S'abonner à flux Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Mis à jour : il y a 44 min 49 sec

El hombre que extrajo pan del aire (pero también mató a millones de personas)

lun, 2021/01/11 - 11:59

Manuel Peinado Lorca

Fritz Haber.

La “revolución verde” impulsada por el “padre de la agricultura moderna”, el ingeniero agrónomo norteamericano Norman Ernest Borlaug, premio Nobel de la Paz en 1970, no hubiera sido posible si cuarenta años antes los campos de cultivo no hubieran experimentado otra revolución cuyo promotor fue a la vez criminal de guerra y responsable de la salvación de la agricultura moderna.

Inspire a fondo. Seguramente crea que está llenando sus pulmones de oxígeno. No es así. Casi el 80 % del aire que respiramos es nitrógeno, el elemento más abundante en la atmósfera, que es vital para nuestra existencia, porque, entre otras cosas, es un componente esencial de ácidos nucleicos y aminoácidos.

La vida orgánica, nuestra vida, es pura química reactiva, pero paradójicamente el nitrógeno es inerte, pues no interactúa con otros elementos. Cuando respiramos, el nitrógeno penetra en los pulmones y vuelve a salir de inmediato sin provocar reacción alguna salvo la de servir como agente diluyente del oxígeno en la respiración.

Para que nos resulte útil debe adoptar otras formas más reactivas, como el amoniaco, y son las bacterias las que hacen ese trabajo para nosotros, fijándolo y transformándolo en nitratos para que pueda ser absorbido por las plantas en uno de los ciclos fundamentales para el mantenimiento de la vida.

La falta de nitrógeno asimilable por las plantas parecía una barrera insalvable a comienzos del siglo XX. Hasta que el químico alemán Fritz Haber inventó los fertilizantes artificiales hace poco más de un siglo, la producción agrícola dependía del uso de abonos de origen natural (salitre, guano y estiércol, fundamentalmente), unos recursos próximos al agotamiento por la creciente demanda de alimentos impulsada por el incremento demográfico.

Imagen de la página 88 de Bulbs, plants, and seeds for autumn planting: 1897.
Archive.org

En 1907, Haber fue el primero en extraer nitrógeno directamente del aire. Como cuenta Benjamin Labatut, Haber solucionó la escasez de fertilizantes que amenazaba con desencadenar una hambruna global como no se había visto nunca; de no haber sido por él, cientos de millones de personas que hasta entonces dependían de fertilizantes naturales para abonar sus cultivos podrían haber muerto por falta de alimentos.

En siglos anteriores, la demanda insaciable había llevado a empresas inglesas a viajar hasta Egipto para saquear los campos funerarios de los antiguos faraones en busca del nitrógeno contenido en los huesos de los miles de esclavos inhumados con sus dueños para que continuaran sirviéndolos más allá de la muerte.

Como puede leerse en la imagen adjunta recortada del Morning Post de 1820, los comerciantes británicos, estaban adquiriendo rápidamente todo hueso disponible en Europa continental. La batalla de Leipzig (citada como Leipsic en la noticia), también llamada Batalla de las Naciones tuvo lugar entre el 16 y el 19 de octubre de 1813. Cabe señalar que un quintal de la época eran 100 libras, por lo que el artículo habla de un envío de más de 203 toneladas de osamentas.

Los saqueadores de tumbas ingleses ya habían agotado las reservas de Europa continental; desenterraron más de tres millones de esqueletos, incluyendo las osamentas de cientos de miles de soldados y caballos muertos en las guerras napoleónicas, para enviarlos en barco al puerto de Hull, en el norte de Inglaterra, donde los esqueletos eran molidos en las trituradoras de huesos de Yorkshire para usarlos como fertilizante para la tierra verde y agradable de Inglaterra, un mantillo de los campos de batalla que también produjo dientes para ser reutilizados como dentaduras postizas.).

Dentaduras postizas con dientes de Waterloo. Museo Militar de Dresde, Alemania.
Adam Jones

Al otro lado del Atlántico, los cráneos de más de treinta millones de bisontes masacrados en las praderas norteamericanas eran recogidos uno a uno por colonos pobres e indios desharrapados para venderlos al Sindicato de Huesos de Dakota del Norte, que los amontonaba hasta formar una pila del tamaño de una iglesia antes de transportarlos a las fábricas de Michigan que los molían para producir fertilizantes.

El saqueo de tumbas cesó cuando Carl Bosch, el ingeniero principal del gigante químico alemán BASF, convirtió en un proceso industrial lo que Haber había logrado en el laboratorio. En poco tiempo, BASF fue capaz de producir cientos de toneladas de nitrógeno en una fábrica operada por más de cincuenta mil trabajadores.

Hombres de pie con un montón de cráneos de bisonte, Michigan Carbon Works, Rougeville MI, 1892.
Colección Histórica Burton, Biblioteca Pública de Detroit.

El proceso Haber-Bosch fue el descubrimiento químico más importante del siglo XX: al duplicar la cantidad de nitrógeno disponible, permitió la explosión demográfica que hizo crecer la población humana de 1,6 a 7 mil millones de personas en menos de cien años. Hoy, cerca del cincuenta por ciento de los átomos de nitrógeno de nuestros cuerpos han sido creados de forma artificial, y más de la mitad de la población mundial depende de alimentos fertilizados gracias al invento de Haber.

En la Gran Guerra (1914-1918), el invento resultó decisivo: después de que la flota inglesa cortara el acceso al salitre chileno, Alemania se habría tenido que rendir mucho antes al no poder alimentar a su población ni obtener la materia prima que necesitaba para seguir fabricando pólvora y explosivos. Los recursos y la potencia industrial eran claves en un nuevo tipo de conflicto bélico, el más global conocido hasta entonces.

Las grandes potencias movilizaron a sus mejores talentos. A principios del siglo XX, la ciencia alemana era puntera; sólo en química, siete de los premios Nobel concedidos entre 1900 y 1918 fueron de esa nacionalidad. Entre estos últimos, Haber fue nombrado responsable del departamento de suministros químicos del ejército alemán.

La Gran Guerra iba ser completamente nueva. En el escenario europeo, las operaciones terminaron estancadas en un frente de trincheras. Las armas que podían ser decisivas, los temibles gases tóxicos, habían sido regulados por los tratados de La Haya que prohibieron utilizarlos dentro de proyectiles de artillería.

Esta prohibición respondía a un dilema ético que había atrapado a políticos, militares y científicos. Apoyado por el sector duro del ejército, Haber, a quien la ética le traía sin cuidado, dio con la solución: los gases estaban prohibidos en los proyectiles, pero ¿y si encontrara una sustancia idónea para liberarla desde bidones y se dejara que el viento hiciera el resto?

El primer ataque con gas de la historia arrasó a las tropas francesas atrincheradas cerca de Ypres, en Bélgica. Al despertar en la madrugada del jueves 22 de abril de 1915, los soldados vieron una enorme nube verdosa que reptaba hacia ellos por la tierra de nadie. A su paso las hojas de los árboles se marchitaban, las aves caían muertas desde el cielo y los prados se teñían de un color metálico enfermizo.

Aprovechando la dirección del viento, los alemanes abrieron unos 5 730 cilindros de cloro, unas 168 toneladas, hacia las filas aliadas durante la segunda batalla de Ypres, en abril de 1915.
Wikimedia Commons

Cuando las primeras patrullas enviadas al silencioso campo de batalla llegaron a las líneas francesas, las trincheras estaban vacías, pero a poca distancia los cuerpos de los soldados franceses yacían por todas partes con las caras y los cuellos arañados intentando volver a respirar. Algunos se habían suicidado. Todos estaban muertos.

Tras el armisticio de 1918 que puso punto final a la Primera Guerra Mundial, Haber fue declarado criminal de guerra por los aliados. Tuvo que refugiarse en Suiza, donde recibió la noticia de que había obtenido el Premio Nobel de Química por un descubrimiento que había hecho poco antes de la guerra, y que en las décadas siguientes alteraría el destino de la especie humana.

El mundo moderno no podría existir sin el hombre que «extrajo pan del aire», según palabras de la prensa de su época, aunque el objetivo inmediato de su milagroso hallazgo no fue alimentar a las masas hambrientas. Con el nitrógeno de Haber, el conflicto europeo se prolongó dos años más, aumentando las bajas de ambos lados en varios millones de personas, cientos de miles de ellos aniquilados por las nieblas letales inventadas por el propio Haber.The Conversation

Sobre el autor: Manuel Peinado Lorca es catedrático de universidad en el Departamento de Ciencias de la Vida e Investigador del Instituto Franklin de Estudios Norteamericanos, Universidad de Alcalá

Este artículo fue publicado originalmente en The Conversation. Artículo Original.

El artículo El hombre que extrajo pan del aire (pero también mató a millones de personas) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El ARN está de moda… desde hace 3 800 millones de años
  2. Un fósil neuronal de 25 millones de años: los humanos también orientamos las orejas
  3. Las redes 5G no afectan a la salud… pero podrían hacer que el hombre del tiempo acierte menos
Catégories: Zientzia

El tamaño sí importa cuando se trata del calentamiento global

dim, 2021/01/10 - 11:59

Ignacio Peralta Maraver y Enrico L. Rezende

El lagarto de collar (Crotaphytus collaris), muy común en el sur de Estados Unidos y el norte de México. Fuente: Dakota L. / Wikimedia Commons

 

El calentamiento global continua de manera acelerada y sin precedentes. La temperaturas están cambiando tan rápido que muchas especies tienen dificultades para adaptarse, y aquellas que no lo consiguen se extinguen.

Esto es especialmente cierto en el caso de los animales ectotermos, informalmente conocidos como animales de sangre fría, que dependen casi por completo de la temperatura ambiental para regular su metabolismo. Ilustremos el caso con la típica imagen de un lagarto tomando el sol sobre una roca antes de empezar su actividad diaria.

Animales que merman

Una de las consecuencias más llamativas del calentamiento global ha sido la reducción gradual del tamaño en muchos grupos animales alrededor del mundo. Este patrón se ha observado tanto en poblaciones actuales como en el registro fósil.

De hecho, la disminución corporal en animales, junto con los cambios en sus distribuciones y ciclos de vida, se considera ya una respuesta universal del calentamiento global.

Este fenómeno tiene grandes implicaciones en el funcionamiento de los ecosistemas, pero también en el uso que los seres humanos podemos hacer de ellos. Pensemos por ejemplo en la importancia que tiene el tamaño de los organismos marinos para la industria pesquera.

Se han propuesto muchas explicaciones para este fenómeno, pero no se ha contemplado la posibilidad de que las temperaturas puedan afectar de forma diferencial a la mortalidad de los organismos dependiendo de su tamaño.

Muy recientemente, hemos publicado en Nature Climate Change análisis que dan cuenta del impacto del tamaño corporal en la tolerancia al calor. Efectivamente, los organismos pequeños y grandes responden de forma distinta al estrés térmico.

A mayor tamaño, más difícil de calentar

Con la excepción de mamíferos y aves, la mayoría de los animales son ectotermos. Esto supone una enorme diversidad de tamaños y formas corporales, que incluye animales tan pequeños como un mosquito (o incluso menores si consideramos organismos unicelulares) y tan grandes como un cocodrilo africano o un tiburón ballena.

Teniendo esta diversidad de tamaños en mente, nos sorprenderá observar que la gran mayoría de los animales viven en un rango de temperatura muy ajustado: por lo general, entre 0 °C y 40 °C. Entonces, ¿cómo es posible que todos esos animales respondan igual al calentamiento? Pensemos: no cuesta lo mismo calentar un vaso de agua que una bañera de 200 litros.

La respuesta a esta pregunta es que no lo hacen. Pero hasta ahora no se había podido cuantificar, y mucho menos predecir, como varía la tolerancia al calor en función del tamaño.

El tiempo de exposición al calor

Muchos trabajos no pudieron explicar la relación entre el tamaño y la tolerancia al calor por no considerar el tiempo de exposición al que están sometidos los animales.

Un animal podría soportar un calor excesivo por poco tiempo. Pero si el animal está expuesto a este calor (o incluso a una temperatura menor) por un periodo largo, acaba muriendo. Una analogía a este caso la encontramos en los baños de vapor de una sauna. Difícilmente podría aguantar nadie en una sauna durante un día entero.

La tolerancia al calor depende del tamaño en animales ectotermos (p.e. peces). Animales pequeños resisten temperaturas más elevadas que los animales grandes, pero por cortos periodos de tiempo. Fuente: Los autores

En nuestra ecuación incluimos tanto el calor extremo que pueden soportar los animales como el efecto del tiempo de exposición. Además, ponemos a prueba esta ecuación en artrópodos, moluscos, anélidos, peces, anfibios y reptiles.

El calor no afecta igual a grandes y pequeños

Nuestros resultados muestran que los animales ectotermos de pequeño tamaño aguantan temperaturas más elevadas, así como aumentos repentinos de las mismas. Esto ocurre por ejemplo en las olas de calor.

No obstante, los animales pequeños resisten al calor por poco tiempo, mientras que los grandes aguantan más en condiciones subóptimas.

Combinando nuestra ecuación con cálculos de metabolismo demostramos también que, con el calor, los animales grandes llegan a sus límites metabólicos antes que los pequeños.

El metabolismo es determinante en el desarrollo de los seres vivos. Por lo tanto, nuestro estudio indica que los animales ectotermos de gran tamaño verán más limitado su crecimiento con el calor excesivo.

Nuestro descubrimiento supone una poderosa explicación a la reducción de tamaño como causa del calentamiento global: los ejemplares mas pequeños tendrían una mayor capacidad de resistencia y dejarían mayor descendencia.

Límites de tolerancia al calentamiento global

El calentamiento global no ocurre igual en las diferentes regiones de nuestro planeta. Hay zonas donde el calentamiento es más rápido que en otras. Por ejemplo, las zonas tropicales se están calentando más deprisa que los polos.

Como resultado, algunas poblaciones animales están más cerca de los límites que pueden soportar que otras simplemente por su distribución.

Se han llegado a proponer medidas para calcular los límites de tolerancia de los animales. No obstante, en nuestro trabajo también discutimos que esas medidas estaban muy por encima del valor real.

Cuando incluimos el efecto del tamaño en esos cálculos, vemos que muchos animales están ya prácticamente al límite. Además, las poblaciones de las zonas tropicales son las más vulnerables al calentamiento.

Esta mejora de los cálculos de la vulnerabilidad de los animales al calentamiento global es un gran avance para identificar grupos de máximo riesgo y protegerlos mejor.

 

The Conversation

Sobre los autores: Ignacio Peralta Maraver es investigador postdoctoral en la Universidad de Granada y Enrico L. Rezende es profesor de Ecología y Evolución en la Universidad Católica de Chile

Este artículo fue publicado originalmente en The Conversation. Artículo Original.

El artículo El tamaño sí importa cuando se trata del calentamiento global se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El calentamiento global y el aceite de oliva
  2. El mural de la cantera: arquitectura, ciencia y arte contra el calentamiento global
  3. El tamaño importa en organismos, empresas, ciudades y economías
Catégories: Zientzia

Isabel Moreno – Naukas Bilbao 2019: El cielo en clave de Sol

sam, 2021/01/09 - 11:59
El invierno (1786) de Francisco de Goya (1746-1828). Óleo sobre lienzo. 275 x 293 cm. Fuente: Museo del Prado

La música nos puede ayudar a hablar sobre el clima y el clima afecta a muchos aspectos de nuestras vidas, también al arte y, en especial, la música.

Isabel Moreno es meteoróloga y presentadora del programa de TVE «Aquí la Tierra» y colabora en el programa «Longitud de Onda» de Radio Clásica tratando temas relacionados con el cambio climático en el marco del mundo de la música.



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Isabel Moreno – Naukas Bilbao 2019: El cielo en clave de Sol se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Francisco Villatoro – Naukas Bilbao 2019: El abrazo de la plata
  2. Raúl Ibáñez – Naukas Bilbao 2019: Teorías fantásticas sobre las grafías de los números
  3. Carlos Briones – Naukas Bilbao 2019: Luna
Catégories: Zientzia

Ionogeles para baterías de sodio

ven, 2021/01/08 - 11:59

La búsqueda y el desarrollo de nuevos materiales para el almacenamiento de la energía es un área clave de nuestra sociedad, puesto que está íntimamente relacionado con el desarrollo tecnológico y la lucha contra el cambio climático. En este sentido, un estudio de la UPV/EHU ha utilizado por primera vez ionogeles —una combinación de polímero y líquido iónico— para baterías de sodio.

Una de las tecnologías de almacenamiento energético predominantes en el mercado son las baterías de litio-ion que se emplean en coches eléctricos y dispositivos electrónicos como los teléfonos móviles y ordenadores portátiles. Las baterías de litio-ion poseen una gran capacidad energética y son fáciles de producir. Sin embargo, las reservas de litio son limitadas, pudiendo llegar a la situación de falta de litio e incremento de su precio.

En este sentido, “este trabajo se ha centrado en las baterías de sodio. El sodio es un elemento que, a pesar de su menor densidad energética frente al litio, se puede emplear para crear baterías con un menor coste, ya que el sodio puede extraerse de muchas fuentes como puede ser el agua marina”, señala Asier Fernández de Añastro Arrieta, investigador del departamento de Química Industrial Aplicada de la UPV/EHU e investigador de POLYMAT.

“El objetivo principal de esta tesis reside en el estudio de nuevos materiales poliméricos para baterías de sodio. Una batería se compone de tres elementos: un cátodo o polo positivo, un ánodo o polo negativo y un material permeable que separa estos dos elementos conocido como electrolito. El electrolito tiene dos funciones principales, una de ellas es la de favorecer la difusión de iones del cátodo al ánodo que hace que podamos cargar o descargar la batería; a mayor y más efectiva difusión de iones, la carga será más rápida y eficiente. La otra función del electrolito en un batería tiene que ver con la seguridad del dispositivo en sí. Es de vital importancia que el electrolito separe físicamente el cátodo y el ánodo y que se mantengan separados durante toda la vida útil de la batería, ya que, el contacto entre el cátodo o el ánodo (por una posible rotura del electrolito) o una fuga del electrolito puede generar un fallo, sobrecalentamiento y en casos extremos, una explosión de la batería de un coche o un teléfono móvil tal y como se ha visto en varias ocasiones en los medios de comunicación”, explica el investigador.

Por ello, “en este trabajo hemos desarrollo membranas poliméricas que actúan como electrolito. Pero no electrolitos poliméricos cualquiera, sino ionogeles. Los ionogeles son materiales que combinan las mejores prestaciones de los polímeros —flexibilidad, bajo coste y ligereza— con las mejores prestaciones de los líquidos iónicos”, cuenta Fernández de Añastro. “Los líquidos iónicos a su vez —continúa—, son líquidos con una gran capacidad de difusión de iones siendo líquidos prácticamente ignífugos. La suma de los polímeros y los líquidos iónicos se materializa en un ionogel, una membrana polimérica, sólida y robusta con una gran capacidad de difundir iones y siendo un material muy seguro debido a su escasa flamabilidad”.

“A lo largo de la investigación hemos sido capaces de sintetizar varios tipos de ionogeles con alto contenido líquido desde un 50 % hasta un 90 %, empleando diferentes métodos físico-químicos con diferentes propiedades. Además, hemos empleado estos materiales en prototipos de baterías reales, como las pilas de botón, y hemos demostrado su capacidad y su buen funcionamiento”, subraya el investigador de la UPV/EHU.

El investigador ha destacado que «el límite que tienen actualmente los líquidos iónicos es su elevado precio; los electrolitos líquidos convencionales que están en todos nuestros móviles son mucho más económicos”. De todas formas, “en los últimos años se ha visto que los líquidos iónicos presentan propiedades excelentes para diversas aplicaciones en la industria. Por lo tanto, por mucho que cuesten si sus aplicaciones lo justifican, quizás podríamos encontrarlos en el mercado en un futuro no lejano”, comenta Asier Fernández de Añastro.

Referencia:

Asier Fdz De Anastro,  Nerea Lago, Carlos Berlanga, Montse Galcerán, Matthias Hilder, Maria Forsyth, David Mecerreyes (2019) Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery Journal of Membrane Science doi: 10.1016/j.memsci.2019.02.074

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Ionogeles para baterías de sodio se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Las baterías ion sodio, la alternativa estacionaria
  2. ADN para la nueva generación de baterías
  3. Así funcionan las baterías de litio
Catégories: Zientzia

Cibernética utópica: el plan de la sociedad perfecta que sentó las bases de internet

jeu, 2021/01/07 - 11:59

Pablo Francescutti

Cibercafé, cibersexo, ciborg, ciberespacio, ciberactivismo, ciberpunk… El prefijo “ciber” se ha vuelto omnipresente, aunque pocos recuerdan que procede de la cibernética, la teoría que a mediados del siglo XX revolucionó las relaciones entre las máquinas y los seres vivos. Este año se cumplen siete décadas de Cibernética y Sociedad, el libro en el que Norbert Wiener propuso una sociedad ideal basada en flujos informativos regulados por ordenadores.

Ya en los años 50 se proponía una sociedad ideal basada en la combinación de la informática con los principios de retroalimentación, autorregulación y flujos informativos, a pesar de que todo lo relacionado con lo «ciber» parezca más moderno. Imagen: Pixabay

Año 1950: la Guerra Fría está al rojo vivo, chinos y americanos se enfrentan en Corea, y la caza de brujas del senador McCarthy envía a miles de artistas y funcionarios al paro o a la cárcel. En ese contexto crispado aparece un libro desbordante de optimismo: El uso humano de seres humanos: Cibernética y sociedad. En sus páginas, Norbert Wiener, un matemático del Instituto Tecnológico de Massachusetts (MIT), proponía una sociedad ideal basada en la combinación de la informática con los principios de retroalimentación, autorregulación y flujos informativos.

No corrían buenos tiempos para la lírica ni para las utopías. El éxito editorial de 1984, la novela de George Orwell publicada dos años antes, reflejaba el estado de ánimo. ¿De dónde sacaba Wiener los recursos intelectuales para contrarrestar al pesimismo distópico? Sencillamente, su propuesta nada tenía que ver con las recetas utópicas habituales, basadas en la reconfiguración integral de las instituciones políticas; en vez de ello se apoyaba en una categoría novedosa: la de información. Esta era a sus ojos la palanca del cambio, la panacea de todos los males sociales.

La información es el elemento fundamental de cualquier sistema biológico o artificial, sostenía Wiener; es más, el ser humano, la sociedad y la naturaleza son información, y es el intercambio de información con el entorno lo que nos permite adaptarnos mutuamente. Para dar cuenta de esa realidad fundó la “ciencia del control de las máquinas y los procesos dinámicos”: la cibernética, término que él mismo derivó del griego kybernetes, que significa timonel o piloto.

El autor de esa visión rompedora había nacido en 1894, hijo de inmigrantes judíos radicados en Massachusetts. “Era un niño prodigio, torpe y obeso”, apunta a SINC Sebastián Dormido, catedrático emérito de informática de la UNED. “A los 18 años se doctoró en filosofía de las matemáticas en Harvard, y tuvo maestros extraordinarios: Bertrand Russell, G. H. Hardy y David Hilbert. Luego se incorporó al MIT”, añade. Miope y bajito, Wiener hablaba ocho idiomas, aunque un chiste decía que no se le entendía en ninguno. Prototipo del sabio distraído, casó con Margaret Engerman (“Fue como criar trillizos”, diría ella de su matrimonio). Un perfil similar en carisma, sentido moral y excentricidad al de la otra celebridad científica de la época, Albert Einstein.

Wiener dando clase en el MIT.

De la artillería antiaérea a la ataxia

La Segunda Guerra Mundial arrancó a Wiener de las matemáticas abstractas: “Quiso desarrollar un cañón antiaéreo guiado por radar que corrigiera automáticamente la puntería, pero no tuvo éxito”, refiere Dormido. Fue un fracaso fecundo, pues orientó su atención a los circuitos de retroalimentación. Por eso, cuando un neurofisiólogo le habló de la ataxia, un trastorno muscular debido a un retraso en la transmisión de señales nerviosas, tuvo una intuición genial: explicarla en función del feed back, la retroalimentación circular que garantiza el equilibrio de un sistema. De allí concluyó “que el cuerpo humano es un sistema de retroalimentación homeostático y que muchos problemas en los seres vivos se deben a fallos de feed back”, apunta el catedrático de la UNED.

“El concepto de feed back no lo inventó Wiener, pero solo él percibió su relevancia en los sistemas biológicos y tecnológicos”, observa a SINC Manuel Armada, especialista en robótica del CSIC. “Supuso que esos mecanismos de control son muy similares en los seres humanos y en las máquinas. En nuestro organismo son ubicuos y se distribuyen horizontalmente, regulando la temperatura o la presión sanguínea”. Su otro gran hallazgo fue ver en la información el idioma universal que permitiría la comunicación entre los seres vivos y las máquinas, al igual que su control (llegó a fantasear con transmitir personas como mensajes. Este escenario de Star Trek era para él teóricamente posible: el reto consistía en diseñar un aparato emisor que tradujera los individuos a datos y un receptor que los reconstruyera a partir de la información recibida).

Su enfoque tendió puentes entre el orden natural y el artificial, granjeándole un enorme prestigio. Pero a Wiener la gloria intelectual no le bastaba. Su espíritu progresista se sublevaba contra los crímenes del fascismo, la división del mundo en bloques irreconciliables y el secretismo impuesto a la investigación por razones militares. Concluyó que el mayor enemigo de la humanidad era la entropía, entendida como pérdida, bloqueo o incomprensión de la información. La guerra favorecía la entropía, al igual que los totalitarismos, pues ambos obstaculizan los flujos informativos.

Portada del libro de Wiener ‘El uso humano de seres humanos: Cibernética y sociedad’

En Cibernética y Sociedad presentó su receta contra la entropía. Imaginó una sociedad descentralizada cuyos dispositivos de feed back la adaptarían automáticamente a las circunstancias cambiantes. Su “sistema nervioso”, los ordenadores, asegurarían que todo funcionase conforme a decisiones racionales. La transparencia resultante del mejor control y tratamiento de la información permitiría una vigilancia social recíproca, que atajaría las conductas negativas. El feliz mundo cibernético se compondría de pequeñas comunidades pacíficas y autogestionadas, y como no habría guerras ni conflictos internos, ni el Estado ni las fuerzas armadas tendrían en él un lugar relevante.

Decantado por el pacifismo, el profesor del MIT se negó a colaborar con la I+D al servicio de la destrucción masiva. Su negativa le convirtió en la personificación de la “ciencia con conciencia”, y se dedicó a alertar a la ciudadanía mediante una serie de ensayos relativos “al mal uso que el poder hace de las máquinas en perjuicio de nuestros congéneres y del planeta”.

El paradigma de moda

En paralelo, la cibernética se irradiaba a los campos más diversos. Haciendo sinergias con la teoría de la información de Claude Shannon, influyó en la biología, la neurociencia y la ecología, entre otros saberes. El politólogo Karl Deustch la aplicó en su modelo de los “nervios del gobierno”; y en el terreno de la salud mental ayudó a ver los trastornos psicológicos como fallos comunicativos en la familia. A los ingenieros les atraía su énfasis en el control de procesos; y a los soviéticos su utilidad de cara a la gestión económica, si bien su aplicación más lograda fue el sistema Cybersyn, que gestionó las empresas nacionalizadas por el gobierno chileno de Salvador Allende.

Al final de su vida, Wiener se horrorizó de los excesos de la automatización. Le espantaban los ordenadores diseñados para lanzar por su cuenta misiles nucleares, a los que calificada de “máquinas ajedrecistas dentro de armaduras”. Anticipando el impacto laboral de las tecnologías de la información, advirtió a los sindicalistas que la introducción de ordenadores en las cadenas de montaje provocaría un desempleo desastroso. Le gustaba comparar a las computadoras que se construyen a sí mismas con el Golem, ese Frankestein de la tradición judía que se vuelve contra su creador. Temía que su teoría “fuera mal utilizada por élites corruptas y egoístas para crear nuevas formas de gobiernos que solo serían eficaces como maquinarias de opresión y manipulación. De modo que se concentró en el desarrollo de miembros prostéticos, que juzgaba más benéficos para la sociedad”, observa Mathew Gladden, experto en Inteligencia Artificial de la Universidad de Georgetown (Estados Unidos). La muerte le sorprendió en 1964 trabajando en un “brazo biónico”.

Una utopía tecnológica

“La palabra cibernética se populariza y luego cae en desuso”, observa Dormido. Efectivamente, en los años siguientes, las aportaciones de Wiener pasaron de moda. Sus sueños de reforma social parecían irrealizables, al igual que su pretensión de fundar un paradigma transversal a todas las ciencias. El protagonismo pasó a desprendimientos de la cibernética como la inteligencia artificial o la teoría de los sistemas autopoiéticos de Maturana y Varela. Pero su núcleo duro, el procesamiento de señales correctoras de errores, “se mantiene vivo en las ingenierías, en los controles de servomecanismos en automóviles, aviones y cohetes, en los sistemas robóticos, en la teoría de la información y la señal, y en el hardware de la telefonía móvil y las redes inalámbricas”, enumera Peter M. Asaro, filósofo de la ciencia de la New School de Nueva York, “aunque ya nadie le llama cibernética”. Y su legado es palpable en la tesis de Donna Haraway de que todos somos organismos cibernéticos (cyborgs), mezclas de materia viva y máquinas unidas por la información.

Su herencia es aún más visible en internet. “La cibernética es el hecho histórico y tecnológico que hizo posible la Red”, declara a SINC Eduardo Grillo, semiólogo de la Academia de Bellas Artes de Nápoles. “La asimilación del pensamiento a los procesos comunicativos entre máquinas, la visión del hombre como el eslabón de una cadena informacional global, el rechazo al secreto y la confianza en que las conexiones posibilitan la auto-regulación de las conductas son ideas de Wiener que inspiraron a la ideología de Internet. Y otro tanto puede decirse de la importancia que atribuía a los canales comunicativos, al poder descentralizador y democratizador de la información y a estar todos conectados, valores que transmitió a los internautas”, apunta Grillo.

Wiener con Torres Quevedo, creador del primer autómata capaz de jugar ajedrez de la historia

 

Pero muchas de sus expectativas se malograron: “Temía que la información se volviese mercancía, contribuyendo a aumentar la ‘entropía social’, y es lo que sucedió. Su esperanza en que la sociedad se autorregulase tampoco se cumplió”, afirma el semiólogo italiano. Igual de frustrantes le hubieran parecido la práctica del secreto y el acceso desigual a la información que caracterizan a nuestra esfera digital, comenta Armand Mattelart, el historiador de la comunicación. “Y si bien su exaltación de la transparencia, las aplicaciones tecnológicas y la conectividad se ha integrado al imaginario de la Red, lo ha hecho subordinada a la lógica de la competencia”, precisa Grillo.

En España el nombre de Wiener es poco conocido, señala Armada, pese a que “nos visitó alguna vez y trató con Leonardo Torres Quevedo a propósito de su ajedrecista automático”. En su país natal su memoria está siendo rescatada del olvido. Creador de una tecnoutopía que se oponía a las tecnologías inhumanas, inventor de máquinas contrario a tratar a las personas como máquinas, es recordado como un profeta. Y aunque su confianza en que la comunicación por sí sola llevaría a la transparencia y al consenso se demostró desmedida, su exhortación a la responsabilidad moral de los científicos e ingenieros tiene más vigencia que nunca, indican sus biógrafos Flo Conway y Jim Siegelman, “La utopía de Wiener era demasiado racional, optimista, ingenua y parcial”, resume Grillo, convencido de “que nos sigue haciendo falta un impulso utópico, ya que las inmensas oportunidades que ofrece la Red dependen también de la idea de sociedad que la inspire”.

Sobre el autor: Pablo Francescutti es sociólogo, profesor e investigador en el Grupo de Estudios Avanzados de Comunicación de la Universidad Rey Juan Carlos (URJC) y miembro del Grupo de Estudios de Semiótica de la Cultura (GESC).

Una versión de este artículo se publicó originalmente en SINC. Artículo original.

El artículo Cibernética utópica: el plan de la sociedad perfecta que sentó las bases de internet se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Científicos y estudiantes se encuentran a través de Internet
  2. 1969: el año en el que llegamos a la Luna e inventamos Internet
  3. Comunicar la ciencia a la sociedad: el reto de Europa
Catégories: Zientzia

Dos conjeturas sobre números primos

mer, 2021/01/06 - 11:59

 

Números naturales de cero a cien. Los números primos están marcados en rojo. Imagen: Wikimedia Commons.

 

¿Existe el primo morada de cualquier número entero?

Elije un número entero n mayor que 1. Enumera sus factores primos (con la multiplicidad que corresponda) de menor a mayor y escríbelos concatenados. Al número obtenido aplícale el mismo procedimiento y continúa de este modo. Terminarás cuando obtengas un número primo. Este número primo alcanzado (si existe) se denota por HP(n) y se denomina el primo morada (en inglés, home prime) de n.

Por ejemplo, si n=14, sus factores primos ordenados son (2,7) y obtendríamos el número 27. Sus factores primos son (3,3,3) y conseguiríamos así el número 333. Los factores primos de 333 son (3,3,37), y lograríamos el número 3337. El anterior número factoriza en (47,71), obteniendo al concatenarlos 4771, que es el producto de los primos 13 y 367. Y 13367 es primo, con lo cual habríamos terminado. Así HP(14)=13367. Y, por cierto,

HP(14) = HP(27) = HP(333) = HP(3337) = HP(4771) = H(13367) = 13367.

Observa, además, que si n es un número primo, es HP(n)=n.

Se ha calculado el valor HP(n) para todos los números menores o iguales a 48. Pero aún no se conoce el primo morada (si es que existe) del número 49. Los primeros cálculos no son complicados de realizar:

HP(49) = HP(77) = HP(711) = HP(3379) = HP(31109) = HP(132393) = HP(344131) =…

Como se puede observar, en cada paso las factorizaciones se hacen más complicadas ya que los números intermedios que van apareciendo en este proceso van creciendo.

En agosto de 2016, en la búsqueda de HP(49) se llegó a un número compuesto para factorizar que constaba de 251 dígitos; este número se consiguió tras 118 iteraciones del proceso descrito arriba. Por supuesto, para realizar todos los cálculos involucrados, ha sido necesaria la utilización de recursos computacionales.

El cálculo del primo morada de un número dado se reduce al problema de factorización de números enteros para el cual no existe ningún algoritmo eficiente que lo resuelva.

Además de los problemas computacionales relacionados con la solución de este problema, aún se desconoce si existe el número primo morada de cualquier entero positivo. Aunque se conjetura que sí.

Los detalles de la historia de esta búsqueda se mantienen en el sitio web World of Numbers de Patrick De Geest.

¿Son todos los números afortunados primos?

Multiplica los n primeros números primos. Encuentra el menor entero (mayor que 1) que produce un número primo cuando se añade al anterior producto. Ese número, a(n),se llama un número afortunado (en inglés, Fortunate number, por el antropólogo social Reo Fortune, quien fue el primero es estudiar este tipo de números).

Por ejemplo, si n=6, hacemos el producto:

2 × 3 × 5 × 7 × 11 × 13 = 30030.

El menor entero (mayor que 1) que sumado a 30030 da un número primo es 17. Efectivamente, 30030 + 17 = 30047 es primo y 30030 + m no es primo si m es menor que 17. Así, 17 (= a(6)), es un número afortunado.

Los primeros números afortunados (cada número en la lista, a(n), corresponde al producto de los n primeros números primos) son:

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151…

Observar que algunos de ellos se repiten. Además, ¡todos ellos son primos!

De hecho, Reo Fortune conjeturó que a(n) es siempre un número primo. De momento, la conjetura sigue abierta…

Referencias:

Home primes, Futility Closet, 29 diciembre 2020

Home primes (A037274), The OEIS Foundation

Home Prime, Wikipedia

Open Sequences for Home Prime Base 10 (HP10) with n ≤ 11500Fortunate Numbers, Futility Closet, 24 diciembre 2020

Fortunate numbers (A005235), The OEIS Foundation

Fortunate primes in numerical order with duplicates removed (A046066), The OEIS Foundation

Fortunate number, Wikipedia

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Dos conjeturas sobre números primos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Números primos gemelos, parientes y sexis (2)
  2. Buscando lagunas de números no primos
  3. Una conjetura sobre ciertos números en el ‘sistema Shadok’
Catégories: Zientzia

La necesidad de los aceleradores de partículas

mar, 2021/01/05 - 11:59
Fuente: CERN

Hasta 1932 el estudio de las reacciones nucleares estuvo limitado por el tipo de proyectil que podía usarse para bombardear los núcleos. Solo las partículas alfa de los nucleidos radiactivos naturalmente podrían provocar estas reacciones. El progreso fue limitado porque las partículas alfa solo se podían obtener en haces de baja intensidad y con energías cinéticas bastante bajas. Estas partículas de energía relativamente baja podrían producir transmutaciones solo en elementos ligeros. Cuando los elementos más pesados se bombardean con partículas alfa, la fuerza eléctrica repulsiva ejercida por la mayor carga del núcleo pesado la partícula alfa, también cargada positivamente, dificulta que la partícula alcance el núcleo. La probabilidad de que se produzca una reacción nuclear se vuelve entonces muy pequeña o nula. Dado que el interés por las reacciones nucleares era grande, la comunidad científica internacional buscó métodos para aumentar la energía de las partículas cargadas para poder usarlas como proyectiles.

Una posibilidad era trabajar con partículas como el protón o el deuterón que tienen una sola carga positiva. Al tener una sola carga, estas partículas experimentarían fuerzas eléctricas repulsivas más pequeñas que las partículas alfa en la vecindad de un núcleo y, por lo tanto, tendrían más éxito a la hora de acercarse lo suficiente como para producir transmutaciones, incluso a núcleos pesados (y por lo tanto de alta carga).

Se podían obtener protones o deuterones a partir de tubos de rayos positivos, pero sus energías eran bastante bajas. Se necesitaba algún dispositivo para acelerar estas partículas a energías más altas, como Rutherford fue uno de los primeros en decir. Estos dispositivos también presentaban otras ventajas: el experimentador podría controlar la velocidad (y la energía) de las partículas bombardeadoras y se podrían obtener rayos de proyectiles muy intensos. De esta forma sería posible encontrar cómo las reacciones nucleares dependen de la energía y naturaleza de las partículas incidentes.

Desde 1930 se han ideado y desarrollado muchos dispositivos para acelerar partículas cargadas. En cada caso, las partículas utilizadas (electrones, protones, deuterones, partículas o iones pesados) son aceleradas por un campo eléctrico. En algunos casos, se utiliza un campo magnético para controlar la trayectoria de las partículas, es decir, para dirigirlas. El tipo más simple tiene un solo paso de alto voltaje de aproximadamente diez millones de voltios, lo que aumenta las energías de electrones o protones a 10 MeV [1].

Otro tipo de acelerador tiene una larga serie de pasos de bajo voltaje aplicados a medida que la partícula viaja en línea recta. Algunas de estas máquinas producen energías de electrones de hasta 20 GeV (1 GeV = 109 eV). Un tercer tipo general utiliza campos magnéticos para mantener las partículas en una trayectoria circular, devolviéndolas una y otra vez a los mismos campos de aceleración de bajo voltaje. La primera máquina de este tipo fue el ciclotrón. Algunos de estos aceleradores producen electrones de 7 GeV o protones de 500 GeV. Gran Colisionador de Hadrones del CERN, produce haces de 6,5 TeV (1 TeV = 1012 eV), y colisiones de 13 TeV. Los aceleradores se han convertido en herramientas básicas para la investigación en física nuclear y de altas energías. Los aceleradores también se utilizan en la producción de isótopos radiactivos y como fuentes de radiación, tanto para fines médicos como industriales.

Estas «máquinas» se encuentran entre las estructuras más complejas y grandiosas jamás construidas. De hecho, son monumentos a la imaginación y el ingenio humanos, la capacidad de razonar y colaborar en grupos, algunos de miles de personas [2], en proyectos pacíficos que fomentan la comprensión de la naturaleza. Básicamente, estas «máquinas» son herramientas para ayudar a la comunidad científica a descubrir la estructura de las partículas nucleares, las fuerzas que las mantienen unidas, la composición última de la materia [3] y, en fin, del universo.

Con el descubrimiento del neutrón en 1932, se creía que solo tres partículas «elementales» eran los componentes básicos de la materia: el protón, el neutrón y el electrón. Pero surgió la necesidad de incorporar otras nuevas, como los neutrinos. A medida que se dispuso de aceleradores de alta energía, se descubrieron partículas «elementales» adicionales, una tras otra. Estas partículas se agrupan en «familias» según sus propiedades. La mayoría de estas partículas existen solo brevemente; la vida útil típica es del orden de 10-8 segundos o menos. Surgió un campo completamente nuevo, la física de altas energías cuyo objeto es discernir el orden y la estructura detrás de la gran cantidad de partículas «elementales» que se han descubierto [4].

Notas:

[1] Para el detalle de la interacción de los campos eléctrico y magnético con las partículas cargadas en movimiento, así como qué unidades se emplean, puede ser interesante consultar Aceleradores y electrón-voltios de nuestra serie Electromagnetismo.

[2] Se estima que en la construcción y operación del Gran Colisionador de Hadrones se ha superado ampliamente la cifra de 10.000 personas de alta cualificación en ciencia e ingeniería implicadas.

[3] Materia en sentido muy amplio del término, lo que incluye ordinaria, oscura y cualquier otra.

[4] Una descripción introductoria a lo que sabemos ahora mismo puede encontrarse en nuestro Del modelo estándar.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La necesidad de los aceleradores de partículas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La carga de las partículas radiactivas
  2. Las bandas de Bloch
  3. Ciencia Express: aceleradores de partículas
Catégories: Zientzia

Entre incertidumbres y éxitos: la lucha contra la malaria en los últimos cien años

lun, 2021/01/04 - 11:59

Rosa Ballester Añón y Enrique Perdiguero-Gil

Shutterstock / Lucian Coman

 

La utilización masiva de recursos para atajar la pandemia generada por el SARS-CoV-2 puede empeorar otros problemas de salud. Las estrategias en curso para disminuir la mortalidad producida por enfermedades tanto o más mortíferas que la covid-19 pueden quedar en segundo plano. La malaria es uno de los ejemplos. Tanto, que en noviembre de 2020 la Organización Mundial de la Salud pidió que se reforzaran las medidas para luchar contra la enfermedad.

La Estrategia Mundial contra la Malaria 2016-2030 fue aprobada por la Asamblea Mundial de la Salud en 2015. Su audaz objetivo es un mundo sin paludismo. Se pretende que en 2030 se reduzca en un 90 % la carga de mortalidad por esta enfermedad.

Anualmente son diagnosticados más de 200 millones de nuevos casos. El Informe mundial sobre el paludismo 2019 señala que el 93 % de los casos y de las muertes se produce en el África subsahariana. Más de la mitad se diagnosticaron en Nigeria, República Democrática del Congo, Uganda, Costa de Marfil, Mozambique y Níger. Más de dos tercios de los fallecimientos, unos 400 000 en 2018, correspondieron a niños menores de cinco años. Desde 2000 se han reducido significativamente casos y defunciones, pero en años recientes se ha estancado el declive. El paludismo avanza en algunos países, sobre todo en Latinoamérica.

Hace cien años, la malaria tenía carácter endémico en una amplísima franja que incluía Europa y América del Norte. En estas zonas hoy solo aparecen unos pocos casos importados. En España la enfermedad, conocida desde la Antigüedad, se declaró erradicada en 1963.

La malaria (del italiano medieval «mal aire») o paludismo (de paludis, genitivo del término latino palus: ciénaga o pantano) es una enfermedad producida por parásitos del género Plasmodium. Durante siglos, la causa de las fiebres típicas de la enfermedad se atribuyó a determinadas condiciones que creaban un “ambiente palúdico”.

Alphonse Laveran identificó el agente causal de la malaria en 1880. Entre 1891 y 1892 se describieron las diferentes especies del parásito. El papel de las distintas especies del mosquito Anopheles como vehículo de transmisión fue aclarado por Ross y Masson entre 1897 y 1899. Hacia 1902 fue posible plantear estrategias de intervención. Las campañas antipalúdicas incluyeron acciones contra las larvas de los mosquitos, mosquiteras, aislamiento de viviendas y la utilización preventiva de la quinina.

Llegaron las cloroquinas, pero la malaria no se fue

El uso posterior de otras medidas preventivas, como el insecticida DDT, generó cierto optimismo en la lucha contra la enfermedad. Un paso más fue la aparición de la cloroquina, un medicamento de síntesis que permitió superar la escasez de quinina. Se trataba de un optimismo extendido a todas las enfermedades infecciosas En las ediciones de los años sesenta del manual Historia Natural de la enfermedades infecciosas de Burnet y Davis se afirmaba: “En muchos aspectos se puede decir que la primera mitad del siglo XX marca el final de una de las mas importantes revoluciones sociales de la historia: la virtual eliminación de las enfermedades infecciosas como un factor significativo de la vida social”.

La malaria, sin embargo, no desapareció del planeta. Los intentos de globalizar las medidas antipalúdicas desarrolladas por la Sociedad de Higiene de la Liga de Naciones y, más tarde, de la Organización Mundial de la Salud, no tuvieron el éxito esperado. Se utilizaron estrategias de tipo vertical. Fue el caso del uso del DDT y de la cloroquina en la Segunda Guerra Mundial. La enfermedad se había convertido en un problema para los ejércitos aliados. Se decía que era más peligroso que las balas enemigas.

Las actuaciones integrales fueron menos utilizadas. Su objetivo eran los cambios estructurales y las mejoras en las condiciones de vida de las poblaciones. Además debían fortalecerse los sistemas de salud pública. Décadas después, el paludismo continúa siendo un grave problema a nivel mundial.

La búsqueda de una vacuna eficaz y segura es muy reciente. La vacuna RTS,S/AS01 (RTS,S) es la primera y, hasta la fecha, la única efectiva. Permite reducir significativamente la incidencia de la enfermedad y la potencial letalidad para los niños africanos.

La covid-19 y su impacto sobre la malaria

El Día Mundial del Paludismo (25 de abril) de 2019 se inició la primera campaña universal de vacunación infantil contra el paludismo. Según Pedro Alonso, director del programa de malaria de la Organización Mundial de la Salud: “esta vacuna no será la solución definitiva, pero tiene el potencial de salvar miles de vidas y, por ende, contribuirá al desarrollo económico y social de algunas de las zonas más desfavorecidas del planeta”.

En la situación actual, con el trasfondo de la pandemia, algunos autores han hecho estimaciones muy preocupantes. En 2020, en el peor de los escenarios posibles, las muertes por paludismo en el África subsahariana serían unas 769 000. Supondría volver a las tasas de mortalidad de principios de siglo. La causa sería la suspensión de las campañas de distribución de mosquiteros tratados con insecticidas y la reducción del acceso a antipalúdicos eficaces.

Las esperanzas generadas por la vacuna contra la covid-19 no deben oscurecer otras enfermedades infecciosas cuya erradicación es, hoy por hoy, imposible. El fracaso frente al paludismo puede ser una buena vacuna para el virus del optimismo exagerado.The Conversation

Sobre los autores: Rosa Ballester Añón es catedrática emérita de Historia de la Ciencia y Enrique Perdiguero-Gil es catedrático de Historia de la Ciencia, ambos en la Universidad Miguel Hernández

Este artículo fue publicado originalmente en The Conversation. Artículo riginal.

El artículo Entre incertidumbres y éxitos: la lucha contra la malaria en los últimos cien años se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Historias de la malaria: La lucha contra la malaria
  2. Si no puedes con tu enemigo, modifícalo para que te ayude en la lucha contra enfermedades infecciosas
  3. Historias de la malaria: La guerra y la historia
Catégories: Zientzia

Mejores tiempos para la ciencia

dim, 2021/01/03 - 11:59
Foto: Rohan Makhecha / Unsplash

A finales de 2016 este curioso observador del mundo que acude ante sus lectores cada dos semanas dejaba el año con pesar y pesimismo. Había sido un año pródigo en descubrimientos, con el hallazgo de las ondas gravitacionales como hito máximo. Pero había sido también el de las victorias de Donald Trump en los EEUU y del Brexit en el Reino Unido, en otras palabras, el año de los “hechos alternativos” y la posverdad. El futuro de la ciencia, entonces, se mostraba sombrío.

Durante 2020, la covid-19 ha acaparado toda la atención, pero el año ha dado, en el plano científico, más de sí. Es más, ha sido particularmente fecundo en hallazgos. Veamos, a meros efectos ilustrativos, algunos de los dados a conocer solo en el mes de diciembre.

En astronomía, están reescribiendo la historia de nuestra galaxia. La sonda japonesa Hayabusa2 ha podido traer a la Tierra una muestra de polvo del asteroide Ryugu. Y China ha descubierto casi 19.000 nuevos cráteres en la Luna.

La inteligencia artificial ha producido resultados espectaculares. El algoritmo Alpha Fold 2, predice con éxito la forma de las proteínas a partir de su secuencia de aminoácidos. Y más recientemente, han conseguido resolver la ecuación de Schrödinger, toda una revolución en química cuántica, por las posibilidades que abre para predecir las propiedades de las moléculas a partir de la disposición en el espacio de sus átomos.

En biología estructural y molecular, el último día de 2020 se publicó un método que secuencia el genoma y visualiza su estructura espacial en muestras biológicas intactas.

En neurociencia, se ha conseguido manipular la mente de personas y crear sueños mediante estimulación encefálica no invasiva, lo que abre posibilidades, hasta hace poco inimaginables, de penetrar en los secretos de la mente.

En ciencias ambientales, se ha observado que la disminución de la biodiversidad de ranas en zonas de América Central da lugar a peores brotes de malaria. El hallazgo pone de relieve la íntima relación existente entre la salud humana y la de los ecosistemas. También hemos aprendido que para predecir el comportamiento de los huracanes hay que tener en consideración el efecto de la contaminación atmosférica.

De un orden muy diferente es la autorización para consumo humano, por parte de Singapur, del primer producto cárnico cultivado en el laboratorio (carne artificial). Es el primer paso hacia una gran transformación en la forma de producir y consumir carne para reducir las emisiones de la industria y acabar con el sufrimiento animal.

Esos hallazgos son importantísimos, por sí mismos y por lo que implican. Pero todos empalidecen al lado del diseño y producción de las vacunas de la covid-19, una empresa que podemos considerar quizás como la mayor proeza científica de la historia. Si se superan los obstáculos y la vacunación progresa a un ritmo razonable, la inmunización de miles de millones de personas constituirá el mayor refrendo posible a la ciencia como instrumento de redención. Esta es la gran noticia de finales de 2020.

Hay más. La salida de Trump de la Casa Blanca es la mejor noticia para la ciencia en los Estados Unidos y también una buena nueva, en este ámbito, para el conjunto de la humanidad. Y la Unión Europea, por fin, ha tomado conciencia de la importancia de actuar al unisón en asuntos de carácter estratégico; cabe esperar que, en adelante, lo haga en investigación científica y tecnológica en mayor grado que hasta ahora.

El desarrollo de las vacunas de la covid-19 de 2020 sería así el punto de partida para una época de más progreso y bienestar, una época de transición hacia otros, mejores, tiempos.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Mejores tiempos para la ciencia se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia Clip: un concurso de vídeos de ciencia para jóvenes estudiantes
  2. Ciencia para todos a través del cine y la literatura de ciencia ficción
  3. El temor en los tiempos del ébola, por Guillermo Quindós
Catégories: Zientzia

Catástrofe Ultravioleta #34 OLVIDOS

sam, 2021/01/02 - 11:59
Catástrofe Ultravioleta #34 OLVIDOS

Despedimos la temporada con algunos de los olvidos históricos en nuestro país. La memoria de Cajal desperdigada por los puestos de un rastro, una casa amarilla pionera en el estudio animal y el proyecto de un carpintero que quiere recuperar del olvido un galeón del siglo XVI.

https://www.ivoox.com/t03e10-8211-olvidos_md_63118363_wp_1.mp3

Puedes escucharnos en:

– Podium Podcast
– iVoox
– Spotify
– Apple Podcasts

Agradecimientos: César Calavera, David Barrós, Juan Andrés de Carlos (Instituto Cajal-CSIC), Santiago Ramón y Cajal Agüeras, Fernando de Castro, Juan Pimentel, Alberto Relancio Menéndez (Fundación Canaria Orotava de Historia de la Ciencia), Ander Izagirre, Xavier Agote (Albaola), Julián Mayorga y su troupe

** Catástrofe Ultravioleta es un proyecto realizado por Javier Peláez (@Irreductible) y Antonio Martínez Ron (@aberron) con el patrocinio parcial de la Cátedra de Cultura Científica de la Universidad del País Vasco y la Fundación Euskampus. La edición, música y ambientación obra de Javi Álvarez y han sido compuestas expresamente para cada capítulo.

El artículo Catástrofe Ultravioleta #34 OLVIDOS se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Catástrofe Ultravioleta #30 INMERSIÓN
  2. Catástrofe Ultravioleta #31 SIBERIA
  3. Catástrofe Ultravioleta #32 TANATOS 1
Catégories: Zientzia

Las lapas como indicador paleoclimático de alta resolución

ven, 2021/01/01 - 11:59

Un estudio realizado por investigadores del departamento de Geografía, Prehistoria y Arqueología de la UPV/EHU muestra que las lapas de la especie Patella depressa son un indicador climático de alta resolución con importantes implicaciones para futuros estudios arqueológicos y paleoclimáticos.

Patella depressa Pennant, 1777. Fuente: WoRMS

Los análisis de las relaciones de isótopos estables de oxígeno en conchas de moluscos marinos permiten reconstruir las condiciones oceanográficas del pasado, y relacionarlas con el modo de vida de las poblaciones humanas durante la prehistoria. De manera previa al análisis de las muestras arqueológicas es preciso analizar conchas actuales para determinar si la especie encontrada es un adecuado indicador de las condiciones climáticas durante su crecimiento. A pesar de que la especie Patella depressa es una de las especies más representadas en el registro arqueológico del Holoceno a lo largo de la costa atlántica de Europa esta especie no había sido testada como indicador para la reconstrucción de la temperatura del mar.

Un estudio, codirigido por el investigador de la UPV/EHU Asier García Escárzaga en colaboración con investigadores del Instituto Max Planck y la Universidad de Cantabria, ha demostrado por primera vez que la especie Patella depressa es un adecuado indicador climático. Esta investigación combina un estudio de los patrones de crecimiento de las conchas y un análisis de isótopos estables de oxígeno.

Las temperaturas del mar reconstruidas a partir de los valores isotópicos de las muestras modernas reproducen adecuadamente las variaciones de la temperatura del mar durante la vida de los especímenes analizados. Estos resultados confirman que los análisis de isótopos estables de oxígeno en conchas de la especie Patella depressa son un magnífico indicador de las condiciones climáticas actuales y pasadas.

Esta novedosa investigación tiene, además, importantes implicaciones para el análisis de conchas arqueológicas que permitirá determinar los patrones de explotación del medio marino por parte de las poblaciones humanas durante la prehistoria y el impacto que los diferentes cambios climáticos ocurridos durante el pasado tuvieron para estos grupos.

Referencia:

Asier García-Escárzaga, Igor Gutiérrez-Zugasti, Manuel R. González-Morales, Alvaro Arrizabalaga, Jana Zech, Patrick Roberts (2020) Shell sclerochronology and stable oxygen isotope ratios from the limpet Patella depressa Pennant, 1777: Implications for palaeoclimate reconstruction and archaeology in northern Spain Palaeogeography, Palaeoclimatology, Palaeoecology doi: 10.1016/j.palaeo.2020.110023

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Las lapas como indicador paleoclimático de alta resolución se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Los pigmentos respiratorios de alta afinidad
  2. Cómo criopreservar células madre
  3. Cómo conservar mejor los alimentos con una iluminación inteligente
Catégories: Zientzia

La extraña capacidad de sincronizarnos

jeu, 2020/12/31 - 11:59

Existe en nuestro universo un planeta lleno de simetrías. El planeta da vueltas alrededor de su eje y lo hace siempre al mismo ritmo: siempre en base a periodos regulares de tiempo. Tiene su propio satélite, además, que en su órbita obstinada repite siempre los mismos movimientos, siempre en periodos regulares de tiempo. No lejos de ellos, brilla una estrella. Planeta y satélite dan vueltas a su alrededor y… ya sabéis cómo continúa esta historia: periodos regulares de tiempo.

Concierto de Año NuevoConcierto de Año Nuevo. Fuente: Wiener Philarmoniker

Esto, me diréis, no parece demasiado especial. Al fin y al cabo, habitamos un universo que en tiempos de Newton se comparó con el mecanismo de un reloj. Lo singular es que este planeta está habitado. Y una vez al año, siempre que pasa por un punto determinado de su órbita, las criaturas que lo habitan realizan un ritual de lo más extraño. De repente, cientos de ellas empiezan a golpear las palmas de sus manos entre sí, todos a la vez y lo hacen… sí, en base a periodos regulares de tiempo. Es la gran celebración de la conservación del momento angular y del movimiento periódico, también conocida como Concierto de Año Nuevo.

Aunque dar palmadas al ritmo de la música pueda parecer algo trivial, se trata de una tarea enormemente compleja. Para ejecutarla, no basta con escuchar la música y reaccionar a ella. Si queremos dar las palmadas a tempo, debemos detectar los patrones subyacentes en la música y adivinar cuándo viene la siguiente pulsación. Debemos anticiparnos constantemente a lo que suena.

Desde un punto de vista computacional, por ejemplo, este problema no resulta nada sencillo. Cada año, investigadores de todo el mundo se enfrentan a este reto con nuevos y mejorados algoritmos, con el objetivo de automatizar una tarea que, como humanos, nos resulta casi trivial: dada una pieza musical, ¿dónde se sitúa el pulso?, ¿cómo sabemos cuándo “dar la palmada»? No es de extrañar que los orígenes de la investigación en este ámbito hundan sus raíces en la psicología de la música: para detectar el tempo de una grabación debemos comprender, en paralelo, cómo los humanos percibimos eso que llamamos pulso.

El problema se complica especialmente en el caso de la música clásica. Por un lado, la ausencia de una base clara de percusión (como la batería, omnipresente en otros estilos musicales), hace que sea más difícil detectar picos de energía claramente diferenciados en la señal acústica y que ayuden a marcar el ritmo. Por otro lado, es común que en este tipo de música aparezcan patrones más complejos, como cambios de compás o polirritmos que, incluso para personas con cierta formación musical, pueden resultar difíciles de desentrañar. Todo ello se agrava por el hecho de el tempo que sigue un intérprete casi nunca es constante a lo largo de una misma pieza: lo más común es que varíe de manera expresiva mediante accelerandos y ritardandos; pequeñas flexiones de esos “periodos regulares”, que nosotros identificamos sin ningún problema pero que pueden confundir a las máquinas mejor entrenadas.

A día de hoy, existen multitud de algoritmos que intentan abordar este problema con mayor o menor éxito dependiendo del estilo musical. Los que se centran en el análisis de grabaciones reales (hay otros que analizan audios midi, por ejemplo) deben enfrentarse a dos problemas diferenciados. Por un lado, la detección de los ataques musicales (las notas que tocan los instrumentos, vaya) cuyas duraciones definen el ritmo de una pieza. Por otro, la detección de patrones y relaciones jerárquicas existentes en el ritmo que permiten establecer cuál es el pulso regular subyacente. La cuestión es que para interpretar esos patrones y esas relaciones, los humanos contamos con todo un bagaje cultural que nos permite relacionar esa música con el estilo al que pertenece, su carácter, su estructura… sin esas claves, es fácil que los algoritmos detecten patrones que no son estructurales o que no puedan distinguir entre el pulso de una pieza y sus posibles múltiplos o submúltiplos. Dicho de otra manera: cuando nosotros damos palmas al ritmo de la Macarena, casi siempre lo hacemos con un pulso determinado, pero también podríamos hacerlo al doble de velocidad. Es nuestro contexto cultural (incluso nuestro conocimiento de la coreografía de la canción), lo que nos ayuda a lidiar con esa ambigüedad. El ordenador lo tiene mucho más difícil.

Resulta sorprendente que una tarea tan cotidiana, tan intuitiva y fácil para nosotros, siga eludiendo a la inteligencia artificial. El hecho es que, hasta la fecha, ningún robot ha sido capaz de batirnos en el viejo arte de dar palmadas al ritmo de la música. Quizás, si algún día viene Skynet y las máquinas a conquistarnos, podríamos retarles a bailar un tango, o, peor aún, invitarles al Concierto de Año Nuevo. Seguro que les estallaría la cabeza.

Referencias:

Graham Percival and George Tzanetakis (2014). Streamlined Tempo Estimation Based on Autocorrelation and Cross-correlation with Pulses. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 22(12):1765-1776.

Frederic Font and Xavier Serra (2016). Tempo Estimation for Music Loops and a Simple Confidence Measure. In 17th International Society for Music Information Retrieval Conference (ISMIR 2016), New York, 07/08/2016.

Simon Dixon (2001). Automatic Extraction of Tempo and Beat From Expressive Performances, Journal of New Music Research, 30:1, 39-58.

Almudena Martín Castro (2017). El metrónomo de Beethoven. Modelado físico de un misterio histórico. Trabajo Fin de Grado, Universidad Nacional de Educación a Distancia.

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo La extraña capacidad de sincronizarnos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La emoción de las escalas musicales
  2. Tema y variaciones
  3. El arte de la repetición
Catégories: Zientzia

A vueltas con el origen del ajedrez

mer, 2020/12/30 - 11:59

 

Para celebrar que esta es mi entrada número doscientos en la sección Matemoción del Cuaderno de Cultura Científica, voy a recurrir a un clásico de la divulgación de las matemáticas, la leyenda del origen del ajedrez.

La relación entre ajedrez y matemáticas ha sido siempre muy fructífera. Problemas clásicos como el recorrido del caballo sobre el tablero de ajedrez o el problema de las ocho reinas, entre otros, fueron estudiados por grandes matemáticos como Carl F. Gauss, Leonhard Euler, Abraham de Moivre o Adrien-Marie Legendre. Así mismo, muchos matemáticos recreativos como Lewis Carroll, W. W. Rouse Ball, Henry E. Dudeney, Sam Loyd, Édouard Lucas, Raymond Smullyan o Martin Gardner, se apasionaron con este juego, incluso fueron grandes jugadores, e inventaron interesantes rompecabezas matemáticos y juegos de ingenio sobre el tablero de ajedrez.

Retrato de jugadores de ajedrez (1911), del artista francés Marcel Duchamp (1887-1968)

Realmente, se desconoce cuál es el origen del ajedrez. Sabemos que fue introducido en Europa por los árabes, que lo habían aprendido de los persas, pero a ellos les pudo llegar tanto de la India, como de China. Su origen, tan remoto en el tiempo, ha propiciado que existan muchas leyendas, una de ellas relacionada con las matemáticas.

En esta, se atribuye su invención al brahmán hindú Sissa ben Dahir, que presentó el juego al rey Shirham de la India. Este, en agradecimiento, quiso premiar al brahmán y le pidió que fuese él mismo quien escogiera la recompensa por tan maravillosa invención. El brahmán solicitó que se le pagase en trigo. Un grano de trigo en pago por la primera casilla del tablero de ajedrez, dos granos por la segunda casilla, 4 por la tercera, 8 por la cuarta, … y así sucesivamente, doblando en cada casilla la cantidad de trigo de la casilla anterior. Al monarca le sorprendió la modestia de semejante petición, por lo que dio orden a sus ministros de que le fuera inmediatamente pagada esa cantidad de trigo.

Días más tarde, el rey enfadado al enterarse de que el brahmán aún no había sido pagado, mandó llamar a sus ministros. Estos le informaron de que había un problema… ¡¡El rey no tenía tal cantidad de trigo!!

Fotograma del hermoso trabajo audiovisual de Cristobal Vila titulado Inspirations (2012), que podéis ver en la página web Etérea Estudios, en el que se muestra la idea de los granos de trigo que hay en las primeras casillas del tablero de ajedrez

 

La cuestión es entonces la siguiente:

¿Cuánto trigo había solicitado exactamente el brahmán?

Veámoslo. Serían, en la primera casilla 1, en la segunda el doble 2, en la tercera el doble 22 = 4, es decir, es la suma de las potencias de 2, desde la potencia 0 (2 elevado a 0 es 1) hasta la 63 (hay 64 casillas y hemos empezado por 20), es decir,

1 + 2 + 22 + 23 + … + 263 (granos de trigo).

Como se observa, la suma de una progresión geométrica, de factor de progresión 2. En matemáticas tenemos una sencilla fórmula para calcular esta suma, que nos dice que esta suma es igual a

264 – 1 = 18.446.744.073.709.551.615,

es decir, más de 18 trillones de granos de trigo.

Pero la cuestión es saber si dicha cantidad de trigo es realmente grande o no, y en caso de serlo, cuánto de grande puede ser.

Si tomamos como cierta la estimación de que hay 15 millones de granos de trigo por metro cúbico, la cantidad solicitada por el brahmán equivale aproximadamente a un billón 230 mil millones (1.230.000.000.000) de metros cúbicos. Si tuviésemos que almacenarla en un silo, este podría tener, por ejemplo, uno de los siguientes tamaños:

i) un silo con una base que fuese igual a la superficie de todo el territorio histórico del País Vasco (que incluye las siete provincias o herrialdes, a saber, Bizkaia, Gipuzkoa, Araba y Navarra, en España, y Lapurdi, Zuberoa y la Baja Navarra, en Francia), que es de 20.664 km2, y que tendría ¡¡¡una altura de casi 60 metros!!!;

ii) o un silo que tuviera una base con la superficie de toda la Península Ibérica (580.000 km2) y que tendría una altura de más de 2 metros; en conclusión, un silo enorme.

Mural Cuarteto de Agricultores (2015), pintado sobre un silo, del artista Guido Van Helten, uno de los murales sobre silos de la ruta artística Silo Art Trail de Australia. Imagen de Destino infinito.

Pero sigamos pensando un poco en el trigo que el rey Shirham tenía que entregar al brahmán y preguntémonos:

¿Había alguna posibilidad de que el rey pudiese conseguir tal cantidad de trigo?

Según la base de datos (FAOSTAT) de la FAO, es decir, la Organización de las Naciones Unidas para la Alimentación y la Agricultura, la producción mundial de trigo en 2017 (último año con datos recogidos) fue de 771.718.589 toneladas de trigo. Luego, para poder calcular las toneladas que tenía que pagar el rey Shirham, necesitamos saber cuánto pesa el trigo. Ese dato nos lo da lo que se conoce como peso específico, la cantidad de kilos por hectolitro (0,1 metros cúbicos), del trigo. Aunque existen variaciones (en función de los tipos de trigo y otros factores), podríamos fijar una cantidad aproximada de 800 kilos de trigo por metro cúbico. Por lo tanto, los, más o menos, un billón 230 mil millones (1.230.000.000.000) de metros cúbicos, pesarían del orden de 984 mil millones (984.000.000.000) de toneladas.

Por lo tanto, si la producción de 2017 era de unos 780 millones de toneladas, se necesitarían unos 1.250 años de producción de trigo (del tamaño de la producción de 2017) en todo el mundo para pagar la deuda.

Pero está claro que la producción en aquel tiempo era muchísimo menor. Si tomamos como referencia la producción mundial de trigo en el siglo XIX, que era menor que 100 millones de toneladas, pero en cualquier caso mucho mayor que en la época de la leyenda, se necesitarían, como mínimo, unos 10.000 años con toda la producción mundial para cubrir la demanda de Sissa ben Dahir. Si tenemos en cuenta que el ser humano empezó a cultivar el trigo, más o menos, hacia el 9.500 a.c., y que entonces la producción era mínima, es posible que toda la producción de trigo de la historia no fuese suficiente para pagar el precio de la invención del ajedrez.

Pan (1949), de la artista ucraniana Tatiana Yablonskaya

Sorprendente, ¿no? Pero démosle una vuelta de tuerca más a la historia:

¿Cuánto tiempo tardaría uno de los sirvientes del rey Shirham en contar la deuda de granos de trigo (suponiendo claro que los tuviese y que contase a una velocidad de un grano por segundo)?

El tiempo que se tarda es de nuevo más de 18 trillones de segundos. Teniendo en cuenta que hay 31.557.600 segundos en un año, nuestra cantidad es más de 584 mil millones de años. Los físicos que estudian el origen del universo (el Big Bang) estiman que este se produjo hace 15 mil millones de años y que, según la teoría vigente sobre la evolución del universo, puede que este dure todavía entre 10 y 15 mil millones de años… luego realmente no existe el tiempo para poder contar directamente, una sola persona, esa cantidad de granos de trigo… Bueno, toda la población mundial actual, unos 7.800 millones de personas, tardaríamos del orden de 75 años entre todos.

Juego de damas, de la artista canadiense Liane Abrieu. Imagen de la página web de la artista

Como decíamos al principio de esta entrada, existen muchos problemas matemáticos y juegos de ingenio que tienen como base el ajedrez, ya sea solo el tablero, o también las piezas del juego. Para terminar esta entrada me gustaría recordar unos pocos de estos juegos para que puedan divertirse “jugando” las personas que así lo deseen.

Problema 1: Dado un tablero de ajedrez, 8 x 8, del que eliminamos dos casillas opuestas de las esquinas (por ejemplo, pongamos en ellas dos peones), ¿es posible recubrir este tablero con fichas de dominó (suponiendo que estas fichas tienen el tamaño de dos casillas)?

Este problema es un clásico que aparece en muchos libros de pasatiempos matemáticos. Es interesante como ejemplo de problema que no tiene solución y hay que buscar un razonamiento que explique el motivo por el cual no existe tal solución.

Problema 2: Si se consideran ahora triominós, que son fichas con tres casillas, pero en forma de L. No puede rellenarse el tablero 8 x 8 con estas fichas, puesto que 64 no es divisible por 3. Sin embargo, si eliminamos una casilla del tablero (por ejemplo, poniendo un peón), ¿será posible recubrir este tablero?

Este es un interesante problema sobre el que podéis leer en la entrada del Cuaderno de Cultura Científica titulada Embaldosando con L-triominós (un ejemplo de demostración por inducción).

Problema 3 (el recorrido del caballo): Utilizando la pieza del caballo, con su particular movimiento en el ajedrez, realizar un recorrido por todas las casillas del tablero, sin repetir casilla.

Este es un problema clásico. Puede leerse sobre el mismo en el libro Del ajedrez a los grafos, la seriedad matemática de los juegos, así como en muchos otros textos. Y otro problema clásico y estudiado por grandes matemáticos es el siguiente.

Problema 4 (las ocho reinas en el tablero de ajedrez): Colocar ocho reinas en el tablero de ajedrez de manera que ninguna de las reinas se vea amenazada por las otras siete.

Puede leerse sobre este problema en el libro Recreaciones Matemáticas, de Édouard Lucas.

Ajedrez 12 (2007) de la artista rusa Agatha Belaya. Imagen de la página web de la artista, donde encontraréis más pinturas relacionadas con el ajedrez

 

El juego del ajedrez (1944), de la artista y escritora estadounidense Dorothea Tanning (1910-2012)

 

Bibliografía

1.- Raúl Ibáñez, Del ajedrez a los grafos, la seriedad matemática de los juegos, El mundo es matemático, RBA, 2015.

2.- Georges Ifrah, Historia universal de las cifras, Ensayo y pensamiento, Espasa, 2002 (quinta edición).

3.- Antonio J. Durán (idea), Vida de los números, textos de Antonio J. Durán, Georges Ifrah, Alberto Manguel, T ediciones, 2006.

4.- Édouard Lucas, Recreaciones Matemáticas, vol. 1 – 4, Nivola, 2007, 2008.

5.- Miodrag S. Petrovic, Famous Puzzles of Great Mathematicians, AMS, 2009.

 

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo A vueltas con el origen del ajedrez se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El origen de la escritura de los números
  2. El origen poético de los números de Fibonacci
  3. ¿Jugar al ajedrez te hace más inteligente? Un vistazo a las pruebas
Catégories: Zientzia

Historia del radio terrestre

mar, 2020/12/29 - 17:00

El filósofo y matemático griego Tales de Mileto creía que la Tierra era un disco flotando en un mar de agua. Para su discípulo Anaximandro la Tierra era un cilindro, con la ecúmene (el mundo habitado) en una de sus tapas planas. Sin embargo, los antiguos griegos terminaron descubriendo que la Tierra tiene forma esférica. Una vez conocida la forma del planeta el siguiente paso fue saber cuál era el tamaño de nuestro planeta y para ello los griegos realizaron algunas estimaciones, utilizando la geometría, del perímetro terrestre. La medición griega más famosa, y certera, del perímetro de la Tierra se debe al polímata griego Eratóstenes de Cirene.  Pero fue el astrónomo persa Al-Biruni quien desarrolló un método más preciso aplicando ecuaciones trigonométricas al ángulo formado entre el pico de una montaña y un plano situado a sus pies. De esa manera calculó que el radio terrestre media 6339.9 km, 17 km menos de lo que en realidad tiene.

Los vídeos de Historias de la Ciencia presentan de forma breve y amena pasajes de la nuestra historia científica y tecnológica. Los vídeos, realizados para la Cátedra de Cultura Científica de la UPV/EHU, se estrenan en el programa de ciencia Órbita Laika (@orbitalaika_tve), los lunes a las 22:00 en la 2 de RTVE.

El artículo Historia del radio terrestre se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Historia de Nicolas Bourbaki
  2. Historia del movimiento ecologista
  3. Historia de la tectónica de placas
Catégories: Zientzia

El neutrino

mar, 2020/12/29 - 11:59
Durante la toma de esta fotografía de un eclipse total de sol, los neutrinos procedentes del Sol atravesaron la Luna, la cámara, la fotógrafa y el planeta sobre el que esta estaba sin inmutarse. Foto:  karen kayser / Unsplash

La descripción de la desintegración beta en términos de la transformación de un neutrón en el núcleo es parte de una de las historias más fascinantes de la física moderna: la predicción y el eventual descubrimiento de las partículas llamadas neutrino y antineutrino.

Los estudios cuantitativos de las relaciones energéticas en la desintegración beta durante las décadas de 1920 y 1930 plantearon una cuestión difícil y seria. Se idearon métodos para determinar el cambio de energía en un núcleo durante la desintegración beta. Según el principio de conservación de la energía, la energía perdida por el núcleo debe ser igual a la energía transportada por la partícula beta; pero las energías cinéticas medidas de las partículas beta tenían una amplia gama de valores medidos, todos menores que la cantidad de energía perdida por el núcleo. Es decir, parte de la energía perdida por el núcleo parecía haber desaparecido.

Las mediciones realizadas en una gran cantidad de emisores beta indicaron que, en promedio, aproximadamente dos tercios de la energía perdida por los núcleos con desintegración beta parecían desaparecer. Los intentos de encontrar experimentalmente la energía que faltaba fallaron. Por ejemplo, se pensó que esta energía podría ser transportada por rayos gamma; pero estos rayos gamma no se pudieron detectar experimentalmente. El principio de conservación de la energía parecía violarse en la desintegración beta. Se encontraron discrepancias similares en las mediciones del momento del electrón emitido y el núcleo desplazado.

Como en el caso de los experimentos que llevaron al descubrimiento del neutrón, la comunidad física se esforzó mucho en encontrar una alternativa a la posibilidad de aceptar un fracaso de los principios de conservación de la energía y el momento. Estas y otras consideraciones relacionadas llevaron a Wolfgang Pauli a sugerir que otra partícula, que hasta ese momento había pasado inadvertida, se emite en la desintegración beta junto con el electrón, y que esta partícula es la que porta la energía y el momento que faltan.

Esta partícula hipotética no podía tener carga eléctrica, porque la carga positiva del protón y la carga negativa de la partícula beta juntas son iguales a la carga cero del neutrón original. El balance masa-energía en la desintegración del neutrón apuntaba a que la masa en reposo de la partícula de Pauli debería ser muy pequeña, mucho más pequeña que la masa de un electrón y posiblemente incluso cero. La combinación de carga eléctrica cero y masa cero o casi cero haría que la partícula fuera extremadamente difícil de detectar.

Enrico Fermi llamó a esta partícula hipotética neutrino [1]. Fermi construyó un modelo de la desintegración beta basado en la sugerencia de Pauli, en el que un neutrón se desintegra en un protón, un electrón y un neutrino, aquí representado por la letra griega nu (ν):

Este modelo describía adecuadamente los hechos conocidos de la desintegración beta. A partir de 1934, mientras la difícil búsqueda de su verificación experimental aún estaba en curso, el neutrino fue aceptado como una partícula «real» por dos razones, ambas teóricas [2]: salvaba el principio de conservación de la energía en la desintegración, y podía ser utilizado con éxito tanto para describir el resultado de los experimentos de desintegración beta como para predecir los resultados de nuevos experimentos.

Se hicieron muchos intentos infructuosos para detectar neutrinos durante 25 años. Finalmente, en 1956, se detectaron neutrinos en un experimento utilizando el flujo extremadamente grande de neutrinos que sale de un reactor nuclear. La detección de neutrinos es un proceso indirecto que consiste en detectar los productos de una reacción provocada por un neutrino. La reacción utilizada fue una desintegración beta inversa, la producción de un neutrón a partir de un protón. Debido a que el encuentro apropiado de un protón, un electrón y un neutrino en el mismo lugar y al mismo tiempo es un evento extremadamente improbable [3] y el neutrón resultante es difícil de detectar, «atrapar» los neutrinos requerió de una trampa muy elaborada y sensible. Una vez más, la fe en el principio de conservación de la energía se había justificado.

Notas:

[1] En castellano el diminutivo de neutro sería neutrito, en italiano de neutro, neutrino.

[2] En abierta contradicción con los que hablan de “el método científico” como algo único, lo identifican con el método hipotético-deductivo y hacen de la falsación el centro del mismo. La ciencia se basa en actitudes científicas, lo que implica el uso de los métodos que sean menester en cada caso, como este. Véase a este respecto nuestra serie La tesis de Duhem-Quine.

[3] Tanto es así que los neutrinos pueden atravesar toda la Tierra sin alterarse lo más mínimo. De hecho, ahora mismo tu cuerpo está siendo atravesado por neutrinos sin que produzcan efecto alguno.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo El neutrino se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El modelo protón-neutrón
  2. La fe en las leyes de conservación
  3. Las series de desintegración radiactiva
Catégories: Zientzia

La vacuna de la covid-19, una proeza científica

lun, 2020/12/28 - 11:59

Es 27 de diciembre de 2020 y acabo de firmar, como su responsable legal, el consentimiento para que le sea administrada a mi padre la vacuna de la covid-19. Ese acto mínimo es el requisito para que culmine, en la persona de un anciano de 86 años interno en una residencia, un proceso que comenzó hace casi un año y que, sin temor a exagerar, puede ser considerado una verdadera proeza científica, muy probablemente la mayor proeza científica de la historia.

covid-19Foto: Daniel Schludi / Unsplash

No se ha alcanzado aún la meta final. Queda por delante un camino largo lleno de amenazas. Son miles de millones las personas que han de ser vacunadas, y pueden surgir dificultades aún. Hay quienes, por diferentes razones, prefieren no vacunarse o esperar. No sabemos aún cuál será el alcance de la vacunación, cuándo llegará hasta los últimos rincones del planeta. No sabemos cuánto tiempo hara falta para producir los miles de millones de dosis que serán necesarias, ni cuántos los miles de personas que morirán o enfermarán gravemente pocos días o semanas antes de poder recibir la vacuna. Desconocemos si las variantes genéticas del SARS-CoV-2 que surjan le conferirán defensas frente a las vacunas que se administren. También ignoramos si las vacunas, además de proteger a quienes la reciben, impedirán que puedan contagiar a otros. Y, por último, no sabemos si tendrán efectos secundarios de alguna consideración cuando se vacune a millones de personas. Pero ninguna de esas amenazas, por reales que sean, pueden empañar el logro que supone la vacunación, con las máximas garantías que se pueden ofrecer, de millones de personas en los primeros meses de 2021, un año después del comienzo de la peor pandemia a que se ha enfrentado la humanidad en un siglo.

Por dimensiones, que no por su carácter u objetivos, podemos citar dos antecedentes de esta empresa. El primero es el proyecto Manhattan. Permitió a los norteamericanos disponer, en pocos años, de la bomba atómica. Durante su desarrollo (1942-1947) llegó a involucrar a 130 000 personas y se le dedicó el equivalente a 70 000 millones de dólares actuales, aunque solo el 10% de esa cantidad se destinó al desarrollo y producción de armamento. El segundo, más tecnológico que científico, fue el programa Apolo, gracias al cuál en seis ocasiones seres humanos pisaron la superficie lunar. El programa se prolongó durante más de una década (1961-1972) y conllevó una inversión de 170 000 millones de dólares.

La historia, breve, de la vacuna de la covid-19 empezó el 31 de diciembre de 2019, cuando se informó de 27 casos de una neumonía desconocida en Wuhan (China). El 8 de enero siguiente se supo que el causante era un nuevo coronavirus. Dos días después ya se había hecho pública su secuencia genómica. En febrero se pusieron en marcha varios proyectos de vacunas. En China, las primeras fueron CanSino Biologics, Sinovac Biotech y la estatal Sinopharm; en los Estados Unidos, Moderna e Inovio Pharmaceuticals; en Europa, BioNTech, una empresa biotecnológica alemana desarrolló una candidata que más adelante compartiría con Pfizer; un grupo de la Universidad de Oxford creó una vacuna al que se sumó AstraZeneca; Janssen y Sanofi Pasteur también lanzaron sus propios proyectos.

A mediados de abril supimos que la vacuna de SinoVac Biotech era eficaz con monos. El 20 de ese mismo mes, cinco empresas ya testaban su vacunas en ensayos clínicos, y había más de 70 candidatas en desarrollo preclínico. A finales de julio, las vacunas de Moderna y de Pfizer-BioNTech, ambas basadas en ARN mensajero, empezaron los ensayos de eficacia. Los proyectos chinos, paradójicamente, perdieron la delantera debido al éxito con el que se contuvo la pandemia en aquel país, lo que obligó a reclutar voluntarios en otros.

Durante el mes de noviembre, se anunció que unas pocas vacunas de la covid-19 tenían una eficacia superior al 90%. Todos los plazos, desde la aparición de los casos de neumonía en diciembre de 2019 hasta las autorizaciones en diciembre de 2020, por las agencias reguladoras, de las vacunas, han sido los más cortos, con gran diferencia, que haya habido nunca.

Desde que se anunció el brote de la enfermedad miles de científicos, biomédicos y de otras áreas, de todo el mundo se pusieron a investigar en temas relativos a la covid-19, compartiendo información en un grado nunca visto. La cooperación se ha producido, en su mayor parte, haciendo uso de redes informales, sin necesidad de que mediasen acuerdos formales entre países o instituciones.

covid-19Ultraestructura de un coronavirus. Imagen: CDC / Unsplash

Los resultados de esa actividad investigadora se han plasmado en la publicación, hasta primeros de diciembre, de 84 180 artículos científicos relacionados con la covid-19 (a razón de 260 diarios). Para dotar a esa cifra del significado que merece, hagamos una comparación: el número total de los publicados desde que existen las revistas científicas sobre el cáncer de pulmón es, aproximadamente, de 350 000; de sida-VIH, 165 000; de gripe, 135 000; y de malaria, 100 000. En tan solo once meses se ha publicado un volumen de artículos sobre covid-19 equivalente a casi el 60% de todos los publicados sobre la gripe.

El número de firmantes (autores únicos) de los artículos sobre la covid-19 asciende a 322 279, cifra que triplica en tan solo 11 meses la correspondiente al proyecto Manhattan al cabo de cinco años. Si nos limitamos a quienes han intervenido en el desarrollo de las vacunas y puesto que en este momento hay 162 candidatas (de las que 52 se encuentran en ensayos clínicos), una estimación conservadora arroja un número de 65 000 participantes (personal científico y sanitario) en todo el mundo, lo que equivale a la mitad de todo el personal involucrado en el proyecto Manhattan.

El esfuerzo económico también ha sido enorme. Solo la administración norteamericana ha destinado más de 10 000 millones de dólares a las compañías farmacéuticas para el diseño y producción de vacunas. Si a esa cantidad sumásemos los recursos invertidos por China, Japón, Rusia, Reino Unido y la Unión Europea, la cantidad total se aproximaría quizás a la inversión realizada en el proyecto Manhattan, aunque solo el 10% de aquél se destinase a diseño y producción de armamento.

Además de las inversiones económicas y la dedicación de centenares de miles de personas, la vacuna para el SARS-CoV-2 se ha beneficiado de algunas circunstancias favorables que resumo a continuación. La investigación de hace unos años para el desarrollo de las vacunas contra el SARS-CoV-1 y el MERS-CoV ha permitido omitir pasos preliminares. Los ensayos de fase I y II se iniciaron de forma casi simultánea adaptando procedimientos ya existentes. Los de fase III comenzaron después del análisis intermedio de los resultados de las anteriores, cubriendo etapas de ensayos clínicos en paralelo. Varias vacunas se empezaron a producir a gran escala, asumiendo el riesgo de que finalmente no resultasen efectivas y se perdiese la inversión. Y las agencias públicas de medicamentos, mientras tanto, han ido haciendo una evaluación continua de estas vacunas para contar con todas las garantías de eficacia y seguridad.

Una conjunción extraordinaria de factores ha permitido que esta empresa científica cursase a una velocidad asombrosa. Nunca se habían desarrollado a la vez tantas vacunas contra un mismo patógeno. Nunca tantas personas se habían involucrado en un gran proyecto científico en tan poco tiempo. Nunca se había alcanzado un grado tal de colaboración, incluso entre competidores. Nunca se habían desarrollado tantos ensayos clínicos a la vez para probar la eficacia de tantas vacunas. Y nunca antes se habían destinado tantos recursos y tanta inteligencia a combatir una enfermedad en tan corto espacio de tiempo.

Sin ese esfuerzo tan grande no se habría llegado a la situación en que nos encontramos hoy. Y sin embargo, tal esfuerzo no era, por sí solo, garantía de éxito. En 1971, el entonces presidente de los Estados Unidos, Richard Nixon, firmó la denominada National Cancer Act, una ley mediante la que se proponía acabar con el cáncer y destinó a ese objetivo el equivalente a unos 10 000 millones de dólares actuales. Han pasado 50 años desde entonces.

La razón por la que la denominada ‘guerra contra el cáncer’ de Nixon se quedó muy lejos de cumplir sus objetivos es que había aspectos fundamentales de la biología de las células cancerosas que se desconocían aún. No había ocurrido lo mismo con el ‘proyecto Manhattan’ o con el ‘programa Apolo’, porque en ambos casos se contaba con el conocimiento básico necesario para abordarlos.

Ese mismo factor, la ciencia básica, ha resultado clave en el desarrollo de la vacuna de la covid-19. Desde que en 1953 se desvelase la estructura del ADN, un volumen ingente de investigación ha permitido conocer la estructura y comportamiento de los virus, desentrañar el funcionamiento del sistema inmunitario humano, y desarrollar poderosas técnicas biotecnológicas, entre otros ingredientes esenciales de este logro. Es esta una importante lección de cara al futuro: la investigación básica puede ser requisito esencial para afrontar peligros para nuestra propia supervivencia que desconocemos hoy.

En días o semanas próximas vacunarán a mi padre y, con él, a miles de residentes más en centros sociosanitarios. Más adelante serán otros los vacunados, hasta que gran parte de la población mundial se haya inmunizado. Subsisten dudas, surgirán problemas y aflorarán nuevos obstáculos a superar, pero la humanidad en su conjunto -miles de millones de personas- se beneficiará de los frutos de una empresa colectiva sin parangón, de una empresa científica.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo La vacuna de la covid-19, una proeza científica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sí con mis impuestos
  2. La Covid-19 revoluciona el sistema de publicación científica
  3. Relación entre genoma y las formas graves de COVID-19
Catégories: Zientzia

¿En qué se parecen un patógeno y un rumor?

dim, 2020/12/27 - 11:59

Manuel de León Rodríguez  y Antonio Gómez Corral

Foto: Ben White / Unsplash

Con el término “rumor” nos referimos a una información, no siempre cierta, que puede propagarse en una población de individuos que interactúan entre sí. Su transmisión puede tener un impacto importante en la formación de las opiniones públicas y, en numerosas ocasiones, influye en el progreso de la sociedad de forma positiva y negativa.

Aunque el uso del rumor –bien o mal intencionado– para influir sobre la sociedad y desacreditar a un adversario ha existido siempre, la irrupción de internet y las redes sociales han hecho que su difusión se haya vuelto cada vez más poderosa con respecto a su intensidad y rapidez. Acontecimientos de gran magnitud internacional –como las elecciones en EE. UU. y el referéndum del Brexit– pueden haberse visto influenciados por fake news puestas en circulación intencionadamente.

La propagación de fake news e insultos en Twitter ha preocupado a las administraciones públicas hasta el punto de abordar la regulación de las redes sociales y la adopción de ciertas medidas colectivas complementarias.

El contagio de patógenos y rumores

Tras las epidemias subyacen modelos matemáticos y comportamiento humano, tal y como explicamos en el libro Las matemáticas de la pandemia.

De la misma manera que la malaria se transmite entre personas por medio de un mosquito infectado del género Anopheles, los rumores a menudo se transmiten entre seres humanos por medio del contacto que comparten en una red social. En ambos casos se observa la difusión de algo (el parásito Plasmodium o las fake news) entre una persona infectada (enferma por malaria o conocedora del rumor) y otra persona susceptible (sana o ignorante del rumor).

En la década de 1960, el matemático estadounidense William Goffman sugirió que la transmisión de información entre científicos funcionaba esencialmente como una epidemia. La analogía de Goffman estaba basada en usar los términos “susceptible”, “infectado” y “eliminado” empleados en el modelo SIR de epidemias que aluden a las personas sanas, colonizadas con el patógeno –y, por tanto, capaces de transmitirlo a otras– e inmunes.

En su trabajo las usaba para referirse al autor de un artículo científico, el lector que adquiere el conocimiento científico –y potencial propagador del mismo– y la muerte del lector o la pérdida de interés en el conocimiento transmitido. En este contexto, los artículos científicos serían los vectores de transmisión. Con su analogía, Goffman estaría sugiriendo que la difusión de las leyes de la herencia de Johann Mendel y la teoría de la relatividad de Albert Einstein podría ser modelizada de forma adecuada mediante un modelo de epidemias.

Pronto surgieron voces disconformes con la analogía de Goffman: en el modelo SIR de epidemias la persona infectada se recupera después de un cierto tiempo y adquiere inmunidad frente al patógeno cuando se recupera. Los matemáticos británicos Daryl J. Daley y David G. Kendall pusieron de manifiesto que los propagadores en un modelo de rumores habitualmente no se recuperan –no cesan en el intento de transmitir el rumor– de manera natural, sino que podrían desistir cuando, por ejemplo, encuentren a alguien que ya conoce el rumor.

Quizá la crítica de Daley y Kendall no sea muy sorprendente, dado que la difusión de rumores depende de aspectos sociales que no se observan en la transmisión de un patógeno. Mientras que el patógeno persiste en su intento de colonizar a nuevos individuos, los rumores están a menudo sujetos a las reglas sociales que rigen el comportamiento de una persona dentro del grupo con el que habitualmente interactúa.

Además, hay que observar un planteamiento diferente entre el proceso de transmisión en una epidemia y la propagación de un rumor.

Ante la emergencia de un nuevo virus, como es el caso del SARS-CoV-2, las agencias sanitarias pretenden primero saber cuáles son las rutas principales de transmisión y luego conocer sobre cuáles de esas rutas deberían centrar sus esfuerzos para parar o mitigar la transmisión del patógeno.

Los comerciales en el diseño de una campaña de publicidad deben centrar su atención sobre esos mismos aspectos, pero con matices opuestos. Tienen que conocer la forma en que una persona puede verse expuesta al mensaje de publicidad para centrarse en las rutas de transmisión del mensaje adecuadas, pero con el objetivo de expandir lo más posible su campaña.

Aunque con grandes diferencias, en epidemias y rumores hablamos de dos elementos comunes: las personas y las conexiones entre pares de personas que determinan la ruta de transmisión.

Las redes sociales vistas como un grafo

Sobre una hoja en blanco, las personas que forman parte de una población podrían ser representadas mediante puntos, y una línea conectando dos puntos indicaría, en un sentido amplio, una conexión entre las personas representadas de manera abstracta con esos puntos. Veríamos entonces cómo un mosquito viaja sobre una línea trazada entre dos puntos –sobre los que hemos colocado a una persona infectada de malaria y una persona sana– de la misma manera que el rumor viaja a través de internet desde el móvil de una persona que, con buenas o malas intenciones, quiere influir sobre otra persona susceptible.

El resultado final de representar a las personas y sus conexiones podría describirse mediante un grafo o red de contactos donde los nodos son personas y las aristas son los enlaces, cuando existen entre ellas. Incluso las aristas podrían estar orientadas en ambos sentidos, como las relaciones en redes sociales como Whatsapp y Facebook, o solo en uno de ellos, como en Twitter. Esto dependerá de si el rumor puede ser transmitido entre dos personas por igual o, por el contrario, solo puede ser transmitido desde una de ellas a la otra.

Como consecuencia, las dinámicas de difusión de rumores tienen mucho en común con la teoría de grafos, el concepto de “mundo pequeño” y la teoría de “los seis grados de separación” sobre el reto de encontrar a una persona que no estuviera conectada con otra persona elegida al azar a través de una cadena de cinco conocidos.

La propiedad de mundo pequeño es de especial relevancia, tanto en la propagación de un patógeno como en la difusión de rumores. Lo que expresa es que un nodo individual –un individuo, en un sentido amplio– está conectado con otros nodos en su área local, pero también lo puede estar con nodos más lejanos en el espacio a través de nodos intermedios.

Con independencia de los orígenes de las redes de contacto y sus aplicaciones, la teoría de los seis grados se refiere a cualquier red social en el sentido general de estructura que involucra a usuarios (personas, terminales, instituciones) relacionados entre sí en función de algún vínculo (de amistad, profesional, político). Estos conceptos han dado lugar incluso a canciones como Full Circle de No Doubt y a las películas Seis grados de separación (1993) y Babel (2006), con el trasfondo de la globalización.

Ambos conceptos son objeto de investigación activa y aparecen combinados con otros aspectos novedosos. Por ejemplo, las redes de contacto dinámicas evolucionan a lo largo del tiempo en función del conocimiento que una persona tiene sobre el estado de sus contactos. En la aplicación a la propagación de SARS-CoV-2, esto puede significar la ruptura del enlace entre una persona sana con una persona diagnosticada de covid-19 y el necesario establecimiento de una nueva conexión con otra persona diferente.

Se trata de una medida preventiva de distanciamiento social –que la persona sana adopta por decisión propia desde el conocimiento de que uno de sus vecinos está infectado– con un claro beneficio individual, pero que sorprendentemente podría tener un efecto negativo sobre la evolución de la epidemia a nivel poblacional en términos del número de individuos que se verán finalmente afectados por el patógeno y la duración del episodio.The Conversation

Sobre los autores: Manuel de León Rodríguez es profesor de investigación del CSIC en el Instituto de Ciencias Matemáticas (ICMAT-CSIC) y Antonio Gómez Corral, es profesor del departamento de estadística e investigación operativa de la Universidad Complutense de Madrid

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿En qué se parecen un patógeno y un rumor? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Compartiendo un rumor
  2. El modelo SIR, un enfoque matemático de la propagación de infecciones
  3. La mielitis transversa: el embotellamiento inflamatorio de la médula espinal
Catégories: Zientzia

Carlos Briones – Naukas Bilbao 2019: Luna

sam, 2020/12/26 - 11:59
Foto: Luca Huter / Unsplash

Antonio Martínez Ron escribía refiriéndose a Carlos Briones lo siguiente:

No solo es la persona que mejor representa la unión de las sensibilidades científica y literaria; sus charlas sobre astronomía y arte han marcado una especie de estándar de la calidad de una conferencia. Además de poeta laureado y divulgador incansable, Carlos es uno de los científicos españoles más brillantes.

Si en Naukas 2018 Briones sorprendió a todo el mundo con una forma sorprendente de contar la historia del universo, en 2019 su conferencia titulada Luna entró definitivamente en la categoría de obra artística. Lo que traemos a continuación es la edición especial que eitb.eus hizo de la misma; la voz en off es la del directo de Briones. Para disfrutar con auriculares y en una habitación en penumbra.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Carlos Briones – Naukas Bilbao 2019: Luna se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Naukas Pro 2017: Carlos Briones y el origen de la vida
  2. Carlos Briones – Naukas Bilbao 2018: Os voy a contar una historia (en imágenes)
  3. Nahúm Méndez Chazarra – Naukas Bilbao 2019: Marcianos, extraterrestres y la zona habitable
Catégories: Zientzia

Los pasaportes de inmunidad, entre el conflicto ético y la oportunidad

ven, 2020/12/25 - 11:59
Foto: Blake Guidry / Unsplash

Los pasaportes de inmunidad son una forma de registrar que se considera que un individuo tiene inmunidad a la COVID-19 y se presume que es improbable que contraiga o propague la enfermedad. Pueden ser un certificado, una pulsera, una aplicación para móviles u otro documento. En principio su utilización genera muchas dudas desde un punto de vista científico y ético. La ciencia desconfía de ellos porque aún no está claro que haber pasado la enfermedad haga que, efectivamente, se consiga la inmunidad, ni por cuánto tiempo. De hecho, hay algunas reinfecciones, aunque parece ser un fenómeno muy poco habitual. Los problemas científicos, con todo, irán desapareciendo conforme se obtengan más datos.

Los problemas éticos, en cambio, tienen vocación de permanencia. “Si aceptamos que, como dicen sus detractores, los pasaportes son inadmisibles porque pueden provocar que las personas se contagien voluntariamente, o porque aumentarían la vigilancia del Estado, sobre todo en colectivos vulnerables, o porque crearían un mercado negro incipiente, es obvio que deberíamos renunciar a ellos”. Sin embargo, en un artículo publicado con el profesor Ikerbasque de la UPV/EHU Iñigo de Miguel Beriain como coautor, se argumenta “que esto no es tan simple, y para entender por qué, hay que adoptar la perspectiva del inmunizado”, afirma el doctor en Derecho y en Filosofía.

“Si usted no puede contagiar el virus, es sumamente difícil justificar la restricción de algunos de sus derechos, sobre todo el derecho fundamental a la libertad de movimientos. Tanto la Constitución Española como el Convenio Europeo de Derechos Humanos limitan claramente cualquier restricción de ese derecho —añade—. Es muy difícil amparar una limitación de nuestra libertad de movimientos sobre la base de la evitación de conductas temerarias por parte de terceras personas”.

En opinión del investigador del Departamento de Derecho Público, la importancia de esta cuestión se incrementará sin duda cuando se tengan vacunas disponibles y una proporción importante de la población empiece a vacunarse. Los certificados de vacunación generarán, de hecho, una especie de pasaporte de inmunidad. Según el investigador, en las próximas fases de la pandemia, estarán en juego diferentes estados de inmunidad, “porque es inevitable la necesidad de identificar quién puede propagar COVID-19. Si una persona no representa una amenaza para la salud pública porque no puede propagar la infección, entonces se debe respetar su derecho a la libertad de movimiento, independientemente de cómo haya adquirido esa inmunidad. Pero, si no hay vacunas para todos en ese momento, lo que estaremos haciendo es reconocer la vigencia y la aceptabilidad moral de los pasaportes inmunológicos, al menos cuando hablemos de derechos fundamentales”.

Referencia:

Iñigo de Miguel Beriain, Jon Rueda (2020) Immunity passports, fundamental rights and public health hazards: a reply to Brown et al. Journal of Medical Ethics doi: 10.1136/medethics-2020-106814

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Los pasaportes de inmunidad, entre el conflicto ético y la oportunidad se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Por qué los biobots no son un problema ético (de momento)
  2. Un nexo cannabinoide entre mitocondrias y memoria
  3. La dependencia entre conectividad estructural y funcional en el cerebro
Catégories: Zientzia

Sombra aquí, sombra allá: reconocimiento facial discriminatorio

jeu, 2020/12/24 - 11:59

Lorena Fernández Álvarez

Foto: jurien huggins / Unsplash

Con los avances en inteligencia artificial los sistemas de reconocimiento facial han proliferado. Se han desarrollado muchos servicios para identificar a personas en las multitudes, analizar sus emociones y detectar su género, edad, raza y características faciales. Ya se utilizan con una gran variedad de propósitos: desde contratar o mejorar sistemas de marketing hasta aspectos relacionados con seguridad y vigilancia.

Sin embargo, a pesar de los amplios esfuerzos para mejorar su fiabilidad, los estudios demuestran que los algoritmos de aprendizaje automático pueden discriminar según el género y la raza. También bajan su rendimiento en personas trans y no son capaces de clasificar a personas no binarias. Además, elementos como el maquillaje tienen un alto impacto en la precisión de los sistemas.

Los algoritmos de aprendizaje automático (Machine Learning) establecen patrones tras procesar grandes cantidades de datos. Son como estudiantes en un colegio: aprenden del libro de texto (información con la que se les entrena para que generen reglas de inferencia) y del profesorado (quien decide qué temas entrarán en el examen y les dice a sus estudiantes qué parámetros son importantes). Su limitación es que se pueden cargar de sesgos en varios puntos y de varias maneras.

La primera casuística se da cuando la realidad de la que aprenden está ya llena de prejuicios. La segunda, cuando les enseñamos solo una parte que no es representativa, que hace que los algoritmos piensen que esa es la única realidad. Otro punto de perversión se puede introducir durante la etapa de preparación de datos y la selección de modelos, cuando se hacen las preguntas equivocadas o se toman en consideración los parámetros erróneos.

Indicadores de equidad: Infraestructura escalable para sistemas de machine learning justos. Catherina Xu y Tulsee Doshi, Google Research.
Google

Empecemos analizando la recopilación de datos. Entre 1940 y 1990 compañías como Kodak y Polaroid solo usaron modelos blancos para calibrar sus productos. Treinta años después, seguimos teniendo los mismos sesgos raciales con la tecnología.

El estudio Gender Shades midió la precisión de la clasificación comercial de sistemas de Microsoft, IBM y Face ++ para descubrir que las mujeres de piel más oscura eran clasificadas erróneamente con mayor frecuencia que el resto. Los sistemas funcionaban mejor en rostros de hombres que de mujeres y en pieles claras que oscuras.

Una actualización del estudio en 2019 volvió a probar los tres sistemas comerciales previamente examinados y amplió la revisión para incluir Amazon Rekognition y Kairos. IBM, Face ++ y Microsoft habían mejorado su precisión. Sin embargo, las plataformas de Amazon y Kairos tenían unas brechas de precisión del 31 % y 22,5 %, respectivamente, entre hombres de piel más clara y mujeres de piel más oscura.

Amazon, en vez de tomar nota y tratar de corregir el problema, comenzó toda una campaña de desprestigio de la investigación y, más en concreto, de la figura de una de sus responsables, Joy Buolamwini.

Informe Gendered Innovations 2.

Este es un ejemplo de sesgo interseccional, donde diferentes tipos de discriminación amplifican los efectos negativos para un individuo o grupo. La interseccionalidad describe formas cruzadas de opresión y desigualdad que surgen de ventajas y desventajas estructurales derivadas de la pertenencia a múltiples categorías sociales superpuestas como género, sexo, etnia, edad, nivel socioeconómico, orientación sexual, ubicación geográfica… Es decir, cada persona sufre opresión u ostenta privilegio en base a su pertenencia a múltiples categorías sociales.

El sesgo también puede introducirse durante la preparación de datos y la selección del modelo, lo que implica escoger atributos que el algoritmo debería considerar o ignorar, como los cosméticos faciales o la evolución de las caras de personas trans durante la transición.

Maquillaje y personas trans

Un estudio mostró que el maquillaje (usado principalmente por las mujeres en la mayoría de sociedades) reduce enormemente la precisión de los métodos de reconocimiento facial comerciales y académicos. La razón es que los cosméticos no se han establecido como un parámetro en las bases de datos faciales disponibles públicamente.

Una propuesta para desarrollar sistemas que sean robustos es mapear y correlacionar varias imágenes de la misma persona con y sin maquillaje. Estas soluciones también deben tener en cuenta las diferentes prácticas de maquillaje en las distintas culturas.

Otro de los desafíos emergentes son las caras de las personas trans, especialmente durante los períodos de transición. Por ejemplo, saltó a los medios el caso de una conductora trans de Uber que tenía que viajar todos los días dos horas para ir a una oficina local de la compañía dado que no funcionaba con ella la app que solicita periódicamente a conductores que envíen selfies para verificar su identidad antes de comenzar un turno.

La terapia hormonal redistribuye la grasa facial y cambia la forma y textura general del rostro. Dependiendo de la dirección de la transición (es decir, de hombre a mujer o de mujer a hombre), los cambios más significativos en la cara transformada afectan las arrugas y líneas, las estrías, el engrosamiento o adelgazamiento de la piel y las variaciones de textura. La terapia con hormonas, por ejemplo, hace que la cara sea más angular.

¿La solución es corregir los prejuicios asegurando que se incluyan muchas personas trans en los datos de entrenamiento de la IA? La idea, en un primer momento, puede sonar bien, pero recoger y almacenar datos de una comunidad que tiene motivos para sentirse incómoda con esta recopilación, no es la mejor práctica. En este caso, puede ser importante revisar los parámetros algorítmicos. Los métodos existentes indican que en estos casos, la región ocular (o periocular) se puede utilizar de forma más fiable en comparación con el uso de la región de rostro completo, ya que se ve menos afectada por el cambio que otras.

Otro estudio halló que cuatro servicios comerciales (Amazon Rekognition, Clarifai, IBM Watson Visual Recognition y Microsoft Azure) tuvieron un desempeño deficiente en personas trans y no pudieron clasificar géneros no binarios.

Usando el hashtag proporcionado por las personas en sus publicaciones de Instagram (#woman, #man, #transwoman, #transman, #agender, #genderqueer, #nonbinary), el equipo calculó la precisión de los resultados de clasificación de género en 2 450 imágenes. En promedio, los sistemas clasificaron a las mujeres cis (#women) con un 98,3 % de precisión y a los hombres cis (#man) con un 97,6 %. La precisión disminuyó para las personas trans, con un promedio de 87,3 % para #transwoman y 70,5 % para #transman. Aquellas personas que se identificaron como #agender, #genderqueer o #nonbinary fueron mal caracterizadas el 100 % de las veces.

Informe Gendered Innovations 2Informe Gendered Innovations 2.

Hora de repensar la tecnología

Ante todas estas incógnitas éticas, compañías como IBM han cesado por completo el desarrollo de software de reconocimiento facial, mientras que Amazon y Microsoft han hecho un parón temporal en la venta de sus sistemas a la policía.

Visto lo sucedido con el despido por parte de Google de Timnit Gebru, una de sus líderes de ética (y precisamente otra de las impulsoras del estudio de Gender Shades), es peligroso dejar las llaves del gallinero al zorro.

Como bien dice Cathy O’Neil, otra activista por una IA ética: “No se puede confiar en que las empresas verifiquen su propio trabajo, especialmente cuando el resultado pueda entrar en conflicto con sus intereses financieros.”

Para no perpetuar e incluso amplificar los patrones sociales de injusticia al codificar consciente o inconscientemente los prejuicios humanos, tenemos que pasar del “modo reactivo” (poniendo parches cuando se encuentran los problemas) al “modo proactivo”, incorporando el análisis interseccional desde la misma concepción de los proyectos.

Para ello, desde la Comisión Europea se ha publicado un informe (Gendered Innovations 2) en el que hemos desarrollado quince estudios de caso y métodos para mostrar cómo ayudar a la investigación a desarrollar tecnologías más justas y responsables. Nuestro objetivo es concienciar a la ciudadanía, a las organizaciones y a la administración pública de este problema y así crear tecnologías que funcionen para toda la sociedad y no solo para las mayorías con poder.The Conversation

Sobre la autora: Lorena Fernández Álvarez es directora de identidad digital de la Universidad de Deusto

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Sombra aquí, sombra allá: reconocimiento facial discriminatorio se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Qué hay más allá de la orilla del mar?
  2. #Naukas16 Aquí no se opina, aquí se mide
  3. Los retos de geolocalizar a la población española
Catégories: Zientzia

Pages