El papel de los gobiernos en el desarrollo científico
Como se dijo en una anotación anterior, somos los ciudadanos y las ciudadanas, a través de las decisiones que toman parlamentos y gobiernos, los principales contribuyentes económicos al desarrollo científico. Dado que los beneficios que se derivan de la adquisición y creación de conocimiento acaban siendo de carácter general, parece lógico que así sea. Además, en términos de retorno de la inversión, la investigación científica, especialmente la de carácter más fundamental, es una actividad de resultados poco previsibles y de largo plazo. Plazos e incertidumbres que la hacen muy poco atractiva para la iniciativa privada.
Muchos piensan que es bueno que la ciencia sea cosa, principalmente, de los gobiernos, porque recelan de la influencia que pueden tener agentes privados (empresas, principalmente) en la orientación que se da a las investigaciones científicas y prefieren que esté sometido al escrutinio público y que sean nuestros representantes quienes toman las decisiones relevantes. No es este el contexto para valorar esa idea, aunque en la anotación anterior se han proporcionado algunos elementos a tener en cuenta al respecto. Es importante, no obstante ser consciente de que el hecho de que la ciencia la gobierne la administración entraña otros riesgos de los que no se es del todo consciente. A modo de ejemplo, nos referiremos a continuación a tres de esos riesgos. Seguramente no son los únicos.
La obsesión por el llamado “conocimiento útil”
Algunos de los males de la ciencia actual no lo son por incumplir preceptos del ethos de la ciencia, sino por vulnerar directamente la esencia de la empresa científica en sí. En un mundo ideal lo lógico es que los investigadores se dejen guiar por su curiosidad y sus intereses intelectuales y traten de desentrañar los secretos de la naturaleza según sus propios criterios. Pero la actividad investigadora es cara, consume recursos y, como se ha visto, es el conjunto de la sociedad a través de sus representantes quien aporta esos recursos. Es lógico, por tanto, que las administraciones que gobiernan el sistema científico establezcan los criterios para la asignación de los fondos necesarios y también es lógico que, mediante la investigación traten de dar solución a algunos de los problemas más acuciantes a que nos enfrentamos. Una buena política científica es aquella que apoya de forma equilibrada ambas modalidades u orientaciones.
Sin embargo, ante la constatación de que la ciencia que se hace en Europa no rinde unos beneficios económicos directos equivalentes a los que genera la investigación científica en los Estados Unidos, las autoridades del continente europeo en su conjunto –y también las españolas y autonómicas- han optado por reforzar las líneas de investigación susceptibles, supuestamente, de generar beneficios económicos.
Puede parecer muy razonable, pero esta opción tiene problemas. Ignora, por un lado, que la actividad económica y los beneficios que genera la ciencia tienen más que ver con las condiciones institucionales del entorno socioeconómico que con el apoyo a unas u otras líneas o la implantación de medidas específicas. Por el otro, corre el riesgo de apoyar líneas estériles, sin salida, bajo pretexto de ser susceptibles de generar conocimiento útil. Puede asfixiar programas de potenciales resultados excelentes, también en el plano de los retornos económicos, por la sencilla razón de que es muy difícil anticipar las implicaciones de los descubrimientos. El ejemplo de la técnica CRISPR es en este sentido paradigmático: un descubrimiento teórico aparentemente sin aplicación práctica puede llegar a rendir beneficios enormes. Y por último, es una práctica muy sensible al efecto de modas y prioridades que acaban siendo efímeras; cada vez es más normal encontrarse con grupos de investigación que adscriben su trabajo a temas que están de moda (contaminación y cambio climático son buenos ejemplos) aunque su contribución a un avance real en el conocimiento sea más que dudosa.
La burocratización del sistema científico
En el campo de la investigación científica también es aplicable la Ley de Parkinson, según la cual “el trabajo se expande hasta llenar el tiempo disponible para que se termine”; vale esa ley, sobre todo, para la vertiente administrativa y de gestión de los proyectos de investigación. En general con el paso del tiempo los procedimientos administrativos asociados al desarrollo de la actividad investigadora se han hecho cada vez más largos, prolijos y difíciles. Y eso implica que cada vez es mayor la fracción del tiempo de los investigadores que ha de dedicarse al cumplimiento de las tareas burocráticas. En el colmo, los actuales gestores de los programas de investigación llegan a pedir a quienes solicitan financiación para sus proyectos que anticipen los resultados que esperan obtener. La misma esencia del hecho científico, la imprevisibilidad de sus resultados, pretende ser abolida mediante este tipo de requerimientos.
Que la burocracia crece de forma imparable en cualquier ámbito de la administración pública (aunque no sólo en la administración pública) es un hecho. Y seguramente, como observó Cyril Parkinson, es un proceso espontáneo. Pero lo ocurrido en España durante los últimos años y meses va más allá de lo que cabría esperar de un crecimiento como el descrito por el funcionario británico. La obsesión instalada en muchos ámbitos por hacer frente, supuestamente, a todas las formas posibles de corrupción y de malas prácticas ha conducido a la exasperación de los procedimientos. Curiosamente, nada de todo eso ha contribuido a resolver los otros muchos problemas que tiene la empresa científica y que han sido comentados en esta serie de anotaciones.
La obsesión por las métricas
La investigación científica ha alcanzado, como ya se ha dicho, unas dimensiones muy grandes. En los países más desarrollados son miles las personas que se dedican a la ciencia, y el volumen de recursos que se destinan representan porcentajes significativos del producto bruto. Es normal, por tanto, que la asignación de esos recursos a las personas que hacen la investigación sea un cometido difícil de llevar a efecto. Es difícil valorar la pertinencia, conveniencia y oportunidad de financiar las propuestas que dirigen los investigadores a las agencias financiadoras. Y también lo es valorar la viabilidad y posibilidades de éxito de los proyectos.
Esas dificultades conducen, por un lado, al diseño de planes que fijan objetivos estratégicos, temas prioritarios, y criterios para determinar la conveniencia de financiar los proyectos. Y por el otro, conducen a la adopción de métodos de evaluación que se basan en métricas que reflejan el historial investigador de los solicitantes o proponentes.
La práctica consiste en el uso de ciertos algoritmos o el recurso a indicadores bibliométricos que, supuestamente, permiten establecer de forma objetiva la calidad del equipo investigador porque se supone que esa calidad determina las posibilidades de éxito de la investigación. Se sustituye así, al menos parcialmente, la evaluación concienzuda de los proyectos a cargo de especialistas por el recurso a indicadores sintéticos de fácil obtención y manejo y, lo que parece más atractivo, supuestamente objetivos.
En la captación, promoción e incentivación del personal investigador funcionan también ese tipo de criterios, sustituyéndose una valoración exhaustiva del historial y realizaciones de los candidatos a puestos de investigación, a las promociones o a los incentivos, por sistemas de indicadores principalmente bibliométricos.
El problema es que los indicadores de esa naturaleza tienen muchos problemas: son groseros, dependen mucho de las áreas, no tienen en cuenta las circunstancias en que se ha desarrollado la actividad evaluada y, lo que es más importante, se convierte en un sistema de incentivos perversos, puesto que los afectados asumen prácticas cuyo objetivo real deja de ser la producción genuina de nuevo conocimiento para ser la obtención de los mejores registros bibliométricos posibles.
Nota:
Sobre bibliometría y sus problemas, Francisco Villatoro ha escrito un buen número de anotaciones en su blog.
Este artículo se publicó originalmente en el blog de Jakiunde. Artículo original.
Sobre los autores: Juan Ignacio Perez Iglesias es Director de la Cátedra de Cultura Científica de la UPV/EHU y Joaquín Sevilla Moroder es Director de Cultura y Divulgación de la UPNA.
El artículo El papel de los gobiernos en el desarrollo científico se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La Ría del Nervión a vista de ciencia y tecnología
Alrededor de un millón de personas vivimos en las localidades situadas en los márgenes de la Ría del Nervión o en poblaciones próximas a aquellas. Muchas de esas personas hemos pasado la mayor parte de nuestras vidas en ese entorno, transitando, además, de manera frecuente entre las dos orillas. Y sin embargo, es muy poco lo que sabemos acerca de la Ría, aunque durante el último medio siglo se ha atesorado una cantidad de conocimiento enorme sobre ella.
La Cátedra de Cultura Científica de la UPV/EHU se ha propuesto mostrar a la ciudadanía del Territorio de Bizkaia y a quienes nos visitan una pequeñísima parte de ese conocimiento. Y lo hace, además, llevándolo a uno de los enclaves más transitados de nuestra metrópoli: el metro. Hemos contado, como es natural, con la inestimable colaboración de Metro Bilbao, que se ha implicado a fondo en este proyecto conjunto.
Mediante una colección de diez paneles con infografías se presenta su desarrollo histórico, la geología del entorno, la ecología, las consecuencias del saneamiento, el Puente de Bizkaia, el metro y otros elementos. Y se presentan a la luz de la ciencia y la tecnología, ofreciendo una visión diferente, más comprensiva, del entorno en el que vivimos y trabajamos. Las infografías han sido realizadas por el estudio NorArte, gracias al asesoramiento de un nutrido grupo de investigadoras e investigadores y expertas y expertos en diversas áreas.
Mediante esta exposición la Cátedra inicia el año en que cumplirá su primera década de vida, y lo hace abriendo una nueva línea de actuación que busca acercar el conocimiento a la gente. Hasta ahora hemos, sobre todo, convocado a la ciudadanía a los actos de difusión social de la ciencia que organizamos. Con esta iniciativa pretendemos recorrer el viaje de vuelta, dirigirnos al público, a los lugares por los que transita y donde se encuentra sin abandonar, lógicamente, nuestras actividades habituales.
Los paneles han estado expuestos desde el 16 de diciembre al 1 de enero en la estación de Moyua. Entre el 2 y el 31 de enero estarán en la estación de Indautxu. Y durante el mes de febrero reclarán en la estación de Portugalete. No te lo pierdas.
https://culturacientifica.com/app/uploads/2020/01/ccc2.mp4Vídeo de EiTB de la mano del periodista Aitor Zabaleta, sobre la exposición de infografías .
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo La Ría del Nervión a vista de ciencia y tecnología se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Ingredientes clave a la hora de enseñar a leer
Érase una vez… en el País Vasco, un congreso tan oportuno y tan útil, y tan bien recibido en Bilbao y en Donostia-San Sebastián, que muchos pensaron que tenía que viajar a más lugares. Así que la Cátedra de Cultura Científica y la Fundación Promaestro se pusiron de acuerdo y, con la ayuda de EduCaixa, lo llevaron a Madrid: casi un centenar de personas con espíritu crítico y bien informadas llenaron el pasado 2 de abril la modesta y acogedora sala de CaixaForum en la que se celebró.
Marta Ferrero, investigadora de la Universidad de Deusto, nos hace experimentar, “oligodendroglia” mediante, cómo un lector inicial puede aprender con éxito una nueva palabra: exponiéndose repetidamente a ella en contextos diversos y recibiendo información sobre su morfología. Y es que sobre cómo enseñar a leer a los niños, “la evidencia es robusta: el método más eficaz es aquel que explica la relación entre las letras y los sonidos”.
Por tanto, el método fonético es mejor que el famoso método global, y lo es por una cuestión de justicia social, según indicó la ponente: “la mayoría de los niños aprenden a leer con cualquier método, pero hay una pequeña parte de los niños que solo aprenderán a leer correctamente si se les enseña con el método fonético. Por el contrario, con el método global algunos niños convertirán el acto de leer en un acto de adivinar”.
Ferrero termina dando unos consejos para conseguir que los más pequeños se conviertan, en un futuro, en buenos lectores: llenad el aula (y la casa) de libros; cuidad las bibliotecas escolares y visitadlas; enseñadles las partes de un libro; haced lecturas compartidas; dejad que sean ellos los que elijan qué leer (y si quieren leer el mismo libro diez veces, que lo hagan); y, por último, recordó que “no pasa nada porque un niño salga de la etapa de infantil sin saber leer. A veces, dejando pasar el verano, esos niños van a aprender a leer con mucho menos esfuerzo. No los machaquemos; disfrutemos leyendo con ellos y convirtamos la lectura en algo placentero”.
Edición realizada por César Tomé López a partir de materiales suministrados por Fundación Promaestro.
El artículo Ingredientes clave a la hora de enseñar a leer se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Tormentas convectivas de agua muy energéticas en Júpiter
El grupo de Ciencias Planetarias de la UPV/EHU ha estudiado durante un año una serie de tormentas convectivas que se dieron dentro de un ciclón de gran escala de Júpiter. Las tormentas fueron tan energéticas que perturbaron la estructura y la dinámica del ciclón durante meses. Al simular el fenómeno la única conclusión es tormentas de esa magnitud solo pueden ser generadas por la convección de agua.
Imagen: Peio Iñurrigarro, UPV/EHUEn febrero de 2018 sucedieron en Júpiter una serie de tormentas convectivas, tormentas con fuertes movimientos verticales y gran desarrollo de precipitación, que fueron tan energéticas que cambiaron por completo la región en la que sucedieron: un ciclón de 28.000 km de longitud denominado ciclón fantasma por su débil contraste que lo hace difícil de distinguir en observaciones desde la Tierra. “Tuvimos conocimiento de estas tormentas gracias a las observaciones de personas aficionadas a la astronomía, que ciertamente nos proveen de un seguimiento prácticamente continuo de la actividad meteorológica de Júpiter”, comenta Peio Iñurrigarro Rodriguez, miembro del grupo de Ciencias Planetarias del Departamento de Física Aplicada I de la Escuela de Ingeniería de Bilbao de la UPV/EHU, y uno de los autores del estudio.
Las primeras observaciones de este fenómeno fueron obtenidas por astrónomos aficionados y en seguida llamaron la atención de los investigadores. “Se trata de un fenómeno no muy habitual; las tormentas se suelen desarrollar en regiones ciclónicas, pero no dentro de ciclones específicos, y eso fue lo que llamó nuestra atención, porque nos interesó ver la interacción que tenían las tormentas con el propio ciclón”, detalla Iñurrigarro. Las tormentas no estuvieron activas más que unos pocos días, pero fueron tan energéticas que modificaron totalmente la estructura del ciclón, generando una gran cantidad de turbulencia en su interior, e incluso terminaron por romper el ciclón en dos estructuras.
Para el estudio, los investigadores han contado con imágenes procedentes de diferentes fuentes, además de las tomadas por astrónomos aficionados, como las que captó el telescopio espacial Hubble, y la cámara JunoCam, de la misión Juno que actualmente está orbitando el planeta Júpiter. También utilizaron observaciones realizadas por los propios miembros del grupo de Ciencias Planetarias con el instrumento PlanetCam UPV/EHU, una cámara de alta resolución instalada en uno de los telescopios del observatorio de Calar Alto en Almería, mediante el que monitorizan la actividad atmosférica de los planetas del Sistema Solar. “Cada uno de los instrumentos toma las imágenes a través de diferentes filtros, por lo que la información que recibimos de unos y otros es complementaria. Además en este caso era necesario hacer un seguimiento durante meses de la actividad producida en el ciclón”, explica el investigador.
Al mismo tiempo que han analizado las numerosas imágenes obtenidas, han realizado simulaciones numéricas tanto del ciclón como de la perturbación que sufrió éste como consecuencia de las tormentas. Utilizaron para ello un modelo numérico de circulación atmosférica adecuado a las características de la atmósfera de Júpiter. Una de las características que quisieron determinar mediante las simulaciones fue la naturaleza de las tormentas, es decir, cuánta energía liberaron las tormentas y cuál fue la fuente de esta energía. En las tormentas convectivas los movimientos producidos son consecuencia de la energía que se libera en la condensación de los diferentes gases que pasan a formar las nubes en expansión observadas. “Los candidatos más importantes eran el amoniaco, principal componente de las nubes visibles del planeta, y el agua, mucho más profunda en la atmósfera y difícil de observar», cuenta Iñurrigarro.
«Mediante las simulaciones fuimos capaces de calcular la energía que debíamos introducir en el sistema simulado para reproducir el fenómeno. Y a través de esa energía suministrada a las estructuras atmosféricas, determinamos que la única fuente posible era la condensación de agua, porque la condensación de agua libera muchísima más energía que la del amoniaco. Entonces, simplemente por comparación, vimos que la cantidad que necesitaríamos de amoniaco para generar esa energía suministrada era imposible de obtener, porque se requeriría recolectar el amoniaco de un área muy superior a la del propio ciclón en el que se produjo la actividad de las tormentas. En cambio, con el agua, al ser mucho más energética, se obtenía un área razonable. Nuestras simulaciones muestran que para reproducir las observaciones es necesario que las tormentas sean muy energéticas y los cálculos detallados nos permiten determinar que las tormentas que se formaron en el ciclón fantasma fueron tormentas convectivas formadas por la condensación de agua proveniente de al menos 80 km por debajo de las nubes visibles”, concluye el físico.
Referencia:
P. Iñurrigarro, R. Hueso, J. Legarreta, A. Sánchez-Lavega, G. Eichstädt, J. H. Rogers, G. S. Orton, C. J. Hansen, S. Pérez-Hoyos, J. F. Rojas, J. M. Gómez-Forrellad (2019) Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter’s South Temperate Belt Icarus doi: 10.1016/j.icarus.2019.113475
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Tormentas convectivas de agua muy energéticas en Júpiter se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La promoción de las vocaciones científico-tecnológicas: la profecía autocumplida de Poincaré
Se dice que las profesiones científico-tecnológicas serán las mejor remuneradas y las más demandadas en un futuro inmediato. La promoción de vocaciones STEM está a la orden del día. Estas actitudes conviven con una notable precarización de la profesión científica, sobre todo para quienes se dedican a la ciencia básica. Estos hechos contienen un fondo social, político y filosófico sobre el que es importante reflexionar.
El científico y filósofo Henri Poincaré en su ensayo El valor de la ciencia divide a los científicos entre «prácticos» y «curiosos». Los primeros se dedican a lo útil y los segundos a lo inútil. Poincaré entiende lo útil como todo aquello que atiende solamente al beneficio. Así lo útil puede definirse como lo que pretende resolver problemas: desde curar una enfermedad a desarrollar sistemas de captación de CO2. Lo útil se corresponde con la definición clásica de «ciencia aplicada». En cambio, lo inútil se define como el saber en sí. Así lo inútil puede definirse como una aproximación sensible al mundo: desde describir un fenómeno natural a ofrecer una definición estética del tiempo. Lo inútil se corresponde con la definición clásica de «ciencia básica».
Tanto en ese ensayo de Poincaré como en el ensayo posterior Ciencia y método, defiende a los científicos curiosos a la vez que menosprecia a los científicos prácticos. El manifiesto La utilidad de lo inútil del filósofo Nuccio Ordine sigue la misma línea de pensamiento. A lo largo de todo el texto se refiere a la utilidad como una suerte de perversión consecuencia del capitalismo. Por ejemplo, en el capítulo dedicado a las universidades critica el hecho de que las universidades funcionen como empresas y que el conocimiento se transmita como un utensilio profesionalizador y tecnificador. También en La idea de una universidad de John Henry Newman se rechaza la idea de que la formación universitaria priorice la utilidad. Para Newman la tarea principal de la universidad es generar y transmitir conocimiento, no formar a técnicos. No obstante, Newman se refiere a la utilidad como una consecuencia ventajosa, no como una perversión.
Tanto Ordine como Abraham Flexner en La utilidad de los conocimientos inútiles caen en la misma incoherencia: defienden a los científicos curiosos citando ejemplos de ciencia básica que culminaron en ciencia aplicada. Uno de los ejemplos que citan ambos es cómo los estudios sobre electricidad y magnetismo de Clerk Maxwell posibilitaron la invención de la radio. Es incoherente defender la ciencia básica a través de su conversión en ciencia aplicada. Aunque la una no es posible sin la otra, la defensa de la una sí es posible sin la otra. También es posible defender la ciencia básica sin menospreciar la ciencia aplicada y viceversa.
Polarizar las ideas —lo blanco contra lo negro— a menudo es una trampa retórica. De la misma forma que se han mostrado las dos culturas —ciencias y humanidades— como si entre ellas existiese una guerra; Ordine, Flexner y Poincaré, entre otros, plantean la misma dicotomía útil/inútil entre la ciencia aplicada (prácticos) y la ciencia básica (curiosos). En este caso los tres se posicionan a favor de los científicos curiosos y en contra de los científicos prácticos. Además, es una nueva vuelta de tuerca al dilema planteado por Montesquieu entre lo útil y lo moral.
Para Poincaré lo útil es el camino hacia la inmoralidad. En La inesperada utilidad de las ciencias inútiles, Ordine concuerda con Poincaré. Según él, los crecientes fraudes en las investigaciones científicas han sido perpetrados por científicos prácticos. Pone como ejemplo el famoso artículo antivacunas de Wakefield que fue retirado de The Lancet en 1998. No obstante, la experiencia nos ha enseñado que la inmoralidad puede manifestarse tanto en los científicos curiosos como en los prácticos.
Para Poincaré y Ordine, el beneficio económico es el verdadero germen de la inmoralidad. Esa es la razón por la que la ciencia aplicada, según ellos, predispone al fraude. Por el contrario, los científicos curiosos, «locos desinteresados que murieron pobres y que no pensaron jamás en la utilidad» (Ciencia y método, Poincaré) practican una vida de virtud y principios. Como si asumiese que el ejercicio de la ciencia básica no debiera remunerarse. Como si el voto de pobreza garantizase la virtud.
Tener en cuenta estas ideas es importante para hacer un análisis provechoso de la actualidad. Por ejemplo, la promoción de vocaciones científicas y tecnológicas, principalmente ingenierías, responde a un ejercicio de ingeniería social. Lo vemos en los medios de comunicación y en la publicidad de las enseñanzas superiores: «Los ingenieros informáticos serán los profesionales más demandados, la profesión del futuro, los que tendrán mayores salarios». La mercadotecnia social responde a criterios útiles: se necesitan resolutores de problemas. Es la profecía autocumplida de Poincaré.
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo La promoción de las vocaciones científico-tecnológicas: la profecía autocumplida de Poincaré se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Constelazión : homenaje a Alan Turing
Cuando José Cruz puso el punto y final a ‘Constelazión’, su ordenador estaba llorando.
María Velasco, prólogo de ‘Constelazión. Ensayo teatral en dos trozos’
Alan Mathison Turing (1912-1954) es probablemente uno de los matemáticos más conocidos por el gran público. El cine se ha encargado de inmortalizarlo con películas como Breaking the Code —Descifrando el código— (1996), o la más reciente The Imitation Game —Descifrando Enigma— (2014), en las que la azarosa vida del científico se novela con mayor o menor fidelidad.
Recordemos que, durante la Segunda Guerra Mundial, Turing fue convocado a Bletchley Park para trabajar en el descifrado de mensajes procedentes del ejército nazi —mensajes codificados por medio de la máquina alemana Enigma—. Entre sus aportes a la ciencia de la computación y a la inteligencia artificial, destacan los conocidos test de Turing o la máquina de Turing.
Su carrera se vio truncada al ser procesado por homosexualidad en 1952. Dos años después de su condena, falleció —¿Se suicidó? ¿Fue asesinado?— contribuyendo al misterio alrededor de su figura.
Portada de Constelazión de José Cruz.
Traemos a este Cuaderno de Cultura Científica una propuesta teatral sobre Alan Turing, Constelazión. Ensayo teatral en dos trozos del dramaturgo José Cruz.
Sinopsis
Una misteriosa mujer con problemas de amnesia, un puntilloso regidor que supervisa la escena como quien juega una partida de ajedrez y un científico visionario obsesionado con la matemática del amor. Esta pieza teatral es una invitación al universo de Alan Turing (1912-1954), una de las mentes más privilegiadas e influyentes del pasado siglo, padre de la informática, precursor de la geometría fractal y víctima de una sociedad intolerante incapaz de comprender la diferencia. ¿Conseguirá esta noche Sibila cambiar el curso de su desgraciada historia? ¿Podrá el Desconocido llevar a buen puerto su misterioso plan? ¿Descubrirá Alan el por qué uno más uno a veces suma uno?
Los personajes de Constelazión se presentan en la obra como Alan Turing –un científico–, Sibila –una actriz– y Desconocido –un regidor. Los dos trozos a los que se alude en el título y de los que se compone la pieza son Inspirazión y Expirazión. Ambos trozos juegan continuamente con saltos en el tiempo. Y ambos incorporan realidades vividas en distintos momentos para hacer coincidir personajes y buscar respuestas, aclaraciones, excusas o disculpas.
La obra comienza con Alan Turing sentado en un escenario vacío, con una manzana en la mano y leyendo un libro: es el 7 de junio de 1954, la noche de su muerte.
El libro que lee es una especie de diario en el que el matemático tiene anotados metódicamente los encuentros con sus amantes y sus hábitos de conducta. A través de ellos y sus recuerdos intenta conocerse mejor a sí mismo: Fred, Paul, Henry, Morgan, Ernesto, Bert,… y el joven Arnold Murray que acaba desencadenando el fatal desenlace de la vida del científico.
Sibila es una mujer, una sombra, una intrusa que se introduce en el espacio vital de Turing. Actúa de enlace entre el público y el matemático, ejerce como motor de los recuerdos del protagonista, adelanta los acontecimientos que van a seguir y evoca fragmentos de la biografía de Turing. Aunque pretende intervenir tan solo como narradora, acaba implicándose en la vida del matemático, al que escucha y consuela.
Desconocido es un regidor. Monta y desmonta escenarios para simular el despacho o la casa del científico. También personifica a los amantes de Turing, que van a apareciendo a medida que el matemático lee fragmentos de su diario.
Conocer es siempre regresar.
Alan Turing en ‘Constelazión’
Esta bella frase del científico dibuja la manera en la que, durante la obra, se retorna incesantemente a situaciones pasadas, se analizan obsesivamente los momentos vividos o se ahonda en la identidad del protagonista.
Las matemáticas no son una ciencia exacta. Uno más uno jamás sumará dos. La mayor parte de las veces el resultado es cero. Y, si hay suerte, uno. Las relaciones humanas operan según un estricto código binario.
Alan Turing en ‘Constelazión’
Turing recurre a sus matemáticas para hablar del amor y el desamor. ¿Le amaba Arnold realmente, o solo se acercó a él por interés?
“Constelazión” es una de mis obras más personales. Escrita entre 2011 y 2014, estrenada en mayo de ese último año y publicada unos meses después, constituye, además de un encendido homenaje a la figura del visionario Turing, un “ensayo dramático” acerca de la naturaleza matemática del amor. Esa vocación cientificista se traslada a una estructura relativamente compleja que juega con la repetición como recurso e intenta valerse de las propias paradojas del teatro para demostrar, a la manera de un experimento de laboratorio, el poder del amor para trascendernos y salvarnos.
José Cruz, Contexto teatral
Más información:
-
José Cruz, Constelazión. Ensayo teatral en dos trozos, Eirene Editorial, 2014
-
Marta Macho Stadler, «Constelazión. Ensayo teatral en dos trozos», de José Cruz, DivulgaMAT, mayo 2015
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Constelazión : homenaje a Alan Turing se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Construyendo la mecánica cuántica
A mediados de la década de 1920 estaba claro que las «cosas» (electrones, átomos, moléculas) consideradas durante mucho tiempo como corpúsculos también muestran propiedades de onda. Este hecho es la base de la teoría actualmente aceptada de la estructura atómica. Esta teoría, la mecánica cuántica, se introdujo en 1925. Sus fundamentos se desarrollaron muy rápidamente durante los años siguientes, principalmente por Born, Heisenberg, Schrödinger, Bohr, Jordan y Dirac.
Al principio, la teoría apareció en dos formas matemáticas diferentes, propuestas independientemente por Werner Heisenberg y Erwin Schrödinger. Heisenberg enfatizó el aspecto corpuscular de los objetos cuánticos, mientras que Schrödinger enfatizó el aspecto ondulatorio. Finalmente, Schrödinger demostraría que, de hecho, estas dos formas de la mecánica cuántica son equivalentes, es decir, diferentes formas de expresar las mismas relaciones. La formulación de Schrödinger ahora es la predominante, aunque los símbolos utilizados en sus ecuaciones ahora se interpreten de manera algo diferente al uso original de Schrödinger. Este predominio en última instancia se debe exclusivamente a la base matemática, el cálculo diferencial, mucho más manejable que la forma de Heisenberg, basada en el cálculo matricial.
Schrödinger buscó expresar matemáticamente la naturaleza dual de onda-corpúsculo de la materia. Maxwell había formulado la teoría electromagnética de la luz en términos de una ecuación de onda. Los físicos estaban familiarizados con esta teoría, sus aplicaciones y sus matemáticas. Schrödinger razonó que las ondas de de Broglie asociadas con los electrones podrían describirse de forma análoga a las ondas de luz clásicas. Por lo tanto, debe haber una ecuación de onda que se mantenga para las ondas de materia, al igual que existe una ecuación de onda para las ondas electromagnéticas. [2]
Schrödinger obtuvo una ecuación para las ondas de materia (ondas de de Broglie) asociadas con los electrones en movimiento. Esta ecuación, que lleva su nombre, ecuación de Schrödinger, define las propiedades de onda de los electrones y también predice su comportamiento corpuscular. La ecuación de Schrödinger para un electrón unido en un átomo tiene una solución solo cuando una constante en la ecuación tiene los valores de números enteros 1, 2, 3.. . . Estos números se corresponden con diferentes energías. Por lo tanto, la ecuación de Schrödinger predice que solo ciertas energías de electrones son posibles en un átomo. [3] Además, estos estados energéticos se corresponden con la imagen de ondas electrónicas estacionarias en los diversos estados estacionarios.
En el modelo de Schrödinger estos resultados se derivan directamente de la formulación matemática de la naturaleza de onda y corpúsculo del electrón. Bohr tuvo que asumir la existencia de estos estados estacionarios al principio y no hacer suposiciones sobre las órbitas permitidas. En el modelo de Schrödinger, sin embargo, los estados estacionarios y sus energías se derivan de la teoría. El nuevo modelo arroja todos los resultados de la teoría de Bohr, sin ninguna de las hipótesis inconsistentes de la teoría de Bohr. La nueva teoría también explica cierta información experimental que la teoría de Bohr no tuvo en cuenta. Por ejemplo, permite calcular la intensidad de una línea espectral, que se entiende como la probabilidad de que un electrón cambie de un estado de energía a otro. [5]
Tras la unificación de la mecánica de ondas de Schrödinger con la formulación de Heisenberg, la mecánica cuántica pasa a estar representada por la ecuación de Schrödinger, que ya no proporcionaba un modelo materializable o una imagen visualizable del átomo. El modelo planetario del átomo tiene que abandonarse pero no ha sido reemplazado por otra imagen simple. Ahora hay un modelo matemático para el átomo de un éxito enorme, pero no hay un modelo físico fácilmente visualizable. Los conceptos utilizados para construir la mecánica cuántica son mucho más abstractos que los del modelo de Bohr. [6] A pesar de ello la formulación matemática de la mecánica cuántica es mucho más poderosa que la empleada en el modelo de Bohr para predecir y explicar fenómenos. Muchos problemas que antes no se podían resolver se resolvieron rápidamente con la mecánica cuántica.
La comunidad física ha aprendido que el mundo de los átomos, los electrones y los fotones no puede pensarse en los mismos términos mecánicos que el mundo de la experiencia cotidiana. En cambio, el estudio de los átomos presenta algunos conceptos nuevos fascinantes, como los que veremos a continuación. Lo que se ha perdido en fácil visualización se compensa con un aumento en la comprensión de la naturaleza al nivel más fundamental.
Notas:
[1] Dado que la forma de la teoría de Schrödinger está más cerca de las ideas de De Broglie, a menudo se la conoce como mecánica ondulatoria.
[2] Esta parte matemática de la mecánica ondulatoria no puede discutirse adecuadamente sin usar matemáticas avanzadas, pero las ideas físicas involucradas requieren solo unas matemáticas muy simples y son esenciales para comprender la física moderna. Por lo tanto, el resto de esta serie se centrará en tratar algunas de las ideas físicas de la teoría para indicar que son realmente razonables y algunos de sus resultados más importantes.
[3] En el átomo de hidrógeno, la energía del electrón resulta tener los valores numéricos En = k22π2me2/n2h2 , donde n toma los valores 1, 2, 3, … Estas energías se corresponden a los valores experimentales y ¡son los mismos del modelo de Bohr!
[4] Esta idea es clave y muy simple. Si no la terminas de entender repasa Las ondas electrónicas y la estructura de la materia.
[5] Véase Las limitaciones del modelo de Bohr
[6] A este respecto véase El universo ametafórico
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Construyendo la mecánica cuántica se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Los dueños del conocimeinto
La mejor –quizás única- forma de garantizar que los hallazgos científicos pueden ser escrutados por cualquiera y así contrastar su validez es permitir que a tales hallazgos tenga acceso el conjunto de la comunidad científica, con independencia de qué parte de los descubrimientos han sido hechos por unos u otros científicos. Además, todos deberían tener el mismo acceso a los bienes científicos y debería haber un sentido de propiedad común al objeto de promover la colaboración.
El conocimiento publicado
Sin embargo, el acceso al conocimiento se encuentra limitado por diferentes motivos, principalmente de carácter económico. Si nos limitamos al conocimiento que se crea en instituciones públicas, lo lógico sería que dado que los recursos utilizados para su obtención son de carácter público, también lo fueran los productos en que se plasma tal conocimiento. Nos referimos a los artículos que se publican en las revistas científicas.
Las revistas se han convertido en un magnífico negocio para algunas entidades y, sobre todo, empresas editoriales. Tal y como está configurado el sistema en la actualidad, además, en ciertas áreas una o dos editoriales funcionan en un régimen muy cercano al monopolio, con lo que las instituciones científicas se ven obligadas a pagar un alto precio por el acceso a las correspondientes revistas.
Los autores no cobran por publicar, los revisores no cobran por revisar y el producto final se ofrece a precios muy altos. Eso genera beneficios enormes. En apariencia no es lógico que quienes se dedican a la ciencia profesionalmente se presten a esto. A fin de cuentas, colectivamente, ellos son los autores, los revisores y los lectores de esas publicaciones. La respuesta a esa aparente contradicción es que esas publicaciones son las que constituyen sus principales méritos profesionales. Dejar de participar en el sistema tal y como está significa ser excluido del competitivo entorno profesional de la ciencia porque, para empezar, las posibilidades de conseguir financiación para los proyectos disminuirían muchísimo o, sencillamente, desaparecerían; también verían seriamente obstaculizadas sus posibilidades de estabilización, promoción o progreso académico.
El problema es que de esa forma no todo el mundo puede tener acceso a la información científica porque no todo el mundo puede permitirse pagar los precios de las suscripciones a las revistas de alto nivel. La magnitud de este problema no ha dejado de aumentar con el tiempo. Hay instituciones científicas que, por esa razón, han debido anular suscripciones a ciertos medios.
Como la mayor parte de la investigación cuyos resultados se publican en esas revistas se ha financiado con cargo a fondos públicos, se da la paradoja de que la ciudadanía ha de pagar por partida doble. Paga para producir los resultados de las investigaciones y ha de volverlo a hacer para que las instituciones científicas tengan acceso a esos resultados.
Diferentes iniciativas han surgido para dar respuesta a ese problema. Por un lado, han aparecido algunas publicaciones de acceso abierto, como PlosOne y otras del grupo, en las que los costes de la publicación corren a cargo de los autores. Muchos investigadores recurren a publicar sus manuscritos (antes de su aceptación para publicación en una revista) en repositorios digitales, como ArXiv. Y ha habido iniciativas individuales de grandísimo éxito aunque, por razones legales, de incierto futuro, como el repositorio Sci-Hub, creado por la científica Alexandra Elbakyan.
Algunos gobiernos también han reaccionado promoviendo la publicación en repositorios públicos de los resultados obtenidos mediante los proyectos financiados por ellos. Y muchas instituciones, universitarias y gubernamentales, se proponen diseñar mecanismos que permitan poner la producción científica pagada con fondos públicos al alcance de todos. La Universidad de California –con sus diez campus una de las instituciones universitarias más grandes y prestigiosas del mundo ha cancelado la suscripción a las revistas científicas del todopoderoso grupo Elsevier para promover así el llamado “acceso abierto”.
El conocimiento secreto
El secretismo es lo opuesto a la norma mertoniana del comunalismo, puesto que el conocimiento que se oculta, que no se hace público no es de ninguna ayuda en el cumplimiento del objetivo de la comunidad, que el conocimiento certificado crezca. Hay dos tipos de investigación cuyos resultados han de mantenerse en secreto. Uno es, por razones obvias, la investigación militar. Y el otro la realizada o contratada por empresas que se proponen explotar comercialmente sus resultados.
El secretismo de la investigación en asuntos militares tiene el comprensible propósito de impedir que potenciales rivales tengan acceso a sistemas de armamento o cualquier otro elemento que pueda dar ventaja en caso de conflicto armado o, incluso, a los solos efectos de la disuasión.
Por otro lado, y como hemos señalado al tratar la financiación de la investigación, hay empresas que hacen investigación científica (o tecnológica) o que la contratan con centros de investigación y cuyos resultados, por su valor comercial, no se hacen públicos.
Cuando la investigación se produce en los contextos dichos, el principio del comunalismo se incumple de forma clara. Y por lo mismo, también se impide que los resultados de la investigación puedan ser sometidos a contraste por parte de la comunidad científica: no puede verificarse ni refutarse. Por lo tanto, también el escepticismo deja de tener en este caso posibilidad de ser ejercido.
Esa limitación no es una dificultad menor, sobre todo con investigaciones como la de productos farmacéuticos, por su elevado coste y sus implicaciones en términos de salud pública. En esos casos, y dadas las posibles consecuencias que se derivan de la comercialización de un médicamente o la implantación de algún procedimiento, las administraciones públicas son las que, en última instancia, establecen las condiciones que los productos en cuestión han de cumplir para que se autorice su comercialización. Ahora bien, sea como fuere, la intervención administrativa no puede considerarse, desde el punto de vista científico, equivalente al control público por parte de la comunidad científica.
Por lo tanto, las limitaciones a la difusión de los resultados de investigación que se derivan de los objetivos de las investigaciones citadas (la militar y ciertas investigaciones de carácter empresarial) conllevan fuertes restricciones del ámbito de acceso, por lo que tanto el carácter comunal como el ejercicio del escepticismo se ven más que entorpecido, prácticamente impedidos. Y si ambas normas se considerasen requisitos para la consideración de la investigación como científica, las investigaciones citadas no podrían ser consideradas así.
El conocimiento patentado
A medio camino entre la publicación y el secreto está la patente. El conocimiento nuevo con un eminente carácter práctico se puede patentar. Una patente es un título de propiedad que reconoce a su titular el derecho exclusivo de utilización práctica del conocimiento allí expuesto. Las patentes son documentos públicos, por tanto, ese conocimiento no es secreto, cualquiera puede leerlo, pero no puede utilizarlo.
En general el sistema de patentes se considera una pieza indispensable en el proceso de desarrollo de la ciencia aplicada, dado que las empresas pueden invertir dinero en investigación con la tranquilidad de que los resultados de esas investigaciones los van a poder explotar adecuadamente y recuperar con ello esa inversión. Sin embargo, no son pocos los problemas que este sistema genera, especialmente para conocimientos en la frontera de la ciencia.
Uno de los casos que se suele citar es el de James Watt, científico que contribuyó al desarrollo de la máquina de vapor (y en cuyo honor se nombra la unidad de potencia del sistema internacional) y cuyas patentes y litigios se dice que retrasaron 30 años la revolución industrial. Si bien esa afirmación es controvertida y puede ser excesiva, no hay duda de que el uso de las patentes por parte de Watt influyo significativamente en el desarrollo comercial de máquinas de vapor.
A la hora de investigar la cura de algunas enfermedades, los proyectos de investigación buscan la mejor estrategia pro no de entre las posibles, sino de entre las que no rozan patentes en vigor. Una situación difícil que puede llevar a la desesperación a quien tiene que desarrollarlo. Esta situación la describe el investigador Lucas Sánchez durante su tesis concluyendo: “¿Esto es lo que le espera al desarrollo de la ciencia? ¿Estas son las normas inamovibles para curar enfermedades? ¿Vamos a vernos siempre obligados a hacer ciencia con normas anticientíficas?”
La posibilidad de que se puedan patentar genes humanos, que parte de lo que conforma la esencia biológica de un ser humano pueda ser “propiedad” intelectual de otro es, cuando menos, sorprendente. Esta cuestión llegó a la actualidad de los medios de comunicación con los genes de predisposición al cáncer de mama BRCA1 y BRCAC, y pone de manifiesto un importante dilema moral. Más recientemente, la técnica de edición genética CRISPR también está generando unas importantes batallas legales sobre su propiedad intelectual que pueden determinar el rumbo de muchas investigaciones con tan potente herramienta.
Los anteriores ejemplos sirven para ilustrar la dificultad que entraña establecer el nivel de protección intelectual adecuado sobre los resultados de la ciencia. Una protección que no desincentive la inversión pero que tampoco ponga barreras al desarrollo de conocimiento nuevo, especialmente en temas de clara repercusión en vidas humanas.
Este artículo se publicó originalmente en el blog de Jakiunde. Artículo original.
Sobre los autores: Juan Ignacio Perez Iglesias es Director de la Cátedra de Cultura Científica de la UPV/EHU y Joaquín Sevilla Moroder es Director de Cultura y Divulgación de la UPNA.
El artículo Los dueños del conocimeinto se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Pero dónde diablos están todos?
Un día de verano de 1950, mientras se dirigían a almorzar, los físicos Enrico Fermi, Edward Teller, Herbert York y Emil Konopinsky charlaron, entre otras cosas, acerca de las especulaciones sobre supuestos avistamientos de OVNIs. Hacía ya rato que habían cambiado de tema cuando, mientras almorzaban, Fermi, sin explicación previa dijo “¿Pero dónde diablos están todos?” Ninguno de los comensales necesitó preguntar a qué se refería; enseguida se dieron cuenta de que seguía pensando en la posible existencia de vida extraterrestre inteligente.
Lo que expresaba la exclamación del físico ítalo-americano era la extrañeza por no haber recibido aún la visita de seres de otros mundos. Fermi pensaba que había una probabilidad relativamente alta de que hubiesen florecido otras civilizaciones en la Vía Láctea y le parecía, por tanto, extraño que no hubiese pruebas de su existencia. Aunque él no fue el primero en formular esa impresión contradictoria, es conocida en la actualidad como la paradoja de Fermi.
En 1961, el astrofísico Frank Drake diseñó una ecuación que permitiría estimar el número de civilizaciones de nuestra galaxia con las que podríamos llegar a comunicarnos; el principal motivo de este ejercicio, no obstante, era promover el debate sobre la búsqueda de vida inteligente. Y en 1975 el también astrofísico Michael Hart elaboró en detalle el argumento de Fermi en un artículo científico.
Por un lado, sabemos que en la Vía Láctea hay miles de millones de estrellas similares al Sol y, además, muchas de ellas se formaron millones de años antes. Por otro lado, es muy probable que una parte de esas estrellas tengan planetas similares al nuestro, por lo que no sería extraño que se haya desarrollado vida inteligente en ellos. Llegados a ese punto, no sería improbable que esos seres inteligentes realizasen viajes interestelares, de manera que nuestro planeta debería haber sido visitado ya por seres de otros mundos o, al menos, por sondas enviadas por ellos. Y sin embargo, no hay pruebas de que haya ocurrido nada de eso. De ahí la pregunta de Fermi: “¿Pero dónde diablos están todos?”
Como es lógico, se han ofrecido diferentes argumentos que podrían explicar la paradoja. Se ha propuesto que ciertas transiciones -de materia inerte a viva, de células simples a complejas, o de seres individuales a sociales, por ejemplo- han necesitado mucho tiempo en otros mundos o, incluso, quizás no se han llegado a producir. Según la hipótesis de la Tierra Extraña, quizás las condiciones de nuestro planeta son excepcionales y hay muy pocos de similares características. Por otro lado, la vida inteligente tiene una historia muy breve en la Tierra, por lo que no sabemos hasta qué punto podría tratarse de un hecho realmente excepcional o único, y esta razón se puede extrapolar a la posesión de tecnología, mucho más limitada aún. Una propuesta de carácter apocalíptico sugiere que, a la vista de la hipotética propensión de los seres humanos a matarse unos a otros, la vida inteligente tienda quizás a destruirse a sí misma. O quizás tiende a aniquilar a otras formas de vida inteligente, haciendo esta mucho más efímera. Otros suponen que la capacidad de una civilización para expandirse por la galaxia está limitada por el agotamiento de los recursos necesarios. O puede, sencillamente, que no estemos buscando de la forma apropiada.
Sea como fuere, cada vez contamos con mejor tecnología para explorar el espacio y hay programas específicos para tratar de encontrar vida ahí fuera. Me daría verdadero vértigo si la encontrásemos. Pero me daría más vértigo aún si supiésemos que no la hay, que nos encontramos absolutamente solos en el Universo.
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
El artículo ¿Pero dónde diablos están todos? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Luces y sombras del uso de la tecnología en clase
Érase una vez… en el País Vasco, un congreso tan oportuno y tan útil, y tan bien recibido en Bilbao y en Donostia-San Sebastián, que muchos pensaron que tenía que viajar a más lugares. Así que la Cátedra de Cultura Científica y la Fundación Promaestro se pusiron de acuerdo y, con la ayuda de EduCaixa, lo llevaron a Madrid: casi un centenar de personas con espíritu crítico y bien informadas llenaron el pasado 2 de abril la modesta y acogedora sala de CaixaForum en la que se celebró.
Algo desalentadoras son las evidencias que Pablo Garaizar presenta sobre el uso (y abuso) de la tecnología en las aulas. Muchas veces asociamos los buenos resultados a la supuesta bondad de una metodología cuando, en realidad, dichos resultados se explican mejor atendiendo a otros factores, principalmente al nivel socio-económico de las familias de los alumnos. Es lo que suele ocurrir con las apuestas tecnológicas en educación: “el tiempo de pantalla no se puede medir «al peso» y las pantallas se usan de manera diferente en unos contextos y en otros», por lo que tampoco es igual el aprovechamiento de la tecnología en unas familias y en otras.
Ciertos programas innovadores y conocidos, como Escuela 2.0, no han funcionado y, en todo caso, los efectos positivos encontrados en ellos se suelen limitar “al uso moderado de las TIC a la hora de hacer los deberes, es decir –matizó el profesor de la Universidad de Deusto– a usar la tablet o el ordenador una o dos veces al mes”.
A la pregunta de si merece la pena invertir en tecnología para mejorar la educación, la respuesta de Garaizar es igual de clara: “los principales estudios muestran que un poco de tecnología es bueno, pero mucha no ayuda e incluso puede empeorar la educación”. Lo que sucede, reconoce el ingeniero informático, “es que la educación es un sector económico muy jugoso”, y las empresas tecnológicas están introduciéndose en él valiéndose de los maestros y de los deseos de las familias. En respuesta a esta deriva, el investigador cierra su ponencia con un recordatorio: “la educación no es un producto, los estudiantes no son nuestros clientes, los profesores no somos herramientas y la universidad no es una fábrica de titulados”.
Edición realizada por César Tomé López a partir de materiales suministrados por Fundación Promaestro
El artículo Luces y sombras del uso de la tecnología en clase se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Entrenan a las máquinas para reconocer la belleza y edad de las caras
Los investigadores Ikerbasque Fadi Dornaika e Ignacio Arganda del Departamento de Ciencias de la Computación e Inteligencia Artificial de la UPV/EHU proponen avances en la visión por ordenador y el aprendizaje automático. Concretamente, han obtenido muy buenos resultados utilizando técnicas semisupervisadas en el campo de predicción de la belleza facial, y, por otra parte, han estudiado qué funciones de error ayudan a entrenar mejor a las redes para mejorar la estimación de la edad facial.
La investigación en inteligencia artificial abarca muchísimos campos con el objetivo de conseguir la que podría ser la máquina inteligente ideal que percibe su entorno y lleva a cabo acciones que maximicen sus posibilidades de éxito en algún objetivo o tarea. El grupo Computer Vision and Pattern Discovery de la UPV/EHU se dedica a la visión por ordenador y al aprendizaje automático. “Básicamente, utilizamos técnicas modernas de inteligencia artificial para resolver problemas de imagen muy diversos, en imágenes de todo tipo: 2D, 3D, vídeos, etc.”, explica Ignacio Arganda, investigador Ikerbasque del Departamento de Ciencias de la Computación e Inteligencia Artificial de la UPV/EHU.
De hecho, el grupo de investigación está especializado en temas tan diversos como imágenes biomédicas (detección de células, tejidos, tumores…), imágenes faciales (percepción de la belleza, estimación de la edad) o imágenes de la calle (localización de vehículos, peatones…), que abordan en colaboración con investigadores de otras entidades y centros de investigación. “En general, son técnicas de aprendizaje automático, porque normalmente partimos de un conjunto de datos, imágenes o vídeos etiquetados (en los que se conoce dónde están los objetos o qué tipo de categoría tienen), con los que enseñamos o entrenamos a nuestros modelos estadísticos o de inteligencia artificial a asignar esas mismas etiquetas a ejemplos que no habían visto antes”, explica Arganda.
¿En qué se fija la red para deducir la edad de una persona o dar una puntuación de belleza?
En sendas investigaciones relacionadas con las imágenes faciales, los investigadores han propuesto mejoras en relación con la predicción de la belleza y la estimación de la edad. “En la investigación de la predicción de la belleza, intentamos replicar las puntuaciones de belleza dadas en diferentes bases de datos, utilizando técnicas semisupervisadas (en las que no todas las imágenes están etiquetadas) —explica el doctor Arganda—. Para eso, utilizamos redes en las que se extraen diferentes características que se utilizan para entrenar a los modelos con los que predecir la belleza”. En esta línea, los miembros del equipo han demostrado que “el aprendizaje semisupervisado, nunca utilizado hasta ahora para este tipo de problema, da tan buenos resultados o incluso mejores que el supervisado (en el que todas las imágenes están etiquetadas)”, apunta.
“Para la estimación de la edad, se utilizan redes neuronales convolucionales (CNN): lo que se tiene es una imagen de entrada; una serie de filtros van extrayendo características que ayudan a tomar la decisión final, o sea un número, en este caso la edad”, añade. En esta línea, “hicimos un estudio empírico para ver qué funciones de error ayudan a entrenar mejor a las redes en este ámbito, porque el error en las estimaciones se puede minimizar de maneras diferentes”, explica el investigador. Los resultados experimentales obtenidos han demostrado la manera en la que se puede mejorar la estimación de la edad.
Para este tipo de predicciones y estimaciones se utilizan redes neuronales profundas: “Redes con muchísimas conexiones, muchísimos filtros, millones de datos… Pero es importante entender en qué se está fijando la red para predecir la edad de una persona, o hacer cualquier otro tipo de predicción. Actualmente, existe otro campo de investigación, en el que estamos sumergidos, llamado inteligencia artificial explicable o interpretable, que estudia técnicas con las que dilucidar en qué pone la red su atención”, explica Arganda.
Asimismo, el investigador alerta de que “las técnicas de aprendizaje automático nos afectan en la vida más de lo que pensamos. Se están generando muchísimos datos y se están tomando decisiones de alto nivel en función de estos sistemas. Es muy importante tener en cuenta el factor ético. De hecho, en el aprendizaje automático se utilizan bases de datos gigantescas con las que se entrenan los modelos, y todos los sesgos que contienen estos datos se replican en las predicciones y estimaciones que hacen los modelos, y puede ser realmente nocivo. En ese sentido, hay investigaciones abiertas en la que se estudia cómo quitar los diferentes sesgos de los datos”. En opinión de Arganda, “estamos en un momento apasionante en este campo”.
Referencia:
Fadi Dornaika, Kunwei Wang, Ignacio Arganda-Carreras, Anne Elorza, Abdelmalik Moujahid (2019) Toward graph-based semi-supervised face beauty prediction Expert Systems With Applications Expert Systems with Applications doi: 10.1016/j.eswa.2019.112990
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo Entrenan a las máquinas para reconocer la belleza y edad de las caras se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Receta de un Adagio (1)
Sentía la pobre oscuramente, sin darse de ello clara cuenta, que la música es preparación eterna, preparación a un advenimiento que nunca llega, eterna iniciación que no acaba cosa.
Miguel de Unamuno. Niebla.
Foto: Uriel Soberanes / UnsplashHay muchas formas de componer la tristeza. Si uno toma el top dramones de la encuesta de la BBC por ejemplo, puede resultar sorprendente que las obras incluidas ni siquiera parecen comparables entre sí. Sólo en 5 piezas encontramos desde un tema de jazz de 3 minutos cantado por Billy Holiday, hasta una obra para cuerda de media hora de duración compuesta por Richard Strauss. Y si uno le pregunta a Twitter, el abanico de posibilidades se vuelve todavía más extenso.
Hay muchas formas de componer la tristeza. No existe una única pieza clave, una nota dolorosa, ni una fórmula mágica que haga brotar las lágrimas. Pero como el vinagre y el aceite, existen ingredientes que se repiten en casi todas las ensaladas (tristes ensaladas). Para componer la tristeza no se usan aliños sino sonidos que se parecen a los que emite un humano triste y sonidos que se parecen a los de un humano que gotea.
Elige un tempo lento.
Es difícil encontrar un patrón que se repita en todas las obras que nos producen tristeza. Pero si hubiese que elegir uno, sería este: casi todas las canciones tristes son lentas. Basta alterar la velocidad y el carácter de la pieza cambia por completo.
El tempo (la velocidad a la que interpreta una pieza de música) se encuentra, de hecho, en la base de las emociones y es, probablemente, el ingrediente más importante a la hora de determinar el carácter de la música. Tanto es así que muchas de las palabras que utilizamos para designarlo corresponden a estados anímicos expresados en italiano (o, más raramente, en francés): Allegro, Tranquillo, Moderato espressivo, Afettuoso, Grave…
El término Adagio no es una excepción. Proviene del italiano ad agio que significa “con facilidad”. En este caso, el contagio se dio a la inversa y un término que en principio hacía referencia a una velocidad de interpretación cómoda, hoy está empapada de matices emocionales. Un Adagio es lento, sí, pausado como un humano triste. Pero es más que eso… también es noble, amable, amplio, a veces elegíaco, siempre expresivo. Un Adagio canta con voz redonda y sostiene una mirada serena. Encarna todos los antónimos que se puedan pensar de la palabra frívolo. Y, a estas alturas… un Adagio ya no es fácil.
El Adagio de Barber, de hecho, resulta engañosamente sencillo. Y uno de los mayores retos que plantea de su interpretación radica, justamente, en elegir y mantener el tempo adecuado. Ni demasiado rápido —arruinaría el carácter de la pieza— ni demasiado lento —acabaría por ahogarla. “Con intensidad creciente”—escribió Toscanini de su puño y letra en su partitura de ensayo— “pero sin correr”. Aunque desde fuera un tempo rápido puede parecer más díficil de ejecutar (a todos nos impresionan los grandes virtuosos con sus malabarismos digitales), la lentitud plantea sus propios retos. Es difícil sostener la tensión de la música, controlar las propias emociones para que la música no se desparrame hacia delante siguiendo el pulso acelerado de quien la interpreta. Pero incluso a nivel puramente técnico: un movimiento demasiado lento del arco sobre el violín puede hacer más difícil mantener una presión constante sobre las cuerdas, o calcular que el arco no se acabe antes de la cuenta.
Tampoco las pausas deben extenderse más de la cuenta: un rubato excesivo (las pequeñas variaciones que se hacen sobre el tempo base) podría llevar a que el pulso, ya de por sí lento y difícil de seguir, se perdiera por completo. Intuitivamente, como dice Zubin Mehta: “si uno exprime cada cadencia, puede acabar un poco mareado”.
A veces me imagino el Adagio de Barber como una escultura de agua. Un montón de líneas de flujo laminar suspendidas sin roturas en el aire: inmóviles gracias al constante movimiento de las moléculas del agua, transparente sólo si se consigue fijar la velocidad perfecta.
Elimina las esquinas.
Los humanos tristes balbucean, arrastran los pies, se mueven despacio y odian los saltos. Los humanos tristes no tienen esquinas.
Por eso, las piezas de música triste suelen dar pocos saltos y prefieren las melodías suaves, también en su articulación: la alegría a menudo utiliza sonidos breves, saltarines, cortantes (pizzicato, staccato…). La tristeza, en cambio, prefiere fundir sus sonidos en un continuo legatto (o diluirlo todo al piano, con un buen pedal de resonancia).
La ausencia de esquinas se hace evidente en el Adagio de Barber, que desliza su melodía por grados contiguos y pinta toda la armonía a base de gradientes y acuarelas. En el Adagio, los acordes se desbordan de cada compás mediante retardos y apoyaturas. Todo es fluido, ambiguo y curvo… como una escultura de agua.
Esto puede provocar que la coordinación de los músicos se vuelve complicada: en Barber, el pulso a veces es tan lento que puede llegar a perderse por completo. La ausencia generalizada de líneas nítidas hace difícil colocar hitos temporales sobre los que coordinarse con los demás. Es como quedar a pasear en un día con niebla. Los intérpretes de la orquesta deben prestar atención a lo que hacen los demás para ubicarse y reubicarse, y andar a la par.
Los finales de frase tienden a relajar tempo. Es ahí donde la música se para a respirar. Así, con los pulmones llenos, las frases pueden hacerse más largas. Pero, en palabras del director William Schrickel, “no tendría sentido si fuesen tan lentas que nadie las pudiese cantarlas en realidad”. Por supuesto, los violines no tienen nada que limite su capacidad pulmonar… pero toda música es, con perspectiva, la sofisticación de algún tipo de canto. Los violines del Adagio, encarnan su voz.
El artículo Receta de un Adagio (1) se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Un teorema sobre el Tangram
En la entrada del Cuaderno de Cultura Científica titulada El arte contemporáneo mira al Tangram estuvimos viendo como algunos artistas contemporáneos utilizaban el Tangram como un elemento fundamental en el desarrollo de algunas de sus obras de arte.
En particular, pudimos observar que, entre las configuraciones posibles con las siete piezas de este rompecabezas geométrico, un grupo que llamaba especialmente la atención de estos artistas era la familia de configuraciones convexas, quizás por ser una familia muy matemática. En la entrada de hoy vamos a hablar precisamente de este tipo de configuraciones, en qué consisten y cuántas existen.
Tangram convexo 007 (2014), del artista Kaufman, pseudónimo artístico de James Marr, realizado con madera reciclada. Imagen de la página web del artista
Puesto que esta entrada va a ser algo más matemática, volvamos a introducir y observar, desde una óptica más geométrica, el rompecabezas Tangram y las siete piezas poligonales que lo componen.
Para empezar, volvamos a observar las siete piezas poligonales que forman el Tangram, dos triángulos pequeños, un triángulo mediano y dos triángulos grandes, todos ellos con la misma forma –triángulo rectángulo isósceles–, pero distintos tamaños (sus ángulos son 90, 45 y 45 grados), un cuadrado (con cuatro ángulos de 90 grados) y un romboide (cuyos ángulos son 45, 135, 45 y 135 grados, pero observemos que 135 = 90 + 45). Todas las piezas son “simétricas”, en el sentido de que si se voltean no cambian de forma, son la misma figura (tienen simetría especular), salvo el romboide, que si se voltea cambia su orientación. Por lo tanto, el romboide tiene dos posibilidades a la hora de ser utilizado para realizar una configuración, como la original del cuadrado.
Una cuestión interesante de las piezas del Tangram, que además va a ser fundamental en el estudio de las configuraciones convexas, es que las piezas del Tangram pueden ser divididas en triángulos rectángulos isósceles, del mismo tamaño que las dos piezas triangulares pequeñas del Tangram, como se muestra en la siguiente imagen. De esta forma, las piezas del Tangram pueden dividirse en 16 triángulos rectángulos isósceles iguales.
Si consideramos que los dos lados iguales de estos triángulos rectángulos isósceles, que son los catetos, miden 1 (son nuestra unidad de medida), entonces la hipotenusa medirá, por el teorema de Pitágoras, raíz de 2. Es decir, bajo esta premisa podemos considerar que dos lados del triángulo rectángulo isósceles son “lados racionales” y el otro es un “lado irracional”.
Además, teniendo en cuenta esto podemos ver, en la siguiente imagen, las medidas de las piezas del Tangram. Así mismo, podemos calcular sus áreas. El área de los triángulos pequeños es 0,5, el área del cuadrado, el triángulo mediano y el romboide es 1, y el área de los triángulos grandes es 2.
El objetivo del rompecabezas geométrico es buscar la forma de colocar las piezas para obtener una configuración dada del mismo, como el cuadrado básico, pero también otras configuraciones, ya sean figurativas (personas, animales, árboles, flores, edificios, letras, números, etc) o geométricas (polígonos convexos, estrellas, poliominós, etc), o incluso diseñar nuevas configuraciones. Puede ocurrir que una configuración dada no tenga ninguna solución, en cuyo caso hay que buscar la forma de demostrar que no la tiene, o en caso de tener solución puede analizarse cuántas formas distintas de conseguir esa configuración existen.
Por ejemplo, si tomamos la configuración básica del Tangram solo existe una solución de la misma, salvo rotaciones y reflexiones (dar la vuelta), que se extendería a 8 soluciones si admitiésemos como distintas las rotaciones y reflexiones (dar la vuelta), como se muestra en la siguiente imagen.
Ocho soluciones simétricas del cuadrado con las piezas del Tangram, que constituyen la única solución, salvo rotaciones y reflexiones
El gran divulgador de las matemáticas Martin Gardner (1914-2010), en su primer artículo sobre el Tangram de su columna Mathematical Games de la revista Scientific American, titulado On the fanciful history and the creative challenges of the puzzle game of tangrams, mostraba una colección de configuraciones con el reto de obtenerlas con las siete piezas, pero una de ellas no era posible y la cuestión era, además, demostrar por qué no era posible. A continuación, mostramos estas configuraciones.
Reto: Obtener estas configuraciones con las siete piezas del Tangram y demostrar que una de ellas es imposible (la demostración al final de la entrada).
Desde el punto de vista matemático, los problemas más interesantes son los de tipo combinatorio. Cuestiones como las siguientes: ¿cuántos polígonos convexos pueden formarse con las piezas del Tangram?, ¿cuántos polígonos de tres, cuatro o cinco lados pueden construirse?, ¿cuántos poliominós (donde un poliominó es una figura geométrica plana formada conectando dos o más cuadrados por alguno de sus lados, como vimos en la entrada Embaldosando con L-triominós (un ejemplo de demostración por inducción)?, ¿cuántas formas estrelladas pueden formarse?, etc.
Antes de continuar, recordemos que un polígono convexo es un polígono cuyos ángulos interiores miden menos de 180º, es decir, no hay zonas que externas metidas hacia dentro. En general, en matemáticas, se dice que un conjunto es convexo, si dados dos puntos cualesquiera del conjunto se verifica que los puntos del segmento que une esos dos puntos está también dentro del conjunto.
Dos figuras realizadas con las piezas del Tangram, la primera es convexa (sus ángulos interiores miden, desde arriba y en el sentido de las agujas del reloj, 90, 45 y 45 grados), mientras que la segunda no lo es (sus ángulos interiores miden, desde arriba y en el sentido de las agujas del reloj, 90, 45, 135, 270, 135 y 45 grados
Antes de entrar en el teorema sobre el Tangram referido al número de configuraciones convexas que existen, primero pensemos cuántos triángulos, polígonos de tres lados, se pueden construir con las piezas del Tangram. La respuesta es sencilla, únicamente el triángulo de la imagen anterior, que es un triángulo rectángulo isósceles (con ángulos de 45, 45 y 90 grados). El motivo es que los ángulos de las piezas del Tangram son 45, 90 y 135 grados, como la suma de los ángulos de un triángulo es 180 grados, la única opción posible es 45, 45 y 90 grados, es decir, el triángulo rectángulo anterior.
Observemos ahora que la solución anterior de la configuración triangular del Tangram no es la única, en contraposición a lo que ocurría con el cuadrado básico. Por ejemplo, otra posible solución es la que mostramos a continuación.
Otra solución de la configuración triangular del Tangram
Si nos planteáramos qué ocurre con las figuras cuadriláteras, si es posible que existan figuras no convexas de cuatro lados, la respuesta es negativa. La única opción posible para los cuatro ángulos es tres ángulos de 45 grados y uno de 225 grados, el problema es que no se puede realizar esta figura con 16 triángulos rectángulos isósceles del tamaño de las piezas triangulares pequeñas del Tangram. Luego todos los cuadriláteros que se puedan construir serán convexos.
Pero vayamos al resultado importante respecto a las configuraciones convexas del Tangram, la existencia únicamente de 13 polígonos convexos realizados con las figuras del rompecabezas.
Teorema (F.T. Wang, Ch. Hsiung, 1942): Utilizando las piezas del Tangram se pueden formar exactamente trece polígonos convexos.
Los matemáticos chinos Fu Traing Wang y Chuan-Chih Hsiung, en su artículo publicado en The American Mathematical Monthly en 1942, demostraron primero algunos lemas (resultados técnicos previos) que tenían en cuenta fundamentalmente el carácter racional e irracional de los lados de los dieciséis triángulos rectángulos isósceles y que nos permiten entender mejor la situación, así como simplificar la demostración del resultado matemático.
Lema 1. El primer lema dice que, si utilizamos dieciséis triángulos rectángulos iguales para formar un polígono convexo, entonces un lado racional de un triángulo no puede apoyarse en un lado irracional de otro triángulo, como en la imagen siguiente.
Si nos fijamos en la imagen de arriba, los dos triángulos apoyados uno en otro, racional frente a irracional, la figura es claramente no convexa con solo esas dos piezas. Si dibujamos la recta que extiende el lado compartido de los triángulos, podemos observar que:
1. No hay forma de que ninguna pieza atraviese esa línea;
2. Si en la parte superior colocamos triángulos con el lado racional apoyado en la recta, como el que está, y en la parte inferior colocamos triángulos con el lado irracional apoyado en la recta, no hay forma de que coincidan los vértices sobre la recta, ya que una cantidad racional, la suma de los lados de arriba, no puede ser igual a una cantidad irracional, la suma de los de abajo, por lo que siempre quedará una situación no convexa, similar a la de la imagen;
3. La única forma de igualar las longitudes de las piezas que se apoyan en la parte superior e inferior de la recta, es apoyando desde arriba un triángulo con su lado irracional y desde abajo un triángulo con el racional, como se muestra en la imagen.
Pero, en este caso, para romper la no convexidad de la figura formada hay que incluir más triángulos en las zonas con una estrella, lo que nos lleva a volver a poner necesariamente otro lado irracional sobre uno racional y volver a la misma situación inicial, luego de no convexidad.
Lema 2. Si se tiene en cuenta el primer lema, en particular, el argumento del punto 3, se tiene que, si utilizamos dieciséis triángulos rectángulos iguales para formar un polígono convexo, entonces los lados del polígono están formados por lados del mismo tipo (racionales o irracionales) de los triángulos. Además, se dice que un lado del polígono convexo es racional, o irracional, cuando está formado por lados racionales, o irracionales (respectivamente), de los triángulos. En general, los lados racionales e irracionales del polígono convexo alternan, pero si un ángulo del polígono es recto, los lados adyacentes son ambos racionales o irracionales.
Si miramos a la solución del Tangram con forma triangular, pero vista como formada por los dieciséis triángulos rectángulos isósceles del mismo tamaño, observamos que efectivamente se cumple este lema. Los dos lados adyacentes al ángulo recto son racionales, mientras que el otro, entre ellos, es irracional.
Lema 3. Este lema nos establece un número máximo de lados que puede tener un polígono convexo formado por dieciséis triángulos rectángulos isósceles del mismo tamaño. Por una parte, tiene en cuenta que la suma de los ángulos interiores de un polígono convexo de n lados es (n – 2) x 180 grados (este resultado se puede demostrar fácilmente tomando un punto interior del polígono convexo y dividiendo este en triángulos con uno de sus vértices ese punto interior, con solo tener en cuenta que la suma de los ángulos de un triángulo es 180 grados y que los ángulos alrededor del punto interior suman 360 grados) y, por otra parte, que en cada uno de los n vértices del polígono convexo la suma máxima que pueden alcanzar los ángulos que proporcionan los triángulos es 135 grados. Considerando ambas informaciones se tiene que la suma de los ángulos interiores del polígono convexo, (n – 2) x 180 grados, es menor o igual que n x 135 grados, de donde, n es menor o igual que 8.
En conclusión, no hay polígonos convexos de más de 8 lados que puedan ser formados con 16 triángulos rectángulos isósceles iguales.
Lema 4. Teniendo en cuenta los lemas anteriores y que los ángulos del polígono convexo solo pueden tener los valores 45, 90 y 135 grados, se obtiene que, si utilizamos dieciséis triángulos rectángulos iguales para formar un polígono convexo, entonces este polígono está inscrito en un rectángulo con todos los lados racionales, o irracionales, del polígono apoyados en los lados del rectángulo.
Si consideramos que el polígono convexo tiene p ángulos de 45 grados, q de 90 grados y r de 135 grados, y que la suma de los ángulos del polígono convexo es (n – 2) x 180 grados, se tiene que 2p + q = 8 – n, luego como el polígono tiene como mucho 8 lados, entonces se tienen las siguientes posibilidades para los valores de (p, q, r):
Con los anteriores resultados, ya estamos en condiciones de demostrar este teorema sobre el Tangram.
Demostración del teorema. Para empezar, podemos asumir que el polígono convexo generado con los dieciséis triángulos rectángulos isósceles iguales es un octógono, que denotamos de la siguiente forma ABCDEFGH (sus vértices), ya que podemos considerar que los polígonos con menos lados son octógonos degenerados, en los que algunos lados tienen longitud cero, es decir, son solo vértices. Por otra parte, podemos suponer que el polígono está inscrito en un rectángulo PQRS tal que los lados racionales del polígono BC, DE, FG y HA son los que se apoyan en los lados del rectángulo.
A continuación, llamamos a, b, c y d al número de lados irracionales de los triángulos rectángulos isósceles que forman los lados irracionales del octógono AB, CD, EF y GH, respectivamente. Si seguimos con la convención de que los lados racionales de los dieciséis triángulos rectángulos isósceles iguales miden 1 (por el teorema de Pitágoras, los irracionales miden raíz de 2), entonces resulta que los números naturales a, b, c y d (que podrían valer 0 en el caso de un octógono degenerado) son las longitudes de los catetos de los triángulos rectángulos APB, CQD, ERF y GSH, cuyas hipotenusas son los lados irracionales del octógono, como puede observarse en la anterior imagen. El siguiente diagrama nos muestra la justificación de lo anterior.
Y llamamos x e y a las longitudes de los lados del rectángulo en el que está inscrito el octógono, como se indica en la imagen de más arriba. Ahora, por un simple razonamiento de áreas en el diagrama del octógono inscrito en el rectángulo, tenemos que los números naturales a, b, c, d, x, y (que pueden tomar también el valor 0) satisfacen la siguiente ecuación:
con las restricciones naturales siguientes
Por lo tanto, hemos reducido la demostración del resultado sobre las configuraciones convexas del Tangram a la búsqueda de soluciones enteras (no negativas) de la anterior ecuación, con sus restricciones y de las mismas (ya que estas se corresponden a disposiciones con los 16 triángulos rectángulos isósceles iguales) determinar cuáles son posibles mediante las piezas del Tangram.
En esta entrada nos vamos a saltar la parte de la demostración que consiste en buscar las soluciones enteras, no negativas, de la anterior ecuación. Para las personas que estén interesadas les remitimos al artículo original A theorem on the Tangram, de Wang y Hsiung, o al artículo Finding all convex tangrams, de T.G.J. Beelen, que se incluyen en la bibliografía. A continuación, mostramos una tabla con las soluciones para las incógnitas a, b, c, d, x, y, además, están marcadas con un asterisco aquellas que no se corresponden con configuraciones del Tangram.
De donde podemos construir los trece poliedros convexos posibles con las siete piezas del Tangram.
Las 13 configuraciones convexas posibles con el rompecabezas Tangram
Por otra parte, las siete construcciones posibles con dieciséis triángulos rectángulos isósceles iguales, pero que no son realizables con las piezas del Tangram son las siguientes.
Las 7 configuraciones convexas realizables con los 16 triángulos rectángulos isósceles iguales, pero no con las piezas del Tangram
Vamos a terminar con un grabado basado en una de las trece construcciones poligonales convexas del Tangram, realizada por el artista italiano Francesco Moretti, de quien ya hablamos en la anterior entrada El arte contemporáneo que mira al Tangram.
Forma cerrada 02 (2018), de Francesco Moretti. Linograbado en 2 colores, de tamaño 50 x 50 cm. Imagen extraída de la página del artista Francesco Moretti
Pero no hemos terminado del todo, aún nos queda la solución del reto que habíamos planteado.
Solución del reto: Para terminar, resolvamos la parte del reto de la configuración que es imposible de realizar. Esta es el cuadrado con un agujero cuadrado en el centro. Demostremos que no es posible realizarla con las siete piezas del Tangram. Si observamos bien la configuración, vemos que efectivamente la superficie de la misma está formada por 8 cuadrados, es decir, 16 triángulos rectángulos isósceles, como las 7 piezas del Tangram. Si vemos donde pueden ir colocadas las piezas triangulares grandes, resulta que solo pueden ir colocadas en dos esquinas opuestas de la configuración, como se muestra en la imagen de abajo. Además, la pieza cuadrada solo podrá ir en una de las dos esquinas libres.
El problema es que la pieza romboide solo puede ir pegada a la única esquina que queda libre, pero entonces no hay sitio para poder colocar la pieza triangular mediana. En conclusión, es imposible realizar esta configuración.
Bibliografía
1.- Fu Traing Wang, Chuan-Chih Hsiung, A theorem on the Tangram, The American Mathematical Monthly, vol. 49, no. 9, pp. 596-599, 1942.
2.- Martin Gardner, Viajes en el tiempo y otras perplejidades matemáticas, RBA, 2010 (los dos artículos originales de Martin Gardner sobre el Tangram que aparecen en este libro fueron publicados originalmente en la columna Mathematical Games de la revista Scientific American en 1974)
3.- Paul Scott, Convex Tangrams
4.- T.G.J. Beelen, Finding all convex tangrams, CASA-report Vol. 1702, Technische Universiteit Eindhoven, 2017.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Un teorema sobre el Tangram se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Las ondas electrónicas y la estructura atómica
Bohr había postulado que la cantidad mvr, que llamaremos «momento angular» [1] del electrón que orbita en el átomo de hidrógeno, donde r es el radio de la órbita del electrón, m es la masa de los electrones y v es su velocidad lineal [2], puede tener solo ciertos valores cuantizados. Estos valores cuantizados permiten definir los estados estacionarios.
La relación de de Broglie, λ = h/mv, esto es, el comportamiento ondulatorio de los electrones tiene una aplicación interesante y extremadamente simple que respalda este postulado [3] y ayuda a explicar la existencia de unos estados estacionarios y no otros. Veámoslo.
Bohr asumió que mvr solo puede tener los valores mvr = nh/2π [4], donde h es la constante de Planck y n un número natural que solo puede adoptar los valores n = 1, 2, 3, . . . .
Bien. Supongamos ahora que la onda asociada al electrón se extiende, de alguna forma, por la órbita circular de radio r, de tal forma que ocupa toda la órbita. Si esto es así la longitud de la circunferencia de la órbita, 2π tiene que ser igual a una longitud de onda o a un número entero n de longitudes de onda. En cualquier otro caso la onda se autoanula. Lo vemos en la figura: a la izquierda, encaja (fit), a la derecha no lo hace (no fit) y las ondas se anulan.
Fuente: Cassidy Physics LibrarySi esto mismo lo reemplazamos por símbolos tenemos que 2πr, la longitud de la circunferencia, ha de ser igual a un número natural de longitudes de onda, nλ, o sea, 2πr = nλ. Por la relación de de Broglie sabemos que λ = h/mv, por tanto 2πr = nh/mv; que no es más que el postulado de Bohr escrito de otra manera ya que, simplemente reordenando obtenemos mvr = nh/2π.
La relación de Broglie para las ondas electrónicas unida a la idea de que los electrones tienen órbitas que permiten ondas estacionarias nos permite derivar la cuantización de las órbitas electrónicas que Bohr tuvo que asumir.
De lo que hemos visto resulta que uno se puede imaginar electrón que orbita en el átomo tanto como un corpúsculo que se mueve en una órbita con un cierto valor cuantizado del producto mvr como una onda tipo de Broglie estacionaria que ocupa una cierta región alrededor del núcleo.
Ya tenemos los mimbres básicos con los que construir la mecánica cuántica.
Notas:
[1] La definición estricta de momento angular puede llegar a complicarse mucho, conceptual y matemáticamente, sin embargo, y a los efectos que aquí nos ocupan, el producto del momento lineal en un instante (mv) por el radio (r) es más que suficiente y no del todo descabellado.
[2] Velocidad lineal es un componente de la velocidad total, ya que el electrón está en una órbita circular. Podemos interpretarla como la velocidad en un instante en la dirección de la tangente a la órbita en un punto.
[3] Recordemos que este postulado lo había introducido Bohr porque funcionaba pero sin saber por qué funcionaba.
[4] El que aparezca un 2π cuando estamos hablando de una órbita circular de longitud 2πr no debería extrañarnos.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Las ondas electrónicas y la estructura atómica se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Los valores en la filosofía de la ciencia
Una vez que Merton (1942) abrió la puerta a los valores como elementos que caracterizan a la empresa científica y que sirven para legitimarla socialmente, otros autores han aportado su propia visión. Sin ánimo de ser exhaustivos, repasamos brevemente a continuación otros puntos de vista, recurriendo para ello a referencias recogidas por Echeverría en sendos trabajos de 1995 y de 2002. El grueso del contenido que sigue se ha tomado de esta entrada en el Cuaderno de Cultura Científica [*].
De acuerdo con la teoría de los objetivos de la ciencia de Karl Popper: “la ciencia busca la verdad y la resolución de problemas de explicación, es decir, que busca teorías de mayor capacidad explicativa, mayor contenido y mayor contrastabilidad.” Según Popper, la objetividad científica exige que las conjeturas sean sometidas a prueba; por eso, la falsación y la crítica no son solo preceptos metodológicos, son también reglas propias del ethos de la ciencia. Por otra parte, la comunicabilidad del conocimiento científico (y en concreto la escritura) son condiciones sine qua non para que esa objetividad sea factible. Popper formuló una nueva característica universal para todo tipo de ciencias (formales, naturales, sociales), a saber, su carácter público.“[…] decimos que una experiencia es pública, cuando todo aquel que quiera tomarse el trabajo de hacerlo puede repetirla,» para remachar a continuación: “Esto es lo que constituye la objetividad científica. Todo aquel que haya aprendido el procedimiento para comprender y verificar las teorías científicas puede repetir el experimento y juzgar por sí mismo.” Y por lo mismo, la universalidad de la ciencia es otro valor continuamente subrayado por él. La investigación científica se lleva a cabo en un marco social, cultural, institucional e histórico determinado. Sin embargo, ello no implica que no podamos sobrepasar dicho marco, conduciendo nuestra indagación hacia una mayor universalidad.
“En último término, el progreso depende en gran medida de factores políticos, de instituciones políticas que salvaguarden la libertad de pensamiento: de la democracia.” […] La axiología subyacente a la teoría popperiana del objetivo de la ciencia nos muestra nuevos valores, que él considera fundamentales para el desarrollo de la actividad científica: por ejemplo la libertad de pensamiento y la libertad de crítica.
Mario Bunge negó la dicotomía entre hechos y valores en la ciencia y mantuvo al respecto una postura matizada: «el contenido del conocimiento científico es axiológica y éticamente neutral», pero «algunos de los criterios que se emplean en ciencia son claramente normativos». Para Bunge, «los valores son propiedades relacionales que adjudicamos en ciertas ocasiones a cosas, actos o ideas, en relación con ciertos desiderata«. Hay valores que la ciencia moderna ha promovido siempre, como la verdad, la novedad, el progreso, la libertad y la utilidad. Bunge afirmó incluso que «la actividad científica es una escuela de moral «y que «la ciencia es una fuerza moral a la vez que una fuerza productiva», para terminar diciendo que «en conclusión, la ciencia, en su conjunto, no es éticamente neutral».
En una conferencia dictada en 1973, Thomas Kuhn planteó una nueva pregunta en filosofía de la ciencia: ¿cuándo una teoría científica es buena (o mala)? En lugar de preguntar sobre la verdad, falsedad, verosimilitud, falsabilidad, contrastabilidad, etc., de las teorías científicas, como era habitual entre los filósofos de la ciencia, Kuhn suscitó una cuestión que es previa a la de la verdad, falsedad o verosimilitud de las teorías. Según Kuhn, los científicos criban previamente las propuestas y para ello recurren a una serie de requisitos y valores a los que hay que prestar gran atención.
Respondiendo a su propia pregunta, Kuhn indicó al menos cinco características para admitir que una teoría científica es buena: precisión, coherencia, amplitud, simplicidad y fecundidad. Posteriormente sugirió un sexto valor, la utilidad, de índole mayormente técnica, por lo que Kuhn no lo incluyó en su lista inicial de “valores de la ciencia”. También subrayó que ninguno de esos criterios basta por sí mismo para dilucidar si una teoría es buena o no y, por supuesto, tampoco para decidir si es verdadera o falsa. Sin embargo, los cinco son requisitos axiológicos exigibles a toda teoría científica, es decir, condiciones necesarias, pero no suficientes.
Según Kuhn, “[,,,] una teoría debe ser precisa: esto es, dentro de su dominio, las consecuencias deducibles de ella deben estar en acuerdo demostrado con los resultados de los experimentos y las observaciones existentes. En segundo lugar, una teoría debe ser coherente, no solo de manera interna o consigo misma, sino también con otras teorías aceptadas y aplicables a aspectos relacionables de la naturaleza. Tercero, debe ser amplia: en particular las consecuencias de una teoría deben extenderse más allá de las observaciones, leyes o subteorías particulares para las que se destinó en un principio. Cuarto, e íntimamente relacionado con lo anterior, debe ser simple, ordenar fenómenos que, sin ella, y tomados uno por uno, estarían aislados y, en conjunto, serían confusos. Quinto -aspecto algo menos frecuente, pero de importancia especial para las decisiones científicas reales-, una teoría debe ser fecunda, esto es, debe dar lugar a nuevos resultados de investigación: debe revelar fenómenos nuevos o relaciones no observadas antes entre las cosas que ya se saben.” […] “toda elección individual entre teorías rivales depende de una mezcla de factores objetivos y subjetivos, o de criterios compartidos y criterios individuales. Como esos últimos no han figurado en la filosofía de la ciencia, mi insistencia en ellos ha hecho que mis críticos no vean mi creencia en los factores objetivos.”
En su libro “Reason, Truth and History” (1981), Hilary Putnam no solo negó la dicotomía positivista entre hechos y valores, sino que afirmó tajantemente que no hay hechos científicos ni mundo sin valores. Según Putnam, “sin los valores cognitivos de coherencia, simplicidad y eficacia instrumental no tenemos ni mundo ni hechos”
En 1984 Larry Laudan publicó un libro con el sugestivo título Science and Values, pero desde las primeras páginas anunciaba que no iba a ocuparse de las relaciones entre la ciencia y la ética, sino que se centraría exclusivamente en los valores epistémicos:
“No tengo nada que decir sobre los valores éticos como tales, puesto que manifiestamente no son los valores predominantes en la empresa científica. Ello no equivale a decir que la ética juegue papel alguno en la ciencia; por el contrario, los valores éticos siempre están presentes en las decisiones de los científicos y, de manera muy ocasional, su influencia es de gran importancia. Pero dicha importancia se convierte en insignificancia cuando se compara con el papel omnipresente (ubiquitous) de los valores cognitivos. Una de las funciones de este libro consiste en corregir el desequilibrio que ha llevado a tantos escritores recientes sobre la ciencia a estar preocupados por la moralidad científica más que por la racionalidad científica, que será mi tema central.”
En relación con los criterios axiológicos que se utilizan para evaluar las teorías y los problemas, Laudan solo se ocupa de los valores epistémicos (verdad, coherencia, simplicidad y fecundidad predictiva), o, como también dice, de la «evaluación cognoscitivamente racional». Puede haber problemas muy importantes desde un punto de vista político o económico, pero éstos pertenecen a «las dimensiones no racionales de la evaluación de problemas».
Javier Echeverría (2019), por su parte, sostiene que las acciones tecnocientíficas están basadas en un complejo sistema de valores (pluralismo axiológico), compuesto por diversos subsistemas que interactúan entre sí. La axiología no se reduciría a la filosofía moral, sino que sería más amplia que ésta. Así, para analizar axiológicamente la tecnociencia contemporánea no basta con tener en cuenta los valores epistémicos, ni tampoco los valores éticos, religiosos o estéticos, sino que además es preciso ocuparse de valores tecnológicos, económicos, políticos, militares, jurídicos, ecológicos y sociales, así como de lo que podría denominarse, siguiendo a Ortega, valores vitales (o valores naturales, en su terminología). Esos doce subsistemas de valores tendrían mayor o menor peso específico según las acciones tecnocientíficas concretas.
Fuentes:
Javier Echevarría (1995): El pluralismo axiológico de la ciencia. Isegoría 12: 44-79.
Javier Echevarría (2002): Ciencia y valores. Ediciones Destino, Barcelona.
Javier Echeverría (2019): Valores y mundos digitales (en prensa)
Nota: Uno de nosotros (JIPI) desarrolló de forma más extensa el tema de los valores de la ciencia en una serie publicada en el Cuaderno de Cultura Científica.
[*] Nota del editor: este artículo se reproduce en su redacción actual a pesar de su coincidencia en buena medida con un artículo anterior para mantener la coherencia interna de la serie.
Este artículo se publicó originalmente en el blog de Jakiunde. Artículo original.
Sobre los autores: Juan Ignacio Perez Iglesias es Director de la Cátedra de Cultura Científica de la UPV/EHU y Joaquín Sevilla Moroder es Director de Cultura y Divulgación de la UPNA.
El artículo Los valores en la filosofía de la ciencia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La tabla periódica en el Arte: Carbono
Se acerca el fin del año y con él concluye este espacio dedicado a la tabla periódica en el arte. Hemos dejado para el final un elemento químico muy especial: el elemento más versátil, el elemento en el que se basa la vida tal y como la conocemos, el elemento que tiene una rama de la química que se encarga en exclusiva de los compuestos que forma: el carbono. Como este átomo es omnipresente entre los materiales artísticos, nos limitaremos a mostrar doce casos. Uno por cada campanada, uno por cada uva, uno por cada nucleón del isótopo más estable del carbono.
Imagen 1. Obra de arte con lapiceros de Jasenko Đorđević. Fuente: ToldArtCon C de carbonato
La Capilla Sixtina, el Pantocrator de Sant Climent de Taüll, la Escuela de Atenas o la Capilla de los Scrovegni son algunos de los grandes exponentes de la pintura al fresco. Podríamos pensar que realizar este tipo de arte mural es tan sencillo como depositar pintura en una pared, pero estaríamos muy equivocados. Tras esta técnica pictórica hay mucha química, por lo menos cuando hablamos del buon fresco, que dirían los italianos.
La ejecución clásica de un fresco comienza por cubrir la pared con una o varias capas de un mortero de cal muerta (Ca(OH)2) y arena. La última capa de esta preparación se conoce como arriccio y es en la que se realiza la sinopia: el dibujo que servirá de ayuda para pintar la obra. Sobre el arriccio se coloca una capa fina de mortero con cal muerta y polvo de mármol: el intonaco. Es sobre esta superficie húmeda donde se añaden los pigmentos y donde sucede el fenómeno químico fundamental: la cal muerta se carbonata por el contacto con el CO2 de la atmósfera y el mortero se solidifica por la aparición de carbonato cálcico (CaCO3). Los pigmentos depositados en la superficie todavía húmeda quedan atrapados y pueden perdurar durante siglos. Es como pintar dentro de la pared. Obviamente los pigmentos deben de depositarse antes de que el mortero se seque, tarea imposible en un solo día para la mayoría de las obras. Para que realizar el fresco sea viable se va trabajando por trozos y solo se cubre con intonaco la parte de la sinopia que se puede pintar en un día, lo que se conoce como giornata. Con esta nueva perspectiva quizás os parezca todavía más asombroso el trabajo que Miguel Ángel realizó en el Vaticano.
Por último, diremos que la cal muerta con la que se lograba el mortero se obtiene poniendo en agua cal viva (CaO) que a su vez se logra de la calcinación de roca caliza (CaCO3). Como veis, el arte del fresco se crea gracias a un ciclo que comienza y termina con el carbonato cálcico.
Imagen 2. Fresco de Gentile da Fabriano en el Palacio Trinci (s. XV) donde se pueden apreciar partes de la sinopia subyacente. Fuente: Wikimedia Commons.
Con C de carbón
El negro es, junto al rojo, el color dominante en el arte prehistórico. La razón es simple: nuestros ancestros podían lograr pigmentos negros valiéndose de hollín o trozos de madera semicalcinados. Gracias a la combustión incompleta de la materia orgánica se pueden lograr substancias ricas en carbono con las que dibujar trazos negros. En función del origen de esta materia orgánica se han distinguido diferentes tipos de negro de carbón a lo largo de la historia: negro de vid, negro de humo (del hollín de las lámparas) e, incluso, negro de hueso o negro de marfil. Claro que, en estos últimos casos, además de carbono, encontraremos calcio y fosfato provenientes de la quema de residuos óseos. Por muy rudimentarias que nos puedan parecer estas substancias, no hemos de olvidar que ya se usaban en las pinturas rupestres y han sobrevivido hasta nuestros días. Curiosamente uno de los pigmentos negros más modernos que existen también se basa en la química del carbono. Hablamos del Vantablack de Anish Kapoor, un producto de alta tecnología formado por nanotubos de carbono.
Imagen 3. Pinturas rupestres de la cueva de Ekain. Fuente: Wikimedia Commons.Con C de caseína
Quien lea este blog con asiduidad ya sabrá que la pintura tiene dos componentes fundamentales: el pigmento, que da color, y el aglutinante, que sirve de medio para las partículas de pigmento. Por ejemplo, en la pintura al óleo el aglutinante es un aceite. En el caso de las témperas o pinturas al temple el aglutinante es una substancia capaz de formar emulsiones, es decir, capaz de formar mezclas en las que dos líquidos inmiscibles crean una disolución aparentemente homogénea (uno de los líquidos se dispersa en el otro en forma de gotitas minúsculas). Seguro que en vuestra nevera encontráis algún ejemplo: la mayonesa, la mantequilla, etc. También encontraréis en la nevera el ingrediente fundamental para elaborar la témpera más tradicional: el huevo. En este caso son los lípidos y las proteínas de la yema los que actúan como agentes emulsionantes. La segunda témpera más conocida es el temple de caseína, así llamada por valerse de una fosfoproteína abundante en la leche (y vital para producir queso). Como todas las proteínas está formada por aminoácidos, pequeñas moléculas con un esqueleto que contiene nitrógeno, hidrógeno, oxígeno y, por supuesto, carbono. Los diferentes tipos de aminoácidos difieren tan solo en su cadena lateral que, además de los elementos mencionados, puede incorporar azufre. Lo maravilloso es que con sólo 20 (ó 22) de estas piezas podemos formar todas las proteínas que necesitamos.
La caseína se puede extraer de la leche añadiendo un ácido como el vinagre o el zumo de limón para que la proteína precipite. Posteriormente el sólido obtenido se hidroliza con una base y se puede emplear en disolución acuosa junto a un pigmento a modo de pintura. De la nevera a la paleta.
Imagen 4. El Friso de Beethoven, de Klimt (1902) contiene pintura a la caseína. Fuente: Wikimedia Commons.
Con C de cera
La cera es una substancia que producen las abejas para construir las celdas donde acumulan la miel y protegen a sus larvas. Esta substancia está formada por diferentes compuestos orgánicos, mayoritariamente ésteres con un número par de carbonos (C40-C52) y, en menor medida, alcanos con un número impar de carbonos (C23-C31), alcoholes y ácidos grasos. Mucho carbono. Todos estos compuestos son incoloros, por lo que al mezclar cera con pigmentos se puede lograr pintura del color deseado. Un momento, ¿incoloros? Así es. La cera es amarillenta por la presencia de otras substancias como el polen, que se pueden eliminar antes de elaborar la pintura. Pero, ¿cómo se mezcla el pigmento con la cera si ésta es sólida? Tan sencillo como derritiéndola primero (su punto de fusión es de unos 63 ⁰C). El propio nombre de esta técnica pictórica, denominada encáustica, está relacionado con el proceso de calentamiento, ya que el vocablo griego del que proviene (enkaustikós) se asocia a “en quemado”. Una vez depositada la cera, ésta se secará gracias a un proceso de solidificación. Como este secado es extremadamente rápido, actualmente se emplean instrumentos en caliente para retrasar el proceso y que el artista tenga más tiempo para aplicar la pintura y realizar retoques. Si bien artistas contemporáneos hacen uso de esta técnica, su existencia se remonta a tiempos clásicos, siendo un magnífico exponente los retratos funerarios de El-Fayum.
Imagen 5. Retrato del niño Eutyches (38×19 cm) (100-150 e.c.) Fuente: Met Museum.
Con C de cera perdida
Piensa que tienes que realizar una escultura de bronce. Puede que te imagines martilleando planchas de metal o soldando diferentes piezas. ¿Qué tiene que ver la cera con esto? La respuesta es sencilla: es indispensable para una técnica de fundido. Esta técnica consiste en realizar una versión en cera de la pieza que se desea conseguir para cubrirla posteriormente con un material que aguante temperaturas elevadas como la arcilla o ciertos tipos de silicona. Así se crea un molde que se calienta para que la cera escape por unos orificios previamente realizados. En el vacío dejado por la cera se verte el bronce fundido que adapta la forma de la figura que se desea obtener. Una vez solidificado, se rompe la cubierta, se corrigen errores y se da lustre a la pieza. Esta sería la explicación grosso modo. En realidad el proceso es ligeramente más complicado, sobre todo cuando la pieza no es maciza. Como en este caso un video vale más que mil palabras, aquí os dejo una explicación muy visual del Victoria & Albert Museum.
El fundido a la cera perdida se lleva usando varios milenios y ha servido para realizar algunas de las grandes obras maestras de la escultura. Por ejemplo, el célebre auriga de Delfos del s. V a.e.c. se elaboró uniendo diferentes piezas logradas mediante la técnica de la cera perdida. Dos mil años después el célebre artista Benvenuto Cellini quiso pasar a la historia e hizo una estatua de más de tres metros para los Medici… ¡de una sola pieza!
Imagen 6. Perseo con la cabeza de medusa. Fuente: Dimitris Kamaras.
Con C de China
La tinta china, ese líquido denso de un color negro impenetrable, debe sus propiedades al omnipresente átomo de seis protones. Ya hemos visto que que el carbono servía como pigmento tras la calcinación parcial de diferentes materias primas. Pues bien, la tinta china no es otra cosa que hollín con un poco de agua. Las partículas de hollín permanecen en suspensión y, cuando la tinta se seca, forman una película resistente. Cuenta la historiadora Victoria Finley que hace 1500 años los chinos preparaban la mejor tinta con el hollín de lámparas de aceite que ardían tras un biombo de bambú. No acaba ahí la cosa: el hollín se recogía cada media hora usando una pluma. Obviamente el producto que podemos comprar en la papelería no se logra así. Es más, además de agua se le suele añadir goma laca u otro tipo de aglutinante para mejorar sus propiedades.
Imagen 7. Detalle de Nueve dragones (47 x 1497 cm) de Chen Rong (s. XIII). Fuente: Museum of Fine Arts Boston.Con C de clorofila
La clorofila que tiñe de verde el reino vegetal es una molécula fotosensible, por lo que su uso en pintura no ha sido muy frecuente. Sin embargo, la fragilidad de esta substancia sirve para que el artista Binh Danh cree obras de arte reinventado una técnica fotográfica. Este artista vietnamita coloca un negativo sobre una hoja y deja que la luz solar actúe sobre ella durante días. De esta forma donde en el negativo hay zonas oscuras la clorofila no se degradará. En las zonas más claras, en cambio, la luz traspasará el negativo y hará desaparecer la molécula orgánica. Una vez finalizado este proceso logra atractivas obras de arte que protege con resina para que la luz no siga haciendo mella sobre ellas. Desde el punto de vista químico, en la estructura de la clorofila destaca el anillo de porfirina compuesto por un gran número de carbonos. Aunque hemos dicho que esta molécula se degrada con la luz, hoy en día existen pigmentos estables que poseen una estructura química similar: las ftalocianinas.
Imagen 8. Obra de Binh Danh. Fuente: RocorCon C de cochinilla
Una de las lacas más empleadas en pintura es el carmín, substancia de un atractivo color rojizo. Las lacas son una especie particular de pigmento que se logra empleando un sustrato incoloro como el alumbre y un tinte. En el caso del carmín el tinte se obtiene de insectos, concretamente de dos especies de cochinilla: el quermes (Kermes vermilio) y la cochinilla americana (Dactylopius coccus). El carmín proveniente del quermes era conocido en Asia y Europa desde la Antigüedad, pero su uso entró en declive cuando los españoles llegaron a América. Allí vieron que los aztecas empleaban un insecto similar para obtener un producto con el que teñir la ropa y lo empezaron a traer a Europa logrando pingües beneficios. Partiendo de ese tinte se crearon lacas rojas que fueron usadas por los pintores flamencos y tuvieron un gran éxito durante el Renacimiento y el Barroco, ya que eran idóneas para el uso de veladuras (trazos de pintura que dejan ver la pintura inferior). Desde el punto de vista químico, las moléculas que otorgan el color rojizo son similares en ambos insectos y tienen un esqueleto de antraquinona, molécula orgánica que, lógicamente, tiene varios átomos de carbono.
Imagen 9. Caridad (148×107 cm), de Anton van Dyck (1627-8). Fuente: National Gallery
Con C de cocolito
Que el lienzo o la madera son soportes pictóricos tradicionales no sorprenderá a nadie. Mucha gente también sabrá que estos materiales deben de ser “preparados” para su uso. Lo que no es tan conocido es que esa preparación puede contener millones de fósiles diminutos: los cocolitos. Pero, ¿cómo demonios llegan esos fósiles ahí?
La superficie sobre la que trabaja un pintor debe de estar nivelada y ofrecer un brillo y color adecuado. Por eso, sobre el soporte se colocan capas de un aparejo que se solía preparar con cola de conejo y yeso o carbonato cálcico. Posteriormente se añade una última capa de preparación, conocida como imprimación, que puede estar elaborada al óleo y tener cierto color (por ejemplo, Velázquez solía usar una rojiza). En cualquier caso, los fósiles que nos ocupan están relacionados con el carbonato cálcico de la preparación. Si antes hablábamos del origen mineral de este compuesto, ahora nos toca hablar del origen orgánico. Una fuente muy habitual de carbonato cálcico es la creta, roca que, además de dar nombre al Periodo Cretácico, se forma por la acumulación de residuos de unas algas denominadas cocolitóforos. Estas algas unicelulares poseen un exoesqueleto de placas de carbonato cálcico que con el paso de los siglos se acumulan en zonas marinas hasta crear formaciones rocosas de gran tamaño. Del mar al lienzo.
Imagen 10. Fotografía de microscopio electrónico del cocolito de la Gephyrocapsa oceanica Fuente: Wikimedia Commons.
Con C de colágeno
No, no vamos a hablar del producto que nos venden para mejorar las articulaciones y sirve de bien poco. El colágeno es la proteína que estructura el tejido conjuntivo de los animales y, como ya hemos explicado antes, está formada por aminoácidos. El colágeno, además de su función biológica, nos resulta útil para otros menesteres porque se puede usar como pegamento. Para dicho fin, el colágeno puede extraerse gracias a un proceso de desnaturalización cociendo la piel, tendones y otras partes de animales ricas en esta proteína. Después, el extracto puede solidificarse y volverse a disolver en agua calentada al baño maría para su uso como adhesivo. Así es como se logra la famosa cola de conejo, tan importante históricamente en la preparación de lienzos.
Imagen 11. Cola de conejo de la casa comercial Liberon. Fuente: Wood Finishes Direct.
Con C de concha
Los caparazones de los moluscos marinos siempre han despertado el interés del ser humano con fines decorativos. En muchos casos esta atracción se debe a la presencia de nácar, un material iridiscente y brillante de alto valor estético. Las propiedades ópticas del nácar vienen condicionadas por su estructura y composición química. Al igual que en el fresco y en los cocolitos, el compuesto químico más importante es el carbonato cálcico (en forma de aragonito). En este caso el carbonato cálcico forma pequeñas láminas que se organizan en capas unidas mediante biopolímeros. También conocido como madreperla, el nácar ha sido empleado para realizar joyas y otros ornamentos, pero también ha servido como soporte para obras de arte más elaboradas como las que creo Cornelis Bellekin.
Imagen 12. Concha de ostra tallada con el mito de Andrómeda y Perseo, de Cornelis Bellekin (s. XVII). Fuente: Rijksmuseum.
Con C de cuero
A los soportes pictóricos previamente mencionados se les puede añadir, entre otros, el papiro o el cuero. Estos dos soportes conectan históricamente a dos grandes urbes de la antigüedad: Alejandría y Pérgamo. Los egipcios eran grandes productores de papiro, obtenido de la planta homónima que abundaba en el Delta del Nilo. Los de Asia Menor, en cambio, se especializaron en elaborar pergamino, material al cual cedieron su nombre. El pergamino, tan empleado en los manuscritos medievales, está elaborado con piel de animales como novillos, cabras u ovejas; al igual que el cuero, aunque este último está curtido. La parte de la piel más útil para producir pergaminos es la dermis reticular, rica en proteínas como el colágeno del que ya hemos hablado o la elastina. Dentro de la oferta de pergaminos, existía un producto de una calidad superior, extraordinariamente delgado y reservado para los códices más valiosos: la vitela. Supuestamente este material se obtenía de la vitela uterina, que no sería otra cosa que la piel de animales mortinatos o neonatos. Si esta forma de lograr soportes para hacer códices os causa desasosiego, podéis estar tranquilos: los estudios realizados sobre biblias medievales apuntan a que se trata de una falsa creencia. Además, el número de animales que se debería de haber sacrificado para cubrir la demanda hubiese sido imposible de satisfacer.
Imagen 13. Natividad en Las muy ricas horas del Duque de Berry, de los hermanos Limbourg (1411-1416). Fuente: Wikimedia Commons.Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.
El artículo La tabla periódica en el Arte: Carbono se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Que puede aportar (y qué no) la neurociencia a la educación?
Érase una vez… en el País Vasco, un congreso tan oportuno y tan útil, y tan bien recibido en Bilbao y en Donostia-San Sebastián, que muchos pensaron que tenía que viajar a más lugares. Así que la Cátedra de Cultura Científica y la Fundación Promaestro se pusiron de acuerdo y, con la ayuda de EduCaixa, lo llevaron a Madrid: casi un centenar de personas con espíritu crítico y bien informadas llenaron el pasado 2 de abril la modesta y acogedora sala de CaixaForum en la que se celebró.
Así como toda (buena) historia tiene un (buen) principio, toda (buena) práctica tiene un (buen) fundamento. Un fundamento, una justificación, una razón, una prueba. Lo más importante es que nuestras prácticas educativas estén sostenidas por evidencias científicas. Su nombre da igual. Da igual, ¿o no?
“Que algo lleve el prefijo «neuro» no significa que contenga más verdad, pero –apostilla el profesor Juan Lupiáñez en su ponencia– la neurociencia le presta estatus a la psicología”. Sorprendentemente, aportaciones teóricas ya clásicas de la psicología son tenidas más en cuenta por el público cuando provienen de la neurociencia. El catedrático de la Universidad de Granada presenta estudios que demuestran que la gente comprende y recuerda mejor aquellos datos y teorías en los que aparecen términos e imágenes relacionadas con el cerebro.
Es decir, que las palabras también importan y, precisamente por eso, tenemos que ser especialmente cuidadosos con ellas y evitar que nos obnubilen: ¿Cuántos siguen creyendo en neuromitos, en el brain gym y en la teoría del cerebro derecho e izquierdo, por ejemplo? ¿Cuántos hablan de educar al cerebro y olvidan que el objetivo de la escuela es educar a la persona? Entender el cerebro, repite el ponente, “es mucho más complicado que entender el comportamiento, que ya es complicado”, y además “éste no es una máquina: no podemos cambiar sus conexiones como cambiamos las bujías de un coche”.
Es muy recomendable escuchar a los neurocientíficos –afirma en su conclusión Lupiáñez– pero, en lo que se refiere a evidencias educativas, “siempre es mejor ampliar su búsqueda más allá de un solo campo”.
Edición realizada por César Tomé López a partir de materiales suministrados por Fundación Promaestro
El artículo ¿Que puede aportar (y qué no) la neurociencia a la educación? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Cómo conservar mejor los alimentos con una iluminación inteligente
Raquel Esteban, José Ignacio García Plazaola y Víctor Resco de Dios
Ernest Brillo / UnsplashEl otoño ha dejado paso al invierno. Y con él, se van los colores propios de la estación que hemos despedido: el verde que cubría a los árboles de hoja caduca se transforma en un abanico de colores, que va desde el ocre hasta el naranja.
Los pigmentos responsables de estos colores son imprescindibles para la salud humana. Además, la calidad de los alimentos está relacionada con la preservación de estos compuestos y, por lo tanto, conocer su funcionamiento ayuda a disminuir el desperdicio de alimentos.
A través de las nuevas tecnologías podemos lograr mejoras sustanciales en dos aspectos: la calidad nutricional y la preservación de los vegetales vegetales.
Los pigmentos de las plantas, nuestras vitaminas
Tanto el color verde como la gama de colores típicamente otoñales se deben a las propiedades físico-químicas de los pigmentos de las hojas:
- Las clorofilas son los pigmentos responsables de los tonos verdes.
- Los carotenoides de los colores amarillo-naranja.
Estos pigmentos son clave en el funcionamiento y la supervivencia vegetal. Participan en procesos tan importantes como la fotosíntesis y la tolerancia a las condiciones adversas.
¿Recuerda cuando su abuela le decía que comiera zanahorias para preservar la vista? Pues llevaba parte de razón. Los carotenoides son imprescindibles para la vista.
El beta caroteno, el mayoritario de la zanahoria, es la provitamina A, que forma parte de la retina de los ojos. Los amarillos como la luteína y la zeaxantina están en la mácula y son los responsables de disipar las especies reactivas de oxigeno de nuestros ojos
Además, debido a sus propiedades antioxidantes, estos pigmentos aportan otros beneficios a la salud, como la mejora de la capacidad cognitiva y la prevención de enfermedades degenerativas.
Al ser los humanos incapaces de sintetizar carotenoides, los debemos incorporar en la dieta mediante la ingesta de frutas, verduras y legumbres, principalmente. Forman parte de las vitaminas.
Las zanahorias contienen carotenoides beneficiosos para la vista.Voltamax/Pixabay
Así cambia el valor nutritivo de los vegetales
Una cualidad que define a las plantas es que, aunque las cosechemos, siguen vivas. Es decir, continúan realizando procesos fisiológicos como la fotosíntesis y la respiración.
Todos los vegetales que vemos en los expositores de los supermercados están vivos. Esto se debe a la característica modular de sus órganos y a su habilidad para mantener una autonomía fisiológica.
Aunque aparentemente estén inactivos, en realidad su maquinaria está completamente activa. Responden a las condiciones ambientales que se dan desde que se recolectan hasta que acaban en la nevera de nuestros hogares.
El contenido de carotenoides y, por lo tanto, de las vitaminas o compuestos antioxidantes, es muy variable. Va a responder a las condiciones a las que están expuestos los productos, aumentando o disminuyendo su concentración.
Dicho de otra forma: el contenido nutricional de un vegetal (basándonos en el contenido de carotenoides) varía a lo largo del día.
Por ejemplo, el carotenoide zeaxantina –relacionado, junto con la luteína, con la disminución del riesgo de padecer degeneración macular asociada a la edad– presenta valores máximos durante el día y mínimos por la noche.
El papel de los frigoríficos
Los frigoríficos, ya sea en nuestra casa, o en un supermercado, suelen mantener los alimentos bajo condiciones de oscuridad continua o de luz continua.
En los hogares, por ejemplo, suele suceder lo primero: el vegetal no ve la luz, salvo por los pocos segundos en los que abrimos la puerta. En muchos supermercados, sin embargo, la iluminación es continua y el producto en el expositor nunca experimenta la oscuridad.
En los supermercados, los vegetales se conservan en condiciones de luz.Matheus Cenali/Pexels
Nuestros estudios indican que guardar las verduras bajo estas condiciones tan extremas de luz acorta su vida.
Los carotenoides y demás pigmentos foliares se degradan más rápidamente bajo estos ritmos de luz artificial, lo que provoca cambios visuales (cambios de color en las hojas de verde a amarillento). Disminuye la calidad de los alimentos y hace que se desperdicien con más facilidad.
Si incorporamos ciclos de luz/oscuridad en los sistemas de refrigeración, de forma que reproduzcamos los ciclos de día/noche que el vegetal experimenta cuando crece en el campo, lograremos mejoras sustanciales en la preservación de los alimentos.
Medir los contenidos de carotenoides
Para entender mejor el valor nutricional de los vegetales, y para mejorar su preservación, necesitamos cuantificar cuántos carotenoides y clorofilas tienen los alimentos que comemos.
La técnica más precisa, pero a la vez costosa, de cuantificación es el análisis mediante cromatografía en un laboratorio. Este es un procedimiento caro y complejo.
Una alternativa mucho más sencilla es el uso de técnicas basadas en al análisis de la reflectancia de la luz. Consisten en evaluar la cantidad de cada tipo de luz reflejada por la superficie del alimento en cuestión, es decir, en cuantificar el color. Este será proporcional a su contenido de pigmentos.
Estos métodos no son tan precisos, pero sí más económicos. Solo se necesita el aparato de medición y generalmente existe en versión portátil.
En una investigación reciente, hemos aplicado estas técnicas en una simulación de un ambiente de supermercado. Hemos conseguido determinar el contenido aproximado de los carotenoides a partir de la medida de sus características ópticas. Este hecho abre una interesante línea para el futuro y nos dirige hacia los supermercados 2.0.
En un futuro cercano será posible medir los antioxidantes de nuestros alimentos tan solo apretando un botón. Incluso, la tecnología de los supermercados podría incluir drones con sensores que nos indiquen el valor aproximado de esos compuestos.
Sobre los autores: Raquel Esteban y José Ignacio García Plazaola son profesores de fisiología vegetal en la Universidad del País Vasco / Euskal Herriko Unibertsitatea y Víctor Resco de Dios es profesor de incendios forestales y cambio global en la Universitat de Lleida.
Este artículo fue publicado originalmente en The Conversation. Artículo Original.
El artículo Cómo conservar mejor los alimentos con una iluminación inteligente se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Y si la bolsa de plástico fuese más sostenible que las de papel o algodón?
Las bolsas de plástico son las que peor reputación tienen. Esto sucede porque a menudo se juzga la sostenibilidad de las bolsas y su impacto medioambiental solo en función de si el material es fácilmente biodegradable. Sale ganando la bolsa de papel porque imaginamos que, si la tirásemos en el monte o al mar, se biodegradaría en poco tiempo. Sin embargo, este análisis es superficial e incompleto. No se está teniendo el cuenta el ciclo de vida de la bolsa: qué impacto medioambiental tiene su fabricación, cuánta energía se usa en su producción y transporte, cómo se conserva, si se reutiliza, cuánto tiempo de vida útil tiene…
Todos estos parámetros se han analizado científicamente y, para sorpresa de muchos, las bolsas de algodón y de papel no salen mejor paradas que las de plástico.
El análisis de ciclo de vida, ACV (LCA en inglés) es un balance ecológico con el que se evalúa el impacto ambiental de un producto durante todas las etapas de su existencia, desde la extracción de materias primas, la producción, la distribución, el uso, la posible reutilización, el reciclaje, la valorización y la gestión de residuos.
Las bolsas de plástico de polietileno surgieron en los años 60 como una alternativa sostenible a las bolsas de papel que se usaban tradicionalmente. El coste energético de fabricación es irrisorio en comparación con el papel, se usa una fracción residual de petróleo que no es útil como combustible, no implica tala de árboles, es más resistente y pesa diez veces menos que el papel, por lo que la huella de carbono derivada del transporte también se reduce diez veces. Todo parecían ventajas. Lo que no se esperaba es que se usasen de forma tan irresponsable.
Cada persona gasta de media 180 bolsas de plástico al año. En 2008 la media en España era de 300 bolsas por habitante y año, dato que se ha reducido más del 60% gracias a la reutilización, principalmente animada por campañas de concienciación medioambiental y por el cobro obligatorio de las bolsas.
El plástico es un material inerte y duradero, lo que en principio es ventajoso. Pero la realidad es que el 80% de los residuos que llegan al mar son plásticos. Cada año llegan al mar unos ocho millones de toneladas de plástico. China, Indonesia y Filipinas encabezan la clasificación de los países que más cantidad arrojan, y los 20 primeros –todos en Asia y África, excepto Estados Unidos y Brasil– son responsables del 83% del plástico mal gestionado que puede acabar en el mar. De todo el plástico que llega al mar, el 1,5% se ha convertido en microplásticos, se ha ido fragmentando hasta transformarse en pedazos tan pequeños que son muy difíciles de eliminar.
El plástico llega al mar porque no se está reciclando ni destruyendo como es debido. En España solo el 66,5% del plástico se recicla y el 12% se incinera para obtener energía.
Con respecto al la influencia sobre el cambio climático podemos hacer un cálculo que nos permite saber la cantidad de CO2 emitido por el uso de bolsas de plástico, incluyendo su incineración. Una bolsa de plástico tiene una masa de entre 4 y 8 g. Cada persona gasta unas 180 bolsas de plástico al año, mayoritariamente de polietileno. Haciendo los cálculos estequiométricos, el uso de bolsas de plástico supone un aporte de 340 g de CO2 al año por individuo. En comparación con el transporte esto es muy poco: desplazarse en coche sólo 3 o 4 km (dependiendo del modelo) también produce 340 g de CO2.
Fábrica de pasta de celulosa en Finlandia. Fuente: Wikimedia CommonsHaciendo el análisis del ciclo de vida (ACV) de las bolsas de plástico convencionales comparadas con las de papel, sale ganado ampliamente la bolsa de plástico. La producción y consumo de papel tienen un fuerte impacto ambiental y social sobre el planeta. La industria papelera y de celulosa ocupa el quinto lugar del sector industrial en consumo mundial de energía, y utiliza más agua por cada tonelada producida que cualquier otra industria. También, la industria papelera se encuentra entre los mayores generadores de contaminantes del aire y del agua, así como gases de efecto invernadero responsables del cambio climático. Tendríamos que reutilizar la bolsa de papel tres veces para que su impacto medioambiental sea equivalente al de una bolsa de plástico convencional. Es decir, usar y tirar una bolsa de plástico tiene un impacto medioambiental tres veces menor que hacerlo con una de papel. Si además reutilizamos la bolsa de plástico una sola vez, aunque solo sea para contener basura, el impacto será 6 veces menor que el de la bolsa de papel.
Si analizamos el ciclo de vida (ACV) de las bolsas de algodón, su impacto medioambiental es el más dañino de todos. El algodón se cultiva de forma intensiva, necesita de mucho terreno, un importante gasto energético y su transformación en tejido emite, entre otras sustancias nocivas, gases de efecto invernadero. Producir 1 kg de tejido de algodón requiere más de 40.000 litros de agua en promedio, una sed mucho mayor que la de cualquier vegetal e incluso la mayoría de las carnes. A diferencia del papel, también hay que tener en cuenta que el algodón no se recicla en la mayoría de los países.
Cosecha y empaquetamiento sobre el terreno de algodón en Texas (EE.UU.). Fuente: Wikimedia CommonsA esto hay que añadir que las bolsas de algodón son la opción menos higiénica. El algodón es un material que puede ser colonizado por microorganismos patógenos, por lo que no debería ponerse en contacto directo con alimentos, y debería lavarse con la misma asiduidad y a la misma temperatura que los trapos de cocina. El gasto energético y el impacto medioambiental derivado de su uso es sustancial.
En comparación, una bolsa de algodón habría que utilizarla 131 veces para que su impacto medioambiental fuese equiparable al de la bolsa de plástico convencional.
La única forma en la que una bolsa de tela es más sostenible que una de papel es usándola muchas veces a lo largo de mucho tiempo. Y tener dos o tres bolsas de algodón, no decenas. Lo mismo podría decirse de las bolsas de papel. Sin embargo, las bolsas de papel no resisten tantas reutilizaciones, principalmente porque se contaminan, no son lavables y se descomponen con la humedad.
Analizando toda la evidencia científica de la que disponemos, las bolsas de plástico son la opción más sostenible. Si además las reutilizamos y las llevamos al contenedor adecuado (en España es el contenedor amarillo), el impacto medioambiental será todavía menor. En la actualidad ya hay superficies comerciales en las que ofrecen bolsas reutilizables de plástico de poliéster para frutas y verduras, más sostenibles que las habituales de polietileno de baja densidad.
Bolsa de plástico de poliéster. Foto: Deborah García Bello
La opción más sostenible de todas es la que engloba las bondades del plástico y las del uso responsable que solemos hacer con las de algodón, que se prestan a un mayor número de reutilizaciones. Las bolsas de rafia, por ejemplo, que son un tejido de plástico de polietileno y propileno, son muy resistentes, estéticas e higiénicas. También lo son las de poliéster, como la «puto plástico» de la foto que, irónicamente también es de plástico.
Fuentes:
Lewis, H., Verghese, K., & Fitzpatrick, L. (2010). Evaluating the sustainability impacts of packaging: the plastic carry bag dilemma. Packaging Technology and Science: An International Journal, 23(3), 145-160.
Edwards, C., & Fry, J. M. (2011). Life cycle assessment of supermarket carrier bags. Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH.
Bell, K., & Cave, S. (2015). Comparison of Environmental Impact of Plastic, Paper and Cloth Bags. Research and Library Service Briefing Note, Northern Ireland Assembly
Interim Review os the Plastic Shopping Bags Ban. ACT Government. 2012.
Hyder Consulting, LCA of shopping bag alternatives: Final report, Zero Waste South Australia, August 2009, p.3
Daniel Montoya. Plastic bags: an update. NSW Parliamentary Research Service April 2013
The Danish Environmental Protection Agency (2018). Life Cycle Assessment of grocery carrier bags.
Brian Halweil y Lisa Mastny. Informe anual del Worldwatch Institute sobre progreso hacia una sociedad sostenible. Ed. Icaria, Noruega, 2004.
Advancing Sustainable Materials Management: 25Fact Sheet Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States July 2018
Sobre la autora: Déborah García Bello es química y divulgadora científica
El artículo ¿Y si la bolsa de plástico fuese más sostenible que las de papel o algodón? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Composición nº1, la historia de X gobernada por el azar
Una tirada de dados jamás abolirá el azar.
Stéphane Mallarmé
Un Coup de Dés jamais n’abolira le Hasard –Una tirada de dados jamás abolirá el azar– es el título de un poema de Stéphane Mallarmé (1842-1898) publicado en 1897. Compuesto en forma de versos libres, es uno de los primeros poemas tipográficos de la literatura francesa.
El título de este poema, junto a su autor, aparece en el colofón del libro Composición n01 de Marc Saporta (1923-2009) en su traducción al castellano publicada por la editorial Capitán Swing en 2012. La primera versión, en francés, fue publicada en 1962 por la editorial Le Seuil.
Composición n01 es una novela compuesta por 150 hojas no encuadernadas, no numeradas, escritas por una única cara e introducidas al azar en una caja.
Foto: Marta Macho Stadler.
En el prefacio, el autor explica las ‘instrucciones de uso’ de su novela y proporciona algunas claves sobre la lectura:
Se ruega al lector que mezcle estas páginas como una baraja. Que las corte, si lo desea, con la mano izquierda, igual que una echadora de cartas. El orden en el que salgan las hojas después de hacerlo orientará el destino de X.
Porque el tiempo y el orden de los acontecimientos regulan la vida más que la naturaleza de estos acontecimientos. Sin duda, la Historia impone un marco: la pertenencia de un hombre al maquis y su paso por las tropas de ocupación en Alemania pertenecen a una época determinada. Asimismo, los hechos que marcaron su infancia no pueden presentarse como vividos en la edad adulta.
No obstante, no es indiferente saber si conoció a su amante, Dagmar, antes o después de su matrimonio; si abusó de la pequeña Helga durante su adolescencia o su madurez; si el robo que cometió tuvo lugar bajo el abrigo de la Resistencia o en tiempos menos turbulentos; si el accidente del que fue víctima carece de relación con el robo (o la violación) o si tuvo lugar durante la huida.
Del encadenamiento de las circunstancias depende que la historia acabe bien o mal. Una vida se compone de elementos múltiples. Pero el número de composiciones posibles es infinito.
El libro de Saporta ‘cuenta’ una historia de un personaje misterioso. Una, y no la historia, porque el relato transcurre dependiendo del orden en el que se colocan las hojas tras barajarlas, como indica el autor en el prefacio. Cada página corresponde a un episodio procedente de los recuerdos del personaje X. Este narrador aparece como un ladrón y un violador. De hecho, dos de las páginas de Composición n01 se dedican a citar algunos artículos –entiendo que eran los que estaban vigentes en Francia cuando Saporta publicó su texto, en 1962– relativos a los delitos de robo y violación.
Al recorrer las páginas de esta singular novela, la historia va incorporando diferentes personajes, algunos de los cuales son recurrentes: Marianne –la esposa de X–, Dagmar –su amante– o Helga –una joven a la que X viola– aparecen en numerosas ocasiones, mientras que otros personajes solo son citados en una de las páginas. Cada una de las hojas corresponde a un marco espacio-temporal que cambia continuamente. El lugar elegido –una ciudad ocupada por el ejército alemán, el patio de una escuela o el apartamento de alguno de los personajes– depende de lo que el azar dispone tras barajar las páginas del libro.
Aunque pienses que estoy intentando ‘destripar’ la versión de Composición n01 que he leído, no pasa nada; es bastante improbable que, tras barajar las páginas del libro, la versión que tú vas a leer sea la misma que la mía…
Foto: Marta Macho Stadler.
El prefacio de Marc Saporta termina con la frase: Pero el número de composiciones posibles es infinito. En realidad, Composición n01 no contiene infinitas versiones de la historia de X. Aunque es cierto que contiene muchas. De hecho, al haber 150 páginas que pueden ordenarse de manera aleatoria, el número de novelas distintas que podemos leer es la factorial de 150 –son las permutaciones sin repetición de 150 elementos–.
Para hacernos una idea de esa cantidad de versiones, el factorial de 150 es el número:
57133839564458545904789328652610540031895535786011264182548375833179829124845398393126574488675311145377107878746854204162666250198684504466355949195922066574942592095735778929325357290444962472405416790722118445437122269675520000000000000000000000000000000000000,
número que está formado por 263 cifras y finaliza con 37 ceros. Redondeando, el factorial de 150 es aproximadamente 5,7 x 10262. Y, efectivamente, es un número muy, muy grande… pero no infinito.
Referencias
-
Una tirada de dados jamás abolirá el azar de Stéphane Mallarmé (Una propuesta estético-filosófica de Juan David García Bacca, incluida en su obra «Necesidad y Azar. Parménides y Mallarmé», Editorial Antrophos, Barcelona, 1985), Revista aesthethika 12 (2), septiembre 2016. Caos e invención, pág. 53-54
-
Marc Saporta, Composición no1, Capitán Swing, 2012
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo Composición nº1, la historia de X gobernada por el azar se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: