El origen incierto de las islas evanescentes de Titán
Titán es un mundo apasionante. Junto con la Tierra, es el único lugar de nuestro Sistema Solar donde existe un ciclo hidrológico, aunque radicalmente distinto al nuestro: Mientras que en nuestro planeta este ciclo funciona con el agua y sus cambios de estado, las frías temperaturas de Titán -hablamos de unos 180 grados centígrados bajo cero de media- hacen que este ciclo esté basado en el metano y el etano, que a esas temperaturas se comporta de una manera similar al agua en nuestro planeta.
En este exótico o extraño -para nuestros ojos, claro- ciclo, las nubes de metano y etano se forman sobre una atmósfera compuesta principalmente por nitrógeno y desde ella precipitan las gotas de lluvia capaces de llenar lagos y mares y de excavar unas redes de drenaje que nos recuerdan tanto a nuestros valles, ríos y ramblas.
Titán, visto desde la sonda Cassini. En luz visible, no podemos ver nada de su superficie, solo su atmósfera. Cortesía de NASA/JPL-Caltech/Space Science Institute.Este ciclo hidrológico -entiéndase en todo este artículo el uso del término hidrológico lato sensu – es susceptible de comparaciones con el nuestro, puesto que, a pesar de ser mundos radicalmente diferentes, es capaz de modelar el paisaje de una manera similar, lo que nos da una perspectiva sobre la gran diversidad de procesos que se dan en los distintos cuerpos del Sistema Solar y como son capaces de crear paisajes similares. Eso no quita que no se puedan dar procesos diferentes a los que hay en la Tierra, aunque, por muy marciano que nos parezca un paisaje, en ocasiones tenemos más cosas en común que diferencias.
La llegada de la sonda Cassini al sistema de Saturno fue una verdadera revolución en nuestro conocimiento sobre este satélite, ya que la distancia a nuestro planeta y una superficie perpetuamente cubierta de una neblina de compuestos orgánicos, hacía tarea imposible que pudiésemos saber que pasaba en su superficie, algo que tuvo solución gracias a los datos de radar, pero también a las imágenes tomadas en determinadas “ventanas” ópticas -entiéndase por ventanas en el sentido de longitudes de onda- que también nos aportaban algunos detalles de una superficie hasta entonces inédita para el ser humano.
Las islas que aparecen y desaparecen en Ligeia Mare, vistas con el radar de la misión Cassini. Cortesía de NASA/JPL-Caltech/Space Science Institute.En el año 2014 un equipo de científicos publicó el descubrimiento una nueva isla en Ligeia Mare, el segundo mar más extenso de Titán y que se encuentra en la región polar del hemisferio norte. Era la primera vez que observábamos un fenómeno dinámico en las masas de líquido del satélite… pero, ¿por qué no estaba esta isla antes? ¿Qué había provocado su aparición?
Las primeras teorías apuntaron a que fuesen el resultado de las olas que provocaron un “reflejo” de las ondas de radar que tendría ese aspecto, a la presencia de burbujas de gas ascendiendo desde el fondo del mar, trozos de compuestos orgánicos sólidos que al calentarse el líquido dejasen flotarlos… e incluso islas de verdad, pero los científicos no tenían ninguna preferencia muy marcada…. Al fin y al cabo, era la primera vez que veíamos algo así.
Un nuevo estudio publicado en Geophysical Research Letters afirma que la aparición de estas islas en realidad tiene mucho que ver con la relación entre la composición de la atmósfera y las reacciones químicas que allí se dan, los lagos y los materiales sólidos que se depositan en la superficie procedentes también de la atmósfera.
Ligeia Mare, la segunda masa de líquido más grande de Titán. Obsérvense las numerosas redes de drenaje que desembocan en el mar. Cortesía de NASA/JPL-Caltech/Space Science Institute.Estos sólidos compuestos de compuestos orgánicos se acumulan cerca de la línea de costa, con el paso del tiempo pueden formar una capa que, al romperse, podría acabar flotando sobre el mar, de una manera muy similar a como ocurre la ruptura de los glaciares terrestres que da lugar a los icebergs u otros trozos de hielo flotante.
Estas masas flotantes estarían durante un tiempo sobre el mar, ya que poco a poco se irían saturando sus poros y poco a poco hundiéndose, como ocurre con la pumita -esa roca de origen volcánico- en la Tierra, que al principio flota y a veces incluso la vemos en los océanos formando grandes “balsas” de roca, pero conforme esos poros se llenan de agua, lentamente se van hundiendo en el agua.
De algún modo estamos hablando de glaciares, pero, en este caso, de compuestos orgánicos que, además, según este estudio, no se disolverían en las masas de metano y etano como tampoco sería muy raro que ocurriese si estas partículas tuviesen una determinada composición.
Algunos de los mares y lagos de la región polar norte de Titán. Si contamos los más pequeños, hay decenas de estos cuerpos de líquido. Cortesía de NASA/JPL-Caltech/Space Science Institute.Pero este estudio también se centra en un detalle muy importante y que hasta ahora no ha tenido tampoco una explicación clara… ¿Por qué los mares de Titán tienen una superficie tan suave, sin un oleaje visible? Los autores sugieren que podría ser fruto de una capa de compuestos orgánicos sólidos congelados que cubre la superficie de estos, una capa muy fina, dándole esa apariencia poco revuelta.
Si todo va bien, es posible que podamos saber si este estudio está en lo cierto con la llegada de la misión Dragonfly a Titán en el año 2034 y que, si todo va bien, despegará de nuestro planeta en julio de 2028. Esta misión tendrá una duración estimada de unos dos años y no solo nos mostrará la superficie desde el nivel del suelo, sino que será un dron capaz de surcar los cielos de este satélite tan interesante.
Referencias:
Hofgartner, J. D., Hayes, A. G., Lunine, J. I., Zebker, H. A., Stiles, B., Sotin, C., Barnes, J. W., Turtle, E. P., Baines, K. H., Brown, R. H., Buratti, B. J., Clark, R. N., Encrenaz, P., Kirk, R., Gall, A. L., Lopes-Gautier, R., Lorenz, R. D., Malaska, M. J., Mitchell, K. L., . . . Wood, C. A. (2014). Transient features in a Titan sea Nature Geoscience doi: 10.1038/ngeo2190
Yu, X., Yu, Y., Garver, J., Zhang, X., & McGuiggan, P. (2024). The fate of simple organics on Titan’s Surface: A theoretical perspective Geophysical Research Letters doi: 10.1029/2023gl106156
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.
El artículo El origen incierto de las islas evanescentes de Titán se ha escrito en Cuaderno de Cultura Científica.
Einstein, Tesla, Eratóstenes y sus triángulos
Los triángulos son los polígonos más simples, pero los más especiales. Aprendemos en la escuela a temprana edad sus mágicas propiedades, como por ejemplo que sus ángulos siempre suman 180 grados o el famoso teorema de Pitágoras, que se cumple si uno de los tres ángulos es recto. Estas sencillas peculiaridades pueden aplicarse al mundo real y ayudarnos a comprender mejor cómo funcionan las cosas.
Foto: Tusik Only / UnsplashRelatividad especialLa conocida teoría de la relatividad especial de Albert Einstein relaciona el tiempo y el espacio, y da lugar a llamativas consecuencias físicas. Entre ellas, las más mencionadas son la dilatación del tiempo, la contracción de la longitud o el aumento de la energía que podemos medir, si un objeto se desplaza a cierta velocidad con respecto a nosotros. Todo esto parece muy complicado, pero puede expresarse mediante un simple triángulo rectángulo.
La velocidad por el tiempo es igual a la distancia. Si tenemos un láser y un detector colocados a cierta distancia como vemos en la Figura 1, podemos detectar el instante t en el que llega la luz al extremo superior. Como la velocidad de la luz es c, la distancia recorrida es c por t.
Figura 1: Láser y detector: al llegar la luz al detector nos marca el instante t y podemos calcular la distancia recorrida por el haz (c por t).
Si, como aparece en la Figura 1, montamos el láser en una plataforma que se mueve a velocidad v, pero en dirección perpendicular a como apuntamos el láser, podemos repetir el experimento, pero esta vez observándolo desde fuera de la plataforma. Como se muestra en la Figura 2, desde fuera veremos un recorrido diagonal del láser, debido a la composición del movimiento vertical y horizontal que percibimos desde el exterior. Como la velocidad de la luz es siempre c, la distancia diagonal recorrida por el láser que vemos desde fuera es c por t’. Finalmente, el tercer lado del triángulo de la Figura 2 es el recorrido horizontal de la plataforma (v por t’).
Figura 2: Distancias recorridas por el láser y la plataforma, observadas desde fuera, completando un triángulo rectángulo
Tenemos un triángulo rectángulo, así que podemos aplicar el teorema de Pitágoras: la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa. Con este simple cálculo extraemos de este triángulo las transformaciones de Lorenz, que son las fórmulas que nos cuantifican cuánto se dilata el tiempo o se contrae la longitud, si un objeto se mueve a una velocidad v respecto a nosotros. Este factor se llama factor de Lorenz γ. Si llamamos β a la razón entre una velocidad v y la máxima velocidad posible (la velocidad de la luz en el vacío c) podemos construir otro triángulo rectángulo como mostramos en la Figura 3:
Figura 3: Cómo calcular el factor de Lorenz: bajas velocidades (izquierda) y altas velocidades (derecha)
Aplicando de nuevo el teorema de Pitágoras podemos fácilmente calcular cuánto se modifican las medidas del tiempo y la longitud cuando los objetos se mueven a mayor o menor velocidad. Vemos por ejemplo que si β es pequeña (bajas velocidades, a la izquierda de la Figura 3), 1/γ es ligeramente menor que 1 y. por tanto, γ es ligeramente superior a 1, con lo cual las medidas del tiempo y longitud apenas se modifican. Para velocidades altas (a la derecha de la Figura 3), 1/γ es muy pequeño, con lo que el factor de Lorenz γ es muy grande, y se produce un gran efecto.
Una de las consecuencias más llamativas de la relatividad especial es la relación energía-momento, que se utiliza en todas partes, desde la mecánica cuántica hasta la relatividad general. Una vez más el teorema de Pitágoras nos permite cuantificar la energía de un objeto de cierta masa y de cierta cantidad de movimiento (momento o ímpetu p). Este triángulo mostrado en la Figura 4 nos permite calcular la energía de cualquier objeto móvil, incluso aquellas partículas sin masa, como los fotones, que viajan a la velocidad de la luz, cuyo cateto derecho de la Figura 4 es nulo, o un objeto inmóvil, cuyo cateto inferior en la Figura 4 sería nulo, pero su energía sería igual a la famosa equivalencia de masa y energía de Einstein E=mc2.
Figura 4: Cómo calcular la energía de un objeto de cierta masa m y cierto momento p.Energía eléctrica
La mayoría de los generadores de electricidad son máquinas rotatorias, como un aerogenerador (“molino” de viento), un salto de agua de un embalse, que mueve las turbinas de una central hidroeléctrica, o el vapor de agua que se produce en una central nuclear o en una térmica, que también actúa sobre sus turbinas de vapor, que giran y generan electricidad.
Al ser máquinas rotatorias, la electricidad que se produce es de corriente alterna. Las señales alternas se expresan de forma compacta en matemáticas con números complejos, lo cual a veces parece algo muy complicado de entender, pero de nuevo aparecen los sencillos triángulos para representar gráficamente la tensión (voltios), la corriente (amperios) y la impedancia (ohmios) de cualquier circuito eléctrico.
La potencia eléctrica que nos da un suministrador es el producto de la tensión por la corriente eléctrica que circula cuando enchufamos un aparato. Resulta que si medimos los voltios y los amperios alternos que circulan, puede ser que estas oscilaciones no se produzcan a la vez, sino que la corriente esté ligeramente desfasada con respecto a la tensión. Este desfase se representa en la Figura 5 mediante el ángulo φ del triángulo mostrado. Este triángulo nos indica que si el desfase φ es grande, no aprovechamos bien la electricidad generada y transportada. En trigonometría el coseno de un ángulo pequeño es cercano a 1, y el cosφ es el conocido factor de potencia eléctrica, que cuanto más cerca esté de 1, más eficiente resulta el circuito.
Figura 5: Potencia eléctrica Activa (P: que hace trabajo), Aparente (S: que debe generarse y transportarse) y Reactiva (Q: que no se aprovecha). Si conseguimos que la corriente y la tensión oscilen en fase (φ=0), aprovechamos eficientemente la energía eléctricaEl desfase φ se produce típicamente por la gran cantidad de cableados y bobinados que son necesarios para generar, transformar y transportar la energía eléctrica. Para mejorar la eficiencia podemos contrarrestar el desfase en este caso mediante un conjunto de condensadores eléctricos para regular φ hacia valores mínimos y mejorar el factor de potencia.
Medida del radio de la tierraEratóstenes de Cirene (276-194 a.e.c.) fue uno de los sabios de la antigüedad que más conocimiento pudo adquirir y aplicar, al hacerse cargo de la Biblioteca de Alejandría durante más de 40 años. Entre sus muchas contribuciones a la ciencia, la maravillosa criba de Eratóstenes, sencillo algoritmo para obtener números primos y la medida del radio de la Tierra con instrumental rudimentario son, en mi opinión, sus más alucinantes aportaciones, por la importancia de sus resultados aplicados, la simplicidad de su realización y la potencia de su razonamiento.
No sabemos con todo detalle cómo midió Eratóstenes el radio de la Tierra, ya que no nos han llegado sus escritos directos, sino lo narrado por otros autores. Así todo, es brillante su observación de que el solsticio de verano, el sol al mediodía no arrojaba sombra en los pozos de Siena (hoy Asuán), y, sin embargo, en su ciudad, Alejandría, los árboles, obeliscos o palos verticales sí que proyectaban sombra de longitud medible.
Figura 6: Posible medida de Eratóstenes y sus colaboradores
Si Eratóstenes utilizó alguno de los antiguos obeliscos de Alejandría, de una altura aproximada de 21 metros, pudo medir una sombra bien mensurable de unos 2,6 metros. Sus colaboradores o los datos de la Biblioteca le dieron una medida de distancia entre las ciudades de Asuán y Alejandría de aproximadamente 800 kilómetros (ver Figura 6).
El cálculo de Eratóstenes suele narrarse con cierta exactitud geométrica, al aplicar el quinto postulado de Euclides, de Los Elementos, que con seguridad se hallaba presente en la Biblioteca de Alejandría. Este postulado equivale a que los ángulos de cualquier triángulo suman 180 grados, o también que, si dos rectas son paralelas, los ángulos alternos internos formados con otra recta que corta a ambas son iguales. Sin embargo, resulta muy complicado medir con exactitud un ángulo tan pequeño como el de los rayos del sol proyectando sombra en Alejandría, ya que Eratóstenes no disponía entonces de cálculo trigonométrico.
Figura 7: Posible cálculo de Eratóstenes, utilizando la longitud de los catetos de dos triángulos semejantes en lugar de un ángulo difícil de medir. Nótese que el ángulo real de Eratóstenes es aún mucho menor que el mostrado en este diagrama
Para evitar un cálculo fino de 7,2 grados, y, por tanto, el ángulo del sector terrestre que separa ambas ciudades, en la Figura 7 se muestra un posible cálculo no exacto, pero sí sencillo, que es plausible Eratóstenes pudo haber usado para obtener el radio de la Tierra. Se trata de dos triángulos semejantes. Tenemos bien medidos los dos catetos del triángulo pequeño del obelisco, y aproximadamente medido el cateto pequeño del triángulo grande, que es la distancia entre ambas ciudades. Esta distancia curva entre ciudades es solo ligerísimamente inferior a la longitud L mostrada en la Figura 7, de modo que la magia de dos triángulos semejantes permitiría a Eratóstenes efectuar una simple regla de tres, y el radio de la Tierra es R=L(h/s), es decir R = 800 km (21 m/2,6 m) = 6461 km. Los triángulos son asombrosos.
Sobre el autor: Victor Etxebarria Ecenarro es Catedrático de Ingeniería de Sistemas y Automática en la Universidad del País Vasco (UPV/EHU)
El artículo Einstein, Tesla, Eratóstenes y sus triángulos se ha escrito en Cuaderno de Cultura Científica.
¡Ups! Galileo y las mareas
Muchos desconfiaron de la teoría de Johannes Kepler para explicar las mareas. Según el astrónomo alemán, estas se debían por alguna clase de atracción misteriosa que la Luna ejercía sobre las mareas. Uno de los que desconfió de esta teoría fue Galileo Galilei y se puso a pensar en la suya propia. Para él las mareas eran producto de la rotación y la traslación de la tierra. Aquello parecía tener todo el sentido del mundo. Al girar sobre sí misma y alrededor del sol, la tierra sufría aceleraciones y desaceleraciones periódicas. Hoy sabemos que Galileo se equivocó y las arriesgadas intuiciones de Kepler eran correctas.
Los vídeos de ¡UPS¡ presentan de forma breve y amena errores de la nuestra historia científica y tecnológica. Los vídeos, realizados para la Cátedra de Cultura Científica de la UPV/EHU, se han emitido en el programa de ciencia Órbita Laika (@orbitalaika_tve), en la 2 de RTVE.
Producción ejecutiva: Blanca Baena
Guion: José Antonio Pérez Ledo
Grafismo: Cristina Serrano
Música: Israel Santamaría
Producción: Olatz Vitorica
Doblaje: K 2000
Locución: José Antonio Pérez Ledo
Edición realizada por César Tomé López
El artículo ¡Ups! Galileo y las mareas se ha escrito en Cuaderno de Cultura Científica.
Primera vía metabólica que produce óxido nítrico en plantas a partir de aminoácidos
Una investigación, liderada por la Universidad Pública de Navarra (UPNA) y en la que colabora la Universidad del País Vasco (UPV/EHU), muestra la primera vía metabólica que produce óxido nítrico (NO) en plantas a partir de aminoácidos y la importancia de las oximas, un tipo de compuestos químicos, como productoras de dicha molécula. Este hallazgo, anhelado durante más de veinte años en el ámbito de la biología vegetal, tiene potenciales aplicaciones en la agricultura y la medicina.
El monóxido de nitrógeno (según la nomenclatura IUPAC), más conocido como óxido nítrico, una molécula pequeña (un átomo de nitrógeno unido a un átomo de oxígeno, NO), gaseosa e incolora, juega un papel clave como señalizador en muchas funciones vitales de los organismos vivos. En humanos regula aspectos cruciales como la salud cardiovascular e influye en el rendimiento deportivo. Además, está involucrado en la síntesis de antioxidantes y en procesos inflamatorios. Su importancia fue reconocida con el Premio Nobel de Medicina de 1998.
A diferencia de los animales, que producen óxido nítrico a través de una enzima (denominada NO sintasa), las plantas han utilizado predominantemente para su síntesis un proceso reductivo: toman nitrato y, a través de procesos enzimáticos mediados por la nitrato reductasa, lo convierten en óxido nítrico. Hasta este trabajo no se habían identificado, ya sea en experimentos de laboratorio o en condiciones naturales dentro de las plantas, vías metabólicas que pudieran producir óxido nítrico a partir de dos fuentes: el amonio libre (NH4+), usado como fertilizante, y los aminoácidos (los componentes básicos de las proteínas que también contienen nitrógeno).
“Aunque puede parecer que el asunto es trivial, desde hace muchos años se consideraba una cuestión no resuelta en biología vegetal y se sospechaba que su descubrimiento permitiría entender otros procesos esenciales en las plantas, como así está siendo. De hecho, a principios de siglo, importantes publicaciones científicas dieron a conocer varios trabajos en este ámbito, luego retractados por no ser correctos. En 2004, la revista Science se hizo eco de estos reveses y reconoció la importancia de encontrar esta vía metabólica. Aunque en los años posteriores se han publicado innumerables trabajos sobre esta cuestión, ninguno había llegado a mostrar una vía bioquímica que condujese a la producción de óxido nítrico a partir de nitrógeno reducido, como el del amonio, o los aminoácidos”, explica el catedrático José F. Morán, del IMAB (Instituto de Investigación Multidisciplinar en Biología Aplicada) de la UPNA .
Resistencia de las plantas ante el estrésLa investigación ha revelado una vía alternativa: la producción de óxido nítrico utilizando enzimas, llamadas peroxidasas, que actúan sobre un tipo de compuestos químicos, las oximas (como la indolacetaldoxima). Esta investigación promete mejorar la tolerancia de las plantas a condiciones de estrés, como la sequía, y podría influir en la nutrición vegetal, particularmente, en contextos de uso sostenible de fertilizantes.
Las aldoximas estudiadas han mostrado formar óxido nítrico en pequeñas cantidades ‘in vitro’ —en tubos de ensayo— e ‘in vivo’ —dentro de las células vivas de la planta—, y todas muestran un efecto inductor en el crecimiento de raíces laterales “lo que podrá ayudar a mejorar la tolerancia de las plantas en procesos de estrés como la sequía. Pero como tienen un efecto hormonal, representarán una herramienta útil con la que simular etapas del desarrollo vegetal, especialmente, en otras condiciones de estrés como la deficiencia de nutrientes, las altas temperaturas o la tolerancia a la nutrición con amonio como única fuente de nitrógeno. Este tipo de nutrición es importante, por ejemplo, cuando se quieren utilizar los purines de ganadería en vez de emplear fertilizantes nitrogenados fabricados con gran consumo de combustibles fósiles”, indica el equipo investigador.
Investigación en salud humanaAdemás, el papel de las aldoximas en la producción de óxido nítrico podrá abrir caminos en la investigación en humanos: en concreto, sobre enfermedades cardiovasculares y en el diseño de nuevos fármacos. A ello se suman otras vías de estudio relacionadas con la salud de las personas. “La indolacetaldoxima es una molécula con una importante homología estructural con la serotonina y con la melatonina, las hormonas de la felicidad, y de los ciclos circadianos y del sueño en humanos, respectivamente —señala José F. Morán—. El descubrimiento de su efecto y su modo de acción generará nuevos abordajes en los estudios para entender mejor los efectos de estas dos hormonas. Asimismo, las bacterias digestivas son capaces de sintetizar estas hormonas beneficiosas, por lo que indolacetaldoxima es una candidata de interés en el análisis de la señalización entre el cuerpo humano y sus bacterias intestinales”. Y el óxido nítrico “también está implicado en la gestión del ciclo celular y será esencial estudiar su efecto sobre células cancerosas y metastáticas”, concluye el catedrático de la UPNA.
Referencia:
López-Gómez P., Buezo J., Urra M., Cornejo A., Esteban R., Fernández de los Reyes J., Urarte E., Rodríguez-Dobreva E., Chamizo-Ampudia A., Eguaras A., Wolf S., Marino D., Martínez-Merino V., and Moran J.F. (2024) A new oxidative pathway of nitric oxide production from oximes in plants Mol. Plant. doi: 10.1016/j.molp.2023.12.009
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Primera vía metabólica que produce óxido nítrico en plantas a partir de aminoácidos se ha escrito en Cuaderno de Cultura Científica.
No estaban tan locos estos romanos
He modificado ligeramente una famosa cita que Obélix repite constantemente en todos los cómics de Uderzo y Goscinny porque resume muy bien el tema que voy a tratar en esta ocasión: los secretos geológicos que se esconden detrás de las técnicas de construcción de la República y el Imperio Romanos.
Testigo de hormigón romano del siglo I de nuestra era (izquierda), que resiste una compresión superior a 100 kg/cm2, y testigo de hormigón del siglo XXI fabricado con las técnicas modernas (derecha), resistente a compresiones de 200 a 300 kg/cm2. Muestras expuestas en el Museo del Teatro Romano de Caesaraugusta (Zaragoza). Foto: Blanca María MartínezSi hay algo que realmente nos sorprende de la Roma clásica es que muchas de sus colosales edificaciones han resistido en pie más de 2000 años. Y esas impresionantes dotes de ingeniería tienen que ver con sus conocimientos geológicos, posiblemente a partir de descubrimientos involuntarios pero funcionales. Pero no me estoy refiriendo a las rocas de diferente origen, composición y hermosas coloraciones naturales usadas como materiales ornamentales en fachadas, escalinatas o estatuas, sino al componente empleado para anclar los cimientos y levantar los muros de sus construcciones, el hormigón.
Seguro que todo el mundo que está leyendo este texto se ha acercado alguna vez a una obra y ha visto al personal vertiendo, generalmente a paladas, un par de materiales en una hormigonera, añadirle agua y esperar a que la máquina de varias vueltas para mezclar bien todos los componentes y generar así una pasta grisácea a la que denominamos hormigón. Uno de esos materiales que se añaden a la mezcla son los áridos, es decir, rocas que se rompen y machacan hasta alcanzar tamaño grava o arena. Y el otro es el cemento, una mezcla de arcillas y calizas deshidratadas tras calentarlas por encima de los 1200ºC, obteniendo así una cal viva (óxido de calcio) que tiene la propiedad de endurecerse al añadirle agua.
Detalle de los cimientos de uno de los muros del Teatro Romano de Caesaraugusta (Zaragoza), construido en el siglo I de nuestra era, a partir de la mezcla de cal viva, arena y cantos extraídos de las terrazas fluviales del río Ebro, mezcladas con el agua dulce del mismo. Los cantos de la imagen tienen tamaños superiores a los 5 cm de largo. Foto: Blanca María MartínezEl hormigón parece ser el típico producto complejo descubierto recientemente debido a la evolución técnica en el mundo de la construcción, pero nada más lejos de la realidad. Desde al menos el siglo II antes de nuestra era, los romanos ya empleaban esta misma técnica para fabricar su propio hormigón, el denominado opus caementicium. Lo que hacían era calcinar la roca caliza en hornos de cocción, o caleros, hasta los 500-600ºC para obtener la cal viva utilizada como cemento mezclándola con arena y agua, añadiendo después cantos y fragmentos de rocas para obtener un hormigón tan resistente que emplearon para rellenar encofrados que actuaban como cimientos o soportes de muros de carga en sus construcciones.
Incluso, en poco tiempo le dieron una vuelta de tuerca a esta receta, consiguiendo mejorarla. En la zona de la bahía de Nápoles empezaron a utilizar una ceniza volcánica denominada puzolana (formada por óxidos de aluminio y silicio) para mezclarla con el resto de la arena. Y descubrieron que esta nueva mezcla podía ser utilizada en medios acuáticos, como el litoral marino, incluso aumentando la resistencia del hormigón, debido a una reacción química entre el agua de mar y la puzolana, que da lugar a la formación de nuevos minerales (como la tobermorita rica en aluminio) que consolidan los materiales.
Vista general de las gradas del Teatro Romano de Caesaraugusta (Zaragoza), con las marcas dejadas por los dientes metálicos de la pala excavadora que sacó a la luz los restos de la construcción al rozar con el hormigón romano endurecido. Foto: Blanca María MartínezPero el uso de ceniza volcánica en la mezcla no es el único secreto de la durabilidad del hormigón romano. Recientemente, un equipo internacional de investigadoras e investigadores ha descubierto que los romanos mezclaban la cal viva (óxido de calcio) con pequeñas partículas de cal apagada o cal hidratada (hidróxido de calcio), un compuesto muy reactivo que es capaz de generar carbonato cálcico. Esto aporta al hormigón romano una capacidad de autorregeneración similar a la mostrada por el T-1000 de la película Terminator 2 mediante el siguiente proceso: cuando el material se fracturaba, podía circular agua por las grietas y reaccionar con las partículas de cal apagada, dando lugar a un fluido cargado en calcio que precipitaba en forma cristalina como carbonato cálcico, actuando como una especie de parche que cerraba la grieta. Si encima el hormigón tenía puzolana en su composición, la reacción química con el agua lo endurecería aún más. Y, de esta manera, las construcciones romanas han podido resistir el paso del tiempo por más de 2000 años.
La receta de este hormigón tan increíble nunca se dejó por escrito, al menos de manera detallada, ya que las menciones de los escritores romanos a sus técnicas de construcción fueron demasiado vagas e, incluso, ambiguas. Por eso, tras la caída del Imperio Romano, se dejó de emplear y no se ha conseguido replicar, con algunas diferencias, hasta hace un par de siglos.
Por supuesto, hay que darle al césar lo que es del césar, y es innegable que los romanos fueron unos maestros en los avances técnicos y de ingeniería, además de saber aprovechar las características geológicas de los materiales que utilizaron, aunque no conociesen exactamente la base científica en la que sustentaban sus éxitos. Pero es bien sabido que siempre copiaban e intentaban mejorar todo aquello que aprendieron de la gran civilización mediterránea previa. Por lo que sí, el primer hormigón de la historia se descubrió unos cuatro siglos antes en Grecia, preparándolo con una mezcla de cal viva, arena, rocas molidas y agua. Y sí, también usaban fragmentos de rocas volcánicas en esa argamasa. Aunque los griegos no fueron capaces de encontrar esos secretitos de la durabilidad y autorregeneración que descubrieron los romanos, aunque lo hiciesen por pura casualidad.
Referencia:
Linda M. Seymour et al. (2023) Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances doi:10.1126/sciadv.add1602
Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU
El artículo No estaban tan locos estos romanos se ha escrito en Cuaderno de Cultura Científica.
Melba Roy Mouton, la matemática que vigilaba satélites
Mons Mouton es una montaña lunar, parecida a una mesa, situada cerca del Polo Sur de la Luna. En febrero de 2023 la Unión Astronómica Internacional la bautizó con este nombre en honor a la matemática estadounidense Melba Roy Mouton, como reconocimiento a sus logros como programadora informática y sus contribuciones a las misiones de la NASA.
Melba Mouton fue una de nuestras líderes pioneras en la NASA. No solo ayudó a la NASA a tomar la iniciativa en la exploración de lo desconocido en el aire y el espacio, sino que también trazó un camino para que otras mujeres y personas racializadas siguieran carreras y lideraran la ciencia de vanguardia en la NASA.
Sandra Connelly, administradora científica en la sede de la NASA en Washington.
Melba Roy Mouton. Fuente: Wikimedia Commons.Melba Louise Chloe nació el 28 de abril de 1929 en Fairfax (Virginia, Estados Unidos). Realizó sus estudios en la Universidad de Howard, graduándose en matemáticas con especialización en física en 1950.
Los apellidos con los que se la conoce corresponden a los de sus dos maridos, Wardell Roy (con el que tuvo dos hijos y del que se divorció) y Webster Mouton (con el que tuvo un hijo).
Su carrera en la NASA
Trabajó inicialmente en el Servicio de Mapas del Ejército y la Oficina del Censo de Estados Unidos. En este centro gubernamental se centraban en el trazado de futuros barrios y otros lugares de expansión demográfica durante el baby boom que tuvo lugar en Estados Unidos tras la Segunda Guerra Mundial. La tarea de Mouton consistía en analizar estadísticas de poblaciones, interpretar los datos obtenidos y transformarlos en una información fácil de entender por otros investigadores.
En 1959 fue contratada por la NASA e ingresó en el Centro de Vuelo Espacial Goddard.
En 1960 se puso en órbita el satélite experimental de comunicaciones de la NASA Echo 1. Cuatro años más tarde se lanzó Echo 2. Mouton fue la supervisora del equipo de “computadoras humanas” que realizaba el seguimiento de su órbita. Sus cálculos ayudaron a producir los horarios de los elementos orbitales mediante los cuales millones de personas pudieron ver el satélite desde la Tierra cuando pasaba por encima de ella. La cosmóloga Chanda Prescod-Weinstein explicaba de este modo la complejidad de ese trabajo de seguimiento de satélites:
Cuando ponemos satélites en órbita, hay que vigilar muchas cosas. Tenemos que asegurarnos de que la atracción gravitatoria de otros cuerpos, como otros satélites, la Luna, etc., no perturbe y desestabilice la órbita. Son cálculos extremadamente difíciles de hacer incluso hoy en día, incluso con un ordenador-máquina. Así que lo que hizo fue un trabajo extremadamente intenso y difícil. El objetivo del trabajo, además de garantizar que los satélites se mantuvieran en una órbita estable, era saber dónde estaba todo en todo momento. Así que tenían que ser capaces de calcular con un alto nivel de precisión.
Melba Roy Mouton (1960). Fuente: Wikimedia Commons.
Debido a sus capacidades, se le asignaron otras tareas como la de iniciarse en los lenguajes de programación como el APL (A Programming Language) necesarios en trabajos relacionados con la mecánica compleja, los lanzamientos espaciales y el trazado de órbitas. Y, tras aprender, fue instructora en una serie de seminarios sobre el lenguaje de programación APL celebrados en los Watson Research Labs.
Los reconocimientos llegan
Antes de jubilarse en 1973, Melba Mouton se convirtió en subdirectora de Programas de Investigación de la División de Trayectoria y Geodinámica del Centro de Vuelo Espacial Goddard. En reconocimiento a su dedicado servicio y sus destacados logros (que llevaron, entre otros, al éxito del alunizaje del Apolo 11 el 20 de julio de 1969) se le concedió el Premio Apollo Achievement Award.
El 15 de abril de 1972 la NASA utilizó su imagen, junto con la de varios colegas afroamericanos, en un anuncio en el periódico The Afro American en el que la institución declaraba su compromiso con la diversidad.
Y volvemos a la montaña de Melba: Mons Mouton es una montaña lunar ancha y de cima relativamente plana. Alrededor de su base hay un anillo de enormes cráteres. Está previsto que Mons Mouton sea en el lugar de alunizaje del rover lunar VIPER (Volatiles Investigating Polar Exploration Rover). Este robot se posará en el Polo Sur de la Luna a finales de 2024 en una misión de cien días para buscar hielo y otros recursos potenciales. La información obtenida ayudará a conocer el origen y la distribución del agua en nuestro satélite.
Melba Mouton falleció el 25 de junio de 1990 debido a un tumor cerebral. Dedicó catorce años de trabajo a la NASA, en los inicios de la carrera espacial y de la programación. Como mujer y afroamericana no lo tendría nada fácil. Nos queda su ejemplo y esa montaña lunar que acogerá a VIPER en su extraordinaria misión.
Imagen del Polo Sur lunar coloreada por elevación. Mons Mouton aparece abajo a la izquierda. Fuente: NASA’s Scientific Visualization Studio / Ernie Wright, Alex Kekesi, Noah Petro, David Ladd, Ian Jones, Laurence SchulerReferencias
-
Kristen Vogt Veggeberg, Meet Melba Roy Mouton, the Space Race mathematician and keeper of orbiting satellites, Massive Science, 5 agosto 2021
-
Rachel Hoover, Moon Mountain Name Honors NASA Mathematician Melba Mouton, 15 febrero 2023
-
Mons Mouton, a Newly Named Lunar Mountain, Scientific Visualization Studio, NASA
-
Melba Roy Mouton, Wikipedia
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad
El artículo Melba Roy Mouton, la matemática que vigilaba satélites se ha escrito en Cuaderno de Cultura Científica.
Un indicio de desacuerdo con el modelo estándar en un tipo de desintegración del bosón de Higgs
Las colaboraciones ATLAS y CMS del Gran Colisionador de Hadrones han analizado datos de una rara desintegración del bosón de Higgs, encontrando un indicio de desacuerdo con las predicciones del modelo estándar.
Interacciones entre partículas del modelo estándar. Fuente: Wikimedia CommonsPara la física de partículas, 2012 marcó un hito con el descubrimiento del bosón de Higgs, que hasta entonces era la única partícula que faltaba en la lista predicha por el modelo estándar. Ese descubrimiento no detuvo la búsqueda de nuevas partículas, que los investigadores mantienen realizando mediciones precisas de la desintegraciones menos frecuentes de las partículas conocidas. La evidencia de nuevas partículas podría aparecer como una desviación de las predicciones que hace el modelo estándar sobre el número de tales desintegraciones.
Ahora, las colaboraciones ATLAS y CMS del CERN han detectado juntas una sobreabundancia de una rara desintegración nunca antes vista que involucra al bosón de Higgs.
El modelo estándar predice que la desintegración de 15 de cada 10.000 bosones de Higgs dará como resultado la creación de un bosón Z y un fotón. En el modelo estándar, esta desintegración está mediada por un quark top o un bosón W. Pero los modelos que van más allá del modelo estándar indican que la desintegración también podría estar mediada por una o más partículas desconocidas.
El doble de lo predicho Diagramas de Feynman de ejemplos de desintegración de un bosón de Higgs (H) en un bosón Z y un fotón (γ). Fuente: G. Aad et al. (ATLAS Collaboration, CMS Collaboration) (2024) Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC Physical Review Letters doi: 10.1103/PhysRevLett.132.021803Para explorar esta posibilidad, las colaboraciones ATLAS y CMS han buscado señales de la desintegración de Higgs en un bosón Z y un fotón en datos de colisiones protón-protón registrados entre 2015 y 2018. Los bosones Z se desintegran en dos electrones o dos muones antes de llegar a los detectores, por lo que los científicos idearon métodos para determinar si las firmas de electrones, muones y fotones encontradas en los datos se originaban a partir de eventos bosón Z-fotón. De esos eventos, seleccionaron aquellos que tenían las propiedades esperadas para una desintegración del bosón de Higgs, y encontraron el doble de lo predicho por el modelo estándar.
Por ahora los datos son insuficientes para descartar la posibilidad de que esta discrepancia sea una fluctuación estadística. En cualquier caso, los investigadores dicen que este trabajo ofrece una nueva vía para realizar pruebas de estrés del modelo estándar.
Referencias:
G. Aad et al. (ATLAS Collaboration, CMS Collaboration) (2024) Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC Physical Review Letters doi: 10.1103/PhysRevLett.132.021803
Nikhil Karthik (2024) Measurements of Rare Higgs Decay May Disagree with Predictions Physics 17, s4
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Un indicio de desacuerdo con el modelo estándar en un tipo de desintegración del bosón de Higgs se ha escrito en Cuaderno de Cultura Científica.
Aguas duras y cálculos renales
Los cálculos renales, más conocidos como «piedras en los riñones», son un problema médico muy frecuente. Se estima que en torno al 10 % de la población sufrirá en el algún momento de su vida estos dolorosos pedruscos que se forman lentamente a partir de la cristalización de diferentes compuestos en la orina. El tamaño y la forma de dichas piedras puede ser extremadamente variable. En la actualidad, el cálculo renal que ostenta el récord mundial por sus dimensiones se detectó en un paciente de Sri Lanka en 2023. Imposible que el guijarro pasara desapercibido: contaba con 13,4 centímetros de largo y 800 gramos de peso.
En la gran mayoría de los casos (alrededor de un 75 %) los cálculos renales están compuestos por calcio. En menor medida, pueden estar formados por ácido úrico, cistina o estruvita (magnesio y fosfato de amonio). Múltiples factores influyen en la producción de dichas piedras: alteraciones en el pH que causan una orina demasiado ácida o básica, ciertas enfermedades como infecciones urinarias o hiperparatiroidismo, concentración elevada de ciertos compuestos en la orina por razones genéticas, ambientales o estilos de vida, déficit de inhibidores de la formación de cálculos…
Foto: Andres Siimon / Unsplash¿Y el agua de grifo?En la cultura popular está muy extendida la idea de que la composición mineral del agua que se bebe influye en la aparición de las piedras en los riñones. Según esta creencia, el consumo de aguas duras (especialmente aquellas con una elevada concentración de calcio) favorecería la generación de cálculos con el paso del tiempo.
En España, la cuenca del Mediterráneo (Andalucía, Murcia, Comunidad Valenciana y Cataluña) se caracteriza por ofrecer agua potable con un mayor porcentaje de calcio que en otras regiones de nuestro país. Este mineral, junto con el cloro, dan un fuerte y característico sabor a dicha agua, que no suele ser precisamente un rasgo apreciado para su ingesta en dichos territorios (las elevadas ventas de garrafas de agua mineral en los supermercados o la instalación de filtros de agua de grifo dan fe de ello). Sin embargo, más allá del sabor desagradable, ¿el agua dura del grifo supone realmente un riesgo adicional en la formación de cálculos renales?
Para responder a la pregunta lo primero que hay que tener en cuenta es que la composición y la calidad de las aguas de consumo en Europa está estrictamente regulada por varias leyes para proteger la salud humana. Entre los muchos parámetros que se controlan está la concentración de carbonato de calcio (CaCO3), que es el factor principal que define la dureza del agua. Su máxima concentración permitida en el agua potable en el territorio europeo es de 500 mg/l. Si tenemos en cuenta que solo el 0,5 % del agua potable que se distribuye en España no es apta para consumo humano, esto significa que las aguas más duras de nuestro país no pueden serlo de forma excesiva. Según informes publicados por la Organización Mundial de la Salud, las aguas con carbonato de calcio dentro de dicho límite no deberían tener efectos perjudiciales para la salud humana.
Cantidad más que calidadMás allá del hecho anterior, que es relevante, existen otros datos que ponen de manifiesto que la dureza del agua potable apta para consumo humano parece influir muy poco o nada en el riesgo de sufrir piedras en los riñones en la población general. Por un lado, varios estudios epidemiológicos no encuentran relación, o esta es muy débil, entre el consumo de aguas duras y un aumento en el riesgo de cálculos renales.
Sí que se ha observado que ingerir aguas más duras se asocia con una mayor excreción en la orina de citrato, magnesio y calcio, pero esto no tiene por qué implicar per se un mayor riesgo de cálculos. Ahora bien, los médicos, como medida de precaución, pueden recomendar a los pacientes que han sufrido previamente cálculos renales beber aguas de composición específica según el tipo de piedras que hayan desarrollado, aunque la evidencia científica que respalde este acto sea débil. En torno al 50 % de estos pacientes suelen volver a sufrir nuevas piedras a los 5-10 años, así que se aplica el principio de cautela.
En resumen, sigue sin estar claro que el consumo de aguas duras supongo un riesgo añadido en la formación de cálculos renales en la población general sana. De existir algún riesgo, este parece, según el conjunto de los estudios, pequeño y poco relevante si se consideran todos los factores que influyen en la aparición de piedras en el riñón. No obstante, sí que existe un importante consenso sanitario y científico sobre una pauta que sí tiene una influencia observable a la hora de disminuir el riesgo de cálculos: beber agua de forma abundante cada día para aumentar el volumen de producción de orina y prevenir que esta se concentre demasiado. En ese sentido, la Asociación Española de Urología (AEU) recomienda ingerir un mínimo de 2 litros de líquidos diarios a los pacientes que han sufrido anteriormente cálculos renales. En otras palabras, no es tanto la calidad del agua lo que cuenta, sino la cantidad que se beba a la hora de prevenir piedras o evitar que estas vuelvan a aparecer.
Sobre la autora: Esther Samper (Shora) es médica, doctora en Ingeniería Tisular Cardiovascular y divulgadora científica
El artículo Aguas duras y cálculos renales se ha escrito en Cuaderno de Cultura Científica.
Capillitas y clanes
Cuando tenemos la oportunidad de relacionarnos con muchas personas, tendemos a formar grupos con quienes nos son más afines, con aquellos a quienes nos sentimos más próximos. Por esa razón, en las sociedades con diversidad de grupos raciales1 la gente tiende a entablar amistad con personas de su mismo grupo, si en el entorno en que se establecen las relaciones hay un número alto de individuos. Si hay pocos, sin embargo, al haber menos posibilidad de elegir, es más probable que se formen grupos diversos.
A esa conclusión general han llegado en un estudio en el que, partiendo del desarrollo de un modelo teórico, se contrastaron las predicciones del modelo con datos obtenidos de más de mil institutos de bachillerato en Estados Unidos. La conclusión, como se ha indicado, es que allí donde hay muchas personas con las que se puede entablar relación, la gente tiende a hacerlo con personas de su mismo grupo racial.
Foto: Flow Clark / UnsplashSe supone que preferimos relacionarnos con personas con las que tenemos ciertas afinidades; eso es básico. Y como es lógico, donde hay pocas personas, es más difícil encontrar esas afinidades; por eso en esas circunstancias es más fácil superar la barrera que supone tener un rasgo distintivo tan marcado como el aspecto racial. Sin embargo, en contextos en los que hay muchas personas entre las que elegir, es más fácil hallar afinidades en personas que físicamente son más parecidas a nosotros, porque lo cierto es que tendemos a sentirnos más próximos a las personas con las que compartimos rasgos (considerados) raciales y otras similitudes.
Los autores del trabajo sugieren que el mecanismo vale para cualquier otra forma de “diferenciador” social. Así, cuando se permite a los individuos que ejerciten totalmente sus preferencias preexistentes, ello conduce a que se organicen grupos muy homogéneos, capillitas, sea cual sea el criterio diferenciador de que se trate. Por eso, -sostienen-, al ampliar enormemente el campo de relaciones posibles, internet actuaría en el sentido de acentuar el aislamiento social, configurando grupos muy homogéneos y con muy poca relación con otros grupos. Puede resultar paradójico, sí, pero tiene mucho sentido.
Como se ha podido establecer, en las ciudades de mayor tamaño la probabilidad de interactuar con otras personas es mayor que en las de menor tamaño. Y esa mayor probabilidad de interacción parece tener curiosas implicaciones. Por ejemplo, la probabilidad de contagiarse enfermedades infecciosas es proporcionalmente mayor en las grandes ciudades, pero también lo es la de innovar, la de generar nuevas ideas, la de inventar, porque todo eso depende de manera crítica de las redes de relaciones.
Cuanto más amplias son esas redes, cuantas más son las personas con las que nos comunicamos, más intercambio de ideas se producen y más combinaciones de ideas se generan. Así aumenta la probabilidad de que se produzcan invenciones, innovaciones, etc. Probablemente, ese es un factor que conduce a que las grandes ciudades concentren más instituciones y más personas dedicadas a actividades de I+D; a que sean más dinámicas; a que se hagan más negocios. En las grandes ciudades se genera más riqueza y la gente gana más dinero.
Hay otros muchos factores –tanto institucionales, como geográficos o económicos– que influyen, por supuesto, pero en esta ocasión trato de generalizar. Las afirmaciones anteriores se basan en análisis en los que se analizan las variables consideradas en relación con el número de habitantes de las ciudades; y ese análisis se hace para diferentes países y continentes, con lo que la fiabilidad de las conclusiones parece alta.
Este fenómeno puede parecer, quizás, algo contradictorio con lo señalado en relación con la mayor heterogeneidad de los grupos en contextos caracterizados por bajos números de personas, pero no lo es. Porque la configuración de grupos sociales por afinidades e intereses, que serían muy homogéneos en contextos muy numerosos (grandes ciudades o internet), no impide que se produzca una alta frecuencia de interacciones entre individuos, porque el aislamiento entre unos grupos homogéneos y otros, y la interacción entre personas diferentes se pueden producir, de manera simultánea, en planos muy distintos. Así, en los ámbitos laborales o profesionales se producen interacciones entre personas con diversos intereses y preferencias, y por otro lado, las relaciones de amistad se basan en mayor medida en afinidades o aficiones comunes. Son, como digo, planos diferentes.
Sobre estas cosas ya había escrito G. K. Chesterton (Herejes, 1905), con su inconfundible estilo, eso sí:
“En una comunidad grande podemos elegir nuestra compañía. En una comunidad pequeña, ésta ya está elegida para nosotros. Así es que, en todas las sociedades grandes y altamente civilizadas, surgen grupos basados en lo que se llaman afinidades, que se cierran al mundo exterior con más eficiencia que los portones de un convento. No hay nada realmente estrecho en un clan: lo que es realmente estrecho es una capillita. Los hombres del clan viven juntos porque todos van en el mismo tartán o todos descienden de la misma vaca sagrada; pero en sus almas, por el divino acomodo de las cosas, siempre habrá más colores que en cualquier tartán. Los miembros de una capillita, en cambio, viven juntos porque tienen el mismo tipo de alma, y su estrechez es una estrechez hecha de coherencia y de satisfacción espiritual, como la que existe en el infierno. Una sociedad grande existe con el objeto de formar capillitas. Una sociedad grande está destinada a la promoción de la estrechez.”
Nota:
1 El adjetivo “racial” se refiere a grupos sociales, aunque la pertenencia a tales grupos se asigne en virtud de rasgos externos, como el color de la piel, los rasgos faciales o las características del cabello. Como ya advertí aquí, desde el punto de vista biológico (o genético) no se sostiene la existencia de razas.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo Capillitas y clanes se ha escrito en Cuaderno de Cultura Científica.
El secreto de la naturaleza
Pedro Miguel Etxenike, entre otros muchos reconocimientos a su labor investigadora, recibió en 1998 el Premio Max Planck de Física y ese mismo año el Premio Príncipe de Asturias de Investigación Científica y Técnica por sus descubrimientos en la predicción teórica de estados electrónicos imagen en la superficie de sólidos. Ha realizado importantes aportaciones en el campo de las interacciones ion-materia y de las pérdidas de energía de electrones en microscopía electrónica y de efecto túnel. Actualmente es catedrático de Física de la Materia Condensada en la Universidad del País Vasco (UPV/EHU) y Presidente del Donostia International Physics Center (DIPC).
El documental “El secreto de la naturaleza” recorre la vida y obra de Pedro Miguel Etxenike. De 55 minutos de duración, plantea al espectador las reflexiones de Etxenike en torno a la ciencia, preguntándose qué es y en qué consiste. El reputado físico propone una reflexión partiendo de un par de preguntas estéticas: ¿Es la belleza criterio de verdad? ¿Qué es la belleza?
Este documental se estrenó en 2018 y ha sido dirigido por José Antonio Pérez Ledo y coproducido por K2000 y la Cátedra de Cultura de la Universidad del País Vasco.
Edición realizada por César Tomé López
El artículo El secreto de la naturaleza se ha escrito en Cuaderno de Cultura Científica.
Un estudio práctico de la interferometría estelar óptica
Los orígenes de la interferometría estelar se remontan a 1803 con las primeras investigaciones del británico Thomas Young y su experimento de doble rendija para combinar la luz de dos fuentes emisoras, implementado medio siglo más tarde por el francés Hippolyte Fizeau. Pero no fue hasta 1891 cuando el físico estadounidense Albert Abraham Michelson (famoso por el experimento de Michelson-Morley y premio Nobel de Física en 1907) aplicó con éxito la técnica para medir el diámetro de las lunas galileanas de Júpiter. En 1820, Michelson junto los astrónomos J. A. Anderson y F. G. Pease consiguieron medir por primera vez los diámetros de estrellas gigantes. Desde entonces, las técnicas interferométricas constituyen una herramienta poderosa en astronomía, aunque de difícil manejo experimental, que se viene usando desde observatorios en Tierra y en el espacio.
En el Máster en Ciencia y Tecnología Espacial de la UPV/EHU se imparte la asignatura Interferometria Espacial en la que se introducen sus fundamentos y se llevan adelante prácticas con telescopios, simulando las estrellas con fuentes de luz láser y fibras ópticas de plástico, lo que había dado lugar a algunas publicaciones previas. Pero esta vez se propuso como objetivo la obtención y estudio de interferogramas de estrellas brillantes reales seleccionadas por sus características. Estas fueron: Sirio una estrella blanca, la más brillante del cielo, y las estrellas Betelgeuse (roja) y Rigel (azul) de la constelación de Orión. La detección de los patrones de interferencia de estas estrellas se realizó mediante el telescopio de 28 cm de diámetro del Aula Espazio Gela de la Escuela de Ingeniería de Bilbao.
Pablo Rodríguez-Ovalle, Alberto Mendi, Ainhoa Angulo, Iván Reyes, Mikel Pérez-Arrieta, estudiantes ya graduados del Máster, guiados por la profesora Asun Illarramendi y el director del Aula y del Máster Agustín Sánchez-Lavega, llevaron adelante la preparación del dispositivo experimental y la obtención y estudio de los patrones de interferencia de estas estrellas.
InterferogramasEncontraron que, si bien los patrones experimentales ajustaban razonablemente bien con la predicción teórica, su visibilidad interferencial se veía afectada por la turbulencia de la atmósfera terrestre (conocida como “seeing”), es decir, por los movimientos erráticos de las masas de aire de nuestra atmósfera que la luz de la estrella atraviesa hasta llegar al telescopio. Modificando la teoría, el equipo pudo medir la turbulencia atmosférica en las noches de observación, un aspecto básico que todos los observatorios desean cuantificar por su efecto pernicioso en la obtención de imágenes astronómicas con los telescopios en la Tierra.
Se propone esta metodología como una práctica en la que se analizan conceptos importantes relacionados con la interferometría estelar, como la coherencia espacial y temporal de la luz. Asimismo, el experimento proporciona medidas de la turbulencia de la atmósfera terrestre, seleccionando diferentes tipos de estrellas, longitudes de onda, y características de las máscaras colocadas sobre el objetivo del telescopio para producir los interferogramas. El trabajo ha sido publicado en la revista American Journal of Physics, una de las más prestigiosas de educación en Física, editada por la Asociación Americana de Profesores de Física y por el Instituto Americano de Física.
Referencia:
P. Rodríguez-Ovalle, A. Mendi-Martos, A. Angulo-Manzanas, I. Reyes-Rodríguez, M. Pérez-Arrieta, M. A. Illarramendi and A. Sánchez-Lavega (2023) Practical study of optical stellar interferometry American J. Physics doi: 10.1119/5.0125446
El artículo Un estudio práctico de la interferometría estelar óptica se ha escrito en Cuaderno de Cultura Científica.
¿Qué pasaría si un microagujero negro impactara contra la Tierra?
CERN, CC BY
Comprimamos toda la masa del planeta Tierra (unos 6 cuatrillones de kilogramos) al tamaño de una canica de unos 1.8 centímetros de diámetro. En ese improbable escenario, nuestro planeta se habría convertido en un microagujero negro, nada que ver con los supermasivos como el que habita en el centro de la Vía Láctea, recientemente fotografiado.
Teóricamente, durante los primeros instantes del big bang, se produjo el colapso gravitatorio de regiones extremadamente calientes y densas del universo, y se formaron los agujeros negros primordiales. Propuestos por el físico Stephen Hawking, estos extraordinarios objetos pueden poseer cualquier masa. Pero son los de tamaño reducido (menor que un átomo) los que han suscitado mayor interés, ya que se cree que podrían constituir gran parte de la materia oscura del universo.
Hasta la fecha no ha sido posible detectarlos. Pero sí se ha estudiado cuántos podrían chocar contra la Tierra y qué sucedería tras el impacto.
No son agujeros totalmente negros¿Cuánto de pequeños pueden llegar a ser estos agujeros negros? ¿Existe un límite en su tamaño? Entramos en el terreno (altamente especulativo) de los llamados microagujeros negros.
Hipotéticamente, estos objetos tendrían masas de unos 0.00002 gramos y tamaños trillones de veces menores que un protón: se desintegrarían de forma prácticamente instantánea. De hecho, se cree que cualquier agujero negro primordial acabaría su vida en forma de un microagujero antes de evaporarse por completo.
Pero quizá lo más sorprendente es que se encuentran a temperaturas muy elevadas, emitiendo radiación (la denominada radiación de Hawking): cuanto más pequeños sean, más temperatura alcanzan hasta, eventualmente, evaporarse por completo.
Hawking escribe en Breve historia del tiempo: del Big Bang a los agujeros negros que estos objetos primordiales “no son totalmente negros”, pues también emiten energía, especialmente aquellos de menor tamaño.
A modo de ejemplo, un agujero negro primordial con una masa equivalente al monte Everest tendría el tamaño aproximado de un átomo, alcanzando una temperatura de millones de grados centígrados.
¿Cómo sería un encuentro con un microagujero negro?Supongamos que tuviéramos la oportunidad de encontrarnos con uno de estos miniagujeros negros de 1 kilogramo de masa. En este caso, su tamaño sería trillones de veces más pequeño que el de un átomo de hidrógeno.
En principio no tendríamos por qué preocuparnos: al ser tan pequeño, no tendría capacidad para absorber materia de su alrededor. Se desintegraría de forma casi instantánea, probablemente generando una explosión equivalente a una bomba termonuclear.
Si el desafortunado encuentro tuviera lugar con un agujero negro de masa asteroidal (un millón de veces menos masivo que la Luna, pero con un tamaño del orden del átomo de hidrógeno), éste no se desintegraría de forma inmediata (ya que su vida media sería mayor que la edad estimada del universo). No asistiríamos a una explosión como la anterior, pero este agujero negro diminuto empezaría a devorar progresiva y lentamente la materia circundante. En ese caso, el escenario final para nuestro planeta no sería muy alentador.
¿Y si un microagujero negro del tamaño de un protón impactara contra la Tierra?Los investigadores creen que los agujeros negros primordiales (de diferentes tamaños) podrían estar ubicados en regiones galácticas donde la concentración de materia oscura es notablemente alta.
Así, estos objetos vagarían por el universo (moviéndose en diferentes direcciones y velocidades) y podrían interactuar con otros astros como agujeros negros masivos, estrellas o planetas (la Tierra entre ellos).
¿Y que le sucedería a nuestro planeta si uno de estos visitantes diminutos impactara contra nosotros?
Un estudio publicado en la revista Monthly Notices of the Royal Astronomical Society abordaba este hipotético escenario para un agujero negro del tamaño de un protón, y partiendo de la suposición de que el 100 % de la materia oscura estuviera formada por agujeros negros primordiales. En cuanto a la probabilidad de ocurrencia, podemos estar tranquilos: se espera un impacto contra la Tierra cada 1 000 millones de años
Además, dada su alta velocidad, estos agujeros negros minúsculos no quedarían atrapados en el interior de nuestro planeta (lo que sería fatal, pues comenzaría a devorarla lentamente desde dentro). En lugar de eso la atravesarían dejando cráteres de entrada y salida, generándose una intensa actividad sísmica. Según los cálculos de estos investigadores, la cantidad de energía liberada en esta colisión sería comparable a la de un asteroide de un kilómetro de tamaño.
¿Cómo podríamos detectarlos en el universo?En una reciente publicación propuse la posible interacción de un agujero negro de tamaño atómico y uno de los objetos más densos del universo: una estrella de neutrones.
La hipótesis de partida es que uno de estos agujeros negros podría encontrarse con una estrella de neutrones vieja (cuya temperatura es muy baja y ha perdido prácticamente toda su velocidad de rotación). Según los cálculos, la frecuencia de estos encuentros sería del orden de 20 eventos por año, aunque la mayoría sería difícil de observar debido a su enorme distancia y a la orientación adecuada respecto a la Tierra.
Se consideran dos escenarios posibles: primero, cuando la estrella de neutrones captura el agujero negro primordial. Segundo, cuando el agujero negro de tamaño atómico se acerca desde muy lejos, rodea la estrella de neutrones y se vuelve a alejar. Es lo que se denomina escenario de dispersión.
Dependiendo del tipo de evento se generaría una señal característica y única (un estallido de rayos gamma o GRB) que serviría para identificar las interacciones, constituyendo una prueba indirecta de la existencia de los agujeros negros diminutos.
Simulación del efecto de un agujero negro primordial (puntos blancos) atravesando una estrella. En la ilustración se pueden apreciar las ondas de vibración resultantes del impacto. Créditos: Tim Sandstrom.Una publicación del Instituto Max Planck de Astrofísica ha propuesto otra forma de hallar estos minúsculos agujeros negros. Parten de que el exceso de emisión de ciertas estrellas gigantes rojas podría deberse a la presencia en su interior de microagujeros negros, alimentándose de materia estelar, permitiendo su eventual localización.
Implicaciones de la existencia de los agujeros negros primordialesDesde luego que sería un hallazgo apasionante, pues quedaría confirmada una de las grandes predicciones astrofísicas del siglo XX: la radiación de Hawking y el posible origen primordial de los diminutos agujeros negros.
En palabras del mismísimo Stephen Hawking, “los agujeros negros no son tan negros como los pintan. No son las prisiones eternas que alguna vez se pensó. Las cosas pueden salir de un agujero negro tanto al exterior como, posiblemente, a otro universo.”
Sobre el autor: Óscar del Barco Novillo es profesor asociado en el Departamento de Física (área de Óptica) de la Universidad de Murcia
Este artículo fue publicado originalmente en The Conversation. Artículo original.
El artículo ¿Qué pasaría si un microagujero negro impactara contra la Tierra? se ha escrito en Cuaderno de Cultura Científica.
Los números de la suerte
Existen sucesiones de números naturales (o enteros) realmente curiosas e interesantes, no en vano, les hemos dedicado varias entradas en la sección Matemoción del Cuaderno de Cultura Científica. Entre las sucesiones de números de las que hemos hablado están la famosa sucesión de Fibonacci (véanse las entradas ¡Póngame media docena de fibonaccis!, Los números (y los inversos) de Fibonacci, ¡Nos encanta Fibonacci!, o El origen poético de los números de Fibonacci, entre otras), la musical sucesión de las vacas de Narayana (de la que hablamos en la entrada Las vacas de Narayana, la versión hindú de los conejos de Fibonacci), la sucesión de Kolakoski (sobre la que podéis leer en La misteriosa sucesión de Kolakoski), la sucesión de Levine (véase la entrada La sucesión de Levine), los números narcisistas (sobre los que puede leerse en la entrada ¿Pueden los números enamorarse de su propia imagen?), los números de Bell relacionados con la poesía (véase la entrada ¿Cuántas estructuras rítmicas existen en poesía?) o las sucesiones fractales (a la cuales hemos dedicado las entradas Sucesiones fractales, La sucesión fractal de Thue-Morse y la partida infinita de ajedrez y Sucesiones fractales: del número a la nota musical), entre otras. Por otra parte, en esta entrada hablaremos de otra interesante sucesión de números naturales, que pertenece a la familia de sucesiones de números generadas mediante “cribas”.
¿Cómo se criban los números?En una entrada anterior ya hemos hablado de una criba famosa, la conocida criba de Eratóstenes, que sirve para obtener los números primos al ir eliminando (cribando) los números que son múltiplos de los números primos que se van obteniendo en el proceso, empezando por los múltiplos de los primeros primos 2, 3, 5 y 7, y siguiendo con los que van surgiendo en el cribado, 11, 13, 17, 19 y así todo lo que deseemos. Sobre esta criba podéis leer en las entradas Buscando lagunas de números no primos y El poema de los números primos.
Primer lienzo del tríptico Un mar de números primos (2019), de la artista donostiarra, afincada en París, Esther Ferrer. Este lienzo es una criba de Eratóstenes rectangular de tamaño 49 x 65, es decir, abarca los primeros 3.185 números, aunque solo aparecen de forma explícita los números primos, que son 450 en ese intervaloPero vayamos con la definición de la sucesión de los números de la suerte, definidos a través de una criba diferente, que no tiene en cuenta la divisibilidad, sino la posición de los números en la lista de todos los números naturales. Para ilustrarlo mejor vamos a tomar la lista de los primeros 200 números naturales y realizaremos el proceso sobre ellos.
El primer número, después de la unidad, es el número 2. Por lo tanto, vamos a eliminar uno de cada dos números de toda la lista de números naturales (imagen anterior), es decir, vamos a eliminar los números pares. Luego, después de este primer cribado, los granos (números) que caen por los agujeros de la criba son los números pares, mientras que los que permanecen en la criba son los impares.
El siguiente número, que ha quedado en la criba, es el número 3. Por lo tanto, vamos a eliminar uno de cada tres números, de los que han quedado. Empecemos, 1, 3 y eliminamos el 5, seguimos, 7, 9, y eliminamos el 11, después, 13, 15 y fuera el 17, y así se continúa como aparece en la siguiente imagen, en la cual vemos aquellos granos (números) que no han caído por los agujeros de la criba (no son el tercer número de cada triple de números consecutivos).
El siguiente número, que ha quedado en la criba, es el número 7. Por lo tanto, vamos a eliminar uno de cada siete números, de los que aún permanecen en la ficticia criba. Si miramos la imagen de arriba y vamos contando, tenemos 1, 3, 7, 9, 13, 15 y después, 19, que es el número que eliminamos, después 21, 25, 27, 31, 33, 37 y se elimina el 39, y así se continúa, de siete en siete. Al final, después de este cribado, quedan los números que aparecen en la siguiente imagen.
El siguiente número que queda en la criba, después del 7 que hemos considerado antes (por ahora tenemos en nuestra familia especial de números no cribados, luego los números de la suerte, 1, 3 y 7), es el 9, luego eliminaremos uno de cada 9 números. Por lo tanto, vamos a contar, 1, 3, 7, 9, 13, 15, 21, 25 y eliminamos el siguiente, que es 27, y así con el resto de números que vemos en la imagen anterior. El resultado de este cribado, de los números que aparecen cada nueve posiciones, está recogido en la siguiente imagen.
Lo mismo haremos con el siguiente, que es el número 13.
Tenemos 1, 3, 7, 9, 13 y 15, luego eliminaremos uno de cada 15 números, de entre los que han quedado sin cribar hasta ahora. Después llega el 21 y lo mismo, así como 25, 31, 33 y 37, quedando los números que aparecen en la siguiente imagen. Como el siguiente número es el 43, pero en el conjunto de los números que quedan sin cribar (hasta el número 200) solo quedan 39 números, ya no es posible cribar más y habremos obtenido todos los números de la suerte hasta el 200.
Por lo tanto, los números de la suerte menores que 200 son:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193 y 195.
Los números de la suerte son la sucesión A000959 de la Enciclopedia On-line de Sucesiones de Números Enteros – OEIS.
Estos números fueron bautizados como “números de la suerte” en el artículo On Certain Sequences of Integers Defined by Sieves / Sobre ciertas sucesiones de números enteros definidas mediante cribas, publicado por los matemáticos Verna Gardiner, R. Lazarus, N. Metropolis y S. Ulam, en la revista Mathematics Magazine (del año 1956). Más aún, los autores sugirieron el nombre de criba de Josephus Flavius para el proceso de cribado que da lugar a los números de la suerte, puesto que el proceso es similar al descrito en el conocido problema de Josefo (del que ya hablaremos en alguna otra ocasión).
Se parecen a los números primosLos números de la suerte menores que el número 200 son 39, como acabamos de calcular, mientras que los números primos menores que 200, como habíamos calculado en la entrada El poema de los números primos [https://culturacientifica.com/2019/05/01/el-poema-de-los-numeros-primos/], son 46. En el artículo On Certain Sequences of Integers Defined by Sieves / Sobre ciertas sucesiones de números enteros definidas mediante cribas, sus autores, Verna Gardiner, R. Lazarus, N. Metropolis y S. Ulam, observaron que los números de la suerte se comportaban de forma similar a los números primos en algunas cuestiones. En particular, observaron que la frecuencia de números de la suerte entre 1 y n, para valores cada vez mayores de n, era similar a la de los números primos. En la siguiente imagen, del artículo On Certain Sequences of Integers Defined by Sieves, se recoge la tabla de números de la suerte y primos hasta el 48.600, en intervalos de 2.000 números.
Lo que Gardiner, Lazarus, Metropolis y Ulam sugerían era que el comportamiento asintótico de los números de la suerte es similar al de los números primos, el conocido como teorema de los números primos. Este, de forma simplificada, nos dice que la función “contador de números primos”, esto es, pi(n) = cantidad de números primos menores que n, se aproxima a la función n / ln (n) -donde ln(n) es el logaritmo neperiano de n-. Este resultado fue conjeturado por el gran matemático alemán Carl Friedrich Gauss (1777-1855), con tan solo 15 años, y probado, de forma independiente, por los matemáticos franceses Jacques Hadamard (1865-1963) y Charles de la Vallée-Poussin (1866-1962).
Un año después de la publicación del artículo de Gardiner, Lazarus, Metropolis y Ulam, los matemáticos D. Hawkins and W. E. Briggs demostraron que existía un resultado análogo para los números de la suerte, es decir, que la cantidad de números de la suerte menores que n, la función s(n), se aproxima a la función n / ln (n).
Gardiner, Lazarus, Metropolis y Ulam también conjeturaron la existencia de un resultado análogo a la conjetura de Goldbach para los números de la suerte. La conocida conjetura de Goldbach (sobre la que podéis leer más en la entrada La conjetura de Goldbach) nos dice que
“todo número par mayor que dos puede escribirse como suma de dos números primos”.
Si empezamos por el principio, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 + 5, 12 = 5 + 7, 14 = 3 + 11 = 7 + 7, 16 = 3 + 13 = 5 + 11, … y así se continua. La conjetura de Goldbach sigue siendo una conjetura, no ha podido ser demostrada -lo que la convertiría en teorema-, a pesar de los esfuerzos realizados en ese sentido. Se sabe que se verifica para todos los pares menores que 4.000.000.000.000.000.000, pero aún no para la totalidad de los números pares.
En el artículo On Certain Sequences of Integers Defined by Sieves se conjeturó la existencia de un resultado similar a la conjetura de Goldbach para números de la suerte. En particular se probó que
“todo entero entre 1 y 100.000 puede escribirse como la suma de dos números de la suerte”.
En la segunda película de la serie de animación Futurama, titulada Futurama: La bestia con un millón de espaldas, el profesor Farnsworth, y su rival el profesor Wernstrom, dicen que han conseguido una prueba elemental de la conjetura de GoldbachOtro punto de conexión parece haberse establecido con los números primos gemelos. Recordemos que, como todos los números pares, a excepción del 2, son números compuestos, no primos, entonces lo más cerca que pueden estar dos números primos, salvo el 2 y el 3 que están pegados, es con solo un número par entre ellos. Y precisamente, a las parejas de números primos que están tan cerca, se les llama números primos gemelos (para más información puede verse la entrada Números primos gemelos, parientes y sexis (1)), como las parejas 11 y 13, 17 y 19, o 59 y 61.
De forma análoga, recordemos que los números pares no son números de la suerte (en este caso, ni siquiera el 2), se pueden definir los números de la suerte gemelos, como las parejas 7 y 9, 73 y 75, o 169 y 171. El gran divulgador de las matemáticas estadounidense Martin Gardner (1914-2010), en su artículo Lucky numbers and 2187 / Los números de la suerte y el 2187, afirmaba que “la cantidad de parejas de números de la suerte gemelos es igual a la cantidad de parejas de números primos gemelos”. A continuación, incluimos las parejas de números primos, respectivamente, números de la suerte, gemelos menores que 1.000.
Parejas de números primos gemelos menores que 1.000, que son 35:
(3, 5) (5, 7) (11, 13) (17, 19) (29, 31) (41, 43) (59, 61) (71, 73), (101, 103) (107, 109) (137, 139) (149, 151) (179, 181) (191, 193) (197, 199) (227, 229) (239, 241) (269, 271) (281, 283) (311, 313) (347, 349) (419, 421) (431, 433) (461, 463), (521, 523) (569, 571) (599, 601) (617, 619) (641, 643) (659, 661) (809, 811) (821, 823) (827, 829) (857, 859) (881, 883)
Parejas de números de la suerte gemelos menores que 1.000, que son 33:
(1, 3), (7, 9), (13, 15), (31, 33), (49, 51), (67, 69), (73, 75), (127, 129), (133, 135), (169, 171), (193, 195), (235, 237), (259, 261), (283, 285), (319, 321), (391, 393), (427, 429), (475, 477), (487, 489), (517, 519), (535, 537), (577, 579), (613, 615), (619, 621), (643, 645), (727, 729), (739, 741), (883, 885), (895, 897), (925, 927), (931, 933), (979, 981), (991, 993).
Y, como no podía ser de otra manera, el siguiente tema de interés ha sido el estudio de los números primos de la suerte, pero ese es otro tema del que quizás hablemos en el futuro.
Homenaje a Martin GardnerVamos a terminar esta entrada con un número de la suerte especial, el número 2.187, que era el número de la casa en la que vivía el divulgador de las matemáticas Martin Gardner en su niñez, en Tulsa (Oklahoma, Estados Unidos). En su artículo Lucky numbers and 2187 / Los números de la suerte y el 2187, Martin Gardner habla de las curiosas propiedades de este número de la suerte. Como afirma el Dr. Matrix (alter ego de Martin Gardner en sus artículos), “todos los números tienen infinitas propiedades inusuales”, veamos algunas del número 2.187.
A. El número 2.187 es igual a 3 elevado a la 7 (es decir, 37), luego si escribimos este número en base 3, se representará como 10.000.000 (en base 3).
B. Si intercambiamos la posición de los dos últimos dígitos del 2.187 se obtiene 2.178, que multiplicado por 4 nos da 8.712, que es el número anterior (2.178) cambiado de orden (de atrás hacia delante). Más aún, si restamos 2.187 a 9.999 se obtiene 7.812, que es el mismo número, pero cambiado el orden. Seguimos con los dígitos del número 2.187, que son 2, 1, 8 y 7, y formamos los números 21 y 87, que multiplicados nos da 1.827, un número con los mismos dígitos, pero permutados.
C. Vamos a terminar con una curiosa torre de sumas que aparece al sumarle al número 2.187 números formados por las cifras básicas, empezando por el 1, en orden creciente, desde 1.234 hasta 123.456.789.
2.187 + 1.234 = 3.421
2.187 + 12.345 = 14.532
2.187 + 123.456 = 125.643
2.187 + 1.234.567 = 1.236.754
2.187 + 12.345.678 = 12.347.865
2.187 + 123.456.789 = 123.458.976
Como puede observarse, al sumar esos números con las cifras básicas en orden creciente se obtiene un número con los mismos dígitos que el número que se ha sumado al 2187, pero permutado el orden.
Bibliografía
1.- R. Ibáñez, La gran familia de los números, Libros de la Catarata – ICMAT – FESPM, 2021.
2.- Clifford A. Pickover, El prodigio de los números. Desafíos, paradojas y curiosidades matemáticas, Ma Non Troppo (ediciones Robinbook), 2002.
3.- Verna Gardiner, R. Lazarus, N. Metropolis and S. Ulam, On Certain Sequences of Integers Defined by Sieves, Mathematics Magazine, Vol. 29, No. 3, pp. 117-122, 1956.
4.- D. Hawkins and W. E. Briggs, The Lucky Number Theorem, Mathematics Magazine, Vol. 31, No. 2, pp. 81-84, 1957.
5.- Martin Gardner, Lucky numbers and 2187, Mathematical Intelligencer, Vol. 19, n. 2, pp. 26-29, 1997.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Los números de la suerte se ha escrito en Cuaderno de Cultura Científica.
Las células de todo el cuerpo hablan entre sí sobre el envejecimiento
Los biólogos han descubierto que las mitocondrias de diferentes tejidos se comunican entre sí para reparar las células dañadas. Cuando su señal falla, el reloj biológico comienza a detenerse.
Un artículo de Viviane Callier. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.
Las señales químicas liberadas por las mitocondrias se comunican de alguna manera a las mitocondrias de otros tejidos, lo que influye en la rapidez con la que envejecen los organismos. Ilustración: Kristina Armitage / Quanta MagazineEl envejecimiento puede parecer un proceso no regulado: a medida que avanza el tiempo, nuestras células y cuerpos inevitablemente acumulan golpes y abolladuras que causan disfunciones, fallos y, en última instancia, la muerte. Sin embargo, en 1993 un descubrimiento trastocó esta interpretación de los hechos. Los investigadores encontraron una mutación en un solo gen que duplica la esperanza de vida de un gusano; trabajos posteriores demostraron que varios genes relacionados, todos ellos implicados en la respuesta a la insulina, son reguladores clave del envejecimiento en una gran cantidad de animales, desde gusanos y moscas hasta humanos. El descubrimiento sugería que el envejecimiento no es un proceso aleatorio (de hecho, lo regulan genes específicos) y abría la puerta a más investigaciones sobre cómo se produce el envejecimiento a nivel molecular.
Recientemente, una serie de artículos han documentado una nueva vía bioquímica que regula el envejecimiento, que se basa en señales transmitidas entre las mitocondrias, los orgánulos conocidos por ser el centro energético de la célula. Trabajando con gusanos, los investigadores descubrieron que el daño a las mitocondrias en las células cerebrales desencadenaba una respuesta de reparación que luego se amplificaba, desencadenando reacciones similares en las mitocondrias de todo el cuerpo del gusano. El efecto de esta actividad de reparación fue extender la esperanza de vida del organismo: los gusanos con daño mitocondrial reparado vivieron un 50% más.
Es más, las células de la línea germinal (las células que producen óvulos y espermatozoides) son fundamentales para este sistema de comunicación antienvejecimiento. Es un hallazgo que añade nuevas dimensiones a las preocupaciones sobre la fertilidad implícitas cuando la gente habla sobre el envejecimiento y su «reloj biológico». Algunos de los hallazgos se han publicado en Science Advances y otros en el servidor de preimpresión científica biorxiv.org este otoño.
La investigación se basa en trabajos recientes que sugieren que las mitocondrias son orgánulos sociales que pueden comunicarse entre sí incluso cuando se encuentran en tejidos diferentes. En esencia, las mitocondrias funcionan como walkie-talkies celulares, enviando mensajes por todo el cuerpo que influyen en la supervivencia y la duración de la vida de todo el organismo.
“Lo importante aquí es que además de los programas genéticos, también hay un factor muy importante para regular el envejecimiento, que es la comunicación entre los tejidos”, explica David Vílchez, que estudia el envejecimiento en la Universidad de Colonia y no ha participado en el estudio.
El biólogo celular Andrew Dillin descubrió los primeros indicios de esta nueva vía que regula la duración de la vida hace aproximadamente una década. Estaba buscando genes que prolongaran la vida en los gusanos Caenorhabditis elegans cuando descubrió que dañar genéticamente las mitocondrias extendía la vida de los gusanos en un 50%.
Esto fue inesperado. Dillin había asumido que las mitocondrias defectuosas acelerarían la muerte en lugar de prolongar la vida; después de todo, las mitocondrias son fundamentales para el funcionamiento celular. Sin embargo, por alguna razón, el deterioro del buen funcionamiento de las mitocondrias obligaba a los gusanos a vivir más tiempo.
Más intrigante fue el hecho de que las mitocondrias dañadas en el sistema nervioso de los gusanos parecían estar impulsando el efecto. «Esto significa en realidad que algunas mitocondrias son más importantes que otras», afirma Dillin, que ahora es profesor en la Universidad de California, Berkeley. «Las neuronas dictan esto sobre el resto del organismo, y esto fue realmente sorprendente».
Durante la última década el biólogo celular Andrew Dillin ha descubierto los detalles bioquímicos de una nueva vía que regula el envejecimiento, en la que las mitocondrias de las células de todo el cuerpo se comunican sobre la salud celular. Foto: Cortesía de Andrew DillinAhora, Dillin y su equipo han ampliado ese hallazgo al descubrir nuevos detalles sobre cómo las mitocondrias del cerebro se comunican con las células de todo el cuerpo del gusano para prolongar la vida.
En primer lugar, tenía que entender por qué un daño a las mitocondrias del cerebro podría tener un efecto beneficioso en el organismo. El proceso de generación de energía de una mitocondria requiere una maquinaria molecular extremadamente compleja con docenas de partes proteicas diferentes. Cuando las cosas van mal, como cuando faltan algunos componentes o están mal plegados, las mitocondrias activan una respuesta de estrés, conocida como respuesta de proteína desplegada, que administra enzimas reparadoras para ayudar a que los complejos se ensamblen adecuadamente y restablezcan la función mitocondrial. De esta forma, la respuesta de proteína desplegada mantiene a las células sanas.
Dillin esperaba que este proceso se desarrollara solo dentro de las neuronas con mitocondrias dañadas. Sin embargo, observó que las células de otros tejidos del cuerpo del gusano también activaban respuestas de reparación a pesar de que sus mitocondrias estaban intactas.
Es esta actividad reparadora la que ayudó a los gusanos a vivir más tiempo. Al igual que llevar un coche al mecánico con regularidad, la respuesta de proteína desplegada parecía mantener las células en buen estado de servicio y funcionar como limpieza antienvejecimiento. Lo que seguía siendo un misterio era cómo se comunicaba esta respuesta de proteína desplegada al resto del organismo.
Después de algunas investigaciones, el equipo de Dillin descubrió que las mitocondrias de las neuronas estresadas utilizaban vesículas (recipientes en forma de burbujas que mueven materiales por la célula o entre células) para transportar una señal llamada Wnt más allá de las células nerviosas a otras células del cuerpo. Los biólogos ya sabían que Wnt desempeña un papel en la configuración del patrón corporal durante el desarrollo embrionario temprano, durante el que también desencadena procesos de reparación como la respuesta de proteína desplegada. Aún así, ¿cómo podría la señalización Wnt, cuando se activa en un adulto, evitar la activación del programa embrionario?
Dillin sospechaba que tenía que haber otra señal con la que Wnt interactuaba. Después de seguir trabajando, los investigadores descubrieron que un gen expresado en las mitocondrias de la línea germinal (y en ninguna otra mitocondria) puede interrumpir los procesos de desarrollo de Wnt. Este resultado sugería que las células de la línea germinal desempeñan funciones críticas en la transmisión de la señal Wnt entre el sistema nervioso y los tejidos del resto del cuerpo.
«La línea germinal es absolutamente esencial para esto», señala Dillin. Sin embargo, no está claro si las mitocondrias de la línea germinal actúan como amplificadores, recibiendo la señal de las mitocondrias del cerebro y transmitiéndola a otros tejidos, o si los tejidos receptores están «escuchando» señales de ambas fuentes.
De cualquier manera, la fuerza de la señal de la línea germinal regula la esperanza de vida del organismo, afirma Dillin. A medida que un gusano envejece, la calidad de sus óvulos o espermatozoides disminuye, lo que llamamos el tictac de un reloj biológico. El declive también se refleja en la capacidad cambiante de las células germinales para transmitir señales desde las mitocondrias del cerebro, sugiere. A medida que el gusano envejece, su línea germinal transmite la señal de reparación con menor eficacia, por lo que su cuerpo también decae.
Los científicos aún no saben si estos hallazgos se aplican a los humanos y a cómo envejecemos. Aun así, la hipótesis tiene sentido desde un punto de vista evolutivo más amplio, apunta Dillin. Mientras las células germinales están sanas, envían señales de supervivencia para garantizar que su organismo huésped sobreviva para reproducirse. Pero a medida que la calidad de las células germinales disminuye, no hay ninguna razón evolutiva para seguir extendiendo la vida; desde la perspectiva de la evolución, la vida existe para reproducirse.
El hecho de que las mitocondrias puedan hablar entre sí puede parecer algo alarmante, pero tiene una explicación. Hace mucho tiempo, las mitocondrias eran bacterias de vida libre que unían fuerzas con otro tipo de célula primitiva para trabajar juntas en lo que se convirtió en nuestras modernas células complejas. Por lo tanto, su capacidad para comunicarse es probablemente una reliquia del ancestro bacteriano de vida libre de las mitocondrias.
«Esta pequeña cosa que ha estado funcionando dentro de las células durante miles de millones de años todavía conserva sus orígenes bacterianos», explica Dillin. Y si su investigación con gusanos se sostiene en organismos más complejos como los humanos, es posible que tus mitocondrias estén hablando en este momento de tu edad.
El artículo original, Cells Across the Body Talk to Each Other About Aging, se publicó el 8 de enero de 2023 en Quanta Magazine.
Traducido por César Tomé López
El artículo Las células de todo el cuerpo hablan entre sí sobre el envejecimiento se ha escrito en Cuaderno de Cultura Científica.
La tectónica de placas de Venus
Venus es un planeta extraño para nuestros estándares: A pesar de tener un tamaño y una composición parecida a la Tierra, son dos mundos totalmente diferentes en casi todos los aspectos que podamos imaginar, desde su achicharrante atmósfera hasta su relieve, cuya geografía tampoco nos recuerda mucho a ningún paisaje terrestre, salvo raras excepciones.
Pero, ¿y la geología? ¿Podemos compararla? Claro, pero lo cierto es que hasta en este aspecto tenemos dificultades, ya que la escasez de misiones modernas y la dificultad que nos plantea el estudio de su superficie lo convierten en un planeta inhóspito hasta para la investigación, aunque afortunadamente, si todo va bien, en la próxima década podríamos tener una gran cantidad de datos fruto de las misiones espaciales, como DAVINCI, VERITAS o EnVision.
Lo que está claro es que si comparamos Venus, Marte y la Tierra -por situar los planetas interiores más similares- su camino evolutivo los ha llevado a ser lugares radicalmente diferentes. Desde el punto de vista geológico, una de las diferencias más marcadas es la total ausencia -al menos en la actualidad- de una tectónica de placas… ¿es acaso la Tierra un bicho raro entre los planetas?
Venus observado por la sonda MESSENGER en junio de 2007 durante su travesía hacia Mercurio. Ni un atisbo de su superficie es visible debido a su opacidad atmosférica. Cortesía de NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.Hoy nuestro viaje para comprender mejor la geología de Venus va a comenzar en su atmósfera. Cuando pensamos en la atmósfera de cualquier cuerpo planetario, es importante tener en cuenta que estas tienen un vínculo esencial con el interior, ya que una gran parte de los gases que forman las atmósferas actuales proceden directamente de la degasificación que ocurre en las zonas volcánicas, conectando de este modo en interior del planeta y su exterior. Por norma general, sería muy difícil que un planeta tuviese atmósfera si de algún modo su superficie fuese “impermeable” y no dejase escapar los gases desde su interior. Obviamente hay excepciones, pero de eso igual hablamos en otro momento.
Y es aquí donde entra un nuevo estudio publicado en Nature Astronomy… ¿Podría estar relacionada la actual composición y presión atmosférica con la existencia de una tectónica de placas en el pasado? Como hemos mencionado más arriba, hoy día Venus carece de una tectónica de placas, estando su corteza formada por una gran placa, al igual que también ocurre en Marte.
Este tipo de régimen tectónico limita mucho la interacción entre el interior y el exterior del planeta, ya que, por ejemplo, no existen zonas de subducción en las cuales se introduzca materia hacia el interior, creando una serie de ciclos geológicos y geoquímicos de gran importancia y que, en la Tierra, entre otras cosas, permiten una regulación climática a gran escala y el ciclo de elementos -entre los distintos reservorios de nuestro planeta- esenciales para la vida. O lo que es lo mismo, sirve como un gran mecanismo regulador que hace nuestro planeta un lugar más habitable.
Quizás lo que más nos recuerde de Venus a la Tierra en la actualidad sean sus morfologías volcánicas, como este pequeño volcán situado en Parga Chasma. Cortesía de NASA/JPL.Que hoy Venus sea así no quiere decir que siempre haya funcionado de la misma manera. Y es que estos investigadores han realizado numerosas simulaciones de la atmósfera del planeta para saber el porqué hoy día es como es, llegando a la conclusión que para tener la abundancia de nitrógeno y dióxido de carbono que hoy día observamos, la única forma de lograrlo es si Venus tuvo una tectónica de placas entre hace 4500 y 3500 millones de años. No una tectónica de placas tan desarrollada como la que tenemos hoy en la Tierra, pero al menos sí una incipiente.
Este hecho podría indicarnos que Venus en esos primeros momentos fue un planeta muy similar a la Tierra y que probablemente ambos planetas habrían iniciado la tectónica de placas en un marco temporal muy similar, pero que Venus habría comenzado a transformarse con el paso del tiempo.
¿Qué quiere decir esto? Pues que probablemente Venus sufrió una evolución climática y geodinámica de una manera más o menos simultánea: al mismo tiempo que Venus fue calentándose y perdiendo su agua, la ausencia de esta y las altas temperaturas pudieron dificultar el mantenimiento de los mecanismos que pusieron en marcha la tectónica de placas.
Y es que no podemos olvidar que el agua juega dos papeles fundamentales dentro de ese mecanismo: por un lado, en la zona más superficial de las cortezas planetarias podría ayudar a facilitar la fracturación de esta -y, por lo tanto, iniciando el ciclo de la subducción- y por otro, ya más en el interior del planeta, la hidratación de en capas como la astenosfera facilitaría su deformación y movimiento a escala geológica.
¿Canales de agua? No, canales de lava. Es curioso como distintos procesos geológicos son capaces de crear morfologías similares en planetas diferentes. NASA/JPL.Este nuevo estudio abre varias cuestiones bastante profundas: Por un lado, tenemos el hecho de que los planetas no tendrían por qué tener un régimen geodinámico único a lo largo de toda su vida, sino que por una serie de cambios podemos pasar de un planeta con tectónica de placas a otro sin tectónica de placas, algo muy importante a considerar a la hora de estudiar la evolución de nuestro entorno planetario.
Por otro, si Venus fue más parecido a la Tierra en el pasado que lo es hoy, pudo tener un aspecto astrobiológico que tenemos que considerar, puesto que teniendo en cuenta que es muy similar en tamaño y composición al nuestro, también podrían haberse dado las condiciones para el origen de la vida, pero también que planetas que han sido habitables -en el sentido de unas condiciones como las nuestras- pueden dejar de serlo y quizás, viceversa.
Por último, este estudio pone de manifiesto que es posible que a través del estudio de las atmósferas podamos inferir no solo el estado actual de los planetas -no solo en nuestro Sistema Solar, sino también pienso en exoplanetas- a nivel geológico, sino que quizás también podamos tirar hacia atrás la línea del tiempo y conocer cómo fue su geología y si el planeta pudo ser habitable también en el pasado.
Referencias:
Weller, M. B., Evans, A. J., Ibarra, D. E., & Johnson, A. (2023) Venus’s atmospheric nitrogen explained by ancient plate tectonics. Nature Astronomy doi: 10.1038/s41550-023-02102-w
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.
El artículo La tectónica de placas de Venus se ha escrito en Cuaderno de Cultura Científica.
El año que los Reyes Magos me regalaron un microscopio
Los Reyes Magos de 1978, cuando yo tenía 14 años recién cumplidos, me trajeron un juguete inesperado: un microscopio, que todavía conservo.
Mi microscopio de juguete Bianchi 2002, regalo de Reyes de 1978. Fotografía: Lluís MontoliuDurante el curso 1977-78 yo estaba cursando 1º de B.U.P., lo que equivale al 3º de la E.S.O. actual. Nuestro profesor de ciencias, Don Saturnino Valle, nos había hablado por vez primera de genética, de los experimentos de Mendel, y me había dejado fascinado. Me propuse que ese y no otro sería mi destino profesional, algo que orgullosamente he conseguido, trabajando en lo que quería e investigando sobre nuestros genes y genomas.
Nuestro profesor nos mandó un trabajo escrito sobre el tema, por grupos. El grupito de amigos del que yo formaba parte nos esmeramos y nuestro trabajo resultó destacado por el profesor.
Como premio nos entregó un sencillo atlas de histología con imágenes microscópicas impresas de preparaciones de plantas y animales, lo sorteamos y acabó en mis manos. De nuevo la fascinación, el descubrimiento de las células, de los núcleos de las células, de las formas caprichosas que adquirían en los tejidos.
En el colegio teníamos microscopios, pero en mi casa lógicamente no. Durante ese curso, antes de la celebración de las navidades, debí dar la lata mucho en casa sobre este tema. Tanto que sus majestades los Reyes Magos estuvieron atentos y, cuando llegó el 6 de enero, el regalo que me encontré asociado a mi nombre era un estuche de plástico rojo con el panel frontal transparente. Contenía el instrumento con el que había imaginado que podría seguir observando preparaciones microscópicas.
El microscopio traía una caja de preparaciones de órganos de insectos (alas de hormiga, de abeja, patas de moscas…) que, al observarlas a mayor aumento, mostraban todo un abanico de detalles invisibles a simple vista.
Preparaciones microscópicas de órganos de insectos que traía el microscopio de juguete. Fotografía: Lluís MontoliuEl despertar de una vocaciónSeguramente debí recibir otros regalos ese día, pero no recuerdo ninguno más. Hay regalos que nos impactan sobremanera, por lo que significan, por cómo pueden ayudar a moldear la vida futura que afrontaremos. Llamémoslo vocación, interés, anhelo, deseo o sueño. Pero sí, hay objetos determinantes en la historia vital de cada uno de nosotros.
Este microscopio es uno de los míos, seguramente uno de los que más contribuyó a que optara por dedicarme a lo que me he dedicado: a ser un investigador científico.
Bianchi 2002El microscopio Bianchi 2002, de nombre pretencioso y futurista, estaba hecho enteramente de plástico. Había sido fabricado a finales de los años 70 y no era un prodigio de la técnica, pero cumplía fielmente su función.
Tenía dos oculares intercambiables, con diferentes aumentos, y cuatro objetivos de 60x, 150x, 200x y 400x aumentos. Eso le permitía llegar a unos aumentos considerables, de más de 1 000 veces (aunque la calidad de la imagen se empobrecía considerablemente a medida que incrementaban los aumentos del objetivo).
Para iluminar la preparación tenía un espejo (como los que usaba Don Santiago Ramón y Cajal a principios del siglo pasado) que debía situarse orientado a una fuente de luz, natural o artificial, como una lámpara, para concentrar el reflejo en el centro de la preparación y poder visualizar la muestra. Y claro, con más aumentos se requería más luz, lo cual no siempre era posible.
Cuando uno trastea con estos microscopios y con el espejo se percata de las dificultades que tuvieron que abordar nuestros primeros sabios microscopistas, siempre a la búsqueda de fuentes de luz y del ángulo correcto para poder ver, con las lentes de aumento del aparato, todo aquello que escapaba a la visión con el ojo desnudo, tan limitado para resolver objetos e imágenes diminutas.
A pesar de que los microscopios de Cajal eran infinitamente mejores que este, en especial por las lentes ópticas que incluían, de gran calidad, el sistema de iluminación que usaba era el mismo que el de este microscopio de juguete: un espejo orientable.
Preparaciones que aún conservoUnos años después, completada mi enseñanza secundaria, entré a estudiar Ciencias Biológicas en la Universidad de Barcelona. Tras terminar el primer curso, que incluía la asignatura de Biología, impartida por la profesora Mercè Durfort, catedrática de citología e histología recientemente fallecida, volví a enamorarme de las imágenes microscópicas y me apunté a un curso práctico que ella ofrecía en el Instituto Químico de Sarrià. Era el verano de 1982, y aprendimos a preparar y a observar múltiples preparaciones animales y vegetales. Preparaciones microscópicas que guardo celosamente todavía y que entonces pude seguir observando en mi casa gracias al microscopio de juguete que me habían regalado cuatro años antes.
Preparaciones microscópicas realizadas por el autor durante el verano de 1982. Fotografía: Lluís MontoliuSupongo que todos recordamos regalos de Reyes especiales. Este microscopio sin duda fue, para mí, uno de ellos. Tras múltiples mudanzas, cambios de país, y tras casi 46 años, sigo conservándolo. Acudir a la bodega-trastero de casa para reencontrarme con él con motivo de este artículo ha sido una alegría.
Sobre el autor: Lluís Montoliu, Investigador científico del CSIC, Centro Nacional de Biotecnología (CNB – CSIC)
Este artículo fue publicado originalmente en The Conversation. Artículo original.
El artículo El año que los Reyes Magos me regalaron un microscopio se ha escrito en Cuaderno de Cultura Científica.
Alimentos sin gluten: la verdad y nada más que la verdad
La intolerancia al gluten es una afección que dura toda la vida y que, a día de hoy, afecta al 1% de la población. Además, la mejora en los protocolos de detección ha hecho que más personas sean conscientes de su intolerancia a la proteína.
Como consecuencia, el interés sobre los alimentos que contienen gluten ha aumentado y los supuestos beneficios de una dieta libre de esa proteína se han convertido en tema de debate. Pero, ¿son realmente más sanas ese tipo de dietas? Estas y otras dudas sobre los alimentos sin gluten son el eje de la charla “Alimentos sin gluten: la verdad y nada más que la verdad” que pronunció Jonatan Miranda.
La charla tuvo lugar el 13 de diciembre de 2023 en la Biblioteca Bidebarrieta, dentro del ciclo de conferencias científicas organizadas por la Cátedra de Cultura Científica de la Universidad del País Vasco y la Biblioteca Bidebarrieta.
Jonatan Miranda es profesor titular del departamento de Farmacia e Investigación Alimentaria de la Universidad del País Vasco. Actualmente es el investigador principal proyecto APPINBREAD-3S del Ministerio de Ciencia e Innovación. Además, es miembro del grupo de investigación Gluten3S y participa en el Plan de Investigación Vasco de la Granja a la Mesa.
Edición realizada por César Tomé López
El artículo Alimentos sin gluten: la verdad y nada más que la verdad se ha escrito en Cuaderno de Cultura Científica.
El ácido salvianólico evita la inflamación que provoca el gluten en el intestino
Un estudio liderado por la investigadora de Ikerbasque Ainara Castellanos, del departamento de Genética, Antropología Física y Fisiología Animal de la UPV/EHU, ha demostrado que el ácido salvianólico, un compuesto presente en la salvia, tiene la capacidad de reducir la inflamación que provoca el gluten en las células intestinales, y que no produce efectos secundarios. Aunque los resultados abren la puerta a nuevas estrategias terapéuticas, todavía quedan por investigar otros aspectos de la enfermedad celíaca.
Imagen de fluorescencia de una muestra intestinal. Fuente: Ainara Castellanos / UPV/EHULa enfermedad celíaca es un trastorno inflamatorio y autoinmune crónico que afecta principalmente al intestino delgado y que se desarrolla en individuos genéticamente susceptibles tras la ingesta de gluten (conjunto de proteínas que forma parte de algunos cereales). El único tratamiento eficaz a día de hoy para la enfermedad celiaca es una dieta sin gluten estricta y de por vida. Sin embargo, no es fácil cumplir esta dieta y pueden surgir problemas, por lo que es necesario encontrar terapias complementarias.
Según un artículo publicado en la prestigiosa revista científica Gut, investigadores de la UPV/EHU han demostrado que un compuesto natural tiene la capacidad de reducir la inflamación que provoca el gluten en las células intestinales y que, aparentemente, no produce efectos secundarios.
Hace un par de años, investigadores del Departamento de Genética, Antropología Física y Fisiología Animal de la Universidad del País Vasco, liderados por la investigadora Ikerbasque Ainara Castellanos, descubrieron que el gluten puede modificar el ARN. Entonces, observaron que el consumo de gluten por parte del ser humano altera el ARN de un gen determinado, lo que se traduce en un aumento de la producción de proteínas XPO1 y de la inflamación del intestino. Este estudio abrió la puerta a nuevas alternativas para tratar la celiaquía y otras enfermedades inflamatorias intestinales, ya que describió nuevas dianas terapéuticas (como la XPO1 y las proteínas que intervienen en la modificación del ARN).
De hecho, a partir de este estudio el equipo de investigación ha observado que el ácido salvianólico inhibe la formación de la proteína XPO1 y que, por tanto, “se interrumpe el proceso inflamatorio”, afirma Castellanos. “Hemos observado en las células que al poner el gluten junto con este compuesto la inflamación disminuye o no aumenta”, explica. Las pruebas con los ratones también han dado resultados muy positivos, y en el último paso “hemos tratado con ácido salvianólico muestras intestinales de sujetos celíacos que no estaban siguiendo una dieta estricta, y hemos observado que al añadir este compuesto disminuye la inflamación en la propia muestra intestinal”.
El ácido salvianólico es un compuesto naturalEl ácido salvianólico es un compuesto natural presente en la salvia, muy frecuente en la dieta china como infusión. Castellanos valora esto de forma positiva: “En realidad sabemos que no tiene efectos secundarios; es natural, sale de la planta, no hay que sintetizarlo. Si se trata de un compuesto natural con efectos antiinflamatorios, es algo que se puede añadir a la dieta”.
La investigadora está muy contenta con el descubrimiento, pero se muestra prudente: “No sé si llegará a ser tratamiento, porque en nuestro entorno se consume mucho gluten, pero estoy segura de que es un complemento de gran ayuda en la dieta. En la actualidad se están testando una serie de sustancias para la enfermedad celíaca. Si son útiles, la combinación de esta investigación con ellos nos permitirá dar grandes pasos”.
Castellanos ha señalado que aún es necesario explorar otras vías convencionales de la enfermedad celíaca para avanzar en esta investigación, pero “abre el camino para desarrollar nuevas estrategias terapéuticas y poner en marcha investigaciones para la enfermedad celíaca y otras enfermedades inflamatorias intestinales, como la enfermedad de Crohn y la colitis”.
La investigadora quiere reivindicar la importancia de la investigación básica. “Partimos de una investigación básica en la que empezamos a buscar mecanismos moleculares que describan una variante genética, y hemos sido capaces de demostrar, no a nivel de paciente pero sí a nivel celular, un hallazgo que podría llegar a ser un tratamiento”.
Referencia:
Ane Olazagoitia-Garmendia, Henar Rojas-Márquez, Maria del Mar Romero, Pamela Ruiz, Aloña Agirre-Lizaso, Yantao Chen, Maria Jesus Perugorria, Laura Herrero, Dolors Serra, Cheng Luo, Luis Bujanda, Chuan He, Ainara Castellanos-Rubio (2023) Inhibition of YTHDF1 by salvianolic acid overcomes gluten-induced intestinal inflammation GUT doi: 10.1136/gutjnl-2023-330459
El artículo El ácido salvianólico evita la inflamación que provoca el gluten en el intestino se ha escrito en Cuaderno de Cultura Científica.
Aprendiendo Geología con los mensajes presidenciales
En estas fechas de cambio de año llegan a nuestras televisiones una de las mayores tradiciones audiovisuales. No, no me refiero a las películas estadounidenses de sobremesa sobre Papá Noel / Santa Claus. Me refiero a los mensajes de fin de año de los y las presidentas autonómicas. Este año destaca el de la Región de Murcia, rodado en Caravaca de la Cruz.
FuenteReconozco que nunca hago ni caso de lo que dicen, ni siquiera a la presidenta de mi querida tierruca, pero sí que me fijo mucho en el lugar escogido para grabar su mensaje. En concreto, en cualquier detalle geológico que contenga ese lugar. Y, aunque en el vídeo de Cantabria salían representaciones de Altamira, que me permiten hablar largo y tendido sobre Geología, este año me ha llamado mucho la atención el de la Región de Murcia.
A) Aspecto del Santuario de la Vera Cruz de Caravaca, donde destaca el pórtico de entrada. B) Detalle de la fachada del pórtico de entrada del santuario, donde se observan los dos tipos de rocas ornamentales utilizadas en su construcción. Fuentes A) Tamorlan / Wikimedia Commons y B) Vincent Lostanlen / Wikimedia CommonsLa localidad escogida por el presidente murciano para grabar su discurso navideño de 2023 ha sido Caravaca de la Cruz. Ya que 2024 será Año Santo o Año Jubilar, ha querido darle protagonismo al Santuario de la Vera Cruz de Caravaca apareciendo delante de su impresionante pórtico de estilo barroco. Y, sin duda, una de las cosas que más carácter le dan al mismo es el uso de dos tipos de rocas ornamentales que juegan con la alternancia de colores grises y rojizos.
Mirando los documentos de la época sobre la construcción del pórtico, dicen que han utilizado «piedra de jaspe» extraída de canteras cercanas a Caravaca. Geológicamente hablando, el jaspe es un mineral, variedad del cuarzo (SiO2), con un origen sedimentario, formado por el enterramiento y transformación de acumulaciones de caparazones de organismos silíceos. Pero, antiguamente, la palabra jaspe también se utilizaba como un adjetivo, lo que hoy conocemos como «jaspeado», para describir aquellas rocas que tenían vetas de colores que les daban un aspecto muy hermoso una vez pulidas. Y esto último es lo que nos encontramos en este pórtico.
Rocas de los alrededores de CaravacaEn realidad, en el pórtico del santuario aparecen dos tipos de rocas carbonatadas extraídas de diversas canteras situadas en los alrededores de Caravaca, en concreto a las afueras de la localidad cercana de Cehegín. Por un lado, tenemos unas calizas de tonos rojizos y anaranjados formadas en los fondos marinos del Jurásico y que contienen abundantes restos fósiles, especialmente de ammonites y belemnites. La coloración de estos materiales es debida a la presencia de hierro en su composición, que al oxidarse da lugar a diversas variedades tonales del espectro cromático del rojo. Estas rocas se conocen en Geología con el nombre de facies Ammonítico Rosso y son muy habituales en todo el sureste y levante español, donde se han empleado, desde tiempos históricos, como roca ornamental, en este caso bajo la denominación de «Rojo Cehegín» (sí, son el mismo tipo de roca que la variedad ornamental más conocida, el “Rojo Alicante”). Por otro lado, están las rocas grises que se alternan con las anaranjadas para generar contrastes en las figuras del pórtico. En este caso hay algunas dudas sobre su origen exacto, ya que podría tratarse de las mismas calizas jurásicas pero que no presentan hierro en su composición, por lo que mantienen una coloración grisácea, y que también han sido explotadas comercialmente (habiendo sido nombrada como variedad «Gris Cehegín»), o podría tratarse de alguna de las otras rocas carbonatadas (calizas y dolomías) marinas mesozoicas que afloran en la zona y que se siguen extrayendo de numerosas canteras incluso en la actualidad.
A) Aspecto general y B) detalle de la localización del límite Hauteriviense-Barremiense (Cretácico Inferior) en la sección geológica del río Argos (a las afueras de Caravaca de la Cruz), recientemente ratificado como Estratotipo Global. Fuente: Company, M. et al. (2023) The Global Boundary Stratotype Section and Point (GSSP) of the Barremian Stage at Río Argos (Caravaca, SE Spain) Episodes.Pero no solo de rocas ornamentales vive la Geología de Caravaca de la Cruz, ya que 2023 ha sido un año geológicamente muy especial para esta localidad. En el mes de marzo, la Comisión Estratigráfica Internacional (ICS por sus siglas en inglés) de la Unión Internacional de Ciencias Geológicas (IUGS en el idioma de Shakespeare) ratificó la concesión del Estratotipo Global del Límite Hauteriviense-Barremiense (Cretácico Inferior, hace unos 126 Millones de años) a la sección del barranco del cauce del río Argos, próximo a la localidad de Caravaca de la Cruz. De esta manera, se convierte en el sexto clavo dorado español, dotando a la región de Murcia de un status geológico superior a nivel mundial. Pero, si os dais un paseo por la zona aún no veréis nada brillando entre las rocas, ya que se espera que la celebración oficial de la colocación del clavo y de la placa que lo acompaña se realice a mediados de este año 2024.
Creo que os he dado un buen par de excusas geológicas para visitar Caravaca de la Cruz en este Año Jubilar. Así, mientras disfrutáis de su maravillosa gastronomía (recordad no mordisquear la hoja de limón de los paparajotes) podéis también sumergiros en antiguos mares mesozoicos sin necesidad de una máquina para viaja en el tiempo.
Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU
El artículo Aprendiendo Geología con los mensajes presidenciales se ha escrito en Cuaderno de Cultura Científica.
Los números de…
Hoy hablamos de números, algunos difíciles de calcular, otros asociados a problemas concretos, pero siempre sorprendentes y originales. Empecemos.
Los cinco números de Keith con 36 dígitos.Los números de… Keith
El número 197 tiene una curiosa propiedad:
1 + 9 + 7 = 17,
9 + 7 + 17 = 33,
7 + 17 + 33 = 57,
17 + 33 + 57 = 107, y
33 + 57 + 107 = 197.
Y por ello se llama un número de Keith.
Un número de Keith (o repfigit, por “repetitive Fibonacci-like digit”) es un número natural N (mayor que 9) con k dígitos, que verifica la propiedad que describimos a continuación. Formamos una sucesión {x(n)}cuyos primeros términos son los k dígitos de M y los siguientes términos x(n)se consiguen sumando los k anteriores, es decir,
x(n) = x(n-1) + x(n-2) + x(n-3) + … + x(n-k).
Cuando el número M es uno de los términos de la sucesión, se llama un número repfigit. Así, los primeros términos de la sucesión asociada a 197 serían:
{1, 7, 9, 17, 33, 57, 107, 197, 361, 665, …}.
Los números repfigit toman también el nombre de su “inventor”, el matemático Mike Keith, quien los definió en un artículo publicado en 1987. Estos números, que pueden definirse en cualquier base de numeración, requieren herramientas computacionales para encontrarse. En su página web, Keith proporciona un listado de los primeros números repfigit. Como suele suceder, muchas personas intentan contribuir a estas búsquedas. Parece que el último hallazgo exitoso es de diciembre de 2022, fecha en la que el matemático Toon Baeyens, de la Universidad de Gante (Bélgica), encontró todos los números Keith de 35 y 36 dígitos. ¿A lo mejor te apetece contribuir a este gran reto?
Los números de… BorjaEn este caso, se trata de encontrar la edad de Borja, el número de hijas e hijos que tiene, y la medida de su barco conociendo los siguientes datos:
- El producto de los tres números buscados es 32 118.
- La eslora del barco se mide en pies (y tiene varios pies).
- Borja tiene hijos e hijas.
- Borja tiene más años que hijos, aunque aún no tiene cien años.
Los factores primos de 32 118 son (todos ellos simples) 2, 3, 53 y 101. Debemos encontrar, entre las descomposiciones en productos de tres factores del número 32 118, aquellas que sean compatibles con el enunciado. Además, eliminamos el número 1 de este producto, porque Borja no tiene un año, su barco posee más de un pie (por B) y es padre de más de una persona (por C).
Las posibles descomposiciones de 32 118 en producto de tres números son las siguientes:
- 6 × 53 × 101,
- 3 × 101 × 106,
- 3 × 53 × 202,
- 2 × 101 × 159,
- 2 × 53 × 303, y
- 2 × 3 × 5353.
Por C), el número mínimo de hijos (totales) es de 4 (al menos dos hijas y dos hijos), así que la única posibilidad es que Borja tenga 53 años, 6 hijas e hijos, y que su barco mida 101 pies de longitud. ¡No parece un mal yate el de Borja!
Los números de… KriegerEn 1938, el estadounidense Samuel Isaac Krieger afirmó que había encontrado un contraejemplo al último teorema de Fermat. Aseguró que había encontrado un número entero n mayor que 2, que verificaba la igualdad:
1324n + 731n= 1961n.
E imitando al matemático Pierre de Fermat en su arrogancia, se negó a decir cuál era ese número. Un periodista del New York Times no tardó en responder que Krieger no podía tener razón. Parece que Krieger, airado, increpó al periodista: «¿Quiere decir que duda de mí?». Y éste, irónico, tampoco quiso revelar su método, respondiendo: «Bueno, cuando llegue el momento se lo explicaré todo».
¿Cómo supo el periodista que Krieger había cometido un error? Basta con observar que 1324n termina necesariamente en 4 o 6, y que 731ny 1961n tienen siempre a 1 como última cifra. Así, 1324n + 731n termina en 5 o 7 y la igualdad es imposible…
Los números de… GaltonEn 1894, el polímata Francis Galton experimentó realizando sumas y restas mediante el olfato. Diseñó un aparato que producía bocanadas de aire perfumado y memorizó sus combinaciones: “Aprendí a asociar dos bocanadas de menta con una bocanada de alcanfor; tres de menta con uno de ácido fénico, y así sucesivamente”.
Tras practicar las adiciones usando estos aromas, pasó a hacer las sumas exclusivamente en su imaginación: “No hubo la menor dificultad para desterrar de la mente todas las imágenes visuales y auditivas, sin dejar nada en la conciencia excepto olores reales o imaginarios. De esta manera, sin llegar a ser muy hábil en el proceso, me convencí de la posibilidad de hacer sumas en sumas simples con considerable rapidez y precisión únicamente por medio de olores imaginarios”.
No tuvo dificultades con la resta, aunque ni siquiera lo intentó con la multiplicación. Además, no contento con el olfato, Galton realizó algunos otros experimentos con diferentes sabores y, como él mismo afirmaba, “la aritmética por el gusto era tan factible como la aritmética mediante el olfato”. ¡Yo, desde luego, prefiero el método clásico!
Referencias
- Keith Numbers, Futility Closet, 20 de noviembre de 2023
- Mike Keith (1987). Repfigit Numbers. Journal of Recreational Mathematics 19 (2): 41–42
- Keith Numbers, página personal de Mike Keith
- Sequence A007629. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation
- Keith Numbers, Dodona
- Profile, Futility Closet, 17 de noviembre de 2023
- Numbers Game, Futility Closet, 10 de diciembre de 2010
- Francis Galton, Arithmetic by Smell, Psychological Review 1:1 (1894) 61-62
- A Nose for Numbers, Futility Closet, 17 de septiembre de 2019
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad
El artículo Los números de… se ha escrito en Cuaderno de Cultura Científica.