S'abonner à flux Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Mis à jour : il y a 1 heure 46 min

La inteligencia, la herencia y la madre

dim, 2017/05/21 - 11:59

Todo comenzó hace más de cuatro décadas, a principios de los setenta, cuando el psicólogo Robert Lehrke, del Hospital Estatal de Brainerd, en Minnesota, publicó un artículo que resumía su tesis doctoral y presentaba una teoría, así lo llama el autor, sobre el desarrollo de la inteligencia. Trabajaba en un centro para discapacitados intelectuales y había encontrado que muchos genes relacionados con el desarrollo de la inteligencia y, en concreto, con las habilidades verbales y con la percepción de las relaciones espaciales, se localizaban en el cromosoma X que, de los cromosomas sexuales que todos llevamos, es el que viene de la madre.

Ahora y desde hace un par de años, abundan las noticias en los medios y las entradas en blogs que afirman que los genes más importantes de la inteligencia de los niños se heredan de la madre. En la red esta noticia es viral y, por ello, a muchos nos gustaría conocer que hay de cierto en ella.

De izquierda a derecha, Marie Skłodowska-Curie (premios Nobel de física y química), Irène Joliot-Curie (premio Nobel de química) y Pierre Curie (premio Nobel de Física)

Según esos escritos, los padres tendrían poco que ver en la determinación del cociente de inteligencia (CI) de sus hijos. No hay evidencias claras y rotundas de que exista esta herencia de la inteligencia entre madre e hijo. Los últimos estudios apuntan algo que es evidente: los genes de la inteligencia llegan tanto de la madre como del padre. Sin embargo, seguimos sin conocer con claridad y detalle el proceso debido a lo compleja que es la inteligencia.

Nuestra especie tiene en cada célula, excepto en las reproductoras, 46 cromosomas o, con más precisión, 23 pares de cromosomas, y en cada pareja de cromosomas, uno es del padre y otro es de la madre. Todos los pares están formados por cromosomas iguales y repetidos, excepto el par 23 formado por los cromosomas sexuales, que son diferentes según el sexo de la persona. Si es una mujer, tiene dos cromosomas iguales llamados X, y es por tanto un par XX. En los hombres, los cromosomas son diferentes, uno es X, que viene de la madre, y el otro es Y, que viene de padre y, por tanto, es un par XY. En conclusión, el par de cromosomas 23 de una mujer es XX, y el de un hombre es XY.

Cromosomas X (izquierda) e Y (derecha)

Por tanto, en un hombre el X viene de la madre y el Y viene del padre. Lehrke dice que hay muchos genes relacionados con la inteligencia en el cromosoma X que, si mutan y no funcionan bien, provocan la discapacidad intelectual en el hombre. Para 2010 ya había unos 300 genes localizados en el cromosoma X y relacionados con la discapacidad intelectual, según la revisión de Ulrich Zechner y su grupo, de la Universidad de Ulm, en Alemania. Ello supone que en el cromosoma X hay seis veces más genes relacionados con la inteligencia que en el resto de cromosomas. Además, suponen el 10% de todos los genes del cromosoma X.

En las mujeres que, repito, tienen dos cromosomas X, si falla un gen en uno de ellos se suple con el funcionamiento del mismo gen en el otro cromosoma X. Solo si falla en los dos cromosomas X aparece la discapacidad intelectual en la mujer. Hay entre un 30% y un 50% más de discapacitados intelectuales entre los hombres y se ha propuesto que es por esta causa: no tienen dos copias de los genes del cromosoma X y, si falla una de ellas, no pueden suplir el funcionamiento del que no lo hace bien. Así lo afirman Gillian Turner y Michael Partington, de los hospitales de Niños Príncipe de Gales de Sidney y de los Suburbios Occidentales de Newcastle, ambos en Australia.

Por cierto, si hay algún gen relacionado con la inteligencia en el cromosoma Y, típico del hombre, y muta, tampoco hay repuesto ya que solo hay una copia de este cromosoma.

También se ha propuesto la hipótesis de que esta presencia de genes relacionados con la inteligencia en el cromosoma X quizá tenga relación con el sexo y, en el proceso de la evolución, se ha seleccionado así porque una mayor inteligencia permite una mejor reproducción y, por tanto, un mayor éxito evolutivo. O sea, los hombres y las mujeres más inteligentes se reproducen mejor. Es otra hipótesis.

También se ha confirmado que la distribución en una gráfica de los CI de hombres y mujeres no es exactamente igual. Ambas tienen forma de campana, con un mayor número de hombres y mujeres con un CI medio y un número mucho menor con un CI muy alto o muy bajo. Pero esta campana en los hombres es más plana y alargada en los dos extremos. Implica que hay menos hombres con un CI medio y más número que en mujeres con un CI muy bajo, que son los discapacitados intelectuales que ya he mencionado, o con un CI muy alto. Se ignora como el cromosoma X, si es que lo hace, interviene para que existan esos CI altos.

Quizá ya ha llegado el momento de ver de qué estamos hablando y, para ello, transcribo una definición de inteligencia fechada en 1997 y apoyada por 52 expertos:

Inteligencia es una capacidad muy general que, entre otras cosas, incluye la habilidad para razonar, planificar, resolver problemas, pensar en abstracto, comprender ideas complejas, aprender con rapidez y aprender de la experiencia. No es solamente aprender de los libros o la competencia académica o la rapidez en responder tests. Más bien refleja una capacidad amplia y profunda para comprender nuestro entorno, captarlo, dar sentido a las cosas o imaginar lo que son. Inteligencia, así definida, se puede medir, y los tests de inteligencia lo hacen bien.”

A la izquierda Aage Bohr (premio Nobel de física 1975) con su padre Niels (premio Nobel de física 1922)

Según los neurobiólogos y los psicólogos, la inteligencia se hereda de una generación a la siguiente, pero en qué porcentaje se hereda y cuánto varía por causas del entorno como la alimentación, la educación o el ambiente en la infancia y adolescencia, se ignora. El porcentaje, según cada autor, va del 30% al 80%. La inteligencia es compleja en cuanto al número de genes implicados. Sabemos más de lo que perjudica a la inteligencia a causa de genes mutados que no funcionan bien y que llegan a 300 en el cromosoma X, como antes he mencionado. En conclusión, en muchas de las revisiones más recientes ni siquiera se menciona la herencia de la madre pues, aparte de las propuestas de Lehrke, poco más se ha averiguado sobre la función de esta herencia materna en la inteligencia de los hijos.

En un estudio del grupo de Min Zhao, de la Universidad de Pekín, aparece la revisión de la bibliografía sobre los genes relacionados con la inteligencia que conocemos hasta ahora. Hay 158 genes localizados y el 16% están en el cromosoma X.

Para terminar, y como hacen Jozef Gecz y John Mulley, de la Universidad de Adelaida, en Australia, podemos especular que, para conseguir que un órgano tan complejo como el cerebro funcione con normalidad, requiere no uno, ni dos, sino cientos o miles de genes integrados de tal manera que sus productos funcionen coordinados. Además, estas interacciones complejas deben mantenerse en equilibrio incluso bajo una enorme variedad de estímulos del entorno. Por el contrario, el fallo de un solo gen, como ocurre en el cromosoma X, puede romper catastróficamente el equilibrio y provocar una discapacidad más o menos grave.

En muchas entradas de blogs que tratan este asunto y que antes mencionaba, se cita como prueba de la herencia materna un estudio hecho en Glasgow, con 12686 voluntarios entre 14 y 22 años, en el que se compara su CI con el de sus madres, y se llega a la conclusión de que el 15% de la inteligencia de los jóvenes viene de su madre. Parece que es un trabajo del grupo de Ian Deary (grupo que ya he citado dos veces en este texto, en Deary et al, 2010, y Davies et al, 2015), de la Universidad de Edimburgo, que trabaja en neurociencia de la inteligencia desde hace años y con resultados muy interesantes.

Pues bien, este estudio tan citado en los blogs parece que no existe y no lo encuentro ni preguntando a los autores que, por lo que cuentan, tampoco saben cuál es su origen. Lo más parecido, con los 12686 voluntarios, es una investigación de este grupo sobre la relación de la inteligencia del niño con la lactancia materna. Los autores llegan a la conclusión de que la relación es con la inteligencia de la madre y que las madres con el CI alto dan más de mamar a sus hijos. Es la influencia de la alimentación en el desarrollo del niño que antes mencionaba. Pero lo del 15% de herencia materna no lo encuentro ni en esta ni en ninguna otra publicación. Me declaro incapaz de conseguir localizarla.

Referencias:

Davies, G. et al. 2015. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53949). Molecular Psychiatry 20: 183-192.

Deary, I.J. et al. 2010. The neuroscience of human intelligence. Nature Reviews Neuroscience 11: 201-211.

Der, G. et al. 2006. Effect of breast feeding on intelligence in children: prospective study, sibling pair analysis, and meta-analysis. British Medical Journal doi: 10.1136/bmj.38978.6995583.55

Gecz, J. & J. Mulley. 2016. Genes for cognitive function: developments on the X. Genome Research 10: 157-163.

Lehrke, R. 1972. A theory of X-linkage of major intelectual traits. American Journal of Mental Deficiency 76: 611-619.

Turner, G. & M.W. Partington. 1991. Genes for intelligence on the X chromosome. Journal of Medical Genetics 28: 429.

Zechner, U. et al. 2001. A high density of X-linked genes for general cognitive ability: a run away process shaping human evolution? Trends in Genetics 17: 697-701.

Zhao, M. et al. 2014. A systems biology approach to identify intelligence quotient score related genomic regions, and pathways relevant to potential therapeutic treatments. Scientific Reports 4: 4176.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo La inteligencia, la herencia y la madre se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La búsqueda de la inteligencia artificial, en la próxima zientziateka
  2. La búsqueda de la inteligencia artificial
  3. Máquinas inteligentes (II): Inteligencia artificial y robótica
Catégories: Zientzia

Candida auris, el hongo que ha causado una alerta sanitaria internacional

sam, 2017/05/20 - 11:59

En los últimos meses, varias agencias nacionales e internacionales han emitido diferentes alertas sobre la expansión de un tipo de hongo, denominado Candida Auris, que causa graves infecciones en pacientes hospitalarios críticos. Se trata de un agente infeccioso difícil de identificar y muy resistente a los fármacos existentes que puede provocar elevadas tasas de mortalidad. Su mayor incidencia hasta la fecha se ha producido en países como España, Dinamarca o EE.UU.

Guillermo Quindós, catedrático de Microbiología en la UPV/EHU, habló sobre este organismo en una conferencia tuvo lugar el pasado 4 de abril en Azkuna Zentroa (Bilbao). Este evento, forma parte del ciclo de conferencias Zientziateka, que organizan todos los meses la Cátedra de Cultura Científica de la UPV/EHU y Azkuna Zentroa para divulgar asuntos científicos de actualidad.

Candida auris, el hongo que ha causado una alerta sanitaria

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Candida auris, el hongo que ha causado una alerta sanitaria internacional se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Los ojos que explorarán la superficie de Marte (Mars2020)
  2. ¿Cómo sienten y piensan los bilingües?
  3. Investigación con medicamentos en seres humanos: del laboratorio a la farmacia
Catégories: Zientzia

Catástrofe Ultravioleta #16 RARO

ven, 2017/05/19 - 17:00

Catástrofe Ultravioleta #16 RARO

En cada uno de nosotros hay pequeñas variaciones genéticas que nos hacen especiales y nos cambian la vida. Todos somos mutantes. El libro de instrucciones de un ser humano tiene alrededor de 3.000 millones de letras entre las que a menudo se cuelan gazapos o saltos de línea. “La mayoría son pequeñísimas mutaciones, de apenas una letra, pero algunas de estas variantes tienen consecuencias patológicas”, nos explica Lluís Montoliu. Pero, ¿cuándo empieza la enfermedad o qué es eso que llamamos “normalidad”?

En en este episodio os explicaremos por qué “todos somos mutantes” y en qué consisten esas pequeñas variaciones que cambian la vida de las personas. Sabremos qué es una enfermedad rara, hablaremos de ratones mutantes y os sumergiremos en las aventuras de un “Retrón ninja” capaz de hacerle una pirueta a su destino y reírse en su cara. Dale al ‘play’ y sumérgete en nuestro programa más “raro”.

Agradecimientos: A Raúl Gay (retrón indómito), Oihana Iturbide y Laura Morrón (Next Door editores), Lluís Montoliu (CNB), Pepe Solves y Patty Bonet. Y a Ray Jaén por prestarnos su voz.

* Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el apoyo de la Cátedra de Cultura Científica de la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.

Puedes conocernos en nuestra web: Catastrofeultravioleta.com y seguirnos en el twitter Catastrofe_UV. También puedes encontrar todos los capítulos en este enlace.

El artículo Catástrofe Ultravioleta #16 RARO se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Catástrofe Ultravioleta #13 LEVIATÁN
  2. Catástrofe Ultravioleta #11 – Elefancía
  3. Catástrofe Ultravioleta #14 VULCANO
Catégories: Zientzia

Las cartas de Darwin: ¡La geología por encima de todo!

ven, 2017/05/19 - 12:00

Las cartas de Darwin, una serie para conocer aspectos sorprendentes de la vida del naturalista

Si hablamos de Newton pensamos en física, si hablamos de Galileo pensamos en astronomía, si hablamos de Darwin damos por sentado que hablamos de biología, y es cierto, pero muchos pasan por alto la enorme influencia que la geología tuvo sobre el naturalista.

Sus primeros pasos como científico reconocido fueron como geólogo, recordemos que en el Beagle recolectó pacientemente miles de rocas que fue enviando a Inglaterra durante todo el viaje. Muchos lo consideran un libro de viajes, sin embargo la primera obra publicada enteramente por Darwin, Journal of researches (1839), es esencialmente un libro geológico y el 75% de las anotaciones científicas de su diario pertenecen a este campo.

De hecho, las aportaciones a la geología de Darwin se recogieron en numerosos volúmenes publicados durante los años posteriores al viaje del Beagle: Geological observations on the volcanic islands visited during the voyage of H.M.S. Beagle (1844), Geological observations on South America (1846), o el propio Letters on Geology publicado en 1835 con las cartas que se intercambiaban él y Henslow.

Darwin, reconozcámoslo, fue geólogo antes que biólogo.

Secciones estructurales de la cordillera de los Andes en los pasos de Piuquenes y de Uspallata. Darwin Geological observations on South America, being the third part of the geology of the voyage of the Beagle, under the command of Capt. Fitzroy, R.N. during the years 1832 to 1836, Smith Elder & Co, 1846

Y es curioso que así fuera puesto que durante su estancia en Edimburgo, y según su propia Autobiografía, Darwin reconocía que llegó a aborrecer la geología por culpa de un aburrido profesor llamado Robert Jameson.

“Las rancias lecciones de Jameson me decidieron a no leer en mi vida un libro de Geología ni estudiar esta ciencia por ningún pretexto”

Afortunadamente su posterior estancia en Cambridge, junto a nuevos profesores como Henslow o Sedgwick, y sus frecuentes escapadas y excursiones geológicas, el joven quedó encandilado con esta disciplina. “¡La geología por encima de todo!”, exclamó en una de sus cartas a su hermana Caroline.

Carta de Charles Darwin a su hermana Catherine Darwin [13 noviembre de 1833]

“Desearía que cualquiera de ustedes pudiera penetrar en los sentimientos de placer excesivo que me proporciona la geología, tan pronto como uno comprende en parte la naturaleza de un país”.

Carta de Charles Darwin a John Stevens Henslow [marzo de 1834]

“Estoy encantado con la geología, pero como el animal prudente entre dos haces de heno no sé qué saborear más, si el grupo cristalino de rocas o los suaves lechos fosilíferos. […].

Por cierto que no tengo una idea clara acerca de hendiduras, estratificación, líneas de levantamiento. No tengo libros que me ilustren y lo que dicen no lo puedo aplicar a lo que veo. En consecuencia saco mis propias conclusiones y de seguro que son absolutamente ridículas”.

La humildad de Darwin en sus escritos no era una pose, realmente se acercaba a este campo con dedicación y prudencia, lo cual no le impedía realizar sus propias deducciones y teorías, apoyándolas con razonamientos que, en muchos casos, terminaron siendo válidos y acertados.

Carta de Charles Darwin a John Stevens Henslow [24 julio de 1834]

“Me ha interesado mucho encontrar tanta abundancia de conchas recientes a una altura de 1300 pies. El campo en muchos lugares está cubierto de conchas, pero todas son de litoral. Así supongo yo que la elevación de 1300 pies debe deberse a una sucesión de pequeñas elevaciones como ocurrió en 1822. Con estas pruebas ciertas de la residencia reciente del océano sobre todas las partes bajas de Chile, la línea panorámica y la forma de cada valle poseen un alto interés.

¿Habrá la acción del flujo del agua o del mar formado esta hondonada profunda? Ésta fue una pregunta que me planteé con frecuencia y que, por lo general, se me respondió al encontrar un lecho de conchas recientes en el fondo. No tengo suficientes argumentos, pero no creo que más que una pequeña fracción de la altura de los Andes se haya formado dentro del periodo terciario”.

Carta de Charles Darwin a John Stevens Henslow [12 agosto de 1835]

“Hace poco conseguí el informe sobre los trabajos de M. Dessalines D’Orbigny en S. América. Experimenté un nivel degradante de irritación al comprobar que ya había descrito la geología de la Pampa, y que yo me había estado dando duros paseos a caballo para nada. Sin embargo fue gratificante ver que mis conclusiones fueran las mismas, en la medida que yo puedo deducir, que sus resultados”.[…]

En esa misma carta, Darwin se mostraba exultante con su trabajo geológico:

“Ahora puedo demostrar que ambos lados de los Andes surgieron en un periodo reciente a una considerable altura. Aquí las conchas estaban a 350 pies sobre el nivel del mar”.

Charles Lyell | National Gallery Londres (imagen Javier Peláez)

Mención aparte merece la figura de Charles Lyell en la vida y obra de Darwin.

Carta de Charles Darwin a su primo William Darwin Fox [12 de agosto de 1835]

“Me estoy convirtiendo en un discípulo celoso de los puntos de vista del señor Lyell tal como se conocen por su libro. Hacer de geólogo en Sudamérica hace que me sienta tentado de llevar adelante algunas partes a una amplitud mayor incluso de la que él contempla.

La geología es una ciencia capital para empezar ya que no requiere más que un poco de lecturas, de pensar y de martillar. Tengo reunido un considerable cuerpo de notas, pero es un tema constante de complejidad para mí saber si tienen el valor suficiente para haber utilizado tanto tiempo en ellas”.

El libro al que Darwin alude es, por supuesto, el primer volumen de los Principles of Geology de Charles Lyell que su profesor (y reverendo) John Henslow le había regalado para el viaje con la advertencia de: “Léelo pero no aceptes los puntos de vista ahí declarados”.

Darwin llegaría a declarar en su Autobiografía que “la ciencia de la geología debe mucho a Lyell, mucho más, creo yo, que a cualquier otro hombre que haya vivido”.

Las nociones geológicas de Lyell, la idea de que pequeños cambios durante largos periodos de tiempo pueden dar lugar a grandes cambios y aquel libro de geología que le regaló Henslow fueron parte fundamental de lo que más tarde sería el Darwin biólogo.

Dos de los tres volúmenes de los Principios de Geología de Lyell editados por John Murray

La ingente cantidad de material y notas recogidas por Darwin durante aquella expedición se convertirían en la principal fuente de trabajo durante los próximos 40 años, y así lo intuía el propio naturalista mientras el viaje iba tocando a su fin:

Carta de Charles Darwin a su hermana Caroline Darwin [29 abril de 1836]

“Mi ocupación ahora consiste en reacomodar mis viejas notas geológicas y este reacomodo consiste en volverlas a escribir por completo. Justo ahora estoy empezando a descubrir la dificultad de expresar mis propias ideas en papel. Si solo consiste en describir, esto es muy fácil, pero cuando el razonamiento entra en juego, hacer las conexiones apropiadas, una fluidez clara y moderada es para mí, como ya te dije, una dificultad de la que no tenía ni idea.

Mi espíritu se levanta con la geología e incluso aspiro a pensar que mis observaciones serán consideradas de alguna utilidad por los verdaderos geólogos. Veo con toda claridad que será necesario vivir en Londres durante un tiempo para que, según confío, la mayor parte de mis materiales podrán ser analizados exhaustivamente.”

Darwin no se equivocaba. A su llegada a Londres fue nombrado miembro de la Sociedad Geológica, de la que terminaría siendo Secretario unos años después. Allí conoció personalmente a su admirado Charles Lyell con quien entablaría una sólida amistad hasta el final de sus días.

Si tenéis la oportunidad de visitar la Abadía de Westminster en Londres comprobaréis que la tumba de Charles Darwin se encuentra a solo unos pasos de la de su amigo Charles Lyell.

Las tumbas de Lyell y Darwin en Westminster (imágenes Javier Peláez)

Este post ha sido realizado por Javier Peláez (@irreductible) y es una colaboración deNaukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo Las cartas de Darwin: ¡La geología por encima de todo! se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Las cartas de Darwin: La vida a bordo de un balandro ataúd
  2. Las cartas de Darwin: El sueño truncado de Canarias
  3. Las cartas de Darwin: ¿Dejamos que el chaval se vaya de viaje?
Catégories: Zientzia

La teoría de la inoculación: usar la desinformación para combatir la desinformación

jeu, 2017/05/18 - 17:00

John Cook

Como psicólogo que investiga la desinformación, me centro en reducir su influencia. Esencialmente, mi objetivo es quedarme sin trabajo.

Los acontecimientos recientes indican que no lo he estado haciendo muy bien. La desinformación, las noticias falsas y los “hechos alternativos” son más prominentes que nunca. El Oxford Dictionary eligió “post-truth” como la palabra del año 2016 . La ciencia y la evidencia científica están siendo atacadas.

Afortunadamente, la ciencia tiene un medio para protegerse, y proviene de una rama de la investigación psicológica conocida como teoría de la inoculación. Se inspira en la lógica de las vacunas: Un poco de algo malo te ayuda a resistir un caso completo. En mi investigación recientemente publicada, he intentado exponer a la gente a una forma débil de desinformación para inocularlos contra la situación real – con resultados prometedores.

La dos formas en las que la desinformación hace daño

La desinformación se está generando y difundiendo a ritmos prolíficos. Un estudio reciente comparando los argumentos contra la ciencia del clima frente a los argumentos políticos contra la acción sobre el clima encontró que la negación de la ciencia está aumentando relativamente. Y las investigaciones recientes indican que estos tipos de campañas tienen un impacto en las percepciones de las personas y en la cultura científica.

Un estudio reciente llevado a cabo por el psicólogo Sander van der Linden encontró que la desinformación sobre el cambio climático tiene un impacto significativo en la opinión pública sobre el cambio climático.

La información errónea que usaron en su experimento fue el artículo sobre el clima más compartido en 2016. Se trata de una petición, conocida como el Proyecto de Petición Calentamiento Global, en la que 31.000 personas, con un grado en ciencias o superior, habían firmado una declaración diciendo que los humanos no están alterando el clima . Este artículo aislado bajó la percepción de los lectores sobre el consenso científico. La medida en que las personas aceptan que existe un consenso científico sobre el cambio climático es lo que los investigadores llaman una “creencia de entrada“, lo que influye en las actitudes hacia el cambio climático, tales como el apoyo a la acción climática.

Al mismo tiempo que van der Linden estaba llevando a cabo su experimento en los Estados Unidos, estaba en el otro lado del planeta en Australia realizando mi propia investigación sobre el impacto de la desinformación. Por coincidencia, usé el mismo mito, usando texto literal del Proyecto de Petición Calentamiento Global. Después de mostrar la desinformación, pedí a la gente que estimara el consenso científico sobre el calentamiento global causado por el ser humano, con objeto de medir cualquier efecto.

Encontré resultados similares, con la información errónea reduciendo la percepción de la gente del consenso científico. Además, la desinformación afectó a unas personas más que a otras. Cuanto más conservadora políticamente era una persona, mayor era la influencia de la desinformación.

Respuesta a la desinformación sobre el cambio climático. Cook et al. (2017), CC BY-ND (Cambio en el consenso percibido frente a ideología política. Liberal = progresista; Conservative = conservador)

Esto cuadra con otras investigaciones que encuentran que la gente interpreta los mensajes, ya sean información o desinformación, según sus creencias preexistentes. Cuando vemos algo que nos gusta, es más probable que pensemos que es verdad y consecuentemente fortalece nuestras creencias. Por el contrario, cuando nos encontramos con información que está en conflicto con nuestras creencias, es más probable que desacreditemos la fuente.

Sin embargo, hay más en esta historia. Más allá de desinformar a la gente, la desinformación tiene una influencia más insidiosa y peligrosa. En el estudio de van der Linden, cuando se presentaba a la gente tanto los hechos como la información errónea sobre el cambio climático, no había un cambio neto en la creencia. Las dos informaciones en conflicto se cancelaron mutuamente.

El hecho y el “hecho alternativo” son como la materia y la antimateria. Cuando chocan, hay una destello de calor seguido de nada. Esto revela la forma sutil en que la desinformación daña. No sólo desinforma. Impide que la gente crea en los hechos. O como Garry Kasporov lo expresa elocuentemente, la desinformación “aniquila la verdad”.

La respuesta de la ciencia a la negación de la ciencia

El asalto a la ciencia es formidable y, como indica esta investigación, puede ser incluso demasiado eficaz. Convenientemente, la ciencia tiene la respuesta a la negación de la ciencia.

La teoría de la inoculación toma el concepto de vacunación, donde nos exponemos a una forma débil de un virus con el fin de crear inmunidad al virus real, y lo aplica al conocimiento. Medio siglo de investigación ha encontrado que cuando estamos expuestos a una “forma débil de desinformación”, esto nos ayuda a crear resistencia para que no seamos influenciados por la desinformación real.

El texto inoculante necesita de dos elementos. Primero, incluye una advertencia explícita sobre el peligro de ser engañado por la desinformación. En segundo lugar, necesitas proporcionar contraargumentos que explican los fallos en esa desinformación.

En la inoculación de van der Linden éste indicaba que muchos de los signatarios eran falsos (por ejemplo, una Spice Girl aparecía falsamente como signataria), que 31.000 representan una fracción minúscula (menos del 0,3 por ciento) de todos los graduados en ciencias estadounidenses desde 1970 y que menos del 1% de los signatarios tenían experiencia en climatología.

En mi investigación publicada recientemente, también probé la inoculación pero con un enfoque diferente. Mientras inoculaba a los participantes contra el Proyecto Petición, no lo mencioné en absoluto. En cambio, hablé de la técnica de desinformación que hace uso de “expertos falsos” – personas que transmiten la impresión de conocimiento al público en general, pero que no tienen ninguna experiencia relevante real.

Descubrí que explicar la técnica de desinformación neutralizó completamente la influencia de la información errónea, incluso sin mencionar la información errónea específicamente. Por ejemplo, después de que expliqué cómo los expertos falsos se han utilizado en campañas de desinformación pasadas, los participantes no fueron influenciados cuando se enfrentaron a los expertos falsos del Proyecto de Petición. Además, la desinformación se neutralizó en todo el espectro político. Ya seas conservador o progresista, nadie quiere ser engañado por artimañas.

Poner en práctica la inoculación

La inoculación es una forma poderosa y versátil de comunicación científica que se puede utilizar de varias maneras. Mi enfoque ha sido combinar los hallazgos de la inoculación con la psicología cognitiva de la desacreditación, desarrollando el marco Hecho-Mito-Falacia.

Esta estrategia implica explicar los hechos, seguido de la introducción de un mito relacionado con esos hechos. En este punto, las personas se enfrentan a dos informaciones en conflicto. Resuelves el conflicto explicando la técnica que utiliza el mito para distorsionar el hecho.

Hemos utilizado este enfoque a gran escala en un curso en línea gratuito sobre la desinformación sobre el clima, Making Sense of Climate Science Denial. Cada conferencia adopta la estructura Hecho-Mito-Falacia. Comenzamos explicando un solo hecho climático, luego introdujimos un mito relacionado, seguido de una explicación de la falacia empleada por el mito. De esta manera, al mismo tiempo que explicamos los hechos clave del cambio climático, también inoculamos a los estudiantes contra 50 de los mitos climáticos más comunes.

Conferencias Denial101x que siguen la estructura Hecho-Mito-Falacia (Fact-Myth-Fallacy). Denial101x, CC BY-ND

Por ejemplo, sabemos que estamos causando el calentamiento global porque observamos muchos patrones en el cambio climático característicos del efecto invernadero. En otras palabras, las huellas humanas se observan en todo nuestro clima. Sin embargo, un mito sostiene que el clima ha cambiado naturalmente en el pasado antes de que hubiese seres humanos; por lo tanto, lo que está sucediendo ahora debe ser natural también. Este mito comete la falacia de saltar a conclusiones (o non sequitur), donde la premisa no conduce a la conclusión. Es como encontrar un cadáver con un cuchillo asomando por la espalda y argumentar que las personas han muerto de causas naturales en el pasado, por lo que esta muerte debe haber sido por causas naturales también.

La ciencia, en un momento de franqueza, nos ha informado que arrojar más ciencia a la gente no es la respuesta completa a la negación de la ciencia. La desinformación es una realidad que no podemos permitirnos ignorar – no podemos negar la negación de la ciencia. Más bien, debemos verlo como una oportunidad educativa. Abordar conceptos erróneos en el aula es una de las maneras más poderosas de enseñar ciencia.

Resulta que la clave para detener la negación de la ciencia es exponer a la gente solo a un poco de negación de la ciencia.

Sobre el autor:

John Cook es profesor ayudante investigador en el Centro para la Comunicación del Cambio Climático, Universidad George Mason (EE.UU.)

Texto traducido y adaptado por César Tomé López a partir del original publicado por The Conversation el 15 de mayo de 2017 bajo una licencia Creative Commons (CC BY-ND 4.0)

El artículo La teoría de la inoculación: usar la desinformación para combatir la desinformación se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Elogio de la teoría
  2. #Naukas14 ¿Para qué podemos usar el dióxido de carbono?
  3. Cuando el más pequeño movimiento genera electricidad que puedes usar
Catégories: Zientzia

Estimada OCU: recuerda que NO se pueden utilizar las cremas solares del año pasado

jeu, 2017/05/18 - 11:59

La semana pasada la OCU (Organización de Consumidores y Usuarios) hizo llegar a diferentes medios de comunicación una nota de prensa titulada «OCU recuerda que se pueden utilizar las cremas solares del año pasado». La nota fue publicada en su web y en importantes diarios nacionales.

En resumen, la nota de prensa nos cuenta que la OCU analizó* seis productos de protección solar a los que sometió al típico trajín veraniego (mantuvieron los envases 15 días al sol, alta temperatura, humedad, etc.) simulando el uso real de los productos. Tras doce meses los analizaron y comprobaron que conservaban sus cualidades originales. De este análisis dedujeron que «los consumidores pueden sentirse tranquilos si utilizan estas cremas de protección solar pasados los 12 meses desde su fecha de apertura, incluso tras haberlas utilizado ya el año anterior».

Que la prueba se haya realizado pasados 12 meses no es un asunto trivial, sino que responde a las recomendaciones habituales de los fabricantes de estos productos cosméticos.

Hay tres informaciones importantes que figuran en la etiqueta de cualquier producto cosmético y que como consumidores deberíamos conocer:

  1. Instrucciones de uso. Todos los cosméticos tienen instrucciones, o bien en el envase, o bien en una etiqueta desplegable, o bien remiten a una web, o bien en un prospecto adjunto. El símbolo que hace referencia a que existe información adjunta es el siguiente:

  1. Fecha de duración mínima. Es la fecha a partir de la cual el fabricante no puede garantizar que el producto sea efectivo y seguro, incluso sin haber sido utilizado y conservando el embalaje original. Es similar a la fecha de caducidad de los alimentos. Los cosméticos que tienen una caducidad superior a los 30 meses no tienen obligación de poner una fecha de caducidad, pero sí un consumo recomendado una vez abierto (PAO). Suele aparecer acompañada del siguiente símbolo:

  2. Periodo después de la apertura (PAO). Es un símbolo de un tarro abierto en el que figura un número seguido de una M. Ese número indica la cantidad de meses que el producto puede utilizarse con seguridad una vez abierto. Más allá de ese plazo el fabricante no puede garantizar la seguridad y efectividad del producto. El símbolo utilizado es como los siguientes:

Gran parte de los productos de protección solar son 12M, es decir que, transcurridos 12 meses tras el primer uso, no podemos tener la garantía de que sean eficaces ni seguros, por lo que la recomendación es utilizar uno nuevo. Por este motivo la OCU decidió hacer la prueba tras 12 meses.

Hay que tener en cuenta que estos productos cosméticos contienen agua y una gran cantidad de nutrientes, además de estar sometidos a bruscos cambios de temperatura, humedad, y que entran en contacto con el aire: son un caldo de cultivo idóneo para la proliferación de microorganismos, con lo que la seguridad y la eficacia del producto puede verse comprometida. El PAO se calcula teniendo esto en cuenta, por eso es tan importante no consumir ningún cosmético más allá de ese tiempo, aunque aparentemente esté en buen estado.

En la nota de prensa de la OCU añaden la recomendación «Si al abrir el bote de crema su color, olor o textura se ha modificado no debería utilizarse». Si el producto es oleoso, su mal estado se detecta con facilidad, porque, con la rotura de emulsiones, se separan las fases y aparece un sobrenadante, que se traduce en líquido sobre el producto. Pero la mayoría de las veces no es así de sencillo y la contaminación de un cosmético no se percibe a simple vista. Utilizar un cosmético en mal estado puede causarnos reacción en la piel, desde una irritación hasta una infección bacteriana. Por eso es una temeridad aconsejar que se use un cosmético más allá de su PAO, aunque «parezca» que está en buen estado.

En la actualidad se ha dado un paso adelante muy acusado con respecto a la concienciación de lo importante que es la protección solar. Según la Asociación Española Contra el Cáncer (AECC) alrededor del 80% de la población española utiliza protección solar cuando va la playa, el 50% cuando practica deporte a la intemperie durante el verano, y el 42% de la población utiliza productos de uso diario para protegerse, como por ejemplo cremas hidratantes o maquillajes con protección solar media o alta. También ha mejorado la profesionalización del mercado: actualmente el 35% de la población adquiere su protección solar en las farmacias y parafarmacias, donde un experto pueda asesorarles.

Durante muchos años hemos vivido ingenuamente despreocupados por la radiación solar, creyendo que los fotoprotectores o bien no servían para nada, o bien dificultaban el bronceado. Incluso en los años 90 había quien tomaba el sol sin protección, embadurnado en potingues grasos y zumos de zanahoria que supuestamente ayudaban a potenciar el moreno. Estas ideas y estas prácticas, aunque todavía no se han erradicado completamente, hoy nos parecen escandalosas. Estamos concienciados y es por ello por lo que confiamos en la eficacia de los productos de protección solar, incluso por encima de cualquier otro producto cosmético.

La radiación ultravioleta (tanto la UV-A como la UV-B) es suficientemente energética como para romper enlaces de moléculas y generar fragmentos muy reactivos llamados radicales libres. Estos radicales son tan reactivos que consiguen alterar las moléculas de ADN. Esto se traduce en que la radiación UV es mutagénica, modifica el ADN, y por tanto es potencialmente cancerígena.

Otros problemas cutáneos como la rosácea, algunos tipos de dermatitis y el acné, se agravan a causa de la exposición a la radiación ultravioleta. Por este motivo es importantísimo protegerse de la radiación ultravioleta.

Para protegernos de la radiación ultravioleta, los productos de protección solar contienen, entre otros importantes ingredientes, dos tipos de filtros: filtros químicos y/o filtros físicos. Ambos filtros solares funcionan absorbiendo la radiación ultravioleta y reemitiéndola como radiación visible o térmica, inocua para la piel. Los filtros químicos son compuestos orgánicos cromóforos y los filtros físicos son compuestos minerales fluorescentes.

Los filtros químicos resultan ventajosos frente a los filtros físicos porque son más cosméticos, ya que no dejan rastro blanco en la piel, y permiten formulaciones hidratantes, ya que los filtros físicos son de por sí deshidratantes. En cambio, los filtros físicos presentan la ventaja de ser más estables a lo largo del tiempo que los filtros químicos. Los productos de gama media-alta presentan una combinación de los dos tipos.

La estabilidad de los filtros solares es crucial a la hora de determinar la PAO de estos productos. El uso de un producto cosmético más allá de su PAO no sólo afecta a la seguridad del producto y, por tanto, a nuestra salud, sino también a su eficacia.

La eficacia de un producto de protección solar se mide por su SPF (factor de protección solar: número de veces que el fotoprotector aumenta el tiempo de defensa natural de la piel frente al eritema o enrojecimiento). Los ensayos que permiten verificar el SPF de un cosmético son muy laboriosos. Es más costoso para el laboratorio cosmético verificar un SPF 50 que un SPF 15.

También hay que tener en cuenta que, sobre todo en el caso de los filtros físicos nanoparticulados y en el de los filtros químicos, su estabilidad va mermando, con lo que el SPF sólo puede garantizarse por un periodo de tiempo reducido. De ahí que muchos de ellos sean 12M.

Si un cosmético es 12M es porque no es posible garantizar que la degradación sufrida tras 12 meses tras su primer uso no afecte a la seguridad y a la eficacia del producto original. La PAO no es una medida al azar ni una estrategia de mercadotecnia, tal y como se ha insinuado desde la prensa, sino el resultado del estudio de la degradación del producto cosmético.

Obviamente hay cierto margen: tras «doce meses y un día» el producto no va a sufrir un deterioro repentino notable. Y tampoco sufrirá lo mismo un producto que se haya utilizado una vez, o veinte veces, o cuyo aplicador lo mantenga aislado del aire, o sea un tarro en el que metemos la mano, o le hayan entrado arenas, o agua de mar, o haya estado al sol, o nos lo hayamos dejado mal cerrado en la bolsa de la playa, o tirado en un cajón del armario del baño. Hay múltiples factores que pueden hacer oscilar esta medida y es por ello por lo que debemos ser cautos y siempre tener en cuenta las indicaciones del fabricante.

Aunque el ensayo de la OCU sobre seis productos haya dado como resultado que seguían siendo eficaces, ¿por cuánto tiempo?, ¿son esas condiciones comparables a las de mis productos?, ¿son seis productos reflejo de toda la gama de solares que existen en el mercado? Hay demasiadas cuestiones que quedan en interrogante, demasiada incertidumbre y riesgo que asumir. No vale la pena.

Otro asunto a tener en cuenta, aunque quizá sea menos importante, es que llueve sobre mojado. Esa nota de prensa de la OCU vuelve a arremeter sin pudor contra la industria cosmética, sirviéndose de todos los prejuicios que hay sobre ella, con la excusa de la “defensa del consumidor”. El titular busca el retuit sin sonrojo ni búsqueda de datos ni reflexión. La protección solar no es un asunto baladí que deba usarse para buscar clics fáciles y cuotas de socios. El uso de cosméticos más allá de su PAO pone en peligro nuestra salud. Es como para tomárselo en serio.

Si la OCU pretende defender al consumidor, ofrézcannos buenos consejos sobre el buen uso de los cosméticos. Claro que, es más fácil obtener parabienes arremetiendo contra un enemigo impostado sobre el que ya hay suficientes prejuicios, que ofrecer información útil.

Conclusión

Si un producto cosmético es 12M, no lo uses más allá de 12 meses tras el primer uso. No pongas en riesgo tu salud con algo tan serio como la exposición a la radiación ultravioleta por ahorrarte unos euros rebañando los restos de crema del verano pasado.

Está en juego tu salud, no seas tacaño con eso.

Nota:

*El acceso al estudio está limitado a los socios de la OCU.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo Estimada OCU: recuerda que NO se pueden utilizar las cremas solares del año pasado se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Las cremas hidratantes no hidratan, pero funcionan
  2. Combustibles solares por un tubo
  3. Cuando las algas rojas no pueden gestionar los radicales libres
Catégories: Zientzia

Cómo sintetizar casi cualquier biomaterial usando ADN

mer, 2017/05/17 - 17:00

biomaterial usando ADN

Que el ADN es la molécula en la que se atesora la información que permite hacer un ser vivo es de sobra conocido. Que se puede usar como molde para algunas aplicaciones diferentes a las biológicas, no es tan popular, pero tampoco debería resultar extraño a los lectores de esta sección.

Ahora se ha dado un paso más. Un grupo de investigadores encabezado por Lei Tang, de la Universidad de Duke (EE.UU.) da la receta para usar una enzima para fabricar nuevos biomateriales a partir de ADN. Estas instrucciones permitirán a investigadores de todo el mundo sintetizar moléculas autoensamblables para aplicaciones que van desde el suministro de fármacos a nanohilos.

La maquinaria molecular del cuerpo humano, por ejemplo, normalmente se basa en plantillas genéticas para llevar a cabo la síntesis de moléculas. Por ejemplo, las máquinas moleculares llamadas ADN polimerasas leen el ADN base a base para construir copias precisas.

Hay, sin embargo, algunas ovejas negras en el mundo de la biología molecular que no requieren una plantilla. Una de estas aberraciones, llamada transferasa terminal (TdT), trabaja en el sistema inmune y cataliza la adición sin plantilla de nucleótidos (los componentes unitarios del ADN) a un ADN de una sola hebra (recordemos que el ADN es una doble hebra en forma de doble hélice). Las secuencias de nucleótidos aparentemente aleatorias en una sola cadena de ADN no parecen tener mucho uso biológico, pero los investigadores han descubierto qué hacer con ellas.

La enzima TdT puede producir estructuras biomoleculares sintéticas precisas de alto peso molecular empleando una fracción del tiempo que los métodos actuales, y en un solo sitio en vez de en un montón de pasos diferentes en una secuencia de síntesis. La síntesis puede adaptarse para crear ADN monocatenario que se autoensambla formando recipientes de tipo bola para administrar fármacos o para incorporar nucleótidos no naturales dando acceso a una amplia gama de posibilidades con utilidad médica.

La TdT tiene la ventaja sobre las reacciones típicas de síntesis en cadena de que continúa añadiendo nucleótidos al final de la cadena de crecimiento siempre y cuando estén disponibles en el medio. Esto abre para los científicos de materiales un amplio espectro para el diseño.

Debido a que todas las enzimas funcionan al mismo ritmo y nunca se detienen, las hebras de ADN resultantes son todas de un tamaño muy parecido, un rasgo importante para controlar sus propiedades mecánicas. Un proceso sin fin también significa que los investigadores pueden alimentar forzadamente a la TdT cualquier nucleótido que quieran, incluso los no naturales, simplemente no proporcionando otras opciones.

Por ejemplo, los nucleótidos no naturales pueden incorporar moléculas diseñadas para facilitar la “química clic“, lo que permite la unión de un conjunto completo de biomoléculas. Los investigadores también pueden iniciar el proceso de síntesis con una base hecha de una secuencia de ADN específica, llamada aptámero, que puede dirigirse a proteínas y células específicas.

La enzima terminal transferasa se conoce desde hace décadas, pero esta es la primera vez que alguien deja de estudiar su papel en el sistema inmunológico humano para encontrar una aplicación tecnológica en la síntesis de polinucleótidos.

Referencia:

Lei Tang et al (2017) High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation Angewandte Chemie I.E. doi: 10.1002/anie.201700991

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Cómo sintetizar casi cualquier biomaterial usando ADN se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Usando ADN para sintetizar nanoestructuras de oro
  2. Cómo mecanizar una pieza de cobre usando bacterias
  3. Hidrógeno a partir de cualquier biomasa
Catégories: Zientzia

El rostro humano de las matemáticas

mer, 2017/05/17 - 11:59

El año 2007, con motivo del centenario de la creación de la Junta de Ampliación de Estudios e Investigaciones Científicas (JAE), germen del actual Consejo Superior de Investigaciones Científicas (CSIC), se celebró el Año de la Ciencia en España.

El médico español Santiago Ramón y Cajal (1852-1934) fue presidente de la Junta de Ampliación de Estudios e Investigaciones Científicas entre 1907 y 1934, pocos años antes de su disolución, en 1939, tras la Guerra Civil Española. Esta imagen pertenece al cómic “Neurocómic”, de Matteo Farinella y Hana Ros (Norma Editorial, 2014)

El objetivo del Año de la Ciencia fue “concienciar a toda la sociedad y muy especialmente a los jóvenes de apoyar y participar en los avances de cualquier rama de la ciencia y la tecnología”.

Como respuesta al llamamiento que la Fundación Española para la Ciencia y la Tecnología (FECyT) y el Ministerio de Educación y Ciencia (MEC) hicieron dentro de la Convocatoria de Ayudas para la Realización de Acciones de Difusión y Divulgación Científico y Tecnológica del Año de la Ciencia 2007, la Real Sociedad Matemática Española (RSME) propuso, entre otras acciones, la creación de una exposición de caricaturas de matemáticos y matemáticas.

Con esta exposición se quería acercar a la sociedad un trozo de la Historia de las Matemáticas, y más concretamente, de los protagonistas de la misma, es decir, a los personajes, hombres y mujeres, que habían desarrollado las matemáticas y descubierto los grandes teoremas y teorías matemáticas.

La mayoría de las personas de nuestra sociedad no tienen ningún problema en nombrar grandes personajes de la historia de las artes gráficas, la literatura, el cine, la música o el deporte, sin embargo, son incapaces de nombrar a diez grandes nombres de la historia de las matemáticas, salvo quizás a Pitágoras o Newton. Incluso estudiantes de Bachillerato, a pesar de que han estudiado los teoremas de Tales y Pitágoras, el triángulo de Pascal o de Tartaglia, la sucesión de Fibonacci, el binomio de Newton, las coordenadas cartesianas (de Descartes), el teorema de Lagrange (o del valor medio) del cálculo o la campana de Gauss de la estadística, entre otros. De hecho, cuando se ven estos temas en clase rara vez se habla al alumnado de quienes eran sus autores, nadie suele hablar de Pitágoras, Tales, Hipatia, Arquímedes, Fibonacci, Cardano, Gauss, Fermat o Kovaleskaya, por citar algunos.

Por otra parte, la exposición tenía como destinatario al público general, por lo que era muy importante tenerlo en cuenta, lo cual significaba adecuar el lenguaje, el medio de transmisión de la información. El arte gráfico de las caricaturasnos permitía acercarnos a los jóvenes y al público en general de una forma atractiva, con un lenguaje moderno que fuese capaz de llegar a todo el mundo, y muy especialmente a los jóvenes. Y cada una de las caricaturas se acompañaría de una breve biografíaescrita en un lenguaje comprensible para todo el mundo, sin tecnicismos, que destacase tanto aspectos humanos, como científicos del matemático o matemática. En resumen, la Historia de las Matemáticas a través de sus personajes con una perspectiva no académica sino atractiva y humana. Además, se realizarían versiones en los diferentes idiomas, además del castellano, el catalán, el euskera, el gallego y el valenciano.

El germen de esta idea de utilizar las caricaturas para acercar a los matemáticos y matemáticas, y por lo tanto, su ciencia, a la sociedad, fueron una serie de caricaturas de matemáticos españoles actuales que se habían realizado unos años antes desde la Comisión de Divulgación de la RSME, y que se colgaron del portal DivulaMAT [www.divulgamat.net]. Aquí podéis ver algunas…

Manuel de León (ICMAT-CSIC, Madrid), caricatura realizada por Enrique Morente

Pilar Bayer (Universidad de Barcelona), caricatura realizada por Enrique Morente

Este proyecto fue coordinado por Antonio Pérez Sanz y por mí (Raúl Ibáñez Torres), y en el mismo participaron, además de nosotros dos, un grupo de personas de la RSME: Santiago Fernández Fernández, Pedro M. González Urbaneja, Vicente Meavilla Seguí, Fco. Javier Peralta Coronado y Adela Salvador Alcaide; así como dos dibujantes del País Vasco: Enrique Morente Luque, Gerardo Basabe Pérez de Viñaspre.

Raúl Ibáñez (Universidad del País Vasco, Bilbao), caricatura realizada por Enrique Morente

Antonio Pérez Sanz (IES Salvador Dalí, Madrid), caricatura realizada por Enrique Morente

La exposición estaba formada por de 31 caricaturas de grandes matemáticos, entre ellos se incluyeron 5 mujeres matemáticas y 5 matemáticos españoles, así como una breve reseña biográfica de cada uno de ellos, destacándose no solamente la parte científica sino también la parte humana, y un elemento gráfico de las matemáticas del trabajo de ese personaje.

La primera parte de la organización de esta acción divulgativa consistió en la elección, nada fácil, de las personas de la Historia de las Matemáticas que iban a estar en la exposición. La lista no era muy grande, por lo que cualquier elección que hiciésemos sería polémica y además había que intentar compensar por épocas y áreas de las matemáticas, y pensar que la exposición estaba destinada al público general y no a la comunidad matemática o científica.

La lista de matemáticos, y matemáticas, que salió después de varias listas de nombres y varios debates fue la siguiente (podían haberse elegido otras personas, pero en aquel momento, esta fue el listado que se confeccionó):

1.- Pitágoras (ca. 585-500 a.C.)

2.- Euclides (ca. 325-265 a. C.)

3.- Arquímedes (ca. 287-212 a.C.)

4.- Apolonio (ca. 262-190 a.C.)

5.- Hipatia (¿?-415)

6.- Mohammed ibn Musa Al-Khwarizmi (s. IX)

7.- Leonardo de Pisa, Fibonacci (ca. 1175-1250)

8.- Niccolò Fontana, Tartaglia (ca. 1499-1557)

9.- Gerolamo Cardano (1501-1576)

10.- René Descartes (1596-1650)

11.- Pierre de Fermat (1601-1665)

12.- Isaac Newton (1642-1727)

13.- Gottfried Wilhelm Leibniz (1646-1716)

14.- Madame de Châtelet (1706-1749)

15.- Leonhard Euler (1707-1783)

16.- Joseph-Louis Lagrange (1736-1813)

17.- Sophie Germain (1776-1831)

18.- Carl Friedrich Gauss (1777-1855)

19.- Augustin-Louis Cauchy (1789-1857)

20.- Niels Henrik Abel (1802-1829)

21.- Évariste Galois (1811-1832)

22.- Bernhard Riemann (1826-1866)

23.- Sofía Kovalévskaya (1850-1891)

24.- Henri Poincaré (1854-1912)

25.- David Hilbert (1862-1943)

26.- Emmy Noether (1882-1935)

27.- Ventura Reyes Prósper (1863-1922)

28.- Julio Rey Pastor (1888-1962)

29.- Pedro Puig Adam (1900-1960)

30.- Lluís Antoni Santaló i Sors (1911-2001)

31.- Miguel de Guzmán Ozámiz (1936-2004)

Pitágoras, caricatura realizada por Gerardo Basabe

Hipatia, caricatura realizada por Enrique Morente

Las reseñas biográficas, con algunos aspectos humanos, debían de ser cortas, de una lectura fácil y rápida, puesto que formaban parte de una exposición, motivo por el cual elegimos una extensión de unos 2.000 caracteres. Además, su tamaño permitía, tanto en el libro como en la exposición on-line, las lecturas individualizadas de las mismas y poder disfrutar de su lectura en situaciones de lo más diversas (desde en una clase de matemáticas a un rato mientras se toma un café tranquilamente).

A continuación, podemos observar los paneles expositivos –caricatura (las tres de Enrique Morente), reseña biográfica y detalle gráfico- correspondientes a Sophie Germain, Carl Friedrich Gauss y Julio Rey Pastor.

[…] Tenía 19 años en 1795, cuando se fundó la Escuela Politécnica de París. Como las mujeres no eran admitidas (la Escuela Politécnica no admitirá mujeres hasta 1972) consiguió hacerse con apuntes de algunos cursos, entre ellos, los de Análisis de Lagrange. Al final del período lectivo los estudiantes podían presentar sus investigaciones a los profesores, Sophie presentó un trabajo firmándolo como Antoine-Auguste Le Blanc, un antiguo alumno de la escuela. El trabajo impresionó a Joseph Louis Lagrange (1736-1813) por su originalidad y quiso conocer a su autor. Al saber su verdadera identidad, la felicitó personalmente y le predijo éxito como analista, animándola de esta forma a seguir estudiando.

Sus primeros trabajos en Teoría de Números los conocemos a través de su correspondencia con C. F. Gauss, con el que mantenía oculta su identidad bajo el pseudónimo de Monsieur Le Blanc. El teorema que lleva su nombre fue el resultado más importante, desde 1738 hasta 1840, para demostrar el último teorema de Fermat, además permitió demostrar la conjetura para n igual a 5 […]

[…]En 1796 demuestra que el heptadecágono, el polígono regular de 17 lados, se puede construir con regla y compás, resolviendo de paso el problema clásico de qué polígonos regulares pueden construirse con regla y compás. A partir de ese momento comienza a llevar su Diario científico donde a lo largo de muchos años anotará sus resultados más importantes. Entre los 19 y 21 años escribió su obra maestra Disquisitiones arithmeticae, publicado en 1801, que convirtió a la Teoría de Números, la Aritmética superior, en una ciencia unificada y sistemática.

En 1801, utilizando su método de mínimos cuadrados va a fijar la órbita de Ceres a partir de las pocas observaciones de Piazzi. En 1807 obtuvo la cátedra de Astronomía en la Universidad de Gotinga y la dirección de su observatorio astronómico, permaneciendo en esos cargos hasta el final de su vida.

Las aportaciones de Gauss en la Matemática fueron extraordinariamente amplias y en todas las ramas que trabajó dejó una huella indeleble. Realizó investigaciones en Álgebra, en 1799 realizó la primera demostración del Teorema Fundamental del Álgebra, en Teoría de Números, Geometría Diferencial (1827, Disquisitiones generales circa superficies curvas), Geometría no Euclídea, Análisis Matemático, Geodesia (triangulación de Hannover), Astronomía Teórica (Theoria motus corporum coelestium), Teoría de la Electricidad y el Magnetismo (Allgemeine Theorie Erdmagnetismus, 1839). […]

[…] Nace en Logroño y fallece en Buenos Aires. Suspende el ingreso a la Academia militar y estudia Ciencias Exactas en Zaragoza. Hace el doctorado en Madrid sobre Geometría Proyectiva y participa vivamente en la creación de la Sociedad Matemática Española (1911), de la que es secretario.

Catedrático de Análisis Matemático en Oviedo (1911) y Madrid (1913), sigue su formación en Alemania. En 1915 funda el Laboratorio y Seminario Matemático, origen de nuestra mejor investigación matemática.

La Institución Cultural Española le invita a ir a Buenos Aires, y su magisterio cosecha un gran éxito. Al marchar, desaparece la Revista de la SociedadMatemática Española, y al volver funda la Revista Hispano-Americana.

Tras otros viajes, fija su residencia en Argentina y juega un papel capital en la modernización de su matemática. Alterna luego su actividad con Madrid, salvo de 1936 a 1947 en que permanece en Argentina, y ayuda a instalarse a matemáticos exiliados españoles […]

A partir del material elaborado se desarrollaron cuatro estructuras distintas:

i) Una exposición de calidad para mover por los Museos de la Ciencia y otros Museos, que visitó por ejemplo, Miramon Kutxaespacio de la Ciencia, la Casa de las Ciencias de A Coruña o la Casa de las Ciencias de Logroño.

ii) Varias copias de exposiciones flexibles para mover por los centros educativos del estado español, y que se estuvo moviendo durante muchos años, y aún hoy día siguen demandándola algunos centros educativos.

iii) Una exposición virtual, que las personas que están leyendo esta entrada del Cuaderno de Cultura Científica pueden ver en el portal divulgamat, en Castellano, Catalá, Euskara, Galego y Valencià.

iv) Y el magnífico libro “El Rostro Humano de las Matemáticas”, que publicó la editorial Nivola en 2008.

Portada del libro El Rostro humano de las matemáticas (Nivola, 2008)

Y terminamos con las caricaturas de otros tres personajes de la exposición El rostro humano de las matemáticas.

Sofía Kovalevskaya, caricatura realizada por Gerardo Basabe

Henri Poincaré, caricatura realizada por Enrique Morente

Lluís Antoni Santaló i Sors, caricatura realizada por Enrique Morente

Los autores de este proyecto, incluidos los dibujantes, también fuimos caricaturizados, y nuestra caricatura aparece en la parte final del libro, así como en las versiones de divulgamat.

Caricaturas de los autores de la exposición y del libro: Santiago Fernández Fernández, Pedro M. González Urbaneja, Raúl Ibáñez Torres, Vicente Meavilla Seguí, Francisco Javier Peralta Coronado, Antonio Pérez Sanz, Adela Salvador Alcaide, Enrique Morente Luque y Gerardo Basabe Pérez de Viñaspre

Bibliografía

1.- Archivo de la Junta de Ampliación de Estudios e Investigaciones Científicas (1907-1939)

2.- Raúl Ibáñez, Antonio Pérez (coordinadores de la edición), El rostro humano de las matemáticas, Nivola, 2008.

3.- Matteo Farinella, Hana Ros, Neurocómic, Norma Editorial, 2014

El artículo El rostro humano de las matemáticas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Matemáticas experimentales
  2. Artistas que miran a las matemáticas
  3. Muerte entre las ecuaciones (Historias de muerte y matemáticas 1)
Catégories: Zientzia

Las actividades animales

mar, 2017/05/16 - 17:00

Los animales pueden ser tratados como sistemas abiertos que intercambian materia y energía con su entorno y que ejercen un cierto control sobre esos intercambios. Agua, sales, elementos estructurales, energía química, oxígeno, calor, así como los restos químicos de sus actividades (CO2, sustancias nitrogenadas,…) son objeto de un trasiego continuo. La capacidad de un animal para que ese flujo, en una y otra dirección (hacia dentro y fuera del organismo), rinda el máximo beneficio energético posible, a la vez que las condiciones estructurales y fisico-químicas internas permiten el mantenimiento de su integridad funcional, es lo que determina su éxito reproductor y, por lo tanto, su aptitud biológica en términos darwinianos.

Cualquier clasificación que se quiera hacer de las actividades animales de acuerdo con las funciones a cuyo servicio se encuentran contiene, necesariamente, algún criterio arbitrario. Eso es así porque varias de esas actividades cumplen funciones en más de un ámbito. A los efectos de lo que nos interesa exponer aquí, las actividades pueden agruparse en las siguientes tres grandes categorías: (1) mantenimiento de la integridad estructural y funcional del organismo; (2) adquisición y procesamiento de los recursos necesarios para producir copias de sí mismo; y (3) control e integración de los procesos implicados en las funciones anteriores y en las relaciones (del tipo que fueren) con el resto de organismos del mismo o de otros linajes.

La primera categoría engloba las actividades implicadas en el mantenimiento de las condiciones que permiten que los procesos fisiológicos cursen de tal forma que el sistema animal en su conjunto mantenga su integridad. En rigor cabría atribuir a esta categoría casi todas las actividades –todas con la única excepción de las reproductivas-, pero algunas de ellas tienen cometidos más específicos, por lo que serán tratadas de acuerdo con su especificidad. La integridad funcional depende de los siguientes elementos: (1) mantenimiento del balance de agua y solutos en las células y en el individuo en su conjunto, incluyendo el concurso del sistema excretor; (2) equilibrio ácido-base de los líquidos corporales; (3) funcionamiento del sistema cardio-vascular como sistema de distribución y transporte de información, gases, nutrientes, deshechos y calor; (4) tareas de defensa; y (5) sistema de captación de O2 y eliminación de CO2 y transporte de estos gases.

La segunda categoría comprende las actividades mediante las cuales se adquieren y procesan los recursos que proporcionan: (1) la energía química que alimenta el conjunto de las actividades animales; y (2) los elementos estructurales que se necesitan para elaborar nuevos tejidos, ya sean para la línea somática o la línea germinal. Incluye, por lo tanto, (1) funciones de adquisición, digestión y absorción del alimento; (2) el metabolismo en su conjunto en su doble vertiente de indicador del nivel de actividad global del organismo y de gasto de energía en forma de calor disipado; y (3) balance energético de los procesos de ganancia y pérdida de energía, del que depende el crecimiento y la reproducción del individuo.

Y en la tercera categoría se incluyen las actividades que permiten: (1) recibir información del estado del organismo y del entorno; (2) procesar esa información y elaborar respuestas; y (3) ejecutar esas respuestas mediante cambios en las funciones fisiológicas internas o mediante actuaciones sobre el entorno. Esta categoría comprende el funcionamiento de los sistemas nervioso, endocrino y de los órganos efectores, especialmente los sistemas musculares.

Para concluir debemos remarcar una idea presentada al comienzo: los animales del presente son los herederos actuales de antecesores que, bajo las específicas circunstancias ambientales en que vivieron, han dejado mayor número de réplicas (parciales) de su información genética que otros muchos miembros de su linaje. Son, por lo tanto, herederos de los animales con mayor aptitud biológica de sus respectivas generaciones. Es a la luz de ese hecho como debe valorarse el modo en que cada individuo animal desarrolla sus actividades.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Las actividades animales se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El tamaño relativo de los órganos animales
  2. Los animales
  3. El sistema de la difusión social de la ciencia: Efecto de las actividades de difusión científica
Catégories: Zientzia

La máquina de vapor (1)

mar, 2017/05/16 - 11:59

Segunda máquina de vapor construida por Newcomen (1714)

El desarrollo de la ciencia moderna del calor estuvo estrechamente ligado al desarrollo de la tecnología moderna de máquinas diseñadas para realizar trabajo. Durante milenios y hasta hace dos siglos la mayor parte del trabajo se realizaba por animales (humanos y de otras especies). El viento y el agua también proporcionaban trabajo mecánico, pero en general no son fuentes de energía fiables, ya que no siempre está disponibles cuando y donde se necesitan.

En el siglo XVIII, los mineros comenzaron a cavar cada vez a más profundidad en su búsqueda de mayores cantidades de carbón. El agua tendía a filtrarse e inundaba estas minas más profundas. Se planteó la necesidad de un método económico para bombear el agua y sacarla de las minas. La máquina de vapor se desarrolló inicialmente para satisfacer esta necesidad concreta.

La máquina de vapor es un dispositivo para convertir la energía térmica del calor que produce un combustible en trabajo mecánico. Por ejemplo, la energía química de la madera, el carbón o el petróleo, o la energía nuclear del uranio, pueden convertirse en calor. La energía térmica a su vez se utiliza para hervir el agua para formar vapor, y la energía en el vapor se convierte en energía mecánica. Esta energía mecánica puede ser utilizada directamente para realizar trabajo, como en una locomotora de vapor, o utilizada para bombear agua, o para transportar cargas, o se transforma en energía eléctrica. En las sociedades post-industriales típicas de hoy, la mayor parte de la energía utilizada en las fábricas y en los hogares proviene de la energía eléctrica. Parte viene de saltos de agua y del viento pero la fuente que garantiza el suministro continuo y a demanda sigue siendo la proveniente de generadores.

Existen otros dispositivos que convierten el combustible en energía térmica para la producción de energía mecánica, como los motores de combustión interna utilizados en automóviles, camiones y aviones, por ejemplo. Pero la máquina de vapor sigue siendo un buen modelo para el funcionamiento básico de toda la familia de los llamados motores térmicos y la cadena de procesos desde la entrada de calor hasta la salida de trabajo y el escape de calor residual es un buen modelo del ciclo básico involucrado en todos los motores térmicos.

Modelo moderno de eolípila

Desde la antigüedad se sabe que el calor se puede utilizar para producir vapor que, a su vez, puede realizar trabajo mecánico. Un ejemplo fue la eolípila, inventada por Herón de Alejandría alrededor del año 100. Se basaba en el mismo principio que hace que giren los aspersores de jardín, excepto en que la fuerza motriz era el vapor en vez de la presión del agua. La eolípila de Herón era un juguete, hecho para entretener más que para hacer un trabajo útil. Quizás la aplicación más “útil” del vapor en el mundo antiguo fue otro de los inventos de Herón. Este dispositivo asombraba a los fieles congregados en un templo al hacer que una puerta se abriera cuando se encendía un fuego en el altar.

No fue hasta finales del siglo XVIII que los inventores empezaron a producir máquinas de vapor con éxito comercial. Thomas Savery (1650-1715), un ingeniero militar inglés, inventó la primera máquina de este tipo, a la que dio en llamarse “la amiga del minero”. Podía bombear el agua de una mina llenando alternativamente un tanque con vapor de alta presión, lo que llevaba vaciaba el agua del tanque empujándola hacia arriba, condensando después el vapor, lo que permitía que entrase más agua en el tanque.

Máquina de Savery (1698)

Desafortunadamente, el uso de vapor de alta presión por parte de la máquina Savery implicaba unimportante riesgo de explosiones de calderas o cilindros. Thomas Newcomen (1663-1729), otro ingeniero inglés, solucionó este defecto. Newcomen inventó una máquina que utilizaba vapor a menor presión. Su máquina era mejor también en otros aspectos. Por ejemplo, podía elevar cargas distintas al agua. En lugar de usar el vapor para forzar el agua dentro y fuera de un cilindro, Newcomen utilizó vapor para forzar un pistón hacia adelante y presión de aire para forzarlo hacia atrás. El movimiento del pistón podía utilizarse para mover una bomba u otro tipo de máquina.

Principio de funcionamiento de la máquina de Newcomen

El movimiento del pistón en una máquina de vapor, hacia adelante y hacia atrás, es uno de los orígenes de la definición de trabajo mecánico, W, como fuerza (F) x distancia (d), W = F·d.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La máquina de vapor (1) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Los experimentos de Joule
  2. La máquina térmica
  3. El calor no es un fluido
Catégories: Zientzia

El terrorismo como sacerdocio

lun, 2017/05/15 - 17:00

El sufrimiento por las creencias propias facilita que otros compartan las mismas creencias, religiosas y de otro tipo, porque les otorga credibilidad. Esta es la tesis que sostiene Joseph Henrich, de la Universidad de la Colombia Británica (Canada). El prestigio de una persona en el seno de su comunidad facilita considerablemente que las costumbres, ideas y creencias de esa persona sean adoptadas por el resto de sus miembros. Si además de eso, la persona en cuestión está dispuesta a realizar actos costosos o que acarrean sufrimiento en pro de esas costumbres, ideas o creencias, su credibilidad es aún mayor, porque otorgamos mucho valor a ese tipo de actos. Por eso, en las primeras fases de las religiones que tienen éxito suelen aparecer personas de prestigio que los realizan. La gente se fija, sobre todo, en modelos o referencias comunitarias y la credibilidad de su fe es mayor si están dispuestas a sufrir o pasarlo mal para demostrarlo.

Esa es la razón por la que el martirio se convierte en una poderosa herramienta para que las creencias del mártir sean aceptadas por otras personas y para que éstas se comprometan, a su vez, con la causa. Es también el mecanismo que subyace a los votos de castidad y pobreza, o al ayuno, de los líderes religiosos, porque la renuncia (real o aparente) a los correspondientes bienes, supone una muestra de lo genuino de las creencias y promueve su adopción por parte de otras personas.

El mismo argumento vale para los terroristas, sobre todo si son suicidas. Por esa razón, las medidas que puedan adoptar las autoridades para punir determinados comportamientos pueden, en la práctica, servir de estímulo para la aparición de nuevos seguidores de la causa. Los mártires del primer cristianismo son ejemplos claros de ese fenómeno. No es que los terroristas hagan votos de castidad o pobreza, o que ayunen de forma voluntaria, pero ante los potenciales adeptos a su causa aparecen como personas dispuestas a renunciar a bienes, como la libertad o el bienestar material, de los que muchos disfrutan y que tienen en alta estima. Desde ese punto de vista y en sus modalidades menos exageradas, la militancia terrorista bien podría asimilarse a una especie de sacerdocio. Y si los terroristas están dispuestos a arriesgar sus vidas o, incluso, se la quitan a sí mismos como consecuencia inevitable de sus actos, más que sacerdotes, alcanzan la condición de mártires.

Fuente:

Joseph Henrich (2015): The secret of our success. Princeton University Press.

El trabajo original fue publicado por el autor en Evolution and Human Behavior (2009) y se puede consultar aquí.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El terrorismo como sacerdocio se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Del relativimo al cientifismo, por Experientia Docet
  2. La prolongación de la juventud como precarización de lo adulto
  3. El óxido de grafeno que se mueve como una oruga y coge cosas como una mano
Catégories: Zientzia

Un espectrómetro Raman portátil mide el punto óptimo de maduración del tomate

lun, 2017/05/15 - 11:59

Un espectrómetro Raman portátil

El espectrómetro Raman portátil, un equipo que se utiliza en campos tan diversos como la metalurgia, la arqueología o el arte, permite obtener datos sobre la variación de la composición del fruto del tomate en sus diferentes fases de maduración, según los resultados de un estudio realizado en el Departamento de Química Analítica de la UPV/EHU.

El espectrómetro Raman portátil es un instrumento muy utilizado en sectores muy diferentes, ya que es una técnica no invasiva que sirve, por ejemplo, para observar los pigmentos que contiene un cuadro o una escultura sin tener que extraer muestra alguna, preservando así la integridad de la obra en cuestión. En este caso, los investigadores han aplicado el espectrómetro Raman a la investigación culinaria. Según Josu Trebolazabala, autor del estudio, “se trata de un trasvase de esta tecnología, que tenía un uso concreto, a la cocina. Nuestra idea era crear una herramienta que pudiera ayudar al productor a saber cuál es el punto óptimo de maduración del tomate. Con esta técnica se consigue, además, hacerlo sin destruir el fruto”.

Josu Trebolazabala analiza en el laboratorio la composición de un tomate mediante el espectrómetro Raman. Foto: Txetxu Berruezo.

Los resultados ofrecidos por este instrumento portátil han sido comparados con los ofrecidos por un instrumento similar de laboratorio, y “aunque la calidad de los espectros Raman del instrumento de laboratorio ha resultado ser superior, la información obtenida con la instrumentación portátil puede considerarse de suficiente calidad para el objetivo propuesto, es decir, que el productor pueda ir a la huerta con este equipo y, posando la sonda Raman de contacto sobre el fruto del tomate, pueda saber si el tomate está en un punto de recogida óptimo o hay que dejarlo madurar más tiempo”, comenta Josu Trebolazabala.

La monitorización de la composición del fruto del tomate en sus fases de maduración ha permitido observar los cambios que se producen en la composición del tomate en su tránsito desde su estado inmaduro hacia el estado maduro. “Cuando el tomate está verde, los pigmentos mayoritarios son la clorofila (de ahí su color verde) y las ceras cuticulares, que se encuentran en el exterior”, explica Trebolazabala. Pero la presencia de dichos compuestos desciende a medida que el fruto alcanza su punto óptimo de maduración. “Una vez que el color pasa al anaranjado, se observan otro tipo de compuestos; se activan los compuestos carotenoides. El tomate va adquiriendo nutrientes hasta llegar al punto óptimo, es decir, cuando el licopeno (carotenoide de color rojo) está en su máximo. Después, el tomate empieza a perder contenido en carotenoides, como demuestran los análisis realizados en tomates excesivamente maduros”.

Esta innovadora técnica es extrapolable a cualquier otro alimento que cambie de coloración durante su etapa de maduración. “Se han realizado pruebas con el pimiento y con la calabaza, por ejemplo, y también es posible obtener datos sobre su composición”, aclara.

Referencia:

J. Trebolazabala, M. Maguregui, H. Morillas, A. de Diego, J.M. Madariaga.. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 180: 138-143. DOI: 10.1016/j.saa.2017.03.024.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Un espectrómetro Raman portátil mide el punto óptimo de maduración del tomate se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La pantalla de tu móvil solo tiene tres colores
  2. Otra pieza en el puzle de la fotosíntesis
  3. La contaminación por metales pesados no llega a los tomates
Catégories: Zientzia

Sin atajos frente al cáncer

dim, 2017/05/14 - 11:59

El archiconocido empresario norteamericano Steve Jobs murió a consecuencia de un cáncer de páncreas que no fue operado a tiempo. Si hubiese sido intervenido cuando le fue diagnosticada la enfermedad, el desenlace podría haber sido otro. Sin embargo, Jobs optó por recurrir a terapias alternativas, y retrasó la intervención que, realizada a tiempo, podría quizás haberle salvado. Ese no es, desgraciadamente, el único caso en que la renuncia a las terapias más eficaces de que disponemos conduce a un desenlace fatal.

Aparte de para curarse, también hay quien recurre a remedios supuestamente preventivos. Se promocionan dietas con la pretensión declarada de prevenir la aparición de tumores. Y en el colmo de la desfachatez –por no decir, directamente, de la maldad- hay quienes atribuyen a los enfermos la responsabilidad de su situación, al afirmar que el cáncer tiene origen en algún problema psicológico no resuelto mediante alguna práctica o modo de vida supuestamente indicado a tal efecto.

Proliferan ahora dietas “anti-cáncer”. Una de las más populares es la llamada “dieta alcalina”, que usaré aquí, a modo de ejemplo, para ilustrar el sinsentido de esta y otras falsas terapias. Para entender el fundamento en que supuestamente se basa, hay que tener en cuenta que el entorno de las células cancerosas suele ser ácido y que los promotores de la dieta milagrosa sostienen que esa acidez es la que provoca el cáncer. Creen que hay que neutralizarla ingiriendo una dieta alcalina.

La razón de que las células cancerosas se encuentren en un entorno ácido es que, para obtener energía, tienden a utilizar más glucosa que las sanas, haciendo uso de una vía metabólica llamada glucolisis, sin que esa ruta sea complementada por otras que son las que en muchos tejidos animales proporcionan más energía y acaban requiriendo el concurso del oxígeno que respiramos. En esas condiciones, los productos finales de la glucolisis son sustancias ácidas, y es por eso por lo que el entorno de esas células se acidifica. Algo parecido ocurre, por cierto, con las células de nuestros músculos cuando los sometemos a un esfuerzo muy intenso; bajo esas condiciones la glucosa, tras una serie de etapas, acaba convirtiéndose en ácido láctico.

A la utilización preferente de glucosa por las células cancerosas se le denomina “efecto Warburg”, pues fue Otto Warburg quien lo describió en 1924. De hecho, fue él quien sugirió que el cáncer podía ser una consecuencia del fenómeno descrito. Sin embargo, como hemos visto, la secuencia causal es la opuesta: son las células cancerosas las que provocan la acidificación del entorno, y no al revés. Y en todo caso, conviene aclarar que el grado de acidez del organismo no puede modificarse con la dieta, puesto que está regulado fisiológicamente de forma muy estricta, sin que la acidez de aquélla ejerza ningún efecto.

Los diagnósticos de cáncer son difíciles de aceptar, sobre todo cuando el tratamiento prescrito es agresivo, como suele ocurrir con la quimioterapia. Y por esa razón no es raro que a la hora de afrontar un tratamiento duro, de efectos secundarios muy desagradables e incluso temporalmente incapacitantes, haya quien valore la posibilidad de probar terapias alternativas. No faltan, además, personajes que, valiéndose del sufrimiento de los enfermos, les ofrecen remedios sin los duros efectos de los tratamientos oncológicos habituales. Pues bien, conviene tener siempre presente que son los médicos de nuestro sistema de salud los únicos capacitados para prescribir la terapia más eficaz posible. Cuando el camino a recorrer es muy duro, la tentación de tomar atajos es muy fuerte, también frente a la enfermedad. Pero tampoco frente al cáncer hay atajos.

Adenda:

Tras su publicación en la sección con_ciencia del diario Deia el 29 de enero pasado, este texto recibió comentarios críticos con la idea de que el cáncer que sufría Jobs tuviese mejor pronóstico que la mayoría de los que afectan al páncreas, razón por la cual no debía criticarse su opción por explorar tratamientos alternativos a los que le ofrecía la medicina. Quien suscribe no es especialista en oncología; ni siquiera es médico. Recurro, por ello, a lo que señala la Wikipedia en inglés a ese respecto y que cada cual juzgue:

En octubre de 2003 a Jobs se le diagnosticó cáncer. A mediados de 2004 él anunció a sus empleados que tenía un tumor canceroso en el páncreas. El pronóstico para el cáncer de páncreas es normalmente muy negativo. Jobs especificó que él tenía un tipo de tumor raro, no tan agresivo, conocido como carcinoma de los islotes pancreáticos.

A pesar del diagnóstico, durante nueve meses Jobs no hizo caso a las recomendaciones de sus médicos de que se operase, confiando, por el contrario, en una dieta pseudo-médica para intentar un tratamiento natural para combatir la enfermedad. De acuerdo con el investigador de Harvard Ramzi Amri, su opción por un tratamiento alternativo le condujo a una muerte innecesariamente temprana. El investigador en cáncer y crítico de la medicina alternativa David Gorski disentía de la opinión de Amri, y manifestó que “según mi criterio, Jobs probablemente solo redujo de manera modesta sus posibilidades de sobrevivir”. Barrie R. Cassileth, el jefe del departamento de medicina integrativa del Memorial Sloan Kettering Cancer Center dijo que “la fe de Jobs en la medicina alternativa probablemente le costó la vida…. Él tenía el único tipo de cáncer de páncreas que es tratable y curable… Él, básicamente se suicidó.” De acuerdo con el biógrafo de Jobs, Walter Isaacson, “durante nueve meses él rehusó someterse a una cirugía para su cáncer de páncreas, una decisión que más tarde lamentaría conforme su salud empeoró. En vez de ello, probó una dieta vegana, acupuntura, hierbas y otros tratamientos que encontró en internet, e incluso, consultó a un vidente. El estaba muy influido por un médico que dirigía una clínica que prescribía enemas, ayunos y otros tratamientos carentes de fundamento antes de ser operado en julio de 2004 y de serle extirpado el tumor. Jobs no recibió radioterapia ni quimioterapia.”

—————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Sin atajos frente al cáncer se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Inmunoterapia contra el cáncer
  2. Beber alcohol produce cáncer
  3. #Naukas14 Mitos del cáncer
Catégories: Zientzia

Los ojos que explorarán la superficie de Marte (Mars2020)

sam, 2017/05/13 - 11:59

Un equipo de investigación de la UPV/EHU está participando en la misión de la NASA Mars2020, que pretende transportar un nuevo vehículo científico a Marte para explorar potenciales signos de vida, analizar su habitabilidad y mejorar el estudio del clima, la atmósfera y la geología marciana. Estos investigadores se encargarán de calibrar una cámara que, mediante diferentes mediciones espectroscópicas, analizará el suelo del planeta rojo para buscar señales orgánicas y determinar la mineralogía y la composición química, atómica y molecular de las muestras localizadas.

El director de este equipo de investigación, Juan Manuel Madariaga, habló sobre este proyecto en una charla que tuvo lugar el pasado 22 de febrero en Azkuna Zentroa (Bilbao). Esta charla forma parte del ciclo de conferencias Zientziateka, que organizan todos los meses la Cátedra de Cultura Científica de la UPV/EHU y Azkuna Zentroa para divulgar asuntos científicos de actualidad.

Los ojos que explorarán la superficie de Marte

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Los ojos que explorarán la superficie de Marte (Mars2020) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Investigación con medicamentos en seres humanos: del laboratorio a la farmacia
  2. La detección de ondas gravitacionales: el nacimiento de una nueva astronomía
  3. La batalla contra el cáncer: la importancia de la alimentación
Catégories: Zientzia

Las cartas de Darwin: El capitán y el filósofo

ven, 2017/05/12 - 12:00

Las cartas de Darwin, una serie para conocer aspectos sorprendentes de la vida del naturalista

Carta de Charles Darwin a John Stevens Henslow [15 septiembre 1831]

“El capitán FitzRoy es todo lo que puede ser de grato, si fuera a alabarlo solo la mitad de lo que me siento inclinado, a pesar de haberlo visto solo una vez, le parecería a usted absurdo…[…] No puede usted imaginar nada más grato, gentil y abierto que las maneras del capitán FitzRoy para conmigo. Si no congeniamos seguramente será por mi culpa”.

Así de optimista y elogioso se mostraba el joven Charles Darwin tras su primer encuentro con el capitán que iba a dirigir su expedición durante los próximos años. A ojos del naturalista, FitzRoy aparecía como un hombre experimentado (a pesar de tener solamente cuatro años más que Darwin), una persona disciplinada, de trato afable y dispuesta a agradar. Darwin mantuvo esta favorable opinión del capitán durante gran parte del viaje y, aunque no se puede decir que se convirtieran en amigos, sí que hubo una relación correcta durante los cinco largos años que tuvieron que compartir un pequeño camarote y las incomodidades de un barco de esas características.

Carta de Charles Darwin a su hermana Susan Darwin [09/14 de septiembre 1831]

“Te daré una prueba de que FitzRoy es un buen capitán: todos los oficiales serán los mismos del anterior viaje y dos tercios de su tripulación y los ocho infantes de marina que fueron antes con él, todos se han ofrecido a volver de nuevo, así que el servicio no puede ser tan malo”.

Unos días más tarde y tras algunos encuentros más con el capitán para la organización del viaje, Darwin vuelve a escribir a su hermana reiterando su admiración por FitzRoy.

“Por mis cartas anteriores, quizá llegaste a pensar que admiraba yo a mi bello ideal de capitán, pero todo ello no es nada respecto de lo que siento ahora. Todo el mundo lo alaba y, si juzgamos por el poco tiempo que he compartido con él, no hay duda que lo merece. Esto no quiere decir que una admiración tan intensa como la que siento por él pueda durar para siempre. Nadie es un héroe para su ayuda de cámara, como dice el dicho, y desde luego que me encontraré en el mismo predicamento con el tiempo”.

Además, en la primera carta a su hermana, Darwin hace una pequeña profecía que, como comprobaremos más adelante, no se iba a cumplir:

“No creo que nos peleemos por la política, aunque Wood (como debe esperarse de un irlandés de Londonderry) advirtió solemnemente a FitzRoy que yo era liberal”.

El capitán Robert FitzRoy en uno de los pocos retratos de joven

Mucha gente cree que las escasas, aunque potentes, discusiones que tuvieron Darwin y FitzRoy durante el viaje en el Beagle se debieron a motivos religiosos, y no es cierto. Tanto el capitán como el filósofo (así llamaba la tripulación al joven Darwin) se enfrascaron en varias disputas pero siempre por motivos políticos y sociales. Las desavenencias religiosas llegaron mucho más tarde, casi 30 años después, a raíz de la publicación en 1859 del Origen de las especies.

En el barco, no obstante, la gran discusión entre Darwin y FitzRoy se produjo por un asunto que imprimió una profunda huella en el naturalista: la esclavitud.

Carta de Charles Darwin a John Maurice Herbert [01 de junio de 1832]

“[Durante su estancia en Brasil] No me había dado cuenta de cuán íntimamente está conectada la que podríamos llamar parte moral con el goce del paisaje. Tales ideas, al igual que la historia del país, la utilidad de los productos y más especialmente la felicidad de la gente, nos acompañan. Pero cambia al trabajador inglés por un pobre esclavo que trabaja para otro y ya no reconoces el mismo paisaje”.

A pesar de lo que se pudiera pensar, sobre todo por las grandes ilusiones que Darwin se hizo al inicio del viaje, nuestros dos personajes nunca llegaron a ser grandes amigos. De hecho, si tuviésemos que juzgar su relación por las cartas que se escribieron en toda su vida tendríamos muchas dificultades puesto que apenas se intercambiaron un puñado de ellas.

Darwin y FitzRoy tan solo intercambiaron 22 cartas (diez escritas por Darwin, doce por FitzRoy) entre los años 1831 y 1846, año en el que dejaron de escribirse.

Para conocer a fondo la intensa relación entre Darwin y el capitán, lo más eficaz es acudir a la “Autobiografía” que el propio naturalista escribió haciendo gala de una sinceridad en muchos aspectos implacable.

“FitzRoy poseía un carácter singular dotado de muchas facetas muy nobles: era un hombre entregado a su deber, generoso hasta el exceso, audaz, decidido, de una energía indomable y amigo apasionado de todo el que se hallase bajo su autoridad. Sería capaz de asumir cualquier tipo de inconveniente para dar su ayuda a quien pensaba que la merecía”

“El temperamento de FitzRoy era de lo más desventurado. Así lo demostraban no solo su apasionamiento sino sus accesos de prolongada taciturnidad con quienes le habían ofendido. Solía empeorar en las primeras horas de la mañana, y con su vista de águila era, por lo general, capaz de detectar cualquier cosa que estuviese mal en el barco, y a continuación se mostraba implacable con sus acusaciones. Cuando se turnaban antes del mediodía, los oficiales de menor rango solían preguntarse “Cuánto café caliente se había servido aquella mañana”, con lo que se referían al humor del capitán. Era también un tanto suspicaz, y de vez en cuando, muy depresivo, hasta el punto de rayar la locura en cierta ocasión. A menudo me parecía que carecía de sensatez o de sentido común”.

“Conmigo se portó con una amabilidad extrema, pero era un hombre con el cual resultaba muy difícil convivir con la intimidad derivada necesariamente del hecho de comer solos en el mismo camarote”.

“Tuvimos varias peleas y cuando perdía los estribos era absolutamente irrazonable. Al comienzo del viaje, por ejemplo, en la localidad brasileña de Bahía, defendió y elegió la esclavitud, que a mí me parecía abominable, y me dijo que acababa de visitar a un gran propietario de esclavos que, tras convocar a muchos de ellos, les había preguntado si eran felices y deseaban ser libres, a los que todos habían respondido con un: “No”. Yo le pregunté, quizá con cierta sorna, si pensaba que las respuestas dadas por unos esclavos en presencia de su dueño tenían algún valor. Esto lo sacó de quicio y me dijo que, si dudaba de su palabra, no podríamos seguir viviendo juntos. Pensé que se me obligaría a dejar el barco, pero en cuanto se difundió la noticia, el capitán mandó llamar al primer teniente para calmar su furia insultándome a mí, me sentí profundamente gratificado al recibir una invitación de los oficiales de la sala de armas para que comiera con ellos.

No obstante, al cabo de unas horas, FitzRoy demostró su habitual magnanimidad enviándome a un oficial con sus disculpas y una petición para que siguiéramos compartiendo su camarote”.

Robert FitzRoy con su uniforme de la marina británica en la que llegó a ser ViceAlmirante

De esta tensa relación, y también de la disputa a cuenta del espinoso asunto de la esclavitud, Darwin se explicaba así en una carta a Henslow:

Carta de Charles Darwin a John Stevens Henslow [16 junio 1832]

“El capitán hace todo lo que está en su mano para ayudarme, y nos llevamos bien, pero doy gracias a mi buena fortuna que no me haya convertido en un renegado de los principios liberales. No seré un conservador aunque tan solo sea a cuenta de sus fríos corazones acerca del escándalo de todas las naciones cristianas: la esclavitud”.

Finalizando el viaje, y tras cinco años embarcado, Darwin escribe a su hermana Susan resumiendo el estado de la relación con el capitán en los últimos meses.

Carta de Charles Darwin a su hermana Susan Darwin [28 de enero 1836]

“En los últimos doce meses he estado en muy buenos términos con él. Es un hombre extraordinario y de noble carácter, aunque por desgracia afectado por ciertas peculiaridades de su temperamento, de lo cual nadie se da tanta cuenta como él mismo, lo cual se demuestra en sus intentos por controlarlo.

A menudo dudo de cuál sea su fin: bajo muchas circunstancias estoy seguro de que será brillante, pero por otras me temo que no será feliz”.

En esta ocasión, Darwin sí acertaría de pleno con su profecía. FitzRoy fue un hombre brillante, al que bien podemos considerar hoy como el padre de la meteorología moderna, pero que tuvo un final trágico y suicida, como él mismo temió durante su vida.

Una vez finalizada la travesía del Beagle, Darwin y FitzRoy apenas mantuvieron el contacto, salvo en algunas cartas sueltas, una de ellas escrita con indignación y enfado por parte del capitán a cuenta de los créditos en el prólogo de la obra Zoology of the voyage of HMS Beagle.

Placa conmemorativa en Londres dedicada a FitzRoy como hidrógrafo y meteorólogo

El final, y abrupto desencuentro, entre los dos personajes lo resume mejor que nadie el propio Darwin en su Autobiografía:

“Tras mi vuelta a Inglaterra, solo vi a FitzRoy de vez en cuando, pues temía siempre ofenderle sin querer, como lo hice realmente en un caso sin posibilidad de reconciliación”.

Darwin se refiere aquí a la carta de FitzRoy de 16 de noviembre de 1837, aunque el colofón final llegaría en 1859 con la publicación de su obra más célebre.

“Más tarde se mostró muy indignado conmigo por haber publicado un libro tan heterodoxo como El origen de las especies, pues en esa época Fitzroy se había vuelto muy religioso. Me temo que hacia al final de su vida se empobreció mucho, debido en gran parte a su generosidad. De todos modos, tras su muerte se organizó una suscripción para pagar sus deudas. Tuvo un triste final, por suicidio, exactamente igual que su tío Lord Castlergah, a quien se parecía mucho en modales y aspecto.

Su carácter fue, en varios sentidos, uno de los más nobles que he conocido, aunque empañado por graves imperfecciones”.

Para finalizar, me gustaría recomendar el libro “FitzRoy, capitán del Beagle” de John y Mary Gribbin, en cuya introducción se recogen las que posiblemente sean las palabras más célebres de Darwin sobre su compañero de viaje:

“A mi entender, es un individuo extraordinario. No había jamás a un hombre de convertirse en un Napoleón o un Nelson. No le llamaría listo, aunque estoy convencido de que no hay misión demasiado noble o ambiciosa para él. Su influencia sobre los demás es muy curiosa: antes de conocerle me habría resultado incomprensible el grado al que cada oficial y marinero siente la menor reprimenda elogio. Su peor fallo como compañero es un silencio austero, producto de su carácter excesivamente pensativo. Tiene muchas y muy importantes cualidades positivas: en conjunto es la persona con el carácter más fuerte con el que haya congeniado en mi vida”.

Este post ha sido realizado por Javier Peláez (@irreductible) y es una colaboración deNaukas con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo Las cartas de Darwin: El capitán y el filósofo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Las cartas de Darwin: La vida a bordo de un balandro ataúd
  2. Las cartas de Darwin: Casi me vuelvo a casa antes de las Galápagos
  3. Las cartas de Darwin: ¿Dejamos que el chaval se vaya de viaje?
Catégories: Zientzia

¿Jugar al ajedrez te hace más inteligente? Un vistazo a las pruebas

jeu, 2017/05/11 - 17:00

Giovanni Sala & Fernand Gobet

&nbsp

El estereotipo del jugador de ajedrez es alguien que es inteligente, lógico y bueno en matemáticas. Esta es la razón por la que muchos padres de todo el mundo desean que sus hijos jueguen al ajedrez, con la esperanza de que el juego pueda ayudar a aumentar los niveles de inteligencia de su hijo o hija y ayudarlos a tener éxito en una amplia variedad de asignaturas.

Pero aparte de que el ajedrez sea un gran juego, su historia arraigada en los ejércitos de la India oriental, ¿hay alguna evidencia que demuestre que jugar al ajedrez puede hacerte más inteligente?

En un artículo anterior, mostramos que los jugadores de ajedrez exhiben, en promedio, una capacidad cognitiva superior en comparación con los jugadores que no son ajedrecistas. Y las habilidades necesarias para jugar al ajedrez también se ha demostrado que se correlacionan con varias medidas de la inteligencia – como el razonamiento fluido, la memoria y la velocidad de procesamiento.

Pero si bien la existencia de una relación entre la habilidad cognitiva general y la capacidad ajedrecística es clara, ¿es esto simplemente porque las personas inteligentes son más propensas a jugar al ajedrez, o jugar al ajedrez hace que la gente sea más inteligente?

Juego mental

La noción de que jugar ajedrez te hace más inteligente va más o menos así: el ajedrez requiere concentración e inteligencia, y como las matemáticas y las capacidades lectora y escritora requieren las mismas habilidades generales, entonces practicar el ajedrez también debe mejorar tu rendimiento académico.

Con esta idea en mente, el Instituto de Educación [del University College London] llevó a cabo una gran investigación para comprobar los efectos de la instrucción en ajedrez sobre las habilidades académicas de casi 4.000 niños británicos.

Club de ajedrez en un colegio. Imagen: Pexels

Los resultados publicados recientemente fueron decepcionantes – parece que el ajedrez no influye en los niveles de logros de los niños en matemáticas, capacidades lectora y escritora o ciencia.

Rápidamente, la comunidad ajedrecista cuestionó la fiabilidad de los resultados, sobre todo teniendo en cuenta que otros estudios ofrecen un panorama más optimista sobre los beneficios académicos de la instrucción en ajedrez.

Evaluando las evidencias

La comunidad ajedrecista probablemente tiene razón al criticar el estudio reciente, ya que sufre de varias deficiencias metodológicas que probablemente invalidan los resultados.

Antes de que se publicasen los resultados, llevamos a cabo una revisión de todos los estudios en el campo. Nuestros resultados muestran algunos efectos moderados de la instrucción en ajedrez sobre la capacidad cognitiva y el rendimiento académico – especialmente matemáticas.

¿Requiere inteligencia el ajedrez? Imagen: Shutterstock

Y, sin embargo, todavía tenemos que ser cautelosos en la interpretación de estos resultados como una indicación positiva del poder del ajedrez sobre las habilidades cognitivas o académicas. Esto se debe a que la mayoría de los estudios revisados compararon el efecto del ajedrez con grupos que no realizaron actividades alternativas.

Esto es un problema porque la investigación ha demostrado que la excitación y la diversión inducidas por actividades novedosas pueden causar un efecto temporal positivo en los resultados de las pruebas – un efecto placebo.

Llamativamente, cuando se le compara con una actividad alternativa – como los damas o los deportes – el ajedrez no muestra ningún efecto significativo en las habilidades de los niños. Por lo tanto, podría muy bien ser sólo que los efectos positivos observados de la instrucción en ajedrez sean meramente debido a efectos placebo.

Notas de ajedrez

Lo que todo esto demuestra es que es improbable que el ajedrez tenga un impacto significativo en la capacidad cognitiva general. Así que aunque puede sonar como una victoria rápida – que un juego de ajedrez puede mejorar una amplia gama de habilidades – desafortunadamente no es este el caso.

El fracaso de la generalización de una habilidad particular, de hecho, ocurre en muchas otras áreas más allá del ajedrez, como la formación musical, que se ha demostrado que no tiene ningún efecto sobre las habilidades cognitivas o académicas no musicales. Lo mismo se aplica al entrenamiento con videojuegos, al entrenamiento mental [brain training], y al entrenamiento de la memoria de trabajo, entre otros.

¿Inteligencia antigua o solo un buen juego?

El hecho de que las habilidades aprendidas por entrenamiento no se transfieran a diferentes dominios parece ser un universal en la cognición humana. En otras palabras, mejoras, en el mejor de los casos, en lo que entrenas – lo que puede sonar a sentido común de toda la vida.

Pero aunque esperar que el ajedrez mejore la capacidad cognitiva de los niños y el rendimiento académico en general es sólo una ilusión, esto no significa que no pueda agregar valor a la educación de un niño.

Claramente, jugar al ajedrez implica algún nivel de habilidad aritmética y geométrica, y el diseño de juegos matemáticos o ejercicios con material de ajedrez puede ser una forma sencilla y divertida de ayudar a los niños a aprender.

Sobre los autores:

Giovanni Sala está realizando su tesis doctoral en psicología cognitiva en la Universidad de Liverpool y Fernand Gobet es catedrático de toma de decisiones y conocimiento en esa misma universidad

Texto traducido y adaptado por César Tomé López a partir del original publicado por The Conversation el 9 de mayo de 2017 bajo una licencia Creative Commons (CC BY-ND 4.0)

The Conversation

El artículo ¿Jugar al ajedrez te hace más inteligente? Un vistazo a las pruebas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Crónica de la jornada “Las pruebas de la educación”
  2. Jugar a ser dios
  3. Por qué los colegios no deberían enseñar habilidades de pensamiento crítico generales
Catégories: Zientzia

Ciencia y política: el papel de la verdad

jeu, 2017/05/11 - 11:59

ciencia y política

La ciencia, se suele decir, no debe ser política; debe ser independiente, ajena a los tejemanejes del gobierno, tan sólo dedicada a su tarea principal de comprender el funcionamiento del Universo. El único punto de contacto debiera ser la financiación de un sistema público de ciencia, basada en la comprobable observación de que los países que ponen los medios para cultivar la ciencia terminan siendo más ricos y poderosos que aquellos que no lo hacen. Es decir, en razones puramente prácticas, complementadas en el mejor de los casos por un reconocimiento del valor cultural del avance científico. La política debería por tanto mantenerse alejada de la ciencia, limitándose a financiarla y a liberar un espacio de independencia en el que pueda medrar.

Lo malo es que garantizar la independencia de la ciencia es una decisión política, y la decisión de financiarla, con cuánto y cómo es una práctica política por excelencia. De ahí los actuales conflictos entre determinados gobiernos y determinados campos científicos: los políticos se han dado cuenta de que cuando la ciencia contradice sus ideologías y con sus datos se niega a reforzar sus argumentos tienen un modo de contraatacar: presionar política y económicamente hasta amenazar los sistemas científicos en su esencia.

Los científicos, por supuesto, son de cualquier color político: los hay radicales y conservadores, de izquierdas y de derechas, partidarios de Keynes y de Friedman. Cada uno de ellos tiene su opinión sobre el papel de la religión en la vida pública, sobre la mejor forma de regular el mercado eléctrico o de mejorar la vida de las clases menos privilegiadas. Aunque pueda haber tendencias generales derivadas de su educación, carrera profesional y ocupación no hay una única orientación política entre quienes trabajan en ciencia. Y sin embargo sí que tienen algo abrumadora, aplastantemente en común en lo que se refiere a las relaciones entre ciencia y política: son partidarios de los hechos y los datos sobre las emociones y las movilizaciones a la hora de tomar decisiones, también cuando se trata de cómo gobernar un grupo humano.

Está claro que la política no es un simple asunto de toma de decisiones racional y basada en datos: cuando se trata de guiar a un grupo humano grande y complejo hay otros factores a tener en cuenta. Los datos tienen siempre un cierto grado de incertidumbre, pero esa no es la principal diferencia: la cuestión es que en política los sentimientos y las pasiones son también determinantes. La política no es el reino de la razón y la desapasionada toma de decisiones; antes al contrario, es un campo en el que rutinariamente se azuzan las más bajas pasiones y se utilizan simpatías y antipatías, querencias y rechazos para aglutinar voluntades y apoyos y generar capacidad de acción.

Por eso sucede que política y ciencia a veces colisionan, cuando la gestión de pasiones de la política se encuentra con hechos que le resultan inconvenientes y carga contra ellos. En esos casos se producen enfrentamientos entre lo que la política quiere y lo que la ciencia sabe. Y las consecuencias pueden ser devastadoras. Lo estamos viendo actualmente en cuestiones como los organismos genéticamente modificados, la resistencia a las vacunas, la negación del cambio climático de origen antropogénico o el supuesto riesgo de las ondas electromagnéticas como el Wifi.

Cuando la política se enfrenta a la ciencia no sólo niega los hechos, sino que emplea contra quienes los han creado las mismas tácticas que se usan en la contienda ideológica: acusar al contrario de malas intenciones, asumir que usa las mismas formas de propaganda, descalificar y buscar trapos sucios, manchar por asociación con ‘malos’ reconocidos, deslegitimar sus móviles, etc. Es una contienda que los científicos tienen muy mal para ganar, o siquiera empatar, ya que no hay nada en su formación o en sus carreras profesionales que les prepare para ello. En una batalla política con políticos la ciencia lleva todas las de perder, puesto que carece del armamento necesario.

Pero las peores consecuencias no las sufre la ciencia, sino la sociedad en su conjunto. Por supuesto que la ciencia pública recibe los golpes en forma de descalificaciones, recortes presupuestarios, deterioro de las carreras profesionales e incluso destrucción de datos acumulados, como ha ocurrido en el caso del calentamiento global. El avance de la ciencia se resiente, hay menos futuros científicos y el prestigio social de la actividad decae. El impacto es muy real y muy doloroso para una comunidad que no está acostumbrada a defenderse, mucho menos en términos de política.

Aun así, la principal pérdida la sufrimos todos cuando se ataca el papel de los hechos a la hora de tomar decisiones políticas, porque eso lleva a las sociedades a cometer errores terribles. Es cierto que la política no es, ni debe ser, exclusivamente una cuestión de datos y toma racional de decisiones. Creerlo así es ingenuo, ya que los humanos tenemos emociones y cuando nos juntamos en grandes grupos tenemos el derecho, si queremos, de saltarnos la realidad en la búsqueda de una realidad diferente (y mejor). La política puede, y debe, aspirar a cambiar el mundo, y para ello a veces es imperativo que desprecie o aspire a superar los hechos de hoy. No se puede cambiar la realidad sin prescindir, hasta cierto punto, de la realidad tal como es hoy.

Lo cual no quiere decir que prescindir por completo de los hechos y los datos sea una buena idea: al contrario, es un error fatal. La política puede y debe superar los datos pero a partir de ellos, no prescindiendo de ellos. La realidad se puede cambiar, pero desde el conocimiento de cuál es la realidad actual. Cuando los políticos atacan el papel de la ciencia e incluso de los datos para avanzar sus posiciones ideológicas están contribuyendo a destruir la mejor herramienta que tienen las sociedades para conocer la realidad; que luego pueden decidir (si así lo quieren) cambiar.

Los datos, los hechos y la razón no tienen por qué ser los únicos participantes en la toma de decisiones políticas, pero si se prescinde de ellos estas decisiones estarán equivocadas con seguridad. La política es el arte de usar un mapa, la ideología, para llegar a un destino mejor. Pero para orientarte lo primero que necesitas es saber dónde estás, porque de lo contrario jamás podrás trazar un rumbo. Ése es el papel de la ciencia y de los datos: darle a la sociedad la mejor estimación de dónde está, para que luego la política decida a dónde quiere ir. Si por conveniencia política de corto plazo atacamos y desprestigiamos a quien nos informa de dónde estamos nunca podremos saber qué dirección debemos tomar. El papel de la verdad, de los datos y de la razón es proporcionar ese punto de partida.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

El artículo Ciencia y política: el papel de la verdad se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia, ideología y práctica política
  2. Ciencia y tecnología
  3. La verdad no es ciencia
Catégories: Zientzia

Un equipo de alta fidelidad de ciencia ficción

mer, 2017/05/10 - 17:00

Ecualizador gráfico

Cuando se habla de nanomateriales siempre o casi siempre hablamos de posibilidades futuras. De propiedades y características que, quizás algún día, puedan ser tan útiles que revolucionen una parte de nuestro mundo. Pero es cierto que pocas veces podemos presenciar el nacimiento de toda una nueva forma de hacer las cosas. Hoy es diferente.

Hace un par de décadas un altavoz de alta fidelidad era fácil que tuviese una altura y anchuras variables, pero lo que era seguro, y lo sigue siendo, es que tuviese una profundidad respetable. Ello es debido a que necesitan una caja acústica, igual que una guitarra. El uso de nanopartículas magnéticas y de nanotubos de carbono en altavoces ha sido históricamente para el lucimiento de los materiales, no porque nadie tuviese intención de usar esos altavoces. Eso cambió drásticamente el año pasado cuando se presentó en Korea [1] un altavoz completamente plano (no necesita caja acústica) basado en grafeno para producir un sonido de calidad.

Dos investigadores de la Universidad de Exeter (Reino Unido) le han dado una vuelta de tuerca a la idea [2]: ahora el grafeno produce el sonido termoacústicamente. En vez de depender de las vibraciones de un material dentro de una caja acústica, la termoacústica hace uso de la idea centenaria de que el rápido calentamiento y enfriamiento de un material puede producir sonido. Y esto, que podría no parecer muy diferente de lo que hicieron los koreanos sí lo es: además de altavoz, el nuevo dispositivo funciona como amplificador y ecualizador gráfico, todo ello en una pastilla plana del tamaño de un pulgar.

Composición en la que se aprecia el tamaño del nuevo dispositivo.

Los investigadores pudieron comprobar que cuando el grafeno se calienta y enfría rápidamente por medio de una corriente eléctrica alterna, transfiere esas vibraciones al aire circundante. El aire se expande y contrae, generando ondas de sonido. La clave para controlar las capacidades multitarea del dispositivo está en controlar la corriente eléctrica que llega al grafeno. Este control permite no solo cambiar el volumen, también especificar cómo se amplifica cada frecuencia.

Siendo tan pequeño lo normal es que se piense en su aplicación en teléfonos móviles. Pero ese uso es el trivial y no explota las verdaderas posibilidades de la idea. Como el grafeno es casi completamente transparente, los investigadores creen que esta tecnología podría usarse para generar imágenes además de sonidos. Una de las aplicaciones de confirmarse esa posibilidad sería médica: imágenes por ultrasonido en dispositivos portátiles y muy compactos. Tan compactos que nada impediría que se empleasen como monitores inteligentes en tiempo real que tendrían forma de vendas que llevaría el paciente, dada la flexibilidad del grafeno.

Pero hasta que estas aplicaciones de película se hagan realidad hay una aplicación muchísimo más inmediata en la industria de las telecomunicaciones. Ésta hace un uso intensivo de la mezcla de frecuencias empleando métodos bastante complejos, lo que es sinónimo de caro; el nuevo dispositivo lo hace de una forma simple y controlable, y muchísimo más barata.

Referencias:

[1] Choong Sun Kim et al (2016) Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b03618

[2] M. S. Heath & D. W. Horsell (2017) Multi-frequency sound production and mixing in graphene Scientific Reports doi: 10.1038/s41598-017-01467-z

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo Un equipo de alta fidelidad de ciencia ficción se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia para todos a través del cine y la literatura de ciencia ficción
  2. La robustez de la red oscura
  3. #NaukasKids14 Física y ciencia ficción
Catégories: Zientzia

El teorema de los cuatro colores (2): el error de Kempe y la clave de la prueba

mer, 2017/05/10 - 11:59

Antes de continuar con la historia iniciada en [1], es conveniente destacar que el teorema de los cuatro colores sobre mapas planos equivale al mismo enunciado sobre mapas esféricos: se demuestra fácilmente usando la proyección estereográfica.

La propiedad clave en la demostración del teorema de los cuatro colores es el teorema de poliedros de Euler que afirma que:

c – a + v = 2,

donde c es el número de caras, ael de aristas y v el de vértices del poliedro estudiado.

Este teorema puede trasladarse a mapas planos. En efecto, dado un poliedro arbitrario, se infla sobre una esfera, se proyecta estereográficamente, y se obtiene su proyección sobre el plano (figura 1).

Figura 1: Pasando de poliedros a mapas planos.

Así, puede hablarse del teorema de Euler para mapas:

r – l + p = 2,

donde r es el número de regiones del mapa, l el de líneas frontera y p el de puntos de encuentro entre dos líneas frontera. En esta fórmula, la región exterior del mapa debe contarse: es la que corresponde a la cara más cercana al polo norte antes de realizar la proyección estereográfica.

Ya podemos continuar con nuestra historia. El abogado Alfred Kempe (1849-1922) se interesó por el problema de los cuatro colores tras la pregunta de Arthur Cayley en la London Mathematical Society en 1878 (ver [1]).

Figura 2: Alfred Kempe.

En 1879, Kempe publicó una solución al problema en la revista Nature. Al año siguiente publicó una versión simplificada en los Proceedings of the London Mathematical Society, corrigiendo algunas erratas de su prueba original.

Kempe utilizó la fórmula de Euler para mapas cúbicos (ver [1]) para probar que: Todo mapa tiene al menos una región con como mucho cinco regiones vecinas, es decir, cada mapa contiene al menos un digon, un triángulo, un cuadrado o un pentágono.

Figura 3: Digon, triángulo, cuadrado y pentágono.

La demostración de Kempe es ahora fácil de entender: si X es una región de un mapa cúbico M, denotamos por v(X) el número de las comarcas que le son colindantes. La prueba se hace por inducción sobre el número de regiones del mapa. ComoMes un mapa cúbico, sabemos que existe una región X con v(X) menor o igual que5. Si suponemos que el mapa M-{X} es 4-coloreable, se trata de ver que entonces M también lo es. Hay tres casos posibles:

CASO 1. Si v(X)= 1, 2 ó 3, disponemos de al menos un color para colorear X con él.

CASO 2. Supongamos que v(X)=4. Antes de continuar, debemos introducir dos nuevos términos. Si Z e Y son dos regiones, por ejemplo, Y de color rojo y Z de color verde en un mapa 4-coloreado, se llama cadena de Kemperojo-verde de Y a Z a un camino que va de Y a Z, alternando los colores rojo y verde. Una componente rojo-verde de Y es el conjunto de todas las regiones Z del mapa, tales que existe una cadena de Kempe rojo-verde de Y a Z.

Figura 4: Cadena y componente de Kempe.

En una componente rojo-verde cualquiera de un mapa 4-coloreado se pueden invertir los colores rojo y verde para obtener un nuevo 4-coloreado, respetando las condiciones del problema de los cuatro colores (ver figura 5).

Figura 5: Cartas original y obtenida invirtiendo la componente rojo-verde.

Como v(X)=4, un entorno de X es de la forma indicada en la figura 6:

Figura 6.

Distinguimos dos posibilidades:

a) X3 no está en la componente rojo-azul de X1. Entonces se invierten el rojo y el azul en esta componente y se libera un color (en la figura 7, el rojo) para X.

Figura 7.

b) X3 está en la componente rojo-azul de X1. Entonces X2no está en la componente amarillo-verde de X4, y se hace un cambio en la componente de X4, rescatando un color (en la figura 8, el amarillo) para X.

Figura 8.

CASO 3. Finalmente, supongamos que v(X)=5; un entorno de X es de la forma indicada en la figura 9:

Figura 9: Entorno de X.

Se distinguen, de nuevo, dos posibilidades:

a) X2 no pertenece a la componente amarilla-verde de X5 o X2 no pertenece a la componente azul-verde de X4. En el primer caso (el otro se hace análogamente) se invierten el amarillo y el verde en esta componente y queda libre un color (en la figura 10, el amarillo) para X.

Figura 10.

b) X2 pertenece a la componente amarilla-verde de X5 y X2 pertenece a la componente azul-verde de X4. Entonces, se invierten las componentes roja-azul de X1 y roja-amarilla de X3, para liberar el rojo para X.

Figura 11.

Así concluye la demostración de Kempe, prueba aceptada por la comunidad matemática, hasta 1890. En ese año, Percy John Heawood (1861-1955) publicó el artículo Map Colour Theorem en el Journal of Pure and Applied Maths: había encontrado –muy a su pesar– un mapa en el que la prueba de Kempe no funcionaba (ver figura 12).

Figura 12.

En efecto, en la prueba dada por Kempe (caso v(X)=5, b) de la discusión anterior), las componentes amarilla-verde (y-g) de X5 y azul-verde (b-g) de X4 pueden cruzarse. Y entonces, las componentes rojo-azul (r-b) de X1 y rojo-amarillo (r-y) de X3 no pueden invertirse simultáneamente…

Kempe admitió su error en los Proceedings of the London Mathematical Society, y el 9 de abril de 1891, en un encuentro de la citada sociedad afirmó: “My proof consisted of a method by which any map can be coloured with four colours. Mr. Heawood gives a case in which the method fails, and thus shows the proof to be erroneous. I have not succeded in remedying the defect, though it can be shown that the map which Mr. Heawood gives can be coloured with four colours, and thus his criticism applied to my proof only and not to the theorem itself”.

A pesar de este error, Heawood usó el argumento de las cadenas de Kempe para probar el teorema de los 5 colores. Demostró también el llamado problema de coloreado de mapas de Heawood que acota superiormente el número de colores necesarios para colorear un mapa dibujado sobre una superficie sin borde, exceptuando el caso de la esfera (ver [3]).

En 1968, Gerhard Ringel y Ted Youngs (ver [3]) probaron que el problema de coloreado de mapas de Heawood daba el número exacto de colores para toda superficie, excepto la botella de Klein. En 1986, Thomas L. Saaty (ver [4]) demostró que para colorear un mapa sobre la botella de Klein se necesitan como mucho 6 colores.

¡Sólo quedaba por resolver el caso de mapas esféricos (equivalentemente, el de mapas planos)!

Conoceremos la solución en El teorema de los cuatro colores (3): Tras más de un siglo de aventura… ¿un ordenador resuelve el problema?

Referencias

[1]Marta Macho Stadler, El teorema de los cuatro colores (1): una historia que comienza en 1852, Cuaderno de Cultura Científica, 26 abril 2017

[2] Marta Macho Stadler, Mapas, colores y números, Descubrir las matemáticas hoy: Sociedad, Ciencia, Tecnología y Matemáticas 2006 (2008) 41-68

[3] Robin Wilson, Four colors suffice: how the map problem was solved, Princeton University Press, 2002.

[4] J.L. Saaty, P.C. Kainen, The four colour problem: assaults and conquest, Dover, 1986.

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo El teorema de los cuatro colores (2): el error de Kempe y la clave de la prueba se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El teorema de los cuatro colores (1): una historia que comienza en 1852
  2. La bombilla de colores (y el método científico)
  3. La pantalla de tu móvil solo tiene tres colores
Catégories: Zientzia

El tamaño relativo de los órganos animales

mar, 2017/05/09 - 17:00

Los animales grandes no son como los pequeños. No es solo que difieran en tamaño, su anatomía es diferente y también lo es su fisiología; no funcionan igual. Eso es así tanto si consideramos las distintas dimensiones que pueden tener los ejemplares de una misma especie como si lo que nos ocupa son animales pertenecientes a especies de tamaños dispares. Aunque pueda parecerlo, esto no es una obviedad. No se trata de que un animal de mayor tamaño tenga órganos más grandes, coma más, disipe más calor o corra más rápido. De hecho, todo eso es así en términos generales. Pero cuando se dice que unos y otros son diferentes y que funcionan de forma diferente no se hace alusión a nociones tan triviales.

El fenómeno que nos interesa es otro, porque lo interesante es que si comparamos animales de distintas dimensiones podemos comprobar que el tamaño relativo de sus órganos no es el mismo. El tegumento, por ejemplo, representa una fracción menor de la masa corporal en los animales grandes que en los pequeños. Y un bebé disipa, por unidad de masa, mucho más calor que su madre; y también come mucho más por unidad de masa. Hoy nos ocuparemos de los órganos y sistemas, ciñéndonos a aves y mamíferos en nuestro análisis, porque para el resto de animales la información es demasiado escasa. Además, aves y mamíferos son grupos próximos y comparten muchos rasgos fisiológicos importantes.

La proporción que representan la mayor parte de órganos con relación a la masa total del animal disminuye al aumentar aquella. La más importante de las secciones corporales en la que se observa ese fenómeno es el tegumento. Tanto en aves como en mamíferos de muy pequeño tamaño (50 g) representa alrededor de un 17 o 18% de la masa corporal, pero desciende a un 12% en individuos de 5 kg, y a un 8% en mamíferos de 500 kg. Hay una lógica geométrica en esa disminución, ya que la masa del tegumento es proporcional a su grosor (que depende de forma lineal de la masa total) y a la superficie corporal (que depende de la masa según una función potencial en la que el valor de la potencia es de 2/31).

El tubo digestivo, por su parte, representa alrededor de un 10% en aves y mamíferos de pequeño tamaño (50 g o menos), pero esa proporción es menor en animales más grandes, sobre todo en mamíferos (en aves apenas varía), de manera que el de un individuo de 500 kg tendría un 5% de la masa del animal. Con el hígado pasa algo similar; pasa de representar casi un 5% en un ave o mamífero de 50 g, y llega a no ser más de un 1,5% en uno de 500 kg.

Y para completar el repaso de los órganos cuya importancia relativa disminuye en animales grandes, nos quedan el encéfalo y los riñones. El encéfalo representa un 2,3% y un 2,5% en mamíferos y aves, respectivamente, de muy pequeño tamaño; un 0,8% y 0,9% en los de 5 kg; y un 0,24% en los grandes mamíferos. Los riñones también disminuyen de forma notable su proporción en animales grandes: 1,3% (mamíferos) y 1,5% (aves) en individuos pequeños (50 g); 0.5% (mamíferos) y 0,8% (aves) en animales de 5 kg, y 0,2% en mamíferos de 500 kg.

La proporción que representa el corazón, la sangre y los pulmones apenas cambia con el tamaño; y tampoco lo hace la musculatura de los mamíferos. El corazón viene a ser un 0,6% de la masa de un mamífero y un 0,9% de la de un ave. También tienen menos sangre los primeros (7%) que las segundas (9%). Y en los pulmones se observa una diferencia relativa similar, aunque estos representan fracciones menores en ambos grupos: algo más del 1% en mamíferos y alrededor de un 1,3% en aves. La capacidad pulmonar de las aves es, en cierta consonancia con lo anterior, un 12% mayor que en mamíferos. Seguramente, esas diferencias en el tamaño del corazón, la cantidad de sangre y la capacidad pulmonar tienen que ver con las altas demandas metabólicas que impone el vuelo y, por ello, con la necesidad de las aves de disponer de más oxígeno y combustible para poder volar. El vuelo proporciona ventajas pero sale caro.

Como se ha señalado, la musculatura de los mamíferos representa una fracción de la masa total muy similar en animales de distinto tamaño: un 45% aproximadamente. Conviene aclarar, no obstante, que hay grandes diferencias entre diferentes especies aunque no estén relacionadas con sus tamaño. Los que tienen más musculatura son felinos: leones y linces; en ellos, entre un 56% y un 59% de su masa corporal corresponde a la musculatura esquelética. Se trata de porcentajes impresionantes, pero no llegan a ser los más musculosos del reino animal; sin salir del grupo de los cordados los hay con más masa muscular, como los peces escómbridos (en Katsuwonus pelamis representa un 68%) que, no en balde, son reputados viajeros marinos.

En las aves, sin embargo, la importancia relativa de la musculatura sí aumenta con el tamaño; en las más pequeñas representa un 38% de la masa total, mientras que en las grandes llega a ser de un 55%. Esa diferencia quizás tenga que ver con los requerimientos biomecánicos del vuelo, si la fuerza necesaria para volar crece desproporcionadamente al aumentar la masa.

El esqueleto es el elemento corporal cuya masa aumenta en mayor proporción que la del conjunto del cuerpo tanto en aves como en mamíferos. Representa alrededor de un 5% en los de pequeño tamaño; se eleva a un 7% en los de 5 kg, y los mamíferos de 500 kg tienen esqueletos de unos 50 kg de masa, o sea, un 10% del total. El aumento de la proporción que representa el esqueleto en animales de mayor tamaño obedece, seguramente, a que los huesos son las estructuras de sostén, que su resistencia es proporcional a la sección superficial y que esa sección aumenta con el cuadrado del radio (y, en definitiva, la longitud) del hueso. Por eso, los animales grandes tienden a tener huesos de mayor grosor relativo que los pequeños; por eso una gacela de Thompson tiene un aspecto mucho más grácil que un elefante, y también por eso Godzilla o King Kong son monstruos de imposible anatomía. Y que los huesos sean mucho más gruesos implica también que son mucho más pesados.

Si se sumasen los porcentajes que hemos ido deslizando a lo largo del texto, no se llegaría a completar el 100%. Faltan órganos: faltan las mamas, las gónadas, el tejido conjuntivo, los ojos y unas cuantas estructuras de menor tamaño. Sin embargo, ninguna de esas estructuras es de mayor dimensiones relativas en los animales grandes. Sigue faltando un componente, uno que, además, es mucho más importante cuanto mayor es el animal. Y ese componente es el de los depósitos de grasa.

Las reservas de energía tienen mucha más importancia en los animales de tamaño grande que en los de tamaño pequeño. Un mamífero o un ave de 50 g de masa destina alrededor de un 4% a sus reservas energéticas; en los de tamaño medio (5 kg) ese porcentaje es de un 10%, y alcanza el 25%, aproximadamente, en los grandes mamíferos.

El aumento de los depósitos de grasa con el tamaño de los ejemplares de una misma especie es algo lógico, ya que esas reservas suelen destinarse a alimentar la reproducción, y suele ocurrir que los pequeños son los más jóvenes y esos no se reproducen. Pero si la comparación se hace entre individuos de diferentes especies de dimensiones dispares, también en esa comparación se observan diferencias en función del tamaño. Las especies cuyos ejemplares llegan a ser grandes o muy grandes suelen ser conservadoras desde el punto de vista reproductivo, dedican a la progenie importantes volúmenes de recursos, y almacenan energía para hacer frente a épocas de escasez. Por todas esas razones es normal que cuanto mayor es el tamaño de un animal mayor sea su volumen de reservas de energía. Y por esa razón no deben interpretarse en términos funcionales todos los casos en que se observa una disminución de la proporción que representa un órgano o sistema al aumentar el tamaño.

Unos riñones más pequeños, un bazo menor, un tubo digestivo o un hígado de menores dimensiones relativas no significa necesariamente que en los animales de mayor tamaño esos órganos tengan menor importancia o trabajen menos; lo que ocurre es que como nos estamos refiriendo a proporciones, sus menores contribuciones relativas a la masa total obedecen a la mayor presencia relativa de depósitos de grasa en animales de gran tamaño. No olvidemos, tampoco, que una vez se alcanza un cierto tamaño, en aves y mamíferos casi todo el excedente energético que se genera se destina a la reproducción o a almacenar reservas.

Tras este repaso podemos concluir que el tamaño es una variable biológica fundamental o, dicho de forma más simple y directa: en biología animal el tamaño sí importa.

Nota:

1 Porque la masa es proporcional al volumen y este lo es al cubo de la dimensión lineal, mientras que la superficie es proporcional al cuadrado de la dimensión lineal. Así, cuando aumenta el tamaño de un cuerpo, su superficie aumenta con la masa (o el volumen) de acuerdo con una función cuya potencia es 2/3.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El tamaño relativo de los órganos animales se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Evolución del tamaño animal
  2. A mayor tamaño, mayor complejidad
  3. Los animales
Catégories: Zientzia

Pages