Lo lleva a cabo con la colaboración imprescindible de las mutaciones y con la participación de otros mecanismos evolutivos. Es su aspecto peor comprendido por los no expertos y el más atacado por los “antidarwinistas”. Pero no es el que nos interesa ahora.
El que ahora toca es el papel conservador de la selección natural, mucho más intuitivo, fácil de comprender y menos polémico. La selección natural conserva las funciones biológicas y evita que los genomas degeneren fatalmente por acumulación de errores aleatorios que suceden constantemente.
Todos somos mutantes; cada uno de nosotros nace con nuevas mutaciones que, cuando afectan un gen, pueden estropearlo, deteriorando su función o anulándola por completo. Además, todos heredamos de nuestros padres un conjunto distinto de alelos (variantes de un mismo gen) estropeados que nos pueden provocar desde nada (ningún efecto detectable) hasta pequeñas molestias o desventajas, enfermedades serias o incluso la muerte prematura. Cada población de seres vivos soporta una carga mutacional que, en ocasiones, llega a resultar fatídica.
Pero, en general, los genes se mantienen buen estado. Lo que los conserva no es magia arcana; simplemente, los individuos que tienen genes menos estropeados suelen reproducirse más que aquellos que tienen los genes más estropeados. Eso hace que, en cada generación, parte de las variantes defectuosas desaparecen de las poblaciones. Sin la selección purificadora (así se llama), la información de los genomas degeneraría a lo largo de las generaciones. Los organismos nacerían cada vez menos aptos y, finalmente, la vida se extinguiría por completo.
Los límites de la selección natural
Pero la selección purificadora no es un espectro inteligente (con la cara de Charles Darwin) que detecta cualquier pequeño error en el mundo y lo elimina ipso facto. Tiene limitaciones que los especialistas conocen y calculan. La capacidad de la selección natural para limpiar los genomas depende de factores como el tamaño de las poblaciones, sus oscilaciones o su diversidad. Sin una buena formación en teoría evolutiva, tendemos a considerar que la selección es omnipotente. En general, funciona de forma mucho menos eficaz de lo que creemos.
Nuestro genoma es larguísimo. Si todo él, enterito, tuviera funciones biológicas cruciales, la selección natural tendría que haber estado protegiendo y conservando varios millones de secuencias útiles distintas. Y no puede hacerlo.
Los genetistas de poblaciones, teniendo en cuenta lo que saben sobre las tasas de mutación, los tamaños habituales de los genes, la recombinación, el censo efectivo de las poblaciones, etc., comprueban que tal hipótesis es inviable. Una selección natural tan eficaz habría requerido que cada humano tuviera una cantidad astronómica de hijos (los números, en este trabajo de Graur). Millones de hijos que luego, casi todos, a causa de pequeños defectos, tendrían que haber muerto sin descendencia. Esto habría que aplicarlo al resto de animales, plantas y microorganismos de la Tierra. No cabríamos en en el Sistema Solar.
Por tanto, en el mundo real existe un límite en el número de loci (genes en sentido amplio), que la selección natural puede conservar. En 1970 ya se había estimado que el número total de genes humanos sería como mucho de unos 30.000. Esta cantidad era asombrosamente pequeña para el pensamiento de la época. Hoy en día, sin embargo, parece muy acertada.
Susumu Ohno es citado a menudo como el padre del ADN basura (aunque la historia es más complicada). Dedujo en 1972 que esos treinta mil loci útiles incluirían tanto los genes típicos que codifican proteínas como sus posibles regiones reguladoras. El ADN esencial (útil) representaría aproximadamente el 6% de nuestro genoma. El resto, más de un 90% del genoma, no puede estar siendo conservado por la selección natural y, por tanto, carece de función. El ADN basura fue deducido mediante una teoría científica sólida, no inventado a la desesperada para tapar un misterio. Surgió del conocimiento, no a partir de la ignorancia.
(continuará en la segunda parte, donde por fin aparecerá la cebolla)
Este post ha sido realizado por @Paleofreak y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo ADN basura: negacionismo y malentendidos (con cebolla) Primera parte se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El libro preferido del profesor (primera parte)
- El rombododecaedro estrellado: arte, abejas y puzzles (primera parte)
- Océanos nucleares. Cuando la basura llega antes que el ser humano
Tres historias italianas: vacunas, homeopatía, niños y derechos humanos
Mikel Mancisidor
Les voy a contar tres historias que nos llegan desde Italia. Luego reflexionaré sobre algunos aspectos que tienen que ver con los Derechos Humanos. Confío en que, como por definición todo lo relativo a los Derechos Humanos tiene vocación universal, estas ideas resulten válidas también para nuestro país o cualquier otro.
La primera historia es muy reciente y seguramente la conocen ustedes. Un niño de 7 años entró en el hospital de Urbino ya en estado de coma tras haber sufrido grandes dolores durante días. Poco después murió sin que los médicos pudieran hacer nada por salvar su vida. Sus padres habían decidido tratar la otitis que sufría el niño con homeopatía. La infección avanzó sin que la homeopatía pudiera evitarlo y afectó al cerebro hasta causarle la muerte.
También en Italia se dio un caso parecido hace unos pocos años. Luca, un niño de 4 años, ingresó ya muerto, tras 7 de días de diarreas, toses y fiebre, debido a una “neumonía intersticial y bacteriana, complicada por una infección de hongos patógenos”. Sus padres decidieron no enviar al niño a su pediatra y lo trataron en casa con homeopatía e infusiones de hinojo. Su padre, por cierto, es médico y se anuncia como homeópata y terapeuta. Los médicos que recibieron el cuerpo del niño dijeron que sufría grave desnutrición, problemas estomacales graves y costras en varias partes del cuerpo. “Al verle inmediatamente pensamos en las imágenes que se ven en la televisión cuando las grandes hambrunas africanas”, dijo ante el juez uno de los médicos. Sí, aunque resulte difícil de creer, esto sucedió en la Italia del siglo XXI, en una familia de recursos medio-altos, con padres titulados superiores y en un entorno con sobradas posibilidades de acceso a la mejor alimentación, a la mejor sanidad y a la mejor información.
Y no salimos de Italia, pero pasamos de homeopatía a los movimientos antivacunas. Una nueva ley que entrará en vigor en breve permitirá obligar a los padres a vacunar a sus hijos. En caso de que no lo hagan podrán ser sancionados con altas multas e incluso en casos extremos con la pérdida de la patria potestad. Otros países europeos cuentan con normas similares. Y es que la decisión de no vacunar a un niño puede llevar a su muerte (¿recuerdan el caso de Olot?) y además pone en peligro avances generales como la reducción de enfermedades y la progresiva erradicación de alguna de ellas.
Aclaro de entrada que no quiero hablarles aquí de homeopatía o de vacunación, puesto que poco sé de medicina y hay muchos expertos que colaboran en este Cuaderno que pueden hacerlo mucho mejor. Pero trataré de hacer algún comentario desde una perspectiva de Derechos Humanos.
Las cuestiones que queremos responder en este artículo pueden formularse así: ¿puede el estado obligar a los padres a vacunar contra su voluntad a los niños?, ¿puede el estado intervenir en caso de que los padres no estén dando a sus hijos la mejor asistencia médica disponible?, ¿se vulnera el derecho de los padres a elegir por sus hijos?, ¿tiene límites este derecho de los padres?
Estos días en redes sociales se han podido leer al respecto cosas como ésta: “la obligación de vacunar vulnera el derecho a la libertad personal, la integridad física y la intimidad personal. Debe prevalecer el derecho a no vacunarse y que tal decisión sea tomada por los padres, que en definitiva tienen la obligación de velar por la salud y educación de sus hijos.”
¿Atenta de verdad una obligación de vacunar contra esos derechos de libertad, integridad física e intimidad personal?, ¿pueden los poderes públicos entrometerse e incluso corregir esa decisión de los padres?
El Derecho Internacional de los Derechos Humanos se ha topado con asuntos de este tipo con frecuencia y su respuesta es clara. Para empezar tanto la Declaración Universal, de 1948, como el Pacto de Derechos Económicos, Sociales y Culturales, de 1996, (del cual tanto Italia como España, junto a otros 162 estados, son parte) reconoce el Derecho a la Salud en los siguientes términos: se “reconoce el derecho de toda persona al disfrute del más alto nivel posible de salud física y mental”. Llamo la atención sobre el hecho de que el derecho no es a disfrutar del nivel de salud que los padres, tutores u otros consideren mejor para un menor, sino al “más alto posible nivel posible”.
Por medio del Pacto de Derechos del Niño, de 1989, del que obviamente tanto Italia como España son parte, “los Estados Partes reconocen el derecho del niño al disfrute del más alto nivel posible de salud y a servicios para el tratamiento de las enfermedades y la rehabilitación de la salud. Los Estados Partes se esforzarán por asegurar que ningún niño sea privado de su derecho al disfrute de esos servicios sanitarios. Los Estados Partes asegurarán la plena aplicación de este derecho y, en particular, adoptarán las medidas apropiadas (…) para asegurar que todos los sectores de la sociedad, y en particular los padres y los niños, conozcan los principios básicos de la salud y la nutrición de los niños (…), tengan acceso a la educación pertinente y reciban apoyo en la aplicación de esos conocimientos”. Este Tratado es muy explícito al afirmar que “los Estados Partes adoptarán todas las medidas eficaces y apropiadas posibles para abolir las prácticas tradicionales que sean perjudiciales para la salud de los niños”.
En los conflictos que involucran a niños se aplica el conocido como principio del interés superior del niño. Se expresa así en el citado tratado: “en todas las medidas concernientes a los niños que tomen las instituciones públicas o privadas de bienestar social, los tribunales, las autoridades administrativas o legislativas, una consideración primordial será el interés superior del niño”. Además “los estados se comprometen a asegurar al niño la protección y el cuidado que sean necesarios para su bienestar, teniendo en cuenta los derechos y deberes de sus padres”. Es decir, lo primero es el derecho de los niños, su interés superior, en este caso la salud, y luego el papel de los padres, que se expresa como derecho, cierto, pero también como deber.
El Comité de Derechos del Niño “exhorta a los Estados a que sitúen el interés superior del niño en el centro de todas las decisiones que afecten a su salud y su desarrollo”. Este “interés superior del niño deberá (…) contribuir a la solución de los conflictos de intereses entre padres y trabajadores sanitarios. El Comité recalca la importancia del interés superior del niño como fundamento de todas las decisiones que se adopten con respecto al tratamiento que se dispense, niegue o suspenda a todos los niños.” (Comentario General N.º 15 del Comité de Derecho del Niño).
¿Cuál es entonces este espacio de decisión de los padres? Compare usted con lo que ya sabemos sobre el Derecho a la Educación y a libertad de elección de los padres. Se permite ciertamente que los padres elijan el tipo de educación que quieren para sus hijos: privada o pública, religiosa o laica, con más o menos deporte, arte o innovación pedagógica, con distintos tipos de equilibrio o diversidad lingüística. Pero el derecho de los padres a elegir no puede vulnerar el de los niños a acceder a una educación de calidad que incluya los contenidos mínimos que “el estado prescriba”. El derecho de elegir en educación no incluye un derecho a no educar o a educar por debajo de unos contenidos mínimos o a educar en fantasías, mitos y falsedades. Lo mismo puede predicarse en relación a la salud. Los padres podrán elegir distintos tipos de prestaciones o tratamientos médicos posibles, pero siempre que puedan ser considerados como equivalentes al “más alto nivel posible” no por cualquiera, sino tras un escrutinio profesional científicamente fundado, ajeno a mitos, tradiciones y creencias.
Al Estado le toca “adoptar todas las medidas eficaces y apropiadas posibles para abolir las prácticas tradicionales que sean perjudiciales para la salud de los niños”, como queda dicho. Y es que el estado tiene la obligación de proteger al niño frete a terceros, incluidos sus propios padres cuando corresponda. El estado, de esta forma, podría incumplir sus obligación y llegar a violar los derechos humanos del menor cuando no le protege a los “contra las violaciones del derecho a la salud por terceros”, como, por ejemplo, al no evitar “la observancia de prácticas médicas perjudiciales” (Comentario General N.º 17 del Comité de Derechos, Económicos, Sociales y Culturales – DESC).
Estos asuntos están llegando ya a los órganos de Derechos Humanos de la ONU que empiezan a examinar casos donde la ausencia de vacunación ya no se debe, como por desgracia aún sucede en ocasiones, a la pobreza, la falta de medios o la falta de voluntad del estado, sino a la negativa de los padres. Este mismo mes de Junio el Comité DESC ha tratado el asunto, por ejemplo, con Uruguay pidiéndole que asegure la vacunación de acuerdo a los criterios establecidos por el Ministerio de Salud y la Organización Mundial de la Salud.
Como vemos el derecho de los padres a elegir no es ilimitado. Puede y, en ocasiones, debe ser supervisado e incluso corregido por los poderes públicos. Esta imposición de la ley italiana, por lo tanto, no es pues una violación de ningún derecho a la integridad, intimidad o libertad, ni de padres ni de niños. Todo lo contrario: es una exigencia muy sólidamente fundada en el Derecho Internacional de los Derechos Humanos.
Sobre el autor: Mikel Mancisidor es miembro del Comité de Derechos Económicos, Sociales y Culturales de la ONU y Adjunct Professor of International Human Rights Law, Washington College of Law, American University (Washington D. C.)
El artículo Tres historias italianas: vacunas, homeopatía, niños y derechos humanos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- Dudas sobre las vacunas: problemas y soluciones
- La ciencia y los objetivos del milenio (y VIII): El papel de la ciencia en la extensión de la democracia y los derechos humanos
- Homeopatía y dosis
Azúcar moreno, ¿mejor que el azúcar blanco?
Sabemos que un consumo excesivo de azúcar incrementa el riesgo de padecer enfermedades como diabetes, obesidad y, en consecuencia, cardiopatías. Estos son los principales motivos por los que la Organización Mundial de la Salud recomienda consumir un máximo de 25 g de azúcar al día.
Alcanzar esta cifra es más sencillo de lo que parece, ya que además del azúcar que añadimos al café o a las infusiones, consumimos azúcar añadido en multitud de alimentos. Para algunos, todo esto ha provocado mayor conciencia del azúcar que tomamos y hemos optado por minimizar su consumo y, en algunos casos, sustituirlo por opciones en principio más saludables. Es común que entre estas opciones se encuentre el azúcar moreno como sustituto.
Analicemos si sustituir el azúcar blanco por azúcar moreno es una buena elección.
-
Tipos de azúcar
El azúcar de cualquier tipo, sea blanco o moreno, está constituido principalmente por una sustancia denominada sacarosa. La sacarosa se extrae de dos fuentes: la remolacha azucarera o la caña de azúcar. En los climas cálidos se opta por la caña y en los climas templados por la remolacha. En el sudeste asiático, donde ya se utilizaba azúcar desde hace miles de años, se extrae de la caña; pero en España, por razones climáticas, se obtiene de la remolacha.
En la legislación podemos distinguir dos grandes grupos atendiendo a su composición: azúcar blanco y azúcar moreno. La distinción esencial se hace en función de la cantidad de sacarosa que contienen. El azúcar moreno tiene una pureza media del 85% y el blanco del 95%. Las denominaciones «azúcar natural» o «azúcar integral» no están recogidas en la legislación, sino que se trata de denominaciones coloquiales o publicitarias para denominar al azúcar moreno.
Existen otras denominaciones para el azúcar que hacen referencia a la presentación del producto, además de a su composición. Por ejemplo, el azúcar candi que está tan de moda, se presenta en forma de bloques amorfos. Se hace alargando el proceso de cristalización, añadiendo agua y prensándolo en moldes. Puede estar hecho con azúcar blanco o con azúcar moreno. En cambio, el azúcar glas, que se presenta como azúcar en polvo, de grano muy fino y de color blanco, se hace exclusivamente con azúcar blanco molido.

Azucar candi moreno
-
¿Cómo se produce el azúcar blanco?
El proceso de producción de cualquier tipo de azúcar, sea blanco, moreno, o de cualquier otra denominación, es el mismo en todas las etapas y sólo difiere ligeramente en la última. El proceso es bastante complejo, pero podemos simplificarlo.
Se lava y se trocea la caña o la remolacha y se hace un proceso análogo a una infusión en agua, de forma que se extrae un jugo dulce. Ese jugo contiene una gran cantidad de sacarosa, pero también va acompañado de otras sustancias indeseables que podrían estropearla. Estas sustancias se eliminan añadiendo otros compuestos con los que se combinan fácilmente y terminan depositándose en el fondo del jugo, por lo que se pueden extraer por decantación y filtrado. Gracias a este proceso de separación también se inhibe el crecimiento de bacterias.
Así llegamos a una disolución que es básicamente agua con sacarosa. El agua se evapora -de ahí que las fábricas de azúcar estén envueltas en grandes nubes de vapor de agua- hasta llegar a una disolución saturada. En este punto es donde la sacarosa empieza a formar cristales. Hay una pequeña parte de sacarosa que, por su contenido en agua e impurezas, no llega a cristalizar. Parte de esta sacarosa carameliza hasta volverse amarga y adquirir un color parduzco. Esta fracción es la melaza.
Esta última parte del proceso se repite hasta lograr una separación óptima entre la sacarosa cristalizada y la melaza. La melaza se emplea, entre otras cosas, para producir alcohol etílico.

Melaza
-
Cómo se produce el azúcar moreno
El azúcar moreno se produce de la misma manera que el azúcar blanco, salvo en la etapa final en la que se separa la sacarosa de la melaza. En el azúcar moreno se conserva parte de la melaza. Según la cantidad de melaza que se conserve y la forma de presentación del producto final, podemos distinguir varios tipos (mascabado, turbinado, demerara, etc.) La presencia de más o menos melaza es la responsable de las apreciables diferencias en el aroma y el sabor de los distintos tipos de azúcar moreno. Como la melaza es de color pardo, es la responsable de teñir el azúcar moreno.
Hay dos maneras de producir azúcar moreno: mezclando azúcar blanco con melaza hasta llegar a la proporción deseada, o bien no separar totalmente la sacarosa de la melaza en la última etapa de la producción. Con el modo de mezcla se controlan mejor las proporciones y se reducen costes, ya que es más sencillo fabricar varios tipos de azúcar moreno ajustando las mezclas.
No es cierto que se empleen colorantes para teñir el azúcar, ya que esto no está legalmente permitido. En todos los tipos de azúcar moreno, el color pardo se debe a la melaza. Cuando disolvemos azúcar moreno y éste pierde su color superficial revelando que el interior se asemeja al azúcar blanco, es debido a que es un azúcar moreno producido por mezcla.
-
Diferencias nutricionales entre el azúcar blanco y el azúcar moreno.
Tanto el azúcar blanco como el azúcar moreno aportan 4 kcal por gramo. Estas calorías se denominan «calorías vacías» porque aportan energía, pero no tienen valor desde el punto de vista nutricional. Ambos tipos de azúcar son, esencialmente, sacarosa con una pureza del 85% o más. El pequeño porcentaje restante, que es melaza y agua, contiene una insignificante cantidad de minerales y vitaminas.
La presencia de vitaminas y minerales que porta la melaza del azúcar moreno es lo que suele usarse como razón para sustituir un azúcar por otro. Pero, esta razón no es relevante desde el punto de vista nutricional: la cantidad de minerales o vitaminas que se encuentran en el azúcar moreno es tan baja que, para alcanzar un nivel simbólico para el organismo, habría que consumir mucho más azúcar del recomendado, así que lo que se presenta como virtud, realmente enmascara el verdadero problema: el consumo excesivo de «azúcar libre».
La Organización Mundial de la Salud recomienda no consumir más de 25 g de «azúcar libre» al día. Tanto el azúcar blanco como el azúcar moreno son «azúcar libre».
También hay que tener en cuenta que el azúcar moreno, por su contenido en melaza, que es amarga, tiene un poder edulcorante menor que el azúcar blanco, con lo que resulta tentador utilizar más cantidad para llegar al mismo dulzor. Si a esto le sumamos la errónea convicción de que es más saludable, a muchos no les temblará el pulso y utilizarán más azúcar moreno del que añadirían si se tratase de azúcar blanco.
-
Conclusiones.
No hay diferencias nutricionales relevantes entre el azúcar blanco y el azúcar moreno. Ambos son «azúcar libre» y su consumo según la Organización Mundial de la Salud ha de minimizarse.
Sustituir el azúcar blanco por azúcar moreno perpetúa el problema y, en algunos casos, lo sobredimensiona porque consumimos más, ya que tiene menor poder edulcorante y además es fácil caer en el error de creer que es un sustituto saludable. Si queremos vitaminas y minerales, no los busquemos en el azúcar.
La elección saludable y el esfuerzo que deberíamos hacer, si realmente queremos plantarle cara al problema, es endulzar cada vez menos todo lo que consumimos y comer más productos frescos y menos ultraprocesados, que son los que más azúcar añadido contienen. Si lo logramos, obtendremos una recompensa realmente valiosa: descubrir el auténtico sabor de los alimentos.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo Azúcar moreno, ¿mejor que el azúcar blanco? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El azúcar oculto en los alimentos
- El mejor lacón con grelos tiene su ciencia
- Las constantes de Planck y el caballo blanco de Santiago
Aislantes topológicos en sólidos amorfos
Todos sabemos que hay materiales aislantes de la electricidad y otros que la conducen: en un cable eléctrico el cobre del interior es conductor y la protección plástica exterior es aislante. Sin embargo, existen materiales que son aislantes en su conjunto pero que conducen la electricidad en su superficie, son los llamados aislantes topológicos. Esta característica se debe a unos estados cuánticos muy particulares del material en su superficie. Lo interesante del asunto es que estos estados son robustos frente a defectos y otras imperfecciones, lo que hace que estos materiales se estén investigando intensamente porque son potencialmente útiles en computación cuántica y otras aplicaciones.
Todos los aislantes topológicos conocidos son cristales, es decir estructuras tridimensionales perfectamente ordenadas. Ahora, un nuevo trabajo teórico demuestra que los materiales amorfos, los llamados vidrios, también podrían ser aislantes topológicos. Esto podría dar lugar a la búsqueda de nuevos aislantes topológicos entre en abanico muchísimo más amplio de materiales posibles.
Los aislantes topológicos se caracterizan por ciertas simetrías. Por ejemplo, muchos aislantes topológicos son simétricos frente a la inversión del tiempo, lo que significa que las funciones de onda electrónicas que describen el estado no se ven alteradas por un cambio en la dirección del tiempo. Se dice que estas simetrías “protegen” los estados de la superficie, lo que significa que el sistema no puede cambiar a otro estado sin pasar por un cambio de fase. Actualmente la búsqueda de nuevos aislantes topológicos asume que las simetrías deseadas se generan en una estructura reticular ordenada, pero nada se opone a que estas simetrías aparezcan en un material no cristalino.
Los resultados, de momento una posibilidad teórica, sugieren que los aislantes topológicos podrían hacerse mediante la creación de vidrios con un fuerte acoplamiento espín-órbita o colocando al azar átomos de otros elementos en el interior de un aislante normal. De comprobarse que esto es cierto significará una pequeña revolución en el mundo de los materiales que tendrá un gran impacto en el rendimiento y el coste de los dispositivos del futuro.
Referencia:
Adhip Agarwala and Vijay B. Shenoy (2017) Topological Insulators in Amorphous Systems Physical Review Letters doi: 10.1103/PhysRevLett.118.236402
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Aislantes topológicos en sólidos amorfos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:- El estaño beta es como el grafeno pero en 3D
- La fusión nuclear como fuente de neutrones eficiente
- El calor no es un fluido