Transmisión de voz con cifrado cuántico a larga distancia
El cifrado, cualquier método que permita aumentar la seguridad de un mensaje o de un archivo mediante la codificación del contenido, de manera que sólo pueda leerlo la persona que cuente con la clave de cifrado adecuada para decodificarlo, es crítico en muchos aspectos de la vida moderna. Solo hay que pensar, por ejemplo, en los millones de transacciones que se realizan todos los días con tarjetas de crédito. Sin embargo, una comunicación perfectamente segura solo puede conseguirse usando uno de los fenómenos más misteriosos de la mecánica cuántica, el entrelazamiento entre partículas. Al menos en teoría.
Un grupo de investigadores, encabezado por Hua-Lei Yin, de la Universidad de Ciencia y Tecnología de China, ha demostrado experimentalmente que un protocolo seguro conocido como distribución de clave cuántica independiente del dispositivo de medida (MDIQKD, por sus siglas en inglés) funciona en una distancia de 404 kilómetros. Este resultado dobla la plusmarca anterior para una transmisión MDIQKD y apunta a que puede pensarse en él como una forma de asegurar las comunicaciones cuánticas seguras entre ciudades.Uno de los puntos fuertes del MDIQKD, un protocolo propuesto en 2012, es que funciona incluso cuando se usan detectores de fotones que distan de ser ideales y que, por ejemplo, tienen una eficiencia de detección baja. Otro es que permite superar los llamados bucles de seguridad en las comunicaciones cuánticas, lo que vulgarmente llamaríamos rastrear la presencia de espías, ya que puede enviar pulsos de luz como señuelos con los que detectar intentos de escucha no deseados.
Yin y sus colaboradores enviaron pulsos de fotones infrarrojos a través de fibras ópticas con longitudes de entre 102 y 404 km. Ajustando el número promedio de fotones por pulso, entre otros parámetros, los investigadores consiguieron optimizar el esquema MDIQKD. Tras todas las pruebas se encontraron con que el protocolo era seguro también en la distancia más larga.
Para cada longitud los científicos también determinaron la velocidad máxima a la que las claves criptográficas podían ser distribuidas de forma segura. En comparación con experimentos anteriores, la velocidad que midieron era 500 veces superior, lo que significa que la tasa de distribución de claves sería lo suficientemente alta como para asegurar una transmisión de voz con cifrado cuántico por teléfono.
Referencia:
H-L Yin et al (2016) Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber Phys Rev. Lett. doi: 10.1103/PhysRevLett.117.190501
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo Transmisión de voz con cifrado cuántico a larga distancia se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Más matemáticas para ver y tocar
Teniendo en cuenta el interés que suscitó mi anterior entrada en el Cuaderno de Cultura Científica, Matemáticas para ver y tocar, me ha parecido interesante escribir una nueva entrada con más ejemplos de demostraciones visuales de fórmulas matemáticas sobre sumas de números.
Pero vamos a aprovechar esta entrada para realizar un mini homenaje a la persona que más ha hecho por la divulgación de las demostraciones gráficas, el matemático norteamericano Roger B. Nelsen, autor de la serie de libros Proofs without words (Demostraciones sin palabras), ya que él es el autor de todas las demostraciones para ver y tocar que vamos a mostrar en esta entrada.
“Números triangulares y cuadrados” (1972), del artista norteamericano Mel Bochner. Las matemáticas para ver y tocar también pueden estar relacionadas con el arte moderno
En la anterior entrega vimos demostraciones para ver y tocar, haciendo uso de los pequeños cubos del material didáctico LiveCube, de las fórmulas para la suma de los primeros números naturales, de sus cuadrados o de los primeros números impares. En la presente entrada vamos a ver demostraciones gráficas de la fórmula que expresa el valor de la suma de los cuadrados de los números impares, del resultado matemático que dice de que todo cubo es suma de números impares consecutivos o de las sorprendentes sumas consecutivas de números consecutivos.
Empecemos con la fórmula de las sumas de los cuadrados de los números impares y la demostración sin palabras que realizó Roger B. Nelsen en 1994, publicada en College Mathematical Journal (vol. 25, no. 3, p. 246) y recogida en su segundo libro sobre Proofs without words. La fórmula dice…
.
Para realizar esta demostración visual, a través del caso particular de n = 3, es decir, la suma de los cuadrados de los tres primeros números impares 1, 3 y 5 (en general, 12 + 32 + 52 + … + (2n – 1)2), empezamos precisamente con sencillas estructuras cuadradas con 12, 32 y 52 cubos (en general, estructuras cuadradas con hasta (2n – 1)2 cubos), cada una de las cuales son cortadas en dos partes como aparece en la imagen, en una parte verde y otra amarilla, para volverlas a unir de forma escalonada, de manera que generamos una nueva estructura de tipo piramidal (verde y amarilla en la imagen).
.
Una vez entendido este paso, debemos realizar tres copias de esta estructura, la verde y amarilla anterior, la roja que aparece en la imagen, que es igual a la anterior, y una azul que es esencialmente igual a las anteriores, salvo que está montada de forma simétrica, y es la imagen especular de la verde y amarilla, como se ve en la imagen.
.
Finalmente, se unen las tres estructuras, obteniéndose la nueva estructura que se muestra en la imagen.
.
Existen varias formas de contar los cubos que conforman esta estructura, que son tres veces nuestro objeto de deseo, la suma de los cuadrados de los primeros números impares, 12 + 32 + 52 + … + (2n – 1)2.
Una de las maneras, que no es la que nosotros vamos a realizar hoy aquí, sería hacer una copia de la estructura y colocarla, invertida, sobre la que ya tenemos, para formar un ortoedro, es decir, un prisma rectangular, con una base de 2n + 1 cubos de largo, 2n – 1 de ancho y 2n de alto. Luego, el número total de cubos del ortoedro es (2n + 1) (2n – 1)(2n) y el valor que nosotros buscamos la sexta parte de este, obteniéndose la fórmula.
Otra manera de contar el número de cubos de la estructura anterior es tener el cuenta que es (2n + 1) copias de la estructura que mostramos abajo, es decir, 1 + 2 + 3 + … + (2n – 1) cubos.
.
Luego en total, (2n + 1)(1 + 2 + 3 + … + (2n – 1)) cubos, de donde se deduce la fórmula para la suma de los cuadrados de los primeros números impares, 12 + 32 + 52 + … + (2n – 1)2.
.
A continuación, vamos a mostrar una demostración sin palabras que Roger B. Nelsen realizó del siguiente resultado matemático: todo cubo es la suma de números impares consecutivos. Esta demostración apareció publicada en Mathematics Magazine (vol. 66, no. 5, 1993, p. 316) y se recoge en el primer volumen de Proofs without words.
Más aún, se demostrará que para un número cualquiera n, su cubo es igual a la siguiente suma de números impares consecutivos.
.
Veamos la demostración gráfica, ilustrando el caso particular de n = 5, que mostramos en las imágenes. Partimos de un cubo grande formado por 53 cubos (en general con n3 cubos), como el que aparece en la imagen.
.
Tomamos los cubos de la parte superior que aparecen en verde y los recolocamos encima de la estructura como aparece en la siguiente imagen.
.
Ahora dividimos la estructura resultante en secciones verticales, superficies planas con un grosor de un cubo, como aparecen en la imagen. Y contamos cuantos cubos hay en cada una de las secciones, la suma de todas ellas tiene que ser n3 (53 en el caso particular de la imagen).
.
En consecuencia, obtenemos la fórmula anterior, que nos expresa el cubo de cualquier número como suma de números impares consecutivos. Por ejemplo, para los 5 primeros números sería…
.
La última de las demostraciones tiene que ver con una de esas propiedades de los números que suele presentarse como mágica, una propiedad numérica expresada como sumas consecutivas de números consecutivos. Es una curiosa propiedad que llama la atención, como vemos en las siguientes sumas…
.
Y, de hecho, se puede generalizar en la siguiente fórmula.
.
La siguiente demostración de esta curiosa propiedad se basa en la técnica del doble conteo, es decir, si contamos los elementos de un conjunto de dos formas distintas, el resultado debe ser el mismo. En realidad las fórmulas anteriores estaban basadas en gran medida en esta técnica.
El conjunto de partida para utilizar el conteo doble es el número de cubos de la siguiente estructura.
.
Para la primera forma de contar el número de cubos de esta estructura, con el objetivo de obtener la propiedad que estamos buscando, necesitamos separar la estructura en secciones verticales, cortando en la dirección que marcan los colores, como se ve en la siguiente imagen, generando secciones monocolor. Y así tenemos que la cantidad de cubos de la estructura es la suma de las cantidades de cada una de las secciones.
.
Para la segunda forma de contar los cubos se corta la estructura inicial en secciones verticales perpendiculares a las anteriores, quedando secciones bicolor. De nuevo, debemos calcular el número de cubos de cada sección, que podemos ver en la imagen.
.
Si tenemos en cuenta las dos cantidades obtenidas, que deben de ser iguales, se obtiene la fórmula deseada. Recordémosla…
.
Esta demostración gráfica que aparece en el primero de los libros Proofs without words de Roger B. Nelsen, fue publicada por el mismo en Mathematics Magazine (vol. 63, no. 1, 1990, p. 25).
Portada de enero de 2009 de la revista “The College Mathematical Journal”, con la imagen de la obra “Meditaciones sobre el Teorema de Pitágoras” (1972), del artista Mel Bochner
Bibliografía
1.- Roger B. Nelsen, Demostraciones sin palabras (ejercicios de pensamiento visual), Proyecto Sur, 2001.
2.- Roger B. Nelsen, Proofs without words II, MAA, 2000.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica
El artículo Más matemáticas para ver y tocar se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas16 Volando voy y casi no vengo porque en la gasolinera yo me entretengo
Conocer tus unidades puede ser cuestión de vida o muerte. Sergio L. Palacios nos lo cuenta con su maestría habitual.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 Volando voy y casi no vengo porque en la gasolinera yo me entretengo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Alquimia musulmana
Un sabio sostiene la tabla del antiguo conocimiento alquímico mientras Ibn Umail la explica. Ilustración de Al-mâ’ al-waraqî (El agua plateada; 1339) de Muhammed ibn Umail al-Tamimi
A pesar de su encuentro con el fuego griego los árabes terminaron dominando la región y mucho más allá. Pronto comenzaron con el proceso de asimilación del conocimiento de sus nuevos súbditos. Baghdad se convirtió en el centro intelectual de referencia de Europa, Asia y África, y eruditos de todas partes recibieron invitaciones para enseñar en la corte. Entre estos invitados estaban sabios hindúes, muchos médicos y escribas, y como los tantristas veneraban a 18 magos-alquimistas de los que al menos 2 eran chinos, el acceso al conocimiento hindú incluía un acceso al conocimiento chino, si bien limitado.
Una información que llegó a los musulmanes en algún momento del siglo XIII y, a través de ellos, a Occidente, posiblemente a través de esta ruta chino-hindú fue la fórmula de una mezcla explosiva que terminó llamándose pólvora, desarrollada paradójicamente por los taoístas chinos para alcanzar la inmortalidad. Esta mezcla de nitrato potásico (KNO3), azufre (S) y carbón (que no carbono) explota porque los sólidos reaccionan cuando se les aproxima una fuente de calor (llama) para formar gases (CO, N2, SO2) que ocupan muchísimo más espacio que los sólidos originales y lo ocupan muy rápidamente.
Las tropas mongolas arrojan una bomba a un guerrero samurai a caballo durente la invasión de Japón (1274)
Los dirigentes musulmanes también acogieron a muchos estudiosos refujiados alejandrinos y, a través de ellos tuvieron acceso a las obras de Platón, Aristóteles, Galeno, pseudo-Demócrito, y Zósimo de Panápolis, autor de los libros de alquimia más antiguos de los que se tiene noticia. Las traducciones al árabe desde el griego fueron una ocupación erudita bastante frecuente en los siglos X y XI. Del siglo XI, precisamente, data la traducción de Ibn Al-Hassan Ibn Ali Al-Tughra’i de los textos de Zósimo.
La principal contribución de los musulmanes a la alquimia (aparte del nombre, obviamente) fue prestar menos atención a la parte mística del arte y centrarse más en la parte práctica tal y como hicieron los primeros alquimistas alejandrinos. Quizás los musulmanes estaban menos interesados en la magia como consecuencia de las propias características de su religión, donde todo está en las manos de Alá y sucede por su voluntad, y por eso daban tanta importancia a los procesos como a los resultados finales. Fuese cual fuese la razón, la cuestión es que la alquimia que terminaría llegando a Occidente, contra la opinión general, fue una alquimia muy práctica.
Equipo de destilación de Zósimo según un texto bizantino griego del siglo XV.
Basándose probablemente en las cualidades aristotélicas de los elementos, los alquimistas árabes propusieron que todos los materiales tenían naturalezas (como calor, frialdad o sequedad) y la tarea del alquimista era conseguir esas naturalezas “puras”, determinar la proporción en la que entraban en los distintos materiales, y recombinarlas entonces en las cantidades apropiadas para conseguir los productos deseados. Así, por ejemplo, ciertos materiales orgánicos cuando se calientan producen gases, llamas, líquidos y cenizas; estos productos se asociaban a aire, fuego, agua y tierra, los elemntos que habrían compuesto el material original. Cada uno de estos productos se trataban posteriormente, cuando era posible, por destilación, para conseguir obtener la naturaleza del elemento: frialdad, calor, humedad y sequedad.
En la alquimia árabe encontramos referencias a una piedra filosofal y al oro potable, fuente de la eterna juventud, pero ambas ideas tienen un origen chino. Y serán los escritos musulmanes, muchos más claros y precisos desde el punto de vista práctico que los de sus predecesores, la base sobre la que se edificará la alquimia europea.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Alquimia musulmana se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La óptica se hace atómica: la lente más pequeña del mundo
Durante siglos, los científicos han creído que la luz no podía ser enfocada por debajo de un tamaño inferior a su longitud de onda, del orden de una millonésima de metro. Sin embargo, investigadores del Centro de Física de Materiales de San Sebastián (CSIC-UPV/EHU) y del Donostia International Physics Center (DIPC), en colaboración con la Universidad de Cambridge, han creado la lente más pequeña del mundo, capaz de focalizar la luz en espacios mil millones de veces más ajustados, del tamaño de un único átomo.
“Nuestras predicciones teóricas sugerían que esto podía ser posible, como así se ha comprobado ahora”, asegura el Prof. Javier Aizpurua, investigador en el Centro de Física de Materiales de San Sebastián y el DIPC, que lidera los esfuerzos teóricos de esta investigación, y cuyo desarrollo ha permitido entender el confinamiento y la interacción de la luz con moléculas en escalas tan pequeñas.
University of Cambridge / Bart de Nijs & Javier Aizpurua
El equipo de investigadores experimentales de Cambridge, liderado por el Prof. Jeremy Baumberg, ha utilizado oro altamente conductor para fabricar la cavidad óptica más pequeña del mundo. Esta cavidad – denominada por los investigadores ‘pico-cavidad’ – está formada por la protrusión de un único átomo en una estructura de oro, y confina la luz a una distancia inferior a una mil millonésima de metro. En el experimento, junto a la cavidad se encuentran una serie de moléculas, posibilitando de este modo una nueva manera de estudiar la interacción entre luz y materia. Los resultados han sido publicados en Science.
De la misma manera que una mano con una púa percute las cuerdas de una guitarra, la energía de la luz puede activar las vibraciones de un determinado enlace químico de una molécula. Este fenómeno se denomina interacción optomecánica. En este trabajo, los investigadores han conseguido que la luz localizada en la picocavidad active las vibraciones de una molécula cercana, en lo que podría entenderse como la guitarra más pequeña del mundo, una guitarra molecular activada por luz.
“Es una interacción optomecánica molecular, y puede utilizarse para conmutar señal óptica en la escala atómica, es decir, para tocar “notas” específicas y particulares de nuestra “guitarra” molecular con luz: cierta luz hace tocar unas notas, y otra luz no es capaz de activarlas”, añade Aizpurua.
La construcción de nanoestructuras con control de átomos aislados es tremendamente exigente, y requiere la refrigeración de las muestras a -260°C para congelar los escurridizos átomos de oro. Al iluminar con luz láser las nanopartículas de oro, unos pocos átomos aislados se mueven formando la picocavidad. En ese mismo instante, la luz focalizada en esta picocavidad activa la vibración molecular, proceso que es monitorizado en tiempo real.
Los átomos de oro se comportan como diminutas cestas conductoras que atrapan la luz, y presentan el potencial de abrir nuevas perspectivas en el campo de las reacciones químicas catalizadas por luz en las que las picocavidades permitirían la fabricación de complejos moleculares desde componentes más simples, así como desarrollar nuevos dispositivos optomecánicos.
Referencia:
Single-molecule optomechanics in ‘pico-cavities’. Felix Benz, Mikolaj K. Schmidt, Alexander Dreismann, Rohit Chikkaraddy, Yao Zhang, Angela Demetriadou, Cloudy Carnegie, Hamid Ohadi, Bart de Nijs, Ruben Esteban, Javier Aizpurua, Jeremy J. Baumberg. Science 354, 725-728 (2016). DOI: 10.1126/science.aah5243
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo La óptica se hace atómica: la lente más pequeña del mundo se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Beber alcohol produce cáncer
Cada cierto tiempo se da a conocer algún estudio cuyos resultados indican que tal o cual producto o tal o cual tecnología causan o pueden causar cáncer. Estas informaciones se refieren normalmente a ciertos productos, a alimentos de origen transgénico, o a las ondas electromagnéticas que envían y reciben las antenas y aparatos de telefonía móvil. Casi siempre que saltan a los medios de comunicación se trata de informaciones falaces. O bien no se han realizado los estudios que se invocan o, si se han realizado, no cuentan con el respaldo de la comunidad científica por haber sido hechos de forma defectuosa; a veces se trata de estudios sin resultados concluyentes, y de esa falta de conclusiones se señala o se insinúa que “pueden” o “podrían” causar cáncer. El caso es que, por falaces que sean, esas informaciones tienen mucho impacto y generan alarma social. Que algo no produzca daño no es noticia; que lo produzca, lo es. Casi siempre.
De acuerdo con un estudio dado a conocer hace unas semanas, el consumo de alcohol produce cáncer en siete áreas diferentes del organismo: bucofaringe, laringe, esófago, hígado, colon, recto y mama. Y no cabe descartar que además de esas siete, haya otras en las que se desarrollen tumores como consecuencia del consumo de alcohol. De hecho, cada vez hay más pruebas de que beber alcohol puede producir también cáncer de piel, de páncreas y de próstata. Pues bien, la repercusión del estudio citado ha sido mínima. Si en vez de alcohol el efecto cancerígeno se le hubiese atribuido a la telefonía móvil, algún aditivo alimentario o un producto biotecnológico habría sido mucho mayor y ya se habría exigido su prohibición o retirada. No ha sido el caso.
Al leer esto habrá quien piense que el potencial del alcohol para producir cáncer se limita a los efectos de la ingestión de altas dosis de manera continuada o frecuente. Mucho me temo que no es así. Evidentemente, el riesgo es proporcional a la dosis: existe –como se dice en la jerga científica- una relación “dosis-respuesta”. O sea, cuanto mayor es la dosis mayor es el riesgo de desarrollar un tumor. Pero eso no significa que los efectos dañinos sólo se produzcan por encima de cierto umbral de ingestión. No. El efecto cancerígeno del alcohol es, lógicamente, probabilístico, pero ocurre desde dosis bajas. Utilizando el símil de la lotería, es mucho más probable que toque si se compran muchos números, pero comprando un único número, también puede tocar.
Los autores del estudio señalan que aunque desconocen el mecanismo biológico que subyace al efecto del consumo de alcohol sobre el cáncer, la relación entre ambos fenómenos va más allá de un mero vínculo estadístico en el que podrían mediar otros factores. De hecho, la asociación entre el desarrollo de diferentes tipos de cáncer y el consumo de alcohol ya se conocía; tanto la Organización Mundial de la Salud en 2012, como, al menos, un metaestudio -análisis conjunto de numerosos estudios- de 2013 habían puesto de relieve la existencia de una asociación entre el alcohol y el desarrollo de determinados tumores. El publicado hace unas semanas es concluyente y muy contundente; no se trata de un simple vínculo, sino de una relación causal bien establecida: el agente responsable directo del desarrollo de los cánceres citados es el consumo de alcohol, incluso a dosis relativamente bajas.
Sally Davies, Chief Medical Officer del gobierno británico (asesora principal en materia de salud), ha declarado en una comparecencia parlamentaria que cada vez que toma una copa de vino toma una decisión. Algunos hemos tomado nota.
——————————————
Las fuentes utilizadas han sido esta, esta y esta.
—————————————————-
Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU
————————————————–
Este artículo fue publicado en la sección #con_ciencia del diario Deia el 14 de agosto de 2016.
El artículo Beber alcohol produce cáncer se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas16 El rey que creyó estar hecho de vidrio
.
Hubo una vez un rey que creyó estar hecho de vidrio y al que la Wi-Fi ponía enfermo… O algo así. Ambrosio Liceaga nos lo cuenta bien contado.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 El rey que creyó estar hecho de vidrio se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La forma de las hojas
Llega el otoño y nuestro suelo se llena de hojas. Grandes y pequeñas, estrechas y anchas, simples y compuestas, la diversidad de formas de las hojas es enorme. De la aguja del pino a las hojas con forma de espada de muchas hierbas, de las hojas-trampa de las plantas carnívoras en forma de cepo o de jarra con tapa, a otros casos, como los cactus en los que la hoja desaparece o queda reducida a un hilo o una espina, la diversidad foliar es uno de los factores que permiten que las plantas vivan en casi cualquier lugar del territorio continental, de la mayoría de los desiertos a los bosques tropicales.
Las hojas son el principal lugar de la fotosíntesis y, al final, son la fuente de la práctica totalidad del alimento del planeta. El programa genético que controla la formación de las hojas en su estructura definitiva, la morfogénesis foliar, se ha conocido recientemente. Conocer los genes implicados en la formación de las hojas, su tamaño, su forma, su frecuencia puede dar lugar a una nueva revolución verde con un masivo incremento de las cosechas porque la productividad de la inmensa mayoría de las plantas va a depender del éxito fotosintético de sus hojas. También puede ayudar a generar variantes de nuestras cosechas que estén mejor adaptadas para sobrevivir en un mundo más caliente, algo desgraciadamente necesario. Es triste que en vez de luchar contra el calentamiento global estemos ya buscando formas de que su efecto sea menos desastroso.
Como sabemos desde los tiempos de Darwin, la selección natural actúa por azar sobre los individuos de una especie. Los fenotipos de esas especies son la expresión de un reservorio, un depósito de diversidad genética, cientos de miles de genes y secuencias de ADN no codificante que son el sustrato genético de cada especie. Es decir, la selección actúa sobre los organismos y las especies, sobre su forma y su función (lo llamamos fenotipo) y ese fenotipo es el resultado de la interacción entre el material genético (genotipo) y el ambiente. Este proceso evolutivo ha actuado a lo largo de millones de años sobre todas las especies siendo las más variables, las que mejor se adaptaban a un medio cambiante, las que tenían mayores probabilidades de sobrevivir.
Frente a la evolución biológica, la selección artificial es que el hombre elige, sobre esa diversidad natural, algunas características, plantas más productivas, animales más mansos, incluso factores estéticos como tulipanes de colores sorprendentes o peces de acuario con colas maravillosas u ojos saltones. Este proceso de selección artificial fue el fundamento de la agricultura, la ganadería y de la diversidad de nuestros animales de compañía. Es algo que se puede ver con claridad en la variedad de las razas de perros, de un chihuahua sin pelo a un galgo afgano de pelaje largo y denso, de un pequinés a un san bernardo.
La tercera fase tras la evolución biológica y la selección artificial en la que entramos ahora es actuar no solo sobre el fenotipo sino sobre la diversidad genética (genotipo), crear nosotros mismos la variedad de ADN más atractiva para nuestros intereses. Podríamos llamarla selección dirigida y la nueva tecnología CRISPR/Cas9 nos permitirá “editar” el genoma de cualquier célula.
La pregunta sería cuál es la forma ideal de una hoja y cómo podemos diseñarla. Los genes y moléculas que guían la morfogénesis foliar son muy parecidos en grupos muy diferentes de plantas. Básicamente hay combinaciones de genes que promueven el crecimiento y otras que lo detienen, y junto a ellas otros genes que regulan la activación y desactivación de esos genes en función de las condiciones ambientales. Esas combinaciones de genes de activación y de inhibición son las que hacen que algunas hojas tengan bordes lobulados como en el roble o que se trate de hojas compuestas donde se forman foliolos en torno al raquis o eje central como en una acacia.
Un ejemplo claro puede ser el tamaño: para los que vivimos en un clima continental extremado con veranos secos y calurosos e inviernos fríos como el del centro de la península nos sorprende el tamaño que alcanzan las hojas de algunas plantas cuando las vemos en las zonas costeras andaluzas o en las Islas Canarias. El programa genético inhibe el crecimiento porque no interesa tener hojas tan grandes si eso te supone ser más susceptible a las heladas o perder demasiada agua en las épocas secas.
La auxina, una hormona vegetal, es un elemento clave. Si se aplica auxina al borde de una hoja de tomatera, pierde su aspecto “plegado” o lobulado y crece toda por igual. El otro lado, el que no ha recibido auxina, crece normalmente. En otras plantas, se ha visto que la respuesta a la auxina se produce solo en puntos específicos de las hojas en desarrollo e inhibiendo su acción, se impide la formación de foliolos.
También se han encontrado genes “de borde” que se expresan en los pequeños espacios que separan los foliolos. Estos genes inhibirían el crecimiento de las células de las hojas en esas zonas entre foliolos. Si se inhiben estos genes de borde, en vez de formarse varios foliolos, se forma una hoja ancha. Se han encontrado otros genes que afectan al grosor de la hoja y recientemente se ha visto uno que controla el tamaño de hojas, pétalos y semillas. Cuando se sobreexpresa este gen en Arabidopsis, una planta muy usada en Biología molecular, la planta tiene hojas más grandes, flores más grandes y semillas más grandes.
La morfogénesis en animales implica el uso a gran escala de apoptosis y también de la migración celular. Sin embargo, estos mecanismos no son muy prácticos en plantas: las paredes celulares hacen que los restos de una célula muerta permanezcan después de la apoptosis y al mismo tiempo impiden que una célula se pueda deslizar a lo largo de otra. Esto hace que la diversidad morfológica en las plantas surja por otros mecanismos: cambios en los rangos de división en una región celular determinada y en la direccionalidad del crecimiento.
La selección dirigida es de una importancia crucial porque las plantas están adaptadas al ambiente natural pero las condiciones de cultivo pueden ser muy diferentes. A menudo hacemos crecer las plantas de cultivo en una densidad extrema donde la cantidad de luz, por la sombra de las plantas vecinas, es muy inferior a la normal. Toda esta investigación nos puede llevar a plantas con hojas más grandes (y hay muchas especies de las que lo comemos son las hojas como la lechuga, espinacas, canónigos…) o con hojas con formas mejor adaptadas a nuestras condiciones de cultivo.
Otro punto sobre el que se está actuando son sobre los estomas. Los estomas son pequeñas aperturas en la superficie de la hoja que comunican el exterior y el interior de la hoja. A través de ellos se produce el intercambio de CO2 y oxígeno, para que la planta pueda fijar ese dióxido de carbono y hacer azúcares. Son también claves en el control de la temperatura de la planta y de la pérdida de agua. Un grupo de la Universidad de Kioto ha identificado un gen llamado stomatogen. Cuando se obtiene la proteína que codifica ese gen y se aplica a una hoja en desarrollo, aumenta la densidad de estomas. Manipulando el número de estomas podemos conseguir variedades de plantas más resistentes al calor o a la sequía.
El escenario que se plantea para el futuro es un aumento en el CO2 presente en la atmósfera y un aumento de la temperatura. Si hay mucho CO2 las hojas cierran sus estomas pero entonces no pueden transpirar agua, que es el sistema que tienen para bajar su temperatura. Si además la temperatura es más alta de la que esa planta está acostumbrada, el resultado es que la planta se sobrecalienta y muere. Podemos pensar que la evolución biológica se debería encargar de esos cambios pero es un proceso lentísimo y el calentamiento global causado por el hombre es un proceso acelerado. Realmente muchas especies no tienen tiempo para hacerlo en la zona donde actualmente se cultivan si no les echamos una mano. Muchos especialistas en plantas consideran que aumentando artificialmente el número de estomas podemos dotar a las plantas de mayor adaptabilidad y aumentar sus posibilidades de supervivencia que, especialmente en el caso de las plantas cultivadas, son clave para nuestra propia supervivencia.
Este post ha sido realizado por José Ramón Alonso (@Jralonso3) y es una colaboración de Naukascon la Cátedra de Cultura Científica de la UPV/EHU.
Para leer más:
- Geddes, L. (2010) Perfect plants for a warmer world. New Scientist 275: 6-7.
- Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136(17): 2997-3006.
- Mentink RA, Tsiantis M (2015) From limbs to leaves: common themes in evolutionary diversification of organ form. Front Genet 6: 284.
El artículo La forma de las hojas se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas16 Aproximadamente
Los cálculos, aparentemente imposibles, de algunas cantidades a partir de información muy escasa se conocen como problemas de Fermi. Carlos Chordá ilustra cómo pueden llevarse a cabo estas estimaciones.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas16 Aproximadamente se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Los museos y el efecto parque temático
Museo Geominero de Madrid
Hace un mes encontré un artículo en Aeon Magazine con el sugestivo título de “Give natural history museums back to the grown-ups”, lo guardé para leerlo más adelante y su momento llegó cuando en mi timeline de twitter saltó este tweet de José Cervera “Retiario”.
.
Tanto Brian Switek como José Cervera ponen encima de la mesa, con su artículo y su tweet, una reflexión sobre el camino que han tomado desde hace unos años los museos de ciencias y, a mi modo de ver, casi todos los espacios culturales. Hablo no sólo de museos de arte, historia o cualquier otra disciplina sino también de bibliotecas.
Hace 30 años ir a un museo consistía en pasear por las salas admirando los artefactos, animales, objetos u obras de arte expuestos y descifrar la mínima información que se mostraba en pequeñas cartelas dispuestas casi de manera aleatoria alrededor de vitrinas, pasillos, estanterías o paredes. Acudir a un museo era una experiencia contemplativa, admirativa, casi individual y silenciosa.
Poco a poco y empujados, por un lado, por la necesidad de conseguir ingresos más allá de las subvenciones y, por otro, por el auge de una corriente de pensamiento que enfatiza la “comunicación” como un valor absoluto. Los centros culturales, los museos y las bibliotecas comenzaron a desarrollar políticas y estrategias para “atraer al público”, para “hacer más atractivo su contenido” y para “comunicar lo que se investiga, muestra, conserva”.
¿Fue un error? ¿Una equivocación? No. Para nada. Todos recordamos museos en los que nuestra curiosidad ante una vitrina, un cuadro, una escultura, un dinosaurio o cualquier otra cosa, se encontraba huérfana al no existir apenas información que ampliara lo que simplemente veíamos. Todos hemos descifrado cartelas con letras minúsculas con un texto muchas veces carente completamente de sentido para el visitante. Ya casi no lo recordamos pero hace 30 años tampoco existían los planos, ni los folletos explicativos a la entrada, ni las tiendas, ni las librerías y cuando salías del museo lleno de imágenes y de ideas te ibas a casa y no había internet. Había que buscar libros, preguntar a tus padres o profesores e intentar conseguir de alguna manera información sobre lo que te había llamado la atención. La experiencia era prácticamente igual si eras un niño o un adulto.
Los museos fueron modernizándose poco a poco. Se iluminaron (esto es algo que casi nadie percibe conscientemente pero el cambio en la iluminación ha sido muy importante), se reordenaron con criterios más modernos, se amplió la información con nuevas cartelas y paneles. Se repensó todo el flujo de visitantes con recorridos temáticos o por edades y, en definitiva, se hizo un esfuerzo para intentar que el saber que se guarda en los museos fuera un poco más accesible a la sociedad en general y no sólo a los expertos.
Empleando una metáfora un poco cursi podríamos decir que los museos estaban un poco muertos, fosilizados y empezaron a revivir. Y eso ha sido bueno para todos, para los museos y para el público en general.
Brian Switek en su artículo en Aeon se pone, a mi juicio, muy tremendista en su valoración sobre los museos de ciencias naturales convertidos en parques de juegos para niños pero lleva mucha razón en el fondo de su crítica.
Los museos en el siglo XXI se han convertido en lugares a los que el público acude esperando que sean una especie de parques temáticos creados para entretener, pero esto pasa con casi todo ahora mismo en nuestra sociedad. Hemos dejado de lado la reflexión o la contemplación atenta para buscar el entretenimiento y el bombardeo sensorial. Ahora todo tiene que ser “experiencias”.
Imagen de la exposición “Tyrannosaurus rex”, en el Parque de las Ciencias de Granada
La necesidad de convertirse en “algo molón” que cubra ese requerimiento de la sociedad y la competencia del mundo virtual (del que ya hablamos en otro post) ha llevado a los museos a caer en el síndrome del parque temático, al que ya habían sucumbido hace unos años los cascos históricos de muchas ciudades. Se piensan las actividades, las exposiciones, los recorridos, los paneles, los folletos como algo que por encima de todo debe ser lúdico, entretenido y llamar la atención. Esto es especialmente flagrante en los museos de ciencias pero lo es también en los museos de arte o en las bibliotecas, convertidas muchas veces en circos de tres pistas con actividades que, a veces, solo tienen una relación muy muy tangencial con el mundo de la lectura. Estamos consiguiendo aniquilar el intrínseco deseo de saber del hombre masacrado por la necesidad del entretenimiento, por el pensamiento de que todo tiene que ser fácil, incluida la adquisición del conocimiento y la cultura.
El espíritu del artículo de Brian y el tuit de Jose es un recuerdo nostálgico de esos museos de su (nuestra infancia) como templos de recogimiento y silencio a los que iban (íbamos) a pasear en silencio, sorprenderse y la mera contemplación de los objetos los sumía en un mar de preguntas que les hacía querer saber, preguntarse cosas.
Esos museos ya casi no existen. Desde luego ya no son templos de recogimiento, el silencio suele ser escaso y todo parece diseñado para proporcionarte tanta información de golpe que resulta casi imposible asimilarla, absorberla e incluso llega un momento en que ni se percibe.
La gente sale entretenida de los museos pero ¿han aprendido algo?
Creo que la diversión, el entretenimiento y la interacción son valores positivos que pueden y, creo, que deben tenerse en cuenta en casi cualquier actividad cultural pero no pueden ser los fines últimos de una visita a un museo, una exposición o una biblioteca.
Es posible que hayamos pasado de un extremo al otro con demasiada rapidez. Que de unos museos casi mausoleos hayamos pasado a museos parques de atracciones por un simple efecto rebote y, quizás, ha llegado el momento de plantearse conseguir un término medio.
Los museos, las bibliotecas, las exposiciones no deben ser lugares a los que acudir en busca de un entretenimiento o una diversión. Como dice Switek en su artículo, el verdadero valor de los museos está no en la diversión o entretenimiento que proporcionan sino en el hecho de que lo que podemos contemplar en ellos solo podemos verlo ahí: un dinosaurio, un cuadro, un trozo de meteorito, un microscopio del siglo XIX. Los museos son custodios y guardianes de objetos únicos cargados de conocimiento.
Un museo o una biblioteca puede ser una experiencia fabulosa para cualquiera y también para un niño sin necesidad de que le asalten pantallas, disfraces y actividades varias. La simple interacción con los padres en la contemplación y en el intercambio de preguntas puede activar su curiosidad y hacer que recuerde esas visitas como ocasiones especiales. Y lo mismo ocurre con los visitantes adultos.
Vayamos a los museos.
“Bring your questions. Bring your patience. Bring your expectation that the museum provides safe spaces where fascination can take root at its own place”.
Sobre la autora: Ana Ribera (Molinos) es historiadora y cuenta con más de 15 años de experiencia en el mundo de la televisión. Es autora del blog Cosas que (me) pasan y responsable de comunicación de Pint of Science España.
El artículo Los museos y el efecto parque temático se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La estructura en común de estrellas de neutrones y aparcamientos
La radiación de PSR B1509-58, una estrella de neutrones que rota muy rápidamente, hace que el gas cercano emita en rayos X (amarillos; imagen de CHANDRA), y el más lejano en infrarrojo (azules y rojos, imagen de WISE).
Las estrellas más pequeñas conocidas son las estrellas de neutrones, que pueden tener un radio del orden de 10 km. Pero también son las más densas, porque en ese espacio tan pequeño se alberga la masa de dos soles, lo que hace que su densidad sea comparable a la de un núcleo atómico. Son el resultado del colapso del núcleo de una estrella supergigante, con una masa de entre 10 y 29 veces la del Sol, tras una explosión de supernova. Su nombre viene de que se cree que están compuestas casi en su totalidad de neutrones.
Los astrofísicos solo pueden deducir lo que hay en el interior de una supernova colapsada a partir de datos muy indirectos y el uso de modelos matemáticos que lo simulan. Ahora, un grupo de investigadores de la Universidad de Indiana en Bloomington (Estados Unidos) ha identificado características similares a las que corresponden a las membranas biológicas en la estructura de las estrellas de neutrones. El descubrimiento apunta a que, si bien la densidad de las estrellas de neutrones es 100 billones de veces superior a la de una membrana, ambas estructuras estarían determinadas por los mismos condicionantes geométricos.
La capa más externa de las estrellas de neutrones tiene una estructura que recuerda a la de la lasaña. Es una mezcla densa de protones, neutrones y electrones, en la que las fuerzas repulsivas de largo alcance (interacción electromagnética) compiten con las fuerzas atractivas de corto alcance (interacción nuclear fuerte). Las simulaciones muestran que el equilibrio entre estas fuerzas hace que la materia se organice en regiones densas separadas por vacíos. Esta estructura de lasaña (los vacíos serían la boloñesa) puede tener mucha influencia en la pérdida de calor y en el campo magnético de la estrella.
Por casualidad, uno de los autores de este trabajo, Greg Huber, biofísico del Instituto de Tecnología de California, se topó con un artículo previo donde se recogían las simulaciones que el resto de autores habían hecho para determinar la estructura de lasaña de energía más baja. Una de las simulaciones llamó poderosamente la atención de Huber porque se parecía enormemente a cómo la membrana se pliega en el retículo endoplasmático, un orgánulo de las células que interviene en el plegado y transporte de proteínas.
Los autores decidieron unir conocimientos para intentar desarrollar un modelo con el que estudiar como esta fase (la lasaña) se auto-forma a partir de unos protones, neutrones y electrones que están uniformemente distribuidos.
.
Sus simulaciones muestran que las partículas se organizan en filamentos de alta densidad que se expanden posteriormente para formar capas que se conectan por parejas de uniones que parecen rampas. Con lo cual la estructura en forma de lasaña pasaba a estar mejor descrita como la estructura que forman los pisos de un aparcamiento.
Como las estructuras tanto de la estrella de neutrones como de las membranas biológicas son básicamente las mismas, los autores sospechan que las energías de ambos sistemas dependen básicamente de su geometría, de una manera sencilla.
Referencia:
D. K. Berry, M. E. Caplan, C. J. Horowitz, Greg Huber, and A. S. Schneider (2016) “Parking-garage” structures in nuclear astrophysics and cellular biophysics Phys. Rev. C doi: 10.1103/PhysRevC.94.055801
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
Este texto es una colaboración del Cuaderno de Cultura Científica con Next
El artículo La estructura en común de estrellas de neutrones y aparcamientos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:¿Adivinando o empleando la lógica?
El juego reversi se juega con 64 fichas coloreadas en negro por una cara y el blanco por la otra.
Ana coloca las fichas de manera que 10 de ellas muestran su lado negro y las 54 restantes su lado blanco y pide al famoso mago Peter the Great que haga un truco con estas piezas.
.
El mago reflexiona un momento y realiza la siguiente predicción:
Véndame los ojos y mezcla las fichas (sin darles la vuelta). Sin importar como las hayas dejado, las manipularé y agruparé en dos paquetes A y B. Te apuesto lo que quieras a que hay el mismo número de fichas blancas en el paquete A y en el B.
Ana piensa que es fácil ganar esta apuesta, y accede a jugarse una comida. Mezcla las piezas durante un largo rato… Ella cree con total seguridad que Peter no puede saber de ninguna manera donde ha quedado cada ficha.
El mago, con los ojos tapados, manipula las piezas. La asombrada Ana comprueba que ¡ha perdido la apuesta! Efectivamente la predicción de Peter se ha cumplido. Por si el azar ha jugado una mala pasada, el mago invita a Ana a volver a hacer el ‘experimento’. Ana mezcla de nuevo las 10 fichas negras y las 54 blancas, Peter las maneja sin poder verlas, ¡y su predicción se vuelve a cumplir!
¿Cómo lo ha hecho?
Peter explica a Ana su truco: ha empezado tomando 10 peones al azar entre los 64 y los ha metido en el paquete A. Después ha dado la vuelta a las 54 piezas restantes y las ha metido en el paquete B. Y… ¡ya está!
¿Ya está? Vamos a pensar un poco. Si en A hay 10 piezas blancas, no hay en ese paquete ninguna negra. Por lo tanto, en la mesa quedan 44 piezas blancas y 10 negras. Peter da la vuelta a todas y las mete en el paquete B, en el que hay entonces 44 piezas negras y 10 blancas, cumpliéndose la predicción.
Si en A hay 9 piezas blancas y una negra, en la mesa quedan 45 piezas blancas y 9 negras. Peter da la vuelta a todas y las mete en el paquete B, en el que hay entonces 45 piezas negras y 9 blancas, cumpliéndose la predicción.
El argumento es similar para cualquier número N entre 0 y 10. En efecto, si en A hay N piezas blancas y 10–N negras, en la mesa quedan 64–N piezas blancas y N negras. Peter da la vuelta a todas y las mete en el paquete B, en el que hay entonces 64–N piezas negras y N blancas, cumpliéndose la profecía del mago.
En realidad, Peter no es un gran mago, es más bien un gran lógico.
Nota:
Visto en Jean-Paul Delahaye, Solution du paradoxe « Jetons noirs et jetons blancs », Accromath Vol 11.2, été-automne 2016, pág. 31.
Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.
El artículo ¿Adivinando o empleando la lógica? se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Canicas, camaleones y células solares
.
Cuando el “tamaño de la luz” y los obstáculos que se encuentra son de dimensiones parecidas ocurren cosas interesantes. Joaquín Sevilla nos ilumina.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Canicas, camaleones y células solares se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:Fuego griego
Los árabes conocieron el arma incendiaria conocida como fuego griego cuando los bizantinos la usaron contra ellos. De hecho, el fuego griego pudo ser el factor decisivo que evitó la caída de Constantinopla en el asedio de 674-678 y mantuvo el Imperio Romano de Oriente vivo todavía durante siglos.
El fuego griego, rociado desde un dispositivo desde el que bombeaba sobre los barcos enemigos, era una líquido viscoso que se incendiaba en contacto con el agua y ardía ferozmente. Inventado posiblemente en 670 por un arquitecto judío sirio llamado Calínico de Heliópolis (Καλλίνικος) según la cronografía de Teófanes, los ingredientes del fuego griego se mantuvieron como un secreto de estado, conocido solo por el emperador bizantino y la familia de Calínico.
La composición exacta aún se desconoce, pero por las propiedades que se le atribuyen se pueden deducir algunas cosas. Por las descripciones de su funcionamiento se infiere que era algún tipo de mezcla autoinflamable, que no necesita una fuente de energía externa para comenzar a arder. Una posible mezcla de estas características tendría una base de cal viva (CaO) y petróleo. La cal viva, obtenida calentando caliza (CaCO3) o conchas, genera muchísimo calor cuando se la combina con agua. Si una mezcla de cal viva y petróleo entra en contacto con agua, el calor que genera la reacción de la cal viva con el agua puede incendiar el petróleo.
Se suponía que la arena, la orina y el vinagre eran los únicos medios eficaces para extinguir el fuego griego. Por “vinagre” los cronistas probablemente se referían a cualquier disolución salina que formase una costra al evaporarse, lo que extinguía las llamas evitando el contacto con el oxígeno; el mismo fundamento de los extintores de polvo o dióxido de carbono que hoy día se recomiendan para extinguir los fuegos provocados por cal viva.
De forma análoga, por “orina” también habría que entender algún tipo de disolución concentrada, como orina almacenada durante un tiempo y parcialmente evaporada, que contendría una cantidad considerable de sedimentos. La orina fresca es básicamente agua, lo que avivaría la virulencia del fuego griego (además el petróleo es menos denso que el agua y sobrenada, con lo que sigue ardiendo) y, por otra parte, no parece fácil encontrar el número suficiente de voluntarios en caso de ataque.
Las versiones refinadas del fuego griego incorporaban nitrato sódico (NaNO3) que con el calor de la hidratación de la cal viva proporcionaría oxígeno suficiente para mantener la combustión del petróleo, por lo que la mezcla seguiría viva incluso debajo del agua o debajo de arena.
Fuente: ManuelCanalesCrispin233 / Wikimedia Commons
Este tipo de armas no eran nuevas para la humanidad. Las ciudades sitiadas venían arrojando calderos de azufre ardiendo, asfalto hirviente y brea caliente como mínimo desde el siglo V antes de la era común. Los asirios y los griegos del Peloponeso ya usaron el petróleo líquido y la nafta de los pozos de petróleo, junto con la brea caliente y el azufre ardiente.
El sistema de ignición tampoco era novedoso. Plinio ya daba cuenta en el siglo I de que una mezcla de cal viva y petróleo podía prenderse si entraba en contacto con el agua Una mezcla como esta se usaba para encender las lámparas “mágicamente” en los templos, que se sepa, desde el siglo III.
Un “cheirosiphōn”, un sifón de mano.
La verdadera innovación de Calínico no habría estado por tanto en la mezcla en sí, sino en el dispositivo sifónico, también en versión portátil, que se empleaba para esparcirla sobre el enemigo ya encendida (para lanzarla apagada se usaban granadas de arcilla).
.
Los musulmanes, derrotados inicialmente por el fuego griego, pronto aprendieron el truco. Durante las Cruzadas los europeos se encontraron con él tanto en Siria como en Egipto. Finalmente se volvió contra sus inventores y muy probablemente se usó en el saqueo de Constantinopla de 1204.
El fuego griego desapareció, como tal, tras la caída de Contanstinopla en 1453 a manos del Imperio Otomano. Ni que decir tiene que las armas químicas continuaron usándose en los siglos posteriores. Siria lo sabe bien desde el principio.
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance
El artículo Fuego griego se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La gestión de la salud y seguridad en el trabajo de las mujeres
El cumplimiento con la ley y los reconocimientos por agentes externos a las empresas en cuestiones de Responsabilidad Social Empresarial (RSE) son los principales impulsores a la hora de promover la gestión de la Salud y Seguridad en el Trabajo (SST) con perspectiva de género, según este estudio de la UPV/EHU.
El objetivo de la investigación, que se enmarca en un proyecto financiado por el Ministerio de Igualdad (Instituto de la Mujer) y liderado por la profesora Eva Velasco Balmaseda de la UPV/EHU, es estudiar en qué medida se considera en la actualidad la perspectiva de género en la gestión de la Salud y Seguridad en el Trabajo (SST), proponiendo un enfoque innovador para su gestión. “Se trata de un estudio con un carácter exploratorio, así como innovador, dado que es la primera vez que se lleva a cabo un estudio empírico de estas características tanto nacional como internacionalmente. Es la primera vez que se unen estos tres conceptos: la RSE, la igualdad de género y la SST” añade Izaskun Larrieta Rubín de Celis, investigadora de la UPV/EHU.
La gestión de la salud y seguridad en el trabajo (SST) se ha centrado fundamentalmente en el cumplimiento de normas de prevención de riesgos laborales, normas antidiscriminación y normas anti acoso sexual y laboral, etc. Sin embargo, Larrieta cree que la empresa podría aprovechar la potencialidad de la RSE —todas aquellas iniciativas sociales y medioambientales que generan algún impacto en la sociedad y que buscan que la empresa vaya más allá de la búsqueda del beneficio económico— y así desarrollar más ampliamente las medidas de SST. Así, “implementar acciones en materia de SST a partir de iniciativas de RSE puede reforzar a dichas empresas, garantizando su continuidad y repercutiendo en la imagen, retención y atracción del talento, productividad y resultados económicos de la empresa” añade.
“Una adecuada gestión de la SST desde la perspectiva de género conlleva reflejar las necesidades específicas de las mujeres” subraya la investigadora de la UPV/EHU. Para ello, la literatura empresarial recoge las siete medidas que podrían adoptar las empresas que deseen atender a dichas necesidades específicas de las mujeres en materia de SST dentro del marco de sus estrategias de RSE: registrar y analizar por género las diferentes tipologías de enfermedad y accidentes; monitorizar los factores de estrés particulares de las mujeres; promover que el Comité de Prevención sea paritario; modificar o rediseñar las condiciones del trabajo en un puesto o en un proceso para favorecer la incorporación de la mujer al mismo; incluir aspectos de género en la formación sobre prevención y SST; establecer medidas para prevenir, eliminar y sancionar las situaciones de acoso sexual en el trabajo; y facilitar a las trabajadoras que sufran violencia de género en sus hogares medidas de apoyo.
El estudio se ha realizado en 117 empresas españolas comprometidas en diferentes niveles con la igualdad de género, con el objetivo de medir el grado de implantación de las siete medidas propuestas.
Los resultados indican que las iniciativas de RSE con perspectiva de género enfocadas a la gestión de la SST se implementan moderadamente. “Las iniciativas más relevantes son aquellas dirigidas a la prevención, sanción y erradicación de la discriminación sexual, acoso en el trabajo y violencia de género” afirma Larrieta. Por consiguiente, “el cumplimiento con la ley y los reconocimientos en materia de RSE por agentes externos a las empresas se reconocen como los principales impulsores a la hora de promover la gestión de la SST con perspectiva de género” añade. Así, “nos encontramos en un estadio primigenio de aprovechamiento del potencial de la RSE como herramienta de gestión de la SST en clave de género” indica Larrieta. “Creemos que el modelo de tres vértices (RSE, Género y SST) madurará y será de mayor utilidad en las empresas en la medida en que se avance en la implementación de nuevas medidas y en la mayor intensidad de las ya moderadamente implementadas” concluye.
Referencia:
Larrieta-Rubin de Celis, I., Fernández de Bobadilla-Güemez, S., Alonso-Almeida, M.M, Velasco-Balmaseda, E. (2017). Women´s occupational health and safety management: An issue for corporate social responsibility. Safety Science, 91, 61-70. doi: 10.1016/j.ssci.2016.07.019
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa
El artículo La gestión de la salud y seguridad en el trabajo de las mujeres se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Somos mucho que dos
La simbiosis no es siempre buen rollo. Rosa Porcel lo ilustra.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Somos mucho que dos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Emergencia en la sala
Un par de experimentos mentales podrían llevarnos a la conclusión de que no existe eso que llamamos un “yo”. Editor de ustedes.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Emergencia en la sala se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:La mentira más dulce
El nuevo enemigo número 1 | Uwe Hermann
Durante los últimos cuarenta años hemos sido bombardeados con la idea de que las grasas son malas, tan malas que se les ha considerado las máximas responsables detrás del aumento exponencial de casos de diabetes y enfermedades cardiovasculares de las últimas décadas. Sin embargo, un artículo de investigación al más puro estilo Watergate recientemente publicado en JAMA Internal Medicine ha demostrado que el culpable bien podría ser otro.
Cristin Kearns y sus compañeros de investigación revisaron multitud de documentos internos de empresas relacionadas con la industria azucarera y descubrió que hacia el año 1967, la llamada Fundación de investigación del azúcar, integrada en su mayor parte por pesos pesados de la industria del azúcar (refrescos, galletas, gominolas…) financió la publicación de una serie de artículos de investigación en una de las revistas médicas más importantes del mundo, el New England Journal of Medicine y firmadas por un grupo de médicos de la prestigiosa Universidad de Harvard, donde habrían desviado la atención sobre el papel del azúcar en el riesgo de desarrollo de enfermedades cardiovasculares y/o diabetes, culpando en su lugar al colesterol y las grasas.
Tanto éxito tuvo la iniciativa, que hasta hace muy poco las grasas han sido vistas como el enemigo a batir y una oleada de productos bajos en grasas, pero ricos en azúcares, desarrollados para aquellos preocupados por su salud. Tan poco como que el azúcar sólo ha empezado a ser vilipendiado por la mayoría de guías nutricionales desde el año pasado. Y eso cuando estudios recientes muestran que dietas elevadas en azúcar implican un riesgo hasta tres veces más elevado de sufrir diabetes tipo 2 y enfermedad cardiovascular.
En este momento en que una vez más uno siente que no puede más que dudar de la ciencia, especialmente de aquella en la que existen serios intereses económicos detrás, cabe la pregunta de cómo conseguir respuestas veraces e independientes. Cuando el dinero con que sufragar proyectos de investigación viene acompañado de ciertos requerimientos o asociado a la producción de ciertos resultados, la ciencia pierde su valor. Por otra parte, sin financiación pública muchos centros de investigación encuentran en la financiación privada el único camino de seguir adelante con sus proyectos.
A día de hoy es preciso concretar las fuentes de financiación privada de los estudios sobre salud/medicina, aunque para muchos esta medida es insuficiente. Publicación de protocolos al inicio de los ensayos, publicación íntegra de los resultados para asegurar su fidelidad…son medidas que vienen siendo demandadas por asociaciones de consumidores, pacientes y médicos interesados por una investigación de calidad y transparente.
Si a más de uno le asaltan las dudas a la hora de llenar la nevera con tanta información y contra-información sobre los peligros de éste o aquel alimento, yo recomendaría algo que mi abuela siempre decía: Usa la cabeza. O sea, mesura y dieta mediterránea. Que sobre eso no hay dudas. Y si no mirad los datos de esperanza de vida en España.
Esta anotación ha sido realizada por Rosa García-Verdugo (@starvingneuron) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.
El artículo La mentira más dulce se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:#Naukas15 Big Van Theory y el estereotipo femenino
.
Dos componentes de Big Van afrontan el esterotipo femenino…con un poco de humor.
Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus
El artículo #Naukas15 Big Van Theory y el estereotipo femenino se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas:El estrés no es solo cosa de humanos
Si entendemos el estrés como un estado de cansancio mental provocado por la exigencia de un rendimiento muy superior al normal, nos estamos quedando cortos porque a nivel científico se refiere a un conjunto de alteraciones que se producen en el organismo como respuesta física a determinados estímulos externos.
Atendiendo a esa definición queda de manifiesto que el estrés es propio de todos los seres vivos. Animales y plantas, al igual que los humanos, también se estresan. Ahora bien, determinar qué resulta estresante para ellos es un reto para los científicos ya que cada especie lo demuestra de una forma diferente. Además, no siempre lo que para las personas es estresante tiene por qué serlo para los animales, y mucho menos para las plantas, por lo que es fundamental analizar parámetros objetivos que determinen si los niveles de estrés están alterados o no.
Ante una situación de estrés, el organismo tiene una serie de reacciones fisiológicas. En el caso de las personas, suponen la activación del eje hipofisosuprarrenal y del sistema nervioso vegetativo. El eje hipofisosuprarrenal (HSP) está compuesto por el hipotálamo, que es una estructura nerviosa situada en la base del cerebro que actúa de enlace entre el sistema endocrino y el sistema nervioso, la hipófisis, una glándula situada asimismo en la base del cerebro, y las glándulas suprarrenales, que se encuentran sobre el polo superior de cada uno de los riñones y que están compuestas por la corteza y la médula.
El sistema nervioso vegetativo (SNV) es el conjunto de estructuras nerviosas que se encarga de regular el funcionamiento de los órganos internos y controla algunas de sus funciones de manera involuntaria e inconsciente. Ambos sistemas producen la liberación de hormonas, sustancias elaboradas en las glándulas que, transportadas a través de la sangre, excitan, inhiben o regulan la actividad de los órganos.
Obviamente con el resto de seres vivos ocurre de manera diferente y no es posible explicar todos los procesos ya que cada caso depende de la especie. Ahora bien, al igual que nos sucede a nosotros, en el resto de seres vivos, un determinado grado de estrés estimula el organismo y permite que éste alcance su objetivo, volviendo a la “normalidad” cuando el estímulo ha cesado.
Aunque cuando se mantiene la presión y se entra en el estado de resistencia, las personas empiezan a tener una sensación de disconfort (tensión muscular, palpitaciones, etc.) y esto, con otros síntomas, ocurre igualmente en animales y plantas. Si continúa el estresor, se llega al estado de agotamiento, con posibles alteraciones funcionales y/u orgánicas que pueden llevar, en el caso de las plantas, a dejar de producir frutos y en el de los animales, a dejar de ser fértiles, entre otras consecuencias.
Animales
Existe un gran interés, por parte de las empresas ganaderas, por conocer más acerca del estrés en algunas especies dado que, en gran medida, de ello depende su producción.
En el caso del porcino, se analizan una serie de medidas o indicadores fisiológicos como un cambio del ratio de glóbulos blancos en sangre o el aumento de las hormonas relacionadas con el estrés como la adrenalina y el cortisol. Además, se miden otras proteínas que sintetiza el hígado y que actualmente son muy usadas como de indicadores de estrés: las proteínas de fase aguda.
Por otro lado, también se hacen estudios de comportamiento ya que cuando el animal se desvía de su comportamiento normal es señal de que hay algo que le está proporcionando un malestar. A este respecto, se consideran aspectos anómalos: que los cerdos muerdan los barrotes, muerdan en vacío, tengan movimientos repetidos como tics, se muevan mucho dentro de la jaula, etc.
No hay que olvidar que la cría de animales de abasto está sometida a unas estrictas normas las cuales velan por su bienestar y regulan factores como el tamaño mínimo de sus jaulas o las veces al día que deben ser alimentados, entre otros.
Por lo que este tipo de investigaciones son muy importantes a la hora de determinar si las normas son adecuadas en relación al estrés animal o si están hechas desde el punto de vista humano y, por tanto, fallan.
Por ejemplo, se han realizado pruebas destinadas a facilitar la socialización de los lechones sin que relacionarse con nuevos animales les supusiese un estrés. Para ello, se creó una especie de guardería de manera que los lechones de las distintas camadas se pudiesen mezclar y así socializarse para que cuando llegase el momento de separarse de su madre no les resultase tan difícil.
En este caso vieron que la socialización no funcionaba tan bien, que eso de la guardería no era tan ventajoso, porque pasaba al igual que las guarderías de niños y si había un cerdo enfermo se contagiaban los demás lo que determinó que era más recomendable que cada lechón estuviese con su piara.
Otro de los sectores donde más se investiga en torno al estrés animal es el de la acuicultura. Los investigadores se centran en todo lo que puede suponer un problema para que los animales que se crían sean de calidad suficiente como para poder llegar al mercado, así que las empresas dedicadas a ello están invirtiendo mucho en este tipo de trabajos.
Cabe destacar que existen más de cuarenta y dos mil especies y cada una es distinta de la otra, se hace complicado que de todas las investigaciones que se llevan a cabo se obtengan resultados; pero es importante hacer investigación básica de calidad para, con el paso del tiempo, conseguir que se pueda aplicar.
Plantas
Cuando se trata de cultivos, también son aquellos destinados al comercio en los que más se investiga: cítricos, frutales,… Es interesante mencionar que, en este caso, un control adecuado del estrés puede tener consecuencias positivas como que el producto resultante no solo tenga el tamaño o color que el mercado demanda sino que su sabor también se ve alterado. Se sabe que los métodos agrícolas que provocan estrés en las plantas provocan que sus frutos sean más ricos en azúcares lo que supone que sean más dulces.
Ahora bien, normalmente las plantas no se desarrollan bajo unas condiciones óptimas durante todo su ciclo de vida, sino que van sufriendo diferentes situaciones que les provocan distintos tipos de estrés. Además, el óptimo fisiológico de una especie difiere del llamado óptimo ecológico, por lo que en cada caso el vegetal tiene que adaptarse a las condiciones ambientales propias a su hábitat de cultivo.
Para controlar adecuadamente todos los elementos implicados se han desarrollado tecnologías que permiten medir todo tipo de parámetros en tiempo real. A día de hoy la agricultura poco se parece a la de hace solo unas décadas. Ahora es posible controlar la cantidad de agua, nutrientes o temperatura, a la que se les expone, entre otros muchos factores, con el objetivo de conseguir producciones más eficientes y con características mejoradas a todos los niveles.
Sobre la autora: Maria José Moreno (@mariajo_moreno) es periodista
El artículo El estrés no es solo cosa de humanos se ha escrito en Cuaderno de Cultura Científica.
Entradas relacionadas: