S'abonner à flux Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Mis à jour : il y a 40 min 7 sec

Nanopartículas recubiertas para el tratamiento localizado del cáncer por hipertermia magnética

ven, 2020/09/25 - 11:59
Fuente: O.M. Lemine (2019) Magnetic Hyperthermia Therapy Using Hybrid Magnetic Nanostructures Hybrid Nanostructures for Cancer Theranostics doi: 10.1016/B978-0-12-813906-6.00007-X

Las células tumorales son más sensibles al calor que las células sanas. La hipertermia localizada podría ser, por tanto, una terapia contra el cáncer. Como los nanomateriales magnéticos presentan la capacidad de producir calor cuando son sometidos a campos magnéticos alternos, podrían emplearse nanopartículas magnéticas de tal manera que provocasen la muerte selectiva de las células tumorales sin dañar los tejidos sanos adyacentes. Podría ser una buena idea, en principio sin contraindicaciones, aunque aún presenta problemas de orden práctico, que se están abordando en ensayos clínicos.

Una de las mayores limitaciones de esta terapia experimental, denominada hipertermia magnética, es la tendencia de las nanopartículas magnéticas a aglomerarse, problema que se agrava cuando las nanopartículas se encuentran en un cuerpo vivo. La aglomeración conlleva una pérdida casi total de su capacidad para producir calor, convirtiéndolas en prácticamente inservibles.

Un grupo interdisciplinar de la Universidad del País Vasco ha creado un nuevo método que permitiría evitar la aglomeración de las nanopartículas. Los investigadores han demostrado in vitro que un adecuado recubrimiento de nanopartículas de magnetita (Fe3O4) con el copolímero PMAO-PEG impide que la capacidad de calentamiento de las nanopartículas decrezca en el medio celular.

La eficacia terapéutica de las nanopartículas recubiertas en cultivos de células de cáncer colorrectal también ha sido probada. El sistema induce la muerte celular total 48 horas después de la hipertermia.

Referencia:

Idoia Castellanos-Rubio, Irati Rodrigo, Ane Olazagoitia-Garmendia, Oihane Arriortua, Izaskun Gil de Muro, JoséS. Garitaonandia, Jose Ramon Bilbao, M. Luisa Fdez-Gubieda, Fernando Plazaola, Iñaki Orue, Ainara Castellanos-Rubio, Maite Insausti Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles (2020) ACS Applied Materials & Interfaces DOI: 10.1021/acsami.0c03222

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Nanopartículas recubiertas para el tratamiento localizado del cáncer por hipertermia magnética se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Magnetosomas para el tratamiento del cáncer
  2. Nanopartículas para reducir la metástasis hepática del cáncer de colon
  3. Nanopartículas magnéticas contra células tumorales
Catégories: Zientzia

Menos conceptos y más pensamiento crítico para mejorar la educación científica en el aula

jeu, 2020/09/24 - 11:59

Jesús Méndez

El 90 % de los docentes cree en ‘edumitos’, falsas ideas como los estilos de aprendizaje, que pueden perjudicar a sus alumnos. ¿Qué herramientas tiene el profesorado, aparte de su propia experiencia, para saber lo que funciona? Una iniciativa pionera en España se propone acercar a la escuela la evidencia sobre enseñanza de las ciencias.

Foto: Josh Manheimer / Pixabay

La educación científica está en apuros y los datos dan cuenta de la magnitud del problema: según la mayor encuesta realizada en España al respecto, la mayoría de los ciudadanos (51,2 %) considera que es difícil comprender la ciencia, y cuatro de cada diez españoles considera que el nivel de educación científica que ha recibido es bajo o muy bajo. Algo está fallando en el proceso.

“Hay un campo de la didáctica de las ciencias que trabaja investigando lo que funciona en educación, pero sabemos que sus conclusiones tardan una media de 50 años en llegar a las aulas”, comenta Digna Couso, física y doctora en didáctica de las ciencias. Ella es una de las coordinadoras del libro Enseñando ciencia con ciencia, publicado por iniciativa de la Fundación Española para la Ciencia y la Tecnología (FECYT) y la Fundación Lilly y que se puede descargar gratuitamente.

“Queríamos ofrecer un manual sencillo y bonito con lo que sabemos sobre lo que funciona y lo que no funciona en la educación de las ciencias”, explica Couso. El libro, en el que participan casi una veintena de especialistas, lanza mensajes concretos y accesibles junto con ejemplos prácticos de aplicación en las aulas.

La publicación forma parte de un plan más amplio desarrollado por FECYT para acercar la investigación y la práctica educativas, con acciones como un programa divulgativo en redes sociales y un curso online de formación del profesorado que podrán solicitar los centros de formación regionales.

Además, desmonta los mitos en torno a las prácticas educativas, los edumitos, generalmente bienintencionados pero erróneos que, según Marta Ferrero, maestra, psicopedagoga e investigadora sobre métodos educativos, “suponen una pérdida de tiempo, recursos e ilusión, y tienen un coste de oportunidad”. Estas creencias pueden repercutir negativamente, sobre todo en los estudiantes más desfavorecidos, y conllevan un alto coste en dinero y motivación que dejan de invertirse en métodos cuya eficacia ya ha sido probada.

Una ciencia próxima y argumentada

“El título de nuestro libro, Enseñando ciencia con ciencia, recoge dos sentidos diferentes”, precisa Couso. “Por un lado se refiere a que hay una ciencia de la enseñanza más allá del arte y la experiencia personal. Y también que para aprenderla hay que hacer ciencia en el aula, de forma análoga a como la hacen los propios científicos”.

No consistiría tanto en una educación basada en evidencias científicas, como a veces se denomina, sino en “una educación informada desde las pruebas”, precisa Ferrero. Porque “no se trata de supeditar la labor de los docentes, el protagonismo debe seguir siendo del profesorado. Pero la investigación sí que es una fuente de información para tomar decisiones. Una experiencia reflexionada tiene mucho valor”.

“Si tuviera que elegir tres mensajes —resume Rut Jiménez-Liso, profesora de didáctica de las ciencias en la Universidad de Almería y coordinadora también del manual— serían estos: que hay mucha investigación sobre lo que funciona y no funciona, que es muy importante mejorar la enseñanza de las ciencias para hacer ciudadanos críticos capaces de tomar decisiones fundamentadas; y que todos y todas podemos aprender ciencias, que el mundo que nos rodea puede tener sentido”.

La idea general que se tiene sobre la enseñanza de las ciencias es la de una transmisión directa de gran cantidad de conceptos, leyes y teorías. Sin embargo, los estudios recogidos en este manual abogan por un enfoque muy diferente basado en tres conceptos: indagación, modelización y argumentación.

A partir de preguntas que resulten cercanas o relevantes para los alumnos se produce un proceso en el que de forma activa buscan (indagan) pruebas que les permiten contrastar sus hipótesis, construyen explicaciones (modelos) basados en esas pruebas y las comparan (argumentan) para decidir cuál de ellas es más sólida o probable. Todo ello sin renunciar a sus ideas o modelos previos, sino activando precisamente esos conocimientos con los que vienen a la clase para luego construir a partir de ellos. Algo que es válido para todas las edades, incluso desde infantil.

“En todo el libro no hablamos de ninguna metodología concreta —explica Couso— porque hay muchas que incluyen los procedimientos clave, como la activación de ideas previas, la actividad e indagación sobre esas ideas, la discusión y la argumentación. De lo que se trata es de partir de lo que los alumnos saben y de que ellos sean los protagonistas de la construcción de conocimiento en el aula, sabiendo el docente en todo momento a dónde quiere llegar”.

¿Son todos los conocimientos científicos susceptibles de ser enseñados así?

“Todos lo son, porque todos los temas de ciencia están basados en pruebas —responde Rut Jiménez-Liso—, aunque es cierto que algunos pueden ser más áridos que otros. Lo que consigue este enfoque es evitar la repetida pregunta: ¿esto para qué me sirve a mí? ¿Para qué voy a estudiar los astros si yo no voy a ser astronauta? Si estudiamos por indagación el tema Sol-Tierra, los problemas no se basan en qué planetas componen el sistema solar, sino cuál es la mejor orientación de una casa, de una sombrilla, de unos paneles solares… Eso hace que cobre sentido para los estudiantes”.

“Quizá no todo se pueda enseñar así, pero entonces tampoco debería enseñarse”, matiza Couso. “Si quieres aprender el nombre de todos los huesos del esqueleto seguramente habrá métodos mejores, pero eso no es lo que los alumnos deberían aprender en la escuela, sino ideas profundas sobre el valor y la función del esqueleto”.

En educación, menos es más

En el libro se hace una defensa a ultranza del ‘menos es más’ en educación. “Las ideas potentes en ciencia son muy pocas, aunque luego sean muy complejas. Lo que se necesitamos son menos conceptos y más tiempo para trabajar esas pocas ideas en profundidad, porque eso es lo que deja huella. Al fin y al cabo lo que queremos son ciudadanos críticos y activos, que puedan participar en la toma de decisiones”, asevera Couso. Para ello deberían reducirse ostensiblemente los temarios, algo que ya está presente en los objetivos de la administración, pero que no se ha trasladado a los libros de texto, cada vez más extensos.

De la misma opinión es María Pilar Jiménez Aleixandre, catedrática de didáctica de las ciencias en la Universidad de Santiago de Compostela: “Resulta imposible abordar en clase todos los conceptos y teorías científicos. Lo importante es que el alumnado entienda cómo se ha llegado a algunos de ellos, seleccionados, lo que permite que en el futuro pueda entender cómo se ha llegado a otros”.

Porque “el objetivo, sobre todo para la mayoría del alumnado que no serán científicas o científicos profesionales, es que desarrollen el pensamiento crítico, que distingan entre opiniones sin fundamento y conocimiento apoyado en pruebas. En contextos de crisis, como pueden ser el cambio climático o la pandemia de covid-19, esta capacidad resulta esencial”.

La evaluación y las emociones

Uno de los capítulos del libro recoge consejos y pruebas sobre cómo debe ser la evaluación de los alumnos, teniendo en cuenta que su objetivo no es la calificación, sino el aprendizaje. De hecho, las notas numéricas no ofrecen información relevante.

Como escribe en su capítulo Neus Sanmartí, especialista en didáctica de las ciencias en la Universidad Autónoma de Barcelona: “Evaluar el grado de competencia requiere de la aplicación de criterios muy distintos de los tradicionales. Habitualmente se considera que un estudiante ha aprendido a un nivel mínimo cuando responde a la mitad de las preguntas en un examen, pero estos criterios de calificación no nos dicen si es competente”.

Además, si la evaluación va acompañada de una calificación, su efecto en el aprendizaje es nulo, porque los alumnos solo leen las cifras. Es más recomendable aplicar el concepto de rúbrica, detectar si el alumno alcanza un nivel de desempeño.

“Debemos aspirar a que los alumnos se coevalúen y autoevalúen —afirma Couso—, porque saben valorarse y son incluso más estrictos que los profesores. La evaluación debe ir dirigida a identificar lo que se ha hecho bien o mal, y a trabajar en cómo cambiar lo que no se ha hecho bien. Eso es exactamente lo que van a tener que hacer en su vida cuando el profesor ya no esté a su lado, porque no lo estará”.

Otro aspecto tratado en el libro es el papel de las emociones en el aprendizaje. Para Couso, “son sin duda importantes, pero no solo las positivas. Creo que ha pasado un poco como con las selfis, que han dado lugar a un solo tipo de fotos”.

En el libro se recoge que la enseñanza por indagación produce interés, concentración y satisfacción al reconocer que se aprende, pero se rechaza la idea de que deban promoverse solo emociones felices. Aprender conlleva emociones como el aburrimiento, inseguridad ante la pregunta planteada, resistencia a cambiar de ideas o incluso vergüenza por los planteamientos iniciales. Los docentes deben enseñar a reconocerlas y canalizarlas para reforzar las ganas de aprender.

Mucho más allá de las vocaciones científicas

El tipo de aprendizaje basado en los estudios y las pruebas promueve, más allá de unos conocimientos concretos, el fomento de un pensamiento crítico para todos que ayude a conocer el proceso de la ciencia, a tomar decisiones y a identificar afirmaciones pseudocientíficas. Eso ofrece la posibilidad de usar controversias para el aprendizaje en el aula y lleva a poner en más en contacto ciencias y humanidades.

Couso huye de la idea de que hay que fomentar vocaciones científicas: “No tenemos un problema de vocaciones, sino de diversidad. Los perfiles que llegan suelen ser muy homogéneos. Además, el concepto de vocación se aprovecha muchas veces para llevar a cabo una explotación: lo que debemos promover es una cultura de la profesionalidad. En cualquier caso, aunque aumentáramos mucho el número de profesionales relacionados con la ciencia, no llegarían a la mitad. ¿Es que el resto no tiene que saber ciencia?”.

El método de aprendizaje activo aquí propuesto no pretende formar científicos en miniatura, sino profanos competentes que puedan utilizar los conocimientos adquiridos en la vida real. A la vez, y sin forzarlos, al diseñar soluciones a problemas, construir modelos y evaluar afirmaciones, interiorizan que pueden llegar a ser científicos o ingenieras y promueven la sensación de autoeficacia.

Capítulo aparte merece también la enseñanza sin estereotipos de género, teniendo en cuenta que las niñas a los seis años ya piensan que son menos inteligentes que sus compañeros varones y que a los 10 o 12 muchas ya han descartado estudiar opciones de ciencia o tecnología.

Un futuro prometedor

“En cualquier debate aparece y se habla de la importancia de la educación —añade Couso—, pero siempre acaba prevaleciendo la fuerza de la anécdota o de la experiencia, cuando en realidad tenemos desde hace muchos años evidencias sobre cosas que funcionan y cosas que no lo hacen”.

La experiencia puede servir de ayuda en ocasiones, pero “no basta con ella, al igual que no basta con saber de ciencia para enseñarla bien” completa Couso, que lanza un mensaje final sobre la situación actual de la educación en ciencias: “En general, y cuanto mayores son los alumnos, las clases tienden a ser menos activas, más proclives a un consumo pasivo de conocimiento. Los docentes necesitan tiempo y que se les cuide, porque estamos en una situación muy prometedora, veo renovación, ganas y mucha motivación. Nuestra área de influencia desde la didáctica es muy pequeña y nos cuesta tener relevancia, pero cuando los profesores se acercan a estos métodos se entusiasman, porque ven que funcionan”.

Los edumitos perjudican gravemente al alumnado

“Tenemos un problema”, reconoce Ferrero. “Los estudios indican que algunos neuromitos en la educación son aceptados por más del 90 % de los docentes, como la creencia de que una estimulación extraordinaria aumenta el rendimiento cognitivo o que adaptar la forma de enseñar a los estilos de aprendizaje de los alumnos mejora los resultados”.

Este mito tan extendido tiene que ver con la aplicación de la teoría de las inteligencias múltiples, propuesta por el psicólogo y pedagogo Howard Gardner. “Pero no hay ninguna prueba de su utilidad. Más aún, muchos centros lo aplican de una forma que Gardner consideraría inadecuada”, explica Ferrero.

También existe la creencia de que los niños de hoy son nativos digitales, cuando en realidad “no usan la tecnología de forma diferente. Hay que enseñarles explícitamente a utilizarla. Hay pruebas claras de que no saben hacer búsquedas de forma correcta, no analizan bien el contenido ni su veracidad”.

¿Por qué ha tenido lugar la extensión de estos mitos y por qué no hay más lugares donde buscar pruebas contrastadas y adaptadas al profesorado? “La academia y las escuelas han estado tradicionalmente de espaldas una a la otra”, opina Ferrero, quien apunta algunas iniciativas útiles para los docentes, como Las pruebas de la educación, un repositorio internacional ofrecido por EduCaixa o una serie de publicaciones a cargo de la Fundació Jaume Bofill.

Este artículo se publicó originalmente en SINC. Artículo original.

El artículo Menos conceptos y más pensamiento crítico para mejorar la educación científica en el aula se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Por qué la filosofía es tan importante para la educación científica
  2. Por qué los colegios no deberían enseñar habilidades de pensamiento crítico generales
  3. Autismo y educación: problemas y pautas en el aula
Catégories: Zientzia

Arte Moebius (II)

mer, 2020/09/23 - 11:59

 En la primera entrega de la serie Arte Moebius (I) en el Cuaderno de Cultura Científica, después de explicar brevemente qué es una banda de Moebius, algunas de sus curiosas características –que posee una sola cara y un solo borde– y un pequeño experimento para realizar en casa, habíamos dedicado la entrada a mostrar unos cuantos ejemplos de esculturas basadas en esta curiosa superficie. Los artistas mencionados en dicha entrada fueron Max Bill, José Ramón Anda, John Robinson, Jeremy Guy, Vladimir Vasiltsov y Eleonora Zharenova, A. Z. Nalich, Ernst Neizvestny, Mariko Mori y Chambliss Giobbi.

Superficie sin fin (1974-75), del escultor suizo Max Bill. Imagen de Modern Design

 

En la presente entrada vamos a seguir realizando un recorrido por algunas interesantes, curiosas y hermosas esculturas inspiradas en la superficie de una sola cara y un solo borde.

Para empezar, vamos a reiniciar este paseo artístico matemático con el mismo escultor con el que terminamos la entrada anterior, el estadounidense Chambliss Giobbi (Nueva York, 1963). Este artista neoyorkino trabaja con diferentes perspectivas sobre la banda de Moebius en una serie de esculturas, que son móviles, en las que utiliza coches de juguete para crear collages tridimensionales.

En su escultura Circunvalación de Moebius (2012), que mostramos en la entrada Arte Moebius (I), la estructura que subyace es un prisma cuadrado “flexible” rotado media vuelta y pegado por los extremos generando una doble banda de Moebius, además colocado para formar el símbolo del infinito (la curva llamada Lemniscata de Bernoulli). En su escultura Hoja de trébol de Moebius (2013) la forma que tiene la escultura es un nudo de trébol. Y finalmente la escultura móvil Rampa de salida de Moebius (2012), que podéis admirar más abajo y que me recuerda a otro de los curiosos experimentos relacionados con esta superficie.

Rampa de salida de Moebius (2012), del artista estadounidense Chambliss Giobbi. Imagen de la página web de Chambliss Giobbi

Veamos el mencionado experimento. Para realizar este necesitamos únicamente una hoja de papel, de hecho, nos vale con una tira alargada con la que construir una banda de Moebius, un poco de cinta aislante para pegar los extremos de la cinta de papel y unas tijeras. Mientras que en la anterior entrada habíamos explicado lo que ocurría en una cinta normal y en una de Moebius cuando se cortan longitudinalmente las bandas por la mitad, ahora veremos qué ocurre si cortamos longitudinalmente las bandas, pero por una tercera parte de su anchura (véase el artículo de Marta Macho, Listing, Möbius y su banda ).

Cuando cortamos longitudinalmente una banda normal por un tercio de su altura el resultado son dos bandas normales, de la misma largura, pero anchuras distintas, una un tercio y otra dos tercios de la anchura original. Mientras que en el caso de una banda de Moebius el resultado son una banda de Moebius, igual de largo y con una anchura de un tercio de la original, y una banda normal retorcida, con el doble de largo y un tercio de ancho, ambas entrelazadas.

La escultura de Giobbi nos recuerda a este experimento, pero el escultor de Nueva York habría intercambiado las larguras, en la anterior escultura la banda de Moebius con coches de juguete tiene el doble de largura que la banda normal, y es mucho más ancha.

El siguiente escultor que quiero que nos encontremos en este paseo es el artista británico Richard Fox (1965) que, como muchos otros escultores interesados en la superficie de Moebius, trabaja tanto con la banda de una cara, como con la de dos caras. Richard Fox tiene dos series de esculturas, realizadas en bronce una y en mármol blanco otra, tituladas Moebius, una de las cuales vemos en la siguiente imagen.

Moebius V (2018), del artista británico Richard Fox, realizada en bronce y de tamaño 50 x 47 x 40 cm. Imagen de la página Jenna Burlingham Fine Art

 

Pueden verse más obras de la serie en la página web de Richard Fox. Así mismo, tiene dos series de obras tituladas Ravel (enmarañar o enredar), que son bandas normales con dos caras. En una de las series, White Ravel, cada una de las caras con un color diferente, blanco y arena.

White Ravel in A, XVI (2016), del artista británico Richard Fox, realizada en sicomoro con pigmento de tierra blanca y base de piedra arenisca. Imagen de la página web de Richard Fox

Para la exposición OneOak/Unroble, que tuvo lugar en el Real Jardín Botánico de Edimburgo en 2012, Richard Fox realizó una banda de Moebius anudada, como un nudo de trébol, en madera de roble.

Nudo de trébol de Moebius (2012), del artista británico Richard Fox, realizada en madera de roble. Imagen de la página de Syva Foundation

 

Otro artista que trabaja con la superficie de Moebius, así como con otras superficies geométricas y nudos “topológicos” es el escultor californiano T Barney, del que podéis admirar sus hermosas esculturas en la página T Barney Sculptures. Vamos a mostrar aquí dos ejemplos realizados en distintos materiales, piedra y bronce.

La primera escultura es Siringa (ninfa mitológica de Arcadia), realizada en piedra, en concreto, en arenisca de Arizona.

Siringa (ninfa mitológica de Arcadia), del artista estadounidense T Barney, realizada en arenisca de Arizona. Imagen de su página T Barney Sculptures

 

Podéis disfrutar de un video en el que se ve la escultura en movimiento, con algunos detalles de la misma, en particular, puede observarse el parecido de este material, arenisca de Arizona, con la madera, con la cual en ocasiones se confunde.

La siguiente escultura es Tisbe (figura femenina de la mitología griega), realizada en bronce con una pátina de jade (en la siguiente imagen), rubí, zafiro o turquesa.

Tisbe (figura femenina de la mitológica griega), del artista estadounidense T Barney, realizada en bronce con una pátina de jade. Imagen de su página T Barney Sculptures

 

Ypodéis disfrutar de un video en el que se ve la escultura en movimiento, con algunos detalles de la misma.

En el año 2000 celebramos en Bilbao el Congreso Internacional de Geometría Diferencial en memoria de Alfred Gray, dedicado al matemático estadounidense Alfred Gray (1939-1998) que había fallecido en otoño de 1998 durante una estancia de investigación en la Universidad del País Vasco/Euskal Herriko Unibertsitatea. Uno de los invitados del congreso fue el escultor Helaman Ferguson, amigo de Alfred Gray, con quien este había colaborado para la realización de una serie de esculturas sobre la superficie minimal de Costa. Por este motivo, Helaman Ferguson realizó para el congreso una escultura con la superficie de Costa, The Alfred Gray Memorial Bronze D4, K 0 (2000).

The Alfred Gray Memorial Bronze D4, K (2000), del artista Helaman Ferguson, realizada con motivo del Congreso Internacional de Geometría Diferencial en memoria de Alfred Gray.

 

Pero la pieza más conocida de este escultor es Umbilic Torus / Toro umbilical (1988), que es una obra relacionada con la banda de Moebius. Expliquemos la estructura de la misma.

Recordemos que para construir una banda de Moebius tomamos una tira plana (de papel), giramos media vuelta uno de los extremos y lo pegamos al otro extremo. Imaginemos ahora que disponemos de un prisma triangular, largo y flexible (para poder manipularlo, aunque sea en nuestra imaginación), que giramos 120 grados, es decir, un tercio de vuelta, uno de los extremos y lo pegamos al otro extremo –triángulo extremo contra triángulo extremo-, entonces tendremos una figura geométrica que solamente tiene una cara. Esto se debe a que cada cara del prisma se continúa con la siguiente donde se juntan los extremos, tras el giro de 120 grados. Esta es la figura con la que trabajaba también el escultor británico John Robinson en su obra Eternidad (1980) y que vimos en la entrada anterior, Arte Moebius (I).

Para la escultura Toro umbilical, Ferguson utiliza no un prisma triangular, sino un prisma de deltoide, una curva de tipo triangular. A continuación, se muestra una ilustración de la curva conocida como deltoide (que realmente es la trayectoria de un punto de una circunferencia que rueda, sin deslizarse, dentro de otra circunferencia más grande, de tres veces su radio) y otra de la figura geométrica generada con el prisma de deltoide.

Deltoide. Imagen de Wikimedia Commons

 

Toro Umbilical. Imagen de Wikimedia Commons

 

Finalmente, la superficie de la escultura no es lisa, sino que Helaman Ferguson ha añadido la forma de la curva fractal de Hilbert, que es una “curva que rellena el plano” (aunque en esta entrada no entraremos en las cuestiones matemáticas de esta curva fractal; puede verse su construcción en la entrada Fractus, arte y matemáticas). Esta curva se define por un proceso iterativo infinito y el escultor incluye una de las primeras iteraciones para que la curva sea visible.

Seis primeras iteraciones de la curva de Hilbert. Imagen de Data Genetics

 

Finalmente, el resultado del trabajo de Helaman Ferguson fue la escultura Toro umbilical (1988), que podemos ver aquí.

Toro umbilical (1988), de Helaman Ferguson. Imagen de ACM Siggraph

 

En la página web de Helaman Ferguson podéis ver una versión que realizó en 2012 del Toro Umbilical, en bronce, de 8,5 metros de altura, y que está en el exterior del Centro Simons de Geometría y Física de la Universidad Stony Brook.

A continuación, me gustaría hablar de dos escultores muy interesantes y que utilizan la banda de Moebius de una forma muy particular, representando en la escultura el espacio alrededor de este objeto geométrico, en lugar de la propia superficie. Son el artista estadounidense John Ernest (1922-1994) y el artista japonés Keizo Ushio.

Keizo Ushio (Fukusaki, Prefectura de Hyogo, 1951) es un artista con una obra escultórica muy geométrica, que al igual que algunos otros artistas mencionados en este paseo, ha llamado fuertemente la atención de la comunidad matemática.

Conocí a Keizo Ushio en el International Congress of Mathematicians que organizamos en Madrid en agosto de 2006, cuando le invitamos a realizar una escultura en vivo en el exterior del Palacio Municipal de Congresos de Madrid.

El escultor Keizo Ushio y el matemático Raúl Ibáñez en el exterior del Palacio Municipal de Congresos en Madrid, junto a la escultura Oushi-Zokei ICM Madrid 2006 en proceso de realización

 

En la escultura Möbius in Space (2005) de Keizo Ushio, que mostramos más abajo, y en otras obras similares, el objetivo del artista no es representar la superficie de una sola cara y un solo borde, sino el espacio exterior que rodea a la misma. De manera que la cinta de Moebius es el “espacio vacío” en la escultura. El problema de esta idea es hacer visible esa superficie que no está y que está dentro de ese “espacio exterior”. Para ello, Keizo Ushio trabaja con el objeto geométrico tridimensional conocido en matemáticas como toro sólido. El toro es la superficie generada por una circunferencia que gira alrededor de un eje en el mismo plano de la circunferencia, y que esencialmente es la forma de un flotador, de manera que el toro sólido es el objeto tridimensional cuyo exterior es el toro, por lo que es como un donut.

El toro es una superficie geométrica que está generada por una circunferencia que gira alrededor de un eje. Imagen de Wikimedia Commons

 

El toro sólido va a jugar el papel de “espacio exterior” de la banda de Moebius, por lo tanto, tenemos que pensar en la banda de Moebius dentro del toro sólido.

Para entenderlo mejor, pensemos primero en la banda normal dentro del toro. Si consideramos todos los diámetros verticales de las circunferencias que rotadas forman el toro, estos segmentos forman una banda normal (dos caras y dos bordes), cuya anchura es el diámetro de esas pequeñas circunferencias del toro. ¿Cómo se obtendrá la banda de Moebius? Si consideramos primero un diámetro vertical y luego para las demás circunferencias del toro se van considerando los diámetros que van girando, desde ese vertical, de forma que al llegar al lugar de partida han dado medio giro, luego de nuevo es el diámetro vertical, esos segmentos forman una banda de Moebius dentro del toro. Pensemos que los segmentos representados en la siguiente imagen son los diámetros, que han girado media vuelta, de las circunferencias del toro, luego efectivamente es una banda de Moebius dentro del toro.

¿Cómo realiza Keizo Ushio este tipo de esculturas? Empieza con un bloque rectangular –con forma de paralelepípedo- de granito (suele trabajar con diferentes tipos de granito), que moldea con un martillo neumático hasta conseguir dejarlo con la forma de un toro sólido. Una vez conseguido el toro se trata de barrenar con el martillo neumático los diámetros que corresponden a la banda de Moebius.

El escultor japonés Keizo Ushio, durante el International Congress of Mathematicians Madrid 2006, barrenando el toro para formar el vacío de uno de los diámetros del toro para realizar la escultura Oushi-Zokei ICM Madrid 2006

 

Antes de continuar, veamos con un experimento casero qué pasaría en el caso de barrenar una banda normal dentro del toro sólido, como la descrita anteriormente. Para ello hemos cogido un donut (toro sólido), luego con un palillo chino (la barrena) hemos barrenado el donut (toro), pero con los diámetros verticales, creando un espacio vacío en el toro que es el vacío de “la banda normal”, que como tiene dos caras deja al exterior, el donut, con dos partes, la de fuera y la de dentro.

En el caso de la escultura Möbius in Space (2005) se barrenan los diámetros dando media vuelta, es decir, formando el vacío de la banda de Moebius, que como solo tiene una cara, el espacio exterior no puede dividirse en dos partes y es una sola pieza. En la siguiente ilustración, del profesor estadounidense de Ciencias de la Computación Carlo H. Séquin (véase Sculpture Designs by Carlo Sequin Inspired by Keizo Ushio), vemos un diagrama de esta idea.

El resultado de todas las ideas anteriores, es la escultura de Keizo Ushio, Möbius in Space (2005). En este caso, como el artista ha pintado el borde del espacio vacío, el impacto visual de la escultura es mayor.

Möbius in Space (2005), de Keizo Ushio, realizada en granito y con un tamaño de 3,2 x 3 x 2 metros. Imagen del Wall Street Journal [https://www.wsj.com¿Qué es lo que ocurriría en la anterior construcción si en lugar de barrenar los diámetros del toro girando media vuelta, lo hiciera ggirando una vuelta entera? Entonces tendríamos una banda normal –dos caras y dos bordes- retorcida. Por este motivo, en las esculturas de Keizo Ushio en las que barrena los diámetros del toro girados una vuelta entera la zona vacía es una banda normal retorcida, con dos caras, luego la escultura se separa en dos partes. Esto es lo que ocurre por ejemplo en la escultura Oushi-Zokei ICM Madrid 2006. Muchas personas relacionan esta escultura con la banda de Moebius, pero realmente es una banda normal retorcida, por eso se separa en dos partes.

Oushi-Zokei ICM Madrid 2006, del escultor Keizo Ushio, realizada durante el International Congress of Mathematicians Madrid 2006

 

La siguiente escultura, Dream Lens (2003), está realizada barrenando diámetros en el toro girando vuelta y media, desde el primero hasta volver al mismo, de forma que la parte vacía del toro es una banda de Moebius retorcida.

Dream Lens (2003), del escultor Keizo Ushio, realizada en granito azul y de tamaño 0,8 x 3 x 2 metros

 

Aunque podríamos hablar muchísimo más de la obra de este genial escultor japonés, vamos a terminar con una serie de esculturas en las cuales tanto el espacio exterior, como el espacio vacío, son bandas de Moebius. Una de las piezas de esta serie es la escultura Möebius in space (1990), que mostramos a continuación.

Möebius in space (1990), de Keizo Ushio, realizada en granito negro africano y con un tamaño de 2 x 2 x 1 metros, que está en Mihama, prefectura de Fukui

 

La escultura Banda de Moebius (1971-72), del artista constructivista abstracto británico John Ernest (1922-1994) está basada en una idea similar a la de la escultura Möbius in Space (2005) de Keizo Ushio, aunque con un tratamiento más rectilíneo. El espacio exterior es un paralelepípedo con un “agujero” en medio, de manera que es “topológicamente” como un toro sólido. El espacio vacío es una banda de Moebius, pero colocada de forma más rectilínea dentro del espacio en el que está, con el objetivo de que en la imagen global, de frente, veamos un cuadrado dentro de otro cuadrado. El resultado es una pieza impactante.

Banda de Moebius (1971-72), del artista británico John Ernest, realizada en Madera, metal, contrachapado y pintura alquídica, con un tamaño de 2,44 x 2,14 x 0,58 metros. Pertenece a la colección de la Tate Gallery de Londres. Fotografía de Paul y Susan Ernest, en la página de la Tate Gallery

 

Volvamos a las representaciones de la propia banda de Moebius, pero en esta ocasión se trata de una escultura curiosa y colaborativa. La siguiente artista utiliza el material reciclado para crear sus obras de arte, es la artista valenciana Rosa Montesa. Como la propia artista explica en su página web, sobre esta escultura:

Esta escultura es un encargo de AIMPLAS [Centro Tecnológico en el sector del plástico]. El objetivo era que los trabajadores pudieran realizar colectivamente una pieza escultórica. La figura sobre la que están puestas las botellas es una Cinta de Moebius.

Cinta de Moebius realizada con material reciclado, botellas de plástico, a partir del diseño de la artista valenciana Rosa Montesa. Imagen de la web de Rosa Montesa

 

Para terminar, una pequeña sorpresa, al menos para algunas de las personas que estéis leyendo esta entrada. El artista surrealista catalán Salvador Dalí, que siempre estuvo muy interesado por las matemáticas y la ciencia, también quedó cautivado por la cinta de Moebius.

Algunos de los grifos del Castillo Gala Dalí, o Castillo de Púbol, tienen diseños con la banda de Moebius. Por ejemplo, los grifos de la bañera de la sala de baño de Gala, que era la antigua cocina de este castillo gótico.

Grifos de oro macizo de la bañera de la sala de baño de Gala, en el Castillo Gala Dalí, diseñados por Salvador Dalí a partir de la cinta de Moebius. Imagen de la guía secreta del Museo Dalí en Instagram

 

Así mismo, Salvador Dalí diseñó en 1970 una escultura con la forma de la Banda de Moebius, para ser realizada en pasta de vidrio por la casa Daum.

Escultura de pasta de vidrio, diseñada por Salvador Dalí a partir de la cinta de Moebius y realizada por la casa Daum. Imagen de The Dalí Universe

 

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Arte Moebius (II) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Arte Moebius (I)
  2. El teorema de Pitágoras en el arte
  3. Arte y geometría del triángulo rectángulo: Broken Lights
Catégories: Zientzia

Periodo de semidesintegración

mar, 2020/09/22 - 11:59
Foto:  Brian Suh / Unsplash

Cuando hablamos de la impureza de las muestras radiactivas pusimos como ejemplo que, de 1,000,000 de átomos de 218Po presentes en una muestra recién preparada, solo quedarían alrededor de 10,000 después de 20 min, y el resto se habría desintegrado en átomos de 214Pb y sus productos hijos. Solo 3 minutos después de la preparación de la muestra pura de 218Po el 50% de los átomos originalmente presentes en la muestra se habrían desintegrado. En el caso del radio (226Ra), la mitad de los átomos de radio en una muestra recién preparada de radio tardaría 1620 años en transformarse en átomos de radón.

Estos dos ejemplos ilustran el hecho experimental de que las muestras de elementos radiactivos presentan una gran diferencia en sus velocidades de desintegración. Estas diferentes velocidades son el resultado promedio de muchos eventos individuales de desintegración diferentes que ocurren al azar en una muestra. Si nos centramos en un átomo concreto de cualquier elemento radiactivo, nunca podemos saber cuándo se desintegrará; algunos pueden desintegrarse tan pronto como se producen, mientras que otros puede que nunca se desintegren. Aún así, se ha encontrado experimentalmente que dada una muestra que contenga átomos radiactivos de un mismo tipo [1], la fracción de estos átomos que se desintegra por segundo es inmutable [2] y siempre la misma para un número lo suficientemente grande de átomos de ese tipo. [3] Esta fracción es casi completamente independiente de todas las condiciones físicas y químicas, como temperatura, presión o combinación química. [4]

Este hecho experimental tiene consecuencias muy importantes. Digamos, por ejemplo, que 1 de cada 1000 de los átomos de una muestra pura recién preparada se desintegra durante el primer segundo. Entonces, cabe esperar que 1 de cada 1000 de los átomos restantes se desintegre durante el siguiente segundo. Igualmente, 1/1000 de los átomos que quedasen después de 10 s se desintegrarán durante el undécimo segundo, y así sucesivamente. De hecho, durante cualquier segundo siguiente, 1/1000 de los átomos que quedan al comienzo de ese segundo se desintegrarán, al menos hasta que el número de átomos restantes no sea lo suficientemente grande y que las predicciones se vuelvan muy inciertas.

Dado que la fracción de átomos que se desintegra por unidad de tiempo es una constante para cada tipo de átomo, el número de átomos que se desintegran por unidad de tiempo disminuirá en proporción al número decreciente de átomos que aún no han cambiado. En consecuencia, si hacemos una gráfica del porcentaje de átomos inalterados supervivientes en función del tiempo, se obtiene una curva como la de la figura siguiente.

Gráfica de la desintegración de una especie radiactiva con periodo de semidesintegración de 2 minutos. Fuente: Wikimedia Commons

El número de átomos en una muestra que se desintegra por unidad de tiempo se denomina actividad de la muestra. Por lo tanto, la gráfica también representa la forma en que la actividad medida de una muestra disminuiría con el tiempo. La curva que muestra el número de átomos que no se han desintegrado aun en función del tiempo se aproxima asintóticamente al eje del tiempo; es decir, el número de átomos supervivientes se reduce, pero solo se acerca a cero [5]. Esta es otra forma de decir que no se puede asignar un “tiempo de vida” definido en la que todos los átomos originales de una muestra se habrán desintegrado.

Sin embargo, es posible especificar el tiempo requerido para que se desintegre cualquier fracción cualquiera y arbitraria de una muestra, la mitad, un tercio o el 67%, por ejemplo. Por conveniencia a la hora de hacer comparaciones, se optó en su momento por la fracción 1/2. Rutherford denominó half-life, periodo de semidesintegración [6], al tiempo necesario para la desintegración de la mitad de los átomos originales de una muestra pura (símbolo T1/2). Cada tipo de átomo radiactivo tiene un periodo de semidesintegración único [7].

Notas:

[1] Para muestras de un mismo isótopo. Introducimos el concepto de isótopo más adelante en la serie, por lo que ahora preferimos la perífrasis.

[2] En el sentido de que no puede alterarse.

[3] Esta frase en negrita es fundamental para comprender la radiactividad.

[4] Este hecho convierte a algunas especies radiactivas en excelentes relojes para distintos usos. Probablemente la técnica más conocida que hace uso de uno de estos relojes es la datación por carbono-14.

[5] Lo de que es una curva asintótica es una simplificación. Conforme la muestra se hace más pequeña nos encontraremos fluctuaciones estadísticas que serán significativas, por lo que la curva ya no será tal, sino una serie de escalones.

[6] Hay que apresurarse a decir que half-life no es vida media, sino semivida. Vida media es un concepto de física de partículas y se refiere a una partícula concreta. En radiactividad hablamos de una población de átomos, por tanto de semivida y, más concretamente de periodo de semidesintegración.

[7] Lo que implica que el periodo de semidesintegración de un elemento se puede utilizar para identificar el tipo de elemento radiactivo.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Periodo de semidesintegración se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La impureza, por definición, de las muestras radiactivas
  2. La radiactividad no es una reacción química
  3. Un modelo simple de gas
Catégories: Zientzia

¿Qué hacemos ahora con Venus?

lun, 2020/09/21 - 11:59

Santiago Pérez Hoyos

Atmósfera de Venus a partir de datos tomados por el AKATSUKI Ultraviolet Imager (UVI). Fuente: ISAS/JAXA – Wikimedia Commons

El descubrimiento en nuestro infernal vecino Venus de una molécula considerada como biomarcador o “huella de la vida”, el fosfano, ha sorprendido a los científicos que trabajamos en las atmósferas planetarias. Recuperados del primer impacto y tras los ríos de tinta que han corrido, tanto elogiando como rebajando el descubrimiento, llega el momento de reflexionar sobre los siguientes pasos que debemos dar para llegar a una respuesta concluyente.

Comenzamos con el más evidente: la detección de fosfano debe ser replicada.

Los compuestos químicos atmosféricos dejan en la luz una serie complicada de líneas que los identifican inequívocamente. Detectar más líneas, en regiones diferentes del espectro y con la mayor claridad posible, será el primer objetivo. No solo del equipo que anunció la detección, sino también de otros investigadores que ya se han puesto manos a la obra.

Hay un enorme interés en averiguar si la concentración de este compuesto es variable a lo largo del año de Venus, o si es diferente en diversas regiones del planeta. Dada su baja concentración, no todas estas preguntas podrán ser respondidas con los medios actuales y añadirán un nuevo motor para el desarrollo técnico que requiere la ciencia.

¿Hemos encontrado una “huella de la vida”?

Hay una serie de cuestiones más profundas que afectan a las propias premisas del estudio. La gran pregunta que subyace es la siguiente: ¿es realmente el fosfano una “huella de la vida”?

Hace un año se presentó convincentemente el papel del fosfano como biomarcador por su imposibilidad de ser creado por medios no artificiales en las condiciones de los planetas rocosos. Desde la biología aún debemos profundizar cómo determinados microorganismos anaeróbicos generan este compuesto y si podrían soportar las durísimas condiciones ambientales de Venus, aun rebajadas a los niveles atmosféricos donde se situarían.

Los organismos vivos también fueron propuestos en el pasado para explicar algunas de las estructuras que vemos en el espectro ultravioleta de Venus, de una manera mucho más aventurada que la que nos ocupa. ¿Podrían ambas hipótesis estar conectadas de alguna manera? Solo la biología podrá responder a estas preguntas.

Lo que nos queda por comprender sobre la atmósfera de Venus

En el terreno de la química atmosférica los interrogantes también se multiplican.

Aunque el fosfano se halla presente en Júpiter y Saturno, los gigantes gaseosos son capaces de generarlo gracias a dos ingredientes de los que Venus carece: una enorme cantidad de hidrógeno (prácticamente la totalidad de sus atmósferas) y una presión atmosférica descomunal debido a su también gigantesca masa.

Estos ingredientes no los encontramos en los planetas rocosos, incluso a pesar de que Venus no es como la Tierra en cuanto a presión y temperatura. Aunque los autores del descubrimiento buscaron con ahínco mecanismos alternativos, tuvieron que descartarlos todos. Sin embargo, es justo decir que las incógnitas acerca de los procesos químicos que operan en el planeta todavía son demasiado numerosas como para pasarlas por alto.

No comprendemos bien la química de la atmósfera de Venus. Es precisamente en este campo donde cabe esperar un debate más interesante en los próximos meses.

Un empujón para la misión DAVINCI+

Muchas de estas preguntas no se podrán responder con la información de la que disponemos ahora mismo. Probablemente tampoco con la misión Akatsuki de la Agencia Japonesa de Exploración Aeroespacial, que actualmente orbita en torno al planeta, ni con las misiones propuestas EnVision (ESA) ni VERITAS (NASA), porque todas ellas observan el planeta desde fuera.

Necesitamos una nave capaz de atravesar la densa atmósfera de Venus y darnos información de calidad sobre los niveles más profundos. Es la idea de DAVINCI+, una de las misiones preseleccionadas por NASA dentro de su programa Discovery, y pendiente de la decisión final que tomarán el próximo verano.

De llevarse a cabo, sería capaz de ofrecernos un recorrido por la evolución atmosférica de nuestro vecino, desde su pasado potencialmente habitable y húmedo hasta el infierno en el que el efecto invernadero lo ha convertido. El hallazgo de fosfano da un fuerte impulso para su confirmación al poner encima de la mesa una posibilidad que, hasta la fecha, pocos tomaban en serio.

El avance de la ciencia, aunque esté salpicado de sobresaltos y retrocesos, es continuo e imparable. Hemos sido testigos en los últimos días de un anuncio inesperado, bien fundamentado en los hechos pero todavía rodeado de numerosas incógnitas. A partir de aquí, veremos emerger un árbol de investigaciones científicas que nos llevarán en una dirección o en otra pero que, en todo caso, nos harán mucho más sabios por el camino.

Sobre el autor: Santiago Pérez Hoyos es investigador doctor permanente – Astronomía y Astrofísica, Universidad del País Vasco / Euskal Herriko Unibertsitatea

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿Qué hacemos ahora con Venus? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Una electrónica para Venus
  2. NASA, ¿cuándo vas a llevarnos a Venus en un barco (o en lo que sea)?
  3. Sorpresas en la atmósfera del polo sur de Venus
Catégories: Zientzia

Los vampiros

dim, 2020/09/20 - 11:59

Vampiro. 1. Espectro o cadáver que, según cree el vulgo en algunos países, va por las noches a chupar poco a poco la sangre de los vivos hasta matarlos.

2. Murciélago hematófago de América del Sur.”

Diccionario de la Lengua.

Si hay una historia bien documentada en el mundo, es la de los vampiros. No falta nada: interrogatorios, certificaciones de notables, de cirujanos, de sacerdotes de la parroquia, de magistrados. La prueba judicial es una de las más completas. Y con todo eso, ¿quién cree en los vampiros? ¿Estaremos todos condenados por no haber creído?

Jean-Jacques Rousseau, Carta a Christopher de Beaumont, 1762.

Los vampiros les causan a menudo grandes sufrimientos, mordiéndoles en la cruz, no tanto a causa de la pérdida de sangre que resulta de la mordedura, como a causa de la inflamación que luego produce el roce de la silla. Sé que en Inglaterra han puesto en duda últimamente la veracidad de este hecho; por tanto, es una buena suerte el haber estado yo presente un día en que se cogió a uno de esos vampiros (Desmodus d’Orbigny, Wat.), en el mismo dorso de un caballo. Vivaqueábamos muy tarde una noche cerca de Coquinho, en Chile, cuando mi criado, advirtiendo que un caballo de los nuestros estaba muy agitado, fue a ver qué ocurría; creyendo distinguir algo encima del lomo del caballo, acercó con rapidez una mano y cogió un vampiro. A la mañana siguiente, la hinchazón y los coágulos de sangre permitían ver dónde había sido mordido el caballo; tres días después hicimos uso de éste, sin que pareciera resentirse ya de la mordedura.”

Charles Darwin, Viaje de un naturalista alrededor del mundo, 1839.

Contaba Anthony Masters en su libro sobre vampiros, publicado en 1974, que hay dos tipos de vampiro, el mítico y el real, y ambos, según cuenta, pueden matar y son asesinos. El mítico, cuenta la leyenda, mata personas por miles, incluso solo por el terror que provoca. En su tiempo, y quizá ahora, era juzgado, condenado y ejecutado por asesino psicópata o, si no era así, simplemente era linchado. El vampiro real ataca para alimentarse y se le tiene por cruel y estremecedor.

Foto: Clément Falize / Unsplash

La mitología del vampiro, de ese vampiro mítico, no el real, aparece en muchas culturas y religiones de todo el mundo, tal como detalla Anthony Masters. La definición de vampiro y de vampirismo varía según el origen de la leyenda. En la mitología, los vampiros son seres no muertos, inmortales por tanto, y misteriosos y nocturnos. Ocupan la frontera, que atraviesan si les apetece, entre el mundo de los vivos y el de los muertos. El grupo de K. Gubb, del Hospital Box-Hill de Melbourne, en Australia, escribe que los vampiros son criaturas poderosas que provocan miedo, intrigan y fascinan, y dominan a otras personas. Se hicieron famosos y conocidos con los escritos de John Polidori y Bram Stoker en el siglo XIX.

En la revisión sobre vampirismo, que publicaron en 2013, Lennon da Costa Santos y sus colegas, de la Universidad Federal de Minas Gerais, en Brasil, proponen que se cree en la existencia de los vampiros cuando, en alguna persona, se observan síntomas de algunas enfermedades que recuerdan la descripción del aspecto de los vampiros de las leyendas. Mencionan la porfiria, que provoca un semblante anémico con una palidez exagerada. Es una enfermedad causada por un defecto metabólico que impide la síntesis de la hemoglobina de la sangre y, como efectos, hay anemia y palidez. La síntesis de la hemoglobina se detiene un paso anterior, cuando se produce la porfirina, molécula que precede a la hemoglobina, que, por tanto, se acumula en los tejidos del paciente, sobre todo en la zona subcutánea, los huesos y los dientes.

Además, la porfirina reacciona a la luz y produce radicales de oxígeno que, al sol, pueden provocar heridas en la piel. De ello la leyenda sobre la aversión al sol de los vampiros que, incluso, los puede destruir, y su obligada vida nocturna. La porfirina, en casos graves, llega a deformar el rostro, retrae los labios y muestra la dentadura que, así, parece más grande de lo habitual. Son los afilados colmillos del vampiro. Los enfermos de porfiria desarrollan conductas antisociales, agresividad y aislamiento, incluso desórdenes mentales. Para la imaginación popular, son seres malditos o demonios encarnados.

Vampiro (1895) de Edvard Munch

Los autores aluden al Doctor Juan Gómez Alonso que, en su tesis, defendida en 1992, y en publicaciones posteriores, relaciona el vampirismo popular con la rabia y menciona la coincidencia de una epidemia de esta enfermedad en Hungría, a principios del siglo XVIII, con la difusión de leyendas sobre vampiros en áreas montañosas y remotas de los Cárpatos. Gómez Alonso comenta que el vampirismo, según el mito, se transmite por mordedura, como muchas enfermedades transmitidas por animales y, entre ellas, la rabia. Además, el vampiro se puede transformar a voluntad en lobo, perro o murciélago, animales todos ellos que pueden contagiar de la rabia.

Es una enfermedad que altera la conducta, provoca más agresividad, y actúa en áreas cerebrales del sistema límbico, como el hipotálamo o la amígdala, encargadas de sentimientos y emociones. Lleva a conductas nocturnas, como la leyenda dice de los vampiros. Hay otros síntomas de la rabia que recuerdan a los relatos de vampiros: espasmos musculares, gruñidos, hidrofobia, fotofobia o, incluso, evitar la propia imagen en el espejo.

En conclusión, para Gómez Alonso, las epidemias de rabia del siglo XVIII pudieron ampliar y difundir los mitos sobre vampiros, ya existentes, en Europa centra y oriental.

Una tercera enfermedad a la que se atribuye la leyenda sobre los vampiros es la pelagra, provocada por la deficiencia en vitamina B3 o niacina que, en el siglo XVIII, en la época de la difusión de las leyendas sobre vampiros, se atribuye a la extensión del cultivo del maíz, que llegó a Europa desde América y, poco a poco, por su fácil cultivo y rendimiento, se convirtió en la base de la alimentación de las clases más pobres. La falta de vitamina B3 en el maíz provocó la deficiencia en esta vitamina en quienes lo tenían como el alimento más consumido.

Según la hipótesis de Jeffrey Hampl y William Hampl III, de las universidades de Massachusetts y de Rhode Island, la pelagra provoca dermatitis y demencia, con insomnio e irritabilidad, y, además, hipersensibilidad a la luz que les provoca alteraciones en la piel y quemaduras. Se inflaman los labios y los dientes parecen más grandes. Todos ellos son síntomas que también describen a los vampiros.

En psiquiatría, el vampirismo clínico se define como una creencia en fantasmas chupadores de sangre o que intentan conseguir sangre pues les produce un profundo placer sexual. Otros autores, según Gubb, consideran que el vampirismo clínico es el acto concreto de beber sangre de la víctima, una conducta poco común que se asocia con la esquizofrenia. Y hay expertos que asocian el vampirismo con actos agresivos o sexuales con cadáveres o con moribundos. Incluso se han descrito pacientes con autovampirismo cuando el sujeto bebe su propia sangre.

Uno de los vampiros más famosos del último siglo fue Peter Kürten, conocido como el Vampiro de Dusseldorf, nacido en 1893, asesinó, según la sentencia que le condenó, a nueve personas, con más intentos frustrados y más de ochenta agresiones sexuales. Murió guillotinado en 1931, a los 48 años, y la leyenda cuenta que preguntó, poco antes de la ejecución, si, una vez cortada la cabeza, oiría, aunque fueran unos segundos, la sangre saliendo de su cuerpo. En el juicio relató su pasión por beber la sangre de sus víctimas, en un síndrome llamado hematodipsia.

A pesar de la popularidad del vampirismo, las publicaciones científicas sobre este síndrome son escasas, sobre todo a partir de 1940, lo que indica la escasa investigación sobre ello. El grupo de Gubb llega a esta conclusión después de comentar trabajos publicados en Sudáfrica, Francia, Suiza y Estados Unidos hasta 2006.

Un vampiro común (Desmodus rotundus) alimentándose de un cerdo (animales disecados expuestos en el Museo de Historia Natural de Viena). Foto: Sandstein /Wikimedia Commons

Después de repasar el mito vamos a conocer la realidad del vampiro. Son murciélagos con una dieta exclusivamente de sangre. Son los únicos mamíferos con alimentación hematófaga o, si se quiere, sanguívora aunque sea una palabra que no está en el Diccionario. Solo hay tres especies de murciélagos con dieta de sangre: el vampiro común, Desmodus rotundus, que ya conocía Darwin; el vampiro de piernas peludas, o Dyphylla ecaudata, y el vampiro de alas blancas o Diaemus youngi, que solo gusta de la sangre de aves. Las tres especies se encuentran en Centro y Sudamérica, desde México hasta Chile y Argentina.

Las tres especies pertenecen a la misma familia aunque a distintos géneros, y se supone que han tenido un antepasado común. En esa familia hay murciélagos con dietas muy variadas como, por ejemplo, se alimentan con néctar, polen, insectos, frutas, pescado y carne. Y, como sabemos, solo tres especies tienen dieta de sangre, unos 10 mililitros al día. Al morder, segregan un anticoagulante que es una proteína muy apropiadamente llamada draculina. Horas después de la mordedura, la herida sigue sangrando con suavidad. Por cierto, rara vez muerden a una persona y, si lo hacen, es en las extremidades, los dedos o la nariz.

Es una dieta poco habitual y supone adaptaciones para que sea funcional y eficaz: mucho líquido y, por tanto, un potente sistema renal para eliminarlo, y una gran vejiga para almacenar la orina; riesgo, si no se controla y elimina el exceso de hierro, de provocar síntomas de toxicidad; además, es una dieta con exceso de proteínas y pocos carbohidratos y vitaminas; fuertes caninos para morder; sistema sensorial para detectar, por medio de infrarrojos, las zonas calientes de la piel de la víctima como las áreas con más cercanía del sistema circulatorio y de la sangre y allí, morder,…

El estudio del genoma del vampiro común, Desmodus rotundus, del grupo de Lisardia Zepeda, de la Universidad de Copenhague, ha localizado algunas de las adaptaciones a la dieta de sangre. Tienen vías de síntesis de vitamina B, que es muy escasa en la sangre y necesitan elaborarla. Hay proteínas en el intestino del vampiro que, con agua y dióxido de carbono, abundantes en la sangre, sintetizan hidratos de carbono. El exceso de hierro en la sangre se controla por genes que dirigen su eliminación. Las proteínas de la sangre se metabolizan y los productos resultantes se eliminan por el sistema renal en la orina.

Estos autores también han localizado los genes que dirigen la detección de radiación infrarroja, es decir, de calor, para encontrar en la piel las zonas con más circulación de sangre y, así, elegir el lugar para morder.

Estas adaptaciones, según el estudio publicado por el grupo de Fidel Botero Castro, de la Universidad de Montpellier, sobre el ADN de las mitocondrias, revelan que se habían seleccionado hace unos 4 millones de años, con una relativa rapidez para lo que duran estos procesos.

Referencias:

Botero Castro, F. et al. 2018. In cold blood: Compositional bias and positive selection drive the high evolutionary rate of vampire bats mitocondrial genomes. Genome Biology and Evolution 10: 2218-2239.

Gómez, J.A. 1998. Rabies: a posible explanation for vampire legend. Neurology 51: 856-859.

Gubb, K. et al. 2006. Clinical vampirism: a review and illustrative case report. South African Psychiatry 9: 163-168.

Hampl, J.S. & W.S. Hampl III. 1997. Pellagra and the origin of a myth: evidence from European literatura and folklore. Journal of the Royal Society of Medicine 90: 636-639.

Masters, A. 1974. Historia natural de los vampiros. Ed. Bruguera. Barcelona. 318 pp.

Santos, L.C.S. et al. Medical explanations for the myth of vampirism. Revista Medica de Minas Gerais 23: 510-514.

Velasco, E. 2018. Descubren cómo los vampiros pasaron a alimentarse solo de sangre. La Vanguardia 20 enero.

Wikipedia. 2018. Vampire bat. 29 October.

Wikipedia. 2020. Peter Kürten. September 4.

Zepeda Mendoza, M.L. et al. 2018. Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nature Ecology & Evolution doi: 10.1038/s41559-018-0476-8

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Los vampiros se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. A tomar el sol
  2. El caso de Julius Lederer (y del agua que bebemos)
  3. Un paseo por la ciudad
Catégories: Zientzia

César Tomé López – Naukas P4K 2019: ¿Eureka?¿En serio?

sam, 2020/09/19 - 11:59

Aunque un experimento te lo cuente cualquier libro de texto no quiere decir que como te lo cuentan sea correcto. Por eso es tan importante reproducir los experimentos. El caso de Arquímedes y la corona ilustra el argumento. Da la charla César Tomé López, editor de este Cuaderno de Cultura Científica, de Mapping Ignorance y responsable de proyección internacional de Euskampus Fundazioa.

La conferencia se impartió dentro del marco del festival Passion for Knowledge 2019 (P4K) organizado por el Donostia International Physics Center (DIPC).



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo César Tomé López – Naukas P4K 2019: ¿Eureka?¿En serio? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. José Miguel Viñas – Naukas P4K 2019: De nubes las pinacotecas están llenas
  2. Joaquín Sevilla – Naukas P4K 2019: Lo que esconden unos champiñones al ajillo
  3. Ambrosio Liceaga – Naukas P4K 2019: Nunca quisimos coches voladores
Catégories: Zientzia

El cannabis rompe el equilibrio metabólico entre neuronas y astrocitos alterando el comportamiento social

ven, 2020/09/18 - 11:59

El sistema nervioso está formado por neuronas y células gliales. De estas últimas, las más abundantes son los astrocitos, que, entre otras muchas funciones, se encargan de captar la glucosa del torrente sanguíneo para proporcionar energía y permitir la actividad neuronal necesaria, y así asegurar que las funciones cognitivas se ejecuten de una manera correcta. Los receptores cannabinoides tipo 1 (CB1), que modulan la comunicación entre los astrocitos y las neuronas, constituyen la principal diana del componente psicoactivo del cannabis, llamado delta-9-tetrahidrocannabinol (THC).

¿Qué pasa cuando el THC actúa sobre los astrocitos? La investigación, en la que ha participado el grupo del doctor Pedro Grandes del Departamento de Neurociencias de la Facultad de Medicina y Enfermería de la UPV/EHU, concluye que la activación de los receptores de cannabinoides CB1 en las mitocondrias (orgánulos celulares encargados de la producción de energía) de los astrocitos de ratón impide el metabolismo de la glucosa y la producción de lactato en el cerebro, lo cual altera la función neuronal, causando un deterioro de las conductas de interacción social.

Según el Dr. Grandes, “la activación de estos receptores conduce a que los astrocitos generen una menor cantidad de especies reactivas de oxígeno, lo que afecta negativamente a la producción glucolítica de lactato causando un estrés neuronal y una falta de interacción social. La importancia de esta investigación radica no sólo en la identificación de este déficit que puede revertirse mediante la manipulación genética y farmacológica de estos cambios moleculares y bioquímicos causados por el tratamiento cannabinoide, sino también por lo que aporta al conocimiento de las alteraciones causadas por el cannabis en el cerebro”.

La colaboración del grupo de investigación del Dr. Pedro Grandes con el equipo del Dr. Giovanni Marsicano, de la Universidad de Burdeos, resultó fundamental hace unos años para demostrar por primera vez la presencia de receptores CB1 en las mitocondrias de las neuronas, cuya activación reduce la actividad mitocondrial causando pérdida de memoria. Los resultados de estos estudios se publicaron en el año 2012 en Nature Neuroscience y en 2016 en Nature. Sin embargo, “quedaba pendiente conocer cuál era la función de los receptores CB1 localizados en mitocondrias de astrocitos, de ahí la relevancia de este nuevo hallazgo, que además supone una continuidad en la línea de investigación y cooperación transfronteriza”, explica el doctor Grandes. Este descubrimiento se ha publicado en Nature.

Referencias:

Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, Arnouil D, Saraswat D, Varilh M, Cannich A, Julio-Kalajzic F, Bonilla-Del Río I, Almeida A, Puente N, Achicallende S, Lopez-Rodriguez ML, Jollé C, Déglon N, Pellerin L, Josephine C, Bonvento G, Panatier A, Lutz B, Piazza PV, Guzmán M, Bellocchio L, Bouzier-Sore AK, Grandes P, Bolaños JP, Marsicano G. (2020) Glucose metabolism links astroglial mitochondria to cannabinoid effects Nature doi: 10.1038/s41586-020-2470-y

Magistretti, P.J. (2020) How lactate links cannabis to social behaviour Nature (News & Views) 583, 526-527 doi: 10.1038/d41586-020-01975-5

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo El cannabis rompe el equilibrio metabólico entre neuronas y astrocitos alterando el comportamiento social se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El límite entre la vida y la muerte en las neuronas
  2. Un nexo cannabinoide entre mitocondrias y memoria
  3. El citoesqueleto de las neuronas y el alzhéimer
Catégories: Zientzia

Mayas y aztecas en la orquesta

jeu, 2020/09/17 - 11:59
Concha trompeta de Chipícuaro. Arte tolteca (años 300-900). Fuente: Smithsonian Institution

 

Las caracolas han fascinado a los humanos desde siempre. Sus formas intrincadas, sus hermosos colores y patrones, el misterio de su cámara interior capturan la imaginación. Pero además de estas cualidades visuales, tienen un encanto adicional. Gracias a su potente sonido, las caracolas se han utilizado desde la antigüedad en culturas de todo el mundo para atravesar las distancias y el corazón de los dioses. En Nueva Guinea, aún existen llamadas estándar que dan la voz alarma, anuncian una caza exitosa u otros eventos importantes. Sus poderes sobrenaturales fueron conocidos asimismo en Europa. En Bohemia Occidental, se hacía sonar una caracola para ahuyentar a las tormentas. En la India, el shankha es una pieza esencial del budismo y el hinduismo. Constituye un recipiente ritual, así como un instrumento para ocasiones solemnes y ceremonias religiosas. En la mitología hindú, es un emblema sagrado del dios Vishnu. Los monjes tibetanos aún hoy la hacen sonar para convocar a los devotos. Como los niños náufragos de la novela de Golding, los fieles acuden a su llamada limpia y penetrante a través de la distancia.

Quetzalcoatl con la coraza del viento al cuello. Fuente: Wikimedia Commons.

De entre todas estas culturas, la caracola jugó un papel ritual especialmente importante en las sociedades precolombinas de América central y América del sur. Su uso está particularmente bien documentado en la mayoría de las áreas culturales de mesoamérica y en la zona de México occidental, donde se vinculaba a eventos sociales y ceremonias religiosas. Muchos de sus restos se han encontrado en sitios funerarios, indiando su papel como ofrendas1 en diversos ritos de paso. Normalmente, estaban ricamente decoradas, con todo tipo de relieves y pinturas. Cumplían asimismo un papel importante en la guerra, como instrumento de llamada. En algunas sociedades, se asociaban a los rituales y la parafernalia de los chamanes, que ejercían como líderes tanto espirituales y guerreros. De manera más general, la caracola se asociaba como símbolo a Quetzalcoatl, la serpiente emplumada, el dios azteca del viento, el aire y el aprendizaje que siempre llevaba alrededor del cuello la «coraza de viento» o ehecailacocozcatl. Este talismán con forma espiral se fabricaba, precisamente, a paritr de la sección transversal de una caracola y fue usado como collar por gobernantes y sacerdotes.

Una ilustración en el Códice Magliabecchiano muestra a un caracolista (en la cultura azteca eran conocidos como quiquizoani)con su mano introducida dentro de su instrumento (quiquiztli). Podría parecer una forma casual de sujetarlo pero no es el caso. Una de las limitaciones de la concha, es que, a priori, no puede producir más de una nota. Su tono viene dado por su longitud y a priori, este parámetro no es algo que se pueda cambiar. Sin embargo, los caracolistas como Steve Turre, son capaces de afinar varios sonidos introduciendo la mano en el extremo abierto de la caracola. Al hacerlo, el espacio disponible en su interior se vuelve más pequeño, las ondas sonoras se acortan y el resultado es un sonido sensiblemente más agudo que el original. El efecto es el mismo que cuando alguien vierte agua dentro una botella para cambiar su tono: la mano haría la función del líquido, en este caso. Hoy en día, los intérpretes de trompa utilizan esta misma técnica de afinación “manual” para afinar ciertas notas. Este instrumento de viento metal hermosamente acaracolado, tiene de hecho un origen muy similar al de la concha. Las versiones primitivas de la trompa consistían sencillamente en cuernos de animales encontrados (en inglés su nombre todavía es horn, de hecho), que fueron ganando complejidad hasta adquirir su actual forma metálica. Sin embargo, el recurso de afinar con la mano no fue explotado en Europa hasta el siglo XVIII. La ilustración del Códice Magliabecchiano sugiere que ya era utilizado por los intérpretes de conchas aztecas al menos desde dos siglos antes.

Códice Magliabecchiano, XIII, 11, 3. Xochipilli, “noble flor”, dios del sol naciente, las flores y la alegría, es llevado en una litera adornada con mazorcas. Códice Magliabechiano, f. 35r. Reprografía: Marco Antonio Pacheco / Raíces. Fuente: Wikimedia Commons

 

Curiosamente, la vinculación de las conchas con las culturas de centroamérica ha traído de vuelta este instrumento al mundo de las orquestas. Muchos compositores contemporáneos, especialmente en ese lindísimo país llamado México, han utilizado su característico sonido para evocar los ecos del pasado de su nación. Recuerdo la primera vez que yo escuché el penetrante tono de una caracola, brillante, tenso y doloroso, llenando la sala Nezahualcóyotl de la Ciudad de México. Sonaba el último movimiento La Noche de los Mayas (20’30’’) de Silvestre Revueltas y el público había hecho suyo aquel concierto. Fue un momento emocionante.

Referencia:

1Novella, Robert. (1991). Shell Trumpets from Western Mexico. Papers from the Institute of Archaeology. 2. 42. 10.5334/pia.16.

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo Mayas y aztecas en la orquesta se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El océano en una caracola
  2. Un sonido para hablar con los dioses
  3. La caracola más grave del mundo
Catégories: Zientzia

Un juego con un premio colosal

mer, 2020/09/16 - 11:59

 

Se propone un juego entre cuatro personas (Ana, Blas, Carmen y David) con un “colosal” ipremio para aquella que gane: las obras completas de Paul Erdős.

Las reglas del juego son las siguientes: cada participante recibe dos dados con las caras numeradas de una manera que no es la habitual. El primer dado tiene marcadas en sus caras los números 2, 7, 7, 12, 12 y 17, y el segundo las cifras 3, 8, 8, 13, 13, y 18. Los dados son equilibrados, es decir, cada cara tiene la misma probabilidad de salir, que es de 1/6.

En privado, sin nadie observando, cada participante tira 20 veces ambos dados. Anota el resultado de la suma de las cantidades alcanzadas en cada tirada y adiciona los veinte resultados obtenidos. Gana la persona cuya puntuación final sea mayor.

Sin embargo, quizás por los nervios o quizás por torpeza, puede suceder que las sumas no sean correctas. Incluso puede ocurrir que alguno de los participantes, pensando que así tendrá más posibilidades de vencer en el juego, mienta en su resultado. La posibilidad engañar existe, ya que nadie les está vigilando.

Por todo ello se dispone de un juez imparcial, Ernesto, preparado para descalificar a cualquier participante si, con un 90 % de certeza, cree que ese jugador o jugadora ha fallado al sumar o, abiertamente, ha mentido.

Después de explicar estas reglas, los participantes se encierran para proceder a lanzar sus dados… y sumar (¿quizás inventar?). Tras finalizar sus tiradas, declaran lo siguiente:

  1. Ana confirma que ha sacado 385 puntos,

  2. Blas dice que ha obtenido 840 puntos,

  3. Carmen afirma que sus tiradas suman 700 puntos y

  4. David anuncia que ha conseguido 423 puntos.

Pocos minutos después, Ernesto, el juez, declara: “Sin ninguna duda, Ana es la ganadora”.

¿Sabrías explicar la razón?

Antes de argumentar, vamos a reflexionar sobre las sumas que se pueden obtener.

  1. Observar que los números del primer dado son todos congruentes con 2 módulo 5, es decir, las cifras 2, 7, 12 y 17, al dividirlas por 5, dan como resto 2. Del mismo modo, los números del segundo dado son todos congruentes con 3 módulo 5, es decir, las cifras 3, 8, 13 y 18, al dividirlas por 5 dan como resto 3. Así, al sumar las cantidades obtenidas en una tirada (las procedentes de los dos dados), la cantidad resultante es siempre un múltiplo de 5, por lo que la suma final también debe serlo.

  2. La menor suma que puede obtenerse en una tirada es 5 (2+3) y la mayor 35 (17+18). Así, el resultado final de las sumas tras las 20 tiradas oscila entre 100 (5×20) y 700 (35×20).

Tras estas sencillas observaciones, Ernesto ha podido descalificar directamente a David (la suma que da este jugador no es un múltiplo de 5) y a Blas (es imposible obtener 840 puntos sumando los resultados de las 20 tiradas) que, o bien se han equivocado al sumar o bien han querido hacer trampa.

Carmen afirma que sus tiradas han sumado 700, lo que significa que, en cada una de las 20 tiradas, ha obtenido la máxima puntuación, que es de 35… y desde luego es posible que eso haya sucedido. Pero, ¿cuál es la probabilidad de que suceda? La probabilidad de que salga 35 en una tirada es de 1/62=1/36 (se debe obtener 17 en el primer dado y 18 en el segundo). Por lo tanto, la probabilidad de que salga 35 en las veinte tiradas es de 1/640 (cada tirada es un suceso independiente). Y este número es del orden de 1,34×10-31, una cantidad realmente pequeña. Claro que es posible que Carmen haya sacado un montante de 700 por azar, pero es muy poco probable. Así que Ernesto, con el 90 % de certeza, puede descalificar a Carmen.

¿Lo que dice Ana es creíble? Desde luego 385 es un múltiplo de 5. El resultado más probable es el de 400 (20×20=400). ¿Por qué? Porque puede obtenerse una suma de 20 en una tirada de diez maneras distintas: 2+18 (un modo), 7+13 (cuatro formas), 12+18 (cuatro maneras) y 17+3 (un modo). El resto de las sumas posibles son: 5 (2+3), 10 (2+8, 7+3; de cuatro modos), 15 (2+13, 7+8; 12+3, de ocho maneras), 25 (7+18, 12+13; 17+8; de ocho maneras), 30 (12+18, 17+13; de cuatro modos) y 35 (17+18; de una manera).

Por otro lado, la suma de 385 es posible de obtener (por ejemplo, con 17 tiradas sumando 20 y otras tres sumando 15. O con 10 tiradas de 25, 7 de 15 y 3 de 10, etc.). Así que lo que dice Ana es creíble y, habiendo sido excluidos Blas, Carmen y David, ¡ella es la ganadora!

Notas:

Este problema se ha extraído de ¿Puedes resolver el acertijo del rey tramposo? de Dan Katz en TED-ed.

iPaul Erdös (1913-1996) fue uno de los más prolíficos matemáticos en cuanto a publicaciones científicas: unos 1.500 artículos con más de 500 coautores. Por ello podemos calificar sus obras completas como un premio “colosal”.

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Un juego con un premio colosal se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El juego del Sim
  2. Un juego de mesa para entender la irreversibilidad
  3. Matemáticas en el juego de cartas SET (1)
Catégories: Zientzia

La impureza, por definición, de las muestras radiactivas

mar, 2020/09/15 - 11:59
Foto: ActionVance on Unsplash

Conviene quizás en este punto de nuestra exploración del núcleo atómico pararnos un momento a considerar qué significa desde el punto de vista práctico que tengamos una muestra de un determinado material radiactivo puro. La muestra, sin actuar sobre ella y aislada, no será pura si pasa el tiempo suficiente. Esto es algo fundamental que hace que un material radiactivo sea algo completamente diferente de una sustancia o un elemento no radiactivos. Para ilustrar esta idea recomendamos leer Las series de desintegración radiactiva y tener presente la tabla que presentábamos en esa anotación:

Fijémonos, por ejemplo, en la porción de la serie uranio-radio que empieza con el polonio-218. Se puede recoger polonio-218 exponiendo un trozo de material ordinario, como una lámina delgada de aluminio, a gas radón. Algunos de los átomos de radón se desintegran en átomos de polonio-218, que luego se adhieren a la superficie de la lámina. Ya tenemos nuestra muestra pura. Ahora la dejamos aislada y no hacemos nada. ¿Qué ocurre? Lo ilustra la siguiente gráfica:

El polonio-218 (218Po) se desintegra en plomo-214 (214Pb), que se desintegra en bismuto-214 (214Bi), que se desintegra en polonio-214 (214Po), luego plomo-210 (210Pb), luego bismuto-210 (210Bi), etc. Si la muestra original contenía 1,000,000 átomos de 218Po cuando la recogimos, después de 20 min contendrá alrededor de 10,000 átomos de 218Po, alrededor de 660,0000 átomos de 214Pb, alrededor de 240,000 átomos de 214Bi y alrededor de 90,000 átomos de 210Pb. El número de átomos de 214Po es insignificante porque la mayoría de los 214Po se habrá transformado en 210Pb en una pequeña fracción de segundo.

Análogamente, una muestra de radio puro recién obtenida (226Ra) también cambiaría en composición de una manera compleja, pero mucho más lentamente. Con tiempo suficiente, consistiría en una mezcla de algo de 226Ra restante, más radón-222, polonio-218, plomo-214 y el resto de los miembros de la cadena hasta el «radio G» estable (plomo-206). De manera similar, una muestra de uranio puro puede contener, después de un tiempo, otros 14 elementos de los cuales 13 (todos menos la última parte estable) contribuyen a la emisión radiactiva, cada uno a su manera.

En todos estos casos, el resultado es una mezcla compleja de elementos. Pero, fijémonos, que desde el punto de vista de las emisiones radiactivas también se ha producido un cambio fundamental: Tras comenzar como un emisor alfa puro, la muestra original termina emitiendo toda clase de partículas, alfa, beta y rayos gamma, aparentemente de forma continua y simultánea.

Vemos pues que la separación de los diferentes miembros de una cadena radiactiva entre sí es algo muy difícil, especialmente si algunos miembros de la cadena se desintegran rápidamente. Uno de los métodos empleados con éxito dependía de la hábil purificación química de una sustancia radiactiva en concreto, como habían hecho los Curie con el radio y el polonio. La enorme complejidad y el ingenio del trabajo experimental necesarios para aislar y determinar las propiedades de cada uno de los elementos de una serie radiactiva son dignos de admiración.

Supongamos ahora que hemos obtenido una muestra de la que se han eliminado todos los átomos radiactivos excepto los de radio-226. La muestra comienza a emitir gas radón inmediatamente. Este último puede extraerse y examinarse sus propiedades antes de que se contamine seriamente por la desintegración de muchos de sus átomos en polonio-218. Si conseguimos hacer esto, encontraremos que el radón se desintegra (a través de varias transformaciones) en plomo mucho más rápidamente que el radio se desintegra en radón. Pero, ¿cómo medimos la velocidad de desintegración y por qué existen velocidades diferentes?

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo La impureza, por definición, de las muestras radiactivas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La transformación radiactiva
  2. La carga de las partículas radiactivas
  3. Las series de desintegración radiactiva
Catégories: Zientzia

Las huellas dactilares, el FBI y la teoría de Fourier modernizada

lun, 2020/09/14 - 11:59

Javier Duoandikoetxea

Las huellas dactilares nos identifican, por eso los detectives las buscan en el lugar donde se ha producido un delito. No resulta sorprendente, por tanto, saber que hay colecciones gigantescas de huellas dactilares en los archivos policiales.

huellas dactilaresImagen 1: Ventana de vidrio simulando huellas dactilares. (Fotografía: Eveline de Bruin – Licencia Pixabay. Fuente: pixabay.com)

El FBI comenzó a tomar huellas dactilares en 1924 mediante el uso de fichas de cartón, en las que los dedos mojados en tinta dejaban su marca. En 1993, ya tenía almacenadas más de 25 millones de fichas. Para entonces, el uso de los ordenadores ya había comenzado a extenderse y estaba claro que los archivos digitales reportarían grandes ventajas, tanto para guardar huellas dactilares como para realizar búsquedas, por lo que se procedió a la digitalización.

Es importante asegurar con la mayor precisión posible a quién pertenece una huella dactilar. Por eso, para digitalizar los archivos se eligió una imagen de 500 puntos por pulgada, a escala de colores grises de 8 bytes. Esto generaba un fichero de 10 MB de cada ficha, de modo que la digitalización de todo el archivo requería soportes con gran espacio. Además, hace 25 años la capacidad de almacenamiento de los dispositivos era muy inferior a la actual. Entonces, ¿qué hacer? La clave estaba en la compresión.

Recordemos que comprimir es reducir el tamaño del fichero y que, para que eso resulte útil, hay que hacerlo sin perder información importante. El sistema de compresión JPEG, habitual para las fotografías, se lanzó en 1992 y fue el elegido por los expertos del FBI para llevar a cabo el proceso de digitalización. A pesar de ello, no quedaron satisfechos con los resultados, ya que la imagen resultante no les parecía adecuada. ¿Por qué?

En la mayoría de los casos, al pasar de un píxel a otro el cambio de color que se produce es pequeño, que es lo que aprovecha el sistema JPEG. Por eso, en las zonas de los bordes el resultado no es tan bueno, ya que se pueden producir cambios de color importantes en los píxeles de alrededor. Se puede decir, en cierta medida, que en las imágenes de las huellas dactilares lo único que tiene importancia son los bordes (rayas).

Para resolver el problema, investigadores de varias universidades y agencias gubernamentales de Estados Unidos colaboraron en la búsqueda de un buen algoritmo adaptado a la compresión de imágenes de huellas dactilares.

Intervalo matemático

En 1984, el matemático francés Yves Meyer trabajaba como profesor en la Universidad de París-Orsay cuando un compañero físico le enseñó un artículo, pensando que sería de su interés. Los autores eran Jean Morlet y Alex Grossmann, ingeniero geofísico de la empresa Elf Aquitaine el primero y físico de la Universidad de Marsella el segundo.

huellas dactilaresImagen 2: Alex Grossmann (1930-2019) y Jean Morlet (1931-2007), en 1991. (Fuente: Centre de Physique Théorique, Universidad de Marsella)

El artículo proponía una nueva vía de detección de gas y petróleo. Para detectar el petróleo y las bolsas de gas subterráneas, se emite una onda y, mediante el análisis de la señal que regresa tras atravesar varias capas, se obtiene información sobre la composición interna. Morlet presentó una nueva técnica para hacerlo y trabajó el campo matemático con Grossmann, pero no tuvo mucho éxito en la empresa y, según dicen, únicamente consiguió una jubilación anticipada. Sin embargo, la fama le llegó del mundo de la ciencia.

Yves Meyer se quedó sorprendido por lo que vio en el artículo: en él se encontró con fórmulas conocidas, de un campo que dominaba perfectamente, y consideró que podía ser un camino fructífero entablar relación con los autores. Según cuenta él mismo, tomó el tren para Marsella en busca de Grossmann. En pocos años, Meyer y sus colegas y discípulos convirtieron aquellos torpes pasos iniciales en una teoría matemática.

Los componentes básicos para desarrollar una función en la teoría clásica de Fourier son las funciones trigonométricas. En la nueva teoría, estos componentes básicos cambian y se utilizan dilataciones y traslaciones de una función madre. Eso sí, esa madre necesita propiedades adecuadas para ser de utilidad. De todas formas, hay muchas opciones y se puede decidir la más apropiada en función del uso, lo cual ya es, en sí mismo, una ventaja en las aplicaciones.

Morlet le puso un nombre francés al nuevo objeto: ondelette. Posteriormente, cuando el término llegó al inglés, se convirtió en wavelet, que es la denominación con la que ha recorrido el mundo científico. Aunque muchos usuarios utilizan el préstamo tal cual (wavelet), existen términos adaptados a cada idioma: ondícula (esp.), ondeta (cat.), onduleta (port.), por ejemplo.

huellas dactilaresImagen 3: Stéphane Mallat, Yves Meyer, Ingrid Daubechies y Emmanuel Candès han tenido una gran importancia en el desarrollo de la teoría de las wavelets y sus aplicaciones. (Fotografía: S. Jaffard – La lettre d’infos du CMLA, junio de 2017)

El análisis tradicional de Fourier no detecta bien los grandes cambios de una función que se producen en un intervalo reducido, porque las funciones trigonométricas que utiliza como componentes no están localizadas. Las ondículas, en cambio, se localizan y se adaptan mejor para estudiar cambios drásticos de funciones. Además, conviene elegir la ondícula madre adecuada según el uso que le vayamos a dar. Esto puede tener un coste matemático mayor y, si es para aplicarlo, quizás también un coste económico, pero hará mejor el trabajo que queremos o necesitamos.

Sistemas de compresión WSQ y JPEG2000

La teoría de las ondículas, a diferencia de la teoría de las series de Fourier que le precedió, ha abordado al mismo tiempo el campo puramente matemático y las aplicaciones. Se comenzó a utilizar inmediatamente para el procesamiento de las señales y las técnicas habituales se adaptaron al nuevo campo. El salto de aquellos primeros pasos al mundo real no se hizo esperar. Es más, las aplicaciones han alimentado la propia teoría matemática, lanzando nuevos problemas.

El sistema de compresión WSQ (Wavelet Scalar Quantization) para las necesidades del FBI se inventó con ayuda de ondículas. Además, lo pusieron a disposición de todo el mundo, libre. Este sistema usa matemáticamente una pareja de wavelets madre, una para la descomposición y la segunda para la reconstrucción de la imagen. Básicamente, siempre se hace lo mismo para la compresión: proporcionar la información que queremos guardar mediante una receta de componentes básicos (en este caso, wavelets) y hacer 0 los coeficientes de componentes de menor relevancia. Así, en la información que se va a almacenar se obtienen muchos ceros; se han ideado medios para guardar de forma breve esas listas de ceros.

huellas dactilaresImagen 4: para la compresión WSQ se utiliza una ondícula descubierta por la matemática Ingrid Daubechies.

Sin embargo, el uso de las ondículas para la compresión no quedó ahí. El mismo grupo que inventó el JPEG para las fotografías, creó otro estándar a través de wavelets: JPEG2000. Este modelo también se utiliza en la compresión de huellas dactilares cuando se toman imágenes de 1000 puntos por pulgada, pero no solo para eso: JPEG2000 se utiliza tanto en el cine digital, como en las imágenes que toman los satélites o en el protocolo DICOM de imágenes médicas.

Fourier moderno vs. Fourier clásico

El análisis de Fourier se enmarcó en el campo de las matemáticas teóricas a lo largo del siglo XIX y principios del XX. Sin embargo, posteriormente, se descubrieron multitud de campos en los que podía aplicarse en el mundo real, y con el aumento de la capacidad de cálculo de los ordenadores, se ampliaron aún más las posibilidades: señales, sonidos, imágenes médicas, espectrometría, cristalografía, telecomunicaciones, astronomía, visión artificial, reconocimiento de voz, etc.

La teoría de las ondículas, el nuevo campo que hemos visto crear y desarrollar, ha dado un nuevo impulso a estas aplicaciones. En el caso mencionado, el de las huellas dactilares, ofrece mejores resultados que la vía clásica, pero cabe preguntarse ¿merecerá la pena utilizar siempre las wavelets en lugar de las funciones trigonométricas? No, decidiremos en función de lo que queramos hacer. Por ejemplo, en nuestras cámaras fotográficas utilizamos JPEG porque no merece la pena recurrir a otro sistema de compresión para hacer fotos normales. La nueva teoría complementa la anterior, no la sustituye.

En 2017 el matemático Yves Meyer fue galardonado con el mayor premio que existe actualmente en matemáticas, el Premio Abel, «por su trabajo fundamental en el desarrollo de la teoría matemática de las ondículas«. Y en 2020 Yves Meyer, Ingrid Daubechies, Terence Tao y Emmanuel Candès han sido premiados con el Premio Princesa de Asturias de Investigación Científica y Técnica 2020, «por sus contribuciones pioneras y trascendentales a las teorías y técnicas matemáticas para el procesamiento de datos, que han ampliado extraordinariamente la capacidad de observación de nuestros sentidos y son base y soporte de la moderna era digital».

Para saber más:

En la red se puede encontrar más información sobre el tema. Estas son algunas de las fuentes que se pueden consultar:

Sobre el autor: Javier Duoandikoetxea es catedrático jubilado de Análisis Matemático en la UPV/EHU.

Este artículo se publicó originalmente en euskara el 19 de junio de 2019 en el blog Zientzia Kaiera. Artículo original.

El artículo Las huellas dactilares, el FBI y la teoría de Fourier modernizada se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Una teoría cinética para los sistemas financieros
  2. Elogio de la teoría
  3. Pál Turán: teoría de grafos y fábricas de ladrillos
Catégories: Zientzia

Zorros (auto)domesticados

dim, 2020/09/13 - 11:59
Foto: UW Urban Canid Project

Dimitri Beliáyev fue un genetista que vivió y trabajó en una época y un país en los que la genética mendeliana era considerada una falsa ciencia. El lugar era Rusia y la época, el periodo durante el que Iósif Stalin regía los destinos de la Unión Soviética, las décadas centrales del siglo XX. Algunos genetistas pagaron su adhesión a la ciencia con duras penas de prisión, y alguno incluso con la muerte. Beliáyev, sin embargo, consiguió mantener su posición en el Departamento de Reproducción de Animales Peleteros gracias a que hacía pasar sus estudios como investigaciones de fisiología. En 1948, no obstante, fue cesado como director del Departamento. Tras la muerte de Stalin en 1953 las cosas mejoraron para los genetistas, y en 1958 empezó a trabajar en la División Siberiana de la Academia de Ciencias de la URSS, de cuyo Instituto de Citología y Genética fue nombrado director en 1963, cargo que ocupó hasta su muerte en 1985.

En el instituto desarrolló, junto con Lyudmila Trut, uno de los experimentos de más largo alcance en la historia de la biología, tanto por su duración (sigue en marcha), como por su contenido. Criaron zorros plateados (Vulpes vulpes) en cautividad, y de cada generación seleccionaban a los más mansos. En la décima generación un 18% de la progenie eran mansos, y en la vigésima ese porcentaje había llegado al 33%. Así, mediante un programa de reproducción selectiva de los más mansos consiguieron zorros plateados domesticados.

Lo más interesante del experimento de Beliáyev y Trut es que verificaron en los zorros domesticados la aparición de un conjunto de rasgos al que se denomina síndrome o fenotipo de domesticación. Es algo que se había observado en otras especies y que había sido descrito por el mismo Darwin. Los rasgos anatómicos propios del síndrome, aunque no aparezcan los mismos en todas las especies domesticadas, son los siguientes: orejas flácidas, pigmentación irregular (a veces en forma de motas), cara (u hocico) corto, molares más pequeños, cráneo más redondeado y pequeño, y cuerpo de menor tamaño. En la edad adulta retienen rasgos juveniles (fenómeno denominado neotenia) y son más fértiles. Además, tienen un umbral de reacción a los estímulos externos más alto y se asustan menos por la presencia de ejemplares de otras especies.

El síndrome de domesticación parece ser debido a déficits leves en el número de células de la cresta neural, una estructura característica del desarrollo embrionario de los vertebrados. Y, al parecer, ese déficit podría tener su origen en cambios de carácter epigenético en genes implicados en el desarrollo temprano de esa estructura embrionaria.

Durante prácticamente todo el último siglo, los zorros comunes han ido penetrando en grandes ciudades, no solo de Europa Continental, sino también de Gran Bretaña y Australia. En las últimas décadas su número se ha multiplicado y lo ha hecho gracias, principalmente, a los zorros urbanos. Se han adaptado a utilizar los residuos que, de una u otra forma, abandonan los seres humanos, y han perdido el miedo a acercárseles. Los raposos parecen haber iniciado una relación de comensalismo con las personas similar a la que, muy probablemente, condujo a la domesticación de los perros y, quizás, otras especies también. Seguramente por eso no tienen miedo a acercarse a los seres humanos. Y, tal y como hemos sabido este mismo año, han experimentado algunos cambios anatómicos compatibles con el síndrome de domesticación.

Si ese proceso está, efectivamente, en marcha, los zorros estarían experimentando su propia autodomesticación. No debería extrañarnos: al fin y al cabo, como los zorros, también los seres humanos nos hemos domesticado a nosotros mismos.

Fuentes:

Anastasiadi D., Piferrer F. (2019): Epimutations in developmental genes underlie the onset of domestication in farmed European sea bass. Molecular Biology and Evolution DOI: 10.1093/molbev/msz153

Dugatin L. A., Trut L. (2017): How to Tame a Fox (and Build a Dog) The University of Chicago Press.

Parsons K. J. et al (2020): Skull morphology diverges between urban and rural populations of red foxes mirroring patterns of domestication and macroevolution. Proceedings of the Royal Society B. 28720200763 

 

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Zorros (auto)domesticados se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Zorros urbanos
  2. Domesticados
  3. Una desorbitada debilidad por los escarabajos
Catégories: Zientzia

Joaquín Sevilla – Naukas P4K 2019: Lo que esconden unos champiñones al ajillo

sam, 2020/09/12 - 11:59
Fuente: Cocinatis

Las leyes científicas se cumplen en todas partes y en todo momento, por eso son leyes. Esto incluye el cocinar unos champiñones al ajillo. Nos lo explica Joaquín Sevilla, doctor en físicas, profesor de tecnología electrónica y director de área de Cultura y Divulgación en la Universidad Pública de Navarra (UPNA).

La conferencia se impartió dentro del marco del festival Passion for Knowledge 2019 (P4K) organizado por el Donostia International Physics Center (DIPC).



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Joaquín Sevilla – Naukas P4K 2019: Lo que esconden unos champiñones al ajillo se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ambrosio Liceaga – Naukas P4K 2019: Nunca quisimos coches voladores
  2. José Miguel Viñas – Naukas P4K 2019: De nubes las pinacotecas están llenas
  3. Naukas Bilbao 2017 – Joaquín Sevilla: Los instrumentos del capitán Fitzroy
Catégories: Zientzia

Cómo garantizar la seguridad del suministro eléctrico en España sin nucleares ni carbón

ven, 2020/09/11 - 11:59

Investigadores de la UPV/EHU y el BC3 han proyectado la evolución que tendrán la demanda y la generación eléctrica en España en las próximas décadas; se considera un futuro sin energía nuclear ni proveniente del carbón, y con mayor peso de fuentes renovables. Han simulado la seguridad de suministro en ese escenario y proponen que, entre otras medidas, las centrales hidroeléctricas podrían ayudar a mitigar el riesgo de falta de suministro que pudiera darse.

Embalses de La Serena y Orellana (parte superior derecha) en Badajoz (España)

Los investigadores del Instituto de Economía Pública de la UPV/EHU y el BC3, el Centro Vasco contra el Cambio Climático, llevan varios años colaborando en el estudio y proyección de lo que se conoce como seguridad del suministro eléctrico en España. El país es una “isla eléctrica”, debido a su escasa interconexión con los países vecinos, característica clave para hacer una proyección de la demanda y la capacidad de generación y suministro que tendrá España en las próximas décadas. Esto les ha permitido modelar el nivel de seguridad del suministro, y evaluar cómo cambiará esa seguridad en función de las fuentes de electricidad que se vayan impulsando o abandonando.

Partiendo de valores conocidos de consumo y generación eléctrica, el grupo de investigadores ha desarrollado un modelo mediante el que han podido proyectar la evolución de estas dos variables en los años 2020, 2030, 2040 y 2050. “Otros autores han realizado proyecciones del consumo eléctrico, y apuntan a que este consumo irá creciendo década a década, algo más de un 1 % cada año. En cuanto a las fuentes de electricidad, en los próximos 10 años las proyecciones indican que la electricidad proveniente del carbón y la nuclear sufrirán un recorte considerable, y ya en 2040 estas dos tecnologías dejarán de operar”, comenta José Manuel Chamorro Gómez, investigador del Instituto de Economía Pública de la UPV/EHU. La capacidad de generación que se perderá se compensará con un aumento de energías renovables. Es más, “la capacidad del total de centrales renovables que se pondrán en marcha será mayor que la ya instalada de generación no renovable, pero todo parece indicar que la seguridad de suministro se verá afectada”, añade el investigador.

La naturaleza propia de las fuentes renovables de electricidad introduce en el sistema incertidumbre, intermitencia e incapacidad de gestión, lo que eleva el riesgo de que una fracción de la demanda de electricidad se quede sin cubrir por las fuentes disponibles, haciendo el suministro menos seguro. “Ahora mismo el sistema existente no garantiza el 100 % del suministro en cualquier escenario, pero en nuestros modelos hemos visto que la fracción potencialmente no cubierta será mucho mayor en el futuro, y esa falta de suministro se dará con una frecuencia mayor”, detalla el investigador.

Los investigadores han estudiado en detalle las posibilidades que ofrece una fuente de energía renovable que se presta a una gestión más flexible: la hidráulica. “Las centrales hidroeléctricas pueden ser moduladas por las personas responsables de su gestión, y pueden regular el flujo de agua hacia la turbina en todo momento, algo que sin duda aliviaría en parte el riesgo de falta de suministro. Es más, aquellas centrales hidroeléctricas con turbinas reversibles desempeñan una doble función: además de aumentar la generación eléctrica en los momentos de mayor demanda, cuando esta es baja pueden utilizar la turbina para bombear agua hacia la parte superior de la presa (consumiendo energía), y así acumular agua que poder utilizar para generar electricidad nuevamente cuando vuelva a aumentar la demanda. Según hemos comprobado, esto aliviaría hasta cierto punto el riesgo de no poder responder a la demanda de electricidad en los momentos en los que esta crece”, argumenta.

No obstante, los autores también mencionan los aspectos medioambientales que deben ser tenidos en cuenta a la hora de plantear y planificar el uso y gestión de las centrales hidroeléctricas: “Desde el punto de vista de generación eléctrica, el agua constituye un recurso, pero, claro, este recurso está en un contexto. El impacto que las centrales y las presas tienen en las cuencas de los ríos es innegable. Por tanto, las administraciones o los agentes que están por encima de quien opera las centrales son quienes tienen que marcar las reglas de juego, y estas reglas tienen que ser claras, en cuanto a caudales ecológicos, frecuencias de descarga y demás parámetros”, opina Chamorro.

Además del recurso de las centrales hidroeléctricas, el investigador enumera otra serie de medidas que se podrían tomar para atender plenamente a la demanda, y así garantizar la seguridad de suministro: “Por un lado, hay mucha investigación en temas de almacenamiento de electricidad. Si consigues un sistema de almacenamiento, donde, digamos, acumulas la electricidad que ha generado el viento en un tramo horario con escasa demanda, tendrás forma de utilizarla cuando sí sea necesaria. O impulsar a los consumidores a hacer uso de sus electrodomésticos en las franjas horarias en las que el precio de la electricidad es más bajo. O incluso los coches eléctricos podrían abastecer en un momento dado de electricidad a la red, para complementar el suministro. Se está avanzando en diferentes aspectos para alcanzar un sistema donde los picos de demanda estén lo más cubiertos posible”, concluye.

Referencia:

Luis M. Abadie, José M. Chamorro, Sébastien Huclin, Dirk-Jan van de Ven (2020) On flexible hydropower and security of supply: Spain beyond 2020 Energy doi: 10.1016/j.energy.2020.117869

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Cómo garantizar la seguridad del suministro eléctrico en España sin nucleares ni carbón se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Generada en plataformas eólicas marinas, desembarcada como hidrógeno
  2. Desmantelando metódicamente instalaciones nucleares
  3. La gestión de la salud y seguridad en el trabajo de las mujeres
Catégories: Zientzia

La mielitis transversa: el embotellamiento inflamatorio de la médula espinal

jeu, 2020/09/10 - 11:59

Diego Clemente

Funete: Wikimedia Commons

La empresa farmacéutica AstraZeneca ha pausado el ensayo clínico de la vacuna contra la COVID-19 que desarrolla junto a la Universidad de Oxford debido a un evento adverso serio aparecido en uno de los participantes. Aunque no se ha confirmado la naturaleza clínica de tal evento, el New York Times ha revelado que podría tratarse de mielitis transversa. ¿Qué es esta enfermedad?

La palabra mielitis ya nos indica que es una enfermedad neurológica, en la que se inflama la médula espinal. Por otro lado, transversa indica que afecta de manera completa –es decir, bilateral, tanto al área derecha como a la izquierda– a un segmento concreto de la médula.

Al igual que en la esclerosis múltiple, esta inflamación suele conllevar desmilienización. En otras palabras, se elimina la capa lipídica que envuelve los axones de las neuronas lo que, en consecuencia, produce fallos en el impulso nervioso. En la esclerosis múltiple este proceso no suele ser completo ni afectar a un único segmento de la médula, y también se ve afectada la mielina del cerebro.

La mielina es una adquisición evolutiva del sistema nervioso central que sirve para que el impulso nervioso se transmita a una alta velocidad sin necesidad de tener un axón muy grueso. Esto permite tener muchos axones más finos en un pequeño espacio. Gracias a ella podemos sentir y enviar órdenes a los músculos u órganos en milésimas de segundo, algo muy útil ante un peligro inminente o cuando tenemos que hacer varias cosas a la vez. A veces, la velocidad es un factor importante para poder sobrevivir o para destacar sobre otros individuos.

En el caso de la mielitis transversa, la desmielinización del segmento concreto de la médula puede tener una causa sospechada o no. Aunque se han descrito casos de esta enfermedad tras procesos de vacunación, un buen número de los casos de mielitis transversa son posteriores a una infección viral, o a una invasión bacteriana.

En ese caso, podría ser el propio invasor quien ataque a la mielina y ser el disparador de la desmielinización. Pero también puede ser la consecuencia del ataque inmunitario al microorganismo invasor, con lo que sería la propia respuesta del sistema inmune la causante de la desmielinización. En este caso, hablaríamos de un fenómeno de autoinmunidad.

¿Qué quiere decir esto? Pues que nuestras propias defensas atacan a nuestro organismo, sin conocerse muchas veces la causa concreta que les impulsa a hacerlo. En la mielitis transversa, no está claro aún si es una o ambas razones la que la causan. También puede estar asociada a otras patologías autoinmunes o incluso a determinados tumores. Pero hay que destacar que, en la mayoría de los casos, la mielitis transversa no tiene una causa sospechada, denominándose en ese caso como idiopática. Finalmente, hay que apuntar que también se ha descrito algún caso de mielitis transversa asociada a la COVID-19.

Otro aspecto a tener en cuenta en esta mielitis viene dado por el apellido de la enfermedad: transversa. No en todas las mielitis transversas se afecta el mismo segmento de la médula. Este aspecto es crucial para saber el grado de afectación de la persona con esta enfermedad.

¿Qué pasa cuando se ve afectado por completo un segmento de la médula espinal?

La médula espinal tiene muchas neuronas en su interior, las motoneuronas, que mandan órdenes a los músculos. También reciben muchos axones de neuronas sensitivas alojadas en los ganglios espinales y cuya información sensorial de músculos u otros órganos hace una primera parada en la propia médula espinal sobre las denominadas interneuronas quienes, a su vez, se comunican con las motoneuronas. De hecho, ambas señales, la de envío de órdenes y la de recepción de sensaciones, se integran y ordenan en la médula espinal.

Dependiendo del nervio espinal del que vengan o hacia donde vayan, el ordenamiento y procesamiento de esta información se hace a un nivel u otro de la médula espinal. Por ello, de manera general podemos decir que los segmentos cervicales participan en integración de información de cuello y músculos de la respiración, los torácicos del torso y parte de los brazos, los lumbares, las caderas y piernas, y los sacros, la ingle, los dedos de los pies y parte de las piernas.

Pero no pensemos en la médula espinal como un conjunto de anillas colocadas una encima de otra que no se comunican entre sí, sino que hay comunicación entre unos segmentos y otros, también a través de axones, también con mielina.

Para más complicación, la médula espinal es una gran autovía de paso de información desde todas las partes del cuerpo al cerebro y desde este a la médula y después a los órganos y músculos de nuestro cuerpo. Los carriles de la autovía son los axones de las neuronas, los vehículos los impulsos nerviosos, y la mielina sirve para que señales del cerebro lleguen a la punta del pie y viceversa muy rápidamente.

Por ello, cuando todo un segmento de la médula espinal se ve afectado por la mielitis transversa, no solo se afectan los músculos u órganos a los que envía y de los que reciben información las neuronas de esa parte concreta, sino que se ve afectada la intercomunicación entre segmentos, sobre todo con los segmentos por debajo de este y, algo muy importante, se ve muy afectada la movilidad en la gran autovía de impulsos nerviosos hacia o procedentes del cerebro.

Por esta razón, si la afectación medular es en los niveles más cercanos al cuello, el embotellamiento nervioso será mucho mayor y afectará a todos los segmentos inferiores al mismo, mientras que si es en la zona sacra se verán afectados menos segmentos de la médula y los síntomas serán menores. Normalmente, en la mielitis transversa se suele ver afectada la zona torácica, la de la parte alta de la espalda.

Síntomas y pronóstico variable

De ahí que los síntomas de la mielitis transversa varíen entre personas, aunque de manera más habitual son dolor, modificaciones en la sensibilidad y percepción de sensaciones aberrantes como hormigueos, parálisis de las extremidades (brazos o piernas dependiendo del segmento afectado), que pueden llegar incluso a ser causantes de una paraplejia y, en muchas ocasiones, afectación de la vejiga y de los intestinos, lo que afecta de manera importante a la vida diaria de las personas.

Al contrario que en la esclerosis múltiple, en la mielitis transversa se suele dar un único episodio sintomático del que la persona se puede recuperar completa o parcialmente, o de la que, lamentablemente, no puede recuperarse. Aproximadamente se calcula en un tercio cada una de las tres posibilidades.

Hoy en día no existe tratamiento curativo para la mielitis transversa, aunque normalmente se aplican corticoides al paciente para reducir la inflamación de la misma.

En la actualidad se investiga en conocer la causa de esta patología y en buscar terapias que ayuden a regenerar lo dañado por la inflamación. De lo que no hay duda, y de eso sabemos y mucho en el Hospital Nacional de Parapléjicos, es de que los pacientes cuya médula espinal está afectada se ven muy beneficiados por una buena rehabilitación, adecuada y específica a las partes del cuerpo que sean coordinadas por el segmento desmielinizado, pero también por los posteriores, así como por la comunicación con el cerebro. De ahí que sea tan importante la existencia de centros como el nuestro, donde, además de los músculos, se rehabilita la mente, la sexualidad, y se ayuda a afrontar la nueva vida de cada persona.

Sobre el autor: Diego Clemente es Investigador Principal del Laboratorio de Neuroinmuno-Reparación del Hospital Nacional de Parapléjicos

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo La mielitis transversa: el embotellamiento inflamatorio de la médula espinal se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Sistemas nerviosos: la médula espinal
  2. Estar obeso se parece mucho (demasiado) a envejecer
  3. Los supermicrobios amenazan con ser más letales que el cáncer
Catégories: Zientzia

Arte Moebius (I)

mer, 2020/09/09 - 11:59

A lo largo de algunas entradas de la sección Matemoción del Cuaderno de Cultura Científica hemos mostrado ejemplos de cómo las matemáticas han sido, y son, tanto una fuente de inspiración para el arte –en especial para el arte contemporáneo–, como una herramienta en el proceso creativo del artista. Algunos ejemplos para el caso de las artes plásticas pueden encontrarse en las siguientes entradas:

Cuadrados latinos, matemáticas y arte abstracto

Hipercubo, visualizando la cuarta dimensión

Bernar Venet, la estética de las matemáticas

El teorema de Pitágoras en el arte

El poema de los números primos

La geometría poética del cubo

El arte contemporáneo que mira al tangram

E incluimos más entradas en la misma línea en la bibliografía de esta. Aunque estos son solamente una pequeña cantidad de ejemplos de la profunda e interesante interacción entre las matemáticas y las artes plásticas.

Triángulo de Morley (1969), de Crockett Johnson. Imagen de la página web de The National Museum of American History

 

En la presente entrada vamos a centrar nuestra atención en uno de los objetos más interesantes e inspiradores de la geometría y la topología, la banda de Moebius. No es la primera vez que se habla de este objeto geométrico en relación al arte en el Cuaderno de Cultura Científica, ya que se han dedicado algunas entradas a su presencia en la novela gráfica (De menú para hoy dos novelas gráficas negras con salsa matemática y Guía matemática para el cómic Promethea), en la poesía (Poesía retorcida sobre banda de Mobius) o en la literatura (Cuatro leyes consumadas siguiendo una banda de Mobius). Y para conocer más ejemplos se puede consultar el artículo de Marta Macho, Listing, Möbius y su banda o el libro de Clifford Pickover, The Möbius strip (2006). Aunque en la serie de entradas que iniciamos aquí, vamos a mostrar una pequeña colección de ejemplos de su presencia en las artes plásticas, y en especial, en la escultura.

La banda de Moebius es una superficie “topológica” (véase la entrada La topología modifica la trayectoria de los peces) que fue descubierta, de forma independiente, por los matemáticos alemanes Johann Benedict Listing (1808-1882) y August Ferdinand Moebius (1790-1868). Es decir, es un objeto matemático, pero que también podemos observar y entender en nuestra vida cotidiana.

Grabado del matemático alemán August Ferdinand Moebius, realizado por Adolf Neumann alrededor de 1850. Imagen de Wikimedia Commons

 

Las superficies que vemos a nuestro alrededor, como una hoja de papel, un canutillo de cartón o una pelota, tienen dos caras, sin embargo, aunque pueda parecer sorprendente existen superficies que solamente poseen una única cara, como la cinta de Moebius.

Para construir esta superficie, la banda de Moebius, de una forma sencilla y cotidiana solamente se necesita una tira de papel y cinta adhesiva. Por ejemplo, puede cogerse una hoja de papel DIN A4 y cortar a lo largo una tira de unos 2 o 3 centímetros de anchura. Si juntamos los extremos de la tira de papel y los pegamos con la cinta adhesiva, se obtiene una banda normal, con dos caras, la interior y la exterior, que podríamos pintarlas de dos colores distintos. Pero además tiene dos bordes, “el de arriba y el de abajo”.

Pero, si cogemos una nueva tira de papel y antes de juntar los extremos, como hemos hecho antes, giramos uno de ellos media vuelta y después los pegamos, la superficie que se obtiene es una banda retorcida, la superficie de Moebius.

Podemos intentar comprobar experimentalmente cuántas caras tiene esta nueva superficie, para lo cual se va a utilizar un rotulador. Se empieza pintando la tira de papel retorcida en un punto dado y se continúa pintando en una cierta dirección hasta llegar al punto por el que habíamos empezado. Y descubriremos que está pintada toda la banda, luego solo tiene una cara, ya que para pintarla entera solo se utiliza un color.

Pero hay más sorpresas, si ahora tomamos otro rotulador y vamos recorriendo el borde de la banda de Moebius, veremos que cuando regresemos al punto inicial habremos recorrido todo el borde, es decir, ¡la banda de Moebius tiene un único borde!

Esta superficie tiene insólitas propiedades. Veamos una de ellas en el siguiente experimento que podéis realizar en casa. La cuestión que nos planteamos en este experimento es la siguiente: ¿Qué ocurre si cortamos la cinta de una sola cara por la mitad (con un corte longitudinal)?

Si cortásemos longitudinalmente una banda normal y corriente por la mitad, lo que se obtienen son dos bandas normales de igual longitud, pero más estrechas que la original. Mientras que si se realiza un corte longitudinal a una banda de Moebius lo que ocurre es que se tiene una única banda retorcida de doble de longitud que la banda de Moebius original.

Aunque la cuestión ahora es qué tipo de superficie es la que se ha generado, si será como una cita de Moebius o como una banda normal. O, dicho de otra manera, nos preguntamos cuántas caras tiene. Si utilizásemos de nuevo el rotulador podríamos observar que tiene dos caras y dos bordes, luego no es una banda del tipo de la de Moebius, sino una “banda normal retorcida” (es decir, si partimos de una tira de papel, se ha dado una vuelta entera a la tira antes de pegar los extremos).

Todas estas primeras cuestiones pueden verse en el en el video de la sección Una de mates, del programa de humor y ciencia de televisión, dirigido por José A. Pérez Ledo, Orbita Laika (primera temporada) de La2, de Televisión Española: La banda de Moebius.

Imagen de la patente US2.479.929, del inventor Owen H. Harris, de una correa abrasiva que, en lugar de tener la forma de una banda normal, tiene la forma de una banda de Moebius, para duplicar la zona de abrasión

 

Las extraordinarias propiedades de la superficie de Moebius, que solo tenga una cara y un borde, han cautivado no solo a personas del mundo de la ciencia y las matemáticas, sino también del arte. Por ejemplo, el director de cine, actor y escritor norteamericano Woody Allen, en su cuento El sol no sale para todos del libro Pura Anarquía (2007), escribía:

Deseoso de captar su atención, me había propuesto levantar en dos tiempos una barra equivalente en peso a un par de Steinways cuando de pronto mi columna vertebral adoptó la forma de una banda de Möbius, y buena parte de mi cartílago se separó audiblemente.

En particular, esta superficie ha cautivado a muchas personas del ámbito de las artes plásticas, con una especial incidencia en el mundo de la escultura, como veremos en esta serie de entradas.

Sin ninguna duda, el artista que más se relaciona con la banda de Moebius es el artista suizo Max Bill (1908-1994), uno de los máximos representantes del denominado arte concreto y miembro del grupo Abstracción-Creación (véase El teorema de Pitágoras en el arte para ver otras obras de Max Bill relacionadas con las matemáticas).

Como cuenta mi compañera y amiga Marta Macho en el artículo Listing, Mobius y su banda, en 1935 Max Bill estaba trabajando “en distintas posibilidades estéticas para una escultura colgante, cuando creó un objeto de una sola cara al que llamó Unendliche Schleife (cinta sin fin), sin ser consciente de que tales superficies se conocían desde hacía un siglo. Se comenta que sintió tal frustración al saber que él no había sido el inventor de esta forma, que pasó una larga temporada sin trabajar sobre ella”.

En cualquier caso, Max Bill diseñó y realizó hermosas esculturas con esta superficie sin fin y gracias a él fue ampliamente conocida en el mundo del arte. Veamos dos de estas esculturas de Max Bill.

Cinta sin fin (1953, original de 1935), de Max Bill. Museo de Arte de Baltimore

 

Giro sin fin (1953-1956), de Max Bill. Museo de Amberes

 

Tanto la obra artística de Max Bill, como su filosofía del arte, han tenido una gran influencia en el arte contemporáneo.

Uno de los artistas vascos contemporáneos por el que siento una gran admiración y en el que se puede apreciar una clara influenciada de la obra de Max Bill, de hecho, también se ha interesado por la banda de Moebius, es el artista navarro José Ramón Anda. Como comentamos en la entrada La geometría poética del cubo, dentro del arte de José Ramón Anda, una de las figuras fundamentales de la escultura vasca contemporánea, conviven dos grandes corrientes artísticas como son la abstracción geométrica, con una fuerte influencia del arte concreto, y la escultura orgánica, en la cual la naturaleza y sus formas, en particular, la madera, como material e inspiración, reivindican su importancia.

En sus primeros años, el escultor navarro realizó dos esculturas con cintas sin fin, realizadas en madera de roble, Dos cintas sin fin (1975, roble) y Cintas macladas triangulares (1975, roble).

Dos cintas sin fin (1975), de José Ramón Anda, realizada en madera de roble. Imagen de la página web de José Ramón Anda

 

En la magnífica exposición la exposición LANTEGI, José Ramón Anda, que tuvo lugar en la sala Kubo Kutxa de Donostia-San Sebastián, desde el 23 de mayo al 25 de agosto de 2019, pudimos observar una nueva escultura con una banda de Moebius.

Otro artista influenciado por el trabajo escultórico de Max Bill fue el artista británico John Robinson (1935-2007). En la década de los años 70, tras haber estado trabajando en escultura figurativa, empezó a realizar esculturas simbólicas abstractas con inspiración matemática. Entre los temas matemáticos con los que trabaja están los anillos de Borromeo (véase su definición en la Wikipedia), la teoría de nudos (puede leerse sobre nudos en las entradas La artista Anni Albers, The Walking Dead y la teoría de nudos y Del nudo gordiano al nudo de los enamorados por territorio matemático), los nudos tóricos (recordemos que en matemáticas un “toro” es la superficie que tiene la forma de un flotador), los fractales (véase Fractus, arte y matemáticas) o la banda de Moebius. Pueden verse muchas de sus obras simbólicas abstractas en la página del artista en la Fundación Bradshaw.

Una de sus obras simbólicas más emblemáticas es Inmortalidad (1982), que es una banda de Moebius con forma de nudo de trébol, realizada en bronce.

Inmortalidad (1990), de John Robinson, realizada en bronce y acero. Propiedad del departamento de matemáticas de la Universidad de Bangor (Gales). Imagen de ArtUK

 

Otra serie de sugerentes y hermosas esculturas con la idea de la superficie de una sola cara es la formada por obras como Seres dependientes (1980, bronce pulido y patinado) o Eternidad (1980, bronce pulido). Si pensamos en la obra Seres dependientes, podemos entender su estructura de dos formas distintas. La primera sería pensar en una banda de Moebius, como la que hemos construido con una tira de papel, pero en lugar de tener un grosor de 0,1 milímetros –que es más o menos el grosor de una hoja de papel–, que tenga un grosor del mismo ancho del papel, de unos 2 o 3 centímetros. Ahora el borde se convierte en otra banda de Moebius, de forma que la escultura posee dos cintas sin fin “entrelazadas”. Como decía el propio escultor, en relación a Seres dependientes (escultura del Centre de Recerca Matemàtica, de Barcelona): “el hombre y la mujer entrelazados para formar un solo Ser”.

Seres dependientes (1980), de John Robinson, realizada en bronce pulido y patinado, perteneciente al Centre de Recerca Matemàtica, de Barcelona)

 

Pero esta escultura la podemos entender también de otra forma. Si nos fijamos, la sección de la escultura es más o menos un cuadrado, luego puede entenderse la figura geométrica de estas esculturas como considerar un prisma cuadrado largo y flexible, retorcerlo media vuelta y unir los extremos.

Por otra parte, la escultura Eternidad (1980), que realizó después de Seres dependientes (1980), está realizada con una sección triangular, en lugar de cuadrada. Es decir, sería como considerar un prisma triangular largo y flexible, retorcerlo un tercio de vuelta –120 grados– para que vaya lado con lado y unir los extremos. De esta forma se genera una única superficie de tipo Moebius, de una sola cara.

Eternidad (1980), de John Robinson, realizada en bronce pulido. La escultura está en la plaza Pietre de Camberra, Australia

 

Detalle de la realización de la escultura Eternidad (1980), de John Robinson, utilizando 100 triángulos equiláteros

 

En la página del artista en la Fundación Bradshaw se pueden encontrar gifs de estas y otras esculturas de John Robinson.

La siguiente serie de esculturas de cintas si fin la descubrí por casualidad. Estaba viendo la película de intriga estadounidense Un pequeño favor (2018), dirigida por Paul Feig, el creador de la serie Freaks and Geeks (1999), e interpretada por Anna Kendrick y Blake Lively. En una de las escenas aparece una escultura en la entrada de una casa, como se ve en la siguiente imagen, y rápidamente me puse a averiguar de quien era esa escultura. Su autor es el artista británico Jeremy Guy, en cuya página web pueden verse muchas de sus esculturas.

Escena de la película Un pequeño favor (2018), dirigida por Paul Feig, en la que se ve la escultura Mobius H3, del escultor inglés Jeremy Guy. Imagen de la página web del escultor

 

Dentro de esa serie de obras está por ejemplo Mobius H12, realizada en granito negro, que el artista inglés realizó para el centro comercial Ion Orchard de Singapur.

Mobius H12, del escultor inglés Jeremy Guy. Imagen de la página web del escultor

 

Muchas otras obras del artista Jeremy Guy utilizan esta superficie de una sola cara, aunque muchas de ellas utilizando una idea similar, aunque más plástica, a la construcción de la escultura Seres dependientes de John Robinson, como la escultura Overtura o la serie Zephyr, todas ellas realizadas en granito negro.

Overtura, del escultor inglés Jeremy Guy, que aparece en la imagen junto a su obra. Imagen de la página web del escultor

 

Mientras preparaba esta entrada, he descubierto una obra muy singular, se trata del mosaico Banda de Moebius, que se encuentra en el edificio del Central Economic Mathematical Institute de la Academia Rusa de Ciencias, en Moscú, y que se conoce con el nombre “Casa con oreja”.

Escultura Banda de Moebius, de los artistas Vladimir Vasiltsov y Eleonora Zharenova, en el edificio del Central Economic Mathematical Institute (CEMI) de la Academia Rusa de Ciencias, de Moscú, realizado por el arquitecto Leonid Pavlov en 1978. Imagen de GreyScape

 

Otra escultura que se encuentra en la capital rusa y que toma como estructura la banda de Moebius es la escultura pública Banda de Möbius (1972), del escultor ruso Andrey Zakhidovich Nalich. La escultura es una superficie de Moebius, pero no es una superficie lisa, sino que toma la forma del cuerpo de una mujer. Además, en su base está escrito “Diferentes puntos de vista sobre un tema”.

Banda de Möbius (1972), del escultor ruso Andrey Zakhidovich Nalich, situada cerca del cine Horizon en Komsomolsky Prospekt, Moscú. Imagen de Another City

 

Una tercera escultura en Moscú es El árbol de la vida (1956-1998) del escultor ruso-americano Ernst Neizvestny (1925-2016), realizado con varias copias de cintas de Moebius, cuyo conjunto tiene la forma de un corazón humano. La escultura, que se gún su autor, es “una celebración del alma humana y el conocimiento”, está compuesto de cientos de imágenes de “personajes” históricos, como Adán y Eva, Jesús, Buda o Yuri Gagarin.

El árbol de la vida (1956-1998), del escultor ruso-americano Ernst Neizvestny, que se encuentra en el centro comercial Bragation de Moscú. Imagen de Other Moscow-LiveJournal

 

La artista multidisciplinaria japonesa Mariko Mori también ha utilizado la superficie de Moebius para la realización de diseños y esculturas. Por ejemplo, diseñó una banda de Moebius para el escenario de la representación de la opera Madame Butterfly de Puccini.

Enorme banda de Moebius sobre el escenario del Teatro La Fenice en Venecia, para la representación de la opera Madame Butterfly de Puccini. Imagen de Factum Arte

 

Así mismo ha realizado esculturas basadas en las formas de Moebius, como algunas de las obras de la exposición Cyclicscape (Sean Kelly Gallery, 2015).

Tres obras de la artista japonesa Mariko Mori, pertenecientes a la exposición Cyclicscape (Sean Kelly Gallery, 2015), basadas en la banda de Moebius. Imagen de la Sean Kelly Gallery

 

Ekpyrotic String II (2014), de la artista japonesa Mariko Mori, perteneciente a la exposición Cyclicscape (Sean Kelly Gallery, 2015), basada en la banda de Moebius. Imagen de la Sean Kelly Gallery

 

Para terminar una curiosa escultura, realizada con pequeños coches de juguete, Circunvalación de Moebius (2012), del artista estadounidense Chambliss Giobbi, cuya estructura es la misma que la de la obra Seres dependientes de John Robinson, es decir, un prisma cuadrado rotado media vuelta y pegado por los extremos generando una doble banda de Moebius.

Circunvalación de Moebius (2012), del artista estadounidense Chambliss Giobbi. Imagen de la página web de Chambliss Giobbi

 

Bibliografía

1.- Raúl Ibáñez, Cultura pitagórica: arte, Cuaderno de Cultura Científica, 2013.

2.- Raúl Ibáñez, El cubo soma: diseño, arte y matemáticas, Cuaderno de Cultura Científica, 2014.

3.- Raúl Ibáñez, Hipercubo, visualizando la cuarta dimensión (y 2), Cuaderno de Cultura Científica, 2015.

4.- Raúl Ibáñez, Catenarias en las artes plásticas, Cuaderno de Cultura Científica, 2016.

5.- Raúl Ibáñez, Artistas que miran a las matemáticas, Cuaderno de Cultura Científica, 2017.

6.- Raúl Ibáñez, Variaciones artísticas del teorema de Napoleón, Cuaderno de Cultura Científica, 2018.

7.- Raúl Ibáñez, El poema de los números primos (2), Cuaderno de Cultura Científica, 2019.

8.- Raúl Ibáñez, Los ritmos primos de Anthony Hill, Cuaderno de Cultura Científica, 2019.

9.- Raúl Ibáñez, La geometría poética del cubo (2), Cuaderno de Cultura Científica, 2019.

10.- Raúl Ibáñez, Fractus, arte y matemáticas, Cuaderno de Cultura Científica, 2020.

11.- Raúl Ibáñez, La cuarta dimensión, ¿es nuestro universo la sombra de otro?, RBA libros, 2011.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Arte Moebius (I) se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El teorema de Pitágoras en el arte
  2. Arte y geometría del triángulo rectángulo: Broken Lights
  3. El arte contemporáneo que mira al Tangram
Catégories: Zientzia

Las series de desintegración radiactiva

mar, 2020/09/08 - 11:59
Foto: Franck V. / Unsplash

Los estudios pormenorizados de la desintegración del radio y sus derivados llevaron al descubrimiento que la transformación radiactiva terminaba en un producto final estable que se identificó por su comportamiento químico como plomo. Algunos de los eslabones de la cadena que comienza con el radio emiten partículas alfa y otros emiten partículas beta. Algunos rayos gamma se emiten durante la serie de desintegración, pero los rayos gamma nunca aparecen solos; se emiten solo junto con una partícula alfa o una partícula beta.

Rutherford y Soddy sugirieron que, dado que el radio siempre se encuentra en los minerales de uranio, como la pecblenda, que los Curie habían analizado, el propio radio podía ser miembro de una serie que comenzase con el uranio como antepasado de todos los miembros. La investigación mostró que este es realmente el caso. Cada átomo de uranio puede dar lugar con el tiempo a átomos hijos sucesivos, siendo el radio la sexta generación y el plomo estable la decimonovena.

Fuente: Wikimedia Commons

La tabla muestra todos los miembros de la llamada serie uranio-radio [1]. El número que sigue al nombre de un elemento, como en el uranio-238, indica la masa atómica en unidades de masa atómica. Si nos fijamos veremos que hay variedades más pesadas y ligeras del elemento, como uranio-238 y uranio-235, polonio-218, 214 y 210 [2]. Se han encontrado otras dos series radiactivas naturales; una comienza con el torio-232 y la otra con el uranio-235.

Cada miembro de la serie difiere física y químicamente de su padre inmediato (colocado encima) o de su hijo (colocado debajo); por tanto, en teoría debería ser posible separar los diferentes miembros en cualquier muestra radiactiva. Esto no es que sea imposible de hacer, pero el problema de la separación se dificulta mucho por el hecho de que las diferentes especies radiactivas se desintegran a diferentes velocidades, algunas muy lentamente, otras rápidamente, otras a velocidades intermedias. Estas velocidades y su significado merecen un artículo específico, pero el hecho de que las velocidades difieran da lugar a efectos importantes que será lo próximo que veamos.

Notas:

[1] Aún es necesario introducir algunos conceptos para entender todos los datos de la tabla. Eso se hace un poco más adelante en esta serie. De momento nos basta tomar los nombres en la lista como correspondientes a cosas distintas desde el punto de vista físico/químico.

[2] Hay un artículo específico dedicado al concepto de isótopo en esta serie.

 

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Las series de desintegración radiactiva se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La transformación radiactiva
  2. La distribución de velocidades moleculares de Maxwell
  3. No solo el uranio emite rayos
Catégories: Zientzia

Historias genéticas de un fósil viviente

lun, 2020/09/07 - 11:59

Koldo Garcia Etxebarria

Pronto llegará el otoño y muchos árboles se despojarán de sus hojas. Entre esos árboles desnudos que encontraremos a nuestro alrededor, hay uno que es bastante especial: el ginkgo (Gingko biloba). Decimos que este árbol es especial porque es un fósil viviente. Aunque este término no es científico, así se dan a conocer las especies actuales que se asemejan a aquellas que se pueden encontrar en el registro fósil. Estas especies no tienen parientes vivos, es decir, son especies aisladas, testigos de un mundo pasado que parecen haber quedado congeladas en la evolución. Esta circunstancia convierte el estudio genético del ginkgo en un análisis de gran valor.

El ginkgo no ha sufrido cambios significativos en su aspecto durante los últimos 200 millones de años  y ha sobrevivido a las glaciaciones en los parajes de China. El encanto que posee este árbol ha propiciado que en los últimos años se haya extendido por todo el mundo de la mano del ser humano, que lo ha usado como adorno. A pesar de que este árbol ha sido objeto de numerosas investigaciones, un nuevo trabajo ha tratado de aclarar algunos aspectos aún desconocidos: dónde se refugió, cómo se enfrentó al cambio climático en el Pleistoceno, cuál fue el papel del ser humano en su dispersión y qué factores han influido en su supervivencia.

Para la realización de este trabajo, se han secuenciado los genomas de 545 ginkgos de 51 lugares. Principalmente se han estudiado ejemplares de China, pero también se han analizado árboles de Corea, Japón, Europa y América. Hay que tener en cuenta que el genoma del ginkgo contiene más de diez mil millones de «letras» de ADN, es decir, es tres veces más largo que el genoma humano. Por lo tanto, la cantidad de datos que se han extraído es enorme, y analizarlos supone un trabajo sustancioso.

gingkoGingko con colores otoñales en una pequeña aldea china. (Fotografía: Kohji Asakawa – Licencia Pixabay. Fuente: pixabay.com)

Para analizar el origen de los ginkgos actuales se emplearon varios métodos, obteniendo el mismo resultado: que en su origen había cuatro grandes poblaciones y que tres regiones funcionaron como refugios. Estas cuatro poblaciones originarias estaban situadas en el este, sur, suroeste y norte de China respectivamente (esta última ubicación era el punto de unión de las otras tres). Los autores del trabajo proponen que la población del norte de China se originó hace unos 140.000 años, al mezclarse las poblaciones del sur y del suroeste. A partir de este resultado se han definido tres zonas de protección: los ya conocidos del suroeste y el este, más un nueva zona al sur. De hecho, estas tres zonas de protección son lugares con una gran biodiversidad que actúan como zonas de protección de gran cantidad de plantas.

En cuanto al tamaño de las poblaciones, el ginkgo ha experimentado varios ciclos de expansión y reducción que tuvieron lugar en las glaciaciones del Pleistoceno. A partir de los datos genéticos y las simulaciones, sabemos que las mayores poblaciones existieron hace 15 millones de años, 1,05 millones de años y 0,5 millones de años; mientras que las menores, hace 4 millones de años, 0,1 millones de años y 0,06 millones de años. En los últimos 2 millones de años, la disminución de las poblaciones ha estado relacionada con los climas fríos.

En cuanto a los ginkgos que se encuentran fuera de China, analizando su origen genético se puede concluir que son descendientes de poblaciones del este de China. En primer lugar, los ginkgos fueron llevados a Japón y Corea, que son similares a los del este de China, y más tarde a Europa y América. Los árboles que hay en Europa son parientes de los ginkgos del este de China; y los que hay en América se asemejan a los ginkgos del este de China, Japón, Corea y Europa. Por ello, los investigadores creen que gracias al influjo humano los ginkgos se han trasladado varias veces desde el este de China a América.

gingkoHojas de ginkgo. (Fotografía: Marzena P.– Licencia Pixabay. Fuente: pixabay.com)

El estudio de los factores que influían en esta dispersión concluyó que siete variables climáticas afectaban a dicha distribución, entre otras, destacaban la estacionalidad de la temperatura, la de la lluvia o la cantidad de precipitaciones en el mes más seco. Además, el peso de estas variables fue diferente en los ginkgos del este y del suroeste de China, quizá debido a las preferencias de hábitat de cada grupo.

Para analizar la evolución de los ginkgos se seleccionaron 58 árboles del grupo oriental y 38 del suroeste. Se buscaron señales de la selección natural en los genomas de estos árboles y se constató que en cada grupo las regiones genómicas con indicios de selección habían sido diferentes. Analizando los genes localizados en estas regiones, concluyeron que estos genes tenían la función de combatir el estrés abiótico y biótico; que eran concretamente genes relacionados con las defensas para combatir insectos y hongos y genes para responder a la deshidratación, las bajas temperaturas y el exceso de sal. De hecho, ya se sabía que los ginkgos eran resistentes al estrés, especialmente frente a herbívoros y patógenos.

En resumen, el estudio del genoma de los ginkgos ha permitido obtener nuevos datos específicos sobre su dispersión y, a la vez, sobre su historia evolutiva. Esto nos aporta información sobre la evolución de las especies, ya que no es habitual recopilar tantos datos génicos sobre una especie aislada. A lo largo de los siglos, el ginkgo ha sido fuente de inspiración para el mundo de las artes, ha tenido presencia en la medicina y ha cautivado a los seres humanos. Hoy sigue seduciéndonos, incluso en el campo de la genética.

Referencia bibliográfica:

Zhao, Y., Fan, G., Yin, P. et al., (2019). Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nature Communications, 10(1), 4201. DOI: https://doi.org/10.1038/s41467-019-12133-5.

Sobre el autor: Koldo Garcia Etxebarria (@koldotxues doctor en Genética, investigador en Biodonostia-Instituto de Investigación Biosanitaria y divulgador científico.

Este artículo se publicó originalmente en euskara el 26 de noviembre de 2019 en el blog Zientzia Kaiera. Artículo original.

El artículo Historias genéticas de un fósil viviente se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Historias de la malaria: Las drogas sintéticas
  2. Historias de la malaria: El parásito
  3. Historias de la Malaria: La vacuna
Catégories: Zientzia

Ingredientes para la receta: El bacalao

dim, 2020/09/06 - 11:59

Pusieronle la mesa a la puerta de la venta, por el fresco, y trújole el huésped una porción del mal remojado y peor cocido bacalao y un pan tan negro y mugriento como sus armas”.

Miguel de Cervantes, El Quijote, 1605.

“… pues no sería buen bilbaíno si no hiciera en cualquier ocasión los honores debidos a un buen plato de bacalao con aquella salsa de bermellón y a una azumbre de chacolí de Somorrostro”.

Benito Pérez Galdós, Luchana, 1899.

Hace unos años escribía Juan Carlos Capel, gran gastrónomo y experto en pescado, que, “atendiendo a su origen y número de anécdotas, recetas y bibliografía documental, el bacalao es, sin lugar a dudas, el pescado más enciclopédico de la gastronomía española”. Cierto es, y cuesta más decidir que no contar que buscar algo para decir, por lo menos por ahora. Allá voy, a ver que sale.

Gadus morhua. Fuente: Wikimedia Commons

El bacalao atlántico, o Gadus morhua, se encuentra en el Atlántico norte, de Canadá y Estados Unidos, pasando por Groenlandia e Islandia, hasta el norte de Noruega y Rusia. Por el sur llega al Mar del Norte y el Canal de La Mancha.

Hacia el año 1000, el vikingo Leif Ericson llegó a Norteamérica, a Vineland, el País de las Viñas, a la tierra que ahora llamamos Terranova. Quizá ya pescaban bacalao. Ericson y sus compañeros se mantuvieron cerca de la costa, donde el bacalao es abundante y fácil de capturar. Los vikingos, en Escandinavia e Islandia, ya pescaban bacalao, por lo menos, desde finales del siglo VIII. Sin embargo, los vikingos de Groenlandia casi no probaron el pescado según los escasos restos encontrados en sus vertederos. Se ha propuesto que fueron los primeros en secar bacalao, quizá primero en Terranova y, después, en Islandia. Los vascos desarrollaron, al final de la Edad Media, un próspero comercio que enriqueció los puertos de Vizcaya, Guipúzcoa y Lapurdi, según publicó Anton Erkoreka, de la UPV/EHU, en 2004. El mismo autor plantea que la estructura de los barcos vikingos, eficaces y seguros, cambió la construcción naval en el Golfo de Vizcaya. Esos barcos permitieron, como hacían los vikingos, atravesar el océano y practicar la captura y comercio del bacalao.

Para pescar y preparar el bacalao, en las primeras pesquerías en Terranova, José María Merino nos cuenta el método que se seguía entonces.

Hay numerosos puertos en Terranova y Bacaillos donde los navíos anclan por tres meses. Al amanecer los marineros van a la campaña del salazón, a una, dos o tres leguas a tomar su carga. Para la una o las dos de la tarde han llenado cada cual su chalupa y vuelven al puerto donde hay un enorme muelle, especie de hórreo de madera construido al borde del mar … Allí hay una gran mesa sobre la que se acomoda el pescado descargado. Después de salarlo se lleva a secar sobre las rocas expuestas al viento o sobre el cascajo que el mar ha amontonado. A las seis horas se les da vuelta y así muchas veces. Después se recogen y apilan; y de nuevo lo mismo a los ocho días de estar al aire libre. Al fin, ya seco se les prensa.”

El bacalao, según una publicación de 1943 del Instituto Español de Oceanografía, que transcribe Mª Teresa Tolosa, era preparado según llegaba al barco. Nos puede servir de ejemplo de cómo se elaboraba para el transporte y la comercialización. La autora indica que:

los ejemplares se descabezaban, se arrojaban sobre la mesa del siguiente compartimiento. La mesa estaba dividida en 2 partes por medio de un listón, y en la segunda operaban dos tronchadores de pie sobre banquillos, enfrentados cara a cara, el primero con el cuchillo abre el pescado a lo largo de la línea media del vientre, se desviscera echando el hígado y las huevas en cestos a sus pies; el pescado limpio se echa en cestos que colmados pesan unos 65 kilogramos, y se arrastran por medio de ganchos hasta la escotilla de la bodega a la que se arrojan los pescados por medio de una lona de deslizamiento. En la bodega el maestro salador y ayudantes reciben el pescado sobre una capa de sal. El pescado se apila en capas alternas con sal. Las pilas tienen un metro de altura por 1,20 de anchura y se extienden de banda a banda. Cada pila pesa unas siete toneladas. Se utilizaba en proporción el 75% de sal en relación al pescado. Que se reduce por desecación en una tercera parte al descargar en la factoría”.

La grasa dificulta la salazón del pescado. La sal tarda en penetrar la grasa y, además, con el tiempo de secar al aire puede tomar sabor a rancio. El bacalao tiene poca grasa y, por tanto, se puede secar al aire y, después, salar en un proceso sencillo y eficaz.

Volvamos atrás en el tiempo a pesar de que la detección de restos de peces en los yacimientos arqueológicos no es fácil. Son pequeños y delicados sus huesos y, además, durante mucho tiempo los métodos de estudio no eran adecuados y no se buscaban en los trabajos de arqueozoología. En el estudio de Lucy Cramp y su grupo, de la Universidad de Bristol, sobre restos de comida encontrados en cerámica de yacimientos del noroeste de Europa, se han encontrado restos de lípidos de origen marino fechados hace 6000-7000 años y, todavía en más cantidad, entre los siglos IX y XIV, durante el auge de las incursiones de los vikingos. Sin embargo, los autores no pueden concretar si entre los restos hay alguno de bacalao.

En la costa de los Países Bajos, Alemania y Dinamarca, los restos más abundantes corresponden a gádidos, entre los que se encuentra el bacalao. No abundan en los fechados en la Edad del Hierro, hace unos 5000 años, pero se recogen en los datados hace unos 2500 años y aumentan en la dieta en la Edad Media, hacia los 400 años de nuestra era y siglos posteriores. Los autores, Witzke Prummel y Dirk Heinrich, de las universidades de Groningen, en Holanda, y de Kiel, en Alemania, suponen que existía entonces un gran comercio de estas especies de gádidos, entre ellas el bacalao.

De sus hallazgos deducen que desde los siglos V al VII, hay comercio de bacalao en Suecia. Y, en yacimientos de la época romana en las zonas estudiadas, hay restos de pescado salado.

En la revisión de Inge Enghoff, de la Universidad de Copenhague, hay restos de bacalao desde los VIII y IX en Dinamarca, desde el siglo VIII en Alemania y Países Bajos, y en Bélgica desde el siglo XII al XIII. Hay más abundancia en el siglo XVI y, también, aparecen esos restos en yacimientos del Reino Unido. En Haithabu, en Alemania, cerca de la frontera actual con Dinamarca, el grupo de Bastiaan Star, de la Universidad de Oslo, encontró restos de bacalao, fechados entre los siglos IX y XI, que, con análisis de ADN, situaron su origen en el norte de Noruega. De nuevo los viajes de los vikingos.

En los Países Bajos y en restos del siglo XVI, hay marcas de cortes en el esqueleto que indican que era bacalao seco y, para algunos expertos, no son capturas del Mar del Norte sino que vienen de pesquerías más lejanas, más al norte. A menudo se encuentran ejemplares de dos tamaños: pequeños, de pesquerías locales; y grandes, sin cabeza, importados del norte de Europa y secos y salados. Para los restos del siglo XVII ya se ha podido establecer el origen de ese bacalao seco en las islas Spitzbergen, muy al norte, en el Océano Ártico. Este tráfico de bacalao desde el norte llegó a las 6000 toneladas anuales en la Edad Media.

Fuente: Wikimedia Commons

Por esos años, hacia 1400, algunos pescadores europeos adoptaron los métodos de conservación en sal desarrollados por los vascos. Se ha propuesto que los vascos pescaban bacalao y lo salaban desde el siglo X. El bacalao seco, salado y duro como la madera, se podía transportar por tierra a cualquier lugar del interior de Europa o, más en concreto, al litoral más urbanizado del sur del Mar del Norte. Así, en Europa, el bacalao se convirtió en parte importante de la dieta. Ayudó a su éxito en la dieta la Iglesia Católica con los días y fiestas en los que obligaba a la vigilia, a no comer carne.

Es difícil establecer cuando llegó el bacalao a la dieta de los habitantes de la Península Ibérica. Incluso L. Benavides escribe que lo trajeron los fenicios. José María Merino cuenta como, en un tratado fechado en 1354 entre los reyes de Inglaterra y Castilla, se permitía a los castellanos, entre ellos a los vascos, preparar y salar pescados en las costas inglesas. Ya se conocía el bacalao en Castilla e, incluso, era cuestión de negociación entre reyes. Y en 1519, según José Carlos Capel, la palabra “bacalao” aparece escrita por vez primera en castellano. Servía, de forma genérica, para varias especies de pescado marino conservadas en sal.

Cinco siglos después que los vikingos, en 1497, llegó a Terranova John Cabot, navegante genovés al servicio de Enrique VII de Inglaterra. Se sorprendieron de la abundancia de bacalao y, parece ser, que lo pescaban simplemente hundiendo en el mar grandes cestas que recogían llenas de peces.

Pocos años después, o quizá antes, llegaron vascos y portugueses que, además, utilizaban sal para conservar el bacalao. Cuando en 1535 llegó a Terranova y al San Lorenzo en su segundo viaje a la zona, Jacques Cartier, enviado por el Rey Francisco I de Francia, encontró numerosos barcos pescando bacalao. Era vascos, españoles, portugueses y bretones. En 1548, Francisco I envió una flota con 150 veleros a pescar bacalao. Llevaban las capturas a tierra, preparaban el pescado y lo colgaban a secar en los fríos vientos del Ártico.

La época dorada de la pesca de bacalao por los vascos duró de 1560 a 1600. El primer barco de nuestro entorno más cercano del que existe prueba documental de ir a la pesca del bacalao en Terranova, según el estudio de Thierry Du Pasquier, es el “Catherine d’Uturbie”, Su capitán, Adam de la Gaberie, se comprometió el 22 de marzo de 1530, antes de su partida, a vender a dos comerciantes de Burdeos, “cuatro millares y medio de bacalao seco”. Más adelante, en noviembre de 1603, el “Santiago” llegó a Bilbao, después de la campaña de Terranova, con ballena y bacalao.

Las pruebas históricas indican que desde entonces, siglos XV y XVI, el bacalao se ha comercializado en muchos países europeos. En el Mar Báltico, las primeras evidencias de consumo de bacalao que conocemos son del siglo XIII, con pescado de Noruega. O en Islandia, con aumento de la demanda de bacalao por mercaderes alemanes e ingleses en el siglo XIII, hasta el siglo XVI en que disminuyeron las capturas y las ventas. Y el bacalao de Terranova aparece en los yacimientos arqueológicos a partir del siglo XVI, después de las exploraciones de Cabot. Algunos autores mencionan las 200000 toneladas anuales de pesca de bacalao fresco en Terranova en el siglo XVI.

La primera parte de El Quijote se publicó en 1605. En su primera salida, el Caballero llegó a la venta de Puerto Lápice (que todavía existe), y allí tuvo bacalao par a comer. Era viernes y en cuaresma y, por tanto, había que guardar la vigilia. Repito la cita del principio de este texto:

Pusieronle la mesa a la puerta de la venta, por el fresco, y trújole el huésped una porción del mal remojado y peor cocido bacalao y un pan tan negro y mugriento como sus armas”.

Una receta como para probar es el atascaburras manchego, aunque la receta actual lleva patatas que, a principios del siglo XVII, estaban recién llegadas de los Andes y todavía no eran de uso popular. Este es el atascaburras que mencionaba, según Lorenzo Díaz en su recetario del Quijote.

Se cuecen las patatas con el bacalao desalado. En un mortero se pican ajos, y se van echando las patatas cocidas una a una y se machaca todo junto. Se desmenuza el bacalao y se añade al mortero y se sigue machacando, y a la vez, se añade, poco a poco, aceite crudo. Así se consigue un puré consistente. Se adorna con rodajas de huevo duro y nueces. A la mesa.”

El comercio de bacalao llegó a muchos países y se han encontrado restos, por ejemplo, en el Caribe cerca de los alojamientos de finales del siglo XVIII para esclavos africanos. Es un ejemplo temprano de globalización.

Durante el siglo XVIII y, sobre todo, en el XIX, Bilbao fue el gran mercado de bacalao para el norte de la península. En esos años, en 1758, Juan Altamiras publicó su “Nuevo arte de la cocina española” con alguna receta de bacalao salado. Son pocas, una docena. Es plato del pueblo, nada elegante e, incluso es un pescado de “poca sustancia”.

Para el bacalao salado de Terranova fue España el mejor mercado durante la primera mitad del siglo XIX, entre 1815, al terminar las guerras napoleónicas, y 1840. Hacia 1870, el comercio con España declina, y a finales de siglo, es muy escaso. Los mayores competidores son Noruega y Francia.

Bacalao al pil pil. Fuente: Wikimedia Commons

En el siglo XIX, en 1836 y durante la primera guerra carlista, Bilbao fue sitiada por las tropas de Zumalacárregui. Y en Bilbao, se cuenta que, durante el sitio, para comer había, sobre todo, bacalao. Es más, la tradición afirma que entonces se inventó el bacalao al pil pil. Benito Pérez Galdós, para sus Episodios Nacionales escribió Luchana, libro en el que narra el sitio de Bilbao. Menciona un plato extraordinario con bacalao en salsa bermellón o, más habitual, en salsa roja. Es el bacalao a la vizcaína, con una salsa de color rojo conseguida con la carne de los típicos pimientos choriceros. De una receta de Karlos Arguiñano, en la que añade patatas que voy a quitar, se dice cómo hacer este bacalao y, por favor, sin salsa de tomate.

Cocer el bacalao, desalado, en caldo de pescado con carne de pimientos choriceros. Algo así como cuatro minutos por cada lado, y a servir. Hay quienes a todo esto le añaden cebolla pochada en aceite y manteca de cerdo o tocino de un buen jamón. Y también cortezas de pan seco mojadas y desmenuzadas. Lo que les apetezca.”

El libro Luchana se publicó en 1899, y cuatro años antes, en 1895, Sabino Arana pasó la Navidad en la cárcel de Larrínaga, en Bilbao. Sus seguidores le llevaron su cena de Navidad que, como debía ser, incluía bacalao a la vizcaína, ese bacalao en salsa bermellón que cita Pérez Galdós.

En la tercera guerra carlista, en el sitio de Bilbao, comenzó la leyenda del bacalao al pil pil. Un almacenista de salazones de Bilbao apellidado Gurtubay hizo un pedido de bacalao, unos 30 o 40 fardos que, por error de quien sea, se convirtieron en 30040 fardos. Comenzó el sitio y, en Bilbao, se comía, sobre todo, bacalao. Y hay quien asegura que entonces se inventó el bacalao al pil pil. Por cierto, la bibliografía sobre este tema es confusa: fue la primera o la tercera guerra carlista, la que cuenta Benito Pérez Galdós; y se debate sobre si Gurtubay era José María o Simón., etc. Quizá todo sea leyenda. Por otra parte, no hay acuerdo entre expertos como, por ejemplo, José Mª Busca Isusi, si el bacalao al pil pil y el bacalao ligado son la misma o diferentes recetas para cocinar este pescado.

Al otro lado del Atlántico, en la costa este de Estados Unidos, Rudyard Kipling sitúa su novela Capitanes valientes, publicada en 1897. Relata la pesca del bacalao cuando era abundante y se pescaba con relativa facilidad desde chalupas que partían del barco pesquero y volvían a él para limpiarlo, prepararlo y almacenarlo en la bodega. Es la técnica de pesca utilizada hasta 1950 y desde muy antiguo, como antes explicaba José María Merino.

La primera cena del novato protagonista de la historia es ”un plato de fritura de lenguas y vejigas de bacalao, pedazos de carne de cerdo y patatas fritas; una hogaza de pan caliente y una taza de café negro y fuerte”. En Terranova hay un plato típico para la cena familiar. Se cocina así:

Se cuece en agua bacalao desalado y patatas cortadas trozos pequeños durante media hora. Después se fríen los trozos de bacalao hasta que estén dorados. Se dora cebolla picada con el cerdo mientras se fríe. Unir el bacalao y las patatas con el cerdo y la cebolla frita. Algo de pimienta negra y a la mesa.

A principios del siglo XX, entre 1900 y la primera Guerra Mundial, el comercio del bacalao en España creció y casi se triplicó. También el precio subió y, según Daniel Vickers, por el aumento de la población debido a la revolución industrial y a la globalización del comercio mundial y al descenso de capturas del bacalao por la sobreexplotación.

Recetas de bacalao PYSBE (1936). Fuente: IberLibro

En 1926 se fundó la empresa Pesquerías y Secaderos de Bacalao de España, conocida por sus siglas PYSBE. Organizó el negocio el armador francés Louis Legasse, conocido por sus intereses en la pesca desde St. Pierre et Miquelon, islas francesas en el Atlántico noroeste, en Terranova. En España, el gobierno ayudó a la prosperidad del negocio al imponer, en 1922, un arancel al bacalao importado.

La empresa, cuya sede estaba en Pasajes y que consiguió que este puerto fuera el primer puerto bacaladero del país y uno de los primeros de Europa, emitió 4000 acciones, a 500 pesetas cada una, que adquirieron banqueros, empresarios, aristócratas adinerados e, incluso, el rey Alfonso XIII. A finales de los veinte botó los seis primeros pesqueros, y sus campañas consiguieron que el porcentaje de bacalao nacional consumido en el país pasara del 2%, en 1927, al 15%, en 1934.

Después de la guerra civil, PYSBE amplió su actividad y construyó un muelle y factoría en El Ferrol, y depósitos frigoríficos en Málaga y Sevilla. También tuvo agencias en Gales, Inglaterra, Noruega, Islandia, Canadá, Terranova, Azores y St. Pierre et Miquelon.

La empresa desapareció en los setenta cuando la sobreexplotación del recurso comenzaba a notarse y los países más cercanos, como Canadá o Islandia, ampliaron su zona económica exclusiva y limitaron la actividad pesquera en sus caladeros. No supo reaccionar a los cambios en la pesca y en el tratamiento del pescado como, por ejemplo, el desarrollo de la congelación. En 1973 comenzó la liquidación de la empresa y, en 1974, presentaron el expediente de crisis.

Las capturas de bacalao de Terranova en los siglos XIX y XX eran de 100000 toneladas anuales en 1800, llegaron a 300000 en 1900 y cayeron a 50000 entre 1970 y 2000. Era el mayor stock del planeta. Durante años y años soportó la extracción de entre 200000 y 400000 toneladas anuales. Y, por fin, entre 1985 y 1995, colapsó y prácticamente desapareció. Ahora, George Rose y Sherrylynn Rowe, de la Universidad Memorial de Terranova en St. John’s, nos dan la buena noticia de que la población del bacalao del norte está creciendo a partir de los pocos ejemplares que quedaron después del colapso.

Los autores calculan la población de bacalao a partir de escuchas con el sonar, tomadas desde 1999 a 2015, en el Corridor Bonavista, al nordeste de Terranova, zona de migración del bacalao para la puesta. Los ecogramas demuestran la presencia de bacalao hasta 1992. Después desaparece y vuelve de nuevo en los ecogramas de marzo de 2008 y, con mayor presencia, en los meses de mayo de 2014 y 2015.

La biomasa calculada, en el Corridor Bonavista, es de algo más de un millón de toneladas en 1990, entre 1000 y 5000 toneladas entre 1995 y 2005, y un aumento hasta 240000 toneladas en 2014. El aumento de la población entre 2005 y 2014 es exponencial, con un aumento lento al principio, con unos miles de toneladas anuales, y mucho más rápido al final, hasta esas 240000 toneladas de 2014.

Con datos de capturas por arrastre entre 1978 y 2013, Eric Pedersen y su equipo, de la Universidad McGill de Montreal, llegan a parecidas conclusiones. Dan a la biomasa de bacalao de 1981 el valor de 100, cae hasta 5 en 1995 y sube a 17 en 2013 en un lento proceso de recuperación.

En la actualidad, inicios del siglo XXI, hay países con flotas especializadas en la pesca del bacalao: Islandia, Noruega, Dinamarca, Reino Unido, Rusia y otros. Fue en 2017 cuando la FAO clasificó al bacalao entre las diez especies más pescadas del planeta.

Portugal es el país que más bacalao consume, unas 80000 toneladas anuales a principios de este siglo. Le sigue España con 35000 toneladas. Brasil llegó a las 40000 toneladas en 1998. Italia consume 20000 toneladas anuales y Francia 10000 toneladas, sobre todo por los portugueses que residen en el país.

En el siglo XXI comenzó, en Noruega, la investigación para desarrollar y promover la acuicultura del bacalao. El programa nacional de cría de bacalao se inició en 2002. Pronto la producción llegó a las 19000 toneladas anuales en el momento de su máximo desarrollo. Pero, con la crisis de 2008, la producción se detuvo y todo terminó en 2014.

En 2019, reiniciaron los estudios y los ensayos y se consiguió que se recuperara la producción y la mejora de los métodos y técnicas de cultivo. Los huevos son difíciles de manejar pero, cuando el juvenil nace y pesa 1-2 gramos es un pequeño bacalao capaz de alimentarse por su cuenta. Los ejemplares se conservan hasta que maduran sexualmente y, después, se colocan en jaulas en el mar. A los 21 meses pesan alrededor de tres kilos y se comercializan.

Referencias:

Barrett, J.H. 2018. An environmental (pre)history of European fishing: past and future archaeological contributions to sustainable fisheries. Journal of Fish Biology 94: 1033-1044.

Barrett, J.H. et al. 2011. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. Journal of Archaeological Science doi: 10.1016/j.jas.2011.02.017

Benavides-Barajas, L. 1995. Nueva clásica cocina andalusí. Ed. Dulcinea. Granada. 328 pp.

Bjorndal, T. et al. 2017. Cod-nations: Trade of a expanding commodity. Conference Paper June. 11 pp.

Capel, J.C. 1997. Manual del pescado. R & B Ed. Bilbao. 366 pp.

Collier, K. 2011. 19th century salt fish markets, 1810-1914. Newfoundland and Labrador Heritage Web Site.

Cramp, L.-J.E. et al. 2014. Immediate replacement of fishing with dairying by the earliest farmers of the norteast Atlantic archipelagos. Proceedings of the Royal Society B 281: 20132372

Díaz, L. 1993. La cocina del Quijote. Servicio de Publicaciones de la Junta de Comunidades de Castilla-La Mancha. 270 pp. + 111 pp.

Du Pasquier, T. 2000. Les baleiniers basques. Ed. S.P.M. Paris. 452 pp.

Edvardsson, R. et al. 2019. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quaternary Research doi: 10.1017/qua.2018.147

Enghoff, I.B. 2000. Fishing in Southern North Sea región from the 1st to the 16th century AD: Evidence from fish bones. Archaeofauna 9: 59-132.

Erkoreka, A. 2004. Los vikingos en Vasconia. En “Los vikingos en la Península Ibérica”, p. 9-40. Fundación Reina Isabel de Dinamarca. Madrid.

García-Orellán, R. & J. Beobide Arburua. 2009. Hombres de Terranova. La pesca del bacalao (1926-2004). Stella Maris. Santurce. 389 pp.

Hayward, V. 2017. Nuevo arte de la cocina española, de Juan Altamiras. Círculo de Lectores. Barcelona. 493 pp.

Klippel, W.E. 2001. Sugar monoculture, bovid skeletal part frequencies, and stable carbon isotopes: Interpreting enslaved African diet at Brimstone Hill, St. Kitts, West Indies. Journal of Archaeological Science 28: 1191-1198.

Kurlansky, M. 1999. El bacalao. Biografía del pez que cambió el mundo. Ed. Península. Barcelona. 267 pp.

Kurlansky, M. 2003. Sal. Historia de la única piedra comestible. Ed. Península. Barcelona. 508 pp.

Macías, O. 2002. La cultura culinaria de Bilbao a finales del siglo XIX. XV Congreso de Estudios Vasco, Ciencia y cultura y redes telemáticas, Donostia, Eusko Ikaskuntza, p. 259-265.

Merino, J.M. 1991. La pesca desde la Prehistoria hasta nuestros días (La pesca en el País Vasco). Servicio Central de Publicaciones del Gobierno Vasco. Vitoria-Gasteiz. 494 pp.

Orton, D.C. et al. 2011. Stable isotope evidence for Late Medieval (14th-15th C). Origins of the Eastern Baltic cod (Gadus morhua) fishery. PLOS One 6: e27568.

Pedersen, E.J. et al. 2017. Signatures of the collapse and incipient recovery of an overexploited marine ecosystem. Royal Society Open Science 4: 170215.

Prummel, W. & D. Heinrich. 2005. Archaeological evidence of former occurence and changes in fishes, amphibians, birds, mammals and mollusc in Wadden Sea area. Helgoland Marine Research 59: 55-70.

Rose, G.A. & S. Rowe. 2015. Northern cod comeback. Canadian Journal of Fisheries and Aquatic Sciences DOI: 10.1139/cjfas-2015-0346

Star, B. et al. 2017. Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proceedings of the National Academy of Sciences USA 114: 9152-9157.

Tolosa Bernárdez, M.T. 2000. La pesca del bacalao en el siglo XX: el caso de la Compañía P.Y.S.B.E. Itsas Memoria Revista de Estudios Marítimos del País Vasco 3: 363-382.

Vázquez, A. 2009. La pesca española del bacalao en Terranova. Foro dos Recursos Mariños e da Acuicultura das Rías Galegas 11: 123-140.

Vega Pérez de Arlucea, A. 2019. El bacalao según la PYSBE. El País 29 marzo.

Vickers, D. 1996. The price of fish: A price index for cod. Acadiensis 25: 92-194.

Vié, B. 2001. La morue entre sel et mer. Jean-Paul Rocher Ed. Paris. 222 pp.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Ingredientes para la receta: El bacalao se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ingredientes para la receta: El arroz
  2. Ingredientes para la receta: El maíz
  3. Ingredientes para la receta: El conejo
Catégories: Zientzia

Pages