Cuaderno de Cultura Científica jarioa-rako harpidetza egin
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Eguneratua: duela 5 min

Preparados para matar: algunas ideas para el debate

Al, 2017-02-13 17:00

La propia aplicación del pensamiento de Darwin a los problemas humanos… ilumina éstos de una forma que había sido siempre eludida en los planteamientos tradicionales, reconsiderando antiguos problemas y apuntando a su solución.”

Daniel Dennett, La peligrosa idea de Darwin, 1999 (1996).

Esta serie de textos tratará de matar y de su sustrato biológico y evolutivo. Tratará del homicidio, el asesinato y la ejecución. Y, siempre, quien esto escribe y quienes me lean no deben olvidar que la presentación de hipótesis y teorías, incluso de hechos, está afectada significativamente por la predisposición en cultura, historia e ideología del que presenta y del que recibe el argumento. O sea, en esta serie, sobre todo de mí y de mis circunstancias.

En la película “La batalla de Anzio”, Robert Mitchum es el protagonista e interpreta a un periodista de guerra veterano y cínico. Al final de la película, en una charla con un general destituido, Mitchum dice que “el hombre mata porque le gusta matar”, y siguen varias explicaciones, que no vienen al caso, de su afirmación. Siempre me ha fascinado el hecho de que, según declaramos con mucho énfasis, solo hay que recordar el quinto mandamiento, no debemos matar y, sin embargo, matamos sin cesar. O como aclara la Biblia en Éxodo, 23-7, no quites la vida al inocente y justo; y no absuelvas al malvado”, pues hay que precisar cuando y a quien hay que matar y cuando no hay que hacerlo.

Según escribo estas líneas, decenas de personas están muriendo con violencia en todas las partes del mundo, civilizadas o no, según como se declaran los que allí viven. Pero las personas matan, y han matado, a otras personas en cualquier cultura, en cualquier lugar del planeta y en cualquier tiempo. La cuestión, creo, es por qué lo hacen.

En Estados Unidos hubo 13.636 homicidios en 2009. Cerca de 88 millones de personas murieron como resultado de las guerras del siglo XX en todo el planeta, y 54 millones eran civiles. Entre las tribus de cazadores recolectores, lo más parecido a nuestros antepasados de hace unos miles de años, el 13%, según datos de los arqueólogos, o el 15%, según la etnografía actual, de los hombres mueren en guerras. Incluso entre los yanomano, en la Amazonia, entre el 20% y el 30% de los hombres mueren con violencia.

Son solo algunos datos estadísticos de la cantidad y calidad de la violencia cometida por nuestra especie. Aunque algunas de estas muertes se pueden atribuir al abuso del alcohol o las drogas, a desórdenes mentales y a otras causas parecidas, lo cierto es que la mayor parte de las conductas violentas en nuestra especie no se pueden considerar una aberración sino que son obra de personas consideradas normales. Es lo habitual, algo típico de los humanos, incluyendo asesinatos y guerras.

Harold Shipman

Harold Shipman: El ambicioso médico y la estadística

Harold Frederick Shipman nació Nottingham el 14 de enero de 1946 y murió el 13 de enero de 2004. Era médico generalista y se le considera el mayor asesino en serie de la historia de Inglaterra. Fue juzgado y condenado a 15 cadenas perpetuas el 31 de enero de 2000 por 15 asesinatos. En 2004 se suicidó en su celda de máxima seguridad en la cárcel de Wakefield. Nunca admitió su culpabilidad y, por tanto, nunca explicó a cuántos mató y por qué lo hacía.

Estudió en Nottingham y en la Universidad de Leeds, y fue médico residente en la Facultad de Medicina de Bodington Hall en 1965. Allí conoció a la que sería su mujer, Primrose. Se casaron en 1966 y tuvieron cuatro hijos. Al terminar sus estudios en Leeds, comenzó a ejercer la medicina en el Hospital de Pontefract, cerca de Leeds, y se sospecha que ya entonces comenzaron sus asesinatos. También trabajó para el sistema penitenciario a principios de los setenta y, aunque no está probado, se supone que allí también asesinó a algunos pacientes.

En 1975 fue detenido por posesión de recetas de pethidina para uso propio, y por denuncias de sus colegas médicos. Es un opioide sintético utilizado como analgésico y que se considera que causa menos adicción que la morfina. Después de pasar por un centro de desintoxicación, fue declarado sano y apto para ejercer la medicina de nuevo.

Pasó de un puesto a otro siempre dejando buena impresión, hasta que se estableció en Hyde, cerca de Manchester, en 1977, donde llegó a tener su propia clínica a partir de 1993.

Sospechoso por primera vez en mayo de 1998, fue abandonada la investigación policial por falta de pruebas. Todo comenzó con la visita de la doctora Linda Reynolds, en marzo de 1998, al fiscal John Pollard, del distrito de South Manchester, y le comunicó su preocupación por el alto índice de mortalidad entre los pacientes de Shipman. También le comentó el gran número de cremaciones entre los fallecidos y de, en su gran mayoría, eran mujeres mayores, hasta el 80%. Según el fiscal Pollard, Shipman mataba a sus pacientes, aunque no podía asegurar si era negligencia o asesinato. La policía investigó el asunto, aunque sin mucho interés. Como ya he dicho, se archivó el caso por falta de pruebas un mes después, en abril.

Ya en 1985, Allen Massey, de la funeraria local, hizo notar que los pacientes de Shipman parecían morir a una tasa superior a la habitual y, además, muchos morían vestidos y sentados en su sillón. Por otra parte, tampoco parecía que hubieran estado gravemente enfermos antes de su muerte. Y, además, el doctor Shipman, solía estar presente en el momento de la muerte. Massey se enfrentó a Shipman pero este le convenció de que no había nada raro y que allí estaban sus libros de notas y casos listos para una inspección. Justo enfrente de la clínica de Shipman estaba la Clínica Brooke y los médicos que trabajaban allí también notaron el exceso de muertes entre los pacientes de la clínica de la acera de enfrente. Pero, como con Massey, sus sospechas eran difíciles de probar.

La muerte de su última víctima, Kathleen Grundy, hizo que en junio del mismo año, 1998, se retomara el caso. Vivía en Hyde y era muy conocida pues había sido alcaldesa de la localidad. El día de su muerte, el 24 de junio y con 81 años, la última visita que recibió fue la de su médico, el doctor Shipman, que también firmó su certificado de defunción. En la casilla sobre la causa de la muerte, Shipman puso “por su gran edad”.

La hija de la señora Grundy, la abogada Angela Woodruff, descubrió que su madre había cambiado el testamento y dejaba sus ahorros a Shipman. Por cierto, el testamento, escrito a máquina, se supone que por la señora Grundy, que, por otra parte, no tenía máquina de escribir, estaba mal redactado y peor mecanografiado. Desconfiada, Woodruff fue a la policía y consiguió la exhumación del cadáver de su madre. En el nuevo análisis se encontraron en el cuerpo restos de morfina, una sobredosis administrada unas tres horas antes de su muerte, justo cuando tenía lugar la visita de Shipman. Fue arrestado el 7 de septiembre de 1998 y, en el registro de su casa, se encontró la máquina de escribir que se había utilizado para cambiar el testamento de la señora Grundy.

La policía centró su investigación en 15 de los últimos pacientes fallecidos del doctor Shipman. Se analizaron los cuerpos y en todos se encontraron restos de morfina. Con estos datos, la policía acusó a Shipman y el 5 de octubre de 1999 se inició el juicio.

Uno de los policías que interrogó entonces a Shipman contó que era un tipo arrogante, de trato difícil, que intentaba controlar los interrogatorios y se burlaba de los policías. Lo tomaba como una competición en la que su superior intelecto terminaría victorioso. De todas formas, es curioso que, mientras lo habitual para la policía es tener un asesinato y buscar al asesino, con Shipman primero tuvieron al asesino y, después, tuvieron que buscar los asesinatos.

El 31 de enero de 2000, Shipman fue condenado a 15 cadenas perpetuas, una por cada una de sus víctimas, con la recomendación del juez de que nunca le dejaran en libertad. Nunca confesó ni aceptó su culpabilidad. El 13 de enero de 2004, un día antes de cumplir 58 años, Shipman se suicidó en su celda.

La policía acabó considerando que había matado a 218 de sus pacientes, la mayoría mujeres de edad, con 171, y 47 hombres, aunque algunos expertos aseguraron que sus víctimas podían sobrepasar las 400, desde un mínimo de 76 hasta un máximo de cerca de 1000 muertos. Su víctima más joven, Peter Lewis, tenía 41 años. Estuvo muy unido a su madre que falleció a los 43 años en 1963, en la adolescencia de Shipman, y, además, murió como lo harían sus víctimas: enferma de cáncer, en sus últimos días y para aliviarle el dolor, su médico le administraba morfina en su hogar.

La mayoría de los asesinatos de Shipman siguen el mismo patrón. La rutina es la habitual de un médico de cabecera: responder a una llamada del paciente un día entre semana y por la tarde y, una vez en su casa, inyectarle morfina o heroína. El paciente es encontrado muerto con el doctor presente o una media hora después de que se ha ido. El mecanismo de la muerte es descrito como síncope o colapso y la causa de la muerte, certificada por Shipman, es un ataque al corazón, un derrame cerebral o, simplemente, la edad. Las familias, avisadas por Shipman, aceptan que la muerte se debe a causas naturales y, por consejo del doctor, aceptan incinerar el cadáver.

Después del suicidio, la jueza Janet Smith elaboró un informe exhaustivo de las actividades de Shipman. Llegó a la conclusión de que había asesinado, entre 1975 y 1998, unas 250 personas de las 454 que murieron siendo pacientes suyos. El informe terminaba recomendando cambios en la estructura y funcionamiento de los servicios médicos. Muchos aspectos problemáticos de la práctica médica de Shipman no se habían tenido en cuenta: uso excesivo y fácil de la morfina, patrón de las visitas de Shipman a sus enfermos siendo casi siempre la último visita recibida antes de morir, exceso estadístico de muertes entre las mujeres de edad, demasiadas cremaciones, el uso de drogas, el problema de los médicos que trabajan solos, cómo procesar las denuncias si las hay, la función de los forenses, etc. Había que cambiar muchos de los protocolos de la práctica médica, aunque es curioso que la revisión de la práctica médica en Gran Bretaña la promoviese un asesino en serie.

Hay que cuidar con atención la salud del prójimo pues, no se sabe por qué, la medicina es la profesión con más asesinos en serie, seguida de cerca por la enfermería y por algún que otro odontólogo que podríamos añadir a la lista. En cambio y por lo que sabemos hasta ahora, no se conocen asesinos en serie entre los veterinarios.

Después de la condena, Richard Baker, de la Universidad de Leicester y a petición del Consejo Médico, hizo un estudio del número y patrón de las muertes certificadas por Shipman en sus 24 años de práctica médica, de 1974 a 1998, y comparó los resultados con los de otros médicos. Shipman firmó nueve veces más certificados de defunción que otros médicos de su misma localidad y de otras cercanas. La causa de la muerte “por edad” aparece ocho veces más. La mayoría de sus pacientes mueren entre las 14 y las 16 horas, cuando los de otros médicos mueren a cualquier hora del día. Cuando muere una persona, en el 80.2% de los casos hay algún pariente con él; con Shipman la probabilidad bajaba hasta el 40.1%. Además, mueren más rápido, pues el 60% lo hacen en media hora cuando, con otros médicos, solo el 23% muere en ese tiempo.

Con Shipman de médico de cabecera, el riesgo de muerte súbita era mayor que por tabaquismo. Habitualmente, que un médico esté presente cuando muere su paciente ocurre en un 0.8% de los casos; con Shipman, su presencia llegó al 19.5%. Este estudio de Benker concluye que Shipman mató a 236 pacientes.

Ya ven, es difícil detectar a un asesino en serie médico. Shipman tendría unos 3000 pacientes simultáneamente y la muerte de 15 o 20 de ellos no tiene significancia estadística. Es más, Shipman no fue descubierto por un asesinato sino por el testamento falso de Kathleen Grundy.

Mi formación, mi interés y mis lecturas, ya que nunca he matado a nadie y, por tanto, no tengo experiencia directa en ello, me han llevado a aplicar conceptos de biología evolutiva y, en concreto, de psicología evolutiva para examinar algunas de las funciones de la mente humana que se manifiestan en conductas violentas que pueden llevar a la muerte a otras personas. La hipótesis principal es que la violencia servía a los individuos que necesitaban recursos para la reproducción en aquellos entornos ancestrales y que, para ellos, la violencia supuso una ventaja que se seleccionó en el proceso evolutivo. Y así, como una ventaja evolutiva, ha llegado hasta nosotros.

Son dos los objetivos reproductores que buscaban nuestros antepasados, y nosotros seguimos haciéndolo. En primer lugar, sobrevivir para llegar a reproducirse. Para ello necesitaban alimento, refugio y un entorno seguro. Así, muchos de los conflictos dentro del grupo y entre grupos se debían a la escasez de estos recursos, todos ellos esenciales para la supervivencia. Solo hay que recordar la primera parte de 2001, una odisea en el espacio, de Stanley Kubrick, para comprender esta lucha por la supervivencia, en este caso el agua y la comida.

En segundo lugar, el objetivo es conseguir pareja, un recurso en sí mismo para la reproducción. Para conseguirlo hay varios medios que, además, varían según tiempo y lugar. Por ejemplo, necesitamos un territorio con recursos, aliados para defenderlo, estatus social, armas, objetos fabricados por el hombre como ropa, objetos preciosos naturales o artificiales, adornos, accesorios varios, y, en los últimos siglos, también dinero que, por lo que sabemos, no da la felicidad pero ayuda a conseguir el resto de necesidades a cubrir para tener éxito evolutivo.

Son recursos, muchos de ellos, que no tienen que ver con la supervivencia en sí misma, pero la selección de la pareja también implica tanto el éxito en atraer al otro sexo como la capacidad para asustar a los posibles rivales. Para esto último, para asustar, son las armas y el estatus. Y, en consecuencia, los hombres son más violentos que las mujeres. Además, estos mismos rasgos son atractivos para el otro sexo, para las mujeres, pues así se han seleccionado, durante milenios, ya que los violentos tienen más recursos que ayudarán a la supervivencia de los hijos.

Caín y Abel según el “Speculum Humanae Salvationis”, s. XV

Caín, el hermano de Abel

Génesis 4: 2-14. Biblia de Jerusalén (trad. Jesús Moya)

Volvió a dar a luz, y tuvo a Abel su hermano. Fue Abel pastor de ovejas y Caín labrador. Pasó algún tiempo, y Caín hizo a Yahveh una oblación de los frutos del suelo. También Abel hizo una oblación de los primogénitos de su rebaño, y de la grasa de los mismos. Yahveh miró propicio a Abel y su oblación, mas no miró propicio a Caín y su oblación, por lo cual se irritó Caín en gran manera y se abatió su rostro. Yahveh dijo a Caín: «¿Por qué andas irritado, y por qué se ha abatido tu rostro? ¿No es cierto que si obras bien podrás alzarlo? Mas, si no obras bien, a la puerta está el pecado acechando como fiera que te codicia, y a quien tienes que dominar.»

Caín, dijo a su hermano Abel: «Vamos afuera.» Y cuando estaban en el campo, se lanzó Caín contra su hermano Abel y lo mató.

Yahveh dijo a Caín: «¿Dónde está tu hermano Abel? Contestó: «No sé. ¿Soy yo acaso el guarda de mi hermano?» Replicó Yahveh: «¿Qué has hecho? Se oye la sangre de tu hermano clamar a mí desde el suelo. Pues bien: maldito seas, lejos de este suelo que abrió su boca para recibir de tu mano la sangre de tu hermano. Aunque labres el suelo, no te dará más su fruto. Vagabundo y errante serás en la tierra.» Entonces dijo Caín a Yahveh: «Mi culpa es demasiado grande para soportarla. Es decir que hoy me echas de este suelo y he de esconderme de tu presencia, convertido en vagabundo errante por la tierra, y cualquiera que me encuentre me matará.»

En conclusión, la violencia, seleccionada para conseguir recursos y la reproducción, es, sobre todo, de hombres jóvenes contra hombres jóvenes, y el hecho de que las mujeres encuentren atractivos como pareja a hombres dominantes y agresivos y, por tanto con recursos, sugiere que, en último término, han sido ambos sexos, y no solo los hombres, los que han contribuido a la evolución de la violencia en nuestra especie.

En la base de las diferencias entre los sexos en relación con la violencia está que sus objetivos son diferentes en la reproducción. El hombre compite con otros hombres para tener acceso sexual con cuantas más mujeres mejor y conseguir así difundir sus genes lo más posible a las siguientes generaciones. Pero, además, el hombre debe dedicar recursos a su pareja durante el embarazo, la lactancia y, en general, el desarrollo de sus hijos. Su objetivo es llegar a más mujeres pero, también, a conseguir que los hijos, con sus genes, salgan adelante.

Las mujeres, en cambio, no desperdician sus recursos en disputas por los hombres. Dedican todo su interés a encontrar una pareja con gran valor reproductor, es decir, joven y sano, y que contribuya al cuidado y crecimiento de los hijos, o sea, con recursos. Mientras los hombres tienden a buscar parejas a corto plazo, las mujeres las buscan a largo plazo con el objetivo de cuidar durante mucho tiempo a los hijos.

Sin embargo, no hay que olvidar que el entorno en que vivieron nuestros antepasados fue distinto al que tiene la humanidad actual y, quizá, lo que entonces seleccionó estas conductas relacionadas con la violencia, no sea válido en la actualidad. Como ejemplo sirve el hecho indiscutible de que en nuestra cultura matar no es moralmente defendible excepto en situaciones muy concretas. Tampoco podemos olvidar que seguimos teniendo ejércitos o, en muchos países, pena de muerte.

Una de las conductas violentas más típicas de nuestra especie es la guerra, o sea, el enfrentamiento violento y, si se puede decir así, oficial entre grupos humanos. Por tanto, para que exista guerra debe haber grupos humanos y, para que haya grupos, debe existir algún tipo de conducta de cooperación y empatía entre individuos. Sin previa cooperación, no puede haber guerra posterior, como mucho serán combates individuales. Además, hay que destacar que, quizá, la única manera de controlar e, incluso, acabar con la violencia entre personas es desarrollar las conductas de cooperación, empatía y altruismo. Como ven, violencia y cooperación, ambas conductas seleccionadas por el proceso evolutivo, forman parte del mismo comportamiento en nuestra especie.

En fin, más que debatir qué rasgos violentos son adaptaciones biológicas y cuales no lo son, propongo que todos los actos de violencia física o sexual tienen una historia evolutiva asociada con la adquisición de recursos. Aunque, como pasa en los procesos evolutivos, muchos rasgos violentos seleccionados por la evolución pueden ser seleccionados y recombinados para cumplir nuevos propósitos.

Referencias:

Baker, R., D.R. Jones & P. Goldblatt. 2003. Monitoring mortality rates in general practice after Shipman. British Medical Journal 326: 274-276.

Baumeister, R.F. 2001. Raíces de la violencia. Investigación y Ciencia junio.

Buss, D.M. 2005. The murdered next door: Why the mind is designed to kill. Penguin Books. New York. 288 pp.

Buss, D.M. 2012. The evolutionary psychology of crime. Journal of Theoretical and Philosophical Criminology Special Edition January: 90-98.

Buss, D.M. 2013. The science of human mating strategies: An historical perspective. Psychological Inquiry 24: 171-177.

Duntley, J.D. & D.M. Buss. 2004. The plausability of adaptations for homicide. En “The structure of the innate mind”. Ed. por P. Carruthers, S. Laurence & S. Stich. Oxford University Press. New York.

Duntley, J.D. & D.M. Buss. 2011. Homicide adaptations. Aggression and Violent Behavior 16: 399-410.

Ferguson, R.B. 2003. The birth of war. Natural History July/August: 27-35.

Frankel, S., J. Sterne & G.D. Smith. 2000. Mortality variations as a measure of general practitioner performance: implications of the Shipman case. British Medical Journal 320: 489.

García, J.E. 2015. El comportamiento criminal desde un punto evolucionista. Persona 18: 27-46.

Guthrie, B., T. Love, R. Kaye, M. MacLeod & J. Chalmers. 2008. Routiny mortality monitoring for detecting mass murder in UK general practice: test of effectiveness using modelling. British Journal of General Practice May: 311-317.

Jackson, T. & R. Smith. 2004. Obituaries: Harold Shipman. A general practitioner and murderer. British Medical Journal 328: 231.

Kinnell, H.G. 2000. Serial homicide by doctors: Shipman in perspective. British Medical Journal 321: 1594-1597.

Liddle, J.R., T.K. Shackelford & V.A. Weekes-Shackelford. 2012. Why can’t we all just get along? Evolutionary perspectives on violence, homicide, and war. Review of General Psychology 16: 24-36.

Morrall, P. 2006. Murder and society. John Wiley & Sons. Chichester. 214 pp.

Pringue, M. 2000. The Shipman inquiry: implications for the public’s trust in doctors. British Journal of General Practice May: 355-356.

Winter, D.A. 2016. Construing homicide. En “The Wiley handbook of personal construct psychology”, p. 416-425. Ed. Por D.A. Winter & N. Reed. John Wiley & Sons. New York.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Preparados para matar: algunas ideas para el debate se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Preparados para una Catástrofe Ultravioleta
  2. Ciencia, creencias, política y matar al mensajero
  3. La unidad de selección en la evolución y el origen del altruismo (9): Algunas propuestas unificadoras
Kategoriak: Zientzia

El papel de las nanopartículas lipídicas en terapia génica

Al, 2017-02-13 11:59

Se han cumplido 25 años desde la publicación del primer trabajo sobre nanopartículas sólidas lipídicas (SLN) y transportadores lipídicos nanoestructurados (NLC) como sistemas de administración de fármacos. Con tal motivo, la revista European Journal of Pharmaceutics and Biopharmaceutics ha preparado un número especial para el que pidió hacer un trabajo de revisión sobre la aplicación de SLN y NLC en terapia génica al grupo de investigación PharmaNanoGene, de la Universidad del País Vasco/Euskal Herriko Unibertsitatea, una autoridad internacional en este campo de investigación.

De izquierda a derecha, María Ángeles Solinís, Ana del Pozo y Alicia Rodríguez. Foto: Nuria González (UPV/EHU)

Las nanopartículas lipídicas (SLN y NLC) se consideran unos sistemas muy prometedores para la administración de ácidos nucleicos en terapia génica. Hasta ahora, los sistemas virales de administración de material genético han resultado ser más eficaces, pero presentan importantes problemas de seguridad. “Los vectores no virales, entre los que se encuentran las SLN y NLC, son menos eficaces pero mucho más seguros, aunque su eficacia ha aumentado significativamente en los últimos años”, comentan Alicia Rodríguez, María Ángeles Solinís y Ana del Pozo, autoras del artículo.

En éste se describen estos sistemas así como sus principales ventajas para terapia génica, como son la capacidad de protección del material genético frente a la degradación, facilitar la internalización celular y nuclear, y favorecer el proceso de transfección. “Además, las nanopartículas están formadas por materiales biocompatibles y biodegradables, son fáciles de producir a gran escala, se pueden esterilizar y liofilizar, y presentan una alta estabilidad, tanto en fluidos biológicos como durante el almacenamiento”, explican las investigadoras.

Nanopartículas lipídicas.

Esta revisión también incluye las principales enfermedades en las que se están aplicando nanopartículas lipídicas, generalmente a nivel preclínico: enfermedades degenerativas de la retina, enfermedades infecciosas, enfermedades metabólicas y cáncer, entre otras. “En PharmaNanoGene trabajamos en el diseño y evaluación de SLN para el tratamiento mediante terapia génica de algunas de esas enfermedades. Estudiamos la relación entre factores de la formulación con los procesos de internalización y disposición intracelular del material genético, que condicionan la eficacia de los vectores, y que es fundamental en el proceso de optimización, y por primera vez demostramos la capacidad de las SLNs para inducir la síntesis de una proteína tras su administración endovenosa a ratones”, resaltan.

En la publicación se incluyen también otros trabajos de este grupo de investigación de la UPV/EHU sobre la aplicación de las SLNs en el tratamiento de enfermedades raras, como la retinosquisis juvenil ligada al cromosoma X, enfermedad en la que la retina está desestructurada debido a la deficiencia de la proteína retinosquisina. “Entre los principales logros de nuestros estudios en este campo se encuentra el demostrar, también por primera vez, la capacidad de un vector no viral para transfectar la retina de animales deficientes en el gen que codifica para la citada proteína y restaurar parcialmente su estructura, mostrando que la terapia génica no viral es una herramienta terapéutica factible y prometedora para el tratamiento de las enfermedades degenerativas de retina”, detallan las investigadoras.

Además, en PharmaNanoGene también han estudiado la aplicación de las SLN para el tratamiento de la enfermedad de Fabry, una alteración metabólica, multisistémica y grave, de carácter hereditario. “Se trata de una enfermedad monogénica, ligada al cromosoma X, que se produce por diversas mutaciones en el gen que codifica la enzima α-galactosidasa A (α-Gal A). En modelos celulares de esta enfermedad, hemos demostrado la capacidad de las SLN para inducir la síntesis de la α-Gal A”. También han revisado la aplicación de las nanopartículas lipídicas al tratamiento de enfermedades infecciosas: “nuestros trabajos en este campo muestran cómo las SLN con ARN de interferencia son capaces de inhibir in vitro un replicón del virus de la hepatitis C, lo que sirvió como prueba de concepto de la utilidad de los vectores basados en SLN como una nueva estrategia terapéutica para el tratamiento de esta infección y otras relacionadas”.

Referencia:

Del Pozo-Rodríguez, A., Solinis, M.A., Rodríguez Gascón, A.. Applications of lipid nanoparticles in gene therapy. European Journal of Pharmaceutics and Biopharmaceutics. Volume 109, December 2016, Pages 184-193. DOI: 10.1016/j.ejpb.2016.10.016.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo El papel de las nanopartículas lipídicas en terapia génica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Nanopartículas lipídicas como vectores en terapia génica
  2. Nanopartículas de oligoquitosano para terapia génica
  3. Nanopartículas de hierro contra el lindano
Kategoriak: Zientzia

La ciencia al rescate del país

Ig, 2017-02-12 11:59

Acción de la Compañía Guipuzcoana de Caracas, s. XVIII

A mediados del siglo XVIII la estructura económica del País Vasco, y especialmente en los territorios de Gipuzkoa y Bizkaia, comenzó a dar síntomas de agotamiento. La agricultura, que gracias a la introducción del maíz había florecido, dejó de expandirse. Las ferrerías habían vivido una primera mitad de siglo esperanzador pero en la segunda mitad del mismo a duras penas pudieron hacer frente a la competencia del hierro sueco e inglés. Algo parecido podemos decir del comercio: la Compañía Guipuzcoana de Caracas, que tenía el monopolio del comercio con esa urbe y su Hinterland, conoció una primera mitad de siglo esplendoroso pero a mediados de la centuria entró en crisis y sus actividades se paralizaron durante unos años. Cuando echo de nuevo a andar no consiguió los resultados de antaño.

Una élite perteneciente a algunas de las familias más poderosas de los territorios vascos fue plenamente consciente de la situación arriba descrita y se propuso reformar la economía para evitar una crisis profunda. Hablamos, por citar los casos más conocidos, de Xabier María de Munibe (VIII Conde de Peñaflorida), Joaquín de Eguía (Marqués de Narros), Manuel Ignacio de Altuna o Miguel José de Olaso. Muchos miembros pertenecientes a esta élite habían cursado sus estudios superiores en el extranjero, con lo cual conocieron y aceptaron tanto la corriente de pensamiento predominante en el continente, la Ilustración, como la física newtoniana. También tuvieron noticia del quehacer de las numerosas sociedades agrícolas y academias económicas que trabajaban en distintas zonas de Europa fomentando el progreso y la modernización de la industria y de la agricultura.

En 1763 varios caballeros gipuzkoanos redactaron un proyecto de Academia de Agricultura, Ciencias y Artes Útiles y Comercio para su implantación en la provincia, pero un año más tarde las miras se ampliaron y se fundó la Sociedad Bascongada de Amigos del País, formada también por miembros alaveses y vizcaínos. El objetivo de la Sociedad era poner al País Vasco, tanto a nivel científico como técnico y docente, a la altura de Europa. Era necesario introducir en el país el nuevo método científico, la física newtoniana y los avances técnicos que se estaban dando en Europa a nivel industrial y agrícola. El medio más razonable para lograrlo era a través de la educación de calidad. Además de Escuelas de Dibujo (fundamentalmente Educación Profesional) crearon el Real Seminario Patriótico Bascongado de Bergara. Este centro (semillero de los futuros hombres útiles al país) fue pionero en la enseñanza de la Química y de la Mineralogía y Metalurgia y consiguió conformar un completo laboratorio químico, un gabinete de Física y amplias colecciones de Ciencias Naturales. Entre sus profesores se encontraban, entre otros, Louis Proust, François Chabaneau y los hermanos Elhuyar. Algunas de las piezas de los laboratorios de esta época pueden contemplarse hoy en el museo Laboratorium de Bergara.

Fachada del Real Seminario de Bergara en el siglo XVIII

Los ilustrados vascos pusieron en marcha toda una batería de medidas y acciones con el fin de modernizar el territorio. Así, en el campo de la investigación científica analizaron la idoneidad de nuevos cultivos; realizaron un estudio edafológico del País Vasco e investigaron la fertilidad de los distintos tipos de tierras y suelos; ensayaron nuevos métodos de abonado; probaron tanto en Bilbao como en Bergara la idoneidad de nuevos aperos de labranza; ensayaron la bondad de la patata como alimento humano como animal; se estudiaron numerosas minas de nuestro territorio; analizaron las técnicas productivas de las ferrerías vascas e investigaron los modos de producción en aquellas extranjeras; mantuvieron relaciones profesionales con los científicos más punteros y famosos de la Europa del momento; descubrieron, en el Real Seminario de Bergara el método para hacer maleable el platino y en el mismo centro realizaron la mayor aportación científica que el País Vasco haya hecho nunca a la humanidad: el descubrimiento, cuando solamente se conocían 23, de un nuevo elemento químico: el wolframio.

Por lo que respecta al ámbito de la innovación técnica, realizaron plantaciones modelo de nuevas plantas forrajeras; así mismo plantaron nuevas especies arbóreas en Gipuzkoa y Bizkaia con el fin de modernizar el sector forestal; con miras a modernizar el sector textil implantaron plantaciones de lino modernas y racionalmente gestionadas; introdujeron nuevas especies agrícolas en Álava con lo que evitar el monocultivo del trigo; en Bilbao crearon una moderna compañía de pesca; hicieron venir de Europa técnicos cualificados en diversas ramas productivas para introducir sus métodos en el País Vasco; pusieron en marcha una moderna fábrica de producción de acero de calidad en Bergara y también en Bergara abrieron una factoría para la fabricación de cuchillos; subvencionaron la introducción de innovaciones técnicas en sendos talleres papeleros de Bilbao y de Azkoitia; crearon una nueva factoría textil en Vitoria; conformaron en el Real Seminario de Bergara el laboratorio de química mejor equipado del reino y planearon y dirigieron también desde Bergara una misión de espionaje militar e industrial con el fin de hacerse con la técnica de fundición de cañones de la fábrica escocesa de Carron, la más reputada entonces en Europa.

Finalmente, por lo que atañe a la educación de calidad, publicaron un moderno manual de ortografía que difundieron por todo el país; redactaron el proyecto de una escuela para el alumnado femenino; pusieron en marcha y mantuvieron Escuelas de Dibujo en Álava, Gipuzkoa y Bizkaia y fundaron un centro docente de máxima calidad, el ya citado Real Seminario de Bergara. Este centro contó con las avanzadas cátedras de Química y Mineralogía y Metalurgia, las primeras del reino y para dotarlas docentemente se trajo a parte de los profesores y científicos más reputados de Europa. También en el Seminario se crearon, con fines educativos y de investigación, un riquísimo herbario, una completa colección de minerales y una magnífica colección de Ciencias Naturales.

Referencia:

Astigarraga, J. [2003] Los ilustrados vascos. Ideas, instituciones y reformas económicas en España. Barcelona; Crítica.

Autor: Equipo técnico del museo Laboratorium

Museo Laboratorium. Palacio Errekalde, Juan Irazabal s/n, 20570 Bergara

Contacto: 943 769 003;laboratorium@bergara.eus.

El artículo La ciencia al rescate del país se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
  2. “Laboratorium”, el museo del Real Seminario de Bergara
  3. Visión de los jóvenes vascos sobre la ciencia y la tecnología
Kategoriak: Zientzia

Hoy es el día de la mujer y la niña en la ciencia, todos lo son

La, 2017-02-11 09:00
Muy pocas mujeres deciden cursar algunas carreras científicas y tecnológicas. Y en general, en el mundo de la ciencia las mujeres no llegan a los niveles jerárquicos y de responsabilidad a los que llegan los hombres. Se trata de un fenómeno con múltiples manifestaciones: menos proporción de mujeres en ciertas carreras, menos catedráticas, menos investigadoras principales, menos directoras de centros de investigación, menos mujeres en puestos de alta responsabilidad, y menos mujeres galardonadas con el premio Nobel y otras distinciones.

Las mujeres no gozan de las mismas oportunidades que los hombres en el cursus honorum científico. Las causas de esa desigualdad son variadas y en una medida importante tienen su origen en el efecto de estereotipos en virtud de los cuales hay actividades que se consideran propias de las mujeres y otras que no. Tales diferencias carecen del más mínimo fundamento y no tienen justificación. Son además perniciosas, en primer lugar para las mujeres, que pierden así oportunidades para su desarrollo profesional y, por lo tanto, personal. Por esa razón son radicalmente injustas. Y en segundo lugar, causan un perjuicio al conjunto de la sociedad, pues privan a esta de las aportaciones de personas de valía a quienes, de forma sutil o no tan sutil, se limita el acceso a los puestos desde los que podrían realizar esas aportaciones.

La Cátedra de Cultura Científica de la UPV/EHU se ha propuesto contribuir, en la medida de sus modestas posibilidades, a mostrar la labor que desarrollan las mujeres en el mundo de la ciencia y la tecnología. Queremos visibilizar esa labor. Por eso publicamos desde mayo de 2014 el blog Mujeres con Ciencia. En promedio, un artículo cada día: para la Cátedra todos los días son días de la mujer y la niña en la ciencia.

Pero que todos los días lo sean no es óbice para que nos unamos a la iniciativa de Naciones Unidas y celebremos también el Día Internacional de la Mujer y la Niña en la Ciencia. Con ese propósito hemos producido “Ese lugar”, el vídeo que acompaña este texto. Quiere ser un gesto de denuncia, pero también una llamada al optimismo, optimismo que –no lo olvidemos– solo puede venir de la mano de la acción y, sobre todo, del trabajo. Por eso, para la Cátedra de Cultura Científica de la UPV/EHU mañana también será día de la mujer y la niña en la ciencia, y pasado mañana y los siguientes.

Ese lugares una producción de K2000, ha sido dirigido por Jose A. Pérez Ledo y fue grabado en Begoñazpi Ikastola (Bizkaia).

—————————————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————————————–

El artículo Hoy es el día de la mujer y la niña en la ciencia, todos lo son se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ciencia para todos a través del cine y la literatura de ciencia ficción
  2. Presentación del estudio “Percepción social de la ciencia y la tecnología en el País Vasco”
  3. Ciencia Clip: un concurso de vídeos de ciencia para jóvenes estudiantes
Kategoriak: Zientzia

El hidrógeno en el Universo (IV): Galaxias en interacción

Or, 2017-02-10 12:00

Como describimos en el artículo anterior, las observaciones radioastronómicas en la línea de 21 cm (equivalente a 1420 MHz) del hidrógeno neutro, que en la jerga científica se denota simplemente como “emisión en H I”, nos proporcionaron una nueva visión de las galaxias. Gracias a esta técnica los astrofísicos pueden detectar el gas difuso y frío del Cosmos y usar esas observaciones para entender mejor desde la estructura de la Vía Láctea a las propiedades de otras galaxias. En particular, usando técnicas de radio-interferometría (combinar la luz que llega de varios radiotelescopios para conseguir una imagen en radio con gran resolución angular) se pudo no sólo “pesar” mejor las galaxias, confirmando que todas contienen un gigantesco halo más o menos homogéneo de materia oscura, sino también entender la dinámica del gas y su relación con la formación estelar.

Figura 1. Imágenes de la galaxia NGC 6946. A la izquierda, imagen en colores ópticos usando datos del cartografiado “Sloan Digital Sky Survey” (SDSS). A la derecha, imagen del gas atómico usando la línea de 21 cm del hidrógeno neutro. Las observaciones se obtuvieron con el radio-interferómetro WSRT (“Westerbork Synthesis Radio Telescope”) y necesitaron 192 horas en total. Esta galaxia se encuentra a sólo 16.6 millones de años luz, dentro de lo que se conoce como “Volumen Local de Galaxias”. Crédito: Boomsma et al. (2008), A&A, 490, 555.

Algo que empezó a quedar claro desde el comienzo de las observaciones radio-interferométricas es que el gas difuso observado a 21 cm era más extenso que la componente estelar en las galaxias. Esto se hizo patente a finales del siglo XX, cuando la combinación de observaciones más profundas usando mejores radio-interferómetros con el incremento de la potencia de los ordenadores, que proporcionaban un combinado más efectivo de los datos y mejor procesado final, permitieron obtener mapas detallados del gas neutro en galaxias cercanas. Un buen ejemplo lo vemos en la Figura 1, que muestra la comparación entre las estrellas (izquierda) y el gas (derecha) dentro de la galaxia espiral NGC 6946. La imagen en la línea de 21 cm del hidrógeno atómico se consiguió usando datos del radio-interferómetro Westerbork (WSRT por sus siglas en inglés, “Westerbork Synthesis Radio Telescope”), instalado en Holanda, y que cuenta con 14 antenas de 25 metros. Se necesitaron 192 horas de integración para conseguir el detallado mapa del gas hidrógeno de NGC 6946.

Esta imagen muestra claramente como el disco de las galaxias espirales, trazado por el gas difuso, es mucho más amplio que el disco estelar. Gracias a la alta resolución espacial obtenida en esta imagen en radio (unos 13 segundos de arco de resolución, sólo un poco mayor de la imagen en óptico, con 2 segundos de arco de resolución) se pueden trazar bien los brazos espirales de NGC 6946, además de distinguir muchos más detalles del gas difuso de esta galaxia. En efecto, el disco interior muestra el mismo patrón filamentoso y con “huecos” que se ve en la imagen óptica. A la vez, los brazos espirales se hacen más y más pronunciados en las partes externas, permitiendo contar al menos 3 de ellos. El brazo del norte es el más rico en gas y contrasta mucho mejor con la zona inter-brazo, donde apenas se detecta emisión difusa. A pesar de la aparente regularidad en la forma general del gas, llama la atención que el disco de gas es asimétrico: está ligeramente más extendido en una dirección que en la perpendicular.

Como curiosidad, hay que decir que el “hueco oscuro” que aparece en la imagen en HI justo en el centro de la galaxia es un artefacto a la hora de combinar los datos. En realidad hay mucho gas en las partes centrales de NGC 6946. Sin embargo, el centro de la galaxia alberga un agujero negro súpermasivo que emite grandes cantidades de radiación sincrotrón justamente a longitudes de onda de 20 cm. Cuidado que este agujero negro súpermasivo no debe confundirse con el “agujero” que se ve en la emisión del gas, el agujero negro súpermasivo de NGC 6946 es muchísimo más pequeño y no puede detectarse con este tipo de observaciones. La intensa emisión no-térmica en continuo de radio alrededor de la línea de 21 cm de HI hace que ésta no aparezca como “línea de emisión” sino como “línea de absorción”. Este “truco” está permitiendo detectar el gas H I en galaxias activas muy lejanas. Los estudios en este campo está prácticamente empezando.

Las imágenes detalladas de galaxias espirales en la línea de 21 cm del hidrógeno atómico han permitido encontrar varias cosas interesantes. Las observaciones permiten diferenciar el gas en rotación, algo esperado para el disco espiral, de “otras nubes de gas” que no comparten ese movimiento. Muchas de esas otras nubes parecen ser similares a las “nubes de alta velocidad” que se detectan alrededor de la Vía Láctea.

¿Qué son estos objetos? Las dos teorías más aceptadas sobre la naturaleza de las nubes de alta velocidad que vemos en galaxias espirales son por un lado gas expulsado del disco por “fuentes galácticas” (regiones de formación estelar intensa, con explosiones de supernova de estrellas masivas que viven rápidamente, que expulsan el gas fuera del disco espiral) y por otro rasgos de acreción de gas difuso intergaláctico que ha sido procesado muy poco (su composición química es por tanto muy sencilla). Los datos de NGC 6946 mostrados en la figura 1 confirmaron que muchas de sus nubes de alta velocidad estaban asociadas con “agujeros de gas” en el disco espiral y, por lo tanto, provenían de “fuentes galácticas”. Pero, a la vez, revelaban “rasgos extraños” que sólo parecen explicarse de una forma: hay gas que está cayendo a NGC 6946 por primera vez. En la actualidad los astrofísicos esperamos que en las galaxias se dan los dos fenómenos: expulsión del gas del disco por explosiones de supernova y acreción de gas difuso intergaláctico.

Figura 2: Mapa con la emisión de hidrógeno atómico de la galaxia NGC 6946 obtenido con el radio-interferómetro WSRT (“Westerbork Synthesis Radio Telescope”). En escala de grises se muestra la misma imagen que la que aparece en el panel derecho de la Figura 1 y que tiene alta resolución angular (13 segundos de arco, el tamaño del “beam” del mapa interferométrico, indicado con el círculo pequeño abajo a la izquierda). Los contornos muestran una imagen conseguida con los mismos datos pero con mucha menor resolución espacial (64 segundos de arco, el tamaño indicado con el círculo pequeño abajo a la derecha). Al sacrificar la resolución espacial, la combinación de datos radio-interferométricos otorga mayor sensibilidad, lo que permite detectar gas más difuso y tenue. En este caso, se detectan estructuras asimétricas en las partes externas de NGC 6946 que están relacionadas con interacciones de galaxias. Crédito: Boomsma et al. (2008), A&A, 490, 555.

Pero no queda ahí la cosa. Una de las grandes ventajas de usar técnicas radio-interferométricas es que los datos permiten hacer imágenes a distintas resoluciones. La Figura 2 muestra exactamente los mismos datos que el panel derecho de la Figura 1, pero siguiendo dos combinaciones distintas. La imagen en escala de grises corresponden a los datos en alta resolución (13 segundos de arco), que es la misma que se muestra en la Figura 1. Los contornos corresponden a una imagen con mucha menos resolución angular (64 segundos de arco, las típicas que hasta entonces se obtenían con radio-interferometría). La ventaja de esta imagen de baja resolución es que permite detectar mucho más gas. Y, en efecto, es lo que vemos aquí: ahora aparecen de forma evidente las rasgos asimétricos de las partes externas que mencionábamos antes. Estas estructuras están asociadas a la interacción de galaxias y a la caída de gas difuso intergaláctico.

Y es aquí donde llegó otra de las grandes sorpresas al observar el gas difuso de las galaxias usando radio-interferometría. Como el disco de gas es mucho más extenso que el disco estelar es más fácil que una perturbación “externa” lo deforme. Cuando hablamos de perturbaciones o interacciones en este contexto nos referimos a casi cualquier cosa “externa” a la galaxia: una nube de gas difusa sin (apenas) estrellas, una galaxia enana, o una galaxia grande que pasan cerca (o directamente choca), o quizá la forma en la que la galaxia interacciona con el propio medio intergaláctico. Cuando miramos con detalle y profundidad las partes externas de las galaxias estamos encontrando continuamente esos rasgos de interacción, que son, en muchas ocasiones, imposibles de distinguir usando imágenes en los colores que nosotros vemos.

La Figura 2 revela a los posibles “culpables” de esa “pluma de gas difuso” que aparece arriba derecha del disco de NGC 6946: tiene dos galaxias enanas cercanas (las dos “nubes de gas” cerca de la esquina superior derecha) que han podido interaccionar con NGC 6946 en el pasado. No obstante, este rasgo difuso no está completamente explicado: podría ser también el resto de otra galaxia enana “engullida” en tiempos recientes por NGC 6946, o incluso parte del disco de la galaxia que ha sido parcialmente expulsado de las partes externas por fuerzas de marea inducidas por el paso cercano de otro objeto, originando una “cola de marea”.

Figura 3: Imagen de la galaxia del Remolino, M 51, y su galaxia satélite, NGC 5195, combinando datos ópticos con datos radio-interferométricos (en azul) obtenidos con el VLA (“Very Large Array”). Las observaciones en HI detectan, entre otras cosas, una larga cola de marea de gas difuso producida por las fuerzas de marea generadas por la interacción entre M 51 y NGC 5195. Crédito: Imagen en óptico: Álvaro Ibáñez Pérez. Imagen en radio: NRAO/AUI y Juan M. Uson, NRAO. Composición: Ángel R. López-Sánchez (AAO/MQU).

Las “colas de marea” aparecen de forma especialmente evidente cuando observamos el gas neutro de galaxias cercanas usando radiotelescopios. La Figura 3 muestra el ejemplo de una galaxia muy conocida, M 51, la galaxia del Remolino. Posiblemente sea de las galaxias más observadas por los astrónomos aficionados (del hemisferio norte, dada su posición en el cielo dentro de la constelación de Canes Venatici no se puede ver desde el hemisferio sur) y una de las galaxias espirales de gran diseño más cercanas a la Vía Láctea, a sólo 23 millones de años luz. Estamos muy familiarizados a la visión de M 51 en colores ópticos, y es conocida su interacción con una galaxia enana (NGC 5195), que aparece en colores rojizos contrastando con el disco azul de M 51, pero la visión de M 51 usando la luz H I a 21 cm nos muestra algo nuevo. Los datos obtenidos con el radio-interferómetro VLA (“Very Large Array”, Estados Unidos) en 1992 muestran una larga cola de marea (codificada en azul en la figura), consecuencia de la interacción entre M 51 y NGC 5194, que se aleja mucho de las partes centrales. Además, se descubren algunas nubes difusas de gas neutro en lugares donde no se detectan galaxias enanas o emisión estelar.

Figura 4: Imagen multi-frecuencia de la pareja de galaxias NGC 1512 y NGC 1510 combinando datos ultravioleta (datos de GALEX, NASA, en azul oscuro), óptico (bandas B y R de Digital Sky Survey, en azul claro y amarillo respectivamente), infrarrojo cercano (banda J del cartografiado 2MASS, en naranja), infrarrojo medio (datos del Telescopio Espacial Spitzer, NASA, en rojo) y radio (línea de 21 cm del hidrógeno atómico obtenidos por el interferómetro ATCA (Australia) como parte del proyecto “Local Volume HI Survey” (en verde). Se identifican algunas zonas de interés y las dos galaxias principales. Más información sobre este sistema en este artículo de Naukas. Crédito: Ángel R. López-Sánchez (AAO/MQU) y Baerbel Koribalski (CSIRO).

Otro espectacular ejemplo de galaxia espiral en interacción con intensos brazos espirales es NGC 1512. Localizada a 31 millones de años luz de nosotros, la galaxia NGC 1512 está en interacción con una galaxia enana compacta azul (NGC 1510). Observaciones usando el radio-interferómetro ATCA (“Australian Telescope Compact Array”, Australia) desvelaron que ambos objetos estaban envueltos en una enorme nube de gas difuso que, siguiendo un patrón espiral inducido por las fuerzas de marea, se extiende muy lejos del centro del sistema. La Figura 4 muestra en detalle la extensión del gas H I observado a 21 cm (codificado en verde en esta imagen) en NGC 1512 y NGC 1510 (parece una estrella brillante), envolviendo completamente a las dos galaxias y extendiéndose siguiendo dos largas estructuras espirales hasta más de 250 mil años luz del centro de NGC 1512, esto es, casi 8 veces el tamaño de la galaxia en colores ópticos. Aparecen también algunas nubes difusas de gas donde no se detectan estrellas.

Además, los datos del gas atómico revelan que una de las estructuras espirales ha sido perturbada por la interacción con la galaxia enana NGC 1510, que está “cayendo” hacia la galaxia principal e induciendo la formación estelar en las partes externas del sistema. Combinando datos de espectroscopía óptica, colores ultravioleta e infrarrojos, y el mapa del gas neutro obtenido con radio-interferometría, pudimos confirmar que el gas difuso que posee NGC 1512 en las partes externas no proviene de esta galaxia, sino que ha sido el producto de fusión de galaxias enanas o de material intergaláctico que ya había sido procesado en otras galaxias espirales y después perdido por ellas, y ahora lo vemos acretándose alrededor de NGC 1512.

Figura 5: Galaxias en interacción NGC 4038/4039 (Las Antenas) observadas en colores ópticos (panel izquierdo) y combinando las imágenes ópticas con los datos de la emisión a 21 cm del hidrógeno atómico (en azul) obtenidos con el radio-interferómetro VLA (panel derecho). Crédito: imagen óptica: Robert Gendler, imagen radio: John Hibbard, NRAO/AUI/NSF, combinación multi-frecuencia: Ángel R. López-Sánchez (AAO/MQU).

En otras ocasiones las interacciones de galaxias son mucho más evidentes y se ven claramente incluso en colores ópticos. Esto es lo que sucede en la galaxia de las Antenas (NGC 4038/4039, Figura 5), donde se observan dos núcleos centrales con dos largas colas de estrellas (de ahí el nombre que se le da a este peculiar objeto) que se alejan en direcciones opuestas. La galaxia de las Antennas es un ejemplo típico de lo que sucede cuando dos galaxies espirales chocan directamente: los dos núcleos centrales corresponden a las galaxias en proceso de colisión, mientras que las colas se originan por las intensas fuerzas de marea inducidas por las dos galaxias bailando en una danza que lleva irremediablemente a la fusión de ambas entidades. ¿Qué es lo que hace el gas? Normalmente en estos procesos es lo primero que se expulsa hacia el espacio intergaláctico, como describimos arriba. Pero en el caso de las Antenas aún se observa que buena parte del gas difuso está asociado a las largas colas de marea. El gas atómico, observado a 21 cm con el radio-interferómetro VLA, es especialmente prominente en la cola inferior. Es más, en los extremos de ambas colas aparecen regiones de formación estelar: en estas zonas el gas está condensado y creando nuevos soles. Algunos de estos sistemas quedarán “flotando” alrededor de las galaxias principales como “galaxias enanas de marea” (objetos que, a diferencia de las galaxias enanas típicas, poseen gran cantidad de elementos químicos y estrellas viejas) hasta terminar sus días cayendo de nuevo a la galaxia principal.

Figura 6: Imágenes del grupo de galaxias de M 81 y M 82 en óptico (panel superior) y combinando con los datos del gas difuso observado a 21 cm con el radio-interferómetro VLA (panel inferior). El gas atómico está desparramado por todo el sistema como consecuencia de las interacciones de galaxias. Crédito: Imagen óptica: Robert Gendler, imagen radio: Yun et al. 1994, Nature 372, 530, NRAO/AUI/NSF, combinación multi-frecuencia: Ángel R. López-Sánchez (AAO/MQU).

Hay casos aún más sorprendentes de interacciones de galaxias descubiertas gracias al estudio de la emisión de 21 cm del hidrógeno atómico. El cercano grupo de galaxias de M 81 y M 82 es quizá el caso más sorprendente. El panel superior de la Figura 6 muestra este grupo de galaxias, donde destacan la espiral M 81 (la “Galaxia de Bode”, en el centro) y la galaxia M 82 (la “Galaxia del Cigarro”, a su derecha), que posee una formación estelar muy intensa (tanto que el gas se está escapando perpendicularmente al disco, como se aprecia en los filamentos de color rojo intenso que surgen de su centro). Arriba a la izquierda aparece otra galaxia de baja masa, NGC 3077. Cuando observamos el gas difuso de este grupo de galaxias usando radio-interferómetros nos encontramos con una visión completamente distinta del sistema.

La imagen que reproducimos en el panel inferior de la Figura 6 es precisamente este mapa, tal y como se obtuvo usando datos del radio-interferómetro VLA. Además de descubrir el gas asociado a los discos espirales en rotación de las galaxias, esta poderosa imagen revela claramente el gas que conecta todas las galaxias entre sí. Estos “puentes de material difuso” no se ven en las imágenes en óptico (aunque es de esperar que también existan estrellas en ellos) y nos narran la convulsa historia que ha experimentado el sistema en tiempos recientes, con interacciones múltiples entre varias galaxias. La caída de gas neutro en M 82 como consecuencia de las fuertes interacciones de galaxias es la responsable de los fenómenos de formación estelar que observamos en ella. No es el único caso: una brillante nube de gas justo por encima de M 81 nos indica la posición de otra galaxia enana “estallante”, Holmberg IX, que apenas se distingue en los colores ópticos (sí brilla mucho en colores ultravioleta por el alto contenido de estrellas jóvenes y masivas que este galaxia enana posee), pero que destaca poderosamente en el mapa de la emisión de H I a 21 cm.

Si con sólo unas pocas observaciones a objetos individuales estamos encontrando tantos detalles nuevos y sorprendentes en galaxias que creíamos conocer bien, además de precisar su dinámica, la cantidad de materia oscura, la relación con la formación estelar, las interacciones y fusiones de galaxias, nubes difusas de gas donde no hay estrellas, ¿qué descubriremos al observar de forma sistemática centenares, miles de galaxias o decenas de miles de galaxias? Lo veremos en el último artículo de esta serie, donde detallaremos los cartografiados pasados, actuales y futuros que buscan estudiar la emisión del gas hidrógeno en galaxias usando la poderosa técnica de la radio-interferometría.

Este post ha sido realizado por Ángel López-Sánchez (@El_lobo_rayado) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.

 

El artículo El hidrógeno en el Universo (IV): Galaxias en interacción se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El hidrógeno en el Universo (III): El gas difuso de las galaxias
  2. El hidrógeno en el Universo (I): La emisión del hidrógeno neutro a 21 cm.
  3. El hidrógeno en el Universo (II): El mapa espiral de la Vía Láctea
Kategoriak: Zientzia

#Naukas16 Arqueología funeraría: la fama y el olvido

Og, 2017-02-09 17:00

El equipo de Almudena en plena faena. Foto: AP Photo/Daniel Ochoa de Olza

El equipo de arqueólogos al que pertenece Almudena García Rubio entró en una iglesia por la fama y se encontró con el olvido. Una charla fantástica donde se pone de relieve la íntimamente relacionadas que están historia, sociología, economía y biología.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 Arqueología funeraría: la fama y el olvido se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14 Arqueología de datos
  2. #Naukas16 Flipando en Colores
  3. #Naukas16 Pianos, torpedos y lo inesperado
Kategoriak: Zientzia

El papel viejo es amarillo

Og, 2017-02-09 11:59

“Fábulas ascéticas (en verso castellano) II” de Tamara Feijoo Cid (2012). Gouache sobre papel, 36,5 x 28,5 cm

Tanto el dibujo como la escritura y, por ende, el lenguaje, son las formas de comunicación y abstracción más antiguas y definitorias del ser humano. Las palabras se las lleva el viento, se las lleva el tiempo, si no se garabatean sobre algún soporte. Si además este soporte no pudiese trasladarse y apilarse, como ocurría con los estáticos muros de las primitivas pinturas rupestres, el conocimiento seguiría permaneciendo y perteneciendo a un lugar. La evolución del soporte a través de la historia simboliza nuestro carácter social, nuestro afán por conservar y comunicar.

La invención de un soporte ligero sobre el que escribir, dibujar, almacenar y comunicar nuestro conocimiento a nuestra manera, sigue siendo, a día de hoy, un asunto que se reinventa; desde la piedra, al papel, a las memorias de silicio.

El primer «papel», y de ahí el origen de la palabra papel, fue el papiro. El papiro se fabricaba en el Antiguo Egipto a partir del vegetal que le dio nombre: Cyperus papyrus. En la Edad Media, en Europa, se empleaba el pergamino, un papel elaborado a partir de pieles animales curtidas. En China, en el siglo II a.C., se empezó a fabricar papel con restos de tejidos, como seda, algodón o cáñamo. El papel que conocemos en la actualidad, el que fabricamos a partir de madera, comenzó su andadura mucho más tarde, en el siglo XIX.

En todos estos soportes, la huella del tiempo nos resulta muy reconocible. Y es que, cuando el papel envejece, se vuelve amarillo, quebradizo y adquiere ese olor característico a libro antiguo. El envejecimiento se debe principalmente a un proceso de degradación química y, muchas veces, también a agentes bióticos como insectos y microorganismos[1].

El papel, desde mediados del siglo XIX, está constituido por tres componentes: fibras procedentes de la madera, carga y aditivos[2].

Las fibras procedentes de la madera están formadas por cadenas de celulosa. La celulosa es un polisacárido lineal, es decir, está formada por unidades de glucosa unidas una tras otra, como las cuentas de un collar. Entre las cadenas de celulosa se establecen enlaces débiles por puente de hidrógeno que las hacen impermeables al agua y dan lugar a las fibras compactas que componen la pared celular de las células vegetales.

Estas fibras se mantienen unidas entre sí por medio de un polímero denominado lignina que dota a la madera de suficiente rigidez como para que los troncos de los árboles se mantengan erguidos. La lignina es de color ocre, de ahí proviene en mayor medida la coloración de la madera. Al eliminar la lignina, la fibra de celulosa es blanca, por ese motivo se retira la mayor parte durante la fabricación del papel. La eliminación de la lignina se hace por adición de sustancias alcalinas en las que es soluble y por blanqueo por medio de adición de cloro, peróxidos, o sulfitos[3].

La lignina nunca se consigue eliminar completamente del papel y, esto es un problema ya que, de forma natural, ayudada por la presencia de luz y humedad, la lignina se termina oxidando y recuperando su coloración ocre original. Esta es la razón por la que el papel viejo es amarillo.

Este proceso está íntimamente conectado con la química de los radicales libres que intervienen en nuestro envejecimiento natural. Resulta evocador que los procesos químicos que intervienen en el proceso de envejecimiento del papel sean tan similares a los que ocurren en nuestra piel.

En el proceso de oxidación de la lignina también se producen compuestos aromáticos que mantienen cierta similitud con la vainilla, de ahí que el olor a libro antiguo nos resulte agradable.

Además de la fibra procedente de la madera, el papel lleva carga. Al igual que en pintura, la carga suele ser de minerales blancos como carbonato de calcio, caolín, mica, talco, sílice, yeso, o sulfato de bario[4]. Como la carga es más económica que la celulosa, disminuye el precio del papel. La carga rellena todos los vacíos existentes entre las fibras, con lo cual el papel adquiere una superficie uniforme, al mismo tiempo que se blanquea, reduce su transparencia y mejora las condiciones para la impresión. La blancura del papel, su brillo u opacidad, dependen del tipo de carga y de la finura del grano[3].

Además de la carga, el papel suele llevar aditivos que actúan como ligantes, tales como las colas (colágeno), el almidón, el látex o el alcohol polivinílico[3].

Algunos microorganismos también son capaces de degradar el papel, generalmente por hidrólisis u oxidación de la celulosa a través de enzimas como la celulasa, que ocasionan las manchas típicas del papel deteriorado. Son habituales los Aspergilus Niger (hongos) y los vibrios (bacterias) [1].

Hay insectos que también destruyen el papel, como las lepismas, las termitas y los anóbidos. Todos ellos se nutren de la parte orgánica del papel, es decir, de las fibras y de algunos ligantes. Así que, cuando los insectos y los microorganismos colonizan el papel por completo, el único rastro que dejan tras de sí es la carga, la fracción pétrea del papel.

Los soportes de nuestros antepasados fueron muros, por eso resulta sugerente que, cuando el papel envejece tanto que se pierde, lo que queda de él sea la piedra.

Fuentes:

[1] Conservación y restauración de materiales de archivo. Mª Carmen Sistach Anguera. Departament d’Història de l’Antiguetat de la Cultura Escrita. Universitat de València, 1990.

[2] Fibras papeleras. José A. García Hortal. Edicions UPC, 2007.

[3] Conservación y restauración de material cultural en archivos y bibliotecas. José Luis Villacañas Berlanga. Biblioteca Valenciana, 2002.

[4] Los materiales de pintura y su empleo en el arte. Max Doerner. Ed Reverté, 1998.

Sobre la autora: Déborah García Bello es química y divulgadora científica

El artículo El papel viejo es amarillo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Cómo proteger la madera con lignina
  2. #Naukas14 Cómo parar 380 toneladas de metal a 200 km/h con unas hojas de papel
  3. Ciencia en la cocina: anchoas en papel de pimiento
Kategoriak: Zientzia

La luz que irradia frena al Sol

Az, 2017-02-08 17:00

Imagen de una erupción solar tomada por el Observatorio de Dinámica Solar (SDO) de la NASA en distintas longitudes de onda.

La parte más externa del Sol rota más lentamente que su interior. Y eso es un misterio.

Ahora un grupo de investigadores acaba de publicar una posible explicación a ese fenómeno tras observarlo detenidamente en alta resolución. Se han fijado en las ondas que se mueven a través de las distintas capas del Sol y han llegado a la conclusión de que el “frenazo” se produce en los 70 km más externos. Sería debido a que los fotones que emite el Sol, la luz que irradia, le restan momento angular, disminuyendo la velocidad de rotación. Este efecto debería estar presente en todas las estrellas y ser mayor cuanto más grandes sean.

La velocidad de rotación del plasma que constituye el Sol varía con la latitud (más alta en el ecuador que en los polos) y con la distancia al núcleo. Las diferencias en velocidad entre el núcleo y la superficie se detectaron hace décadas pero hasta ahora no había una explicación convincente.

Para comprobar las velocidades de rotación en las distintas capas de la fotosfera semitransparente del Sol, de unos 500 km de espesor, los investigadores tomaron imágenes durante casi cuatro años de la estrella con diferentes filtros correspondientes a diferentes longitudes de onda, empleando el Observatorio de Dinámica Solar de la NASA. Los 150 km más externos pudieron medirse con una resolución de 10 km y los investigadores encontraron que la disminución de la rotación era perceptible en los últimos 70 km, que rotan un 5 % más lentos que el resto de la fotosfera..

Los investigadores también desarrollaron un modelo para explicar estos datos basado en la transferencia de momento angular. En el interior del Sol los fotones interaccionan tanto con el plasma que ganan tanto momento angular como pierden. Pero en la fotosfera, donde los fotones escapan al espacio, la transferencia de momento plasma-fotón resulta en una pérdida neta del momento angular del plasma. El resultado es un ligero frenazo del plasma, que frena la rotación de la fotosfera en su conjunto. Este frenazo es más eficaz en la capa más externa donde la densidad de plasma es menor. Los cálculos basados en este modelo se corresponden bastante bien con los datos observacionales.

Sin embargo, este efecto frenazo no parece que pueda afectar mucho al periodo de rotación del Sol. De hecho necesitaría muchas veces la edad del universo para cambiar la velocidad de rotación del núcleo de forma significativa. Eso sí, en estrellas más brillantes el efecto sería mucho mayor.

Referencia:

Ian Cunnyngham, Marcelo Emilio, Jeff Kuhn, Isabelle Scholl, and Rock Bush (2017) Poynting-Robertson-like Drag at the Sun’s Surface Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.051102

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo La luz que irradia frena al Sol se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Bacterias emisoras de rayos X
  2. Una brecha en nuestro escudo
  3. El universo no rota
Kategoriak: Zientzia

Una bella demostración del LIBRO

Az, 2017-02-08 11:59

El brillante matemático húngaro Paul Erdös (1913-1996) solía hablar de EL LIBRO en el que Dios había escrito las demostraciones más bellas de entre todos los teoremas. En una conferencia celebrada en 1985 Erdös dijo una de esas frases que se ha quedado para el recuerdo “No tenéis porque creer en Dios, pero deberíais creer en EL LIBRO”.

Paul Erdös (1913-1996)

En 1998 los matemáticos Martin Aigner y Günter M. Ziegler publicaron El libro de las demostraciones (en castellano se publicó en Nivola en 2005) con el objetivo de incluir algunas de esas bellas demostraciones de las que hablaba Paul Erdös. Contiene teoremas, con sus correspondientes demostraciones, en algunos casos varias demostraciones de un mismo resultado, de Teoría de Números, Geometría, Análisis, Combinatoria y Teoría de Grafos.

En la sección Matemoción del Cuaderno de Cultura Científica ya incluimos hace un tiempo una de esas elegantes demostraciones que pertenecen a El Libro de las demostraciones, una hermosa prueba del conocido como Teorema de la galería de arte.

En esta entrada vamos a mostrar una hermosa demostración de la conocida fórmula de Cayley para árboles etiquetados, luego perteneciente a la Teoría de grafos. En mi anterior entrada La ratonera, un juego de Cayley ya mencioné brevemente al matemático inglés Arthur Cayley (1821-1895), autor del resultado que nos interesa en esta entrada.

Para empezar vayamos con los conceptos matemáticos básicos de Teoría de grafos.

  • Grafo. Un grafo está formado por un conjunto de puntos, llamados vértices, y un conjunto de aristas, cada una de las cuales une dos vértices. Salvo que se diga lo contrario un grafo tiene un número finito de vértices y aristas.
  • Grado de un vértice. Se llama grado de un vértice al número de aristas que inciden en el mismo.
  • Camino. Un camino es una sucesión de vértices y aristas, que se inicia en un vértice y se termina en otro.
  • Camino simple, ciclo. Un camino en el que no se repite ningún vértice se llama camino simple, y si es cerrado, se dice que es un ciclo.
  • Grafo conexo. Un grafo en el que cada par de vértices está conectado, al menos, por un camino simple, se dice que es conexo.
  • Árbol. Un grafo en el que cualesquiera dos vértices están conectados exactamente por un camino, es un árbol. Equivalentemente, es un grafo conexo que no posee ciclos.
  • Grafo o árbol etiquetado. Un grafo, en particular también un árbol, al que asignamos etiquetas a sus vértices (o también a sus aristas) es un grafo etiquetado. Las etiquetas pueden ser números, letras u otros símbolos.

Un grafo, que no es árbol ya que contiene un ciclo, y un árbol

Antes de entrar en la enumeración de los grafos etiquetados veamos un par de resultados sencillos sobre árboles, que hay que tener en cuenta.

Teorema 1: Todo árbol, con al menos dos vértices, tiene un vértice de grado 1.

Se puede dar una sencilla prueba de este hecho (quien lo desee puede saltarse la lectura de la misma). Sea v1 un vértice cualquiera del árbol, si tiene grado 1 se satisface el resultado, sino tendrá grado ≥ 2. En este caso, existen dos vértices v0 y v2 conectados, mediante sendas aristas, a v1. Considérese ahora v2, si tiene grado 1 se concluye el resultado, sino tendrá grado ≥ 2 y existirá un nuevo vértice v3 conectado con v2, que no puede ser ni v0, ni v1 (conectado con doble arista con v2), ya que un árbol no tiene ciclos.

Y los mismo con v3, si tiene grado 1 se concluye, sino tiene grado ≥ 2 y existe un nuevo vértice v4, que no puede ser ninguno de los anteriores, para que no existan ciclos. De esta forma se genera una sucesión infinita de vértices conectados, pero los árboles que estamos estudiando tienen un número finito de vértices, luego necesariamente habrá un vértice con grado 1.

Teorema 2: Todo árbol con n vértices, tiene n – 1 aristas.

Se puede realizar una sencilla prueba por inducción de este resultado, que no realizaremos aquí, pero podéis comprobarlo a través de algunos ejemplos, como el mostrado arriba.

Centrémonos ahora en los árboles etiquetados, los cuales aparecen en muchas aplicaciones en problemas reales, por ejemplo, en cuestiones de minería de datos, computación o análisis de estrategias (por ejemplo, en los juegos), por mencionar alguno.

Aunque en esta entrada no estamos interesados en sus aplicaciones, sino en una de las bellas demostraciones que existen de la fórmula de Cayley, expresión matemática que permite calcular cuántos árboles etiquetados existen. Para tener una idea de cuál puede ser esa fórmula matemática, analicemos primero cuántos árboles etiquetados hay con 1, 2, 3 ó 4 vértices. Es fácil comprobar que existe un único árbol con 1 ó 2 vértices y tres con 4 vértices, como se muestra en la imagen.

Con 4 vértices ya hay más árboles etiquetados, exactamente 16.

Para 5 vértices ya hay 125 árboles etiquetados. Para verlo, tomemos los tres árboles distintos con 5 vértices que existen (árboles no etiquetados), como se muestra en la siguiente imagen.

Existen 3 árboles con 5 vértices

Y ahora veamos de cuántas formas distintas se pueden etiquetar esos tres árboles con 5 etiquetas (por ejemplo, las letras a, b, c, d, e).

Del primer árbol se obtienen 5 árboles etiquetados, que quedan determinados por la letra del vértice del centro, luego 5 posibilidades. De forma similar, se puede demostrar que para cada uno de los otros dos árboles hay 5 x 4 x 3 = 60 árboles etiquetados. Luego, en total, 125.

Dados esos primeros valores podríamos especular con una fórmula que nos diera el número de árboles etiquetados con n vértices, por ejemplo, nn – 2. Esa es exactamente la fórmula que obtuvo Arthur Cayley en su artículo Un teorema sobre árboles (Quarterly Journal of Pure and Applied Mathematics, 1889).

Teorema (fórmula de Cayley): Para todo número entero n ≥ 2, existen nn – 2 árboles etiquetados distintos con n vértices.

En El libro de las demostraciones existen varias pruebas de la fórmula de Cayley, una de ellas utiliza las matrices y los determinantes, y en otra se realiza un razonamiento por recursión.

La demostración que vamos a mostrar en esta entrada, sencilla y hermosa al mismo tiempo, se debe al matemático Heinz Prüfer (1896-1934), que la publicó en la revista Archiv der Mathematik und Physik, en 1918. Consiste en asignar a cada árbol etiquetado, de n vértices, un código numérico de n – 2 elementos (llamado código, o secuencia, de Prüfer).

Veamos la demostración de Prüfer, según se muestra en el libro How to count, An introduction to combinatorics:

La fórmula es trivial para un árbol con dos vértices, n = 2, solo existe un árbol etiquetado posible. Luego se va a suponer que el árbol tiene n ≥ 3 vértices. Además, se supone que el árbol está etiquetado con los números naturales {1, 2, …, n}.

¿Cómo asignar un código numérico (a1, a2, …, an – 2) al árbol etiquetado? Primero se muestra el método general y después un ejemplo particular, que ayude a entender el procedimiento.

Empecemos considerando los vértices de grado 1 del árbol, que como hemos visto en el teorema 1 siempre existen, y tomemos el vértice v con el número de etiqueta más pequeño. Ahora, consideremos el único vértice w que está unido a v, puesto que su grado es 1, y llamemos a1 a la etiqueta de w.

Entonces, se elimina el vértice v y la arista vw, que une v y w, quedando un nuevo grafo, que sigue siendo un árbol. Y se repite el proceso anterior con este nuevo árbol, se elige el vértice v’ de grado 1 con número de etiqueta más pequeño, el vértice w’ conectado, mediante una arista, con el mismo y se llama a2 a la etiqueta de w’. Y entonces, se elimina el vértice v’ y la arista vw’, obteniéndose un nuevo árbol sobre el que se repite el razonamiento. Este proceso se repite hasta que solo quedan dos vértices. El resultado es una secuencia (a1, a2, …, an – 2), el código de Prüfer del árbol etiquetado.

Veamos un ejemplo concreto. Se considera el árbol etiquetado, con 7 vértices, de la imagen anterior. Hay 4 vértices de grado 1, etiquetados con los números 5, 7, 3, 6, y el más pequeño, que es el que consideramos como v, es el vértice etiquetado como 3. Este está conectado a 2, luego a1 = 2. Entonces se eliminan el vértice 3 y la arista (23), como en la imagen.

En el árbol resultante hay de nuevo 4 vértices de grado 1, siendo el de menor etiqueta el vértice 2, que está unido al vértice 4, luego a2 = 4. Se elimina el vértice 2 y la arista (24), quedando el árbol que aparece en la imagen. Ahora hay tres vértices de grado 1, de los cuales el de menor etiqueta es el 5, que está unido al vértice 1, entonces, a3 = 1. Continuando de esta forma se obtienen los valores a4 = 4 y a5 = 1, luego el código asociado a este árbol de 7 vértices es (2, 4, 1, 4, 1).

Pero también debemos ver el camino inverso, es decir, dado un código de Prüfer (a1, a2, …, an – 2), determinar el único árbol etiquetado asociado al mismo.

El árbol etiquetado va a tener n vértices y las etiquetas serán {1, 2, 3, …, n}. Se empieza considerando el número b1, de entre los que van a ser etiquetas, que es el más pequeño de los que no están en (a1, a2, …, an – 2). Entonces se considera un vértice con la etiqueta b1 y se une al vértice con etiqueta a1. A continuación, se considera el número más pequeño b2, distinto de b1, que no está en la secuencia (a2, …, an – 2) y se une el vértice b2 con el vértice a2. Después se toma el menor número b3, distinto de b1 y b2, que no está en (a3, …, an – 2) y se une el vértice b3 con el vértice a3. Y se continúa el proceso hasta obtener b1, b2, …, bn – 2 , y entonces se unen los dos vértices con etiquetas que no están entre esos n – 2 números.

A modo de ejemplo, veamos el proceso inverso al visto en el anterior ejemplo. Es decir, empezamos con el código (2, 4, 1, 4, 1) y veamos cómo obtener el árbol etiquetado asociado. En la imagen se va indicando en cada paso del proceso quienes son las etiquetas bk que van apareciendo y los vértices que se van uniendo mediante una nueva arista (ak bk).

En conclusión, hemos probado que existe una correspondencia uno a uno entre los árboles etiquetados con n vértices y las secuencias de números (a1, a2, …, an – 2), donde los elementos de la secuencia ak son números del conjunto de posibles etiquetas {1, 2, …, n}. Por lo tanto, como el número de posibles códigos de n – 2 números que pertenecen al conjunto {1, 2, …, n} es nn – 2, se concluye que este es el número de árboles etiquetados distintos con n vértices.

La fórmula de Cayley fue publicada por primera vez en 1860 por el matemático alemán Carl Wilhelm Borchardt (1817-1880), quien la demostró utilizando determinantes. El resultado de Borchardt no estaba planteado realmente sobre árboles etiquetados y fue Cayley quien lo planteó en el contexto de la teoría de grafos.

Bibliografía

1.- Martin Aigner, Günter M. Ziegler, El libro de las demostraciones, Nivola, 2005.

2.- Raúl Ibáñez, Arthur Cayley, explorador victoriano del territorio matemático, RBA, 2017 (pendiente de publicación).

3.- Arthur Cayley, The Collected Mathematical Papers, Internet Archive [archive.org].

4.- Arthur Cayley, A theorem on trees, Quarterly Journal of Pure and Applied Mathematics, 23 (1889), p. 376-378.

5.- Heinz Prüfer, Neuer beweis eines satzes über permutationen (A new Prof. of a theorem on permutations), Archiv der Mathematik und Physik (3), 27 (1918), p. 142-144.

6.- R. B. J. T. Allenby, Alan Slomson, How to count, an introduction to combinatorics, CRC Press, 2011.

7. C. W. Borchardt, Über eine Interpolationsformel für eine Art Symmetrischer Functionen und über Deren Anwendung, Math. Abh. der Akademie der Wissenschaften zu Berlin (1860), p. 1–20.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Una bella demostración del LIBRO se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Embaldosando con L-triominós (Un ejemplo de demostración por inducción)
  2. Arthur Cayley, la teoría de grafos y los isómeros químicos
  3. Técnicas de demostración para casos ‘desesperados’
Kategoriak: Zientzia

#Naukas16 La ciencia de la pasión

Ar, 2017-02-07 17:00

Ciencia, pasión y fútbol de la mano del inigualable José Manuel López Nicolás (que es del Barça, por si no queda claro en el vídeo).

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 La ciencia de la pasión se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas16 Exoplanetas: mundos de ciencia ficción
  2. #Naukas16 Cómo escribir un libro de ciencia para niños
  3. La ciencia en la cosmética o el triunfo del absurdo
Kategoriak: Zientzia

Paracelso, el Lutero de la alquimia (I)

Ar, 2017-02-07 11:59

Theophrastus Phillippus Aureolus Bombastus von Hohenheim, quien con el tiempo terminó refiriéndose a sí mismo como Paracelso (comparable a Celso, esto es, Aulus Cornelius Celsus, el autor romano del s. I de De medicina) nació en Einsiedeln, cerca de Zúrich, en lo que hoy es Suiza y entonces en 1493 pertenecía al Sacro Imperio Romano Germánico a través de su rama austríaca.

Hijo de un alquimista y médico suabo, Wilhelm Bombastus von Hohenheim y madre suiza, probablemente sirviente de la Abadía de Ensiedeln, donde nació Teofrasto, recibió formación desde muy temprana edad en medicina y química por parte de su padre.

A los 16 años se inscribe en la Universidad de Basilea, después se traslada a la de Viena para terminar dejándolo todo e irse a la Abadía de Sponheim a estudiar alquimia con Johannes Trithemius. Con 21 años su padre le convence de que no existe nada como la experiencia para aprender y que si, de verdad quiere aprender el arte alquímico, tiene que verlo en funcionamiento de primera mano. Siguiendo el consejo paterno Teofrasto comienza a trabajar en los talleres minerales y metalúrgicos de las minas del Tirol.

En las minas aprendió las propiedades físicas de los minerales, a distinguir los materiales del interior de la tierra y a identificar las menas minerales. En los talleres, la obtención de los metales y los efectos de los ácidos. Y en el conjunto de la explotación las enfermedades y accidentes que eran el día a día de los mineros.

A final de este periodo formativo, Teofrasto había acumulado una cantidad enorme de información, mucha de ella en forma de remedios y curas basados en la experiencia y consideradas no canónicas por los médicos de la época.

Tras afirmar, aunque no existen pruebas de su autenticidad, que había obtenido el título de doctor por la Universidad de Ferrara (¿1516?), consigue el puesto de médico de la ciudad de Basilea, puesto que tendría que abandonar a la carrera dos años después debido a que sus modales prepotentes y ofensivos habían conseguido enfurecer a empleadores y pacientes.

Tras esto se convierte en un viajero incansable en una Europa rota por las guerras, relacionándose con médicos, alquimistas, astrólogos, farmacéuticos, mineros, gitanos y con los aficionados a lo oculto.

Sus contemporáneos llegaron a decir de él que

“vivía como un cerdo, parecía un boyero, encontraba su mayor disfrute en compañía de la chusma más baja y disoluta, y a lo largo de su gloriosa vida estuvo, en general, borracho”.

Sin embargo para sus alumnos fue “el monarca noble y amado”, “el Hermes alemán” y “nuestro querido preceptor y rey de las artes”. ¿Qué hizo esta figura contradictoria por la química? ¿Qué enseñó?

La alquimia siempre había tenido la transmutación como objetivo y, para los alquimistas europeos, eso era equivalente a decir la transformación de un metal común en oro. Solo algunos alquimistas como Joan de Peratallada habían adoptado el objetivo oriental de transmutar la carne enferma en carne sana empleando un elixir alquímico.

Paracelso extiende la definición de alquimia a cualquier proceso en el que sustancias naturales se convierten en algo nuevo:

“Ya que el panadero es un alquimista cuando cuece el pan, el viñero cuando hace vino, el tejedor cuando hace tela”

Paracelso llega a afirmar que dentro del cuerpo hay un alquimista responsable de la digestión.

El uso más importante que podía hacerse de la alquimia, según Paracelso, será preparar medicinas que restablezcan el equilibrio químico de un cuero alterado por la enfermedad.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Paracelso, el Lutero de la alquimia (I) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El lenguaje de los libros de alquimia oscura y el misterio de la existencia de éstos
  2. Alquimia musulmana
  3. El oscurecimiento de la alquimia
Kategoriak: Zientzia

Los espacios del arte parietal

Al, 2017-02-06 11:59

Blanca Ochoa, investigadora del Departamento de Geografía, Prehistoria y Arqueología de la UPV/EHU, propone analizar los espacios donde están representadas las figuras artísticas de la época Paleolítica, para de esta forma intentar inferir la finalidad de estas expresiones. En su estudio, ha observado diferencias cronológicas en la localización de los dibujos o grabados, lo que podría indicar que la función y el significado del arte parietal fueron variando a lo largo del Paleolítico superior.

Panel localizado en la cueva de La Pasiega (Puente Viesgo, Cantabria)

El estudio del arte paleolítico es “una de las pocas herramientas con las que contamos para conocer la cultura y la sociedad de los grupos prehistóricos”, señala Blanca Ochoa, investigadora del departamento de Geografía, Prehistoria y Arqueología de la UPV/EHU. Saber a quién estaban dirigidas las representaciones “podría indicar el uso que tendría el arte parietal para los grupos prehistóricos: si era algo para todo el grupo, compartido por todos los miembros, o si estaba limitado a grupos pequeños, o incluso una sola persona”, explica.

En su investigación, el objetivo que se planteó fue definir si existían preferencias a la hora de elegir los espacios donde se dibujaron o grabaron las representaciones paleolíticas en nueve cavidades de la cornisa cantábrica, localizadas en Asturias y Cantabria. “Se trata de un aspecto que se había analizado muy poco hasta la fecha”, comenta la investigadora. Desarrollaron una metodología propia para analizar la visibilidad de las figuras representadas, que abarca tanto variables relativas al espacio donde se encuentran (el tamaño de la sala, la accesibilidad, la presencia de luz natural, etc.) como características relacionadas con las propias representaciones: “El tamaño de las obras, la altura a la que se encuentran, y, sobre todo, la técnica con la que se ejecutaron (pintura o grabado) determina en gran medida la visibilidad —describe Ochoa—. La pintura es mucho más visible que el grabado, y más aún si el grabado no se hace muy profundo”.

Panel localizado en la cueva de La Pasiega (Puente Viesgo, Cantabria)

Tal como explica Ochoa, uno de los resultados más interesantes que han extraído en la investigación son las diferencias cronológicas observadas: “A lo largo del Paleolítico superior fue cambiando la distribución topográfica de las grafías: Durante las primeras fases del Paleolítico superior existe una preferencia por la ejecución de dibujos de tamaño medio y grande en las galerías principales de las cuevas. Durante el Magdaleniense, entre hace 20.000 y 12.000 años, aumenta el uso de espacios localizados en zonas alejadas del recorrido principal de las cuevas, en pequeñas salas a veces escondidas; además, se prefiere un tamaño menor a la hora de crear las figuras y aumenta el uso del grabado como técnica. Podría ser que durante el premagdaleniense el arte estuviese destinado a ser visto en comunidad. El uso de espacios más pequeños en el Magdaleniense, sin embargo, podrían indicar que el arte pasó a ser algo más restringido, o que tenía otro tipo de función”.

Al ser un tipo de estudio nuevo, y llevado a cabo en una zona geográfica limitada, Ochoa subraya el carácter preliminar de los resultados obtenidos. No obstante, considera que “ayudará a poner las bases para saber a quién estaba destinado el arte paleolítico. Hemos constatado que la metodología desarrollada funciona, y que se puede seguir aplicando en otras zonas de la región cantábrica, y fuera de ella. Me gustaría continuar con la investigación, porque los resultados para esta área han sido muy interesantes, y querría ver si las conclusiones que hemos sacado se pueden extender a otras zonas. Aunque probablemente también haya diferencias geográficas y los diferentes grupos tuvieran usos diferentes del arte”.

Referencia:

García-Diez, M., Ochoa, B., Vigiola-Toña, I., Garrido-Pimentel, D., Rodriguez-Asensio, J.A. (2016) Temps et reseaux de l’art paleolithique: la grotte de La Covaciella (Asturies, Espagne). L’Anthropologie: 120 (5). DOI: 10.1016/j.anthro.2015.11.001

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Los espacios del arte parietal se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. 20.000 años de arte rupestre en Altamira
  2. La representación de un campamento de cazadores hecha hace 13.000 años
  3. La complejidad de la mente neandertal
Kategoriak: Zientzia

El sueño criogénico

Ig, 2017-02-05 11:59

Por regla general, la forma en que los animales –me refiero a los poiquilotermos, popularmente conocidos como de sangre fría- se adaptan a vivir en ambientes gélidos consiste en la acumulación, en forma disuelta, de sustancias crioprotectoras en la sangre u otros fluidos corporales. Son moléculas orgánicas de pequeño tamaño, como la glucosa o ciertos alcoholes, que dificultan la congelación. Se trata de un procedimiento muy efectivo porque cuando en un líquido se encuentran sustancias disueltas, la temperatura a la que ese líquido se congela disminuye en proporción directa a la concentración de aquéllas. La congelación suele conllevar la formación de cristales de hielo que son muy lesivos para las estructuras biológicas. Por eso importa evitar que se formen.

También hay animales que, como la rana del bosque –Lithobates sylvaticus– se congelan cuando hace mucho frío y cuando, semanas o meses después, sube la temperatura, se descongelan y recuperan la actividad. Esos animales experimentan la congelación y descongelación repetida de hasta dos tercios de sus líquidos corporales y, a pesar de ello, sobreviven. No es que la rana del bosque sea inmune a la acción destructiva de los cristales de hielo. Lo que ocurre es que en su caso, esos cristales se forman en los líquidos extracelulares, en zonas en las que no afectan a estructuras vitales. De hecho, la rana del bosque y los animales que se comportan de modo similar recurren, además de a los crioprotectores –o anticongelantes- a unos denominados “agentes nucleantes de hielo”, pequeñas proteínas que provocan la formación de hielo a su alrededor. Con ese doble conjunto de herramientas dificulta la formación de hielo y, a la vez, hace que el que se forma, lo haga donde menos daño pueda causar. El interior de las células permanece en estado líquido.

Todo esto puede parecer anecdótico, pero no lo es en absoluto. Ilustra a la perfección aspectos clave de la capacidad de los animales para hacer frente, mediante una fisiología muy flexible, a condiciones ambientales extremas. Pero tiene, además, una vertiente aplicada de gran interés, que es la relativa a la búsqueda de sistemas que nos permitan congelar seres humanos de forma que, tras la descongelación, mantengan la integridad funcional y sean viables.

Hasta hace poco tiempo se pensaba que era imposible congelar un órgano humano vivo, como por ejemplo, un encéfalo, sin que sufriera daños apreciables durante el proceso de congelación y posterior descongelación. Pero ahora eso ya no está tan claro. Los doctores Gregory Fahy y Robert McIntyre de la empresa 21st Century Medicine, de Fontana (California, EEUU) han desarrollado una técnica que permite congelar el encéfalo de un conejo y recuperarlo en perfecto estado desde el punto de vista estructural. No se trataba de un encéfalo funcional, vivo, por supuesto, sino de un órgano muerto pero estructuralmente íntegro. La dificultad radica en que para poderlo recuperar en buenas condiciones, es necesario introducir crioprotectores en el tejido–los antes citados anticongelantes- antes de congelarlo. Pero por razones de índole osmótica, los crioprotectores provocan la deshidratación de las neuronas. La nueva técnica ha consistido en la rápida sustitución de la sangre encefálica por glutaraldehido, una sustancia que detiene el deterioro orgánico, de manera que los anticongelantes se pueden añadir más lentamente y evitar así la deshidratación neuronal. Esta solución no vale para encéfalos vivos, porque el glutaraldehido es una sustancia fijadora, pero en el momento en que pueda ser sustituido por una sustancia que no “fije” el tejido, ni que no lo dañe de ninguna otra forma, los mayores obstáculos habrán sido superados. Y quizás entonces el sueño criogénico pueda hacerse realidad.

—————————————————-

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

————————————————–

Este artículo fue publicado en la sección #con_ciencia del diario Deia el 23 de octubre de 2016.

El artículo El sueño criogénico se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ataques preventivos
  2. Del sueño
  3. Los monstruos del sueño
Kategoriak: Zientzia

#Naukas16 Hasta el 2035 y más allá

La, 2017-02-04 11:59

El análisis de las necesidades energéticas y las fuentes de abastecimiento para los próximo 15 años indican que los combustibles fósiles aún jugarán un papel muy importante. Por ello las técnicas de secuestro de dióxido de carbono serán críticas. Todo esto y más lo explica estupendamente Teresa Valdés-Solís.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 Hasta el 2035 y más allá se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas14: Diamantes en bruto
  2. #Naukas16 Alucinaciones lingüísticas: los engaños de tu lengua materna
  3. #Naukas16 Tiene bigote, carga eléctrica y no lleva gafas
Kategoriak: Zientzia

El hidrógeno en el Universo (III): El gas difuso de las galaxias

Or, 2017-02-03 12:00

En los artículos anteriores hemos introducido una transición atómica muy particular del hidrógeno neutro que emite radiación electromagnética a una frecuencia de 1420 MHz (la línea de 21 cm del hidrógeno atómico, o simplemente “H I”). Gracias a esta emisión, que se detecta usando radiotelescopios, podemos “ver” el gas difuso y frío del Cosmos. Estas observaciones no sólo han revolucionado nuestros conocimientos de la Vía Láctea sino que ha cambiado de forma radical nuestro conocimiento de las galaxias, no sólo a la hora de entender mejor su estructura y características observacionales, sino también la propia evolución de las galaxias y del Universo.

En efecto, los estudios del gas atómico en la línea de 21 cm del hidrógeno neutro permiten a los astrofísicos conocer en detalle los procesos que dirigen la formación estelar, la dinámica y estructura del medio interestelar y la distribución de materia (ordinaria y oscura) en las galaxias, además de permitir descubrir muchas “sorpresas” en ellas. Es por ello que en las últimas décadas se ha dedicado tanto esfuerzo científico y técnico en obtener datos científicos de calidad observando el Cosmos en esta línea espectral tan importante.

Figura 1: Espectro en radio de la galaxia UGC 11707 centrado en la línea de 21 cm del hidrógeno atómico (1420 MHz). Se obtuvo con el radiotelescopio de 42.7 metros (140 pulgadas) de NRAO en Virginia Occidental (EE.UU.), cuya resolución es de 20 minutos de arco a estas frecuencias. En el eje horizontal se indica la frecuencia (arriba) o la velocidad radial (abajo) con la que se observa. El eje vertical indica la intensidad de la emisión a cada frecuencia individual. Crédito: NRAO, Haynes et al. (1998), AJ, 115, 62.

Las primeras observaciones de gas atómico se realizaron, obviamente, usando un único radiotelescopio. Un ejemplo de estas observaciones se muestra en la Figura 1. Esta gráfica deja evidente el potencial científico que tienen las observaciones de galaxias en la línea de 21 cm del hidrógeno atómico. Se muestra el espectro (más bien dicho, el perfil de la línea de HI) de la galaxia UGC 11707, con datos obtenidos en el radiotelescopio de 42.7 metros (140 pulgadas) del instituto estadounidense National Radio Observatory (NRAO) en Virginia Occidental (EE.UU.). A estas frecuencias el campo de visión que observa el radiotelescopio es de unos 20 minutos de arco, mucho mayor que el tamaño aparente de la galaxia UGC 11707. Por eso decimos que se trata del “espectro integrado” de UGC 11707. En el eje horizontal se indica (arriba) la frecuencia a la que se observa la emisión (equivalente a la longitud de onda), que se puede traducir a la velocidad radial con la que nos parece que la línea de 21 cm se “aleja” de nosotros (abajo). Esta figura permite calcular que la velocidad media a la que observamos el gas de UGC 11707 es de unos 900 km/s. Aplicando la Ley de Hubble se puede extrapolar que la distancia a UGC 11707 es de unos 13.1 megapársec (Mpc), equivalente a unos 42.7 millones de años luz de distancia.

Pero hay más información que podemos sacar de esta figura. Si se integra todo el flujo de la línea (lo que quiere decir que se mide cuánta emisión hay en total sumando todas las frecuencias individuales en las que se detecta emisión) se puede obtener una estimación de la cantidad de hidrógeno que existe en UGC 11707. Esto es, ¡estamos “pesando” el gas de la galaxia! En el caso de UGC 11707 y usando estos datos se obtienen unos 2.5 x 10^9 masas solares (2 500 millones de veces la masa del Sol).

Además de tener un perfil ancho (unos 200 km/s en total, este número se conoce como “anchura de la línea”), aparecen dos “cuernos” a derecha e izquierda de la línea. Este perfil es típico de galaxias espirales, e indica que la galaxia está en rotación. Si el gas se mueve en un disco, los 200 km/s corresponde al doble de la velocidad de rotación. Tenemos entonces que el gas (y, por tanto, la galaxia UGC 11707, porque el gas está asociado al disco donde se encuentran las estrellas) rota a 100 km/s. En verdad, este número debe corregirse por la inclinación que existe entre la galaxia y el plano del cielo, algo que se puede determinar con las imágenes en el rango óptico. Para el caso de UGC 11707 esta corrección es muy pequeña: considerando la inclinación de la galaxia el gas se mueve a 110 km/s.

Finalmente, si sabemos el tamaño (radio) de la galaxia y sabemos cómo se mueve su gas, asumiendo que este movimiento es por rotación, aplicando física newtoniana se puede determinar la cantidad de materia total (estrellas, polvo, gas y materia oscura) que hay en UGC 11707. Haciendo las cuentas (y siempre con cuidado de las unidades) se llega a que la masa total de UGC 11707 es de unos 3.3 x 10^10 masas solares (33 mil millones de veces la masa del Sol). Y es aquí donde aparece, sin ninguna duda, esa “presencia fantasma” de las galaxias: la componente de materia oscura.

Usando observaciones en óptico e infrarrojo cercano se puede estimar que la masa en estrellas de UGC 11707 es de unas 5 x 10^9 masas solares. La masa del polvo es depreciable (pocos millones de masas solares), por lo que sólo sumando la cantidad de materia que vemos en gas (2.5 x 10^9 masas solares) y en estrellas (5 x 10^9 masas solares) llegamos a la inequívoca conclusión de que hace falta cuatro veces esa “materia que vemos” para poder explicar la rotación de galaxia, tal y como la observamos en la Figura 1. ¿Dónde está la masa que falta? Ésa es la materia oscura, algo que no sabemos qué es, que no es partícipe de las interacciones electromagnéticas (no emite ni absorbe luz, por eso no la vemos), pero que sí interacciona gravitatoriamente, de ahí que sólo podemos observar sus efectos sobre las partículas (estrellas y gas) que vemos. Este problema de la “masa perdida” aparece sistemáticamente en todas, repito, todas las galaxias que se han observado usando datos tanto en radio como en óptico.

En la actualidad contamos con decenas de miles (puede que incluso más) de observaciones del gas atómico en galaxias usando radiotelescopios individuales para captar la emisión en 21 cm del hidrógeno neutro. La Figura 1 y la discusión asociada son suficientemente poderosas a la hora de mostrar la enorme importancia que tienen en Astrofísica extragaláctica este tipo de observaciones. Pero, en realidad, esto es la punta del iceberg. Hay mucho más.

Como ya hemos comentado en varias ocasiones, el problema de usar sólo un radiotelescopio para observar el cielo es que, por la naturaleza de las ondas electromagnéticas en frecuencias de radio, la “resolución angular” que obtenemos es muy pequeña (cubren areas grandes en el cielo, mucho mayores que las obtenidas con los telescopios clásicos). Esto es, vamos a ver las galaxias sólo como un punto (el espectro integrado, como decíamos arriba). Por eso en los últimos cuarenta años se ha desarrollado una técnica muy inteligente, la radio-interferometría, que lo que hace es combinar a la vez la luz de múltiples radiotelescopios. Explicar las técnicas radio-interferométricas, a pesar de ser apasionante, no es el objetivo de esta serie de artículos. Simplemente apuntaré que, al considerar varias antenas, lo que se consigue es la resolución espacial equivalente a un radiotelescopio de tamaño similar a la distancia máxima entre las antenas.

Figura 2: Radio-interferómetros “Very Large Array” (VLA, Nuevo México, EE.UU.) y “Australia Telescope Compact Array” (ATCA, Narrabri, NSW, Australia). Crédito: Ángel R. López-Sánchez.

Por ejemplo, el radio-interferómetro ATCA (Australia Telescope Compact Array, Australia, Figura 2), que consta de 6 radiotelescopios de 22 metros de tamaño, se pueden conseguir “líneas de base” (distancias entre parejas de telescopios”) de hasta 6 kilómetros. Lo que es lo mismo, ATCA tiene la resolución equivalente a un gran radiotelescopio de 6 kilómetros. Esto permite que este radio-interferómetro sea capaz de alcanzar una resolución inferior a 10 segundos de arco (1/180 el tamaño de la luna llena) cuando observa a 21 cm. Otros interferómetros, como el famoso VLA (Very Large Array, Figura 2) en Nuevo México (Estados Unidos), recientemente ampliado (en realidad, ahora debe llamarse “Extended VLA”, EVLA) alcanza líneas de base de hasta 34 kilómetros. Eso sí, obviamente no es lo mismo que tener una antena de iguales características: los radio-interferómetros están “llenos de agujeros”, por lo que la sensibilidad a la que pueden llegar (los rasgos más débiles que pueden detectar) es muy inferior a un único radiotelescopio con ese mismo tamaño.

Así, los radio-interferómetros han permitido ampliar la resolución angular de las observaciones HI a 21 cm hasta hacerlas más o menos comparables a las obtenidas en otras frecuencias. Y, por supuesto, al tener mucho más detalle y resolución y poder obtener a la vez la distribución y la velocidad del gas, se han podido caracterizar mejor los rasgos del gas neutro en las galaxias, su relación con las regiones de formación estelar y la propia dinámica interna, además de revelar unas cuantas sorpresas.

Figura 3: Comparación del aspecto de la galaxia del Triángulo, M 33, en colores ópticos (izquierda) y en observado en la línea de 21 cm del hidrógeno atómico (derecha). La imagen en colores ópticos se obtuvo con la cámara de mosaicos del telescopio Mayall, de 4 metros de tamaño, del Observatorio Nacional Kett Peak (KPNO, EE.UU.). Se usaron observaciones en los filtros U (violeta), B (azul), V (cían), I (naranja) y H-alfa (rojo). Las regiones de formación estelar (nebulosas), destacando NGC 604 (la más brillante, hacia la mitad izquierda de la imagen) destacan claramente en color rosáceo. La imagen en la línea HI a 21 cm se obtuvieron usando el radio-interferómetro VLA. Se emplea una escala a falso color para representar a la vez la intensidad de la emisión (más o menos brillante) y la velocidad con la que se mueve el gas. Como toda la galaxia se encuentra a la misma distancia, las variaciones espectrales en la emisión HI corresponden a diferencias de velocidades internas en la galaxias, medidas gracias al desplazamiento Doppler. Colores rojos representan zonas que parecen “alejarse” del observador, mientras que colores azules representan zonas que parecen “acercarse”. Ambas imagen tienen el mismo campo y la misma escala. Crédito: Imagen en óptico: NOAO, Local Group Survey Team y T.A. Rector (University of Alaska Anchorage). Imagen en radio: VLA, NRAO/AUI, David Thilker, Robert Braun,y Rene Walterbos.

La Figura 3 muestra el caso de la famosa galaxia espiral M 33 (la Galaxia del Triángulo). El panel de la izquierda es una imagen clásica de M 33 usando un telescopio óptico. A la derecha se muestra, con la misma escala, la imagen obtenida de esta galaxia cuando se observa con radio-interferometría (datos del VLA) en la línea de 21 cm del hidrógeno atómico. Lo que ahora vemos es la distribución de gas difuso asociado al disco espiral de M 33. Curiosamente es más o menos homogénea, salvo en algunos “huecos” que están básicamente relacionados con zonas donde el gas se ha consumido por la intensa formación estelar o se ha expulsado lejos por la acción de las explosiones de supernova (algo que, como discutimos en el artículo anterior, también se ve en nuestra Vía Láctea). También aparecen algunas densidades de gas que están correlacionadas con las regiones donde se están naciendo ahora mismo las estrellas. Esto no debería de sorprendernos: donde hay más gas, deberían poder formarse más estrellas. No obstante, habría que señalar que esta relación se observa principalmente cuando trazamos el gas molecular, mucho más frío, que es del que realmente nacen las estrellas. Esto también se hace con radio-astronomía, pero en longitudes de onda milimétricas en lugar de centimétricas, que trazan la emisión de moléculas como CO, NH3, HCN o HCO+, todas ellas muy abundantes en el Cosmos. La emisión molecular en el rango milimétrico tiene un origen muy distinto al de la emisión a 21 cm del hidrógeno atómico. Precisamente estudiar el gas molecular en detalle es uno de los objetivos principales de radio-interferómetro ALMA (Atacama Large Millimeter Array, Chile).

¿Qué están indicando los colores en el panel derecho de la Figura 3? Al igual que hemos descrito para el caso del espectro integrado de la galaxia UGC 11707 de la Figura 1, lo que estamos viendo ahora es la rotación del disco espiral de M 33. Colores más rojos indican zonas que se “alejan” más del observador, mientras que los colores azules señalan las zonas que se “acercan” más.

Observando galaxias cercanas en la línea de 21 cm del hidrógeno atómico usando radio-interferometría, los astrofísicos pronto se dieron cuenta de algo muy curioso: el gas se extendía mucho más lejos que la componente estelar. Esto es, si una galaxia tiene un tamaño cuando la vemos en colores ópticos, su tamaño típicamente se dobla cuando se observa el gas difuso HI a 21 cm. Dicho de otra manera: en las partes externas de las galaxias vemos gas donde no encontramos estrellas. La primera aplicación práctica que tuvo este hecho observacional fue poder determinar con mucha más precisión que la que se conseguía con espectros ópticos (con la que se ven las estrellas y las nebulosas) las curvas de rotación de las galaxias. Estos datos confirmaban lo que primero vio la astrofísica estadounidense Vera Rubin en galaxias cercanas y posteriormente encontrado en todas las espirales: las galaxias giran a más velocidad que la que se esperaría por la materia que vemos en ellas. La curva de rotación de las galaxias trazada por observaciones en HI a 21 cm también era plana y a velocidad constante (o incluso giraba un poco más rápido) a grandes distancias del centro. De aquí se llegó a la conclusión que el halo de materia oscura que envuelven las galaxias debería ser mucho más grande que lo que vemos en gas o estrellas, además de ser bastante homogéneo.

Figura 4: Esquema de la rotación de la Galaxia del Triángulo (M 33). Se representa la velocidad a la que se mueve la galaxia (eje vertical) con respecto a la distancia desde su centro (eje horizontal). Los puntos amarillos representan observaciones usando datos obtenidos con espectroscopía óptica, por tanto trazando la componente estelar de M 33. Los puntos azules provienen de las observaciones en la línea HI a 21 cm mostradas en la Figura 3. La línea continua es la curva de rotación de M 33 tal y como la proporcionan las observaciones. La línea discontinua es la curva de rotación de M 33 esperada considerando toda la masa visible (estrellas y gas) de la galaxia. Crédito: VLA, NRAO/AUI.

La Figura 4 muestra de forma muy esquemática la curva de rotación de la galaxia M 33. El eje horizontal representa la distancia a la que se mueven el gas o las estrellas desde el centro de M33. El eje vertical es la velocidad a la que se mueven. La figura combina datos en óptico (en amarillo, para las partes más internas de la galaxia, donde los datos en radio suelen ser más inciertos) y datos en radio (en azul), además de mostrar (línea discontinua) la curva de rotación esperada teniendo en cuenta la cantidad total de materia visible (estrellas y gas) que observamos en M 33. La única manera de “ajustar” modelos y observaciones (sin tener que recurrir a modificar la Teoría de la Gravitación de Newton) es considerar que M 33 posee un halo enorme de materia oscura.

Figura 5. Ejemplos de modelado de curvas de rotación de galaxias usando la línea de 21 cm del hidrógeno atómico. Se muestran dos galaxias (ESO 381-G020, e IC 5152, abajo) estudiadas dentro del cartografiado “LVHIS” (The Local Volume HI Survey), liderado por la astrofísica Baerbel Koribalski (CSIRO) y que usa datos del radio-interferómetro ATCA. Los paneles de la columna izquierda muestran la distribución y velocidad (codificada en color, la barra de color a la derecha de cada panel da el rango de velocidades) del gas en las galaxias. Los paneles centrales representan el mejor modelo de rotación conseguido. Los paneles de la columna derecha indican los “residuos” del ajuste (las desviaciones del modelo con respecto a las observaciones”), que es donde muchas veces aparecen las sorpresas. La elipse azul localizada en cada panel en la parte inferior izquierda es la resolución espacial obtenida. Crédito: Kirby, Koribalski, Jerjen & López-Sánchez 2012, MNRAS, 420, 2924.

El salto de tener sólo un número (la anchura de la línea de HI) a un mapa detallado de lo que hace el gas en cada punto es enorme. Gracias a los datos radio-interferométricos los astrofísicos pueden desarrollar modelos físicos de discos en rotación, con multitud de pequeñas características a modificar, que se “ajustan” a las observaciones. La Figura 5 muestra varios ejemplos del modelado de las curvas de rotación de galaxias usando datos HI a 21 cm. Entramos en un campo fascinante de investigación puntera actual en Astrofísica: ¿cuál es la dinámica de las galaxias? ¿Cómo se puede explicar? ¿Por qué hay “distorsiones” en el gas con respecto a lo esperado por un disco en rotación? ¿Qué efectos tienen en su evolución? ¿Cuál es exactamente la distribución de materia oscura? Aquí, al final y al llegar al detalle, volvemos a reconocer que cada galaxia tiene su propia peculiaridad, precisamente por la historia tan distinta (tanto dinámica como de formación estelar) que ha experimentado cada una.

Figura 6: Imagen de la galaxia compacta enana azul (BCDG) NGC 2915 obtenida combinando datos en el óptico tomados en el Telescopio Anglo-Australiano (AAT, Observatorio de Siding Spring, Australia), codificados en amarillo, con datos en la línea de 21 cm del hidrógeno atómico conseguidos con el radio-interferómetro Australia Telescope Compact Array (ATCA, Narrabri, Australia), codificados en azul. La extensión del gas neutro (azul) es 5 veces más extensa que la componente estelar (en amarillo). Crédito: Gerard Meurer, C. Carignan, S. Beaulie y K. Freeman.

Una vez que se comenzaron a tener observaciones radio-interferométricas de galaxias en la línea de 21 cm de HI los astrofísicos no pudieron parar. Aparecían más y más “sorpresas”. Por ejemplo, algunas galaxias estaban inmersas dentro de una nube de gas muchísimo mayor que la propia galaxia. Un caso destacado es la galaxia enana compacta azul (BCDG por sus siglas en inglés, “Blue Compact Dwarf Galaxy”) NGC 2915, que se muestra en la Figura 6. Observaciones en la línea de 21 cm del hidrógeno atómico usando el radio-interferómetro ATCA revelaron que el gas (codificado en azul en la imagen) se extendía 5 veces más lejos que las estrellas (en color amarillo). No solo hay mucho gas, sino también mucha materia oscura: gracias a la curva de rotación obtenida con estos datos en radio se ha estimado que NGC 2915 tiene entre 30 y 50 veces más materia oscura que materia visible.

Las sorpresas no terminaron ahí. Precisamente, al estar el gas atómico mucho más extendido que la componente estelar, se pudieron comenzar a estudiar con detalle las partes externas de las galaxias. Los sorprendentes descubrimientos que en este campo se están realizando merecen una atención especial. A ellos dedicaremos el siguiente artículo de esta serie.

Este post ha sido realizado por Ángel López-Sánchez (@El_lobo_rayado) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.

El artículo El hidrógeno en el Universo (III): El gas difuso de las galaxias se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El hidrógeno en el Universo (I): La emisión del hidrógeno neutro a 21 cm.
  2. El hidrógeno en el Universo (II): El mapa espiral de la Vía Láctea
  3. El Universo en un día: Las primeras galaxias, por Javier Armentia
Kategoriak: Zientzia

#Naukas16 Mito(bio)logía griega

Og, 2017-02-02 17:00

Carlos Lobato bucea en la nomenclatura científica de las especies para encontrar referencias mitológicas.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 Mito(bio)logía griega se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas16 ¿Que te chupe la qué?
  2. #Naukas16 Alucinaciones lingüísticas: los engaños de tu lengua materna
  3. #Naukas16 De peces y hombres
Kategoriak: Zientzia

El crimen más estúpido

Og, 2017-02-02 11:59

Imagen: Katie Edwards/Ikon Images/Corbis

Cuando los teóricos del derecho analizan las penas que corresponden a cada delito en su cálculo no sólo incluyen cosas como la gravedad del daño causado y el impacto sobre la vida social que provoca su comisión: también cuentan con un factor extra: la probabilidad de impunidad. Las penas de los delitos con mayor probabilidad de quedar impunes, sin que el culpable sea jamás descubierto, se agravan para compensar de modo que los que sí son descubiertos reciben un castigo mayor. De este modo se mantiene la disuasión de la pena: por un lado podrías delinquir y no pagar castigo, pero si eres descubierto este castigo reforzado te hará pagar esa posible impunidad. Porque todos los criminales pueden quedar impunes, a pesar de lo que nos digan películas y series de televisión: en la realidad hay muchos delitos que jamás son castigados.

En el ámbito de la ciencia también hay infracciones, y la más grave de todas ellas y la que peores problemas causa es el fraude científico: la invención de datos o su manipulación para conseguir conclusiones falsas. Algo que es especialmente repugnante ya que no sólo proporciona beneficios injustos a quien lo practica, sino que emponzoña el caudal de conocimiento de la Humanidad y puede desviar a generaciones de científicos futuros. Tan grave es el crimen que el castigo es drástico: el trabajo del científico defraudador (posterior al fraude y también anterior) es eliminado y sus descubrimientos se consideran vacíos y sin valor. Con independencia de las consecuencias administrativas que también pueda tener (pérdida de puesto de trabajo o de carrera profesional) es el peor castigo posible para alguien cuyo trabajo es producir conocimiento: que todo el que hayas creado sea considerado nulo y sin valor. La pena es drástica, pero en este caso no incluye, ni puede incluir, provisiones para compensar la posibilidad de impunidad. Porque lo más fascinante del fraude científico es que no hay ninguna duda de que te van a pillar, siempre, con absoluta certeza. En ese sentido el fraude científico es quizá el crimen más estúpido que se puede cometer, y es sorprendente que aún ocurra.

El fraude científico siempre se descubre, sin excepciones. Puede tardar décadas; el culpable puede salirse con la suya y completar una carrera profesional completa e incluso fallecer en loor de multitudes y respeto de sus pares, pero tarde o temprano sus desaguisados se descubrirán y su legado desaparecerá. No hay excepciones a esta regla: en su avance la ciencia siempre acaba por detectar y eliminar los datos fraudulentos. Y esto se debe a su modo de funcionamiento, y es imposible de evitar: si cometes fraude científico sabes que te descubrirán. Cualquier falsificación es sólo temporal. Y por eso cometer este tipo de crimen es bastante estúpido.

La causa es el modo de funcionamiento de la ciencia, y no tiene que ver con la repetición de experimentos sistemática. Tal y como está estructurada los científicos no se dedican a repetir los experimentos ajenos; la ciencia funciona con un principio de confianza en el que se asume la credibilidad de quien publica un dato, especialmente cuando lo hace en una revista conocida y tiene una reputación digna. Nadie tiene tiempo para dedicarse a repetir los experimentos de otro, y como demuestra la recientemente conocida como ‘crisis de reproducibilidad’ esto implica que a veces en determinadas ciencias algunos experimentos no pueden repetirse, o no dan los mismos datos. No existe una especie de ‘policía científica’ que compruebe que lo escrito en un ‘Journal’ es lo que sale al realizar la prueba. Nadie verifica los datos de esta forma.

Y sin embargo cualquier dato falso acabará por ser descubierto, porque aunque nadie repita un experimento todo el mundo va a utilizar los datos revelados para construir nuevas hipótesis y elaborar nuevos experimentos. En este proceso, de modo irremediable, los datos originales son puestos a prueba: si son falsos se acabará notando. En ciencia cada nuevo conjunto de resultados es un escalón sobre el que otros intentar alcanzar el siguiente peldaño: si el escalón no funciona quien intenta usarlo se dará cuenta. En las ciencias más activas este proceso tiene una impresionante velocidad y ferocidad; cuando numerosos laboratorios de todo el mundo compiten en el mismo (o muy cercano) campo de estudio los descubrimientos son incorporados al trabajo de todos los participantes a gran velocidad y cualquier falacia se descubre en el acto. Sólo hay una forma de ralentizar este proceso, y es dedicarse a un área de la ciencia tan abstrusa y poco poblada que los datos falsos duren años o décadas simplemente porque nadie los revisa: los fraudes científicos más longevos han sido en especialidades casi sin especialistas, en las que pueden pasar generaciones antes de que nadie revise resultados y trate de construir sobre ellos.

Pero alguien lo hará. Tardará lustros o siglos, el falsario llegará a enterarse o no, pero los datos falsos serán descubiertos con total certeza. El Universo, como decía Einstein, es sutil, pero no malicioso: no intenta engañarnos de modo deliberado. La realidad es la que es y los datos son los que son y en cuanto alguien más intente usar las falsificaciones como herramienta para seguir avanzando se dará cuenta de la transgresión. Por el mismo mecanismo que elimina las malas concepciones y las teorías erróneas las falsificaciones desaparecen a la larga. Porque así es como funciona la ciencia: avanzando sobre lo ya sabido, lo que implica revisar implícitamente todo lo conocido cada vez que se da otro paso adelante. Por eso es por lo que el fraude en ciencia puede catalogarse como el más estúpido de los crímenes: porque sabes que te pillarán seguro.

Más información:

Serie “Fraude científico”, por Joaquín Sevilla

(I). Una primera aproximación.

(II). La difusa frontera de la deshonestidad.

(III). Profundizando en los dos tipos de fraude.

(IV). Algunas consecuencias.

(y V). Resumen y conclusiones.

Sobre el autor: José Cervera (@Retiario) es periodista especializado en ciencia y tecnología y da clases de periodismo digital.

 

El artículo El crimen más estúpido se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Teorías, hechos y mentes
  2. Ciencia, poder y comercio
  3. Qué es un dato: la longitud de un hueso
Kategoriak: Zientzia

El primer transistor activado por calor

Az, 2017-02-01 17:00

El prototipo desarrollado en la Universidad de Linköping. Imagen: Thor Balkhed

Si escuchamos hablar de transistores, pensamos en electrónica; y si hablamos de electrónica pensamos en señales eléctricas. Pero puede que esto no sea ya así. Acaba de presentarse el primer transistor cuya señal de entrada es térmica, no eléctrica, abriendo todo un mundo de posibilidades en su aplicación.

Por ejemplo, un transistor controlado por el calor, si es lo suficientemente sensible, nos permite detectar pequeñas diferencias de temperatura. Una de las aplicaciones más inmediatas es médica: vendajes que permiten seguir continuamente (monitorizar) un proceso de curación.

El dispositivo desarrollado por los investigadores de la Universidad de Linköping (Suecia) consiste en un electrolito líquido que posee iones libres y moléculas poliméricas conductoras. Los iones, con carga positiva, se mueven muy rápidamente, mientras que los polímeros cargados negativamente por su tamaño muchísimo mayor se mueven mucho más lentamente. Cuando se somete al conjunto a un foco de calor, los iones “vuelan” al lado frío más alejado dejando atrás a los polímeros; esta separación crea una diferencia de potencial que es la que activa el transistor.

Imagen térmica convencional de un edificio con aislamiento térmico (a la derecha, predominantemente azul) y otro convencional (en tonos verdes).

La temperatura de los objetos no es más que una señal de radiación infrarroja, una señal térmica. El dispositivo desarrollado es 100 veces más sensible que los materiales termoeléctricos tradicionales; esto implica que un solo conector desde el electrolito, que es la sustancia sensible a la temperatura y que actúa de sensor con el transistor es suficiente para crear un “píxel inteligente”.

Una matriz de píxeles inteligentes no sería más que una cámara térmica: una cámara que permite ver las distintas señales térmicas del entorno. Con el desarrollo consiguiente nada impediría que pudiese incorporarse a los teléfonos inteligentes o a los dispositivos de muñeca asociados, ya que los materiales necesarios no son ni caros, ni raros ni tóxicos.

Referencia:

Dan Zhao, Simone Fabiano, Magnus Berggren, & Xavier Crispin (2017) Ionic thermoelectric gating organic transistors Nature Communications doi: 10.1038/ncomms14214

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Este texto es una colaboración del Cuaderno de Cultura Científica con Next

El artículo El primer transistor activado por calor se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Fuego y calor, esas materias inexistentes
  2. El calor degrada menos las margarinas enriquecidas
  3. Bioprotónica
Kategoriak: Zientzia

Un cifrado por sustitución: la ‘nictografía’

Az, 2017-02-01 11:59

El 30 de octubre de 1815, en Francia, se atribuía a Julien Leroy la patente de un invento que denominó nyctographie (nictografía, [3]) para ‘l’art d’écrire sans le secours des yeux’ (el arte de escribir sin la ayuda de los ojos). Se trataba de un pupitre sobre el cual se fijaba la hoja de papel sobre la que se deseaba escribir. Se colocaba entonces un hilo de metal transversalmente sobre la hoja, en la dirección de las líneas que se querían trazar. El dedo meñique se deslizaba a lo largo de este hilo para dirigir y conservar la mano en la posición adecuada. Cuando se llegaba al final de cada línea, un movimiento en cremallera provocaba una pequeña elevación de la hoja, y volvía a escribirse otra línea siguiendo el mismo hijo metálico que ya se encontraba un poco más abajo sobre el papel. Este sistema dejaba un pequeño espacio entre la línea anterior y el hilo de metal, y se podía escribir una línea paralela a la primera, después una tercera y así sucesivamente. Dos varillas paralelas retenían la hoja y servían para indicar el principio y el final de cada línea. El invento estaba pensado para personas ciegas o que deseaban escribir de noche [1].

Sin embargo, si se busca la palabra inglesa nyctography (nictografía o grafía nocturna, [4]), se atribuye su invento al lógico y matemático Lewis Carroll en 1891. La nictografía se define en este caso como una forma de cifrado por sustitución, también utilizado de noche para escribir sin luz. Carroll también habría inventado el primer nictógrafo, el utensilio con el que practicar la nictografía.

Carroll ideó este sistema porque se despertaba a menudo de noche y quería anotar rápidamente los pensamientos que le venían a la cabeza, sin tener que perder el tiempo en encender una lámpara para apagarla poco después. Al principio, Carroll usaba un rectángulo de cartón junto a otro rectángulo recortado en el centro para guiar su escritura en la oscuridad. Pero parece que los resultados no eran demasiado legibles.

La última versión mejorada de su nictógrafo quedó registrada en su diario el 24 de septiembre de 1891 y fue objeto de una carta a la revista “The Lady” el 29 de octubre 1891:

Cualquiera que haya experimentado, como me ha ocurrido a menudo, el proceso de levantarse de la cama a las dos de la madrugada en una noche de inverno, encender una vela y escribir un pensamiento afortunado que, de otra manera, sería probablemente olvidado, estará de acuerdo conmigo en que es algo realmente incómodo. Lo único que tengo que hacer ahora, si me despierto y pienso en algo que deseo dejar registrado, es sacar de debajo de la almohada un pequeño libro de notas que contiene mi nictógrafo, escribir unas pocas líneas, o incluso unas pocas páginas, sin ni siquiera sacar las manos fuera la ropa de cama, volver a poner en su sitio el libro, e ir a dormir de nuevo. […] Tracé filas de agujeros cuadrados, cada uno para contener una letra (encontré que un cuarto de una pulgada cuadrada era un tamaño muy conveniente), y ésta resultó una idea mucho mejor que la anterior; pero las letras seguían siendo ilegibles. Entonces me dije a mí mismo: ‘¿Por qué no inventar un alfabeto cuadrado, usando sólo puntos en las esquinas y líneas a lo largo de los lados?’ Pronto me di cuenta de que, para hacer la escritura fácil de leer, era necesario saber dónde empezaba cada cuadrado. Esto lo logré por medio de la pauta de que cada letra cuadrada debía contener un gran punto negro la esquina noroeste. […] Lo conseguí adjudicando a las veintitrés letras cuadradas una apariencia distinta de las letras que iban a representar. Piense en el número de horas solitarias que pasa a menudo un hombre ciego sin hacer nada, cuando de buena gana anotaría sus pensamientos, y se dará cuenta de la bendición que significaría para él darle un pequeño e ‘indeleble’ libro de notas, con una pieza de cartulina conteniendo filas de agujeros cuadrados, y enseñarle el alfabeto cuadrado.

En efecto, este cifrado usaba un sistema de puntos o trazos, basados en un punto situado siempre en la esquina superior izquierda, que permitía anotar sin necesidad de mirar.

El cifrado inventado por Lewis Carroll. Imagen de Lewis Carroll Society of North America.

El dispositivo consistía en una tarjeta cuadriculada con dieciséis cuadrados perforados. Carroll escribiría uno de sus símbolos en cada casilla y después movería la tarjeta hacia abajo para escribir la siguiente línea, y así sucesivamente. El escritor podía reproducir al día siguiente sus pensamientos nocturnos a partir de ese especial cifrado.

Reconstrucción del ‘nictógrafo’ de Carroll (Noah Slater). Imagen tomada de Wikipedia.

En 2005, Alan Tannenbaum (miembro de la Lewis Carroll Society of North America) construyó la fuente del alfabeto cuadrado de Carroll, transcribió y produjo una edición limitada de Las Aventuras de Alicia en el País de las Maravillas. En 2011 se publicó Alice’s Adventures in Wonderland: An edition printed in the Nyctographic Square Alphabet devised by Lewis Carroll, el libro de Alicia escrito en este especial alfabeto inventado por Carroll. El aspecto de una página es el siguiente:

Puede verse la transcripción completa de esta página del libro en este enlace.

¡Una original manera de conocer la historia de Alicia!

Referencias:

[1] «Ordonnance du Roi portant Proclamation des Brevets d’invention, de perfectionnement et d’importation, délivrés pendant le troisième trimestre de 1815», Bulletin des lois, 30 octobre 1815.

[2] Marta Macho Stadler, Alicia, escrita en un “cuadriculado” alfabeto, ::ZTFNews.org, 9 octubre 2013

[3] Nyctographie, Wikipédia

[4] Nyctography, Wikipedia

[5] Alice’s Adventures in Carroll’s own Square Alphabet, Lewis Carroll Society of North America

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

El artículo Un cifrado por sustitución: la ‘nictografía’ se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Criptografía con matrices, el cifrado de Hill
  2. La escala perfecta
  3. Transmisión de voz con cifrado cuántico a larga distancia
Kategoriak: Zientzia

#Naukas16 De peces y hombres

Ar, 2017-01-31 17:00

¿Cómo estudiar el comportamiento de las masas humanas? Empleando modelos animales. Marta Iglesias lo ilustra.

Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo #Naukas16 De peces y hombres se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. #Naukas16 Aproximadamente
  2. #Naukas16 ¿Que te chupe la qué?
  3. #Naukas16 Alucinaciones lingüísticas: los engaños de tu lengua materna
Kategoriak: Zientzia

Orriak